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Summary
The coming decades will see a substantial increase in food production to meet growing
demand, raising the importance of prioritising sustainable and safe production practices on a
global scale. In this context, chicken emerges as the most efficient meat production system
with the lowest impact on climate change. However, the intensification of poultry meat
production faces the challenge of achieving rapid and predictable animal growth without
compromising public health, animal welfare and the environment. Antibiotics are
administered as growth promoters, but due to concerns about their overuse and the
increasing awareness of the pivotal role of host-associated microorganisms in the biological
functions of animals, feed additives that modulate gut microbiota have been proposed as
alternative options. Nevertheless, their efficacy varies considerably due to our limited
knowledge of the dynamics of the resident gut microbiota in farm animals, and their
interaction with the host and dietary treatments. These limitations can now be addressed
from a hologenomic perspective by analysing multiple omic layers of host-microbiota
domains.

In this thesis, I introduce a holo-omic perspective to study host-microbiota interactions in
intensively produced broiler chickens in relation to performance. I report the results from 3
identical experimental trials we conducted in 2019, in which chickens from 2 genetic lines
and both sexes were grown under 3 dietary treatments, all closely monitored throughout their
production period. The dissertation encompasses 3 original research articles that summarise
the collaborative work I have carried out with the rest of partners within the H2020 project
HoloFood. We initially assess the impact of the experimental groups on chicken
performance, finding negligible effects of the tested dietary additives. However, we identify a
high inter-individual variation in chicken growth performance for the first two trials, and an
opportunistic colonisation of Campylobacter spp. linked to a reduced chicken growth in the
third trial. The dissertation revolves around the hypothesis that both performance trends can
be partly explained by the interplay of the host and associated gut microbial communities.
Accordingly, the following chapters apply holo-omics to respond to the mentioned questions.
In the second article, we delve into characterising the functional dynamics of
genome-resolved bacterial strains in the gut microbiome development by using
metagenomics and metatranscriptomics. Our findings reveal that gut microbiome transitions
from high functional capacity to low-capacity bacteria as chickens grow, with a more
pronounced transition positively associated with chicken growth. In the third article, we
examine the microbial dynamics and host response to Campylobacter colonisation to unveil
the molecular reasons of the reduced weight gain using metagenomics and
(meta)transcriptomics. We discover that an early B. fragilis_A spread facilitates
Campylobacter colonisation by changing the functional profile of the microbial community
with a higher and more specialised metabolic activity that prevents the host from gaining
weight.

This thesis collectively advances our understanding of host-microbiota interactions in broiler
chickens, opening up new avenues in the search for microbe-based solutions to enhance
animal production in a sustainable manner.
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Laburpena
Klima-aldaketaren ondorioz, gizarteak natura-baliabideen kontsumoaren eta ingurumeneko

kontserbazio-lanen arteko oreka bilatzeko premia dauka. Oreka horren lorpenak lehantasuna

dauka bereziki elikagai-industrian. Izan ere, giza-populazioaren hazkuntzak haragi

kontsumoaren handipena eragin du, eta joera hori mantendu edo areagotuko da hurrengo

urteetan. Haragi eskaerari aurre egiteko bermatzen den abeltzaintza intentsiboa bereziki

kutsatzailea da elikagaien ekoizpenaren barruan. Beraz, garrantzitsua da mundu mailako

ekoizpen-praktika jasangarri eta seguruak gureganatzea.

Azken hamarkadetan abere-ekoizpenean aurrerapen esangarriak egin dira zaintza, dieta eta

osasun praktiketan eginiko hobekuntzekin. Hala ere, aldakortasun handia nabaritzen da

errendimenduan nahiz eta populazio bereko indibiduoekin ihardun. Badakigu animalien

digestio-aparatuaren osasuna funtsezkoa dela bere errendimendu egokirako. Beraz,

interbentzio dietetikoak proposatu izan dira, antibiotikoak barne.

Hasiera batean antibiotikoak bakterio patogenoak mugatzeko garatu ziren arren, aparteko

baliagarritasuna aurkitu zitzaien abeltzaintza intentsiboan, ikerketek erakutsi baitute dosi

baxuagoetan hazkuntza-sustatzaile bezala jokatzen dutela. Nahiz eta ezezaguna izan nola

bermatzen duten animalien errendimendua, uste da hesteko mikroorganismoen dentsitatea

murrizten dutela, edota hesteko inflamazioa ekiditen. Baina haien gehiegizko erabilerak

abereen ekoizpenean, antibiotikoekiko erresistentzia kasuak ekarri ditu gizartera, osasun

publikorako arazo bat bilakatuz. Ondorioz, Europak hazkuntza-sustatzaile bezala erabiltzen

diren antibiotikoak debekatu zituen 2006. urtean.

Antibiotikoen ordezko gisa, bestelako elikagai-gehigarriak proposatu izan dira, hots,

animaliak digeritu ezin dituen baina haren osasun eta errendimendurako onuragarriak diren

produktu naturalak. Haien artean fitobiotikoak, probiotikoak eta prebiotikoak aurkitzen dira.

Fitobiotikoak eta prebiotikoak landareengandik deribaturiko produktuak dira. Probiotikoak,

aldiz, ostalariarentzat onuragarriak diren mikroorganismo andui batez edo ugariz osaturik

daude. Fitobiotikoak orokorrean antibiotikoak bezala jokatzen dute, biek propietate

antimikrobianoak baitituzte. Probiotikoak eta prebiotikoak, aldiz, hesteko mikrobiota

modulatzaile kontsideratzen dira. Azken gehigarri hauen erabilera izugarri orokortu da

abere-ekoizpen industrian, azken hamarkadetan hesteko mikrobiotak ostalarian dituen

onurak detaile gehiagoz ezagutu baitira.

Baina elikagai-gehigarri hauen eraginkortasuna oso aldakorra produkzio-sistema batetik

bestera. Izan ere, hesteko mikrobiotaren dinamika eta harek ostalariarekin eta dietarekin

dituen elkarreraginen inguruan dagoen ulermen mugatuak gehigarri eraginkorren diseinua

galarazten du. Muga horiei aurre egiteko, hesteko ingurumen-baldintzetan gertatzen diren
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mikrobio-mikrobio eta ostalari-mikrobioen arteko interakzioak aztertu behar dira

tratamentu-mikrobiota-ostalari ardatza sakonki ezagutzeko, eta horixe da tesi honen helburu
nagusia. Zehazki, tratamentuek eraginiko aldaketek bakterio komunitatean eta azken honek

ostalarien errendimenduan duten eragina aztertzea.

Izan ere, hesteko bakterioak ostalariaren hainbat prozesu fisiologikoetan parte hartzen dute,

hala nola, erantzun immunearen moldapenean eta elikagaien xurgapenaren erregulazioan.

Bi prozesu hauek animaliaren garapen prozesuan zehar finkatzen dira, eta animaliaren

osasuna eta errendimendua baldintzatzen dute haren ekoizpen zikloaren amaieran.

Mikrobiotak ostalarian duen eragina zelula-zelula bidezko zuzeneko interakzioaren bidez

eman daiteke, baina baita bakterioek sortzen dituzten metabolitoen bidez. Izan ere,

ostalariaren hesteetan kokatutako zelula mota desberdinek hartzaile mota ugari aurkezten

dituzte, bai zelularen mintzean zein zitoplasman. Bakterioen egiturak edo hauek ekoitzitako

metabolitoak identifikatzean, seinale bideak aktibatzen dira, zeinak erreakzio lokalak edota

sistemikoak sorrarazten dituzten, era horretan ostalariaren metabolismoan eragiten.

Animalien hesteetan gertatzen diren interakzio molekularrak ezagutzeko, aurrerakuntza

teknologikoak funtsezkoak izan dira. Gaur egun, gai gara metodo ez-zuzenduen bidez izaki

bizidunen geruza omiko ugari (genoma, transkriptoma, proteoma, metaboloma, etab) aldi

berean aztertzeko. Honetaz gain, geruza multiple horiek sistema biologikoen bi domeinuetan,

ostalari eta hari asoziaturiko mikrobiota, aldi berean azter daitezke sortu berri den holo-omika

hurbilketa metodologikoari jarraiturik. Hala ere, metodologia berritzaile honen zailtasun

nagusietako bat sorturiko datu guztiak analizatzerakoan esangarritasun biologikoa lortzea

da.

Beraz, holo-omika aplikatzeko sistema aproposa aukeratzea ezinbestekoa da.

Giza-kontsumorako erabiltzen diren abereen artean, oiloa garrantzitsuenetarikoa da mundu

mailan. Gehien kontsumitzen den aberea izateaz gain, haren efizientzia energetiko

altuarengatik aukerako proteina-iturri bilakatu da abeltzaintzak praktika jasangarriagoetara

trantsizionatzeko saiakeretan. Ezaugarri genetikoei dagokionez, ekoizpen intentsiborako

erabiltzen diren haragirako oilo leinu genetikoen populazioek hautespen artifizialaren

ondorioz botila-lepo ugari jasan dituzte. Orokorrean dibertsitate baxuko populazioak bilakatu

dira, leinu genetikoen artean ere desberdintasun txikiak egonik. Ekoizpen intentsiboan

hazitako oiloen mikrobiota ere, murritza da ingurumen-baldintza kontrolatuetan hazten baitira

txitak, helduengandik banaturik daudelarik haien bizi-zikloaren hasieratik. Haien heste

mikrobiotaren konposizioa ingurumenetik eta dietatik jasotzen dituzten bakterioetara

mugatuta dago.
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Aipaturiko arrazoiengatik, tesi honetan aurkezten den hipotesia da holo-omika metodo

eraginkorra dela elikagai-mikrobiota-ostalari ardatzak oiloen errendimenduan duen eragina

hobeto ulertzeko. Horrela, ikerkuntza honetan sorturiko ezagutzak etorkizunean bakterioetan

oinarritutako soluzio jasangarriagoak diseinatzeko erabilgarria izan daiteke.

Uste hauek testatzeko, 2019an zehar HoloFood H2020 proiektuaren barruan egin genituen 3

saiakuntza esperimental identikoetan jasotako oiloen hesteko laginak, zein oiloen

errendimenduari eta osasunari lotutako hainbat parametro aztertu ditugu. Saiakuntza

horietan, 2 leinu genetiko eta 2 sexuetako oiloak, 3 tratamendu dietetiko desberdinekin hazi

genituen 35 egunez. Ekoizpen-aldian zehar, 3 laginketa gauzatu ziren 7., 21. eta 35.

egunetan. Animalien itsuko mukosa eta digesta laginak jaso ziren oiloaren (meta)genoma eta

(meta)transkriptoma aztertzeko. Oiloen errendimendua eta osasunaren jarraipena egiteko

ere hainbat parametro gehigarri neurtu ziren. Esperimentu horietan jasotako emaitzak hiru

ikerketa artikuluetan bildu dira.

Lehen artikuluak, Perspektiba hologenomiko bat ostalari-mikrobiota elkarrekintzak ezagutuz

oiloen errendimendua eta osasuna hobetzeko deiturikoa, gauzaturiko esperimentuak

deskribatzen eta oiloen errendimenduari eta osasunari loturiko parametroak aztertzen ditu.

Artikuluaren helburu nagusia talde esperimentalen, hots oilo leinu genetikoen, sexuen, eta

tratamenduen artean errendimenduan egon zitezkeen desberdintasunak aztertzea zen.

Baina espero ez bezala, talde esperimentalen arteko desberdintasunak txikiagoak diren

kaiola bereko eta esperimentu desberdinetakoetako indibiduoen arteko desberdintasunak

baino. Izan ere, tratamenduek ez zuten eraginik izan oiloen errendimenduan. Horren arrazoia

izan liteke diseinu esperimentalak, inplementatu zen moduan, ez zituela tratamenduen

ondorioak azaleratu, eta, aitzitik, nabarmen areagotu zuela oiloen errendimenduaren

aldakortasuna. Metodo estandarrez neurturiko osasun parametroek ere (plasmako

haptoglobina eta lipopolisakaridoak, eta lumetako kortikosterona) ez zuten oiloen pisuan

ikusiriko aldeak azaltzen.

Indibiduoen artean ikusiriko aldakortasun handia ziur aski ostalari-mikrobiota arteko

interakzio molekularren ondoriozkoa izan zitekeen. Honekin bat, hirugarren esperimentuko

emaitzek erakutsi zuten oiloak gutxiago hazi zirela 35 egun horietan, esperimentuen arteko

aldakortasuna handituz. Azken esperimentuko oiloen batez besteko pisu jaitsiera

Campylobacter spp. kolonizazio oportunistari loturik egon zitekeen. Hain zuzen, 21. egunetik

aurrera laginduriko indibiduo guztiek Campylobacter positiboa eman baitzuten.

Beraz, errendimenduan ikusitako bi joerak ostalariaren eta hari lotutako hesteko

mikrobio-komunitateen arteko elkarrekintzaren ondorioz azal daitezkeela proposatzen dugu.

Horrenbestez, tesiaren hurrengo atalek holo-omika erabiltzen dute errendimenduan ikusitako
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aldakortasunen atzean dauden ostalari-mikrobiota interakzioak ulertzeko. Hau baieztatzeko,

itsuko laginen bidez bertako bakterioen genoma katalogoa eraiki zen, 822 bakteriodun

katalogoa osatu zelarik. Katalogo honekin, sekuentziaturiko 613 indibiduoetako bakoitzak

zuen mikrobioma konposizioa eta bakterio bakoitzaren, zein komunitatearen, ezaugarri

funtzionalak aztertu genituen. Zehazki ostalarian eragina izan dezaketen funtzioetan

interesaturik geundenez, bakterioen genomatik anotaturiko milioi bat gene baino gehiago,

170 ezaugarri funtzionaletan filtratu eta multzokatu genituen. Ezaugarri funtzional hauekin,

bakterio bakoitzari kapazitate funtzional bat esleitu genion, eta bakterio bakoitzak ezaugarri

funtzional horiek burutzeko espresio genikoa ere lortu genuen.

Bigarren artikuluan, Hesteko mikrobiotaren ahalmen metaboliko txikia haragirako oiloaren

hazkundearekin lotuta dago deiturikoa, lehen eta bigarren esperimentuetako oiloen hesteko

mikrobioma aztertu genuen denboran zehar. Ohartu ginen dibertsitate funtzionala gora

zihoan ahala kapazitate funtzionala beherantza zihoala. Joera hau denboran zehar

mikrobiomaren konposizioa aldatzen zelako ematen zen, nahiz eta bakterio gehiago agertu

oiloak hazi ahala, hauen kapazitate funtzionalak murritzagoak ziren. Gainera, kapazitate

baxuko bakterio hauen abundantzia positiboki erlazionatuta zegoen oiloen pisuarekin

esperimentuen amaierarako. Ahalmen txikiko bakterio taxoi hauek konkretuki, hala nola

TANB77, RF39, RF32 eta UBA1242, gutxi ezagutzen dira ez baitira laborategietan isolatu.

Hare gehiago, beste ornodun askotan aurkitu izan dira eta baita bestelako osasun

aspektuekin erlazionatu dira. Taxoi hauek genoma murritzak izateak eta haien abundantziak

eragina izateak ostalarian gainera sinbiosi erlazio estu bat iradokitzen du ostalariarekin.

Bakterioen datu multi-omikoetan oinarrituta, erakutsi dugu oraindik ez ditugula guztiz ulertzen

oiloaren hesteko mikrobiomaren dinamika tenporalak, ezta haren konposizioak eta profil

funtzionalak izan ditzaketen eragina ostalarian. Mikrobiomaren ezaugarri funtzionalak

aztertzeak bide berriak irekitzen ditu bi domeinuen arteko elkarreragin mekanistikoak

ulertzeko.

Hirugarren artikuluak, Lehentasunezko efektuak eta bakterioen arteko elikadura gurutzatuak

forma ematen diote agente zoonotikoen kolonizazioari oiloetan deiturikoa, Campylobacter

positibo eman zuten oiloak Campylobacter negatibo ziren oiloekin konparatzen ditu. Datu

multi-omikoek hirugarren esperimentuko oiloetan Campylobacter-en presentzia konfirmatu

zuten, baina Campylobacterales taxoiko 3 bakterio desberdin identifikatu genituen, hots C.

jejuni, C. coli eta Helicobacter pullorum, bakoitzak dinamika tenporal desberdina erakusten

zuelarik 21. egunetik aurrera. Gainera, hirugarren esperimentuko oiloen mikrobiomak

7.egunetik bereizten hasia ziren beste bi esperimentuetako oiloen mikrobiomengandik.

Desberdintasun azpimarragarriena Bacteroides fragilis_A-ren hedapen goiztiarra zen.

Bakterioen genometan oinarrituz sare metabolikoak inferitu genituen bakterioen arteko
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erlazioak aztertzeko. Horrela B. fragilis_A-ren hedapen goiztiarrak Campylobacter-en

kolonizazioa errazten zuela ikusi genuen. Are gehiago, denboran zehar nagusitu ziren aldeak

mikrobiomen konposizioan, mikrobiomen aktibitatean ere ematen zirela baieztatu genuen.

Hazkuntza zikloaren amaierarako enterotipo desberdina aminoazidoen degradazioan

espezializatu zen, ostalariaren elikagaien xurgapena zailtzen duelarik. Horrek hirugarren

esperimentuko oiloen pisu galera azaldu ahalko luke. Izan ere, ez genuen ostalariaren

hesteko transkriptoman inolako erantzun immunerik nabaritu.

Aurkikuntza hauek bidea errazten dute markatzaile bakterioano goiztiarrak identifikatzeko B.

fragilis_A bezala, eta horrela mikrobiomaren manipulazioa agente zoonotikoen agerpena

baino lehenago emateko, Campylobacter-en kolonizazioa saihesteko helburuarekin. Hala

ere, beste hainbat bakteriek erraztu ahalko lukete Campylobacter-en agerpena eta

hedapena. Lan honek erakusten du nola kolonizatzailea edo patogenoa eta ostalaria

ikertzeaz gain, zein garrantzitsua den hesteko mikrobiota osoa aztertzea.

Laburbilduz, holo-omika tresna ahaltsua bilakatu da, bestelako metodoen bidez ikusezinak

izango liratekeen interakzio biologikoak ezagutarazteko. Hala ere, ikuspegi horren

eraginkortasunari aurre egiten diote datu-sorkuntzaren kostu handiek eta informatikan eta

estatistikan hainbat geruza omiko integratzeko gaitasun aurreratuek. Beraz, estrategikoa

izan daiteke metadatuen aurretiazko explorazioa eta talde mugatu bati buruzko atariko

analisiak egitea, holo-omiken bideragarritasuna ziurtatzeko. Erronka horiek gorabehera, gure

ikerketek nabarmentzen dute proba eta erroreko esperimentuetatik jakintzan oinarrituriko

saiakeretara trantsizionatzeko beharra dagoela.

Disertazio honek oiloen mikrobiomak ostalariaren ikuspuntutik aztertzen ditu, eta arreta
jartzen du haren denboran zeharreko joeretan. Analisietan zehar, ostalariaren
energia-orekan garrantzia izan duten hainbat taxoi bakterioano nabarmendu dira. Eskura
dauden baliabideak aprobetxatuz, etorkizuneko ikerketek sortutako datuak erabili ditzakete
taxoi hauetan gehiago sakontzeko.
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Sustainable solutions for the food production crisis
The food production crisis
Amidst the ongoing climate change, humanity faces numerous challenges to maintain a
long-term balance between consuming natural resources and preserving the environment
(Reid et al., 2010). Intensive livestock farming is particularly harmful for the environment,
contributing to 14.5% of global anthropogenic greenhouse gas emissions (Gerber et al.,
2013). Furthermore, global meat consumption is expected to increase due to the population
and economic growth (Godfray et al., 2018). High-income countries have witnessed stable or
even declining trends mainly in red meat intake due to transitioning to more sustainable diets
(Kozicka et al., 2023) and an increased awareness of higher risks for certain chronic
diseases (Willett et al., 2019); but animal-based foods are becoming a relevant source of
nutrients in low- and middle-income countries (Godfray et al., 2018). Under these
circumstances, competition with other land and water uses is intensifying, resulting in less
available resources for animal production (Campbell et al., 2017). Therefore, the scientific
community and policy makers agree that it is urgent to exploit available technologies and
improve management practices, for transitioning towards a more sustainable, efficient, and
safe animal production model (Bowles et al., 2019; Springmann et al., 2018).

Significant progress in production efficiency has been mainly due to selective breeding
programmes and advances in genetics, followed to a lesser extent by improved husbandry,
sanitary, and diet strategies (Thornton, 2010). Despite significant advances already achieved,
a considerable degree of variability is found in production parameters such as feed efficiency
(Cantalapiedra-Hijar et al., 2018; He et al., 2023; Quan et al., 2018), body weight gain
(Tarsani et al., 2019; H. Zhou et al., 2022) and nonuniformity of performance (Lundberg et al.,
2021; Vasdal et al., 2019) between farms (Ricciardi et al., 2021), flocks (Vasdal et al., 2019)
and even individuals (Shah et al., 2019), creating a gap between the theoretical potential of
animals and the actual performance achieved under practical conditions. Maintaining optimal
functioning of the digestive tract, which plays a crucial role in digesting and absorbing
nutrients, is essential for achieving a balanced energy state and preventing the proliferation
of harmful microorganisms in the intestinal tract (Kogut & Arsenault, 2016). Accordingly,
numerous dietary interventions were developed to tackle animal poor performance in recent
decades, antibiotics being a widespread option (Celi et al., 2017).

Antibiotics were originally administered to animals as treatment for specific pathogenic
bacteria, but later was discovered that they could also be used for sub-therapeutic purposes
such as improving growth, increasing efficiency, and preventing disease (Gorbach, 2001).
The positive impact of antibiotics on animal growth is attributed to two main causes: the
reduction of competition for nutrients with bacteria due to the reduced microbial biomass
(Dibner & Richards, 2005; Feighner & Dashkevicz, 1987; Gaskins et al., 2002), as well as a
decrease of energy expenditure due to a lowered inflammatory response (Niewold, 2007).
The use of antibiotics as growth promoters has become an integral practice in intensive
animal production systems since its discovery in the 1940s (Stokstad & Jukes, 1950). To get
an estimate, animals accounted for 63% of antibiotic consumption worldwide by 2010 (Van
Boeckel et al., 2015). This overuse contributes to the emergence of antibiotic resistance, and
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is a significant concern for public health and the environment (Laxminarayan et al., 2013;
Manyi-Loh et al., 2018). To address this situation, the European Union banned antibiotics as
growth promoters in 2006 (Parliament and Council, 2003). A measure that only a few
countries outside Europe have adopted since then (New Zealand and Republic of Korea),
whereas the rest have merely implemented more restrictive regulations (Okocha et al., 2018;
Robles-Jimenez et al., 2021). With the growing concern about antibiotics, a number of
alternatives to improve production efficiency have been proposed (Gadde et al., 2017;
Verstegen & Williams, 2002).

Alternatives to antibiotics
According to the European Commission, feed additives are non-nutritive natural products
used in animal nutrition for improving the quality of feed and the quality of food from animal
origin or to improve the animals’ performance and health (Parliament and Council, 2003). In
addition to antibiotics in subtherapeutic doses, these include phytochemicals, probiotics and
prebiotics, among others (Gadde et al., 2017; Y. Liu et al., 2018). In terms of their
functionality, the four additives mentioned above are grouped among animal growth and
production enhancers (Gadde et al., 2017; Pandey et al., 2019). Phytogenic chemicals are a
wide range of plant-derived products such as herbs, essential/aromatic oils, and oleoresins
(Gadde et al., 2017). Prebiotics are non-digestible feed components for the host that support
the growth of beneficial gut microorganisms (Gibson et al., 2017), while probiotics might refer
to a single microorganism, or a mixture of several live microorganisms, that is directly
inoculated to the gastrointestinal tract (Fao/who, 2002). In general, phytobiotics are attributed
antimicrobial properties like antibiotics, whereas prebiotics and probiotics are known to
enhance microbial communities (Kim & Lillehoj, 2019; Kogut, 2019). These gut microbiota
modulators have become immensely popular in the last two decades, due to the increasing
understanding of the pivotal role of microorganisms in host biological functions (Allen et al.,
2013; Gaggìa et al., 2010). They require, however, a marketing authorisation, which is
obtained through a scientific evaluation that demonstrates they are beneficial to the target
animal without being harmful to animals and humans (EFSA Panel on Additives and
Products or Substances used in Animal Feed (FEEDAP) et al., 2018).

Probiotics and prebiotics are tested with in vitro and in vivo experiments, probiotics having
the strictest controls. In vitro assays for probiotics may comprise strain cell-cultures with
different physico-chemical conditions and cell surface cultures of eukaryotic epithelial or
other cell line monolayers (de Melo Pereira et al., 2018). Strains can also be genetically
characterised in this first step (de Melo Pereira et al., 2018; Vinderola et al., 2017). In vitro
essays for prebiotics are divided in two evaluations, namely digestibility in the upper
gastrointestinal tract and microbial activity in the distal gastrointestinal tract. For this second
test, the growth of popularly known beneficial bacteria such as Lactobacillus spp. and
Bifidobacterium spp. is evaluated (Bajury et al., 2018). If the in vitro experiments pass all the
quality controls needed, in vivo trials with target hosts are performed afterwards. These
large-scale trials consist of a comparison of one or more treatments with a control group, in
which animals are sampled for performance and health measures (Markowiak & Śliżewska,
2018).
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Despite the many diverse experimental procedures to verify their action, producers,
end-users and the scientific community have consistently reported significant variations in the
efficacy of these additives (Barba-Vidal et al., 2019; Gaggìa et al., 2010; Soccol et al., 2010;
Zommiti et al., 2020). In addition, the correlation between in vitro and in vivo experiments
remains unclear (Vinderola et al., 2017), as the response of additives in vivo can differ
significantly from that observed in in vitro studies due to varying physicochemical conditions
and possible interactions with numerous other microbial strains and the host organism (Suez
et al., 2019). The fundamental reason behind this inconsistency is that these experiments do
not consider microbe-microbe and host-microbe interactions within the complex gut
environment (Suez et al., 2019). These systems involve various biological components
beyond the animal being produced, with host-associated microorganisms being particularly
important for ensuring optimal biological function in most animals (McFall-Ngai et al., 2013).
Hence, gaining an in-depth understanding of the biological mechanisms underlying animal
production systems is a crucial step towards finding microbe-based solutions in order to
optimise farming practices (Messerli et al., 2019).

Unravelling host-microbiota interactions
Gut microbiota
The study and manipulation of host associated gut microbiota has become global, particularly
in the context of agricultural production (Małyska et al., 2019; Sessitsch & Mitter, 2015). The
gut microbial community can include viruses, prokaryotes (archaea and bacteria) and
eukaryotes (fungi, protozoa and helminths) (Alberdi et al., 2021), but the terms “microbiota”
and “microorganisms” will refer only to bacteria hereafter. The gut microbiota plays a crucial
role in many physiological host functions, such as regulating nutrient absorption (Diaz
Carrasco et al., 2019), shaping immune and inflammatory processes (H. Zhou et al., 2020),
and affecting the host's systemic growth parameters (Fraune & Bosch, 2010).
Microorganisms colonise the upper mucus layer of the gastrointestinal tract as soon as an
animal becomes exposed to the environment (Sprockett et al., 2018), and form communities
with complex temporal and spatial dynamics that continuously interact with the host animal
(Ansari et al., 2020; Khan et al., 2019). This interaction is essential for the development and
maturation of the immune cells, ensuring the tolerance of commensal microorganisms, the
recognition of pathogens, and the control of potential pathogenic commensal microorganisms
(Broom & Kogut, 2018; Kogut et al., 2020). Gut microbiota contributes to the development of
the intestinal mucosa, which is the first physical barrier composed of a mucus layer and
epithelial monolayer, by producing metabolites that increase the epithelial surface (Oakley et
al., 2014). In addition, metabolite recognition can regulate hormonal signals release. Gut
hormones have a wide range of targets in the whole body and play systemic physiological
roles especially in the control of metabolism, but also can act as locally in epithelial cells by
generating hormonal signals that reflect dietary intake, microbial composition and epithelial
integrity (Gribble & Reimann, 2019). These effects result from direct cell contact and the
influence of metabolites, either directly produced by bacteria or generated by the host and
then metabolised by bacteria (Agus et al., 2018).
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Sensing of bacteria
Recognition of bacteria activates a host response that can occur at two different scales. The
innate immune response, considered a local-scale reaction, is initiated through recognition of
molecular structures shared by multiple microbes by pattern recognition receptors (PRRs),
which are broadly expressed in different cell types of the gut, including immune cells, stromal
cells, and neuronal cells (Wan et al., 2023). Bacteria are recognised by identifying certain
structural elements such as lipopolysaccharides, flagellin or peptidoglycans (Zhao & Elson,
2018). These PRRs are classified based on their portrait domain homology, and include
Toll-like receptors (TLRs), NOD-like receptors (NLRs), retinoic acid-inducible gene I-like
receptors (RLRs) and C-type lectin receptors (CLRs), among others (Wan et al., 2023). TLRs
and CLRs are expressed in the cellular membrane but can also be located in endosomes
and lysosomes, whereas NLRs and RLRs are cytoplasmic sensors (Wan et al., 2023). The
intracellular signalling causes the expression of various immune response genes that can
either realise interferons and cytokines or suppress an inflammatory response (Kogut et al.,
2020). The adaptive response is a systemic reaction that initiates with the recognition of
antigens by T and B lymphocytes to then produce antibodies resulting in microbial killing and
provide a long-term specific protection against subsequent infections with a pathogen
bearing the same antigens (Kogut et al., 2020). T-cells, B-cells, and immunoglobulin
repertoires and responses can vary greatly depending on the gut microbes’ colonisation
niche and metabolic properties (Zhao & Elson, 2018).

Sensing of metabolites
The host cells can also sense and respond to metabolites derived either from the anaerobic
fermentation of undigested dietary components or from compounds that are de novo
synthesised by the microbes (Krautkramer et al., 2021). Thus, microbial products such as
fatty acids (short- (SCFAs), medium- (MCFAs) or long-chained (LCFAs), lipopolysaccharide
(LPS) and secondary bile acids, serve as interaction molecules (Wan et al., 2023). These
microbial metabolites are recognised by G protein-coupled receptors (GPCRs), aryl
hydrocarbon receptors (AHRs) and nuclear receptors (Wan et al., 2023). While CPCRs are
membrane receptors, AHRs and nuclear receptors are transcription factors located in cell
nucleus that induce downstream signalling pathways (Wan et al., 2023). Naturally, all these
processes are also influenced by microbe-microbe interactions, which mutually influence
functional activities through both agonistic and antagonistic interactions (Culp & Goodman,
2023). Antagonistic interactions result from competition for resources or space, and can
produce specific metabolic functions to be majorly conducted by different bacteria at different
time points. In contrast, agonistic interactions imply bacteria use molecules produced by
other bacteria (Venturelli et al., 2018), thus scaffolding into more complex metabolic
networks.

This body of evidence underlines the necessity of considering the host-associated gut
microbiota in combination with the host when studying animal’s health and disease in food
production contexts. Technological advances have led to the rapid expansion of this research
area that is dedicated to answer biological questions taking host-microbiota interactions into
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account (Alberdi et al., 2021). This integrated approach has been coined hologenomics
(Alberdi et al., 2021), reflecting the coupled study of the genomes of both the host and its
associated microorganisms, known as the hologenome (Bordenstein & Theis, 2015;
Zilber-Rosenberg & Rosenberg, 2008).

Feasibility of a holo-omics approach
Hologenomics
The myriad evidence of host-microbiota symbioses has led the scientific community to
devote attention to these relationships in multiple areas of basic and applied research
(Alberdi et al., 2021; Nyholm et al., 2020). However, debates have arisen due to the specific
terminology for this area (Suárez, 2018). The term “holobiont” or “metaorganism” are
commonly used to describe the symbiotic assemblies of a multicellular organism and its
associated microorganisms (Gilbert et al., 2012; Jaspers et al., 2019). Lynn Margulis
introduced the term “holobiont” limiting it to cases of heredity symbiosis (Suárez, 2018), but
the “hologenome theory of evolution” broadened the concept to encompass the host with all
its microbes as a unit of evolutionary selection (Zilber-Rosenberg & Rosenberg, 2008).
Likewise, the sum of the genetic information of the holobionts was coined “hologenome”
(Bordenstein & Theis, 2015; Zilber-Rosenberg & Rosenberg, 2013). The theory is defended
by multiple authors (Doolittle & Booth, 2017; Gilbert et al., 2012), but also has many
detractors (Douglas & Werren, 2016; Moran & Sloan, 2015) likely due to diverging
conceptions about biological individuality (Suárez, 2018). But the adoption of the terms
“hologenome” and “hologenomics” in this dissertation is instrumental, and reflects an
approach to study the intricate host-microbiota relationships (Alberdi et al., 2021).

Recent advances in high-throughput DNA sequencing and mass spectrometry technologies,
coupled with more powerful bioinformatic tools and increased computing capacity, are
revolutionising this field (Graw et al., 2021). Today, the hologenome can be studied on
various levels of resolution, ranging from marker genes to obtain information on host
population/microbial taxonomy to the use of whole-genome sequencing for both domains
(Alberdi et al., 2021). However, host-microbiota associations are dynamic, bidirectional
relations that are influenced by various external and internal physico-chemical and biological
factors (Y. Liu et al., 2019; Rasmussen et al., 2022; X. Wang et al., 2019). To gain insights
into momentary interactions, it is essential to rely on multiple other omic layers beyond
genomics, such as (meta)transcriptomics, (meta)proteomics or (meta)metabolomics (Limborg
et al., 2018; Nyholm et al., 2020). Nevertheless, the addition of various omic layers from both
domains involves higher resources to collect, process and sequence samples, as well as
generate, store, analyse data (Nyholm et al., 2020). Thus, holo-omic studies focus on a
reduced part of the entire network of interactions (Rasmussen et al., 2022; Shah et al., 2019;
Wu et al., 2022). This dissertation, in particular, details the characteristics of non-targeted
sequencing of the two nucleic acids from both domains.
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Data generation
Sample processing and data quality check
Currently, shotgun sequencing is the most popular method for sequencing nucleic acids, with
the laboratory and initial data quality check processes being similar but featuring some
particularities. First, DNA extracted from a sample is fragmented, and then sequencing
libraries are built, indexed using platform-specific sequencing adaptors, and pooled for
sequencing (Ekblom & Wolf, 2014; Quince et al., 2017). Sequencing of short-reads is usually
performed based on second-generation sequencing instruments (Pervez et al., 2022). RNA
is more unstable than DNA, demanding meticulous handling and preservation methods until
it is converted to complementary DNA (cDNA) (Westermann & Vogel, 2021). In addition, the
highly abundant ribosomal RNA (rRNA) needs to be removed, as it often constitutes more
than 80% of the RNA content of bacterial and eukaryotic cells (Westermann & Vogel, 2021).
For host transcriptomics, it is usually removed by relying on poly-A tails (Westermann &
Vogel, 2021), whereas for metatranscriptomics direct depletion strategies are needed
because prokaryotes lack poly-A tails (Tan et al., 2023). Once nucleic acids are sequenced,
raw reads undergo a quality filtering process that entails removing duplicate reads and
trimming adaptors (Quince et al., 2017). Depending on the aims of the study as well as
host/microbial DNA proportions, different approaches exist. These can be broadly split
between read-based and assembly-based analyses (Y.-X. Liu et al., 2021; Quince et al.,
2017). Given the abundance of already assembled reference genomes (Rhie et al., 2021),
and the high diversity of bacteria yet to be explored (Avila Santos et al., 2023), the host
genome is usually resequenced while bacterial genomes are assembled (Eisenhofer et al.,
2023). In case of RNA, while assembly-based methods are feasible (Langa et al., 2021),
transcripts from both domains are usually aligned to their respective annotated genomes
(Ojala et al., 2023).

