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Abstract Human height variation is determined by genetic and environmental factors, but it

remains unclear whether their influences differ across birth-year cohorts. We conducted an

individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born

1886–1994. Although genetic variance showed a generally increasing trend across the birth-year

cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear

pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and

Australia, and East Asia), total height variance was greatest in North America and Australia and

lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts

emerged. Our findings do not support the hypothesis that heritability of height is lower in

populations with low living standards than in affluent populations, nor that heritability of height will

increase within a population as living standards improve.

DOI: 10.7554/eLife.20320.001
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Introduction
Height is a classic anthropometric quantitative trait in humans due to its ease of measurement,

approximately normal distribution and relative stability in adulthood. Since the studies of height in

the late 19th and early 20th centuries (Galton, 1886; Pearson and Lee, 1903; Fisher, 1919), twin,

adoption and family studies have shown that height is one of the most heritable human quantitative

phenotypes (Silventoinen, 2003). More recently, genetic linkage studies have helped to elucidate

the location of genetic effects in the genome (Perola et al., 2007) and genome-wide association

(GWA) studies allowed identification of loci consistently associated with height in populations of dif-

ferent ancestry (Cho et al., 2009; Hao et al., 2013; Lango Allen et al., 2010; N’Diaye et al., 2011;

Wood et al., 2014). Besides the genetic factors, a multitude of environmental factors, such as nutri-

tion and childhood diseases, operate during the growth period and can affect the final attained

height. These and other proximate biological determinants of height are further associated with

social and economic conditions, which in turn are associated with living standards (Bozzoli et al.,

2009; Bogin, 2001; Eveleth and Tanner, 1990; Steckel, 2009). The secular trend of increasing

height over the 20th century observed in many parts of the world, which has slowed or stopped in

most northern European countries, probably reflects the continuous improvement in the standard of

living (Eveleth and Tanner, 1990; Cole, 2003; Stulp and Barrett, 2016). A recent study showed

that the height difference between the tallest and shortest populations a century ago (19–20 cm) has

remained the same for women and increased for men (NCD Risk Factor Collaboration (NCD-RisC),

2016) .

Twin and family studies have consistently estimated that the proportion of variation in adult

height explained by genetic differences between individuals, or heritability, in general populations is

approximately 0.80 (Fisher, 1919; Silventoinen et al., 2003; Stunkard et al., 1986). There is a

hypothesis that heritability is not constant and can differ in environments having different amount of

environmental variation. Accordingly, it has been suggested that heritability of height is lower in

populations with low living standards compared with affluent populations since poverty can lead to

a lack of basic necessities important for human growth in part of the population (Steckel, 2009).

However, there is little direct evidence on this issue. A study in Finnish twins born between 1900 and

1957 showed that the heritability of height increased across birth cohorts born in the first half of the

century when the standard of living increased and leveled off after World War II thus supporting this

hypothesis (Silventoinen et al., 2000). Because this result needs to be replicated, we conducted an

individual-based analysis of 40 twin cohorts from 20 countries. We aimed to analyze (i) the genetic

and environmental contribution to the variation of adult height across nine birth-year cohorts cover-

ing more than 100 years and (ii) to assess whether the pattern varies by geographic-cultural region

(Europe, North America and Australia, and East Asia).

Results
In the pooled data (all twin cohorts together), mean height was greater in men than in women and

increased over the birth-year cohorts in both sexes; the decrease ( > 1 cm) observed in the latest

birth cohort mainly reflects differences in the distribution of different twin cohorts within each group

(Table 1). Both means and variances were significantly different between twin cohorts in all birth-

year and sex groups. Mean height was shorter in East Asia than in Europe and North America and

Australia in all birth-year and sex groups. The increase in mean height over the birth cohorts (from

1940–1949 to 1980–1994) was substantially greater in East Asia than in the other two geographic-

cultural regions. The variance of height was generally greater in men than in women, lowest in East

Asia and greatest in North America and Australia, and showed a general trend to increase over the

birth cohorts.