Bacterial metagenome
Host-associated metagenomics involves the non-targeted sequencing of all DNA within an
environmental sample, including bacterial genomes (Quince et al., 2017). Through
genome-resolved metagenomics, bacterial genes and genomes can be reconstructed and
quantified, enabling better taxonomic assignment, phylogenetic reconstruction and direct
functional annotations than 16S rRNA amplicon sequencing (Durazzi et al., 2021).

Reference-based methods align clean reads to curated databases to obtain taxonomic and
functional information using MetaPhlAn2 or Kraken 2 (Y.-X. Liu et al., 2021; Quince et al.,
2017). In fact, curated gut metagenome catalogues for farm animals such as chicken (Gilroy
et al., 2021), pig (Xiao et al., 2016) and cow (Stewart et al., 2019) are already available. This
method can be preferred when the relative amounts of microbial DNA are low. Its main
limitation is that previously uncharacterised microbes are difficult to profile (Y.-X. Liu et al.,
2021) and that potential biases depend on the characteristics of the reference database
(Avila Santos et al., 2023).

Assembly-based methods assemble reads into larger sequences called contigs with tools
such as MEGAHIT and metaSPAdes (Quince et al., 2017). These contigs can be directly
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used to build a non-redundant gene catalogue (Huang et al., 2018), to map against an
existing reference database or to assemble a de novo bacterial genomes (Quince et al.,
2017). To study novel bacterial strains, contigs are grouped into bins to recover partial or
complete bacterial genomes through the process known as contig binning (Quince et al.,
2017). Popular binning tools include CONCOCT, MaxBin2 and MetaBAT2, which cluster
contigs based on tetra-nucleotide (also called k-mer) frequency and contig coverage. Then,
low-quality bins can be removed and the catalogue can be de-replicated to avoid redundancy
(Quince et al., 2017). But genome-resolved metagenomics also has its own limitations, as it
often misses a considerable portion of the existing diversity and usually does not recover
circular genomes (Y.-X. Liu et al., 2021). Long-reads obtained with platforms such PacBio
and Oxford Nanopore or hybrid strategies can be considered depending on a study-specific
basis (Eisenhofer et al., 2023).

Host genome
Host genome contains genetic characteristics unlikely to change over the typical timescales
of holo-omic studies, with variations across individuals and populations (Alberdi et al., 2021).
It enables accurate estimates of population genetic parameters and potentially identifies
gene-level variation between populations (Bourgeois & Warren, 2021). The main advantage
of using whole-genome resequencing instead of targeted approaches such as
single-nucleotide (SNP) chips for genotyping is that it captures a wide range of variation
specific to the population of interest, such as rare variants, structural variations and copy
number variations (CNVs) (Jones & Wilson, 2022).

If a reference genome is available, clean reads are directly aligned (Ekblom & Wolf, 2014).
While primarily used for characterising the genomic architecture of microbial communities,
metagenomic data generated from host-associated samples can also be used for extracting
genomic information of the animal host (Blekhman et al., 2015). Indeed, modern host DNA
derived from metagenomics has many applications as a non-invasive approach, such as the
study of endangered species (Ang et al., 2020) or human diseases (Jiang et al., 2020).
However, in animal studies the sequencing depth of the host is highly unpredictable, as the
proportion of host DNA can vary substantially between samples (Blekhman et al., 2015). If
enough DNA is obtained, variants can even be directly genotyped (Blekhman et al., 2015). If
a very low amount of DNA is obtained, genotype likelihoods can be calculated or missing
data can be imputed with tools like ANGSD, Beagle or IMPUTE2, taking advantage of recent
advances in ancient DNA studies (Orlando et al., 2021; Parejo et al., 2020).

Although reference-based approaches are the most common option for studying the host
genome, assembly-based methods are becoming more affordable (Jung et al., 2020). An
example of it is the international effort to generate complete genomes for many species (Rhie
et al., 2021). However, generating high-quality genomes requires an approach that combines
multiple sequencing strategies to resolve the complex structures of eukaryotic genomes
(Amarasinghe et al., 2020). The actual optimal standard procedure combines long-read
sequencing, such as Pac-Bio HiFi data, for genome assembly with scaffolding methods like
Illumina Hi-C data to obtain nearly complete genomes (Amarasinghe et al., 2020).
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Bacterial metatranscriptome and host transcriptome
Metatranscriptomics provides information about the microbial community’s transcriptional
regulation of active genes at the time the sample was taken, while intestinal transcriptomics
provides information on local host response (Nyholm et al., 2020). Host transcriptome covers
all types of transcripts, including messenger RNAs (mRNAs), microRNAs(miRNAs) and long
noncoding RNAs (lncRNAs) (Westermann & Vogel, 2021). Microbial and host RNA sample
collection usually is spatially divided, as the bacterial diversity in the mucosal part of the
intestine is lower compared to that in the gut contents (Nyholm et al., 2022), while the host
response is more appreciable in the intestinal mucosa or epithelium itself (Lichtman et al.,
2015).

Mapping to a reference genome of (meta)transcriptomics is specific for each domain, since
eukaryotic RNA molecules contain introns, which prokaryotic cells do not, requiring
splice-aware reads mappers (Westermann & Vogel, 2021). For metatranscriptomics,
reference-based methods can directly map reads to databases. This works well when
community member species are largely known and databases are well characterised. But if
bacterial species are unknown, mapping to a de novo metagenome-resolved catalogue might
be preferred (Ojala et al., 2023).

Data integration
Omics-based studies are facilitating a new, more holistic understanding of systems biology,
but the analysis of each layer generates big data files, making the integration and biological
interpretation of these multidimensional omics data challenging (Q. Wang et al., 2019).
Multi-omic integration tools, which can be categorised as multi-staged and meta-dimensional,
employ traditional statistical methods for supervised and unsupervised analyses (Graw et al.,
2021). Among unsupervised methods, analyses can be divided into clustering or Principal
component methods that aim to identify groups, and association or network methods that are
used to identify relationships between omic and sample characteristics (Santiago-Rodriguez
& Hollister, 2021). In contrast, supervised analyses attempt to model features that can be
used to predict traits. These methods include regression and multivariate analyses
(Santiago-Rodriguez & Hollister, 2021). The multi-staged approach analyses each layer in
various steps, while in meta-dimensional analyses multiple omic layers are pooled in a single
analysis (Graw et al., 2021). Meta-dimensional approaches are becoming more popular with
the advances of artificial intelligence. Alongside user-friendly web-based tools, more complex
R packages such as mixOmics, mCIA, MOFA and MoCluster, support microbiome or single
organism datasets (Santiago-Rodriguez & Hollister, 2021). But multi-layered approaches are
computationally challenging, as well as difficult to display and to comprehend visually (Graw
et al., 2021). In the case of host-microbiota studies, multi-staged approaches, enable to
acknowledge the distinct nature of the host (a single eukaryotic organism) and microbiota (a
community of prokaryotes) omics (Kwoji et al., 2023; Q. Wang et al., 2019). Species
communities are assembled following the basic processes of selection, drift, dispersal and
speciation, which determines the community composition, functional profile and biodiversity
of the microbiome (Costello et al., 2012; Coyte et al., 2015). For instance, making inferences
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from metagenomic data may benefit from specific statistical frameworks such as joint species
distribution modelling (Tikhonov et al., 2020).

The application of such complex methodological approaches require not only interdisciplinary
knowledge, but also specialised infrastructure and methodologies. The European Union
concentrated a large part of its research and innovation activities in the Horizon 2020
(H2020) Framework Programme in the period of 2014 and 2020. This thesis is developed
within HoloFood, a H2020 project granted in 2019 to study host-microbiota interactions with a
holo-omic approach for a sustainable animal production (HoloFood Consortium, 2019).

Research framework
HoloFood
Holofood ran from 1 January 2019 to 30 June 2023, and brought together 10 European
industrial, research and academic partners, the University of the Basque Country being
one of them (HoloFood Consortium, 2019). HoloFood's aim was to implement a holo-omic
framework to improve feed additives and diet formulations, as well as to optimise meat
production efficiency. To achieve this, different stages of the production line were
thoroughly examined in two critically important farmed animal systems (salmon and
chicken) that were raised under different dietary treatments. The purpose behind selecting
these two animal models was to highlight the most significant contrast between the two
systems, given that salmon inhabits aquatic environments while chicken is a terrestrial
animal. The chosen holo-omic framework comprises the characterisation of the associated
gut microorganisms’ genomes, transcriptomes and metabolomes; and the genomes,
intestinal transcriptomes and intestinal immune processes of the mentioned two animal
systems. All this in relation to animal performance and welfare parameters.

The chicken scientific work was coordinated between The University of the Basque
Country (EHU) and the Center for Evolutionary Hologenomics (CEH), The GLOBE
Institute, Denmark. In short, chicken experiments were conducted in the Institute of
Agrifood Research and Technology (IRTA), Spain. IRTA was responsible for coordinating
the experiments, as well as collecting and analysing animal performance and welfare
parameters. Bacterial metabolites, host cytokines, and mucosa integrity from chicken
intestinal samples were analysed by the Institute of Animal Nutrition, Freie Universität
Berlin (FUB), Germany. Omic data for both domains, chicken and its microbiota, was
generated by CEH. Metagenome-resolved genomes were assembled by the European
Bioinformatics Institute (EMBL-EBI), United Kingdom. Data was analysed by CEH and
EHU.

This dissertation explores host-microbiota interactions, using (meta)genomics and
(meta)transcriptomics analyses obtained from chicken caecum, which are complemented
by animal performance and welfare parameters.
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Broiler chicken
Poultry, and especially chicken (Gallus gallus domesticus), is the main source of animal
meat consumed by humans worldwide and it is forecasted to undergo the largest
production increase in the near future (Alexandratos et al., 2012). In 2020, 130 million tons
of chicken meat were produced (OECD-FAO Agricultural Outlook 2017-2026 - En - OECD,
n.d.). But its relevance in the meat industry has been rather recent. Domestication of
chicken from its wild ancestor, the red junglefowl, started about 8,000 years ago in
South-Eastern Asia (M.-S. Wang et al., 2020). Its adaptability to a range of environments
and manageability facilitated the spread of the chicken from the jungles of Southeast Asia
to all parts of the world (Lawal & Hanotte, 2021). But scientists suspect that they were not
used as food resources when introduced to Europe, rather they were rendered as exotic
animals for spiritual practices (Doherty et al., 2021; Sykes, 2012). Over time, chickens
became highly valued for their eggs, whereas their meat was considered a by-product
(Siegel, 2014). It was only in the late 1940s that genetic selection programs for modern
meat chicken breeds, also called broilers, were developed (Havenstein et al., 1994).
Genetic selection has proven highly effective, leading to a complete transformation of their
physiology from that of their shared ancestor. Productivity gains have been achieved
through intensive selection on production traits over generations of purebred populations,
followed by cross-breeding strategies (Fad, 2013; van der Most et al., 2011). Their short
generation interval and the high heritability of production parameters facilitated obtaining
market weights in younger ages (Havenstein et al., 2003a, 2003b). Today, their feed
conversion ratio (FCR) is around 1.6-2.0 (Havenstein et al., 2003b), which means that a
2.44 kg broiler chicken can be produced in approximately 35 days using 3.66 kg of feed
(Siegel, 2014), a period of time in which birds do not reach sexual maturity (Rychlik, 2020).

The domestication bottleneck (M.-S. Wang et al., 2021) and subsequent genetic selection
programs for production (Siegel, 2014) has left a number of genetic adaptations in modern
broiler chickens. At present, primary broiler genetic lines used in global intensive
production are controlled by three major companies: Cobb-Vantress, Aviagen, and
Hubbard (Fad, 2013). The most popular genetic lines from these companies could be the
broilers Ross 308 (Aviagen) and Cobb 550 (Cobb-Vantress). These genetic lines are close
to each other, probably due to their common ancestor, the Cornish breed (Qanbari et al.,
2019; Rubin et al., 2010). They show a smaller proportion of rare alleles compared with
wild chickens, presumably caused by genetic selection that reduces frequencies of slightly
deleterious mutations (Qanbari et al., 2019). They also show higher inbreeding signs than
wild chickens, but not as much as chickens that are used for eggs (Talebi et al., 2020).
Hence, all these characteristics highlight the little genomic complexity of broilers, which
renders them a good system for studying host-associated microbiota variations (Alberdi et
al., 2021)
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Chicken gut microbiota
Intensification of chicken meat production has introduced several changes to the natural
behaviour of chickens that affect gut microbial dynamics. The newly hatched chicks are
exposed to non-avian, environmental sources of bacteria, instead of acquiring resident gut
bacteria through the direct contact with the mother hen (Rychlik, 2020). Therefore, the
intestinal colonisation patterns are highly variable and unstable, with delayed gut
microbiota development likely following multiple microbial trajectories that are governed by
environmental and host-associated factors (Proszkowiec-Weglarz et al., 2022).

Microbial communities are specific to each intestinal section, with higher microbial mass
and diversity of anaerobic bacteria in the large intestine (caecum and colorectum)
compared to the small intestine (duodenum, jejunum and ileum) (Huang et al., 2018). This
microbial compartmentalization is due the specific characteristics of each gastrointestinal
section. The small intestine is the main section for chemical digestion and absorption,
while the caecum is the main microbial fermentation chamber (Svihus, 2014). Despite the
jejunum being the preferent site for nutrient absorption in the small intestine, it is
suggested that it continues to happen to a certain extent in the ileum and even in the
caecum (Svihus, 2014; Svihus & Choct, 2013). But whereas the absorption is continuous
during digesta transit in the small intestine, it resembles batch cultivation in the caecum
(Rychlik, 2020). Unabsorbed feed in the small intestine is then passed to the colon, from
where digesta moves by retrograde antiperistalsis to the caeca, two blind-ending distal
segments (Duke, 1989; Svihus & Choct, 2013). Considering that chickens have a shorter
gastrointestinal tract and faster digesta transit compared to other food animals, which is
about 3.5h, caeca is the most important section for an extended digestion since the
emptying of the caecum takes place every 24 to 48 hours (Bindari & Gerber, 2022; Pan &
Yu, 2014).

Chicken caecal microbiota is the most studied microbiome in chickens (Bindari & Gerber,
2022; Borda-Molina et al., 2018; Oakley et al., 2014; Rychlik, 2020). Caecal microbial
communities diversify according to chicken age, and once the community is established, it
is primarily dominated by Firmicutes and Bacteroidota phylums (Jurburg et al., 2019; Q.
Zhou et al., 2021). There are expected differences between chicken genetic lines
(Richards et al., 2019; Schokker et al., 2015), as well as a significant interindividual
variation that can affect chicken growth performance (Shah et al., 2019). Bacterial gene
catalogues have improved our ability to comprehend how dietary treatments influence the
functional traits of the microbiome (Huang et al., 2018), while bacterial genome catalogues
provide the landscape of unique functional attributes of individual microbial strains (Feng et
al., 2021; Gilroy et al., 2021; Glendinning et al., 2020; Segura-Wang et al., 2021; Zhang et
al., 2022). Consequently, the complex caecal microbiome shows a temporal succession
which can be monitored during chicken growth period, and even most likely modulated by
dietary treatments (Alberdi et al., 2021).
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Thesis roadmap and my contribution to HoloFood
During my four and a half years being part of HoloFood, I participated in numerous
experimental, laboratory and computational tasks that were developed within the project as
part of my PhD. Initially, I was offered a position in 2019 to work as a researcher in HoloFood
within the Applied Genomics and Bioinformatics group, directed by Andone Estonba. A year
later I was granted a predoctoral fellowship by the Basque Government in the same group,
under which this dissertation has been developed. Given the complexity of developing a
doctoral thesis as part of a European Project, the following paragraphs attempt to detail i) the
steps followed in HoloFood, ii) my involvement in various of those steps, and iii) the
development of the research papers that constitute the chapters of this thesis.

Chicken experimental trials were carried out at the Institute of Agrifood Research and
Technology (IRTA), Spain. The trials were performed between February and October 2019,
and during this period, I made 14 trips (of 3-4 days each) to IRTA. I participated in the design
of the protocols for the sampling procedures together with Dr. Antton Alberdi and Dr. Joan
Tarradas, researcher from the Animal Nutrition Department (IRTA), under the supervision of
Dr. Enric Esteve-Garcia. During the sampling procedures, I had the opportunity to learn
different protocols for collecting a variety of samples from multiple organs, as we collected
more than 30 samples per animal, for a total of 1,296 chicken individuals. Nevertheless, it
must be noted that the experimental and sampling work would not be possible without all the
researchers, farm workers and laboratory technicians that participated in these tasks.

Between 2019 and 2020, I did 3 internships at the Animal-microbiota interactions group,
Center for Evolutionary Hologenomics (CEH) Denmark, led by co-supervisor Antton Alberdi.
The internships responded to the decision of processing all samples for multi-omic data
generation at the University of Copenhagen. During those internships, I worked on protocol
optimization and processing of ileal and caecal (meta)genomic and (meta)transcriptomic
samples, under the supervision of the laboratory manager Dr. Sarah Mak. I must note that
the laboratory work of processing more than 800 samples would not be possible without the
work of laboratory technicians Garazi Martin and Louisa Pless. During these internships, I
had the opportunity to discuss technological advances to study host-microbiota interactions
with PhD students (now both doctors) Lasse Nyholm and Adam Koziol, as well as other
colleagues, with whom I ended up publishing a perspective article that can be found in Annex
1.

Once chicken ileal and caecal metagenomic samples were sequenced, data were handed
over EMBL-EBI’s Microbiome Informatics team, who assembled the metagenomic data and
reconstructed metagenome-assembled microbial genomes (MAGs). This task was performed
when the Covid-19 pandemic hit, which forced us to stay home. I took advantage of this
pause to work on bioinformatic methods to recover host genomic data from metagenomic
samples, in collaboration with Dr. Melanie Parejo. During 2020 we compared genotyping and
imputation methods which yielded the publication of the research article that constitutes
Annex 2.
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Covid-19 also hindered the sequencing and de novo genome assembly of the two broiler
breeds used in HoloFood by Vertebrate Genome Laboratory, The Rockefeller University
(EEUU). This delay required a change of management and directionality of the research,
which is why it ended up constituting Annex 3 of this thesis.

Simultaneously, Dr. Nuria Tous (IRTA), Joan Tarradas (IRTA), and myself analysed pen-level
and animal-level chicken performance and welfare parameters under the supervision of
Antton Alberdi. We observed that the impact of dietary treatments on chicken performance
was negligible. However, we identified a high interindividual variation in chicken growth for
the first two trials, and an opportunistic colonisation of Campylobacter spp. associated with a
reduced chicken growth in the third trial. These observations sparked long discussions on
how holo-omic data layers could be used for explaining the observed trends, aiming to
understand the interplay between hosts and associated gut microbial communities. These
discussions resulted in a research article submitted for publication in late 2021, which
embodies Chapter 3 of this thesis.

When EBI-EMBL partners released the MAG catalogues, researchers from CEH and EHU
began the coordinated task of analysing the data. Dr. Iñaki Odriozola, Dr. Jorge Langa, Dr.
Ostaizka Aizpurua, and I started discussing the optimal ways of analysing shotgun
sequenced metagenomic data, under the supervision of Antton Alberdi. During this period, I
learnt unsupervised and supervised statistical analyses for metagenomics and
(meta)transcriptomics under the supervision of Iñaki Odriozola and Jorge Langa. While the
quality of the data collected from cecum samples was very good, the data quality from ileum
samples was proven insufficient to address our scientific inquiries. For this reason, we
decided to focus on the caecum only.

The first two experimental replicates enabled us to characterise the functional dynamics of
the caecal microbiota development during chicken growth in 2022. This work yielded the
research article that embodies Chapter 4.

The third experimental replicate enabled us to examine the microbial dynamics and host
response to Campylobacter colonisation. The analysis of these data allowed me to learn
about zoonotic agents and the implications of Campylobacter in chickens' performance and
welfare in 2023. The result was the research publication that is included in Chapter 5.
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Thesis hypothesis
The main hypothesis of this thesis is that:

A holo-omic framework is an effective approach for unveiling host-microbiota interactions
with which to explain the variation in chicken performance caused by the

feed-microbiome-host axis

This general hypothesis can be further elucidated through the following hypotheses:

1. Specific biological hypotheses
1.1. Chicken growth performance is affected, or even conditioned, by the interplay

between the host and its associated gut microbiota

1.2. Dietary additives modulate chicken-microbiota interplay, and thus improve
chicken performance and welfare

1.3. The efficacy of dietary additives varies depending on the genomic background
of the chicken and its associated gut microbiota

2. Specific technological hypotheses
2.1. Holo-omics enable to screen the biochemical landscape of intestinal

host-microbe interactions

2.2. Genome-resolved metagenomics offers direct insights of the entire functional
characteristics and functional dynamics of the chicken gut microbiome

2.3. Genome-resolved metatranscriptomics provides information on the gene
expression of every bacterial strain identified at each sampling time

2.4. Chicken intestinal transcriptomics enables monitoring host local responses to
the developing microbiota in the gastrointestinal tract

2.5. The integration of multiple omic layers allows unveiling biological patterns
hidden to single omic data
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Thesis aims
The main objective of this thesis is to:

Provide novel insights into host-microbiota dynamics in broiler chickens subjected to
different dietary treatments in an intensive production context by applying holo-omic

methodologies on intestinal samples

The specific objectives of each chapter are listed below:

1) Identify knowledge gaps in standard and targeted methodologies used in the
animal production to assess chicken performance and welfare

- Describe the experimental work conducted in HoloFood
- Asses dietary treatments effect on chicken performance
- Present main pen-level performance, and individual-level inflammation and

stress biomarkers results of broiler chickens
- Propose multi-omic approaches to cover host-microbiota interactions that

could potentially explain described biological trends

2) Model the functional development of the chicken gut microbiota and test
whether it is associated with chicken growth performance

- Describe the functional landscape of the entire caecal microbial catalogue
- Identify the main sources of variation for microbiota composition and function
- Explore the functional dynamics of the microbiome across productive lifespan

of the chicken
- Correlate functional capabilities with functional activity of the microbiota
- Associate body weight with the microbiome

3) Unravel the potential role of microbe-microbe and host-microbe interactions in
Campylobacter spp. colonisation

- Confirm Campylobacter presence using genome-resolved metagenomics
- Compare microbial compositional and functional progression of chickens that

did and did not undergo an opportunistic Campylobacter colonisation
- Search for metabolites produced by the microbiome that could facilitate

campylobacter colonisation
- Explore whether Campylobacter triggered an immune response in the host
- Establish a connection between diminished chicken growth performance and

either the host immune response or alterations in the gut microbiota
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Thesis outline
This thesis consists of six chapters comprising a comprehensive introduction, a second
chapter on the thesis roadmap, the proposed hypotheses and objectives together with an
outline of the dissertation, followed by three original research papers that culminate in a final
discussion. The thesis also includes an annex section, with three additional research articles.
The contents of the three original articles are detailed below.

In Chapter 3, named Novel strategies to improve chicken performance and welfare by
unveiling host-microbiota interactions through hologenomics, we draft an article halfway
between a research article and a perspective. We describe the study design, the
experimental work, the sampling procedures carried out, as well as the samples available at
HoloFood. We present pen-level and individual-level performance and welfare parameters.
Chicken body weight variance is hierarchically decomposed to understand the main sources
of variation. We hypothesise that in-depth knowledge based on hologenomics can help us
better understand animal performance and welfare.

Chapter 4, titled Reduced metabolic capacity of the gut microbiota is associated with host
growth in broiler chickens, characterises the compositional and functional features of the gut
microbiota of chickens during their productive lifespan. We use various metrics of alpha and
beta diversities, and hierarchical linear models to examine microbial dynamics over time,
categorising microbes as increasers and decreasers based on temporal trends. We then
associate these two microbial groups with chicken body weight. We show that, although all
metrics of microbiome diversity increase with chicken age, the overall capacity and activity of
the microbiome to perform metabolic functions decreases. This pattern is due to the spread
of strains with low metabolic capacities as chickens grow older. A more pronounced transition
from high-capacity to low-capacity bacteria is positively associated with chicken growth,
suggesting the potential to improve animal production by modulating the microbiome towards
communities dominated by low-capacity bacteria.

For Chapter 5, designated Priority effects and microbial cross-feeding shape zoonotic agent
spread in broiler chickens, we study how microbial communities contribute to Campylobacter
spp. colonisation, and how the distinct microbiota developed after Campylobacter
colonisation affect chicken body weight. We define two microbial enterotypes with the
Dirichlet multinomial mixture model and identify microbial dependencies with genome-scale
metabolic networks. We show that the unusual relative abundance of Bacteroides fragilis_A
can facilitate Campylobacter colonisation by providing essential metabolites that are key in
central metabolic processes. By performing differential gene expression analyses, we also
observe that the reduced growth performance of chickens in trial C is due to an increased
microbial activity that might alter nutrient availability to the host, rather than due to a host
immune response.

The concluding discussion provides a comprehensive summary of the thesis. It focuses on
highlighting the achieved goals but also explores the many challenges and limitations
encountered in the process. The chapter ends with a concise reflection on the future of
holo-omic studies and their potential for microbe-based solutions.
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Thesis timeline
This timeline aims to illustrate where and when the different tasks were carried out. The
coloured boxes indicate tasks from my thesis, while the grey boxes indicate tasks on which I
collaborated. Boxes in light green indicate data generation processes performed by external
collaborators.
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Novel strategies to improve chicken
performance and welfare by unveiling
host-microbiota interactions through
hologenomics

Chapter 3
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Abstract
Fast optimisation of farming practices is essential to meet environmental sustainability
challenges. Hologenomics, the joint study of the genomic features of animals and the
microbial communities associated with them, opens new avenues to obtain in-depth
knowledge on how host-microbiota interactions affect animal performance and welfare,
and in doing so, improve the quality and sustainability of animal production. Here, we
introduce the animal trials conducted with broiler chickens in the H2020 project HoloFood,
and our strategy to implement hologenomic analyses in light of the initial results, which
despite yielding negligible effects of tested feed additives, provide relevant information to
understand how host genomic features, microbiota development dynamics and
host-microbiota interactions shape animal welfare and performance. We report the most
relevant results, propose hypotheses to explain the observed patterns, and outline how
these questions will be addressed through the generation and analysis of
animal-microbiota multi-omic data during the HoloFood project.
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Introduction
With the ever-increasing human population on Earth, humanity is facing several major
challenges to ensure long-term balance between natural resource use and environmental
conservation (Reid et al., 2010). Many of the current agricultural practices are not sustainable
due to excessive carbon emission, resource consumption, and waste production (Agovino et
al., 2019). Hence, there is an urgent need to transition into a more resilient and sustainable
agriculture model, in which the efficiency of production is improved, the use of antibiotics is
reduced, and the welfare of animals is ensured (Eyhorn et al., 2019).

A fundamental step to optimise farming practices is to obtain in-depth understanding on the
biological functioning of the animal production systems (Messerli et al., 2019). These
systems often include biological elements beyond the actual animal that is being produced,
among which host-associated microorganisms stand out due to their relevance for the
optimal biological functioning of most animals (McFall-Ngai et al., 2013). Intestinal
microorganisms not only modulate nutrient intake (Diaz Carrasco et al., 2019), but also
shape intestinal immune and inflammatory processes (Zhou et al., 2021), intervene on host
systemic growth parameters (Fraune & Bosch, 2010), and even influence host behaviour
(Johnson & Foster, 2018). Microorganisms colonise the animal gut as soon as it is exposed
to the environment (Sprockett et al., 2018), and develop communities with complex spatial
and temporal dynamics (Debray et al., 2021), which continuously interact with the host
animal (Ansari et al., 2020; Khan et al., 2019).

Animal-microbiota interactions have so far remained largely unexplored because of the
limited capacity of scientists to properly characterise and analyse the key elements partaking
in this interplay due to their excessive complexity (Alberdi et al., 2021). However, the
development of high-throughput DNA sequencing and mass spectrometry technologies,
linked to higher computing capacity and development of powerful bioinformatic tools, is
changing this scenario (Graw et al., 2021). Today we are not only able to characterise the
entire genetic information of animals and their associated microorganisms (namely the
hologenome), but we can also quantify how genes are expressed, which proteins are
synthesised and what metabolites result from enzymatic reactions happening in the gut
(Nyholm et al., 2020). Such a holo-omic approach that considers multiple omic layers of both
animals and associated microorganisms, is starting to unveil biological features and patterns
that have remained hidden so far (Alberdi et al., 2021).

This technological revolution is likely to change animal science practices, because many
sources of variability that have been so far attributed to background noise, such as host
microgenetic and microbiota variation among individuals, can be surfaced and included in the
analyses (Alberdi et al., 2021). This requires an increased attention on the biological
processes happening in each individual animal, rather than considering animals just as units
that contribute to pen or tank statistic averages. The first attempts to implement
individual-based multi-omic strategies in farm animals have provided detailed understanding
of feed-microbiota-animal interactions (Andersen et al., 2021), by for example
demonstrating which bacteria with which genes are able to degrade which carbohydrates
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(Michalak et al., 2020). We anticipate that such a mechanistic understanding of biological
processes will contribute to generating refined hypotheses, predictive models and
experimental treatments that will lead to a reduction of animals employed for research and an
ultimate development of more optimal farming strategies.

HoloFood (HoloFood Consortium, 2019) is a multi-partner H2020 project that is pioneering
such an approach, among other farming systems, on broiler chickens. The project aims at
developing and implementing joint multi-omic analyses of animals and their associated
microorganisms to generate in-depth knowledge of animal-microbiota interactions, and in
doing so, improve the quantity, quality and safety of the produced food, the sustainability of
the production process and the welfare of the produced animals. To set the baseline to an
upcoming series of publications that implement such multi-omic analyses, here we introduce
the strategic vision, and experimental work conducted to generate biological samples and
associated performance results of broiler chickens in the project HoloFood. We present the
main performance results, discuss their relevance, and relate them to future multi-omic
analyses that HoloFood partners will conduct to address the variety of biological questions
raised from the initial screening of animal performance.

Results
The study was designed in a way that would maximise variability, to surface interactions
between animal and microbial features. The design consisted of three identical experiments
(A, B and C) with a randomised pen design in which broilers from two genetic lines
(Ross308® and Cobb500®) and both sexes were grown under three dietary treatments: i)
basal diet (BD), ii) BD plus a probiotic additive (PR), and iii) BD plus a phytobiotic additive
(PH) (full details in Methods section, overview in Fig. 1). The BD had a high content of wheat
(rich in non-starch polysaccharides - NSPs) and was not supplemented with enzymes (Table
S1), aiming to induce a mild inflammatory process in the intestine (Raza et al., 2019), and
thus maximise the beneficial effects of feed additives (Bortoluzzi et al., 2019; Whelan et al.,
2019). The probiotic contained a blend of three Bacillus strains and the phytobiotic was
based on polyphenols (78%) and procyanidins (22%) from white grapes. Both additives are
associated with promotion of a healthy gut microbiota, improved nutrient digestion and
absorption, enhanced intestinal morphology and immunomodulation (Chamorro et al., 2019;
Tarradas et al., 2020).
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Figure 1. Experimental, sampling and analytical design of the HoloFood study focused
on broiler chickens. a) Three experiments with identical study design were conducted in
2019. b) Each experiment contained 12 factor combinations of three dietary treatments, two
genetic lines and two sexes. c) Each combination was replicated twice per experiment,
yielding 24 pens per experiment and 72 pens in total. d) Each pen contained 40 chickens in
the beginning of the experiment, 18 experimental animals that were randomly selected and
tagged the first day of the experiment, and 22 more animals that provided commercial-like
density conditions. e) Six chickens were euthanised at day 7, six more at day 21 and six
more at day 35 for collecting samples for performance, multi-omic and complementary
analyses. f) From each animal, 14 tissue and digesta samples were collected for a variety of
analyses (see Table 1 for details), and complementary organ samples were also collected for
future analyses.

Growth performance was assessed at pen level at three time points (7, 21 and 35 days) in
terms of average body weight (BW), daily gain (ADG), daily feed intake (ADFI), feed
conversion ratio (FCR), and European production efficiency factor (EPEF). Moreover, a total
of 1296 animals (from the 72 pens; 24 pens per experiment) were individually weighted (iBW)
and euthanised (6 animals per pen and day). A total of 14 samples were collected from each
animal to measure individual key performance indicators (KPIs), as well as to generate
multi-omic and complementary analyses (Table 1). Measured KPIs aimed at quantifying
quantity, quality and safety of the produced food, the sustainability of the production process
and the welfare of the produced animals.
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Table 1. Overview of the biological samples collected from each individual animal within the
project HoloFood, with their preservation strategy and corresponding multi-omic and
complementary analyses.

Sample Analyses
Blood Lipopolysaccharide and acute phase proteins

Ileum tissue

Mucus production
Histology
Targeted amplification of inflammatory markers
Shotgun chicken transcriptomics

Ileum mucosa Shotgun chicken transcriptomics
16S amplicon sequencing

Ileum content

Shotgun metagenomics
Shotgun metatranscriptomics
16S amplicon sequencing
Chicken genomics
Metabolomics

Caecum tissue

Mucus production
Histology
Targeted amplification of inflammatory markers
Shotgun chicken transcriptomics

Caecum mucosa Shotgun chicken transcriptomics
16S amplicon sequencing

Caecum content

Shotgun metagenomics
Shotgun metatranscriptomics
16S amplicon sequencing
Chicken genomics
Metabolomics

Feathers Corticosterone measurement

The data on each individual animal derived from the experiments were analysed at three
different levels. The first level included the analyses of measurements obtained in the farm
(e.g., iBW, footpad dermatitis). The second level comprised analyses conducted a posteriori
from samples obtained during the trials using techniques regularly applied in animal sciences
(e.g., ELISA for protein quantification, qPCR for pathogen detection). The third level included
multi-omic analyses, which characterises the animal-microbiota system at the highest level of
breadth and resolution. These analyses include whole-genome sequencing of chicken
genomes, deep metagenomics of microbial communities, (meta)transcriptomics and
metabolomics.

In the following, we present the main results obtained per pen, and the first two levels of the
individual analyses sorted by topic. We explain their biological relevance based on current
knowledge, and we project the potential of multi-omic analyses that will be conducted on top
of these results to address the most relevant pending questions.

Effect of dietary treatments
No significant effect of administered dietary additives was observed in the performance of the
animals (Fig. 2a; Tables S2-12). Regarding the probiotic, Bacillus spp. are commonly used as
additives in broiler production (Irta, 2015), and the specific probiotic strains tested in our
study have been previously shown to improve performance and physiological traits in broilers
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(Goodarzi Boroojeni et al., 2018; Molnár et al., 2011). However, contrasting observations that
align with our results have also been reported (C.-L. Li et al., 2018), which could be
explained by varying experimental conditions, such as the specific Bacillus strain employed,
the dose, or the basal diet. The supplementation of poultry diets with multi-strain Bacillus
probiotic products is in general associated with competitive exclusion of common pathogens,
improved nutrient digestion and absorption through the production of exogenous enzymes,
enhanced intestinal morphology, and the modulation of relevant immune system pathways
(Ramlucken et al., 2020; Tarradas et al., 2020). Regarding the phytobiotic, multiple modes of
action have been attributed to additives containing polyphenols and procyanidins, including
antioxidant and anti-inflammatory properties, promotion of beneficial bacteria in the gut, and
enhancement of nutrient absorption through binding of dietary proteins and carbohydrates
(Chamorro et al., 2019; Hasted et al., 2021).

As the beneficial effect of feed additives is usually not evident when animals grow under
optimal conditions (Vilà et al., 2010), we deliberately induced a challenging condition through
increasing the amount of dietary soluble NSPs. These compounds are known to have
deleterious effects on the bird’s health and performance through increasing intestinal
viscosity and hampering nutrient digestibility (Raza et al., 2019), and can thus maximise the
beneficial effects of feed additives (Bortoluzzi et al., 2019; Whelan et al., 2019). Accordingly,
the overall performance was 13.8% lower than the expected from reference performance
tables (Aviagen, 2019; Cobb-Vantress, 2018), yet with no differences between treatments.
This could be in part explained because the experiments were designed to maximise
variability.