The variance of adult height explained by additive genetic, shared environmental and unique

environmental factors by birth-year cohorts is presented in Figure 1 (estimates with 95% confidence

intervals (CIs) are available in Supplementary file 1A). In men, there was a trend for an increasing

total variance from birth cohort 1940–1949 onwards; genetic variance also increased during this

period but especially in the two latest birth-year cohorts (1970–1979 and 1980–1994). Height vari-

ance due to the environment shared by co-twins was significant from birth cohorts 1920–1929 to

1970–1979, being greatest from 1950 to 1969. The effect of environmental factors unique to each
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twin individual including measurement error was more similar across birth-year cohorts. Heritability

estimates ranged from 0.69 to 0.84 and were greatest in the two earliest and the two latest birth-

year cohorts (Table 2). In women, although the total variance also started to increase from birth

cohort 1940–1949, genetic variance showed an increasing trend from the earliest birth-year cohort.

Both shared and unique environmental factors explained variation in height in all analyzed birth-year

cohorts; whereas the shared environmental variance was somewhat greater in the latest cohorts

(1970–1979 and 1980–1994) unique environmental variance was greatest in the earliest one.

Although the variance components differed between sexes in all birth-year cohorts, the relative con-

tribution of the genetic and environmental variance components did not differ by sex from 1930–

1939 to 1960–1969 (Supplementary file1B). In contrast to the results in men, heritability estimates

in women (0.53 to 0.78) were lowest in the earliest and latest cohorts, particularly in 1886–1909.

Table 1. Descriptive statistics of age and height by sex, birth year and geographic-cultural region. Names list of the participating twin

cohorts in this study: two cohorts from Australia (Australian Twin Registry and Queensland Twin Register), six cohorts from East-Asia

(Korean Twin-Family Register, Mongolian Twin Registry, Osaka University Aged Twin Registry, South Korea Twin Registry, Qingdao

Twin Registry of Adults and West Japan Twins and Higher Order Multiple Births Registry), 18 cohorts from Europe (Adult Netherlands

Twin Registry, Berlin Twin Register, Bielefeld Longitudinal Study of Adult Twins, Danish Twin Cohort, East Flanders Prospective Twin

Survey, Finnish Older Twin Cohort, FinnTwin12, FinnTwin16, Genesis 12–19 Study, Hungarian Twin Registry, Italian Twin Registry, Mur-

cia Twin Registry, Norwegian Twin Registry, Swedish Twin Cohorts, Swedish Young Male Twins Study of Adults, TCHAD-study, Twin-

sUK and Young Netherlands Twin Registry), two cohorts from South-Asia and Middle-East (Sri Lanka Twin Registry and Turkish Twin

Study) and 12 cohorts from North-America (California Twin Program, Carolina African American Twin Study of Aging, Colorado Twin

Registry, Michigan State University Twin Registry, Mid Atlantic Twin Registry, Minnesota Twin Registry, NAS-NRC Twin Registry, SRI-

international, University of British Columbia Twin Project, University of Southern California Twin Study, University of Washington Twin

Registry and Vietnam Era Twin Study of Aging).

Age Height

All cohorts All cohorts Europe NA and Australia East Asia

Birth year Mean SD Range N Mean (F, p-value)* SD (F, p-value)† N Mean SD N Mean SD N Mean SD

Men

1886–1909 67.0 7.5 53.5–99.2 3747 171.6 (15, < 0.001) 6.34 (2.5,0.019) 3569 171.5 6.27 178 174.6 6.88

1910–1919 52.2 16.2 20.0–95.8 9171 174.2 (23, < 0.001) 6.72 (5.0,<0.001) 4117 173.3 6.37 5052 174.9 6.91

1920–1929 51.6 16.1 20.0–90.9 23147 175.4 (62, < 0.001) 6.81 (5.7,<0.001) 6382 173.9 6.42 16714 176.0 6.82

1930–1939 57.5 10.5 33.5–83.2 12028 175.7 (413, < 0.001) 6.70 (2.9,<0.001) 9308 175.2 6.42 2658 178.1 6.78

1940–1949 49.3 10.6 23.5–73.9 22967 177.4 (72, < 0.001) 6.73 (2.5,<0.001) 16629 177.0 6.53 6235 178.4 6.95 68 164.8 6.57

1950–1959 41.4 10.0 19.5–65.0 24560 178.4 (120, < 0.001) 6.96 (6.5,<0.001) 15199 178.5 6.73 9124 178.7 7.04 161 167.1 4.79

1960–1969 35.5 7.1 19.5–54.0 13264 179.0 (99, < 0.001) 7.49 (2.3,<0.001) 6218 179.6 7.04 6574 179.2 7.22 298 168.1 6.24

1970–1979 28.7 5.4 19.5–44.0 14975 179.9 (121, < 0.001) 7.55 (5.5,<0.001) 10339 180.7 7.01 3906 179.7 7.51 456 170.1 5.68

1980–1994 23.1 3.2 19.5–34.4 9948 178.4 (70, < 0.001) 7.59 (4.9,<0.001) 5077 178.8 7.22 4066 179.4 7.49 329 173.1 6.37

Women

1886–1909 68.5 8.1 53.5–98.0 5423 160.2 (23, < 0.001) 6.14 (3.3,0.006) 5011 160.2 6.11 412 160.2 6.41

1910–1919 62.0 10.9 43.6–95.9 7169 161.1 (18, < 0.001) 5.93 (2.5,0.002) 5621 161.0 5.85 1548 161.2 6.20

1920–1929 59.7 11.4 37.5–91.7 10975 162.1 (65, < 0.001) 5.99 (3.8,<0.001) 7908 162.0 5.89 3052 162.4 6.16

1930–1939 57.9 10.0 33.5–83.0 14610 162.7 (249, < 0.001) 6.05 (5.8,<0.001) 11226 162.5 5.83 3344 163.2 6.49

1940–1949 49.9 10.2 23.5–74.0 28537 163.7 (175, < 0.001) 6.19 (10.3,<0.001) 20097 163.9 5.93 8285 163.5 6.57 100 153.6 5.33

1950–1959 41.3 9.5 19.5–64.0 31250 164.4 (146, < 0.001) 6.58 (13.6,<0.001) 18817 164.8 6.22 12080 164.1 6.78 225 155.1 5.10

1960–1969 35.8 6.9 19.5–54.3 20422 165.1 (163, < 0.001) 7.00 (8.6,<0.001) 9604 166.2 6.58 10182 164.6 6.87 438 156.8 5.17

1970–1979 29.3 5.4 19.5–44.3 19893 165.9 (180, < 0.001) 7.27 (11.5,<0.001) 11819 167.3 6.67 7034 165.0 7.22 718 158.5 5.58

1980–1994 23.4 3.3 19.5–34.3 14694 164.7 (118, < 0.001) 7.07 (6.2,<0.001) 7291 165.6 6.77 6274 164.9 6.96 633 159.8 5.74

*Welch ANOVA test for equality of means
†Levene’s test for equality of variances; SD: standard deviation
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Figure 1. Additive genetic (grey), shared environmental (black) and unique environmental (white) variances of height across birth-year cohorts for the

pooled data and by geographic-cultural region.
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Table 2. Proportion of the height variance explained by additive genetic, shared environmental and unique environmental factors by

birth year, sex and geographic-cultural region.

Men Women

Additive
genetics

Shared
environment

Unique
environment

Additive genetics Shared
environment

Unique
environment

Birth year A 95% CIs C 95% CIs E 95% CIs A 95% CIs C 95% CIs E 95% CIs

All cohorts

1886–1909 0.78 0.69 0.80 0.00 0.00 0.08 0.22 0.20 0.25 0.53 0.43 0.62 0.13 0.05 0.21 0.34 0.31 0.37

1910–1919 0.82 0.76 0.87 0.04 0.00 0.10 0.14 0.13 0.15 0.67 0.60 0.74 0.11 0.04 0.18 0.22 0.20 0.24

1920–1929 0.72 0.69 0.76 0.14 0.10 0.17 0.14 0.13 0.15 0.70 0.64 0.76 0.12 0.07 0.18 0.18 0.17 0.19