Dietary treatments did not induce any significant change in the acute phase protein values
measured in plasma (Figure 2F, Table S7). The only parameter affected by dietary treatments
was corticosterone (COR) (Table S6). COR measured in feathers is used as a biomarker of
accumulative stress (Bortolotti et al., 2008), as chronic levels of COR are associated with
detrimental effects on growth and related biological traits (Scanes, 2016). COR levels
increased with the PH diet at day 7, but these levels were not prolonged over time nor
decreased compared to the BD. This observation contrasts with previous studies that
reported a reduction of serum and feather COR in broilers fed with polyphenol extracts (Gong
et al., 2018; Gopi et al., 2020).

To delve into the reasons under, among other questions, the lack of positive effect of the feed
additives on commonly assessed nutritional parameters, HoloFood will generate whole
genome sequences of probiotic strains used through hybrid short- and long-read DNA
sequencing (Wick et al., 2017), and perform a pangenome analysis with other sequenced
and annotated Bacillus strains to identify bacterial genes that could confer beneficial
functional capabilities to the strains. HoloFood will also generate deep genome-resolved
metagenomic datasets (Almeida et al., 2019; Pasolli et al., 2019) from the ileal and caecal
content. While most chicken-associated microbiota research is being conducted using
targeted sequencing (Jurburg et al., 2019; Mohd Shaufi et al., 2015; Ocejo et al., 2019), the
first shotgun-sequencing based studies have recently been published (Gilroy et al., 2021;
Glendinning et al., 2020). The metagenome-assembled genome (MAG) catalogue of bacteria
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associated with broiler chickens generated in HoloFood, will not only complement such
efforts for the high-resolution characterisation of chicken-associated microbiomes, but will
also enable in-depth study of strain-level microbiota dynamics in the analysed production
context through combining taxonomic and direct functional inferences. The reconstructed
bacterial genomes will be functionally annotated, thus directly inferring the metabolic
capacities (e.g., complex polysaccharide degradation, short-chain fatty acid (SCFA)
production) of strains, and acknowledging the aggregated functional landscape of the entire
community present in each animal (Shaffer et al., 2020). HoloFood will also generate whole
genome sequences of the probiotic strains through hybrid short- and long-read DNA
sequencing to ensure highest-quality genome reconstructions of the tested probiotics (Wick
et al., 2017), and perform a pangenome analysis with other sequenced and annotated
Bacillus strains to identify bacterial genes that could confer beneficial functional capabilities
to each of the strains. This will enable us to understand the specific means of action through
which each strain can interact with the microbiota and various intestinal features of the host.
All these analyses will enable ascertaining the relative abundances of Bacillus probiotics in
different intestinal segments, and measuring whether the additives trigger broad-as well
as fine-scale taxonomic and/or functional changes in the microbiota of broilers, that could
contribute to explain the observed results.

Figure 2. Overview of main results. a) Body weight differences across dietary treatments,
namely basal diet (BD), BD plus probiotic (PR) and BD plus phytobiotic (PH), at day 35. b)
Body weight differences across lines and sexes at day 35. c) Body weight progression of the
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three experiments, with detailed overview of days 7, 21 and 35. d) Corticosterone (COR)
levels measured in feathers at different days, sexes, and genetic lines. e) Linear correlation
between COR levels and body weight at the three time points. f) C-reactive protein (CRP),
avian haptoglobin-like protein (PIT54) and lipopolysaccharide (LPS) levels in plasma across
time points in different dietary treatments. g) CRP, PIT54 and LPS levels in plasma across
time points in different genetic lines. h) CRP, PIT54 and LPS levels in plasma across time
points in different sexes. i) CRP, PIT54 and LPS levels in plasma across time points in
different experiments. j) Hierarchical decomposition of observed body weight variation within
pens, among pens and among experiments.

Effect of broiler line
Although theoretically both broiler lines tend to perform similarly in terms of growth and final
BW (Aviagen, 2019; Cobb-Vantress, 2018; Livingston et al., 2020), broiler line X reached
significantly higher BW, ADG, and ADFI and lower FCR than line Y at day 35 (2232 g and
1878 g for BW (SE=18.8), 62.6 g and 52.4 g for ADG (SE=0.54), 96.6 g and 81.1 g for ADFI
(SE=0.80), and 1.497 and 1.542 for FCR (SE=0.015), respectively; Fig. 2b and Table S2).
The differences observed on performance between lines could partially be explained by the
higher initial BW of line X (44.5 g) at day 0 than line Y (40.8 g) (SE=0.31; Table S2). A
retrospective analysis of the breeders’ features showed that the age of breeders was higher
for line X (49.6±10.1 weeks) than for line Y (44.1±11.4 weeks), which probably caused the
observed difference between the initial BW (Iqbal et al., 2017). However, the differences
between lines at day 35 did not disappear even when BW at day 0 was included as a
covariate in the statistical model, suggesting that other factors contributed to shape the
differences observed between both lines. Therefore, performance results suggest that line X
could exhibit a higher resistance to NSPs or a more active feeding behaviour than line Y.

The accumulation of COR in feathers was significantly higher for line X (13.91 pg/mg) than
for line Y (11.54 pg/mg) (standard error (SE)=0.914; p<0.001) (Fig. 2d, Table S6), in contrast
to what would be expected from a stress indicator (Carbajal et al., 2014). Individual COR
levels were also higher in animals with higher iBW (Fig. 2e), which could be explained by an
increased growth rate promoting deposition of COR in feathers (Jimeno et al., 2018).

PIT54 levels in plasma were also higher in line X at days 7 (p=0.0687) and 21 (p=0.001) than
in line Y (+35.5% and +25.4%, respectively) (Figure 2G, Table S7b) and for the whole
experiment (p=0.0354; +27.5%). Chicken haptoglobin-like protein (PIT54) is an acute phase
protein with an important inhibitory role in inflammation processes (Wicher and Fries, 2006),
which is rapidly increased in the blood as a response to infectious agents or physiological
stressors (O’reilly and Eckersall, 2014). PIT54 in the chicken plasma binds free haemoglobin
to inhibit haemoglobin-mediated oxidation of lipid and protein (Ahn et al., 2019).
Antinutritional effects of NSP are related to a reduction of BW and FCR, and can trigger a
mild chronic inflammation in the gut (Cardoso Dal Pont et al., 2020). Host gut inflammatory
response produces reactive oxygen species (ROS), which cause oxidative stress and have
the potential to damage host tissue (Costantini & Møller, 2009). The increased antioxidant
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activity through the high levels of PIT54 in line X could explain the better performance
compared with line Y through the amelioration of antinutritional effects of NSP.

The observed differences between broiler lines point to differences in systemic responses to
the pro-inflammatory diet, which probably yielded the BW and associated KPI differences
between the two genetic lines. The whole-genome analyses we will conduct in HoloFood will
enable deepening into these observations through unveiling genome-wide differences
between both lines. We will perform whole genome resequencing to generate single
nucleotide polymorphism (SNP) profiles of all individuals (R. Li et al., 2009). This will enable
testing whether both lines have genetic differences in key genes related to inflammatory
responses induced by a high dietary concentration of NSPs, as well as key metabolic
pathways such as steroid hormone biosynthesis (Kanehisa et al., 2021). In addition, we will
also generate de-novo reference genomes (Baker, 2012) and Hi-C maps (Lieberman-Aiden
et al., 2009) of both lines, to explore the effects of structural genome variants (e.g., copy
number variations (CNVs), translocations, inversions) in the performance differences
observed between both lines. Such chicken genomic data will be coupled with the
aforementioned microbial metagenomic information, which will allow exploring whether and
how host-microbiota interactions orchestrate different physiological responses to nutritional
stress in the two broiler lines, as previously reported in other taxa (Ma et al., 2019).

Effect of biological sex
Male chickens exhibited larger average BW than females at all time points, reaching a 8.7%
larger BW at day 35 (2157 and 1953 g, respectively (SE=13.8); Fig. 2b). The rest of
performance traits were also improved in males compared to females (ADG, ADFI, FCR, and
EPEF) (Tables S2). These differences are expected (Aviagen, 2019; Cobb-Vantress, 2018),
as growth patterns of male chickens outperform that of females (Aggrey, 2002; Hausman et
al., 2014; Livingston et al., 2020). However, unlike in previous studies (Carbajal et al., 2014),
males showed higher COR levels than females in the period 0-35 days (13.8 vs 11.7 pg/mg;
p<0.001; SE = 0.91;) and also at day 7 and at day 35 (p<0.001 and p=0.028, respectively)
(Fig. 2d, Table S6), supporting again that COR cannot directly be negatively associated with
welfare and performance of animals (Jimeno et al., 2018).

In the last period of the experiment (at day 35), the levels of C-Reactive protein (CRP) in
plasma were higher in females than males (1.31 vs 1.18 ng/mg; SE=0.08; p=0.045) (Fig. 2h,
Table S7b). CRP is an acute phase protein used as a highly sensitive marker of inflammation
and tissue damage (O’reilly & Eckersall, 2014). Some immune salivary markers including
CRP are influenced by biological sex in other production animals such as pigs (Gutiérrez et
al., 2018). However, the reasons behind biological sex differences for inflammatory markers
are still unknown.

In HoloFood we will aim at further understanding these differences in growth between both
sexes, as well as other questions mentioned above, by generating whole-genome
transcriptomic data (RNAseq) to identify gene expression differences in the intestinal tissues.
While intestinal expression of targeted genes is routinely measured in animal sciences
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(Farahat et al., 2021; Slawinska et al., 2019), how genome-wide gene expression varies
across sexes and intestinal sections is still largely unknown. As intestinal gene expression is
known to be modulated by the microbiota (Volf et al., 2017), and biological sex also
contributes to shaping microbial communities (Lee et al., 2017), we will aim at detecting
associations between host expression patterns and microbial communities to ascertain
host-microbiota interactions related to sex differences. For instance, we will analyse
expression of host genes involved in cholesterol (precursor of steroids, and thus related to
COR) absorption, such as NPC1L1 and ABCG5/ABCG8, which have been shown to be
modulated by the microbiota in rodents (Zhong et al., 2015). Sample collection in HoloFood
was extended to organs beyond the gastrointestinal tract, including liver and brain, which are
involved in appetite regulation and other processes related to the gut-brain axis (Cryan et al.,
2019). The analysis of gene expression in such organs along with gut processes, will enable
delving into the relationship between host genetics and microbiota factors with nutrient
metabolism in shaping feeding behaviour and related performance differences in broiler
chickens.

Effect of age and development
Animal development was linked to multiple changes in analysed metrics. For instance, COR
accumulation in feathers increased as animals grew (Table S6), mirroring previous
observations (Nordquist et al., 2020) (Fig. 2e). The levels of PIT54 and CRP in plasma
peaked at day 7, and decreased through time (Table S7b), exhibiting a trend that could be
linked to vaccination as well as to microbiota development (Figs. 2f-g). On the one hand,
vaccines are known to increase concentration of acute phase proteins and stress markers
during the first days after administration (Kaab et al., 2018), and all chickens in the
experiment were vaccinated against Avian Infectious Bronchitis and Gumboro diseases at
birth. On the other hand, early microbial colonisation of the intestine is also known to boost
the development of the immune system (Broom & Kogut, 2018) through, for example, the
production of the intestinal mucus layer (Duangnumsawang et al., 2021), which provides the
first protective shield preventing a direct access of pathogenic bacteria to the epithelial
surface.

HoloFood will also generate and analyse microbiota-wide gene expression in the chicken
intestine, as well as metabolites that play essential roles in the host-microbiota interplay,
such as SCFAs (van der Hee & Wells, 2021). Our study design, which entails euthanising
animals at each sampling point, prioritises spatial resolution of intestinal sections over
temporal development, which complicates tracking the temporal development of
individual animals. However, sampling at three different time points will provide an overview
of how much microbiota development varies across individuals (Ballou et al., 2016; Debray et
al., 2021; Jurburg et al., 2019; Sprockett et al., 2018). Shotgun metatranscriptomic data will
complement the metagenomic information, thus providing not only an overview of the relative
abundances of different bacterial taxa in different time points, but also displaying the gene
expression patterns of the bacteria. In addition, metabolomic data will enable validating
whether the activated metabolic pathways are translated into different levels of SCFA
concentrations. We will measure how the expression of microbial genes involved in
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carbohydrate metabolism and SCFA production vary across development, and how these
changes are associated with animal growth and changes observed in acute phase protein
levels.

Effect of zoonotic pathogens
Targeted detection of three common zoonotic pathogens, namely Salmonella, Clostridium
and Campylobacter spp. was performed to detect whether natural colonisation of the chicken
intestines occurred during the trials. Only one animal in trial A and another in trial B were
positive for Clostridium, being all the animals negative for Salmonella and Campylobacter.
However, in trial C, the analyses revealed that 13.7% of the sampled animals at day 7 were
positive for Salmonella, but the colonisation vanished as the animals grew. Moreover, 99% of
the birds sampled from day 21 onwards in trial C presented Campylobacter colonisation, with
no prevalence differences between dietary treatments. Campylobacter and Salmonella are
usually considered mere commensals in poultry, but they cause the highest numbers of
foodborne diseases in humans globally (European Food Safety Authority & European Centre
for Disease Prevention and Control, 2021). Recent studies have nevertheless shown that
Campylobacter colonisation in chickens can cause gut microbiota alterations and intestinal
damage that occasionally facilitates bacterial colonisation of extraintestinal organs, which
may eventually lead to a reduced animal performance and welfare (Awad et al., 2015, 2018).
In accordance with these observations, the detection of Campylobacter was correlated with a
drop in BW of the animals from day 21 onwards compared to the two previous trials (Fig. 2c).
In addition, a peak of CRP values in plasma was detected in Campylobacter colonised
animals at day 21 (Fig. 2i), most probably indicating a systemic reaction to colonisation (Liu
et al., 2019; Zhang et al., 2020). Other opportunistic pathogens from the Campylobacterales
order, such as Helicobacter brantae, which may be present along with Campylobacter but
undetected with targeted approaches, might likewise be involved in performance drop
(Kollarcikova et al., 2019).

The bacterial genome catalogue we will build in HoloFood will not only enable us to ascertain
whether the Campylobacter colonisation was due to a single or multiple strains (Chaloner et
al., 2014), but also to characterise the entire catalogues of genes of these strains and thus
identify potential virulence factors that could have triggered the inflammatory response. We
will also be able to ascertain whether the Campylobacter colonisation triggers any systemic
change in the microbiota and in the intestinal response of the animals, through combining
gene expression data of chickens and microorganisms as well as metabolomic information.
Campylobacter induces the expression of various host pro-inflammatory cytokines through
the activation of Toll-like receptor 4 (TLR4) and TLR21 signalling pathways (de Zoete et al.,
2010). Our analyses will enable measuring changes in the expression levels of genes
involved in these signalling pathways between Campylobacter positive and negative animals,
to deepen into the effect of Campylobacter in chicken welfare and performance.

Hierarchical variance decomposition of chicken body weight
Due to our interest in generating systemic characterisation of individual chickens, we
explored how the variance of iBW data for each combination of factors (i.e., treatment,
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biological sex and genetic line) was distributed across the three hierarchical levels of the
study: i) variation across the six animals sampled in each pen at each time point, ii) variation
between the two pen replicates within each experiment, and iii) variation among the three
experiments.

The average coefficient of variation for iBW of the six sampled animals within each pen was
11.08%, with maximum values reaching 22.5% (Table S12). At day 35, the average BW
difference between the largest and smallest animal sampled in each pen was over 31% of
the mean value. The mentioned variability was higher than previously reported (Lundberg et
al., 2021; Vasdal et al., 2019), although chicken BW variation can increase if animals are
subjected to challenging diets (Gous, 2018). The intrapen variability explained most (76.3%)
of the variance observed within combinations of factors (Figure 2J). However, its weight
respect to experiment factor decreased with the age of animals, probably due to augmenting
environmental effects and potentially microbiota development factors. Although the three
experiment replicates were identical, and abiotic conditions were controlled in the farm, these
were conducted in spring, summer, and autumn, which could have entailed slight differences
in the temperature and humidity of the barn.

The whole-genome analyses we will perform in HoloFood will enable ascertaining whether
the interindividual genetic variability could be related to the observed dispersion of the data.
Genotype-phenotype association studies in commercial chicken lines have identified several
important genomic regions that explain a percentage of the BW variation (Dadousis et al.,
2021; Tarsani et al., 2019; Wang et al., 2020). In addition, the variability in the intestinal
microbiota can intensify differences in performance between individuals from the same
population (Shah et al., 2019; Wen et al., 2021; Yan et al., 2017). Ultimately, we will aim at
identifying chicken genetic variants associated with microbiota changes with noteworthy
impact on performance. These chicken genomic and microbial metagenomic analyses will
enable ascertaining to which degree the observed intrapen and interexperiment variation can
be attributed to differences in the genetic features of chickens and microbial communities.

Discussion
The range of analytical approaches displayed in this article showcases the strength of
implementing new multi-omic approaches to address relevant questions for farming
practices. Many questions that would remain unanswered by employing traditional
techniques can now be addressed using these new technologies, and most importantly, new
questions that were not so far set out (e.g., the reasons for intra-pen variability) can be now
proposed. We believe that the hologenomic approach being implemented in HoloFood will
help us move from “Does factor X affect KPI Y?” to “How and why does factor X affect KPI
Y?”. That is to say, transitioning from a trial-and-error approach to a knowledge-based
strategy in which understanding biological processes that underlie the administration of
feeds, additives or drugs, as well as the observed interindividual variation, is prioritised. We
will address all the questions outlined in this article and more through the collaboration of
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multiple academic and industrial partners, aimed at pioneering the large-scale
implementation of hologenomics in animal farming (Fig. 3). Although HoloFood will generate
and analyse one of the largest multi-omic datasets in farm animals with characterisation of
hundreds of specimens, we acknowledge the mathematical challenges of analysing such a
complex and hyper- dimensional dataset. The dimensionality of the data will be reduced by
leveraging the hierarchical structure of biology itself (e.g., enzymes embedded within
metabolic pathways), as well as using the most advanced feature selection approaches to
identify the most relevant molecular elements. Ongoing data analyses, which will be
published in upcoming articles, will show us how far we can reach, what are the limitations of
this novel approach, and how the field can best advance to make the most of the new
technologies for a more secure, ethical and sustainable food production.

Figure 3. Overview of holo-omic analyses that will be conducted in the H2020 project
HoloFood to deepen into the results outlined in this manuscript and address the questions
raised and beyond.

Methods
Animal welfare
This experiment followed the EU principles for animal care and experimentation and
experimental procedures approved by Ethical Committees of IRTA and Generalitat de
Catalunya, Spain (Proceeding number 10226).

Animals and housing
The study consisted of three identical experiments. In each trial a total of 960 day-of-hatch
broiler chicks belonging to two fast growing genetic lines (Ross308® and Cobb500®) from
two hatcheries (to increase genetic variability) were allocated at 24 pens upon arrival. The
name of genetic lines has been blinded and each one is described along the manuscript
under the letter X or Y. In order to avoid the possible influence of the parent stock, birds were
distributed in such a way that each replicate received the same number of broilers from each
hatchery tray. Each pen had a total surface of 2.25 m2 with 40 birds per pen. Each pen was
provided with one individual hopper feeder and two nipple drinkers. The barn is windowless
and provided with automatic environment control with a gas heating system by screens and
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ventilation by depression. The room also has programmable lighting, provided by TL tubes
evenly distributed. The temperature program was adjusted according to the standard
program used in the farm: from 0 to 2 days the temperature increased from 32 to 34ºC; from
3 to 7 days the temperature was reduced to 29-31ºC and continued decreasing for 3ºC per
week afterwards until reaching 21ºC. The lighting program was 24 hours of light the first two
days, 18 hours of light until 7 days, and 14 hours of light per day afterwards. The litter was
fresh wood shavings. All birds were vaccinated against Avian Infectious Bronchitis and
Gumboro diseases according to the vaccination program usually practised at the hatchery.
Moreover, a set of 240 Cobb500 animals from one of the hatcheries in experiment 1 were
vaccinated against Marek disease.

The study had a randomised complete block design with a factorial 2 x 2 x 3 arrangement
according to broiler line (X or Y), sex (male or female) and dietary treatment (basal diet (BD),
probiotic (PR) or phytobiotic (PH)). The three trials were carried out in different seasons of
the year: spring (trial A), summer (trial B) and autumn (trial C). Treatments were randomly
assigned to one pen of each block (2 blocks per experiment), so that each treatment had 2
replicates (pens) with 40 animals per pen (20 animals from each origin). The six animals to
be slaughtered at days 7, 21, and 35 within each pen were randomly selected and marked at
day 0 to avoid observer biases in subsequent samplings.

Diets, additives and feeding
Aimed at maximising the effects of the feed additives, the basal diet (BD) was designed as a
pro-inflammatory diet, using wheat (more than 50% inclusion) and soybean meal as main
ingredients without the addition of enzymes, antibiotics, or coccidiostats. Diets were
formulated according to birds' requirements and commercial practices in three different
periods: starter (0-9 d), grower (10-23 d) and finisher (24-37 d). Feeds were presented in
crumble form for the starter period and in 3 mm pellets later on. Composition of diets and
estimated nutrient contents are presented in Table S1. The probiotic treatment (PR)
consisted of BD with a mixture of three strains, namely Bacillus subtilis DSM 32324, B.
subtilis DSM 32325 and B. amyloliquefaciens DSM 25840, which has been recently
authorised as a zootechnical product for poultry species (EFSA Panel on Additives and
Products or Substances used in Animal Feed (FEEDAP) et al., 2020). The phytobiotic
treatment (PH) consisted of BD with a phytobiotic additive obtained from white grapes and
containing procyanidins and polyphenols as active ingredients.

Batch feed samples were taken from each production for proximate analysis (AOAC, 2000,
moisture -dry matter- by oven drying –method 2-, nitrogen -crude protein- by combustion
-Dumas method-, ether extract on a Soxtec system -method 3B- and ash after muffle furnace
incineration -method 12) and to quantify concentrations of probiotic and phytobiotic additives.
Data of analytical composition of diets is shown in Table S1. In addition, water and litter
samples were collected in each pen at days 0, 7, 21, and 35 for microbiological and litter
quality analyses. Moreover, three samples of each feed per diet period were taken from three
different bags for microbiological assessment.
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Animal monitoring
Animals were counted and weighed by hatchery tray upon arrival and by replicate at days 7,
21, and 35. Growth performance was monitored to replicate the same days. Pen level
analyses included average body weight (BW), daily gain (ADG), daily feed intake (ADFI),
feed conversion ratio (FCR) and European production efficiency factor (EPEF). The
incidence and severity of footpad dermatitis per pen was subjectively evaluated by trained
personnel at days 7, 21 and 35 according the 5-point scale described by Butterworth
(Welfare Quality® Consortium, Lelystad, the Netherlands, 2009): 0) no evidence of footpad
dermatitis; 1 & 2) minimal evidence of footpad dermatitis; 3 & 4) evidence of footpad
dermatitis. Dead animals were weighted, and the most probable cause of death recorded.
Animals (laggards) excluded from the trial during the first week were not considered.

Animal sampling
At day 0, eight unused animals (leftovers) were euthanised and sampled. At days 7-8, 21-22
and 35-37 (multiple days were necessary due to workload), 6 animals per pen (144 animals
per experiment) were randomly selected, euthanised and sampled. Animals were euthanised
according to RD 53/2013 (Spain), following the ethical requirements established. After the
euthanasia, animals were individually weighed, and footpad dermatitis was assessed.
Sections of ileum and cecum, intestinal content from ileum and cecum, feathers, and blood
were obtained through the coordinated action of a group of 16-18 researchers. Different
aliquots were distributed and properly stored for downstream analyses. Liver, pancreas,
thymus, bursa of Fabricius, brain, and spleen samples were also obtained for future
analyses. From these animals, individual pathogen detection, corticosterone in feathers,
acute phase proteins and lipopolysaccharide concentration in plasma were measured.
Complete list of samples is displayed in Table 1.

In addition, at day 37 (commercial slaughtering age), 6 extra animals per pen were randomly
selected, euthanised and subjected to evaluation of meat quality traits (carcass, abdominal
fat, breast, and leg yield). The oxidative stability of the thigh muscle was determined from
randomly selected three animals over a period of 7 days.

Analytical procedures

Pathogen detection
Salmonella, Campylobacter and Clostridium spp. were detected from caecal content through
Real-time PCR. Salmonella spp. was detected using the primers
5’-GTGAAATTATCGCCACGTTCGGGCAA-3’ and 5’-TCATCGCACCGTCAAAGGAACC-3’,
which are specific for the InvA gene of Salmonella. For the detection of Clostridium
perfringens, the primers 5’-AAGATTTGTAAGGCGCTT-3’ and
5’-ATTTCCTGAAATCCACTC-3’ specific for alpha-toxin gene present in all strains of this
bacteria species were used. The presence of Campylobacter spp. was detected using the
primers 5’-TTGGAAACGACTGCTAATACTCTA-3’ and
5’-AGCCATTAGATTTCACAAGAGACT-3’, which amplify a specific segment of 16S ribosomal
RNA gene specific of Campylobacter spp.
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Corticosterone in feathers
Corticosterone (COR) was determined in accordance with the method described by Bortolotti
et al. (2008) (Bortolotti et al., 2008).

Acute phase proteins in plasma
Chicken haptoglobin-like protein (PIT54) was quantified using the haptoglobin ELISA Kit
(Ref. ABIN1563052, antibodies-online.com) and C-reactive protein (CRP) was measured
using the CRP ELISA Kit (Ref. ABIN4947413, antibodies-online.com) in accordance with
manufacturer instructions.

Lipopolysaccharide in plasma
Lipopolysaccharide concentration in plasma was determined using Pierce LAL Chromogenic
Endotoxin Quantification Kit (Ref. 88282; Thermofisher, USA) in accordance with
manufacturer instructions.

pH of litter
Three samples of 50 g of litter per pen were collected for pH determination at days 7, 21 and
35 avoiding the areas near and below the feeders and drinkers. The three samples collected
from the same pen and day were pooled and homogenised and the moisture was determined
in a sub-sample of 100 g according to the AOAC method (AOAC, 2000; method 925.09). For
pH analysis, a subsample of 10 g was placed in a beaker with 100 ml of distilled water,
shaked with a glass rod and allowed to stand for 30 minutes. The pH value was obtained
using a pH metre (Crison, L’Hospitalet de Llobregat, Spain).

Oxidative stability of meat
Samples (5 g of muscle from the thigh) were homogenised with an aqueous 7.5%
trichloroacetic acid solution, filtered and brought to 20 ml. To proceed, 5 ml of the extraction
solution and 5 ml of 0.02 M thiobarbituric acid were mixed and boiled for 15 minutes and then
cooled in cold water. Absorbance of the peak was measured at 525 nm as malondialdehyde
production in an ultraviolet-visible spectrophotometer (Shimadzu, Japan) using the third
derivative of the spectrum between 425 and 650 to correct the baseline. The
1,1,3,3-tetraethoxypropane was used as standard (Botsoglou et al., 1994; Ruiz et al., 1999).

Statistical analyses
Data was explored to discard any possible outlier according to the Kolmogorov-Smirnov test
(Massey, 1951). As no outliers were considered, the statistical analysis included all data. The
GLIMMIX procedure of SAS software (SAS/STAT 14.1; SAS Institute Inc., Cary, NC, USA)
was used to perform the analysis of the different variables. In the case of ELISA
determinations, when the limit of detection was not reached, the missing values were
replaced by the limit of detection (L)/√2 (Hornung & Reed, 1990). The statistical model used
is shown below:

yijklm = μ + Ti + Bk + Sl + Em + γj + eijklm
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Where yijklm is the response variable, Ti is the dietary treatment effect, Bk is the broiler line
effect, Sl is the biological sex effect, Em is the experiment effect, γj is the random block effect,
and eij is the error of the experimental unit. The experimental unit was the pen. Results in
Tables S1-12 are expressed as least square means ± standard error. Differences were
considered significant at P < 0.05, while those at P < 0.1 are reported as tendencies.

Hierarchical decomposition of the variance was carried out using ANOVA-estimation of
variance components as implemented in the fitVCA function of the R package VCA
(Schuetzenmeister et al., 2017), using individual iBW as response variable, and pen and
experiment as explanatory variables.

Acknowledgements
This research was funded by the European Union’s Horizon Research and Innovation
Programme under grant agreement No. 817729 (HoloFood, Holistic solution to improve
animal food production through deconstructing the biomolecular interactions between feed,
gut microorganisms and animals in relation to performance parameters). We would like to
thank the researchers, farm workers and volunteers who participated in the design,
maintenance and execution of the animal trials, as well as in the collection and processing of
the samples.

References
Aggrey, S. E. (2002). Comparison of three nonlinear and spline regression models for describing

chicken growth curves. Poultry Science, 81(12), 1782–1788.
https://doi.org/10.1093/ps/81.12.1782

Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., & Marchesano, K. (2019). Agriculture, climate
change and sustainability: The case of EU-28. Ecological Indicators, 105, 525–543.
https://doi.org/10.1016/j.ecolind.2018.04.064

Ahn, J., Woodfint, R. M., Lee, J., Wu, H., Ma, J., Suh, Y., Hwang, S., Cressman, M., & Lee, K. (2019).
Comparative identification, nutritional, and physiological regulation of chicken liver-enriched
genes. Poultry Science, 98(7), 3007–3013. https://doi.org/10.3382/ps/pez057

Alberdi, A., Andersen, S. B., Limborg, M. T., Dunn, R., & Gilbert, M. T. P. (2021). Disentangling
host-microbiota complexity through hologenomics. Nature Reviews. Genetics.

Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B., Tarkowska, A., Lawley, T. D., &
Finn, R. D. (2019). A new genomic blueprint of the human gut microbiota. Nature, 568(7753),
499–504. https://doi.org/10.1038/s41586-019-0965-1

Andersen, T. O., Kunath, B. J., Hagen, L. H., Arntzen, M. Ø., & Pope, P. B. (2021). Rumen
metaproteomics: Closer to linking rumen microbial function to animal productivity traits. Methods ,
186, 42–51. https://doi.org/10.1016/j.ymeth.2020.07.011

Ansari, I., Raddatz, G., Gutekunst, J., Ridnik, M., Cohen, D., Abu-Remaileh, M., Tuganbaev, T.,
Shapiro, H., Pikarsky, E., Elinav, E., Lyko, F., & Bergman, Y. (2020). The microbiota programs
DNA methylation to control intestinal homeostasis and inflammation. Nature Microbiology, 5(4),
610–619. https://doi.org/10.1038/s41564-019-0659-3

Aviagen. (2019). Ross 308: Performance Objectives.

60

https://paperpile.com/c/RAM9oy/8qAT0
http://paperpile.com/b/RAM9oy/TDxQW
http://paperpile.com/b/RAM9oy/TDxQW
http://paperpile.com/b/RAM9oy/TDxQW
http://dx.doi.org/10.1093/ps/81.12.1782
http://paperpile.com/b/RAM9oy/oBFbX
http://paperpile.com/b/RAM9oy/oBFbX
http://paperpile.com/b/RAM9oy/oBFbX
http://dx.doi.org/10.1016/j.ecolind.2018.04.064
http://paperpile.com/b/RAM9oy/s1GnJ
http://paperpile.com/b/RAM9oy/s1GnJ
http://paperpile.com/b/RAM9oy/s1GnJ
http://dx.doi.org/10.3382/ps/pez057
http://paperpile.com/b/RAM9oy/j3EUt
http://paperpile.com/b/RAM9oy/j3EUt
http://paperpile.com/b/RAM9oy/TMlvz
http://paperpile.com/b/RAM9oy/TMlvz
http://paperpile.com/b/RAM9oy/TMlvz
http://dx.doi.org/10.1038/s41586-019-0965-1
http://paperpile.com/b/RAM9oy/t78x
http://paperpile.com/b/RAM9oy/t78x
http://paperpile.com/b/RAM9oy/t78x
http://dx.doi.org/10.1016/j.ymeth.2020.07.011
http://paperpile.com/b/RAM9oy/kW0uS
http://paperpile.com/b/RAM9oy/kW0uS
http://paperpile.com/b/RAM9oy/kW0uS
http://paperpile.com/b/RAM9oy/kW0uS
http://dx.doi.org/10.1038/s41564-019-0659-3
http://paperpile.com/b/RAM9oy/xY5Ow


Awad, W. A., Hess, C., & Hess, M. (2018). Re-thinking the chicken-Campylobacter jejuni interaction: a
review. Avian Pathology: Journal of the W.V.P.A, 47(4), 352–363.
https://doi.org/10.1080/03079457.2018.1475724

Awad, W. A., Molnár, A., Aschenbach, J. R., Ghareeb, K., Khayal, B., Hess, C., Liebhart, D., Dublecz,
K., & Hess, M. (2015). Campylobacter infection in chickens modulates the intestinal epithelial
barrier function. Innate Immunity, 21(2), 151–160. https://doi.org/10.1177/1753425914521648

Baker, M. (2012). De novo genome assembly: what every biologist should know. Nature Methods,
9(4), 333–337. https://doi.org/10.1038/nmeth.1935

Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D.
(2016). Development of the Chick Microbiome: How Early Exposure Influences Future Microbial
Diversity. Frontiers in Veterinary Science, 3, 2. https://doi.org/10.3389/fvets.2016.00002

Bortolotti, G. R., Marchant, T. A., Blas, J., & German, T. (2008). Corticosterone in feathers is a
long-term, integrated measure of avian stress physiology. Functional Ecology, 22(3), 494–500.
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2435.2008.01387.x

Bortoluzzi, C., Serpa Vieira, B., de Paula Dorigam, J. C., Menconi, A., Sokale, A., Doranalli, K., &
Applegate, T. J. (2019). Bacillus subtilis DSM 32315 Supplementation Attenuates the Effects of
Clostridium perfringens Challenge on the Growth Performance and Intestinal Microbiota of Broiler
Chickens. Microorganisms, 7(3). https://doi.org/10.3390/microorganisms7030071

Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., &
Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring
Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and
Food Chemistry, 42(9), 1931–1937. https://doi.org/10.1021/jf00045a019

Broom, L. J., & Kogut, M. H. (2018). The role of the gut microbiome in shaping the immune system of
chickens. Veterinary Immunology and Immunopathology, 204, 44–51.
https://doi.org/10.1016/j.vetimm.2018.10.002

Carbajal, A., Tallo-Parra, O., Sabes-Alsina, M., Mular, I., & Lopez-Bejar, M. (2014). Feather
corticosterone evaluated by ELISA in broilers: a potential tool to evaluate broiler welfare. Poultry
Science, 93(11), 2884–2886. https://doi.org/10.3382/ps.2014-04092

Cardoso Dal Pont, G., Farnell, M., Farnell, Y., & Kogut, M. H. (2020). Dietary Factors as Triggers of
Low-Grade Chronic Intestinal Inflammation in Poultry. Microorganisms, 8(1).
https://doi.org/10.3390/microorganisms8010139

Chaloner, G., Wigley, P., & Humphrey, S. (2014). Dynamics of dual infection with Campylobacter jejuni
strains in chickens reveals distinct strain-to-strain variation in infection ecology. Applied and.
https://journals.asm.org/doi/abs/10.1128/AEM.01901-14

Chamorro, S., Romero, C., Brenes, A., Sánchez-Patán, F., Bartolomé, B., Viveros, A., & Arija, I.
(2019). Impact of a sustained consumption of grape extract on digestion, gut microbial
metabolism and intestinal barrier in broiler chickens. Food & Function, 10(3), 1444–1454.
https://doi.org/10.1039/c8fo02465k

Cobb-Vantress. (2018). Cobb 500: Broiler Performance & Nutrition Supplement.
Costantini, D., & Møller, A. P. (2009). Does immune response cause oxidative stress in birds? A

meta-analysis. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative
Physiology, 153(3), 339–344. https://doi.org/10.1016/j.cbpa.2009.03.010

Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M.,
Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M.,
Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas,
E., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiological Reviews, 99(4),
1877–2013. https://doi.org/10.1152/physrev.00018.2018

Dadousis, C., Somavilla, A., Ilska, J. J., Johnsson, M., Batista, L., Mellanby, R. J., Headon, D.,
Gottardo, P., Whalen, A., Wilson, D., Dunn, I. C., Gorjanc, G., Kranis, A., & Hickey, J. M. (2021). A
genome-wide association analysis for body weight at 35 days measured on 137,343 broiler
chickens. Genetics, Selection, Evolution: GSE, 53(1), 70.
https://doi.org/10.1186/s12711-021-00663-w

Debray, R., Herbert, R. A., Jaffe, A. L., Crits-Christoph, A., Power, M. E., & Koskella, B. (2021). Priority
effects in microbiome assembly. Nature Reviews. Microbiology.

61

http://paperpile.com/b/RAM9oy/l7soa
http://paperpile.com/b/RAM9oy/l7soa
http://paperpile.com/b/RAM9oy/l7soa
http://dx.doi.org/10.1080/03079457.2018.1475724
http://paperpile.com/b/RAM9oy/Kxke0
http://paperpile.com/b/RAM9oy/Kxke0
http://paperpile.com/b/RAM9oy/Kxke0
http://dx.doi.org/10.1177/1753425914521648
http://paperpile.com/b/RAM9oy/H3dzY
http://paperpile.com/b/RAM9oy/H3dzY
http://dx.doi.org/10.1038/nmeth.1935
http://paperpile.com/b/RAM9oy/uMl5Z
http://paperpile.com/b/RAM9oy/uMl5Z
http://paperpile.com/b/RAM9oy/uMl5Z
http://dx.doi.org/10.3389/fvets.2016.00002
http://paperpile.com/b/RAM9oy/rv6io
http://paperpile.com/b/RAM9oy/rv6io
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2435.2008.01387.x
http://paperpile.com/b/RAM9oy/5w1Jp
http://paperpile.com/b/RAM9oy/5w1Jp
http://paperpile.com/b/RAM9oy/5w1Jp
http://paperpile.com/b/RAM9oy/5w1Jp
http://dx.doi.org/10.3390/microorganisms7030071
http://paperpile.com/b/RAM9oy/dYnLI
http://paperpile.com/b/RAM9oy/dYnLI
http://paperpile.com/b/RAM9oy/dYnLI
http://paperpile.com/b/RAM9oy/dYnLI
http://dx.doi.org/10.1021/jf00045a019
http://paperpile.com/b/RAM9oy/cPVRy
http://paperpile.com/b/RAM9oy/cPVRy
http://paperpile.com/b/RAM9oy/cPVRy
http://dx.doi.org/10.1016/j.vetimm.2018.10.002
http://paperpile.com/b/RAM9oy/5b7qm
http://paperpile.com/b/RAM9oy/5b7qm
http://paperpile.com/b/RAM9oy/5b7qm
http://dx.doi.org/10.3382/ps.2014-04092
http://paperpile.com/b/RAM9oy/cPffW
http://paperpile.com/b/RAM9oy/cPffW
http://paperpile.com/b/RAM9oy/cPffW
http://dx.doi.org/10.3390/microorganisms8010139
http://paperpile.com/b/RAM9oy/bcuiK
http://paperpile.com/b/RAM9oy/bcuiK
https://journals.asm.org/doi/abs/10.1128/AEM.01901-14
http://paperpile.com/b/RAM9oy/svjOm
http://paperpile.com/b/RAM9oy/svjOm
http://paperpile.com/b/RAM9oy/svjOm
http://paperpile.com/b/RAM9oy/svjOm
http://dx.doi.org/10.1039/c8fo02465k
http://paperpile.com/b/RAM9oy/dPR4J
http://paperpile.com/b/RAM9oy/qy1H0
http://paperpile.com/b/RAM9oy/qy1H0
http://paperpile.com/b/RAM9oy/qy1H0
http://dx.doi.org/10.1016/j.cbpa.2009.03.010
http://paperpile.com/b/RAM9oy/5vgfF
http://paperpile.com/b/RAM9oy/5vgfF
http://paperpile.com/b/RAM9oy/5vgfF
http://paperpile.com/b/RAM9oy/5vgfF
http://paperpile.com/b/RAM9oy/5vgfF
http://dx.doi.org/10.1152/physrev.00018.2018
http://paperpile.com/b/RAM9oy/8fpmn
http://paperpile.com/b/RAM9oy/8fpmn
http://paperpile.com/b/RAM9oy/8fpmn
http://paperpile.com/b/RAM9oy/8fpmn
http://paperpile.com/b/RAM9oy/8fpmn
http://dx.doi.org/10.1186/s12711-021-00663-w
http://paperpile.com/b/RAM9oy/EqTRB
http://paperpile.com/b/RAM9oy/EqTRB


https://doi.org/10.1038/s41579-021-00604-w
de Zoete, M. R., Keestra, A. M., Roszczenko, P., & van Putten, J. P. M. (2010). Activation of human

and chicken toll-like receptors by Campylobacter spp. Infection and Immunity, 78(3), 1229–1238.
https://doi.org/10.1128/IAI.00897-09

Diaz Carrasco, J. M., Casanova, N. A., & Fernández Miyakawa, M. E. (2019). Microbiota, Gut Health
and Chicken Productivity: What Is the Connection? Microorganisms, 7(10).
https://doi.org/10.3390/microorganisms7100374

Duangnumsawang, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional
Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12, 3924.
https://doi.org/10.3389/fimmu.2021.745849

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis, V.,
Azimonti, G., de Lourdes Bastos, M., Christensen, H., Dusemund, B., Kouba, M., Kos Durjava,
M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos,
F., Sanz, Y., Villa, R. E., Woutersen, R., Cocconcelli, P. S., … Pettenati, E. (2020). Safety and
efficacy of GalliPro® Fit (Bacillus subtilis DSM 32324, Bacillus subtilis DSM 32325 and Bacillus
amyloliquefaciens DSM 25840) for all poultry species for fattening or reared for laying/breeding.
EFSA Journal, 18(4), e06094. https://doi.org/10.2903/j.efsa.2020.6094

European Food Safety Authority, & European Centre for Disease Prevention and Control. (2021). The
European union one health 2019 zoonoses report. EFSA Journal, 19(2), e06406.
https://doi.org/10.2903/j.efsa.2021.6406

Farahat, M., Ibrahim, D., Kishawy, A. T. Y., Abdallah, H. M., Hernandez-Santana, A., & Attia, G. (2021).
Effect of cereal type and plant extract addition on the growth performance, intestinal morphology,
caecal microflora, and gut barriers gene expression of broiler chickens. Animal: An International
Journal of Animal Bioscience, 15(3), 100056. https://doi.org/10.1016/j.animal.2020.100056

Fraune, S., & Bosch, T. C. G. (2010). Why bacteria matter in animal development and evolution.
BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 32(7),
571–580. https://doi.org/10.1002/bies.200900192

Gilroy, R., Ravi, A., Getino, M., Pursley, I., & Horton, D. L. (2021). Extensive microbial diversity within
the chicken gut microbiome revealed by metagenomics and culture. PeerJ.
https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8035907/

Glendinning, L., Stewart, R. D., Pallen, M. J., Watson, K. A., & Watson, M. (2020). Assembly of
hundreds of novel bacterial genomes from the chicken caecum. Genome Biology, 21(1), 34.
https://doi.org/10.1186/s13059-020-1947-1

Gong, K., Chen, L., Li, X., Sun, L., & Liu, K. (2018). Effects of germination combined with extrusion on
the nutritional composition, functional properties and polyphenol profile and related in vitro
hypoglycemic effect of whole grain corn. Journal of Cereal Science, 83, 1–8.
https://www.sciencedirect.com/science/article/pii/S0733521017309657?casa_token=n7UHKQcC
OCsAAAAA:RePWz1dmQN1L4A6-4ACPZYPo-v9sdtIqATfHPYnEq0vexeuPr4HakQOCmRDIJ-0A
ele9MANEHoc

Goodarzi Boroojeni, F., Vahjen, W., Männer, K., Blanch, A., Sandvang, D., & Zentek, J. (2018).
Bacillus subtilis in broiler diets with different levels of energy and protein. Poultry Science, 97(11),
3967–3976. https://doi.org/10.3382/ps/pey265

Gopi, M., Dutta, N., Pattanaik, A. K., Jadhav, S. E., Madhupriya, V., Tyagi, P. K., & Mohan, J. (2020).
Effect of polyphenol extract on performance, serum biochemistry, skin pigmentation and carcass
characteristics in broiler chickens fed with different cereal sources under hot-humid conditions.
Saudi Journal of Biological Sciences, 27(10), 2719–2726.
https://www.sciencedirect.com/science/article/pii/S1319562X20302618

Gous, R. M. (2018). Nutritional and environmental effects on broiler uniformity.World’s Poultry Science
Journal, 74(1), 21–34. https://doi.org/10.1017/S0043933917001039

Graw, S., Chappell, K., Washam, C. L., Gies, A., Bird, J., Robeson, M. S., 2nd, & Byrum, S. D. (2021).
Multi-omics data integration considerations and study design for biological systems and disease.
Molecular Omics, 17(2), 170–185. https://doi.org/10.1039/d0mo00041h

Gutiérrez, A. M., Montes, A., Gutiérrez-Panizo, C., Fuentes, P., & De La Cruz-Sánchez, E. (2018).
Gender influence on the salivary protein profile of finishing pigs. Journal of Proteomics, 178,
107–113. https://doi.org/10.1016/j.jprot.2017.11.023

62

http://paperpile.com/b/RAM9oy/EqTRB
http://dx.doi.org/10.1038/s41579-021-00604-w
http://paperpile.com/b/RAM9oy/YBymY
http://paperpile.com/b/RAM9oy/YBymY
http://paperpile.com/b/RAM9oy/YBymY
http://dx.doi.org/10.1128/IAI.00897-09
http://paperpile.com/b/RAM9oy/cLwXD
http://paperpile.com/b/RAM9oy/cLwXD
http://paperpile.com/b/RAM9oy/cLwXD
http://dx.doi.org/10.3390/microorganisms7100374
http://paperpile.com/b/RAM9oy/YzDtZ
http://paperpile.com/b/RAM9oy/YzDtZ
http://paperpile.com/b/RAM9oy/YzDtZ
http://dx.doi.org/10.3389/fimmu.2021.745849
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://paperpile.com/b/RAM9oy/4pZhp
http://dx.doi.org/10.2903/j.efsa.2020.6094
http://paperpile.com/b/RAM9oy/EApQm
http://paperpile.com/b/RAM9oy/EApQm
http://paperpile.com/b/RAM9oy/EApQm
http://dx.doi.org/10.2903/j.efsa.2021.6406
http://paperpile.com/b/RAM9oy/ge8Ac
http://paperpile.com/b/RAM9oy/ge8Ac
http://paperpile.com/b/RAM9oy/ge8Ac
http://paperpile.com/b/RAM9oy/ge8Ac
http://dx.doi.org/10.1016/j.animal.2020.100056
http://paperpile.com/b/RAM9oy/XAXI6
http://paperpile.com/b/RAM9oy/XAXI6
http://paperpile.com/b/RAM9oy/XAXI6
http://dx.doi.org/10.1002/bies.200900192
http://paperpile.com/b/RAM9oy/Ei9ep
http://paperpile.com/b/RAM9oy/Ei9ep
https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8035907/
http://paperpile.com/b/RAM9oy/ynmAZ
http://paperpile.com/b/RAM9oy/ynmAZ
http://paperpile.com/b/RAM9oy/ynmAZ
http://dx.doi.org/10.1186/s13059-020-1947-1
http://paperpile.com/b/RAM9oy/xwIH8
http://paperpile.com/b/RAM9oy/xwIH8
http://paperpile.com/b/RAM9oy/xwIH8
https://www.sciencedirect.com/science/article/pii/S0733521017309657?casa_token=n7UHKQcCOCsAAAAA:RePWz1dmQN1L4A6-4ACPZYPo-v9sdtIqATfHPYnEq0vexeuPr4HakQOCmRDIJ-0Aele9MANEHoc
https://www.sciencedirect.com/science/article/pii/S0733521017309657?casa_token=n7UHKQcCOCsAAAAA:RePWz1dmQN1L4A6-4ACPZYPo-v9sdtIqATfHPYnEq0vexeuPr4HakQOCmRDIJ-0Aele9MANEHoc
https://www.sciencedirect.com/science/article/pii/S0733521017309657?casa_token=n7UHKQcCOCsAAAAA:RePWz1dmQN1L4A6-4ACPZYPo-v9sdtIqATfHPYnEq0vexeuPr4HakQOCmRDIJ-0Aele9MANEHoc
http://paperpile.com/b/RAM9oy/h1bTx
http://paperpile.com/b/RAM9oy/h1bTx
http://paperpile.com/b/RAM9oy/h1bTx
http://dx.doi.org/10.3382/ps/pey265
http://paperpile.com/b/RAM9oy/eEbQ3
http://paperpile.com/b/RAM9oy/eEbQ3
http://paperpile.com/b/RAM9oy/eEbQ3
http://paperpile.com/b/RAM9oy/eEbQ3
https://www.sciencedirect.com/science/article/pii/S1319562X20302618
http://paperpile.com/b/RAM9oy/nL7k5
http://paperpile.com/b/RAM9oy/nL7k5
http://dx.doi.org/10.1017/S0043933917001039
http://paperpile.com/b/RAM9oy/Wmn84
http://paperpile.com/b/RAM9oy/Wmn84
http://paperpile.com/b/RAM9oy/Wmn84
http://dx.doi.org/10.1039/d0mo00041h
http://paperpile.com/b/RAM9oy/omcSN
http://paperpile.com/b/RAM9oy/omcSN
http://paperpile.com/b/RAM9oy/omcSN
http://dx.doi.org/10.1016/j.jprot.2017.11.023


Hausman, G. J., Barb, C. R., Fairchild, B. D., Gamble, J., & Lee-Rutherford, L. (2014). Gene
expression profiling in adipose tissue from growing broiler chickens. Adipocyte, 3(4), 297–303.
https://doi.org/10.4161/adip.29252

HoloFood Consortium. (2019, January 1). Holistic solution to improve animal food production through
deconstructing the biomolecular interactions between feed, gut microorganisms and animals in
relation to performance parameters. CORDIS. https://cordis.europa.eu/project/id/817729

Hornung, R. W., & Reed, L. D. (1990). Estimation of Average Concentration in the Presence of
Nondetectable Values. Applied Occupational and Environmental Hygiene, 5(1), 46–51.
https://doi.org/10.1080/1047322X.1990.10389587

Iqbal, J., Mukhtar, N., Rehman, Z. U., Khan, S. H., Ahmad, T., Anjum, M. S., Pasha, R. H., & Umar, S.
(2017). Effects of egg weight on the egg quality, chick quality, and broiler performance at the later
stages of production (week 60) in broiler breeders. The Journal of Applied Poultry Research,
26(2), 183–191. https://doi.org/10.3382/japr/pfw061

Jimeno, B., Hau, M., & Verhulst, S. (2018). Corticosterone levels reflect variation in metabolic rate,
independent of “stress.” Scientific Reports, 8(1), 13020.
https://doi.org/10.1038/s41598-018-31258-z

Johnson, K. V.-A., & Foster, K. R. (2018). Why does the microbiome affect behaviour? Nature
Reviews. Microbiology, 16(10), 647–655. https://doi.org/10.1038/s41579-018-0014-3

Jurburg, S. D., Brouwer, M. S. M., Ceccarelli, D., van der Goot, J., Jansman, A. J. M., & Bossers, A.
(2019). Patterns of community assembly in the developing chicken microbiome reveal rapid
primary succession. MicrobiologyOpen, 8(9), e00821. https://doi.org/10.1002/mbo3.821

Kaab, H., Bain, M. M., & Eckersall, P. D. (2018). Acute phase proteins and stress markers in the
immediate response to a combined vaccination against Newcastle disease and infectious
bronchitis viruses in specific pathogen free (SPF) layer chicks. Poultry Science, 97(2), 463–469.
https://www.sciencedirect.com/science/article/pii/S003257911930896X

Kanehisa, M., Sato, Y., & Kawashima, M. (2021). KEGG mapping tools for uncovering hidden features
in biological data. Protein Science: A Publication of the Protein Society.
https://doi.org/10.1002/pro.4172

Khan, A. A., Yurkovetskiy, L., O’Grady, K., Pickard, J. M., de Pooter, R., Antonopoulos, D. A.,
Golovkina, T., & Chervonsky, A. (2019). Polymorphic Immune Mechanisms Regulate Commensal
Repertoire. Cell Reports, 29(3), 541–550.e4. https://doi.org/10.1016/j.celrep.2019.09.010

Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I.
(2019). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in
chicken ileal and cecal microbiota. Poultry Science, 98(6), 2347–2353.
https://doi.org/10.3382/ps/pey594

Lee, K.-C., Kil, D. Y., & Sul, W. J. (2017). Cecal microbiome divergence of broiler chickens by sex and
body weight. Journal of Microbiology , 55(12), 939–945.
https://doi.org/10.1007/s12275-017-7202-0

Li, C.-L., Wang, J., Zhang, H.-J., Wu, S.-G., Hui, Q.-R., Yang, C.-B., Fang, R.-J., & Qi, G.-H. (2018).
Intestinal Morphologic and Microbiota Responses to Dietary Bacillus spp. in a Broiler Chicken
Model. Frontiers in Physiology, 9, 1968. https://doi.org/10.3389/fphys.2018.01968

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I.,
Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A.,
Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., & Dekker, J. (2009).
Comprehensive mapping of long-range interactions reveals folding principles of the human
genome. Science, 326(5950), 289–293. https://doi.org/10.1126/science.1181369

Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., & Wang, J. (2009). SNP detection for
massively parallel whole-genome resequencing. Genome Research, 19(6), 1124–1132.
https://doi.org/10.1101/gr.088013.108

Liu, J., Gu, Z., Song, F., Zhang, H., Zhao, J., & Chen, W. (2019). Lactobacillus plantarum ZS2058 and
Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo.
Frontiers in Microbiology, 10, 299. https://doi.org/10.3389/fmicb.2019.00299

Livingston, M. L., Cowieson, A. J., Crespo, R., Hoang, V., Nogal, B., Browning, M., & Livingston, K. A.
(2020). Effect of broiler genetics, age, and gender on performance and blood chemistry. Heliyon,

63

http://paperpile.com/b/RAM9oy/FXmUN
http://paperpile.com/b/RAM9oy/FXmUN
http://paperpile.com/b/RAM9oy/FXmUN
http://dx.doi.org/10.4161/adip.29252
http://paperpile.com/b/RAM9oy/jDIUN
http://paperpile.com/b/RAM9oy/jDIUN
http://paperpile.com/b/RAM9oy/jDIUN
https://cordis.europa.eu/project/id/817729
http://paperpile.com/b/RAM9oy/u3ygQ
http://paperpile.com/b/RAM9oy/u3ygQ
http://paperpile.com/b/RAM9oy/u3ygQ
http://dx.doi.org/10.1080/1047322X.1990.10389587
http://paperpile.com/b/RAM9oy/wTaSX
http://paperpile.com/b/RAM9oy/wTaSX
http://paperpile.com/b/RAM9oy/wTaSX
http://paperpile.com/b/RAM9oy/wTaSX
http://dx.doi.org/10.3382/japr/pfw061
http://paperpile.com/b/RAM9oy/YJkvw
http://paperpile.com/b/RAM9oy/YJkvw
http://paperpile.com/b/RAM9oy/YJkvw
http://dx.doi.org/10.1038/s41598-018-31258-z
http://paperpile.com/b/RAM9oy/0uwaL
http://paperpile.com/b/RAM9oy/0uwaL
http://dx.doi.org/10.1038/s41579-018-0014-3
http://paperpile.com/b/RAM9oy/0cypS
http://paperpile.com/b/RAM9oy/0cypS
http://paperpile.com/b/RAM9oy/0cypS
http://dx.doi.org/10.1002/mbo3.821
http://paperpile.com/b/RAM9oy/dJwdF
http://paperpile.com/b/RAM9oy/dJwdF
http://paperpile.com/b/RAM9oy/dJwdF
https://www.sciencedirect.com/science/article/pii/S003257911930896X
http://paperpile.com/b/RAM9oy/HRrJ4
http://paperpile.com/b/RAM9oy/HRrJ4
http://paperpile.com/b/RAM9oy/HRrJ4
http://dx.doi.org/10.1002/pro.4172
http://paperpile.com/b/RAM9oy/XgLNa
http://paperpile.com/b/RAM9oy/XgLNa
http://paperpile.com/b/RAM9oy/XgLNa
http://dx.doi.org/10.1016/j.celrep.2019.09.010
http://paperpile.com/b/RAM9oy/guM4Q
http://paperpile.com/b/RAM9oy/guM4Q
http://paperpile.com/b/RAM9oy/guM4Q
http://paperpile.com/b/RAM9oy/guM4Q
http://dx.doi.org/10.3382/ps/pey594
http://paperpile.com/b/RAM9oy/cstTB
http://paperpile.com/b/RAM9oy/cstTB
http://paperpile.com/b/RAM9oy/cstTB
http://dx.doi.org/10.1007/s12275-017-7202-0
http://paperpile.com/b/RAM9oy/f7bI9
http://paperpile.com/b/RAM9oy/f7bI9
http://paperpile.com/b/RAM9oy/f7bI9
http://dx.doi.org/10.3389/fphys.2018.01968
http://paperpile.com/b/RAM9oy/IaDgr
http://paperpile.com/b/RAM9oy/IaDgr
http://paperpile.com/b/RAM9oy/IaDgr
http://paperpile.com/b/RAM9oy/IaDgr
http://paperpile.com/b/RAM9oy/IaDgr
http://dx.doi.org/10.1126/science.1181369
http://paperpile.com/b/RAM9oy/GpsuQ
http://paperpile.com/b/RAM9oy/GpsuQ
http://paperpile.com/b/RAM9oy/GpsuQ
http://dx.doi.org/10.1101/gr.088013.108
http://paperpile.com/b/RAM9oy/omhlu
http://paperpile.com/b/RAM9oy/omhlu
http://paperpile.com/b/RAM9oy/omhlu
http://dx.doi.org/10.3389/fmicb.2019.00299
http://paperpile.com/b/RAM9oy/l7eMK
http://paperpile.com/b/RAM9oy/l7eMK


6(7), e04400. https://doi.org/10.1016/j.heliyon.2020.e04400
Lundberg, R., Scharch, C., & Sandvang, D. (2021). The link between broiler flock heterogeneity and

cecal microbiome composition. Animal Microbiome, 3(1), 54.
https://doi.org/10.1186/s42523-021-00110-7

Ma, D., Bou-Sleiman, M., Joncour, P., Indelicato, C.-E., Frochaux, M., Braman, V., Litovchenko, M.,
Storelli, G., Deplancke, B., & Leulier, F. (2019). Commensal Gut Bacteria Buffer the Impact of
Host Genetic Variants on Drosophila Developmental Traits under Nutritional Stress. iScience, 19,
436–447. https://doi.org/10.1016/j.isci.2019.07.048

Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American
Statistical Association, 46(253), 68–78. https://doi.org/10.1080/01621459.1951.10500769

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E.,
Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A.
H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., … Wernegreen, J. J.
(2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the
National Academy of Sciences of the United States of America, 110(9), 3229–3236.
https://doi.org/10.1073/pnas.1218525110

Messerli, P., Murniningtyas, E., Eloundou-Enyegue, P., Foli, E. G., Furman, E., Glassman, A.,
Hernández Licona, G., Kim, E. M., Lutz, W., Moatti, J.-P., & Others. (2019). Global sustainable
development report 2019: the future is now--science for achieving sustainable development.
http://pure.iiasa.ac.at/id/eprint/16067/1/24797GSDR_report_2019.pdf

Michalak, L., Gaby, J. C., Lagos, L., La Rosa, S. L., Hvidsten, T. R., Tétard-Jones, C., Willats, W. G. T.,
Terrapon, N., Lombard, V., Henrissat, B., Dröge, J., Arntzen, M. Ø., Hagen, L. H., Øverland, M.,
Pope, P. B., & Westereng, B. (2020). Microbiota-directed fibre activates both targeted and
secondary metabolic shifts in the distal gut. Nature Communications, 11(1), 5773.
https://doi.org/10.1038/s41467-020-19585-0

Mohd Shaufi, M. A., Sieo, C. C., Chong, C. W., Gan, H. M., & Ho, Y. W. (2015). Deciphering chicken
gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut
Pathogens, 7, 4. https://doi.org/10.1186/s13099-015-0051-7

Molnár, A. K., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G., & Szabó, Z. (2011). Effect of
different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora
and immune response of broiler chickens. British Poultry Science, 52(6), 658–665.
https://doi.org/10.1080/00071668.2011.636029

Nordquist, R. E., Zeinstra, E. C., Dougherty, A., & Riber, A. B. (2020). Effects of Dark Brooder Rearing
and Age on Hypothalamic Vasotocin and Feather Corticosterone Levels in Laying Hens. Frontiers
in Veterinary Science, 7, 19. https://doi.org/10.3389/fvets.2020.00019

Nyholm, L., Koziol, A., Marcos, S., Botnen, A. B., Aizpurua, O., Gopalakrishnan, S., Limborg, M. T.,
Gilbert, M. T. P., & Alberdi, A. (2020). Holo-Omics: Integrated Host-Microbiota Multi-omics for
Basic and Applied Biological Research. iScience, 23(8), 101414.
https://doi.org/10.1016/j.isci.2020.101414

Ocejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization of
caecal microbiome composition of broilers and free-range slow-growing chickens throughout their
productive lifespan. Scientific Reports, 9(1), 2506. https://doi.org/10.1038/s41598-019-39323-x

O’reilly, E. L., & Eckersall, P. D. (2014). Acute phase proteins: a review of their function, behaviour and
measurement in chickens. World’s Poultry Science Journal, 70(1), 27–44.
https://doi.org/10.1017/S0043933914000038

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A.,
Ghensi, P., Collado, M. C., Rice, B. L., DuLong, C., Morgan, X. C., Golden, C. D., Quince, C.,
Huttenhower, C., & Segata, N. (2019). Extensive Unexplored Human Microbiome Diversity
Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and
Lifestyle. Cell, 176(3), 649–662.e20. https://doi.org/10.1016/j.cell.2019.01.001

Raza, A., Bashir, S., & Tabassum, R. (2019). An update on carbohydrases: growth performance and
intestinal health of poultry. Heliyon, 5(4), e01437. https://doi.org/10.1016/j.heliyon.2019.e01437

Reid, W. V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y. T., Mokhele, K., Ostrom, E., Raivio, K.,
Rockström, J., Schellnhuber, H. J., & Whyte, A. (2010). Earth System Science for Global
Sustainability: Grand Challenges. Science.

64

http://paperpile.com/b/RAM9oy/l7eMK
http://dx.doi.org/10.1016/j.heliyon.2020.e04400
http://paperpile.com/b/RAM9oy/JHUXL
http://paperpile.com/b/RAM9oy/JHUXL
http://paperpile.com/b/RAM9oy/JHUXL
http://dx.doi.org/10.1186/s42523-021-00110-7
http://paperpile.com/b/RAM9oy/1MmTG
http://paperpile.com/b/RAM9oy/1MmTG
http://paperpile.com/b/RAM9oy/1MmTG
http://paperpile.com/b/RAM9oy/1MmTG
http://dx.doi.org/10.1016/j.isci.2019.07.048
http://paperpile.com/b/RAM9oy/uhQpC
http://paperpile.com/b/RAM9oy/uhQpC
http://dx.doi.org/10.1080/01621459.1951.10500769
http://paperpile.com/b/RAM9oy/WlNb1
http://paperpile.com/b/RAM9oy/WlNb1
http://paperpile.com/b/RAM9oy/WlNb1
http://paperpile.com/b/RAM9oy/WlNb1
http://paperpile.com/b/RAM9oy/WlNb1
http://paperpile.com/b/RAM9oy/WlNb1
http://dx.doi.org/10.1073/pnas.1218525110
http://paperpile.com/b/RAM9oy/0mSw3
http://paperpile.com/b/RAM9oy/0mSw3
http://paperpile.com/b/RAM9oy/0mSw3
http://pure.iiasa.ac.at/id/eprint/16067/1/24797GSDR_report_2019.pdf
http://paperpile.com/b/RAM9oy/aat0
http://paperpile.com/b/RAM9oy/aat0
http://paperpile.com/b/RAM9oy/aat0
http://paperpile.com/b/RAM9oy/aat0
http://paperpile.com/b/RAM9oy/aat0
http://dx.doi.org/10.1038/s41467-020-19585-0
http://paperpile.com/b/RAM9oy/9hznX
http://paperpile.com/b/RAM9oy/9hznX
http://paperpile.com/b/RAM9oy/9hznX
http://dx.doi.org/10.1186/s13099-015-0051-7
http://paperpile.com/b/RAM9oy/78qJV
http://paperpile.com/b/RAM9oy/78qJV
http://paperpile.com/b/RAM9oy/78qJV
http://paperpile.com/b/RAM9oy/78qJV
http://dx.doi.org/10.1080/00071668.2011.636029
http://paperpile.com/b/RAM9oy/qWRS7
http://paperpile.com/b/RAM9oy/qWRS7
http://paperpile.com/b/RAM9oy/qWRS7
http://dx.doi.org/10.3389/fvets.2020.00019
http://paperpile.com/b/RAM9oy/5uJNT
http://paperpile.com/b/RAM9oy/5uJNT
http://paperpile.com/b/RAM9oy/5uJNT
http://paperpile.com/b/RAM9oy/5uJNT
http://dx.doi.org/10.1016/j.isci.2020.101414
http://paperpile.com/b/RAM9oy/d6Uy4
http://paperpile.com/b/RAM9oy/d6Uy4
http://paperpile.com/b/RAM9oy/d6Uy4
http://dx.doi.org/10.1038/s41598-019-39323-x
http://paperpile.com/b/RAM9oy/CJc6j
http://paperpile.com/b/RAM9oy/CJc6j
http://paperpile.com/b/RAM9oy/CJc6j
http://dx.doi.org/10.1017/S0043933914000038
http://paperpile.com/b/RAM9oy/IkJzu
http://paperpile.com/b/RAM9oy/IkJzu
http://paperpile.com/b/RAM9oy/IkJzu
http://paperpile.com/b/RAM9oy/IkJzu
http://paperpile.com/b/RAM9oy/IkJzu
http://dx.doi.org/10.1016/j.cell.2019.01.001
http://paperpile.com/b/RAM9oy/GARww
http://paperpile.com/b/RAM9oy/GARww
http://dx.doi.org/10.1016/j.heliyon.2019.e01437
http://paperpile.com/b/RAM9oy/Zh7vy
http://paperpile.com/b/RAM9oy/Zh7vy
http://paperpile.com/b/RAM9oy/Zh7vy


https://science.sciencemag.org/content/330/6006/916.summary
Ruiz, J. A., Pérez-Vendrell, A. M., & Esteve-García, E. (1999). Effect of β-Carotene and Vitamin E on

Oxidative Stability in Leg Meat of Broilers Fed Different Supplemental Fats. Journal of Agricultural
and Food Chemistry, 47(2), 448–454. https://doi.org/10.1021/jf980825g

Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil
to lymphocyte ratio. Poultry Science, 95(9), 2208–2215. https://doi.org/10.3382/ps/pew137

Schuetzenmeister, A., Dufey, F., Schuetzenmeister, M. A., & Suggests, V. F. P. (2017). Package
“VCA.” R Package, 1–112.
https://cran.microsoft.com/snapshot/2018-07-03/web/packages/VCA/VCA.pdf

Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La Rosa, S. L., Solden, L. M., Liu, P.,
Narrowe, A. B., Rodríguez-Ramos, J., Bolduc, B., Gazitúa, M. C., Daly, R. A., Smith, G. J., Vik, D.
R., Pope, P. B., Sullivan, M. B., Roux, S., & Wrighton, K. C. (2020). DRAM for distilling microbial
metabolism to automate the curation of microbiome function. Nucleic Acids Research, 48(16),
8883–8900. https://doi.org/10.1093/nar/gkaa621

Shah, T. M., Patel, J. G., Gohil, T. P., Blake, D. P., & Joshi, C. G. (2019). Host transcriptome and
microbiome interaction modulates physiology of full-sibs broilers with divergent feed conversion
ratio. NPJ Biofilms and Microbiomes, 5, 24. https://doi.org/10.1038/s41522-019-0096-3

Slawinska, A., Dunislawska, A., Plowiec, A., & Radomska, M. (2019). Modulation of microbial
communities and mucosal gene expression in chicken intestines after galactooligosaccharides
delivery In Ovo. PLoS. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212318

Sprockett, D., Fukami, T., & Relman, D. A. (2018). Role of priority effects in the early-life assembly of
the gut microbiota. Nature Reviews. Gastroenterology & Hepatology, 15(4), 197–205.
https://doi.org/10.1038/nrgastro.2017.173

Tarradas, J., Tous, N., Esteve-Garcia, E., & Brufau, A. J. (2020). The Control of Intestinal
Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic
Growth Promoters in Poultry. Microorganisms, 8(2).
https://doi.org/10.3390/microorganisms8020148

Tarsani, E., Kranis, A., Maniatis, G., Avendano, S., Hager-Theodorides, A. L., & Kominakis, A. (2019).
Discovery and characterization of functional modules associated with body weight in broilers.
Scientific Reports, 9(1), 9125. https://doi.org/10.1038/s41598-019-45520-5

van der Hee, B., & Wells, J. M. (2021). Microbial Regulation of Host Physiology by Short-chain Fatty
Acids. Trends in Microbiology, 0(0). https://doi.org/10.1016/j.tim.2021.02.001

Vasdal, G., Granquist, E. G., Skjerve, E., de Jong, I. C., Berg, C., Michel, V., & Moe, R. O. (2019).
Associations between carcass weight uniformity and production measures on farm and at
slaughter in commercial broiler flocks. Poultry Science, 98(10), 4261–4268.
https://doi.org/10.3382/ps/pez252

Vilà, B., Esteve-Garcia, E., & Brufau, J. (2010). Probiotic micro-organisms: 100 years of innovation
and efficacy; modes of action. World’s Poultry Science Journal, 66(3), 369–380.
https://doi.org/10.1017/S0043933910000474

Volf, J., Polansky, O., Sekelova, Z., Velge, P., Schouler, C., Kaspers, B., & Rychlik, I. (2017). Gene
expression in the chicken caecum is dependent on microbiota composition. Veterinary Research,
48(1), 85. https://doi.org/10.1186/s13567-017-0493-7

Wang, Y., Cao, X., Luo, C., Sheng, Z., Zhang, C., Bian, C., Feng, C., Li, J., Gao, F., Zhao, Y., Jiang, Z.,
Qu, H., Shu, D., Carlborg, Ö., Hu, X., & Li, N. (2020). Multiple ancestral haplotypes harboring
regulatory mutations cumulatively contribute to a QTL affecting chicken growth traits.
Communications Biology, 3(1), 472. https://doi.org/10.1038/s42003-020-01199-3

Wen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the
gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 126.
https://doi.org/10.1186/s40168-021-01040-x

Whelan, R. A., Doranalli, K., Rinttilä, T., Vienola, K., Jurgens, G., & Apajalahti, J. (2019). The impact of
Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler
chickens in a necrotic enteritis challenge. Poultry Science, 98(9), 3450–3463.
https://doi.org/10.3382/ps/pey500

Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome

65

https://science.sciencemag.org/content/330/6006/916.summary
http://paperpile.com/b/RAM9oy/3Q6We
http://paperpile.com/b/RAM9oy/3Q6We
http://paperpile.com/b/RAM9oy/3Q6We
http://dx.doi.org/10.1021/jf980825g
http://paperpile.com/b/RAM9oy/rr1Gv
http://paperpile.com/b/RAM9oy/rr1Gv
http://dx.doi.org/10.3382/ps/pew137
http://paperpile.com/b/RAM9oy/8qAT0
http://paperpile.com/b/RAM9oy/8qAT0
https://cran.microsoft.com/snapshot/2018-07-03/web/packages/VCA/VCA.pdf
http://paperpile.com/b/RAM9oy/jGoZ3
http://paperpile.com/b/RAM9oy/jGoZ3
http://paperpile.com/b/RAM9oy/jGoZ3
http://paperpile.com/b/RAM9oy/jGoZ3
http://paperpile.com/b/RAM9oy/jGoZ3
http://dx.doi.org/10.1093/nar/gkaa621
http://paperpile.com/b/RAM9oy/zQjjz
http://paperpile.com/b/RAM9oy/zQjjz
http://paperpile.com/b/RAM9oy/zQjjz
http://dx.doi.org/10.1038/s41522-019-0096-3
http://paperpile.com/b/RAM9oy/LQSHZ
http://paperpile.com/b/RAM9oy/LQSHZ
http://paperpile.com/b/RAM9oy/LQSHZ
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212318
http://paperpile.com/b/RAM9oy/4humx
http://paperpile.com/b/RAM9oy/4humx
http://paperpile.com/b/RAM9oy/4humx
http://dx.doi.org/10.1038/nrgastro.2017.173
http://paperpile.com/b/RAM9oy/uCQCs
http://paperpile.com/b/RAM9oy/uCQCs
http://paperpile.com/b/RAM9oy/uCQCs
http://paperpile.com/b/RAM9oy/uCQCs
http://dx.doi.org/10.3390/microorganisms8020148
http://paperpile.com/b/RAM9oy/4AHJ8
http://paperpile.com/b/RAM9oy/4AHJ8
http://paperpile.com/b/RAM9oy/4AHJ8
http://dx.doi.org/10.1038/s41598-019-45520-5
http://paperpile.com/b/RAM9oy/Xodye
http://paperpile.com/b/RAM9oy/Xodye
http://dx.doi.org/10.1016/j.tim.2021.02.001
http://paperpile.com/b/RAM9oy/pyNLK
http://paperpile.com/b/RAM9oy/pyNLK
http://paperpile.com/b/RAM9oy/pyNLK
http://paperpile.com/b/RAM9oy/pyNLK
http://dx.doi.org/10.3382/ps/pez252
http://paperpile.com/b/RAM9oy/jgjYR
http://paperpile.com/b/RAM9oy/jgjYR
http://paperpile.com/b/RAM9oy/jgjYR
http://dx.doi.org/10.1017/S0043933910000474
http://paperpile.com/b/RAM9oy/Vgo7F
http://paperpile.com/b/RAM9oy/Vgo7F
http://paperpile.com/b/RAM9oy/Vgo7F
http://dx.doi.org/10.1186/s13567-017-0493-7
http://paperpile.com/b/RAM9oy/zE1wJ
http://paperpile.com/b/RAM9oy/zE1wJ
http://paperpile.com/b/RAM9oy/zE1wJ
http://paperpile.com/b/RAM9oy/zE1wJ
http://dx.doi.org/10.1038/s42003-020-01199-3
http://paperpile.com/b/RAM9oy/RcBoA
http://paperpile.com/b/RAM9oy/RcBoA
http://paperpile.com/b/RAM9oy/RcBoA
http://dx.doi.org/10.1186/s40168-021-01040-x
http://paperpile.com/b/RAM9oy/eawWY
http://paperpile.com/b/RAM9oy/eawWY
http://paperpile.com/b/RAM9oy/eawWY
http://paperpile.com/b/RAM9oy/eawWY
http://dx.doi.org/10.3382/ps/pey500
http://paperpile.com/b/RAM9oy/8kLBo


assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6),
e1005595. https://doi.org/10.1371/journal.pcbi.1005595

Yan, W., Sun, C., Yuan, J., & Yang, N. (2017). Gut metagenomic analysis reveals prominent roles of
Lactobacillus and cecal microbiota in chicken feed efficiency. Scientific Reports, 7, 45308.
https://doi.org/10.1038/srep45308

Zhang, B., Li, G., Shahid, M. S., Gan, L., Fan, H., Lv, Z., Yan, S., & Guo, Y. (2020). Dietary l-arginine
supplementation ameliorates inflammatory response and alters gut microbiota composition in
broiler chickens infected with Salmonella enterica serovar Typhimurium. Poultry Science, 99(4),
1862–1874. https://doi.org/10.1016/j.psj.2019.10.049

Zhong, C.-Y., Sun, W.-W., Ma, Y., Zhu, H., Yang, P., Wei, H., Zeng, B.-H., Zhang, Q., Liu, Y., Li, W.-X.,
Chen, Y., Yu, L., & Song, Z.-Y. (2015). Microbiota prevents cholesterol loss from the body by
regulating host gene expression in mice. Scientific Reports, 5, 10512.
https://doi.org/10.1038/srep10512

Zhou, Y., Zhang, M., Liu, Q., & Feng, J. (2021). The alterations of tracheal microbiota and
inflammation caused by different levels of ammonia exposure in broiler chickens. Poultry Science,
100(2), 685–696. https://doi.org/10.1016/j.psj.2020.11.026

Supplementary material

Tables from supplementary material can be found in Annex 4.