1930–1939 0.73 0.68 0.79 0.10 0.04 0.16 0.16 0.15 0.18 0.74 0.68 0.79 0.11 0.06 0.16 0.15 0.14 0.16

1940–1949 0.74 0.70 0.78 0.13 0.09 0.17 0.13 0.12 0.13 0.78 0.75 0.82 0.09 0.05 0.13 0.13 0.12 0.13

1950–1959 0.72 0.69 0.76 0.16 0.12 0.20 0.12 0.11 0.12 0.73 0.69 0.76 0.15 0.11 0.18 0.12 0.12 0.13

1960–1969 0.69 0.63 0.76 0.16 0.09 0.21 0.15 0.14 0.16 0.70 0.66 0.75 0.14 0.09 0.18 0.16 0.15 0.17

1970–1979 0.77 0.72 0.83 0.11 0.06 0.17 0.11 0.10 0.12 0.68 0.64 0.73 0.19 0.14 0.23 0.13 0.12 0.13

1980–1994 0.84 0.77 0.90 0.05 0.00 0.13 0.11 0.10 0.12 0.66 0.61 0.72 0.21 0.16 0.27 0.13 0.12 0.13

Europe

1886–1909 0.78 0.69 0.80 0.00 0.00 0.08 0.22 0.20 0.25 0.50 0.40 0.60 0.14 0.06 0.23 0.35 0.32 0.39

1910–1919 0.85 0.79 0.87 0.00 0.00 0.07 0.15 0.13 0.16 0.66 0.58 0.74 0.10 0.02 0.17 0.24 0.22 0.26

1920–1929 0.69 0.62 0.76 0.14 0.07 0.20 0.17 0.16 0.19 0.72 0.65 0.79 0.09 0.03 0.16 0.19 0.17 0.21

1930–1939 0.75 0.69 0.81 0.11 0.05 0.17 0.14 0.13 0.16 0.76 0.70 0.82 0.09 0.03 0.14 0.16 0.15 0.17

1940–1949 0.77 0.72 0.82 0.10 0.06 0.15 0.13 0.12 0.13 0.79 0.75 0.83 0.08 0.04 0.13 0.13 0.12 0.13

1950–1959 0.72 0.68 0.77 0.16 0.11 0.20 0.12 0.11 0.12 0.79 0.75 0.83 0.09 0.05 0.13 0.12 0.11 0.13

1960–1969 0.74 0.66 0.83 0.15 0.06 0.23 0.11 0.10 0.12 0.78 0.72 0.85 0.08 0.02 0.15 0.13 0.12 0.14

1970–1979 0.81 0.74 0.88 0.09 0.02 0.16 0.10 0.09 0.10 0.74 0.69 0.81 0.15 0.09 0.21 0.11 0.10 0.11

1980–1994 0.87 0.77 0.92 0.04 0.00 0.14 0.09 0.08 0.10 0.64 0.57 0.72 0.26 0.18 0.32 0.10 0.09 0.11

North America and Australia

1886–1909 0.83 0.33 0.90 0.01 0.00 0.49 0.16 0.10 0.26 0.76 0.43 0.82 0.00 0.00 0.31 0.24 0.18 0.32

1910–1919 0.78 0.70 0.87 0.09 0.00 0.17 0.13 0.12 0.15 0.60 0.44 0.78 0.24 0.06 0.39 0.16 0.14 0.19

1920–1929 0.73 0.69 0.77 0.14 0.10 0.18 0.13 0.12 0.14 0.63 0.52 0.76 0.22 0.09 0.33 0.15 0.14 0.17

1930–1939 0.81 0.66 0.83 0.00 0.00 0.14 0.19 0.17 0.22 0.70 0.59 0.82 0.17 0.04 0.28 0.13 0.12 0.15

1940–1949 0.69 0.61 0.77 0.19 0.10 0.27 0.13 0.12 0.14 0.80 0.72 0.87 0.08 0.00 0.15 0.13 0.12 0.14

1950–1959 0.75 0.68 0.82 0.14 0.07 0.21 0.11 0.10 0.12 0.67 0.61 0.73 0.21 0.15 0.26 0.13 0.12 0.13