66

http://paperpile.com/b/RAM9oy/8kLBo
http://paperpile.com/b/RAM9oy/8kLBo
http://dx.doi.org/10.1371/journal.pcbi.1005595
http://paperpile.com/b/RAM9oy/K0OTP
http://paperpile.com/b/RAM9oy/K0OTP
http://paperpile.com/b/RAM9oy/K0OTP
http://dx.doi.org/10.1038/srep45308
http://paperpile.com/b/RAM9oy/MyUKk
http://paperpile.com/b/RAM9oy/MyUKk
http://paperpile.com/b/RAM9oy/MyUKk
http://paperpile.com/b/RAM9oy/MyUKk
http://dx.doi.org/10.1016/j.psj.2019.10.049
http://paperpile.com/b/RAM9oy/J5G3E
http://paperpile.com/b/RAM9oy/J5G3E
http://paperpile.com/b/RAM9oy/J5G3E
http://paperpile.com/b/RAM9oy/J5G3E
http://dx.doi.org/10.1038/srep10512
http://paperpile.com/b/RAM9oy/0gjFb
http://paperpile.com/b/RAM9oy/0gjFb
http://paperpile.com/b/RAM9oy/0gjFb
http://dx.doi.org/10.1016/j.psj.2020.11.026


Reduced metabolic capacity of the gut
microbiota associates with host
growth in broiler chickens

Chapter 4

67



Publication
Sofia Marcos1,2, Iñaki Odriozola2, Ostaizka Aizpurua2, Raphael Eisenhofer2, Sarah Siu Tze
Mak2, Garazi Martin2, Varsha Kale3, Germana Baldi3, Robert D Finn3, Joan Tarradas4,
Andone Estonba1, M Thomas P Gilbert2,5, Antton Alberdi2

1Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU),
Leioa, Bilbao, Spain
2Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen
(UCPH), Copenhagen, Denmark
3European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
Wellcome Genome Campus, Hinxton, Cambridge, UK
4Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
5University Museum, NTNU, Trondheim, Norway

Publication status: Under review
Link to preprint: https://www.researchsquare.com/article/rs-2885808/v1

68

Abstract
Understanding the development of functional attributes of host-associated microbial
communities is essential for developing novel microbe-based solutions for sustainable
animal production. We applied multi-omics to 388 broiler chicken caecal samples to
characterise and model the functional dynamics of 822 bacterial strains. Although
microbial community diversity metrics increased with chicken age as expected, the overall
metabolic capacity and activity of the microbiota exhibited an unexpected decrease. This
drop occurred due to the spread of non-culturable clades with small genomes and low
metabolic capacities, including RF39, RF32, and UBA1242. The intensity of this decrease
was associated with animal growth, whereby chickens with higher abundances of
low-capacity bacteria exhibited higher body weights. This previously unreported link
between metabolic capacity of microbes and animal body weight suggests a relevant role
of non-culturable bacteria with reduced-genomes for host biology, and opens new
avenues in the search for microbe-based solutions to improve sustainability of animal
production.

https://www.researchsquare.com/article/rs-2885808/v1


Introduction
Optimising food production is one of the global priorities to ameliorate the ongoing
sustainability crisis (Godfray et al., 2010). Gut microbial communities are recognised as
relevant assets in the endeavour of finding more sustainable animal farming practices
(D’Hondt et al., 2021), especially in intensive production systems that face increasing
restrictions over historically employed growth additives, such as antibiotics (Castanon, 2007;
Laxminarayan et al., 2015). Hence, the animal farming sector is seeking sustainable
microbe-based solutions, such as probiotics and synbiotics, to maximise productivity while
minimising environmental impact (Anee et al., 2021).

However, the task of finding optimal microbe-based solutions is challenged by the extreme
complexity of animal gut microbiota (Alberdi et al., 2022), as they comprise hundreds of
bacteria that vary throughout the development of the animal. Although some microbial taxa
have been associated with animal growth performance (Wen et al., 2021; Yan et al., 2017),
very few findings have been reproduced in independent trials. In consequence, the beneficial
effects of existing microbe-based solutions are modest, and success rates vary across
environments (Barba-Vidal et al., 2019; Zommiti et al., 2020). A key roadblock is the limited
capacity of conventional methods to uncover how functional features of microbial
communities develop alongside animals. While culture-based approaches only enable
studying a limited number of functions in a fraction of the relevant bacteria outside their
native gut environments (Barberán et al., 2017), targeted sequencing-based approaches do
not enable direct functional inferences (Antony-Babu et al., 2017).

In contrast, multi-omic technologies provide greater functional breadth and resolution to
understand how gut microbial communities develop and associate with animal growth
(Nyholm et al., 2020). For instance, distilling the wealth of functional annotations retrieved
from nearly complete bacterial genomes into quantitative traits (Escalas et al., 2019) enables
the temporal dynamics of microbial functional capacities to be modelled, while
metatranscriptomic gene expression data allows quantifying the realisation of such
capabilities. Therefore, the combination of these two approaches can provide an unparalleled
level of resolution into what microbial communities both could, and actually, do (Alberdi et al.,
2022). Such data can be used to address hitherto unaddressable questions, including how
functional capacities of gut microbial communities change over time, the degree to which
those capacities are realised, and whether this functional variation is associated with animal
growth performance.

One of the animal production systems that could benefit from such a deep understanding of
microbiota development is poultry, namely the main source of animal meat consumed by
humans worldwide (FAO, 2012). Although the gut microbiota of broiler chickens grown for
meat production has been intensively studied using targeted (Rychlik, 2020) and shotgun
sequencing technologies (Feng et al., 2021; Gilroy et al., 2021; Glendinning et al., 2020;
Segura-Wang et al., 2021; Y. Zhang et al., 2022), multi-omic approaches that study whether
and how microbial functions change throughout chicken development, and their association
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with animal body weight are almost nonexistent (Jing et al., 2021). In light of this, we
combined genome-resolved metagenomics with metatranscriptomics to study the complexity
and dynamics of the entire functional landscape of the caecum microbiota in two replicate
trials conducted in the HoloFood (Tous et al., 2022) project. We first aimed at understanding
the relationship between the development of functional features and diversity metrics of the
microbiota, for then unveiling their link with animal growth performance.

Results
Distillation of gene annotations reveals the functional complexity
of the chicken gut microbiota
We studied the functional temporal dynamics of the broiler chicken gut microbiota using a
novel approximation that leveraged the caecum genome catalogue of 822 bacterial strains
generated in the HoloFood project (Rogers, 2023). After annotating all genomes against
Pfam, KEGG, UniProt, CAZY and MEROPS databases, we distilled the resulting >1.6 million
gene annotations into Genome-Inferred Functional Traits (GIFTs) using distillR (Koziol et al.,
2023). GIFTs are quantitative metrics that estimate functional capabilities of bacteria from
genomic information, which are calculated for each function in each genome as the
proportion of biochemical reactions enabled by the genes present in a genome to accomplish
a metabolic function (Eisenhofer et al., 2023). These GIFTs relate to synthesis and
degradation of biomolecular compounds known to be relevant for animal and microbial
biology; including polysaccharides, proteins, aromatic compounds, xenobiotics and
antibiotics, among others. We measured 170 GIFTs per genome (complete detailed list can
be found in Table S1), whose values were then averaged to obtain a genome-level overall
metabolic capacity metric, hereafter referred to as Metabolic Capacity Index (MCI).

The distillation of metabolic attributes of bacterial genomes highlighted the importance of
strain-level metabolic characterisation to understand functional dynamics of microbial
communities. This is because our analyses yielded a complex functional landscape (Fig. S1)
in which some taxa formed either a single (e.g., Cyanobacteria, Verrucomicrobiota) or a few
functional clusters (e.g., Bacteroidota), while others displayed much wider spectra of
functional profiles (e.g., Firmicutes, Proteobacteria) (Fig. 1a). The functional ordination
showed a clear gradient of increasing metabolic capacity from top to bottom, but with a very
different arrangement of genomes within and between phyla (Fig. 1b). For instance,
Lachnospiraceae (Firmicutes A) genomes layed on the bottom among the genomes with the
highest metabolic capacities, whereas other members of the same phylum exhibited mid-
(e.g., TANB77) or low-level (e.g., UBA1242) metabolic capacities. Similarly, Proteobacteria
contained both high-capacity (e.g., Enterobacteriaceae) and low-capacity (e.g., RF32)
genomes. In contrast, Bacilli (Firmicutes) only contained mid- (e.g., Lactobacillales) and
low-capacity (e.g., RF39) genomes. All these clades with low metabolic capacity (UBA1242,
RF32, RF39) comprise unculturable strains discovered through metagenomic techniques,
which have been recently detected in multiple animal gut environments (Crossfield et al.,
2022; Gilroy et al., 2021, 2022; Pérez-Brocal et al., 2013; X.-X. Zhang et al., 2022), including
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humans (Bowerman et al., 2020; Humbel et al., 2020). Despite their distant phylogenetic
relationships, they all are characterised by reduced genome sizes and gene catalogues, as
well as numerous auxotrophies (Nayfach et al., 2019; Wang et al., 2020). Nevertheless,
these largely unknown bacteria embed within traditional taxonomic groups (e.g., Bacilli,
Clostridia) or are closely related to them. An extreme example can be found between
Escherichia (>5000 protein-coding genes) and RF32 (<2000 genes) Proteobacteria strains,
which lay next to each other in the phylogeny yet hold highly different functional repertoires
(Fig. 2a). Such a variety of functional attributes within major bacterial clades flags the risk of
oversimplifying bacterial functional complexity when analysing gut microbiota features in
terms of phylum-level ratios, as commonly done with the Firmicutes/Bacteroidota ratio (Elokil
et al., 2022; Magne et al., 2020).

Figure 1. Functional ordination, diversity and temporal dynamics of the chicken
caecum microbiota. a) t-SNE ordination of bacterial genomes based on their
genome-inferred functional traits (GIFTs), coloured by taxonomic order. b) Identical ordination
coloured by the overall metabolic capacity of each genome, in which the gradient of
increasing metabolic capacity can be observed from top to bottom. c) Same ordination
coloured by the temporal trend displayed by each bacteria in the study. d) Density curves of
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the overall relative abundances of the main bacterial phyla. Note the x-scale is
log-transformed to better visualise the least abundant taxa. e) Neutral, phylogenetic and
functional diversity metrics across time. f) Distance-based redundancy analysis (dbRDA) plot
showing the temporal dynamics of the compositional microbiota variation. g) Phylogenetic
correlogram showing the correlation of temporal dynamics across different phylogenetic
distances, expressed over density curves of the phylogenetic distances between the main
taxonomic levels. h) Community-level metabolic capacity index values across time.

Microbiota diversity increases while functional capacity
decreases with age
We then analysed microbial communities of 7, 21 and 35-day old chickens from two
independent trials, by mapping 388 metagenomic and 61 metatranscriptomic datasets
generated from caecum content samples to the bacterial genome catalogue. Although the
conventional microbiota community and diversity analyses confirmed previously described
trends and patterns, our detailed functional analyses yielded unexpected results.
Surprisingly, we found that the functional features of the microbiota were highly contrasting to
the community diversity metrics.

The taxonomic profile of the reconstructed microbiota matched the typical community
previously described in broiler chickens (Rychlik, 2020; Segura-Wang et al., 2021),
overwhelmingly dominated by Firmicutes A (Clostridia), followed by Firmicutes (Bacilli),
Bacteroidota and Proteobacteria (Fig. 1d). All three alpha diversity metrics (neutral,
phylogenetic and functional) increased with chicken age (Fig. 1e), and beta diversity metrics,
as well as hierarchical models of species communities (Hmsc) (Tikhonov et al., 2020),
showed that most of the microbiota variation occurred between time points, with animals from
different trials and experimental groups exhibiting similar trajectories (Fig. 1f, Tables S2,S3,
S4).

The highest turnover occurred between days 7 and 21, followed by a more modest variation
in the following fortnight (Fig. S2). Bacterial dynamics during this entire period showed a very
strong phylogenetic signal, both for metagenomics (ρ = 0.94 with 90% CI [0.93, 0.94]) and
metatranscriptomics (ρ = 0.96 with 90% CI [0.95, 0.97]) (Fig. S3), with strains within
taxonomic families exhibiting highly similar temporal dynamics compared to more distantly
related ones (Fig. 1g). Beta diversity analyses, however, showed that the variation of
functional attributes (Dβ

d7-35 = 0.23±0.06) exceeded that of the phylogenetic change (Dβ
d7-35=

0.08±0.03). This mismatch is highly relevant, because phylogenetic distance is often used as
a proxy for functional dissimilarity when direct information of functional attributes is not
available (e.g., amplicon sequencing) (Alberdi & Gilbert, 2019). In contrast, our results
showed that the turnover of phylogenetically similar bacteria implicated related strains yet
with distinct functional attributes, which highlights the value of the direct functional inference
capacity provided by genome-resolved metagenomics over approaches based on indirect
evidence.
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The bacteria that lost and gained representation between days 7 and 35, hereafter referred
to as “decreasers” and “increasers”, respectively, were functionally structured (Fig. 1c). Most
of the bacteria that became rarer as chickens grew belonged to Lachnospiraceae (55%), a
clade characterised for its high metabolic capacity. In contrast, groups of bacteria with mid
(e.g., TANB77, Cyanobacteria, Bacteroidota) to low metabolic capacities (e.g., UBA1242,
RF39, RF32) tended to increase abundance. The mean metabolic capacity of bacteria whose
abundance decreased over time (0.32±0.05) was higher than that of the bacteria that
increased (0.24±0.08). As a consequence, and despite the observed increase in diversity, the
community-weighted metabolic capacities of the entire microbiota decreased over time (Fig.
1h). This contrasting phenomenon is expected when a community initially dominated by
bacteria with high metabolic capacities (yet functionally very similar to each other) transitions
into a more diverse microbiota in which bacteria with low metabolic capacities (and thus
functionally different to the previous ones) are also recruited. Hence, our results indicate that
a more functionally diverse microbiota does not necessarily entail a more functionally
capable community with a larger capacity to generate metabolic by-products that could
benefit host health and growth.

The dominance of bacteria with high metabolic capacity during the early stages of microbiota
development aligns with the concept of metabolic independence (Watson et al., 2023),
because bacteria with higher metabolic capacity are less dependent on metabolic
by-products produced by other microorganisms. However, as the microbiome matures,
microorganisms with lower metabolic capacities, such as RF39, RF32, UBA1242, and
TANB77, begin to gain representation at the expense of bacteria with larger metabolic
repertoires, such as Lachnospiraceae (Fig. 2b). This process is probably exacerbated by the
highly homogeneous dietary regime that industrially produced chickens experience (Futuyma
& Moreno, 1988), as low-capacity resource specialists are more likely to outcompete
generalist high-capacity bacteria under stable conditions (Watson et al., 2023). Given the
remarkable ability of broiler chickens to efficiently absorb nutrients from their diet (Tallentire
et al., 2016), low-capacity bacteria might also thrive better in an environment where the
animal host absorbs most of the dietary energy, due to their lower energy requirements
compared to high-capacity bacteria (Ranea et al., 2005). While the overall microbiota
response to time measured through metagenomics and metatranscriptomics (considering all
microbial genes) was highly correlated (Fig. 2d), the targeted functional pathways exhibited a
different pattern. The microbial functions that tended to lose representation with time were
compensated with increased expression, thus in part buffering the loss of capacity with
increased activity (Fig. 2e).
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Figure 2. Temporal overview of metabolic capacities and gene expression of caecum
bacteria. a) Phylogenetic tree, functional capacity, and temporal trends of the caecum
microbiota. Strain boxes display the temporal trend of the relative abundance and gene
expression for each strain along with overall genome features. b) Metabolic capacity indices
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(MCI) to synthesise and degrade metabolic compounds of eight of the most relevant strains
selected for illustrative purposes. c) Averaged and normalised expression of genes belonging
to the pathways required to synthesise and degrade metabolic compounds in the eight
highlighted strains. d) Correlation between the MAG response to time based on
metagenomic (x-axis) and metatranscriptomic (y-axis) data. Each dot represents a MAG, and
positive values indicate increasing abundance and gene expression trends. e) Correlation
between the community-level response of each metabolic function to time based on
metagenomic (metabolic capacity) and metatranscriptomic (metabolic activity) data. The
dashed blue lines in figures d and e indicate the 1:1 regression lines.

One of the most distinctive features shared by all these bacteria with low metabolic
capacities is that they lack genes involved in de novo synthesis of nucleic acids, which have
raised speculations about their parasitic or obligate symbiotic relationship with vertebrates
(Chklovski et al., 2022). Our metatranscriptomic analysis confirmed that many of the
increasing bacteria did not synthesise their own nucleic acids (Fig. 2c). However, they all
heavily expressed genes involved in SCFA production, particularly acetate, which are linked
with beneficial outcomes for animal biology in general, and chickens in particular (Peng et al.,
2021). These observations could therefore support the symbiosis hypothesis, whereby
bacteria would receive nucleic acids and other essential molecular compounds from the host
in return to metabolic benefits (Chklovski et al., 2022).

Reduction of functionally capable bacteria is associated with
animal body weight
We finally explored the link between functional dynamics of the microbiota and animal growth
performance, which for the first time revealed a surprising association between animal body
weights and the proliferation of microorganisms with low metabolic capacity. The microbial
turnover from a gut bacterial community with high metabolic capacities to a more mature one
with lower capacities did not happen at the same rate in all studied chickens. Some animals
retained a microbiota with more similar functional attributes to those exhibited in the
beginning, while others underwent a more severe change (Fig. S2). This variation was found
to be associated with animal body weight at day 35 (Generalised Linear Mixed Model, slope
= 323.87, t-value = 2.97, p-value = 0.004) (Fig. 3), which could explain the large
interindividual body weight variability we previously reported across animals with identical
genetic line, sex and treatment properties (Tous et al., 2022). The robustness of the
association was validated by additional analyses that revealed that the positive association
held for chicken of both sexes and genetic lines (Fig. S4). Moreover, comparing the 5%
chicken with lowest abundance of increaser bacteria with the 5% with highest content,
showed a difference of 291 grams, which corresponds with 13% of the average body weight
at day 35 (Fig. S5). The presence of individuals from every trial, sex, genetic line and
treatment in both extreme groups further ensured that the association was not confounded by
other chicken characteristics. The taxonomic drivers of the association were the low
metabolic capacity clade RF39 (Bacilli, Firmicutes) and mid metabolic capacity clade
TANB77 (Clostridia, Firmicutes A), whose high representation at day 35 was positively
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correlated with body weight. In contrast, the abundance of high-level metabolic capacity
clade Lachnospiraceae, correlated negatively with chicken body weight (Fig. S6).

Figure 3. Correlation between representation-increasing bacteria in the caecum
microbiota and chicken body weight. Linear regressions at days 7 (a), 21 (b) and 35 (c)
between chicken body weight and centred log-ratio of the relative abundance of bacteria that
increased their relative representation through time.

While the negative association between body weight and microbial functional capacity may
seem counterintuitive, the observation is logical in the context of intensive animal production.
Broiler chickens grown for meat production spend their short life (35-42 days) in controlled
environments. Feed formulations have been optimised to enable rapid and efficient
absorption of nutrients by chickens (Musigwa et al., 2021), while animals with the highest
capacity to absorb and metabolise nutrients into skeletal tissue have been selected
throughout hundreds of generations (Qanbari et al., 2019). Thus under these conditions,
production yield might not be maximised by an intestinal microbiota with high metabolic
capacity and activity, but rather one that minimises capture of dietary energy from chickens.

Biological (low microbial biomass) (Marcos et al., 2022) and technical (no enrichment of
bacterial DNA) limitations prevented us from replicating the caecum analyses in the ileum,
which together with the jejunum are the main sections for nutrient absorption in the
gastrointestinal tract. However, the strength of the observed pattern in the caecum still
indicates a biologically relevant association, since the caecum is the main fermentation
chamber where SCFAs are produced by anaerobic bacteria, and absorbed by the host in the
epithelial surface of the proximal caecum and in the colon (Svihus & Choct, 2013). In line
with previous observations (Wang et al., 2020), our results indicate that SCFA production is
one of the few metabolic functions that bacteria with low capabilities can conduct (Fig. 2e),
which enhances their candidacy as beneficial microbes for animal production. Furthermore,
microbiomes with average lower microbial capacities, which are more widespread than
previously thought, seem to remain more stable over time (Starke et al., 2023), which could
be an advantage against possible microbiota disruption or pathogen colonisation.

The association between functional capacities and animal body weight aligns with the
mechanistic explanations behind the success of antibiotics as growth promoters. The
beneficial effect of antimicrobial compounds in chicken production has been partly attributed
to the depletion of the gut microbial community and the consequent maximisation of nutrients
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and energy intake from food, which otherwise would be partly used by microorganisms for
their own growth (Dibner & Richards, 2005). Although antibiotics have been broadly used in
animal production to increase productivity since the 1950's (Castanon, 2007), overwhelming
evidence points towards detrimental environmental outcomes related to the spread of
antibiotic resistance (Rohr et al., 2019; Silbergeld et al., 2008). In consequence, increasing
restrictions are being applied to the use of antibiotics as growth promoters. Although the
correlative nature of our findings does not enable causal relationships to be established, we
believe this previously unreported link between metabolic capacity of microbes and animal
body weight deserves to be further explored, both to proof causality and to test whether
microbiota manipulation to favour communities with low functional capabilities is a feasible
strategy to be used as an alternative to antibiotics.

Discussion
Our study showcases the power of multi-omic techniques to surface complex patterns that
associate production parameters with functional characteristics of the microbial communities.
The diverse range of metabolic capacities we describe within each phylum, the different
temporal dynamics we report and the mismatch between community diversity and metabolic
capacity illustrates the complexity of gut microbiota. Our results highlight the risk of inferring
functional outcomes from indirect information, such as 16S amplicon data or phylogenetic
relationships between bacteria, and clearly demonstrate that reducing the complexity of the
microbiota to phylum-level ratios (e.g., Firmicutes/Bacteroidota ratio) entails a massive
oversimplification. In addition, the importance of uncultured taxa (e.g., UBA1242, RF39,
RF32) surfaced by our analyses, along with their pervasiveness across animal gut
environments, render them worthy of deeper studies to unravel their parallel evolutionary
processes of genome shrinkage in light of interactions with hosts and other microorganisms.

As poultry is the main source of animal meat consumed by humans worldwide (FAO, 2012),
and the system that is forecasted to undergo the largest production increase in the near
future (OECD/FAO, 2021), the industry is immersed in this search for sustainable feed
additives. However, we still lack a proper understanding of the functional development of
chickens’ gut microbiota. Our study provides important insights into the complex
development of functional attributes, but also highlights the need for further analyses to
understand the underlying reasons of the observed turnover of species and drop of metabolic
capacities. The detected link between the growth performance and dynamics of strains with
contrasting metabolic capacities opens new avenues in the search for microbe-based
solutions to improve animal production. Overall, our study highlights the value of harnessing
the power of omic technologies to surface complex patterns, which can inform academic and
industrial actors to design and produce optimal feed additives to improve sustainability of
animal production while ensuring animal welfare.
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Methods

Animal experiments
Molecular and complementary data were generated from 388 animals sampled in the first
two experiments performed in 2019 within the H2020 project HoloFood (HoloFood
Consortium, 2019). The experiments were designed with a randomised pen design in which
broilers from two genetic lines (Cobb 500 and Ross 308) and both sexes were grown for
35–37 days simulating intensive farming conditions. Each trial comprised 12 experimental
groups (3 treatments x 2 genetic lines x 2 sex) and two replicates, for a total of 24 pens, each
containing 40 animals. Details about the experimental design, procedures and performance
results are provided in Tous et al. 2022 (Tous et al., 2022). A total of 6 chickens from each
pen were euthanized, weighed, and sampled at days 7–8, 21–22 and 35–37 (multiple days
were necessary due to workload, and these differences have been accounted for in the
statistical analyses), hereafter simplified to three time points (days 7, 21 and 35). In short,
one of the caecum pouches was isolated and longitudinally opened to collect two types of
samples. The gut content was gently flushed out and ca. 100 mg of digesta collected for
metagenomic and metatranscriptomic analyses. Both types of samples were preserved in
DNA/RNA Shield buffer (Zymo Research, USA) and stored at -20 ºC until nucleic acid
extraction. In total, 388 metagenomic and 61 metatranscriptomic samples were sequenced
and analysed.

Data generation
DNA and RNA extraction
DNA and RNA extractions were conducted using a custom purification method (Bozzi et al.,
2021) optimised for samples preserved on DNA/RNA Shield buffer. In short, this protocol
included a physical bead-beating step for tissue disruption, followed by digestion, nucleic
acid separation (DNA and RNA) and purification steps. Laboratory processing was
conducted in batches of 90 samples, along with 6 negative controls, including two extraction,
two library preparation and two library indexing blanks. Samples within each batch were
randomised using a custom script, but gut content and mucosa samples were not mixed to
minimise the risk of cross-contamination due to DNA concentration differences.

Library preparation of metagenomic DNA
Extracted nucleic acids were fragmented to an average length of 400 nucleotides using a
Covaris LE220 ultrasonication device. The standard amount of DNA imputed to the library
preparation was 200 ng. The BEST (Carøe et al., 2018) ligation-based library preparation
protocol was employed for preparing sequencing libraries. The success of the library
preparation process was assessed by qPCR assays, through which the optimal number of
cycles to achieve the desired DNA molarity while reducing clonality was estimated. When the
required number of cycles exceeded 12 cycles, the library preparation was repeated for
considering that library-preparation inefficiency could yield technically biassed results.
Libraries were subsequently indexed using unique dual tags and the required number of PCR
cycles, and bead-purified before the final quality-check using a Fragment Analyser (Agilent)
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with NGS fragment assay. Libraries with expected fragment-size distributions and molarities
were equimolarly pooled for sequencing. Libraries with too low molarities were re-indexed
and pooled to achieve the desired molarity. Libraries exhibiting unusual fragment distributions
and large adaptor dimers were re-built to ensure maximum quality of generated data.
Sequencing was performed at BGI (Shenzen, China) in multiple MGISeq-2000 runs with
150bp paired-end chemistry. Sequencing effort per sample typically varied between 8GB and
16GB (26 and 52 million reads).

Library preparation of metatranscriptomic RNA
For microbial metatranscriptomic analyses, rRNA depletion was performed using TIANSeq
rRNA Depletion Kit (Cat.No. NR101-T1), after which cDNA conversion was carried out with
random hexamers and Illumina short-read sequencing libraries were prepared using
Novogene NGS RNA Library Prep Set (PT042). Library molarities were checked with Qubit
and real-time PCR for quantification and bioanalyzer for size distribution detection. Quantified
libraries were pooled and sequenced on an Illumina NovaSeq 6000 platform with 150bp
paired-end chemistry, aiming for 5GB of protein-coding gene data.

Bioinformatic data processing
Generation of the MAG catalogue
A dedicated publication that will address the procedures employed for generating the MAG
catalogue used in this study is under preparation, and the employed code is available at
Workflowhub (https://workflowhub.eu/programmes/28). In short, data from 261 chicken gut
metagenomic samples sequenced with MGISeq-2000 were used to generate the caecal
MAG catalogue. De novo metagenomic assemblies were generated using the MGnify
assembly pipeline (Richardson et al., 2023). The assembly tool MetaSPAdes (Nurk et al.,
2017) was used preferentially for single-run assemblies, with MEGAHIT (D. Li et al., 2015)
being used for co-assemblies where the memory requirements for MetaSPAdes were too
high. Groups of samples prioritised for co-assembly were selected by hierarchical clustering
based on Jaccard distance between low-quality bins generated by single assembly. Contigs
shorter than 500 base pairs were excluded, and further host, human and PhiX
decontamination was performed post-assembly with blastn (Y. Chen et al., 2015). Contig
binning was performed with metaWRAP’s binning and bin_refinement modules. Genome
quality was assessed with checkM (Parks et al., 2015) to retain those genomes with
completeness >50%, contamination <5%, and QS >50 (where QS = completeness -
5*contamination). Genomes were de-replicated using an Average Nucleotide Identity (ANI) of
95%, and 30% alignment fraction to generate species-level clusters using dRep (Olm et al.,
2017). Similarly, a 99% ANI threshold was adopted for strain-level de-replication. GUNC
(Orakov et al., 2021) was used to identify potentially chimeric genomes for removal, with the
parameters clade separation score >0.45, contamination >0.05, and reference representation
score >0.5. Taxonomic assignment was performed with GTDB-tk.

Functional annotation and distillation of MAG catalogue
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Taxonomy annotation and phylogenetic tree preparation of the MAG catalogue was
performed using GTDB-Tk (Chaumeil et al., 2019). The three archaea present in the MAG
catalogue were excluded from the tree and derived analyses due to their near-negligible
representation and technical limitations. The MAGs were functionally annotated by the
ensemble approach implemented in DRAM (Shaffer et al., 2020), which includes Pfam
(Mistry et al., 2021), KEGG (Kanehisa & Goto, 2000), UniProt (UniProt Consortium, 2019),
CAZY (Cantarel et al., 2009) and MEROPS (Rawlings et al., 2010) databases. We then used
the R package distillR (https://github.com/anttonalberdi/distillR) to transform raw annotations
into quantitative genome-inferred functional traits (GIFTs). DistillR contains a set of >300
metabolic curated pathways and modules derived from KEGG (Kanehisa & Goto, 2000) and
MetaCyc (Karp et al., 2002) databases, which are used to obtain quantitative estimates of the
metabolic capacities of microorganisms through quantifying the relative representation of
genes required for accomplishing a metabolic task. GIFTs range between 0-1, the zero
indicating none of the genes defined in the pathway are present in the genome and one
indicating that all genes are present. When a step within a pathway requires the presence of
two Identifiers, the step is considered full if both Identifiers are present, half full if one is
present and empty if none is present. We measured 170 GIFTs per genome (complete
detailed list can be found in Table S1), whose values were first corrected by MAG genome
completeness to reduce functional biases (Eisenhofer et al., 2023), and then averaged to
obtain a genome-level overall metabolic capacity metric, hereafter referred to as Metabolic
Capacity Index (MCI). Finally, to explore the landscape of the functional capabilities of the
chicken caecum microbiome, the bacterial MAGs were ordinated based on their GIFTs
through a t-SNE analysis using the R package Rtsne (Krijthe et al., 2017).

Metagenomic data processing and read mapping
Sequencing adapters and exact duplicates were removed using AdapterRemoval 2.2.4
(Schubert et al., 2016) and seqkit 0.7.1 (Shen et al., 2016). Sequences were mapped to the
latest chicken reference genome (galGal6, NCBI Assembly accession GCF_000002315.6)
using bwa (H. Li & Durbin, 2009) increasing the minimum seed length to 25 in order to
reduce the number of incorrectly aligned read pairs from the metagenomic fraction. For
assessing the quality of the alignment, mapping statistics including depth and breadth of
coverage, and percentage of mapped reads were calculated using SAMtools 1.11 (H. Li &
Durbin, 2009). Aligned reads were sorted and the metagenomic fraction was filtered out
using SAMtools. Last, metagenomic reads were mapped to the MAG catalogue using bwa at
90% identity and 60% coverage threshold and further summarised with samtools. The
mapping success of the caecum metagenomic reads against the bacterial catalogue was
around 60-80% (Fig. S7), indicating that we obtained a nearly complete representation of the
caecal bacterial community. Read-mapping counts resulting in <30% genome coverage per
sample were removed from further analysis. Retained read-mapping counts were divided by
the total number of paired-reads per sample, and multiplied by 100 to give the percentage of
reads mapped to the MAG catalogue for each sample. Relative abundance was estimated by
adapting the RPKG (Reads Per Kilobase per Genome equivalent) formula provided by
Nayfach and Pollard. It is referred to as RPMM (Reads Per Million bases of genome, per
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Million mapped reads), as reads mapped to MAGs were normalised both by genome length
(divided by 1M) and by read length (divided by 1M).

Metatranscriptomic data processing
A custom snakemake (Mölder et al., 2021) pipeline was used for the metatranscriptomic data
processing
(https://github.com/anttonalberdi/holoflow/tree/EisenRa/workflows/metatranscriptomics).
Reads were trimmed and quality controlled using fastp (S. Chen et al., 2018), keeping reads
>60 bp and with Phred scores >20. Processed reads were then mapped against the host
genome (galGal6) using STAR (Dobin et al., 2013). The unmapped reads were then mapped
to a combined database containing the SILVA 16S rRNA SSU and LSU NR 99 (Quast et al.,
2013), and the 5SRNAdb (Szymanski et al., 2016) using Bowtie2 (Szymanski et al., 2016)
with default parameters. Unmapped reads were then mapped to the MAG catalogue genes
(outputted from DRAM; genes.fna.gz) using Bowtie2 with default parameters. Finally, the
gene read counts were calculated using CoverM (https://github.com/wwood/CoverM),
requiring both pairs of reads to hit the gene (--proper-pairs-only flag).

Data analysis
Metagenomic data analysis
Metagenomic counts were standardised by MAG length and by sequencing depth. Alpha
diversity measurements were calculated using neutral, phylogenetic and functional Hill
numbers at the order of magnitude q=1, thus weighing MAGs according to their relative
abundances, using the functions ‘hill_taxa’, ‘hill_phylo’ and ‘hill_func’, respectively, in the R
package hillR (D. Li, 2018). Beta diversity (dissimilarity) metrics were generated for the same
order of magnitude using the functions ‘hill_taxa_parti_pairwise’ (neutral),
‘hill_phylo_parti_pairwise’ (phylogenetic) and ‘hill_func_parti_pairwise’ (functional) of the
same package. The phylogenetic tree employed to compute phylogenetic metrics was
derived from the GTDB (Parks et al., 2022) tree constructed by GTDB-tk (Chaumeil et al.,
2019) for taxonomic annotation, after pruning tips of reference genomes using ‘keep.tips’
function included in the R package ape (Paradis et al., 2004). The functional diversity
analyses were based on a MAG trait matrix including pathway fullness values of 350 KEGG
modules generated with DRAM (Shaffer et al., 2020). To visualise the composition of
microbial communities across time, distance-based redundancy analysis (db-RDA) was
performed using ‘vegdist’ and ‘rda’ commands from R package vegan (Oksanen et al., 2022).

To assess the temporal development of different components of microbial alpha and beta
diversities we used linear mixed effect models (LMM) and PERMANOVAs, respectively.
LMMs were fitted through the R package nlme (Pinheiro et al., 2021), using the components
of alpha diversity as response variables and trial (categorical variable with two levels),
chicken age (numeric variable), sex (categorical variable with two levels), genetic line
(categorical variable with two levels) and treatment (categorical variable with three levels) as
fixed explanatory variables. A pen-level random intercept was included in the models to
specify that chicken individuals were nested within pens. Log-transformed sequencing depth
was also included as explanatory variable in all alpha diversity models to account for the
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varying sequencing effort across samples. PERMANOVAs were fitted through the ‘adonis2’
function of R package vegan (Oksanen et al., 2022). Neutral, phylogenetic and functional
dissimilarity matrices were included as responses in the PERMANOVAs and trial, chicken
age, sex, genetic line and treatment were included as explanatory variables. Permutations
were constrained to within pens to account for the nested nature of the data. Very weak
effects of the categorical variables sex, genetic line and treatment were observed in the
PERMANOVA and LMM analyses, and none of these variables showed significant
interactions with chicken age. Therefore, they were included in the rest of the analyses of this
study to account for their possible confounding effect, but their effect was not interpreted.

To identify the MAGs that increased and decreased with chicken age, MAG counts were
analysed using the hierarchical modelling of species communities (Hmsc) framework
(Tikhonov et al., 2020), which belongs to the class of joint species distribution modelling
(JSDM) approach and builds a multivariate generalised linear mixed effect model using
Bayesian inference. Raw counts of bacterial MAGs (weighted by the size of their genomes)
were used as response variables in the model and trial, chicken age, sex, genetic line and
treatment were included as fixed explanatory variables. Additionally, log-transformed library
size was included as an extra explanatory variable to account for the compositionality of the
data. To account for the nested study design a pen-level random effect was included in the
model. The response variables were scaled to mean zero and unit variance and the
log-normal model was applied. To assess whether the MAGs increased, decreased or
remained stable over time the slope parameter linking the MAG abundance and chicken age
was used with a posterior support of 0.95 as significance threshold. If >95% of the posterior
distribution was positive the MAG was classified as an increaser, if >95% of the posterior
distribution was negative the MAG was classified as a decreaser, and the rest of the MAGs
were classified as stable. We fitted the models assuming the default priors and sampled the
posterior distribution running four Markov Chain Monte Carlo (MCMC) chains, each of which
was run for 3,750 iterations, of which 1,250 were discarded as burn-in. We thinned by 10 to
obtain a total of 250 posterior samples per chain and 1000 posterior samples in total. We
ensured MCMC convergence by measuring the potential scale reduction factor (Tikhonov et
al., 2020) for the beta parameters (measuring the response of the MAGs to the fixed effects).

To examine whether the responses of the MAGs showed a phylogenetic signal to time, we
included in the analysis a phylogenetic correlation matrix C among the MAGs computed from
the above-mentioned phylogenetic tree. In Hmsc, the phylogenetic signal is measured using
the parameter ρ, which takes values from 0 to 1, a value of 0 meaning no phylogenetic signal
in the response to fixed effects, and a value of 1 meaning a completely phylogenetically
structured response. Then, to measure the phylogenetic scale at which the response of the
bacterial MAGs to chicken age was structured, we built a phylogenetic correlogram linking
the MAGs’ associations with time and the phylogenetic distance between MAGs using the R
package phylosignal (Keck et al., 2016). Finally, to compute the predictive power of the
model we calculated the R2 using two-fold cross-validation in two alternative ways. In the first
case, CVstandard hereafter, the samples were divided into the training and testing set randomly,
hence the samples from both replicate trials A and B were used to train the model when
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making the predictions. In the second case, CVtrial hereafter, the samples from experimental
trials A and B were assigned separately to the training and testing sets, thus to make the
predictions for trial A the model was only trained with samples from trial B, and, vice versa, to
make the predictions for trial B the model was only trained with samples from trial A.
Comparing R2 from CVstandard with R2 from CVtrial allowed us evaluating whether the trends
observed from our experimental trials were similar and thus generalizable between them.
Both CV types yielded very similar R2 values (CVstandard = 0.54; CVtrial = 0.51) indicating that
our results were consistent and generalizable between the two replicate trials.
Cross-validation of the Hmsc model for metatranscriptomics yielded lower yet consistent R2

values (CVstandard = 0.15; CVtrial = 0.17), confirming the generalisability of our results between
trials.

To assess the temporal development of community-level MCIs derived from metagenomics
we fitted Generalised Linear Mixed Models (GLMM) using ‘glmmTMB’ function of glmmTMB
package in R (Brooks et al., 2017). The proportion of biochemical reactions present in the
genome to perform each specific function were used as response variables, while trial,
chicken age, sex, genetic line and treatment were used as fixed explanatory variables. A
pen-level random intercept was included in the models to specify that chicken individuals
were nested within pens. Since the response variable was proportional (taking values
between 0 and 1) the binomial distribution with logit link-function was used, and a sampling
unit-level random intercept was included to account for under- or overdispersion and obtain
robust standard errors (Harrison, 2015; Papke & Wooldridge, 1996).

Metatranscriptomic data analysis
Quantitative GIFTs were calculated with ‘distillq’ function using the R package distillR. To
identify the expression of MAGs that increased and decreased with chicken age, MAG
counts were analysed also using the Hmsc framework. Counts of MAG genes (weighted by
the size of the genes) were used as response variables in the model while trial, chicken age,
sex, genetic line and treatment were included as fixed explanatory variables. Then, the
parameter estimation of the model, the evaluation of convergence and the evaluation of the
model fit through cross-validations was conducted as explained in the Hmsc analysis of
metagenomic data.

To assess the temporal development of community-level MCIs derived from
metatranscriptomics we fitted LMMs using the ‘lme’ function of R package nlme (Pinheiro et
al., 2021). We used as response variables the centred log-ratio (CLR) transformed
community-level MCI expression values using the ‘clr’ function of R package compositions
(van den Boogaart & Tolosana-Delgado, 2008). Trial, chicken age, sex, genetic line and
treatment were used as fixed explanatory variables and a pen-level random intercept was
included in the models to specify that chicken individuals were nested within pens.

Performance association
Associations between MAG abundances and chicken body weight were assessed using
LMMs of R package nlme (Pinheiro et al., 2021). We wanted to test the null hypothesis of no
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effect of the summed relative abundance of MAGs that increased and decreased over time in
explaining body weight variability at each sampling day. Microbial temporal trends calculated
with Hmsc grouped MAGs as increasers and decreasers. CLR of the relative abundance of
increaser bacteria was calculated using the ‘clr’ function of R package compositions (van den
Boogaart & Tolosana-Delgado, 2008). Then, LMMs were fitted using body weight as a
response variable. Trial, age, genetic line, sex, treatment and the sum of the relative
abundances of increasing or decreasing MAGs were added as fixed explanatory variables. A
pen-level random intercept was included in the models to specify that chicken individuals
were nested within pens.

Data availability
All raw DNA and RNA sequences, and the MAG catalogues are available under HoloFood’s
umbrella project on ENA (Project ID: PRJEB33223) and displayed in the HoloFood Data
Portal (www.holofooddata.org). Bioinformatic resources including ENA accession numbers,
scripts, data matrixes and files have been archived in Zenodo with the DOI:
10.5281/zenodo.8335509, as a release of the following Github repository:
https://github.com/holochicken/func_dynamics.
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Table S1:
Nomenclature, classification and definitions of metabolic pathways employed in the functional
distillation analysis using the R package distillR.

Pathway Element Function Definition

B010101 Inosinic acid (IMP) Nucleic acid
biosynthesis

K00764 (K01945,K11787,K11788,K13713)
(K00601,K11175,K08289,K11787,K01492)
(K01952,(K23269+K23264+K23265),(K23270+K23265))
(K01933,K11787,(K11788 (K01587,K11808,(K01589 K01588))))
(K01923,K01587,K13713) K01756 (K00602,(K01492,(K06863 K11176)))

B010201 Uridylic acid (UMP) Nucleic acid
biosynthesis

(K11540,((K11541 K01465),((K01954,(K01955+K01956))
((K00609+K00610),K00608) K01465))) (K00226,K00254,K17828)
(K13421,(K00762 K01591))

B010301 UDP/UTP Nucleic acid
biosynthesis

(K13800,K13809,K09903)

B010401 CDP/CTP Nucleic acid
biosynthesis

(K00940,K18533) K01937

B010501 ADP/ATP Nucleic acid
biosynthesis

K01939 K01756 (K00939,K18532,K18533,K00944) K00940

B010601 GDP/GTP Nucleic acid
biosynthesis

K00088 K01951 K00942 (K00940,K18533)

B020401 Serine Amino acid
biosynthesis

K00058 K00831 (K01079,K02203,K22305,K25528)

B020501 Threonine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 (K00003,K12524,K12525)
(K00872,K02204,K02203) K01733

B020601 Cysteine Amino acid
biosynthesis

(K00640,K23304) (K01738,K13034,K17069)

B020602 Cysteine Amino acid
biosynthesis

(K01697,K10150) K01758

B020603 Cysteine Amino acid
biosynthesis

K00789 K17462 K01243 K07173 K17216 K17217

B020701 Methionine Amino acid
biosynthesis

(K00928,K12524,K12525) K00133 (K00003,K12524,K12525)
(K00651,K00641) K01739 (K01760,K14155) (K00548,K24042,K00549)

B020801 Valine Amino acid
biosynthesis

(K01652+(K01653,K11258)) K00053 K01687 K00826

B020901 Isoleucine Amino acid
biosynthesis

(K01703+K01704) K00052

B020902 Isoleucine Amino acid
biosynthesis

(K17989,K01754) (K01652+(K01653,K11258)) K00053 K01687 K00826

B021001 Leucine Amino acid
biosynthesis

K01649 (K01702,(K01703+K01704)) K00052

B021101 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K00674
(K00821,K14267) K01439 K01778 (K01586,K12526)

B021102 Lysine Amino acid
biosynthesis

K00928 K00133 K01714 K00215 K05822 K00841 K05823 K01778 K01586

B021103 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K03340
(K01586,K12526)

B021104 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K10206 K01778
(K01586,K12526)

B021105 Lysine Amino acid
biosynthesis

K01655 ((K17450 K01705),(K16792+K16793)) K05824

91



B021106 Lysine Amino acid
biosynthesis

K05827 K05828 K05829 K05830 K05831

B021201 Arginine Amino acid
biosynthesis

K00611 K01940 (K01755,K14681)

B021202 Arginine Amino acid
biosynthesis

K22478 K00145 K00821 K09065 K01438 K01940 K01755

B021301 Proline Amino acid
biosynthesis

((K00931 K00147),K12657) K00286

B021401 Glutamate Amino acid
biosynthesis

K00673 K01484 K00840 K06447 K05526

B021402 Glutamate Amino acid
biosynthesis

K01745 K01712 K01468 (K01479,K00603,K13990,(K05603 K01458))

B021501 Histidine Amino acid
biosynthesis

K00765 ((K01523 K01496),K11755,K14152) (K01814,K24017)
((K02501+K02500),K01663) ((K01693 K00817
(K04486,K05602,K18649)),(K01089 K00817)) (K00013,K14152)

B021601 Tryptophan Amino acid
biosynthesis

((((K01657+K01658),K13503,K13501,K01656) K00766),K13497)
(((K01817,K24017) (K01656,K01609)),K13498,K13501)
((K01695+(K01696,K06001)),K01694)

B021701 Phenylalanine Amino acid
biosynthesis

(((K01850,K04092,K14187,K04093,K04516,K06208,K06209)
(K01713,K04518,K05359)),K14170) (K00832,K00838)

B021801 Tyrosine Amino acid
biosynthesis

(((K01850,K04092,K14170,K04093,K04516,K06208,K06209)
(K04517,K00211)),K14187) (K00832,K00838)

B021802 Tyrosine Amino acid
biosynthesis

(K01850,K04092,K14170) (K00832,K15849) (K00220,K24018,K15227)

B021901 GABA Amino acid
biosynthesis

K09470 K09471 K09472 K09473

B022001 Beta-alanine Amino acid
biosynthesis

(K00207,(K17722+K17723)) K01464 (K01431,K06016)

B022002 Beta-alanine Amino acid
biosynthesis

6.2.1.17 1.3.8.1 4.2.1.116 3.1.2.4 1.1.159 2.6.1.18

B022101 Ornithine Amino acid
biosynthesis

(K00618,K00619,K14681,K14682,K00620,K22477,K22478)
(((K00930,K22478) K00145),K12659) (K00818,K00821)
(K01438,K14677,K00620)

B022102 Ornithine Amino acid
biosynthesis

K19412 K05828 K05829 K05830 K05831

B022103 Ornithine Amino acid
biosynthesis

2.3.1.1 2.7.2.8 1.2.1.38 2.6.1.11 3.5.1.16

B030201 Betaine Amino acid
derivative
biosynthesis

1.1.99.1 1.2.1.8

B030202 Betaine Amino acid
derivative
biosynthesis

2.1.1.156 2.1.1.157

B030301 Ectoine Amino acid
derivative
biosynthesis

K00928 K00133 K00836 K06718 K06720

B030701 Spermidine Amino acid
derivative
biosynthesis

(K01583,K01584,K01585,K02626) K01480

B030901 Putrescine Amino acid
derivative

K01476 K01581
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biosynthesis

B031001 Tryptamine Amino acid
derivative
biosynthesis

(4.1.1.28,4.1.1.105)

B040101 Acetate SCFA biosynthesis (K00625,K13788,K15024) K00925

B040103 Acetate SCFA biosynthesis K01067

B040104 Acetate SCFA biosynthesis 5.4.3.2 5.4.3.3 1.4.1.11 2.3.1.247 1.3.1.109 2.8.3.9 (2.3.1.9,2.3.1.16) 2.3.1.8
(2.7.2.1,2.7.2.15)

B040105 Acetate SCFA biosynthesis 1.21.4.2 (2.7.2.1,2.7.2.15)

B040106 Acetate SCFA biosynthesis (1.2.7.1,1.2.1.104) 2.3.1.8 (2.7.2.1,2.7.2.15)

B040201 Butyrate SCFA biosynthesis 1.2.7.1 (2.3.1.9,2.3.1.16) 1.1.1.35 4.2.1.150 1.3.1.109 2.3.1.19
(2.7.2.7,2.7.2.14)

B040202 Butyrate SCFA biosynthesis 2.3.1.8 (2.7.2.1,2.7.2.15) (2.8.3.1,2.8.3.8)

B040203 Butyrate SCFA biosynthesis (2.3.1.9,2.3.1.16) 1.1.1.36 4.2.1.55 1.3.1.109 (2.8.3.1,2.8.3.8)

B040204 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040205 Butyrate SCFA biosynthesis 5.4.3.2 5.4.3.3 1.4.1.11 2.3.1.247 1.3.1.109 2.8.3.9

B040206 Butyrate SCFA biosynthesis 2.8.3.18 1.2.1.76 1.1.1.61 2.8.3.M6 4.2.1.120 1.3.1.109 (2.8.3.1,2.8.3.8)

B040207 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040208 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040301 Propionate SCFA biosynthesis (4.2.1.28,1.1.1.1) 1.2.1.87 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)

B040302 Propionate SCFA biosynthesis 4.3.1.19 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)

B040304 Propionate SCFA biosynthesis 2.1.3.1 1.1.1.37 4.2.1.2 1.3.5.1 2.8.3.27

B040305 Propionate SCFA biosynthesis 2.8.3.1 4.2.1.54 1.3.1.95 2.8.3.1

B040306 Propionate SCFA biosynthesis 2.6.1.2 1.1.1.28 2.8.3.1 4.2.1.54 1.3.1.95 2.8.3.1

B050101 Indole-3-acetate Indolic compound
biosynthesis

1.13.12.3 3.5.1.4

B050102 Indole-3-acetate Indolic compound
biosynthesis

4.2.1.84 3.5.1.4

B050103 Indole-3-acetate Indolic compound
biosynthesis

3.5.5.1

B050104 Indole-3-acetate Indolic compound
biosynthesis

(2.6.1.1,2.6.1.27) 4.1.1.74 1.2.3.7

B050105 Indole-3-acetate Indolic compound
biosynthesis

(4.1.1.28,4.1.1.105) 1.4.3.4 1.2.3.7

B060401 indole-3-lactate Organic anion
biosynthesis

1.1.1.27

B060402 L-lactate Organic anion
biosynthesis

1.1.1.22

B060501 D-lactate Organic anion
biosynthesis

1.1.1.28

B060101 Succinate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060102 Succinate Organic anion
biosynthesis

((((K00164+K00658),K01616)+K00382),K00174)
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
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K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060103 Succinate Organic anion
biosynthesis

K01580 (K13524,K07250,K00823,K16871) (K00135,K00139,K17761)

B060104 Succinate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) K01007 K01595 K00024
(K01677+K01678) (K00239+K00240) (K01902+K01903) (K15038,K15017)
K14465 (K14467,K18861) K14534 K15016 K00626

B060105 Succinate Organic anion
biosynthesis

(K02160+K01961+K01962+K01963) K14468 K14469 K15052 K05606
(K01847,(K01848+K01849)) (K14471+K14472) (K00239+K00240+K00241)
K01679 K08691 K14449 K14470 K09709

B060106 Succinate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) (K01959+K01960) K00024
(K01677+K01678) (K18209+K18210) (K01902+K01903)
(K00174+K00175+K00176+K00177)

B060201 Fumarate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060202 Fumarate Organic anion
biosynthesis

((((K00164+K00658),K01616)+K00382),K00174)
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060203 Fumarate Organic anion
biosynthesis

K01948 K00611 K01940 (K01755,K14681) K01476

B060204 Fumarate Organic anion
biosynthesis

(K00815,K00838,K00832,K03334) K00457 K00451 K01800
(K01555,K16171)

B060205 Fumarate Organic anion
biosynthesis

K00241+(K00242,K18859,K18860)+K00239+K00240

B060206 Fumarate Organic anion
biosynthesis

K00244+K00245+K00246+K00247

B060207 Fumarate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) K01007 K01595 K00024
(K01677+K01678) (K00239+K00240) (K01902+K01903) (K15038,K15017)
K14465 (K14467,K18861) K14534 K15016 K00626

B060208 Fumarate Organic anion
biosynthesis

(K02160+K01961+K01962+K01963) K14468 K14469 K15052 K05606
(K01847,(K01848+K01849)) (K14471+K14472) (K00239+K00240+K00241)
K01679 K08691 K14449 K14470 K09709

B060209 Fumarate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) (K01959+K01960) K00024
(K01677+K01678) (K18209+K18210) (K01902+K01903)
(K00174+K00175+K00176+K00177)

B060210 Fumarate Organic anion
biosynthesis

(K18029+K18030) K14974 K18028 K15357 K13995 K01799

B060211 Fumarate Organic anion
biosynthesis

K00611 K01940 (K01755,K14681)

B060212 Fumarate Organic anion
biosynthesis

K22478 K00145 K00821 K09065 K01438 K01940 K01755

B060213 Fumarate Organic anion
biosynthesis

2.6.1.1,2.6.1.5,2.6.1.27,2.6.1.57 1.13.11.27 1.13.11.5 5.2.1.2 3.7.1.2

B060301 Citrate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060302 Citrate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)

B060303 Citrate Organic anion
biosynthesis

K01647 (K01681,K01682) K01637 (K01638,K19282)
(K00026,K00025,K00024)

B060304 Citrate Organic anion K01647 K01681 K00031 K00261 (K19268+K01846) K04835 K19280
K14449 K19281 K19282 K00024
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biosynthesis

B070101 Thiamine (B1) Vitamin
biosynthesis

(((K03148+K03154) K03151),(K03150 K03149)) K03147 ((K00941
K00788),K14153,K21219) K00946

B070102 Thiamine (B1) Vitamin
biosynthesis

(((K03148+K03154) K03151),(K03153 K03149 K10810)) K03147 K00941
K00788 K00946

B070103 Thiamine (B1) Vitamin
biosynthesis

(K22699,K03147) ((K00941 (K00788,K21220)),K21219) K00946

B070104 Thiamine (B1) Vitamin
biosynthesis

(K00941 K00788),K14153,K21219

B070201 Riboflavin (B2) Vitamin
biosynthesis

(((K01497,K14652) ((K01498 K00082),K11752)
(K22912,K20860,K20861,K20862,K21063,K21064)),(K02858,K14652))
K00794 K00793 ((K20884 K22949),K11753)

B070301 Niacin (B3) Vitamin
biosynthesis

3.6.1.22 (3.2.2.6,3.2.2.4) 3.4.1.19

B070401 Pantothenate (B5) Vitamin
biosynthesis

((K00826 K00606 K00077),K01579) (K01918,K13799)

B070402 Pantothenate (B5) Vitamin
biosynthesis

((K00606 K00077),(K13367 K00128)) K01918

B070501 Pyridoxal-P (B6) Vitamin
biosynthesis

K03472 K03473 K00831 K00097 K03474 K00275

B070502 Pyridoxal-P (B6) Vitamin
biosynthesis

K06215 K08681

B070601 Biotin (B7) Vitamin
biosynthesis

K00652 (((K00833,K19563) K01935),K19562) K01012

B070602 Biotin (B7) Vitamin
biosynthesis

K00652 K25570 K01935 K01012

B070603 Biotin (B7) Vitamin
biosynthesis

K16593 K00652 K19563 K01935 K01012

B070604 Biotin (B7) Vitamin
biosynthesis

K01906 K00652 (K00833,K19563) K01935 K01012

B070701 Tetrahydrofolate (B9) Vitamin
biosynthesis

(K01495,K09007,K22391) (K01077,K01113,(K08310,K19965))
((K13939,((K13940,(K01633 K00950)) K00796)),(K01633 K13941))
(K11754,K20457) (K00287,K13998)

B070702 Tetrahydrofolate (B9) Vitamin
biosynthesis

K14652 K22100 K01633 K13941 K22099 K00287

B070801 Cobalamin (B12) Vitamin
biosynthesis

(K02302,((K02303,K13542) (K02304,K24866))) (K02190,K03795,K22011)
K03394 (K05934,K13541,K21479) K05936 (K02189,K13541) K02188
K05895 ((K02191 K03399),K00595) K06042 K02224

B070802 Cobalamin (B12) Vitamin
biosynthesis

(K02303,K13542) (K03394,K13540) K02229 (K05934,K13540,K13541)
K05936 K02228 K05895 K00595 K06042 K02224 K02230+K09882+K09883

B070803 Cobalamin (B12) Vitamin
biosynthesis

(K00798,K19221) K02232 (K02225,K02227) K02231 K00768
(K02226,K22316) K02233

B070901 Tocopherol/tocotorienol
(E)

Vitamin
biosynthesis

K09833 (K12502,K18534) K09834 K05928

B071001 Phylloquinone (K1) Vitamin
biosynthesis

((K02552 K02551 K08680 K02549),K14759) (K01911,K14760) K01661
(K19222,K12073) K23094 K17872 K23095

B071101 Menaquinone (K2) Vitamin
biosynthesis

K02552 K02551 K08680 K02549 K01911 K01661 K19222 K02548 K03183

B071102 Menaquinone (K2) Vitamin
biosynthesis

K11782 K18285 (K18286,K20810) K11783 K11784 K11785
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B071103 Menaquinone (K2) Vitamin
biosynthesis

K11782 K18285 K18284 K11784 K11785

B071201 Ubiquinone (Q10) Vitamin
biosynthesis

(K03181,K18240) K03179 (K03182+K03186) K18800 K00568 K03185
K03183 (K03184,K06134) K00568

B071202 Ubiquinone (Q10) Vitamin
biosynthesis

K06125 K06126 K00591 K06127 K06134 K00591

B080101 Salicylate Aromatic
compound
biosynthesis

5.4.4.2 4.2.99.21

B080201 Gallate Aromatic
compound
biosynthesis

4.2.1.10

B080301 Chorismate Aromatic
compound
biosynthesis

4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080302 Chorismate Aromatic
compound
biosynthesis

2.5.1.54 3.2.3.4 4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080303 Chorismate Aromatic
compound
biosynthesis

2.7.2.4 1.2.1.11 2.2.1.10 1.4.1.24 4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080404 Dipicolinate Aromatic
compound
biosynthesis

2.7.2.4 1.2.1.11 4.3.3.7

B090101 Staphyloferrin Metallophore
biosynthesis

K21898 K23446 K23447

B090102 Staphyloferrin Metallophore
biosynthesis

(5.1.1.10,5.1.1.12) 6.3.2.58 6.3.2.57

B090103 Staphyloferrin Metallophore
biosynthesis

K23371 K21949 K21721 K23372 K23373 K23374 K23375

B090104 Staphyloferrin Metallophore
biosynthesis

2.7.1.225 2.5.1.140 1.5.1.51 6.3.2.54 4.1.1.117 6.3.2.55 6.3.2.56

B090201 Aerobactin Metallophore
biosynthesis

K03897 K03896 K03894 K03895

B090202 Aerobactin Metallophore
biosynthesis

1.14.13.59 2.3.1.102 6.3.2.38 6.3.2.39

B090301 Staphylopine Metallophore
biosynthesis

(5.1.1.10,5.1.1.24) 2.5.1.152 1.5.1.52

B100402 Bacilysin Antibiotic
biosynthesis

5.4.99.5 4.1.1.100 5.3.3.19 ((5.3.3.19 1.3.1.aa),1.3.1.aa) 1.1.1.385 6.3.2.49

B100601 Carbapenem-3-carboxy
late

Antibiotic
biosynthesis

K18317 K18316 K18315

B100801 Clavaminate Antibiotic
biosynthesis

K12673 K12674 K12675 K12676

B100802 Clavaminate Antibiotic
biosynthesis

2.5.1.66 6.3.3.4 1.14.11.21 3.5.3.22 1.14.11.21

B101101 Erythromycin Antibiotic
biosynthesis

2.1.1.254 1.14.13.154
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B101102 Erythromycin Antibiotic
biosynthesis

2.3.1.94 1.14.15.35 2.4.1.328 2.4.1.278

B101202 Fosfomycin Antibiotic
biosynthesis

5.4.2.9 4.1.1.82 1.1.1.309 2.7.7.104 2.1.1.308 1.11.1.23

B101401 Kanosamine Antibiotic
biosynthesis

K18652 K18653 K18654

B101402 Kanosamine Antibiotic
biosynthesis

1.1.1.361 2.6.1.104 3.1.3.92

B102101 Novobiocin Antibiotic
biosynthesis

6.3.1.15 2.1.1.284 2.4.1.302 2.1.1.285 2.1.3.12

B102201 Paromamine Antibiotic
biosynthesis

4.2.3.124 2.6.1.100 (1.1.1.329,1.1.99.38) 2.6.1.101 2.4.1.283 3.5.1.112

B102401 Pentalenolactone Antibiotic
biosynthesis

K12250 K15907 K18056 K17747 K18091 K18057 K17476

B102402 Pentalenolactone Antibiotic
biosynthesis

4.2.3.7 1.4.15.32 1.14.11.35 1.1.1.340 1.14.13.170 1.14.11.36 1.14.19.8

B102601 Prodigiosin Antibiotic
biosynthesis

((K21780+K21781) K21782 K21783 K21784 K21785 K21786) (K21428
K21778 K21779) K21787

B102801 Pyocyanin Antibiotic
biosynthesis

K13063 K20261 K06998 K20260 K20262 K21103 K20940

B102802 Pyocyanin Antibiotic
biosynthesis

2.1.1.327 1.14.13.218

B102901 Pyrrolnitrin Antibiotic
biosynthesis

K14266 K19981 K14257 K19982

B104101 Validamycin A Antibiotic
biosynthesis

K19969 K20431 K20432 K20433 K20434 K20435 K20436 K20437 K20438

B104102 Validamycin A Antibiotic
biosynthesis

4.2.3.152 5.1.3.33 2.7.1.214 (2.6.1.M1,2.7.7.91) 2.5.1.135 3.1.3.101
2.4.1.338 1.14.11.52

B104201 Violacein Antibiotic
biosynthesis

K20086 (K20087+K20088) K20089 K20090

B104202 Violacein Antibiotic
biosynthesis

1.4.3.23 1.21.98.2 1.14.13.217 1.14.13.224

D010101 Triglyceride Lipid degradation (K01046,K12298,K16816,K13534,K14073,K14074,K14075,K14076,K22283,
K14452,K22284,K14674,K14675,K17900) (K01054,K25824)

D010102 Triglyceride Lipid degradation (3.1.1.3,3.1.1.34) (3.1.1.34,3.1.1.79,3.1.1.116) (3.1.1.23,3.1.1.79)

D010201 Fatty acid Lipid degradation (K01897,K15013) (K00232,K00249,K00255,K06445,K09479)
(((K01692,K07511,K13767)
(K00022,K07516)),K01825,K01782,K07514,K07515,K10527)
(K00632,K07508,K07509,K07513)

D010301 Oleate Lipid degradation 6.2.1.3 1.3.8.8 4.2.1.17 1.1.1.35 2.3.1.16 1.3.8.8 4.2.1.17 1.1.1.35 2.3.1.16
1.3.8.8 4.2.1.17 (1.1.1.35,1.1.1.211) 2.3.1.16 5.3.3.8 4.2.1.74

D010401 Dicarboxylic acids Lipid degradation 6.2.1.5 1.3.8.7 4.2.1.17 1.1.1.35 2.3.1.174

D020101 Cellulose Polysaccharide
degradation

(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73) (3.2.1.176,3.2.1.4,3.2.1.14)
(1.14.99.54,1.14.99.56,1.14.99.53) (1.14.99.54,1.14.99.53) 1.14.99.54
(1.14.99.54,1.14.99.56) (1.14.99.54,1.14.99.56,1.14.99.53)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.4,3.2.1.91)
(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.8,3.2.1.32,3.2.1.4) 3.2.1.4 (3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(3.2.1.4,3.2.1.151) (3.2.1.4,3.2.1.151,3.2.1.78)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
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4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.4,3.2.1.91)
(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.8,3.2.1.32,3.2.1.4) 3.2.1.4 (3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(3.2.1.4,3.2.1.151) (3.2.1.4,3.2.1.151,3.2.1.78)

D020201 Xyloglucan Polysaccharide
degradation

(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(2.4.1.207,3.2.1.103,3.2.1.39,3.2.1.6,3.2.1.73,3.2.1.81,3.2.1.83,3.2.1.151,3.2
.1.181,3.2.1.178,3.2.1.35,3.2.1.181) (3.2.1.4,3.2.1.151)
(3.2.1.4,3.2.1.151,3.2.1.78) (3.2.1.176,3.2.1.4,3.2.1.14)
(3.2.1.4,3.2.1.150,3.2.1.151) (1.14.99.54,1.14.99.56)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.8,3.2.1.32,3.2.1.4)
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D020301 Starch Polysaccharide
degradation

(3.2.1.1,3.2.1.41,2.4.1.19,3.2.1.54,3.2.1.93,3.2.1.10,3.2.1.133,3.2.1.135,3.2.
1.20,3.2.1.60,3.2.1.68,3.2.1.70,3.2.1.98,3.2.1.116,2.4.1.18,5.4.99.16,2.4.1.2
5,2.4.1.4,2.4.1.7,3.2.1.141,5.4.99.11,5.4.99.15,3.2.1.33,2.4.99.16) 3.2.1.2
(3.2.1.1,3.2.1.22,3.2.1.41,3.2.1.54,2.4.1.18,2.4.1.25) 3.2.1.1 3.2.1.33
(3.2.1.3,3.2.1.70,3.2.1.28,2.4.1.2) (3.2.1.3,3.2.1.20,3.2.1.22)

D020401 Chitin Polysaccharide
degradation

(3.2.1.14,3.2.1.17,3.2.1.96) (3.2.1.14,3.2.1.17) (3.2.1.17,4.2.2.n1,3.2.1.14)
(3.2.1.17,3.2.1.96) (3.2.1.52,3.2.1.140)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.52,3.2.1.35,3.2.1.169) (3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52)
(1.14.99.54,1.14.99.56,1.14.99.53) (1.14.99.54,1.14.99.53)
(3.1.1.72,3.5.1.41)

D020501 Pectin Polysaccharide
degradation

(3.2.1.15,3.2.1.40,3.2.1.67,3.2.1.82,3.2.1.171,3.2.1.173)
(4.2.2.2,4.2.2.9,4.2.2.10) (4.2.2.2,4.2.2.9) (4.2.2.2,4.2.2.9) 4.2.2.2
(4.2.2.23,4.2.2.24) 4.2.2.6 4.2.2.24 4.2.2.23 (3.2.1.40,3.2.1.174) 3.2.1.173
3.1.1.11 3.2.1.172 (3.2.1.122,3.2.1.20,3.2.1.22,3.2.1.86,3.2.1.139,3.2.1.67)
3.1.1.72
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D020601 Alpha galactan Polysaccharide
degradation