1960–1969 0.66 0.58 0.76 0.16 0.06 0.24 0.18 0.17 0.20 0.63 0.57 0.70 0.18 0.11 0.24 0.18 0.17 0.20

1970–1979 0.68 0.57 0.81 0.18 0.05 0.29 0.14 0.13 0.16 0.60 0.53 0.67 0.25 0.18 0.32 0.15 0.14 0.16

1980–1994 0.83 0.72 0.89 0.04 0.00 0.16 0.12 0.11 0.14 0.71 0.62 0.81 0.14 0.04 0.23 0.15 0.14 0.16

East Asia

1940–1949 0.83 0.33 0.97 0.12 0.00 0.61 0.05 0.03 0.12 0.71 0.17 0.94 0.19 0.00 0.73 0.10 0.06 0.18

1950–1959 0.64 0.24 0.91 0.23 0.00 0.63 0.13 0.08 0.20 0.42 0.14 0.92 0.48 0.00 0.75 0.10 0.07 0.15

1960–1969 0.67 0.36 0.94 0.24 0.00 0.56 0.08 0.06 0.12 0.92 0.67 0.94 0.00 0.00 0.25 0.08 0.06 0.10

1970–1979 0.85 0.51 0.95 0.08 0.00 0.43 0.07 0.05 0.09 0.79 0.52 0.96 0.17 0.00 0.43 0.05 0.04 0.06

1980–1994 0.88 0.51 0.91 0.00 0.00 0.37 0.12 0.09 0.17 0.58 0.34 0.90 0.31 0.00 0.55 0.11 0.09 0.14
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When we studied the effect of birth year on the genetic variance by using gene-environment interac-

tion models, modest but statistically significant increase was found. The interaction effect was 0.050

(95% CI 0.018–0.082) in men and 0.043 (95% CI 0.019–0.071) in women for the genetic path coeffi-

cient per 10 years. This turns to 1.37 (95% CI 0.50–2.27) increase of genetic variance in men and

1.07 (95% CI 0.46–1.79) increase of genetic variance in women per 25 years, i.e. approximately one

human generation.

Univariate quantitative genetic models for height were then conducted separately in the three

geographic-cultural regions (Figure 1 and Supplementary file 1A). The pattern in Europe was prac-

tically the same as that observed for the pooled data because it represents a large proportion of the

total sample. In North America and Australia, the total variance of height was greater than in

Europe, but the pattern of genetic and environmental variances was less consistent across birth-year

cohorts. In East Asia, because of the smaller sample size, the magnitude of the variance components

between the birth-year cohorts fluctuated more than in the other two geographic-cultural regions.

Genetic variance was generally greater in men than in women in the three geographic-cultural

regions. Variance components of height (both raw and relative proportion) showed a similar pattern

across birth-year cohorts when analyses were performed for men and women together

(Supplementary file 1C).

Discussion
This very large twin study showed no clear pattern in the heritability of height across birth-year

cohorts and thus does not support the hypothesis that the heritability of height is lower in popula-

tions with low living standards compared with affluent populations, nor that the heritability of height

will increase within a population as living standards improve. Since infant mortality rates are higher

in men than in women, both in singletons (Drevenstedt et al., 2008) and twins (Pongou, 2013), the

higher heritability observed for men in the earliest cohorts could be explained by selection effects

since those who survived were the genetically more advantaged and thus less vulnerable to environ-

mental conditions. The greater relative environmental effect on height variation in women than in

men, although unexpected because women’s growth is considered to be more resistant to environ-

mental influences, is in agreement with the findings in Finnish twins born prior to

1958 (Silventoinen et al., 2000). This might indicate differential access to food and medical care

(Eveleth and Tanner, 1990). Women are also more likely to develop osteoporosis leading to shrink-

ing in old age (National Institute of Arthritis and musculoskeletal and Skin Diseases, 2014), which

may affect the greater influence of unique environmental factors in women born in 1886–1910. This

idea is supported by results showing that although genetic factors play an important role in bone

loss in early postmenopausal women, their effect weakens with age and completely disappears with

advanced aging (Moayyeri et al., 2012).

Total and genetic variance of height generally increased across birth-year cohorts; gene-birth

year interaction analysis showed that the genetic variance increase was only modest even when it

was statistically significant in this very large twin cohort. However, part of the increase in total vari-

ance in some birth-year cohorts was also due to the increase in shared environmental variance. This

suggests that both greater ethnic diversity and variation in living standards have contributed to the

secular increase in height variation. The greatest total height variation in North America and Aus-

tralia was due to both genetic and environmental factors and the pattern of variance components

across the birth cohorts was less consistent than in Europe. A recent study across 14 European coun-

tries found that many independent loci contribute to population genetic differences in height and

estimated that these differences account for 24% of the captured additive genetic variance

(Robinson et al., 2015). Therefore, it may be that both allelic frequencies and the effects of genes

affecting height vary between the geographic-cultural regions. It has been previously shown that

even when the total variance of height was greater in Western populations than in East Asian popu-

lations, heritability estimates were largely similar in adolescence (Hur et al., 2008) and from 1 to 19

years of age (Jelenkovic et al., 2016); however, the limited statistical power in the data from East

Asia does not allow for comparisons across birth cohorts.

The main strength of the present study is the very large sample size of our multinational database

of twin cohorts, with adult height data from individuals born between year 1886 and 1994, allowing

a more detailed investigation of the genetic and environmental contributions to individual
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differences in height across birth cohorts than in the previous studies. Important advantages of indi-

vidual-based data are improved opportunities for statistical modeling and lack of publication bias.

This type of analysis is difficult to perform by using literature-based meta-analyses because most of

the published studies do not provide the needed statistics by birth-year cohorts. However, our study

also has limitations. Countries and/or ethnic-cultural regions are not equally represented and the

database is heavily weighted toward populations following Westernized lifestyles. In the classical

twin design, parental phenotypic assortment increases dizygotic correlations and thus inflates the

shared environmental component when not accounted for in the modeling. In our database, we do

not have information on parental height and thus could not take into account assortative mating,

which may thus explain part of the shared environmental variation. In addition, most of the height

measures were self-reported (Silventoinen et al., 2015), which may bias our analyses toward higher

estimates of unique environmental effects due to increased measurement error. However, these

sources of bias are unlikely to explain our main result, i.e., relatively similar heritability estimates of

adult height over birth cohorts. Finally, since we previously showed that there was no zygosity differ-

ence in height variance (Jelenkovic et al., 2015), variance components estimates should not be

affected by changes in the proportion of MZ to DZ twins across birth-year cohorts.

In conclusion, although the genetic variance of height showed a slightly increasing trend with

birth year, heritability estimates did not present any clear pattern of secular changes across birth-

year cohorts from 1886 to 1994. Thus, our findings do not support the hypothesis that the heritabil-

ity of height increases along with increasing living standards and diminishing rate of absolute poverty

within populations.

Materials and methods

Sample
This study is based on the data from the Collaborative project of Development of Anthropometrical

measures in Twins (CODATwins), which was intended to pool data from all twin projects in the world

with information on height and weight measurements for MZ and DZ twins (Silventoinen et al.,

2015). For the present analyses, we selected height measurements at ages 19.5–99.5 years. After

excluding four cohorts having less than 50 twin individuals in the final database, we had data from

40 cohorts in 20 countries. The participating twin cohorts are identified in Table 1 (footnote) and

were previously described in detail (Silventoinen et al., 2015).

From the initial 558,672 height measurements, we excluded those <145 or>210 cm in men

and <135 or >195 cm in women (<0.1% of the measurements). Since individuals in longitudinal stud-

ies have more than one measurement over time, analyses were restricted to one observation per

individual resulting in 323,491 individuals. After excluding unmatched pairs (without data on their

co-twins), we had 286,780 twin individuals (143,390 complete twin pairs) born between year 1886

and 1994 (40% monozygotic (MZ), 41% same- sex dizygotic (SSDZ) and 19% opposite-sex dizygotic

(OSDZ) twin pairs). The smaller proportion of OSDZ compared to SSDZ twins in this study is

explained by the fact that some of the twin cohorts in our database have collected, by design, only

SSDZ twins and thus do not have data on OSDZ twins. These individuals were categorized into nine

consecutive birth year groups described in Table 1. In order to analyze possible ethnic-cultural dif-

ferences in the genetic and environmental contribution on height, cohorts were grouped in three

geographical-cultural regions: Europe (18 cohorts), North America and Australia (14 cohorts) and

East Asia (six cohorts) with 87,116, 53,359 and 1793 twin pairs, respectively. One cohort from the

Middle-East and the one from South-Asia were not included in these sub-analyses by geographic-

cultural region because the data were too sparse to study these two areas separately.