3.2.1.49 (3.2.1.22,3.2.1.49,3.2.1.94,3.2.1.88) 3.2.1.22
(3.2.1.122,3.2.1.20,3.2.1.22,3.2.1.86,3.2.1.139,3.2.1.67)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.22,3.2.1.49,2.4.1.67,2.4.1.82) (3.2.1.3,3.2.1.20,3.2.1.22)

D020701 Beta-galactan Polysaccharide
degradation

3.2.1.89
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)
(3.2.1.23,3.2.1.165) 3.2.1.23
(3.2.1.21,3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.62,3.2.1.74,3.2.1.
85,3.2.1.86,3.2.1.105,3.2.1.108,3.2.1.117,3.2.1.118,3.2.1.119,3.2.1.125,3.2.1
.147,3.2.1.149,3.2.1.161,3.2.1.175,3.2.1.182) (3.2.1.23,3.2.1.46)

D020801 Mixed-Linkage glucans Polysaccharide
degradation

3.2.1.71 (3.2.1.8,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.45,3.2.1.75,3.2.1.136)
(3.2.1.39,3.2.1.58,3.2.1.73,3.2.1.175) (3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.58,3.2.1.39) 3.2.1.39
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(2.4.1.207,3.2.1.103,3.2.1.39,3.2.1.6,3.2.1.73,3.2.1.81,3.2.1.83,3.2.1.151,3.2
.1.181,3.2.1.178,3.2.1.35,3.2.1.181) (3.2.1.39,3.2.1.58,3.2.1.73,3.2.1.175)
(3.2.1.58,3.2.1.39)
(3.2.1.21,3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.62,3.2.1.74,3.2.1.
85,3.2.1.86,3.2.1.105,3.2.1.108,3.2.1.117,3.2.1.118,3.2.1.119,3.2.1.125,3.2.1
.147,3.2.1.149,3.2.1.161,3.2.1.175,3.2.1.182)

D020901 Xylans Polysaccharide
degradation

(3.2.1.8,3.2.1.32,3.2.1.4) (3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.8,3.2.1.32)
(3.2.1.8,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.45,3.2.1.75,3.2.1.136)
(3.2.1.102,3.2.1.8,3.2.1.8) (3.2.1.51,3.2.1.8) (3.2.1.76,3.2.1.37)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) 3.2.1.37 (3.2.1.139,3.2.1.131)

D021001 Beta-mannan Polysaccharide
degradation

3.2.1.78 (3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
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4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73) (2.4.1.281,2.4.1.319,2.4.1.320)
3.2.1.78 3.1.1.72
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D021101 Alpha-mannan Polysaccharide
degradation

3.2.1.130 (3.2.1.101,3.2.1.20) (3.2.1.101,3.2.1.20) (3.2.1.113,3.2.1.24)
(3.2.1.24,3.2.1.113,3.2.1.114,3.2.1.170)
(3.2.1.106,3.2.1.84,3.2.1.20,3.2.1.170,3.2.1.208) 3.2.1.113
(2.4.1.281,2.4.1.319,2.4.1.320)

D021201 Arabinan Polysaccharide
degradation

(3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.11,3.2.1.57,3.2.1.95)
(3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.4,3.2.1.8,3.2.1.37,3.2.1.55,3.2.1.73)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126) (3.2.1.55,3.2.1.37) 3.2.1.55

D021301 Mucin Polysaccharide
degradation

3.2.1.97 (3.2.1.22,3.2.1.49,3.2.1.94,3.2.1.88) 3.2.1.49 (2.4.1.211,2.4.1.247)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.22,3.2.1.49,2.4.1.67,2.4.1.82)

D030101 Lactose Sugar degradation 3.2.1.85 5.3.1.26 2.7.1.144 4.1.2.40

D030201 Sucrose Sugar degradation 2.7.1.211 3.2.1.48 2.7.1.4

D030302 D-Apiose Sugar degradation 1.1.1.420 3.1.1.115

D030401 D-Arabinose Sugar degradation 5.3.1.3 2.7.1.47

D030402 D-Arabinose Sugar degradation 5.3.1.3 2.7.1.51 4.1.2.17 1.2.1.21

D030501 D-Mannose Sugar degradation 2.7.1.191 5.3.1.8

D030502 D-Mannose Sugar degradation 2.7.1.7 5.3.1.8

D030601 D-Xylose Sugar degradation 5.3.1.5 2.7.1.17

D030602 D-Xylose Sugar degradation 1.1.1.9 2.7.1.17

D030603 D-Xylose Sugar degradation 1.1.1.424 3.1.1.68 4.2.1.82 4.2.1.141 1.2.1.26

D030604 D-Xylose Sugar degradation 1.1.1.359 3.1.1.110 4.2.1.82 4.1.2.28 1.1.1.26 2.3.3.9

D030605 D-Xylose Sugar degradation 1.1.1.175 3.1.1.110 4.2.1.82 4.2.1.1.141 1.2.1.26

D030701 L-Fucose Sugar degradation 5.1.3.29 5.3.1.25 2.7.1.51 4.1.2.17

D030702 L-Fucose Sugar degradation 5.1.3.29 4.2.1.68 1.1.1.M68 3.7.1.26

D030801 L-Rhamnose Sugar degradation 5.1.3.32 5.3.1.14 2.7.1.5 4.1.2.19

D030802 L-Rhamnose Sugar degradation (1.1.1.173,1.1.1.378) 3.1.1.65 4.2.1.90 4.1.2.53

D030803 L-Rhamnose Sugar degradation (1.1.1.173,1.1.1.378) 3.1.1.65 4.2.1.90 1.1.1.401 3.7.1.26

D030901 Galactose Sugar degradation K01785 K00849 K00965 K01784

D031001 NeuAc Sugar degradation 4.1.3.3 5.1.3.8

D031002 NeuAc Sugar degradation 4.1.3.3 2.7.1.60 5.1.3.9

D040101 Albumin Protein
degradation

A1A (S8A C13 (S1A (S8B S26B)))

D040201 Actin Protein
degradation

S1A (M10A A1A M35 (M9B S1B S1C C1A (M12A C14A A2A C13 M10C)))

D040301 Collagen Protein
degradation

C1A M10A (M12B (S1A A1A (C13 M35 (M12A S1D S8A A2A M4 S8B))))

D040401 Elastin Protein
degradation

M10A (S1A (M23A S01C C1A))

D040501 Glutelin Protein
degradation

S26B S8A S9A

D040601 Keratin Protein
degradation

S1D M12A S1A

D040701 Tropomyosin Protein S1B (C2A C1A S1A (M4 C13 M10A (S1D M12A)))
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degradation

D040801 Troponin Protein
degradation

C2A (A2A M35 C14A)

D050101 Serine Amino acid
degradation

4.3.1.17,4.3.1.18

D050201 Threonine Amino acid
degradation

4.3.1.19

D050301 Cysteine Amino acid
degradation

4.4.1.1,4.4.1.28

D050302 Cysteine Amino acid
degradation

2.6.1.3 2.8.1.2

D050401 Methionine Amino acid
degradation

4.4.1.11

D050501 Valine Amino acid
degradation

2.6.1.42 1.2.1.25 1.3.8.5 4.2.1.150 3.1.2.4 1.1.1.31 1.2.1.27

D050502 Valine Amino acid
degradation

2.6.1.42 4.1.1.72 1.1.1.1

D050601 Isoleucine Amino acid
degradation

2.6.1.42 1.2.1.25 1.3.8.5 4.2.1.150 1.1.1.178 2.3.1.16

D050602 Isoleucine Amino acid
degradation

2.6.1.42 1.2.7.7

D050701 Leucine Amino acid
degradation

K00826 (((K00166+K00167),K11381)+K09699+K00382) (K00253,K00249)
(K01968+K01969) (K05607,K13766) K01640

D050801 Lysine Amino acid
degradation

4.1.1.18 2.6.1.82 1.2.1.19 2.6.1.48 1.2.1.20 1.14.11.64 1.1.5.13

D050802 Lysine Amino acid
degradation

1.13.12.2 3.5.1.30 1.6.1.48 1.2.1.20 2.8.3.13

D050803 Lysine Amino acid
degradation

2.6.1.36 1.2.1.31

D050804 Lysine Amino acid
degradation

4.1.1.18 2.6.1.82 1.2.1.19 2.6.1.48 1.2.1.20 2.8.3.13

D050805 Lysine Amino acid
degradation

K01582 K09251 K00137 K07250 K00135 K15737 K15736

D050806 Lysine Amino acid
degradation

K00468 K01506 (K14268,K07250) K00135 ((K15737 K15736),(K01041
K00252 (K01692,K01825,K01782) (K01825,K01782) K00626))

D050901 Arginine Amino acid
degradation

4.1.1.19 3.5.3.11

D050902 Arginine Amino acid
degradation

4.1.1.19 3.5.3.12 3.5.1.53

D050903 Arginine Amino acid
degradation

1.13.12.1 3.5.1.4 3.5.3.7

D050904 Arginine Amino acid
degradation

K01476 K01581

D050905 Arginine Amino acid
degradation

K00613 K00542 K00933

D050906 Arginine Amino acid
degradation

(K01583,K01584,K01585,K02626) K01480 K01611 K00797
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D051001 Proline Amino acid
degradation

5.1.1.4 1.21.4.1

D051101 Glutamate Amino acid
degradation

1.4.1.2,1.4.1.3

D051102 Glutamate Amino acid
degradation

2.6.1.1 4.3.1.1

D051103 Glutamate Amino acid
degradation

1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5

D051104 Glutamate Amino acid
degradation

5.4.99.1 4.3.1.2 4.2.1.34 4.1.3.22

D051105 Glutamate Amino acid
degradation

4.1.1.15

D051201 Histidine Amino acid
degradation

K01745 K01712 K01468 (K01479,K00603,K13990,(K05603 K01458))

D051301 Tryptophan Amino acid
degradation

(K00453,K00463) (K01432,K14263,K07130) K00486 K01556 K00452
K03392 (K10217,K23234)

D051302 Tryptophan Amino acid
degradation

4.1.99.1

D051601 Beta-alanine Amino acid
degradation

2.6.1.18 1.2.1.18

D051602 Beta-alanine Amino acid
degradation

2.6.1.120 1.1.1.298

D051701 Ornithine Amino acid
degradation

4.1.1.17 ((2.6.1.82 1.2.1.19),(6.3.1.11 1.4.3.M3 1.2.1.00 3.5.1.94))

D051801 GABA Amino acid
degradation

2.6.1.19 (1.2.1.24,1.2.1.16)

D051802 GABA Amino acid
degradation

2.6.1.19 1.1.1.61 2.8.3.M6 4.2.1.120 1.3.1.109 (2.8.3.1,2.8.3.8)

D060101 Nitrate Nitrogen
compound
degradation

((K00370+K00371+K00374),(K02567+K02568))
((K00362+K00363),(K03385+K15876))

D060102 Nitrate Nitrogen
compound
degradation

1.7.5.1 1.7.2.1 1.7.2.5 1.7.2.4

D060103 Nitrate Nitrogen
compound
degradation

1.9.6.1 1.7.2.2

D060105 Nitrate Nitrogen
compound
degradation

1.7.7.2 1.7.7.1

D060201 Urea Nitrogen
compound
degradation

6.3.4.6 3.5.1.54

D060202 Urea Nitrogen
compound
degradation

3.5.1.5

D060301 Urate Nitrogen
compound

1.7.3.3 3.5.2.17 4.1.1.97
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degradation

D060302 Urate Nitrogen
compound
degradation

1.14.13.113 3.5.2.17 4.1.1.97

D060401 GlcNAc Nitrogen
compound
degradation

2.7.1.59 3.5.1.25 3.5.99.6

D060402 GlcNAc Nitrogen
compound
degradation

3.5.1.25 3.5.99.6

D060601 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.9 3.5.3.26 (1.1.1.350,1.1.1.154) 2.1.3.5

D060602 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.4 4.3.2.3

D060603 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.9 3.5.3.26 4.3.2.3

D060701 Creatinine Nitrogen
compound
degradation

3.5.4.21 3.5.2.14 3.5.1.59 1.5.3.1

D060801 Betaine Nitrogen
compound
degradation

2.1.1.5 1.5.3.10 (1.5.3.24,1.5.3.1)

D060901 L-carnitine Nitrogen
compound
degradation

1.14.13.239 1.2.1.4 1.1.1.38

D061001 Methylamine Nitrogen
compound
degradation

1.4.9.1

D061002 Methylamine Nitrogen
compound
degradation

6.3.4.12 2.1.1.21 1.5.99.5

D061101 Phenylethylamine Nitrogen
compound
degradation

(1.4.3.4,1.4.3.21) 1.2.1.39

D061201 Hypotaurine Nitrogen
compound
degradation

2.6.1.77 1.2.1.3

D061301 Taurine Nitrogen
compound
degradation

2.6.1.77

D061303 Taurine Nitrogen
compound
degradation

2.5.1.55

D070101 2,3-Butanediol Alcohol
degradation

1.1.1.4,1.1.1.76

D070201 Ethanol Alcohol
degradation

1.1.1.1 1.2.1.10
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D070202 Ethanol Alcohol
degradation

1.1.1.1 1.2.1.3 6.2.1.1

D070401 Glycerol Alcohol
degradation

2.7.1.30 1.1.5.3

D070402 Glycerol Alcohol
degradation

1.1.1.6 2.7.1.29

D070403 Glycerol Alcohol
degradation

4.2.1.30 1.1.1.202

D070404 Glycerol Alcohol
degradation

1.1.1.6 2.7.1.121

D070501 Propylene glycol Alcohol
degradation

4.2.1.28 (1.1.1.1,(1.2.1.87 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)))

D070601 Ethylene glycol Alcohol
degradation

1.1.1.77 1.2.1.21

D070801 Phytol Alcohol
degradation

1.1.1.1 1.2.1.3 6.2.1.3 1.3.1.38

D070901 Polyvinyl alcohol Alcohol
degradation

1.1.2.6

D080101 Toluene Xenobiotic
degradation

(K15760+K15761+K15763+K15764) K00055 K00141

D080103 Toluene Xenobiotic
degradation

K07540 (K07543+K07544) K07545 K07546 (K07547+K07548)
(K07549+K07550)

D080201 Xylene Xenobiotic
degradation

(K15757+K15758) K00055 K00141

D080402 Benzene Xenobiotic
degradation

K16249+K16243+K16244+K16242+K16245+K16246

D080501 Benzoate Xenobiotic
degradation

(K05549+K05550+K05784) K05783

D080502 Benzoate Xenobiotic
degradation

K04116 K04117 K07534 K07535 K07536

D080601 Anthranilate Xenobiotic
degradation

(K05599+K05600+K11311),(K16319+K16320+K18248+K18249)

D080701 Catechol Xenobiotic
degradation

K03381 K01856 K03464 (K01055,K14727)

D080702 Catechol Xenobiotic
degradation

(K00446,K07104) ((K10217 K01821 K01617),K10216) (K18364,K02554)
(K18365,K01666) (K18366,K04073)

D080801 Cumate Xenobiotic
degradation

(K10619+K16303+K16304+K18227) K10620 K10621 K10622 K10623

D080901 Biphenyl Xenobiotic
degradation

(K08689+K15750+K18087+K18088) K08690 K00462 K10222

D081001 Carbazole Xenobiotic
degradation

K15751 (K15754+K15755) K15756

D081101 Benzoyl-CoA Xenobiotic
degradation

((K04112+K04113+K04114+K04115),(K19515+K19516)) K07537 K07538
K07539

D081201 Naphthalene Xenobiotic
degradation

(K14579+K14580+K14578+K14581) K14582 K14583 K14584 K14585
K00152

D081301 Salicylate Xenobiotic K18242+K18243+K14578+K14581
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degradation

D081401 Terephthalate Xenobiotic
degradation

(K18074+K18075+K18077) K18076

D081501 Phthalate Xenobiotic
degradation

(K18068+K18069) K18067 K04102

D081601 Phenylacetate Xenobiotic
degradation

K01912 (K02609+K02610+K02611+K02612+K02613) K15866 K02618
K02615 K01692 K00074

D081701 Trans-cinnamate Xenobiotic
degradation

(((K05708+K05709+K05710+K00529) K05711),K05712) K05713 K05714
K02554 K01666 K04073

D081801 Caffeine Xenobiotic
degradation

K21722 K21723 K21724

D081901 Mercury Xenobiotic
degradation

4.99.1.2 1.16.1.1

D090101 Penicillin Antibiotic
degradation

K18698,K18699,K18796,K18767,K18797,K19097,K19317,K18768,K18970,
K19316,K22346,K18795,K19218,K19217,K17836,K18766

D090201 Carbapenem Antibiotic
degradation

K17837,K18782,K18781,K18780,K19099,K19216

D090301 Cephalosporin Antibiotic
degradation

K19095,K19096,K19100,K19101,K19214,K19215,K20319,K20320,K01467

D090401 Oxacillin Antibiotic
degradation

K17838,K18790,K18791,K19098,K18792,K19213,K21276,K18793,K18971,
K22352,K19209,K18976,K18973,K18794,K18972,K21277,K19210,K19211,
K19212,K22335,K19319,K22331,K22351,K19320,K19318,K19321,K19322,
K21266,K22334,K22333,K22332

D090501 Streptogramin Antibiotic
degradation

K19349,K19350

D090601 Fosfomycin Antibiotic
degradation

K21252

D090701 Tetracycline Antibiotic
degradation

K08151,K08168,K18214,K18218,K18220,K18221

D090801 Macrolide Antibiotic
degradation

K06979,K08217,K18230,K18231,K21251

D091001 Chloramphenicol Antibiotic
degradation

K00638,K08160,K18552,K18553,K18554,K19271

D091101 Lincosamide Antibiotic
degradation

K18236,K19349,K19350,K19545

D091201 Streptothricin Antibiotic
degradation

K19273,K20816
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Table S2:
Anova tables of linear mixed models for different components of alpha diversity.

Neutral alpha diversity:

Phylogenetic alpha diversity:

Functional alpha diversity:
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Table S3:
Permanova tables for different components of beta diversity.

Neutral beta diversity:

Phylogenetic beta diversity:

Functional beta diversity:
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Table S4:
Variance partition using hierarchical modelling of species communities (Hmsc). Variance
percentages were similar for metagenomic (MG) and metatranscriptomic (MT) samples. Most
of the microbiota variance occurred between time points (age).

Variance percentage (%) MG MT

Age 65 49

Pen 26 32

Trial 6 5

Treatment 1.15 8

Genetic line 1.15 3

Sex 0.86 3
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Figure S1: Heatmap indicating the Genome-Inferred Functional Trait (GIFT) values for each
bacterial genome. These quantitative traits range between 0 and 1, with higher numbers
indicating a bigger presence of genes involved in each metabolic pathway.
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Figure S2:
Temporal differences for neutral, phylogenetic and functional beta diversities comparing
animals from the same trial and same pen. The variance of functional attributes (Dβ

d7-35 =
0.23±0.06) exceeded that of the phylogenetic change (Dβ

d7-35= 0.08±0.03).

Figure S3:
Phylogenetic correlogram for metatranscriptomic data, which shows a similar trend to the
metagenomic data one in Fig. 1g of the main text.
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Figure S4:
Linear regressions on day 35 separating chickens by sex and genetic line. The relationship
between body weight and increaser bacteria was positive for the two sexes and two chicken
genetic lines.

Figure S5:
Mean chicken body weight of 5th and 95th percentile subsets. The difference between both
groups is 291 gr. i.e. around 10% difference in total body weight between groups. The null
hypothesis of no difference between the two groups is rejected when submitted to a two-way
Welch's T-test (t = -2.7073, df = 8.8646, p-value = 0.02442).
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Figure S6:
Linear regressions on days 7 (a), 21 (b) and 35 (c) between chicken body weight and centred
log-ratio of the relative abundance of bacteria that decreased their relative representation
through time. The linear regressions using decreaser bacteria show the opposite trend that
the trend increaser bacteria showed in Fig. 3 of the main text.

Figure S7:
Percentages of reads mapped back to samples at minimum coverage 30%. Apart from
samples with low read depth, the percentage of mapped reads is consistent for all samples,
even for those that did not contribute to the generation of the catalogue. A linear correlation
between read count and species representation in samples can be observed. The 388
samples used for this study exhibited high and consistent metagenomic read mapping rates
of around 60-80%.
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Priority effects and microbial
cross-feeding shape zoonotic agent
spread in broiler chickens

Chapter 5
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Abstract
Unravelling the colonisation dynamics and physiological effects of zoonotic bacteria such
as Campylobacter is imperative to prevent foodborne diseases. We employed a
hologenomic approach to jointly analyse metabolic networks and gene expression of the
caecal microbiota, with the intestinal gene expression of 613 broiler chickens that did and
did not undergo an opportunistic Campylobacter colonisation. We report that an early
development of a distinct microbial enterotype enriched with Bacteroides fragilis_A,
changed the community to a functional profile that likely benefited Campylobacter through
production of key metabolites. The resulting enterotype was not associated with a host
immune response, but exhibited an enriched and energetically more demanding functional
repertoire compared to the standard enterotype, which could have caused the growth
decline observed in Campylobacter-colonised animals. We provide unique insights into
microbe-microbe and host-microbe interactions, which point to the early-stage
microbiota-development as a relevant factor for later Campylobacter spread in broiler
chickens.
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Introduction
Zoonotic bacteria responsible for foodborne diseases represent a significant global concern
due to their public health and economic implications (Abebe et al., 2020). However, the
efficacy of prevention strategies is often hindered by a limited understanding of the precise
colonisation dynamics and the physiological effects within vector hosts (Abd El-Hack et al.,
2021; Sahoo et al., 2022). Fortunately, the emergence of multi-omic technologies has greatly
enhanced our ability to bridge this knowledge gap and comprehend the ecological dynamics
of zoonotic agents in source animals (Salmon-Divon et al., 2022). By facilitating the study of
functional interactions among zoonotic bacteria, the animal host, and its associated microbial
community, multi-omics offer invaluable insights crucial for the development of effective
strategies to mitigate the impact of these diseases on human populations (Bäumler &
Sperandio, 2016).

Campylobacteriosis is the most frequently reported zoonosis in the EU due to the presence
of Campylobacteraceae strains in broiler chickens (Food Safety Authority, 2021). These
bacteria are typically detected in chickens during the third week of their life, a period when
the gut microbiota begins to stabilise after an initial rapid development characterised by
significant species turnover (Ijaz et al., 2018; Rychlik, 2020). While Campylobacter has been
considered a causative agent of microbiota rearrangements (Connerton et al., 2018;
Thibodeau et al., 2015; Yan et al., 2021), the drivers of Campylobacter colonisation remain
unclear (Awad et al., 2018). The metabolic auxotrophies of Campylobacter render it a
potential scavenger of metabolic by-products produced by other bacteria (Garber et al., 2020;
Luijkx et al., 2020). Thus, prior alterations in the biochemical conditions during initial
microbial succession could drive spread of Campylobacteraceae at a later stage (Han et al.,
2017; Ijaz et al., 2018; Kaakoush et al., 2014; Thibodeau et al., 2015; Yan et al., 2021). The
construction of metabolic networks using metagenome-assembled genomes now allows for
the study of such interdependencies (Belcour et al., 2020), enabling investigations into
whether different paths of microbiota development can either facilitate or hinder the
establishment and transmission of zoonotic strains.

The physiological effects of Campylobacteraceae on the host are also a subject of ongoing
debate, as the literature presents contradictory findings regarding the relationship between
Campylobacter and animal growth performance. While certain studies report no significant
impact on chicken body weight (Connerton et al., 2018; Munoz et al., 2023), others describe
weight loss after Campylobacter colonisation (Awad et al., 2015; Kollarcikova et al., 2019).
There is also considerable variability in the host immune response to the presence of
Campylobacter (Awad et al., 2014; Connerton et al., 2018; Han et al., 2016; Humphrey et al.,
2014). Furthermore, it remains unresolved whether these patterns are directly attributable to
the action of Campylobacter itself or to the microbial community as a whole. The application
of host and microbial (meta)transcriptomics enables us to delve into the actual interactions
occurring between the two domains during different developmental stages.

In the H2020 project HoloFood (HoloFood, n.d.), we conducted three five-week-long
experimental replicates to understand the effect of host-microbiota interactions in broiler
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chicken production. In the last of the three trials, we detected an opportunistic colonisation of
Campylobacter spp. in almost all chickens slaughtered after the third week (Tous et al.,
2022). While the first two experimental trials allowed us to characterise the functional
dynamics of the caecal microbiota development (Marcos et al., 2023), the third trial
presented an exceptional opportunity to study the microbial and host alterations associated
with Campylobacter colonisation with unprecedented resolution. We generated multiple omic
data sets that encompassed host and microbial domains of the hologenomic landscape
(Nyholm et al., 2020), namely genome-resolved metagenomics, microbial
metatranscriptomics and chicken intestinal transcriptomics. By integrating those omic layers
we compared the temporal development of the functional capabilities and activity of the
caecal microbiota, along with the intestinal gene expression, of broiler chickens that
experienced opportunistic Campylobacter colonisation and those that did not. We first
analysed the alterations preceding Campylobacter spread using genome-scale metabolic
networks (GSMNs), followed by host and microbial gene expression variation associated with
the presence of Campylobacter and related bacteria.

Results
A distinct microbiota development precedes the spread of
Campylobacteraceae bacteria
We analysed the microbial communities of 7-, 21- and 35-day-old chickens from three
experimental replicates (trials A, B and C) by mapping 613 metagenomic datasets generated
from caecum content samples to a bacterial genome catalogue generated from the same
pool of animals (Marcos et al., 2023). Our metagenomic analysis confirmed the initial
detection of Campylobacter spp. through PCR screening (Tous et al., 2022). All animals in
trial C from day 21 onwards got colonised by at least one of the two Campylobacteraceae
species, namely C. jejuni and C. coli. In addition, we detected another species belonging to
the Campylobacterales order, Helicobacter pullorum (Fig. 1a). C. jejuni and C. coli represent
prominent zoonotic agents responsible for human diarrheal diseases in industrialised and
developing countries (Kaakoush et al., 2015), while H. pullorum is an emerging zoonotic
pathogen linked to colitis and hepatitis in humans (Javed et al., 2017). Although chickens are
predominantly colonised by C. jejuni, co-colonisation with C. coli and Helicobacter strains is
often detected, which can lead to either commensalism or competition between them
(Kaakoush et al., 2014; Rzeznitzeck et al., 2022).
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Figure 1. Overview of the two caecum microbiota enterotypes. a) Relative abundances
of the three Campylobacterales strains across the three experimental trials and sampling
points. b) Distance-based redundancy analysis of studied microbial communities, in which
the two microbial enterotypes defined by Dirichlet Multinomial Models, the standard (empty
shapes) and the distinct (solid shapes), are illustrated (R2

adj = 0.34). Colours indicate
experimental trials, while shapes indicate sampling times. Arrows denote the directionality of
the variables enterotype (standard and distinct) and chicken age (days 7, 21 and 35) with
respect to microbial composition. c) Cladogram based on the phylogenetic tree of the 822
caecum bacteria included in the study, with their average relative abundances in the two
enterotypes at day 7. A detailed phylogenetic tree can be found in a previous publication by
Marcos et al. (Marcos et al., 2023).

Community-level analyses revealed a robust association between the propagation of
Campylobacterales strains in trial C and a distinctive microbiota development, contrasting
with the trajectories observed in trials A and B (Fig. 1b). The distinct enterotype became
evident at an early stage, manifesting noticeable differences in community composition (R2 =
0.01, F-value = 2.02, p-value = 0.018) and functional profile (R2 = 0.14, F-value = 49.05,
p-value = 0.001) by the first sampling point at 7 days of age. This enterotype was
characterised by an atypical dominance of Bacteroidota, primarily driven by Bacteroides
fragilis_A according to Dirichlet Multinomial Mixture models (Fig. S1). B. fragilis_A was the
most abundant bacteria in approximately half of the day-7 animals in trial C (Fig. 1c), in
contrast to the standard microbiota development observed in trials A and B (Fig. S2). In
those trials, Bacteroidales proliferated in the third week of age, after an initial period
dominated by Lactobacillus and Lachnospiraceae clades, as previously reported in the
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literature (Rychlik, 2020). B. fragilis_A is a non-spore-forming obligate anaerobe that usually
colonises the chicken intestine at a later stage, likely due to its lower colonisation ability
compared to spore-forming bacteria such as Lachnospiraceae, whose spores are
widespread in the farm environment (Rychlik, 2020). Our observations are therefore in line
with previous studies that reported a link between Campylobacter and obligate anaerobes
within orders Clostridiales and Bacteroidales (Thibodeau et al., 2015; Yan et al., 2021)

To delve into the potential causes of the development of a distinct enterotype, we studied
how the abundance of B. fragilis_A distributed across experimental groups at day 7. We
found that B. fragilis_A was not randomly distributed, but aggregated in pens, as indicated by
the 79% of the variance explained by the random effect of pens. However, the distribution
was not associated with pen-specific chicken characteristics such as genetic line (t-value =
-0.91, p-value =0.37) and sex (t-value = 0.24, p-value = 0.81). These observations suggest
that the development of the distinct enterotype in trial C animals was primarily driven by the
expedited colonisation of B. fragilis_A in a few animals, likely occurring before pen allocation,
followed by subsequent transmission to pen-mates.

Bacteroides fragilis as a facilitator of Campylobacter
colonisation
Despite inherent limitations in establishing causal associations from observational data, our
investigation into bacterial metabolic dependencies unveiled several molecular mechanisms
that shed light on how the early development of a Bacteroides-enriched enterotype might
promote the subsequent proliferation of Campylobacter strains (Kaakoush et al., 2014; Yan
et al., 2021). To quantify these metabolic dependencies, we employed 822 genome-scale
metabolic networks (GSMNs) (Burgard et al., 2004) constructed using Pathway Tools (Karp
et al., 2021), and grounded on EggNOG annotations (Huerta-Cepas et al., 2019). We
categorised each metabolite for each bacterium as a source, transit, or sink metabolite based
on its capacity for utilisation or production. Source metabolites are those that a bacterium can
utilise but not produce, transit metabolites can be both produced and consumed, and sink
metabolites are produced but not used (Fig. 2a).
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Figure 2. Enterotype contribution to Campylobacter metabolism. a) Conceptual
representation of the metabolic dependencies between Bacteroides fragilis_A and
Campylobacter spp. b) Community-weighted average of the number of Campylobacter
source metabolites each enterotype is capable of producing. c) Spanning tree of the joint
genome-scale metabolic network model between Bacteroides fragilis_A and Campylobacter
jejuni. Nodes indicate metabolites, while branches indicate reactions. Grey branches indicate
metabolic reactions that are present in both genomes, pink branches are only present in B.
fragilis_A while blue branches are only present in C. jejuni. d-i) Cumulative relative
abundance of bacteria capable of producing specific metabolites in the standard and distinct
enterotypes. Colours indicate experimental trials, and boxplots are specific to each trial and
enterotype.

We determined the existence of 385 and 395 source metabolites for C. jejuni and C. coli,
respectively, of which 32.2% and 32.7% could be produced by other members of the
community. Both strains shared 95% of their metabolic networks, diverging only in C. coli's
superior capability to metabolise some by-products such as glutathione, succinate, and
oxaloacetate (Fig. S3). To assess whether the distinct enterotype conferred metabolic
advantages to Campylobacter, we calculated the weighted capacity of each enterotype to
produce those source metabolites at day 7. Our findings revealed that the distinct enterotype
exhibited a higher capacity compared to the standard one (LMM, estimate = 2.23, t-value =
5.43, p-value < 0.01) in producing source metabolites that Campylobacter cannot synthesise
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on its own (Fig. 2b). Broadening our analysis, we observed that 1,043 out of the 4,533
identified metabolites were overrepresented in the distinct enterotype, encompassing 31 and
35 source metabolites for C. jejuni and C. coli, respectively, which can be potentially
produced by the rest of the community (Table S1).

In vitro assays suggested Bacteroides as a potential facilitator of Campylobacter colonisation
via the provision of free sugars and short-chain fatty acids (SCFAs) (Fan et al., 2023; Garber
et al., 2020; Luijkx et al., 2020). Our joint GSMN of B. fragilis_A and C. jejuni highlighted
numerous ways in which Bacteroides could contribute to Campylobacter through the
production of relevant metabolic by-products (Fig. 2c). However, we found no evidence of an
enhanced genomic capacity of the distinct enterotype for polysaccharide degradation (Fig.
2h) or SCFA production (Fig. 2i). As the dominant taxa in the standard enterotype (e.g.,
Lachnospirales and Oscillospirales) also possess these metabolic attributes (Vacca et al.,
2020), it is unlikely that Campylobacter colonisation was primarily linked to these metabolites.

Nonetheless, we identified other metabolites that were likely to play pivotal roles in the
Bacteroides-Campylobacter interaction. The two most relevant source metabolites for
Campylobacter were coproporphyrin III and (R)-citramalate, as they stood out due to their
pronounced differences between enterotypes (Figs. 2d, 2e) and their classification as sink
metabolites for B. fragilis_A. This indicates that B. fragilis_A likely overproduces these
metabolites, which may become available for Campylobacter. Coproporphyrin III is an
essential component of one of the three haem biosynthesis pathways. Haem is an
iron-chelated modified tetrapyrrole and is a key compound for proteins involved in several
essential cellular processes (Zamarreño Beas et al., 2022). (R)-citramalate is a metabolic
intermediate that participates in the synthesis of tricarboxylic acids (Petushkova et al., 2021)
and is known to be a substrate of the alternative threonine-independent isoleucine synthesis
pathway (Risso et al., 2008). We quantified gene expression and verified the utilisation of
both metabolites by Campylobacter strains (EC:4.99.1.9 and EC:4.2.1.35) and the production
of coproporphyrin III by B. fragilis_A (EC:1.3.3.15).

Two other source metabolites for Campylobacter, MOCS3-Cysteine and sulphate, were also
disproportionately prevalent in the distinct enterotype (Fig. 2f, 2g). However, unlike the
previously mentioned metabolites, B. fragilis_A has the capacity to utilise them.
MOCS3-Cysteine, a sulphur transferase enzyme crucial for molybdopterin biosynthesis,
plays a pivotal role in the formation of redox enzymes (Mendel & Leimkühler, 2015). Sulphate
can be reduced to hydrogen sulphide, required for cysteine synthesis (Kredich, 1992).
Despite reported auxotrophies related to sulphate assimilation in Campylobacter (Man et al.,
2020), our strains exhibited gene expression for the enzymes responsible for consuming
these metabolites (EC:2.7.7.4 and EC:2.8.1.7, respectively). Our results therefore suggest
that priority effects, whereby the order of microbial species colonisation influences longer
term microbiome composition, likely play a central role in shaping temporal Campylobacter
dynamics. Specifically, the Bacteroides-dominated enterotype creates a metabolically
favourable environment for Campylobacter establishment and colonisation, likely facilitated
by acquisition of compounds involved in central metabolic processes.
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The distinct enterotype correlates with host body weight
Chickens from trial C not only underwent a distinct enterotype development followed by the
spread of Campylobacterales strains, but also exhibited a significantly reduced growth
performance as compared to chickens from trials A and B (Fig. S4). Unlike in humans,
Campylobacterales strains do not cause disease symptoms in chickens (Wyszyńska &
Godlewska, 2021). However, impaired performance has been observed in multiple trials,
which has fueled discussions about strain-specific mechanisms by which Campylobacter
could affect chicken growth (Awad et al., 2018; Wyszyńska & Godlewska, 2021). In light of
this, we posed two non-exclusive hypotheses on how microbe-host interactions could have
contributed to the reduction of animal growth: i) colonisation by Campylobacterales triggers
an inflammatory response, which hinders the correct functioning of the intestine and deviates
energy from growth to immunity (Humphrey et al., 2014); ii) the distinct enterotype is
functionally different, which affects host energy balance (Marcos et al., 2023).