Statistical analyses
We first tested whether the means and variances of height differed between twin cohorts within

each sex and birth-year group (Table 1). Since the Levene´s test for homogeneity indicated that var-

iances were not homogeneous, a Welch’s ANOVA was performed showing that means were signifi-

cantly different between twin cohorts in all sex and birth-year groups.

To analyze genetic and environmental influences on the variation of height, we used classic twin

modeling based on linear structural equations (Neale and Cardon, 1992). MZ twins share the same
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genomic sequence, whereas DZ twins share, on average, 50% of their genes identical-by-descent.

On this basis, it is possible to divide the total variance of height into variance due to additive genetic

effects (A: correlated 1.0 for MZ and 0.5 for DZ pairs), dominance genetic effects (D: 1.0 for MZ and

0.25 for DZ pairs), common (shared) environmental effects (C: by definition, correlated 1.0 for MZ

and DZ pairs) and unique (non-shared) environmental effects (E: by definition, uncorrelated in MZ

and DZ pairs). However, since our data included only twins reared together, we cannot simulta-

neously estimate shared environmental and dominance genetic effects. All genetic models were fit-

ted by the OpenMx package (version 2.0.1) in the R statistical platform (Boker et al., 2011) using

the maximum likelihood method.

Prior to conducting the modeling, height values were adjusted for the year of birth and twin

cohort within each birth year and sex groups using linear regressions, and the resulting residuals

were used as input phenotypes. The ACE sex-limitation model was selected as a starting point of

the univariate modeling based on the following criteria: (i) MZ within-pair correlations were clearly

higher than DZ correlations consistent with the influence of genetic effects, (ii) the magnitude of the

difference between MZ and DZ correlations (rDZ > 1/2 rMZ) indicated the presence of common envi-

ronmental effects and (iii) the lower within-pair correlations for OSDZ than for SSDZ twins observed

for most birth-year groups suggested the presence of sex-specific genetic effects (results not

shown). Previous findings from this international database showed that both male and female DZ

twins are slightly taller than MZ twins in these age groups (Jelenkovic et al., 2015), and thus differ-

ent means for MZ and DZ twins were allowed. The fit of the univariate models for height at each

birth-year group is shown in Supplementary file 1B. In the present study, the equal-environment

assumption was tested by comparing the ACE model to the saturated model. The fit of the models

after Bonferroni correction of multiple testing did not worsen for most birth-year groups, which sug-

gested that the assumption of equality of variances between MZ and DZ twins was not violated.

When fixing A, C and E parameters to be the same in men and women, the fit of the model was

poorer in all birth-year groups (p<0.0001), suggesting that these variance components differ

between sexes. We additionally fitted a scale model allowing for different sizes of variance compo-

nents but fixing the relative size of these components to be equal. Since this model also showed sta-

tistically significant differences (p<0.0001) in some birth-year cohorts, we decided to present the

results separately for men and women. Sex-specific genetic effects were significant for some birth-

year cohorts, and thus all modeling results are presented in sex-limited form for consistency. Com-

parative model fitting revealed that the C parameter could be not excluded from the model without

a significant deterioration in fit. In order to study how birth year modifies the genetic and environ-

mental variances of height, we additionally conducted gene-environment interaction modeling using

birth year as an environmental modification factor (Purcell, 2002). This modeling offers intercept

and interaction term describing the change per birth year which then need to be squared to get raw

genetic and environmental variances. To make the results easier to understand, we calculated

expected variance change with 95% CI per 25 years, i.e. approximately one human generation.
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