To assess whether the distinct enterotype triggered a persistent pro-inflammatory response in
the host's intestine, we performed differential expression analyses between the two
enterotypes. The study of 169 host transcriptomic datasets derived from caecal mucus
samples collected at three distinct time points, revealed no substantial differences in the
expression profiles between animals hosting each enterotype. Although we detected the
largest difference at day 35, with 36 differentially expressed genes (Fig. S5, Table S2), no
clear Gene Ontology or KEGG pathway enrichment could be observed, thus yielding no
evidence of an inflammatory response from the host. The critical window in the immune cell
development is identified between days 14 and 28, in which certain bacteria play a key role in
their maturation process (Liu et al., 2023). Campylobacter is recognised by Toll-like receptors
and can induce an inflammatory response by increasing expression of cytokines and
immune-associated genes (Awad et al., 2014; Connerton et al., 2018; Humphrey et al.,
2014). In fact, enzyme immunoassay conducted in blood did detect a significant peak of
C-reactive protein in the distinct enterotype at day 21 (Tous et al., 2022). This time point
coincides with the initial detection of Campylobacter, which pointed towards a possible
response from the host. Nonetheless, neither the rest of inflammation (haptoglobin-like
protein) nor stress (corticosterone) biomarkers analysed in the same animals pointed
towards a significant inflammatory response (Tous et al., 2022). We therefore deem unlikely
that the observed growth deceleration in chickens from trial C was due to an immune
response towards Campylobacteraceae bacteria.

Instead, we hypothesised that the lower body weights associated with the distinct enterotype
could result from a heightened metabolic capacity of the microbial communities. An
increased metabolic demand of the caecal microbiota might cause the microbial community
to compete for resources with the host, restricting the host’s absorption of nutrients in the
proximal part of the caecum (Marcos et al., 2023). Once validated that the distinct enterotype
had higher metabolic capacities than the standard in the first weeks of the trials (Fig. S6), we
explored whether these capacities were actually realised. For this purpose, we compared the
metabolic activity of both enterotypes across the three time points. We distilled microbial
gene expression data from 125 microbial metatranscriptomic datasets into 170 quantitative
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Genome-Inferred Functional Traits (GIFTs) (Table S3) per genome, by pondering gene
expression values according to the weight of each gene in each metabolic pathway.
Community level analyses showed that the distinct enterotype tended to overexpress genes
involved in organic anion biosynthesis (B06) and, particularly, nitrogen compound
degradation (D06) already from day 7, but exacerbated at days 21 and 35 (Figs. 3a, 3b, 3c).
Bacteroidales and Campylobacterales were the main contributors to the B06 and D06
function groups (Fig. 3d), as different strains of the phylum Bacteroidota emerged at days 21
and 35 (Fig. S2). In addition, the decline of Oscillospirales and Lachnospirales clades in the
distinct enterotype caused a reduction of amino acid derivative biosynthesis (B03) and lipid
degradation (D01). The D06 function group consists mainly in nitrate, urate, taurine and
hypotaurine degradation. B06, although comprising biosynthesis pathways, is derived mainly
from degradation of lipids, proteins and carbohydrates through Krebs cycle and other
processes to produce succinate, fumarate and citrate, which together with D06 points
towards a higher catalytic activity of microbes. Our results are in line with previous studies
which reported that the reduced body weight gain in Campylobacter-colonised chickens
could be due to the extensive amino acid utilisation by Campylobacter, which caused lower
concentrations of amino acids in the ileum, and a reduced expression of peptide and amino
acid transporters in the caecum (Awad et al., 2014, 2015). Nevertheless, our data suggests
that such heightened energy utilisation should not only be attributed to Campylobacter, but
also extended to Bacteroidalesstrains, which collectively contributed to the increased
metabolic action of the distinct enterotype.
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Figure 3. Functional activity of enterotypes. a) Distance-based redundancy analysis of the
microbial expression profiles in which two microbial enterotypes defined by Dirichlet
Multinomial Models, the standard and the distinct, across the three sampling points are
shown (R2

adj = 0.25). b) The same distance-based redundancy analysis in which the arrows
illustrate the expression of function groups. The length of the arrow shows the strength of the
correlation between function groups and microbial expression. The four functions with the
highest effect sizes (D06, B06, D01 and B03) are highlighted in red (positive effect towards
the distinct enterotype) and blue (negative effect towards the distinct enterotype). Green and
purple arrows denote the directionality of the variables enterotype (standard and distinct) and
chicken age (days 7, 21 and 35). c) Differentially expressed functions across sampling times
in distinct communities. Blue boxes indicate functional pathways over-expressed in the
standard enterotype, while red boxes indicate pathways over-expressed in the distinct
enterotype. The coloured contours of D06, B06, D01 and B03 highlight the four functions
showcased in figure d. d) Expression profiles of the 822 caecum bacteria in the two microbial
enterotypes at day 35. The expression of four relevant function groups were illustrated B06
(organic anion biosynthesis), D06 (nitrogen compound degradation), B03 (Amino acid
derivative biosynthesis), and D01 (Lipid degradation).

Discussion
Foodborne zoonotic bacteria not only give rise to infectious diseases in humans and have
environmental implications, but also impose significant economic and resource burdens on
the meat industry (Smith et al., 2019). Nevertheless, current methods for prevention and
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early detection of zoonotic agents often fall short, partly due to our limited knowledge about
their interactions with the rest of the gut microorganisms and host animals. Our multi-omic
study, focusing on the temporal development of functional capacities and activity within
Campylobacterales bacteria and the rest of the microbiota, unveiled numerous novel insights
into these intricate interactions. We observed that the distinct enterotype preceding the
widespread emergence of Campylobacterales demonstrated a heightened ability to meet the
metabolic demands of Campylobacter spp., in contrast to the standard enterotype associated
with Campylobacter-free animals. While it is worth noting that the enterotypes presented in
this study are likely only two of many possible microbiota development trajectories
(Kaakoush et al., 2014; Thibodeau et al., 2015; Yan et al., 2021), our findings suggest that
metabolic interdependencies and priority effects significantly influence the likelihood of
Campylobacter colonisation within chicken gut environments. Notably, the emergence of this
distinct enterotype primarily led by Bacteroides fragilis_A opens the possibility of using the
early presence of this bacteria as a biomarker for subsequent Campylobacter colonisation.
While manipulation of the early-life microbiota followed by experimental infection with
zoonotic strains will be necessary to validate our results, these findings pave the way for
exploring strategies to manipulate early-life microbiota compositions that minimise metabolic
advantages for Campylobacter.

The colonisation of Campylobacter spp. was associated with a marked reduction of body
weight in the studied chickens. However, neither the gene expression analyses conducted on
intestinal mucosal samples, nor the examination of numerous complementary markers,
revealed clear indications of a systemic immune response to the presence of Campylobacter
spp. or the distinct enterotype. We nevertheless observed notable disparities in the metabolic
capacities and activities of bacteria in both enterotypes, with the distinct enterotype exhibiting
enhanced activity across most metabolic domains, with a particular emphasis on nitrogen
compound utilisation. These results align with previous observations that indicated a negative
impact of increased metabolic activity on animal growth, likely stemming from increased
competition for nutritional resources (Marcos et al., 2023). Therefore, observed correlations
between the presence of Campylobacter spp. and reduced body weight, in the absence of an
inflammatory response, may be attributed to a distinct metabolic activity of the associated
microbiota.

In summary, our study underscores the importance of studying zoonotic bacteria, their
accompanying microbiota and the host organism in combination, all while harnessing the
power of multi-omic technologies. Only through the high-resolution functional analysis of the
three mentioned elements will we be able to resolve the complex tripartite interactions
between them, and in doing so gain knowledge to develop novel sustainable strategies to
improve safety and sustainability of poultry production.
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Methods

Animal experiments
A total of 613 animals were sampled in the three experimental replicates (trials A, B, and C)
performed in 2019 within the H2020 project HoloFood (HoloFood, n.d.); 205, 182 and 226
birds from A, B and C trials respectively. Broiler chickens from two genetic lines (Cobb 500
and Ross 308) and both sexes were reared in intensive farm conditions for 35-37 days. Each
trial comprised 24 pens (12 groups replicated twice distributed in 3 treatments x 2 genetic
lines x 2 sexes), each pen containing 40 animals. More details about the experimental
design, diet and performance results are available in Tous et al. (Tous et al., 2022). Chickens
were euthanized, weighed, and sampled at days 7–8, 21–22 and 35–37 (multiple days were
necessary due to workload, and these differences have been accounted for in the statistical
analyses), hereafter simplified to three time points (days 7, 21 and 35). Caecal pathogens
detection (Salmonella spp., Campylobacter spp., and Clostridium spp.) procedures using
PCR are explained in detail in Tous et al. (Tous et al., 2022). Molecular data was obtained
from three different sections of the caecum. In short, the end of one of the caecum bags was
isolated and longitudinally opened to gently collect ca. 100 mg of digesta for each
metagenomic and metatranscriptomic analysis. After carefully washing the intestinal surface
with saline solution, the mucosal layer was scraped and ca. 100 mg of mucosa were
collected for host transcriptomic analyses. All types of samples were preserved in DNA/RNA
Shield buffer (Zymo) and stored at -20 ºC until nucleic acid extractions.

Data generation

DNA and RNA extraction
A total of 613 metagenomic, 125 metatranscriptomic and 169 host transcriptomic datasets
were generated. Both nucleic acids were extracted using a custom purification method
optimised for samples preserved on DNA/RNA Shield buffer (Bozzi et al., 2021). The protocol
consisted in a bead-beating for tissue disruption, followed by digestion, nucleic acid
separation (DNA and RNA) and purification steps. Samples were processed in batches of 90
samples, along with 6 extraction, library preparation, and library indexing blanks (2x2x2).
Samples within each batch were randomised using a custom script, but different sample
types were not mixed to minimise the risk of cross-contamination due to DNA concentration
differences.

Library preparation of metagenomic DNA
The nucleic acids extracted were fragmented to obtain an average length of 400 bp using a
Covaris LE220 ultrasonication device. A standard amount of 200 ng of DNA was used for the
library preparation. We used the BEST (Carøe et al., 2018) ligation-based library preparation
protocol to prepare sequencing libraries. In order to evaluate the success of the libraries, we
conducted quality controls using qPCR assays. The optimal number of cycles was estimated
to achieve the desired DNA molarity while reducing clonality. Any libraries that exceeded 12
cycles were repeated for library preparation due to potential technical biases. Subsequently,
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libraries were indexed using unique dual tags, along with the necessary PCR cycles. Before
final quality-checks were performed with a DNA Fragment Analyser (Agilent), bead
purification was carried out. Libraries with expected fragment-size distributions and molarities
were equimolarly pooled for sequencing. Libraries that showed too low molarities were
re-indexed to achieve the desired molarity, and the ones exhibiting unusual fragment
distributions and large adaptor dimers were re-built. Sequencing was performed in multiple
BGIseq runs with 150bp paired-end chemistry. Sequencing effort per sample typically varied
between 8GB and 16GB, equivalent to 26 and 52 million reads.

Library preparation of metatranscriptomic RNA
rRNA depletion was performed using TIANSeq rRNA Depletion Kit (Animal) (Cat.No.
NR101-T1), and the remaining RNA was fragmented into 250-300bp, to finally
reverse-transcribe into double stranded cDNA with random hexamers. Total cDNA was sent
to Novogene for library preparation and sequencing. In short, cDNA libraries were
constructed using Novogene NGS RNA Library Prep Set (PT042), which comprises end
repair, A-tailing and adapter ligation steps. The libraries were checked with Qubit and
real-time PCR for quantification and Bioanalyzer (Agilent) for size distribution detection.
Quantified libraries were pooled and sequenced on an Illumina NovaSeq 6000 platform with
150bp paired-end chemistry, aiming for 5GB of protein-coding gene data.

Library preparation of chicken transcriptomic RNA
Total RNA was quantified using Nanodrop (Thermo Scientific) and Bioanalyzer 2100
(Agilent), as well as analysed for integrity (Agilent 2100) and purity (agarose electrophoresis
and Nanodrop). Samples were subjected to rRNA removal step by poly-A enrichment, using
poly-T oligo-attached magnetic beads. After fragmentation, the first strand cDNA was
synthesised using random hexamer primers. During the second strand cDNA synthesis,
dUTPs were replaced with dTTPs in the reaction buffer. Total cDNA was sent to Novogene
for library preparation and sequencing. The directional libraries were ready after end repair,
A-tailing, adapter ligation, size selection, USER enzyme digestion, amplification, and
purification. Libraries were checked with Qubit and real-time PCR for quantification, as well
as with bioanalyzer for size distribution detection. Quantified libraries were pooled and
sequenced on NovaSeq 6000 (Illumina), according to effective library concentration and data
amount required.

Bioinformatic data processing
Generation of the MAG catalogue
Details on the procedures employed to create the MAG catalogue used in this study will be
published, and code can also be accessed at Workflowhub
(https://workflowhub.eu/programmes/28). In short, data from 261 caecal metagenomic
samples collected from chickens from the three experiments were used to generate the
caecal MAG catalogue. We performed de novo metagenomic assemblies using the MGnify
assembly pipeline (Richardson et al., 2023). The assembly tool MetaSPAdes (Nurk et al.,
2017) was used preferentially for single-run assemblies, while MEGAHIT (D. Li et al., 2015)
was used for co-assemblies when memory requirements for MetaSPAdes were too high.
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Samples prioritised for co-assembly were selected by hierarchical clustering based on
Jaccard distance between low-quality bins generated by single assembly. Contigs shorter
than 500 base pairs were excluded, and further host, human and PhiX decontamination was
performed post-assembly with blastn (Y. Chen et al., 2015). Contig binning was performed
using ‘binning’ and ‘bin_refinement’ modules of metaWRAP’s. Genome quality assessment
was conducted using checkM (Parks et al., 2015), with the criteria of retaining genomes with
completeness >50%, contamination <5%, and a quality score (QS) >50 (where QS =
completeness - 5*contamination). Genomes were de-replicated using an Average Nucleotide
Identity (ANI) of 95%, and 30% alignment fraction to generate species-level clusters using
dRep (Olm et al., 2017). Lastly, GUNC (Orakov et al., 2021) was employed to identify
potentially chimeric genomes for subsequent removal, utilising specific parameters that
included a clade separation score >0.45, contamination >0.05, and reference representation
score >0.5.

Functional annotation and distillation of MAG catalogue
Taxonomy annotation and phylogenetic tree construction was carried out using GTDB-Tk
(Chaumeil et al., 2019). Functional annotation of the MAGs was performed through an
ensemble approach implemented in DRAM (Shaffer et al., 2020). This approach incorporates
data from various databases, including Pfam (Mistry et al., 2021), KEGG (Kanehisa & Goto,
2000), UniProt (UniProt Consortium, 2019), CAZY (Cantarel et al., 2009) and MEROPS
(Rawlings et al., 2010). To distil these annotations into quantitative genome-inferred
functional traits (GIFTs) representing metabolic capacities provided by the microbiota to its
host, we used the R package DistillR, which can be found at the following link:
(https://github.com/anttonalberdi/distillR). DistillR contains a set of >300 metabolic curated
metabolic pathways and modules derived from KEGG and MetaCyc (Karp, Riley, et al., 2002)
databases, which are used to obtain quantitative estimates of the metabolic capacities of
microorganisms through quantifying the relative representation of genes required for
accomplishing a metabolic task. GIFTs range between 0-1, the zero indicating none of the
genes defined in the pathway are present in the genome and one indicating that all genes
are present. In cases where a step within a pathway requires the presence of two Identifiers,
the step is considered full if both Identifiers are present, half full if one is present, and empty
if none is present. We quantified 170 GIFTs per genome (complete detailed list can be found
in Table S1), whose values were first corrected by MAG genome completeness to reduce
functional biases (Eisenhofer et al., 2023), and then averaged to obtain a genome-level
overall metabolic capacity metric, hereafter referred to as Metabolic Capacity Index (MCI).
We also distilled microbial gene expression data into 170 GIFTs per genome, by weighing
gene expression values according to the weight of each gene in each metabolic pathway.

Genome-Scale Metabolic Networks
A genome-scale metabolic network (GSMN) is a comprehensive representation of all the
metabolic reactions that occur within an organism. It is constructed based on the genomic
information of the organism and integrates biochemical and genetic knowledge to capture the
complexity of the organism's metabolism. We employed the software metage2metabo
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(Belcour et al., 2020), which in turns relies on Pathway Tools (Karp, Paley, et al., 2002) to
reconstruct the GSMNs of every bacterial genome in our study using a custom snakemake
(Mölder et al., 2021) pipeline. Shortly, due to software dependencies, bacterial genomes
were re-annotated using eggnog-mapper2 (Cantalapiedra et al., 2021) against the eggNOG
5.0 database (Huerta-Cepas et al., 2019). The annotation files were transformed into
Genbank annotation files (gbk) using ‘emapper2gbk’ and SBML files generated using ‘m2m
recon’, as implemented in metage2metabo. SBML files were analysed using the package
COBRApy (Ebrahim et al., 2013) and custom python scripts to quantify source, transit and
sink metabolites as explained below.

Metagenomic data processing and read mapping
Sequencing adapters and identical duplicates were filtered out using AdapterRemoval 2.2.4
(Schubert et al., 2016) and seqkit 0.7.1 (Shen et al., 2016). Sequences were mapped to the
latest chicken reference genome (galGal6, NCBI Assembly accession GCF_000002315.6)
using bwa (H. Li & Durbin, 2009) increasing the minimum seed length to 25 to minimise the
likelihood of incorrect read pair alignments from the metagenomic fraction. To evaluate the
quality of the alignment, mapping statistics including depth and breadth of coverage, and
percentage of mapped reads were calculated using SAMtools 1.11 (H. Li et al., 2009).
Aligned reads were sorted and the metagenomic fraction was isolated using SAMtools.
Metagenomic reads were mapped to the MAG catalogue using bwa at 90% identity and 60%
coverage threshold and further summarised with samtools. Read-mapping counts resulting in
< 30% genome coverage per sample were removed from further analysis. Retained read
mapping counts were divided by the total number of paired-reads per sample, and multiplied
by 100 to give the percentage of reads mapped to the MAG catalogue for each sample.
Relative abundance was estimated by adapting the RPKG (Reads Per Kilobase per Genome
equivalent) formula provided by Nayfach and Pollard. It is referred to as RPMM (Reads Per
Million bases of genome, per Million mapped reads), as reads mapped to MAGs were
normalised both by genome length (divided by 1M) and by read length (divided by 1M).

Metatranscriptomic data processing and read mapping
We employed a custom snakemake pipeline for preprocessing metatranscriptomic data
(https://github.com/anttonalberdi/holoflow/tree/EisenRa/workflows/metatranscriptomics). In
short, reads were trimmed and quality controlled using fastp (S. Chen et al., 2018), keeping
reads >60 bp and with Phred scores >20. Processed reads were then mapped against the
host genome (galGal6) using STAR (Dobin et al., 2013). The unmapped reads were
subsequently mapped to a combined database containing SILVA 16S rRNA SSU and LSU
NR 99 (Quast et al., 2013), as well as 5SRNAdb (Szymanski et al., 2016) using Bowtie2
(Langmead & Salzberg, 2012) with default parameters. Unmapped reads were then mapped
to the MAG catalogue genes (outputted from DRAM; genes.fna.gz) using Bowtie2 with
default parameters. Finally, gene read counts were calculated using CoverM
(https://github.com/wwood/CoverM), requiring both pairs of reads to hit the gene
(--proper-pairs-only flag).
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Chicken transcriptomic data processing and read mapping
Raw transcriptomic reads were quality-filtered using fastp, mapped against the host
reference genome using STAR, and gene count data extracted using the gene count option.
Each sample yielded on average 12.5±3.2 million reads against the 24,131 genes annotated
in the chicken reference genome (galGal6).

Data analysis

Metagenomic data analysis
Metagenomic counts were standardised by MAG length and sequencing depth. Dirichlet
Multinomial Mixtures (DMM) (Holmes et al., 2012) were utilised to profile and identify
enterotypes in chicken microbial communities. Models were run by setting the maximum
allowed number of community types to 5. A total of three runs were performed, one for each
sampling day. At day 7, two community profiles were defined, where half of individuals from
trial C formed an enterotype, and the rest of individuals from trials C grouped together with
animals from trials A and B, forming another enterotype. At day 21, the model detected two
clearly defined enterotypes, where in one of them all animals from trials A and B clustered
together, and in the other enterotype all animals from trial C. At day 35, three enterotypes
that were consistent with trials were detected. Thus, we defined microbial enterotypes as the
distinct and standard enterotypes. The distinct enterotype comprised chickens from trial C
that grouped separately from the rest at day 7, and the rest of the chickens from trials C at
days 21 and 35. The rest of enterotypes were grouped together under the standard
enterotype. Top community driver bacteria (i.e. MAGs with highest contribution to
discriminate between enterotypes) were identified by selecting the 3% of MAGs with the
highest posterior probabilities in DMM analysis.

To assess the temporal development of the composition of microbial communities across
time, the MAG sequence count table was transformed using centred log-ratio (CLR) (Lahti et
al., 2017) and submitted to the constrained ordination from R package vegan (Oksanen et
al., 2022). MAG sequence count table was constrained by the factor trial (categorical variable
with three levels: trials A. B and C), sampling time (categorical variable with three levels:
days 7, 21 and 35) and their interaction. The significance of the constraining variables was
tested using 999 permutations. To test the null hypothesis of no differences between
enterotypes in microbial composition and function at day 7, PERMANOVAs were fitted
through the ‘adonis2’ function of R package vegan. Euclidean distance matrices of
CLR-transformed microbial abundances and functional profiles were included as responses
in the PERMANOVAs and trial, enterotype, chicken age, sex, genetic line and treatment were
included as explanatory variables. P-values were generated with 999 permutations.

A cladogram derived from the GTDB (Parks et al., 2022) tree constructed by GTDB-tk for
taxonomic annotation was built with R package ggtree (Yu et al., 2017). Tips of reference
genomes were pruned using the ‘keep.tips’ function included in the R package ape (Paradis
et al., 2004). Relative abundances of each bacterial genome of the catalogue for both
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enterotypes at each sampling time were illustrated with barplots after counts were
standardised by MAG length and sequencing depth.The order of the bacteria was based on
the tree obtained with GTDB.

To assess the drivers of the relative abundance of B. fragilis_A (the main indicator of the
distinct enterotype at day 7) on trial C and day 7 we used linear mixed effect models as
implemented in the R package lme4 (Bates et al., 2014). P-values for the fixed effects were
computed with the R package lmerTest (Kuznetsova et al., 2017). CLR-transformed
abundance of B. fragilis_A was used as response variable and trial, treatment, chicken age,
sex and genetic line were included as fixed explanatory variables. To account for the fact that
chickens were nested within pens we included a pen-level random intercept (1|pen). Then,
we calculated the marginal and conditional R2 using the R package MuMIn (Barton, 2009):
marginal R2 captures the variance explained by fixed effects whereas the conditional R2

quantifies the variance explained by fixed and random effects together. Therefore, the
variance associated with random effects (between-pen variance in relative abundance of B.
fragilis_A) was calculated by subtracting the marginal from the conditional R2.

Genome-Scale Metabolic Network analysis
General statistics of metabolic properties were calculated for each bacterial genome using
custom python functions. These included listing and quantifying source, transit and sink
metabolites. Source metabolites were defined as metabolites that a given bacteria is able to
use as reactant in at least one metabolic reaction inferred from the genomic information, but
that the bacteria is unable to produce itself. Therefore, source metabolites have to be
acquired from elsewhere, and can potentially be provided by other bacteria. Transit
metabolites were defined as any metabolite that a bacteria can produce and utilise, while
sink metabolites are a special case of transit metabolites, defined as metabolites that a
bacteria can produce but is unable to use itself. Sink metabolites and, potentially transit
metabolites, are therefore metabolic by-products that may become available for other
bacteria.

Using the GSMNs of all 882 characterised bacteria, we calculated the community-weighted
average number of source metabolites for Campylobacter that the microbial community
associated with each chicken at day 7 could potentially produce. Additionally, we calculated
the capacity of each enterotype to produce specific source metabolites for Campylobacter.
We did so by calculating the cumulative relative abundance of bacteria in each sample
collected at day 7, capable of producing each metabolite. First, to test the null hypothesis of
no difference between enterotypes to produce source metabolites for Campylobacter, we
used linear mixed models as implemented in the R package lme4. The capacity of each
enterotype to produce source metabolites was used as response variable and enterotype,
trial, treatment, chicken age, sex and genetic line were included as fixed explanatory
variables. A pen-level random intercept (1|pen) was used to account for the nested design.
The assumptions of homoscedasticity and normal distribution of errors were verified with
visual inspection of residual plots. Then, the null hypothesis of no difference in capability of
producing specific source metabolites for Campylobacter between enterotypes was tested
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using generalised linear mixed models using the function glmmPQL() of R package MASS
(Venables & Ripley, 2002). In this case, the response variables were fractional (i.e. they take
values between 0 and 1), thus we used a quasibinomial distribution with logit link function,
which allowed us modelling the fractional response variables while accounting for under- or
overdispersion and obtaining robust standard errors (Papke & Wooldridge, 1996). The set of
fixed explanatory variables and random effects were the same as in above linear mixed
models. Since multiple metabolites were tested consecutively, P-values were corrected for
multiple testing using the Benjamini-Hochberg false discovery rate procedure (Benjamini &
Hochberg, 1995).

Metatranscriptomic data analysis
Quantitative GIFTs were calculated with ‘distillq’ function using the R package distillR. To
explore the temporal development of the functional expression profile of the standard and
distinct chicken caecum enterotypes, the CLR-transformed community level quantitative
GIFT profiles were ordinated with the constrained ordination RDA using ‘rda’ command from
R package vegan. The ordination was constrained with the continuous variable chicken age,
the categorical variable enterotype and their interaction. The significance of the factors was
assessed using 999 permutations.

To identify specific quantitative GIFTs differentially expressed between standard and distinct
chickens at different time points, linear mixed effect models were used with the R package
lme4. CLR-transformed community level quantitative GIFTs were used as response variables
in linear mixed models. As fixed explanatory variables in the models we used the enterotype,
chicken age, sex, genetic line and treatment, and a pen-level random intercept (1|pen) was
included to account for the nested design. P-values were corrected for multiple testing using
the Benjamini-Hochberg false discovery rate procedure.

Lastly, to assess which bacterial strains were contributing the most to the expression of
specific functions at different time points and enterotypes, we calculated the average relative
expressions (given as gene counts per million) of specific functions for each MAG, at
different combinations of enterotype and sampling time.

Chicken transcriptomic data analysis
Gene counts were processed with the tidybulk R package (Mangiola et al., 2021). Briefly,
gene counts were imported with the tidyverse metapackage (Wickham et al., 2019). Then,
counts were normalised using the TMM method from edgeR (Robinson et al., 2010).
Samples were clearly differentiated by sex and age. Thus, sex was a controlled variable for
subsequent analyses. No statistical differentiation between breeds could be observed. We
set as confounding variables the sex, breed, laboratory (two sample extraction batches) and
sequencing batch (three sequencing batches). Then, samples were compared for differential
expression between trials A and B versus C at the three sampling times. The method chosen
for differential expression was the one implemented in edgeR. p-values were corrected for
multiple testing using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995).
Analysis of overrepresented Gene Ontologies (Gene Ontology Consortium, 2021) and KEGG
pathways was done with clusterProfiler (Wu et al., 2021).
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Data availability
All raw DNA and RNA sequences, and the MAG catalogues are available under HoloFood’s
umbrella project on ENA (Project ID: PRJEB43192) and displayed in the HoloFood Data
Portal (www.holofooddata.org). Bioinformatic resources including ENA accession numbers,
scripts, data matrixes and files have been archived in Zenodo with the DOI
10.5281/zenodo.8429925, as a release of the following Github repository:
https://github.com/holochicken/priority_effects.
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Supplementary Table S1:
Overrepresented source metabolites for Campylobacter jejuni in the distinct enterotype.
Gene p-value Standard

mean value
Distinct
mean value

Difference Adjusted_
p-value

COPROPORPHYRIN_III 2.6728E-16 0.02 0.31 0.29 1.5101E-14

CPD.31 1.6891E-07 0.02 0.30 0.28 1.0046E-06

SULFATE 1.5273E-09 0.07 0.35 0.28 1.4382E-08

MOCS3.Cysteine 1.1046E-06 0.04 0.31 0.27 5.221E-06

Thiocarboxylated.MPT.synthases 1.1046E-06 0.04 0.31 0.27 5.221E-06

D.ERYTHRO.IMIDAZOLE.GLYCEROL.P 2.1499E-11 0.06 0.33 0.27 7.815E-10

FMNH2 1.4416E-08 0.08 0.34 0.26 1.0181E-07

Dihydro.Lipoyl.Proteins 1.4661E-06 0.05 0.31 0.26 6.3718E-06

TRP.tRNAs 2.6447E-10 0.13 0.38 0.25 3.3206E-09

ASP.tRNAs 2.6447E-10 0.13 0.38 0.25 3.3206E-09

TYR.tRNAs 2.6447E-10 0.13 0.38 0.25 3.3206E-09

Protein.Histidines 2.6066E-20 0.15 0.38 0.24 2.9454E-18

TYR 2.7664E-11 0.16 0.39 0.24 7.815E-10

ALA.tRNAs 2.4764E-10 0.16 0.39 0.22 3.3206E-09

XANTHINE 0.00016904 0.44 0.65 0.21 0.0005306

CPD.597 8.9924E-10 0.20 0.40 0.20 1.0161E-08

N.acetyl.D.mannosamine 1.1089E-06 0.27 0.46 0.20 5.221E-06

HS 0.00036103 0.45 0.64 0.19 0.00109149

L.PANTOATE 8.5958E-09 0.36 0.55 0.19 6.4755E-08

Red.Glutaredoxins 0.00042238 0.48 0.67 0.19 0.00119324

ETOH 8.3666E-09 0.23 0.42 0.19 6.4755E-08

MANNOSE.1P 1.1755E-07 0.33 0.50 0.17 7.8139E-07

X2.PG 0.00390177 0.50 0.67 0.17 0.00938084

CHOLATE 0.00012236 0.41 0.57 0.16 0.00039505

CPD.15189 0.00012236 0.41 0.57 0.16 0.00039505

GLUTATHIONE 0.00650179 0.53 0.68 0.15 0.01469404

NIACINE 0.00036705 0.48 0.63 0.14 0.00109149

LACTALD 2.4602E-05 0.49 0.62 0.13 9.2668E-05

X3.Hydroxy.Terminated.DNAs 9.9857E-06 0.66 0.74 0.07 4.0299E-05

DCTP 0.02557008 0.73 0.79 0.06 0.04897321

CPD.4211 0.0218647 0.04 0.04 0.00 0.04350291
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Supplementary Table S2:
Differentially expressed genes in caecal host mucosa at days 7 and 35 between standard
and distinct enterotypes.

Day Gene logFC FDR description
7 LOC107055361 -1.813867045 0.01946043684

7 HBA1 1.394133619 0.03030980116 hemoglobin subunit alpha 1

7 HBE1 1.882651162 0.03797486673 hemoglobin subunit epsilon 1

7 H1F0 1.368723298 0.04274410218 H1 histone family member 0

35 NPTX2 1.260895776 0.002013652073

35 WDR72 1.406510168 0.00248805704

35 SYPL1 1.47579761 0.005875019077 synaptophysin like 1

35 SLC23A1 -1.591967739 0.008630811

35 LOC124417815 -1.448936666 0.008913914643

35 ABCB5 1.529901554 0.01015709323

35 TNFRSF13B -1.405821071 0.01015709323 TNF receptor superfamily member 13B

35 POU2AF1 -1.237562167 0.01351103227 POU class 2 homeobox associating factor 1

35 LOC107055347 -1.297939747 0.01351103227

35 LOC112532123 1.484612487 0.01520477153

35 IGLL1 -1.392582362 0.01682239206 immunoglobulin lambda-like polypeptide 1

35 CYP1A1 3.118820256 0.01823410302 cytochrome P450 family 1 subfamily A polypeptide 1

35 DCLK2 1.222715467 0.02210893979

35 PLA2G12B 1.451253504 0.02270499991

35 LOC121109172 2.872526104 0.02322920014

35 AOX2 1.771952135 0.02322920014 aldehyde oxidase 2

35 LSAMP -2.516523807 0.02336753155 limbic system-associated membrane protein

35 SCN3B 1.258063206 0.02342815201

35 UNC13C 1.339991104 0.03344018545

35 POU3F4 -1.432191081 0.03449976386

35 CYP1A2 2.179678621 0.03968125009 cytochrome P450 family 1 subfamily A polypeptide 2

35 TENM2 -1.822964898 0.03968125009 teneurin transmembrane protein 2

35 LOC101751887 -1.268576734 0.03968125009

35 SERPINB2 1.890363862 0.04185810366

35 XKR9 1.236415045 0.04238328498 XK related 9

35 CXCL13L2 -1.279297801 0.04277567648 C-X-C motif chemokine ligand 13-like 2

35 GATD3AL2 -1.576733854 0.04324779248

35 TAAR1 -1.287719979 0.04348330823

35 SLC2A9 -1.35637258 0.04390555035

35 MMP27 -1.753122383 0.04497641138 matrix metallopeptidase 1

35 LAG3 -1.29466731 0.04633592068

35 KCNA3 -1.228759901 0.04791602393 potassium voltage-gated channel subfamily A member 3

35 NPW -1.250985281 0.04949297101

35 GNLY -1.240782685 0.04950569715 granulysin

35 EVA1CL -1.752173587 0.04987489453
35 CPT1A 1.20428051 0.04989214558 carnitine palmitoyltransferase 1A
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Supplementary Table S3:
Nomenclature, classification and definitions of metabolic pathways employed in the functional
distillation analysis using the R package distillR.

Pathway Element Function Definition

B010101 Inosinic acid (IMP) Nucleic acid
biosynthesis

K00764 (K01945,K11787,K11788,K13713)
(K00601,K11175,K08289,K11787,K01492)
(K01952,(K23269+K23264+K23265),(K23270+K23265))
(K01933,K11787,(K11788 (K01587,K11808,(K01589 K01588))))
(K01923,K01587,K13713) K01756 (K00602,(K01492,(K06863 K11176)))

B010201 Uridylic acid (UMP) Nucleic acid
biosynthesis

(K11540,((K11541 K01465),((K01954,(K01955+K01956))
((K00609+K00610),K00608) K01465))) (K00226,K00254,K17828)
(K13421,(K00762 K01591))

B010301 UDP/UTP Nucleic acid
biosynthesis

(K13800,K13809,K09903)

B010401 CDP/CTP Nucleic acid
biosynthesis

(K00940,K18533) K01937

B010501 ADP/ATP Nucleic acid
biosynthesis

K01939 K01756 (K00939,K18532,K18533,K00944) K00940

B010601 GDP/GTP Nucleic acid
biosynthesis

K00088 K01951 K00942 (K00940,K18533)

B020401 Serine Amino acid
biosynthesis

K00058 K00831 (K01079,K02203,K22305,K25528)

B020501 Threonine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 (K00003,K12524,K12525)
(K00872,K02204,K02203) K01733

B020601 Cysteine Amino acid
biosynthesis

(K00640,K23304) (K01738,K13034,K17069)

B020602 Cysteine Amino acid
biosynthesis

(K01697,K10150) K01758

B020603 Cysteine Amino acid
biosynthesis

K00789 K17462 K01243 K07173 K17216 K17217

B020701 Methionine Amino acid
biosynthesis

(K00928,K12524,K12525) K00133 (K00003,K12524,K12525)
(K00651,K00641) K01739 (K01760,K14155) (K00548,K24042,K00549)

B020801 Valine Amino acid
biosynthesis

(K01652+(K01653,K11258)) K00053 K01687 K00826

B020901 Isoleucine Amino acid
biosynthesis

(K01703+K01704) K00052

B020902 Isoleucine Amino acid
biosynthesis

(K17989,K01754) (K01652+(K01653,K11258)) K00053 K01687 K00826

B021001 Leucine Amino acid
biosynthesis

K01649 (K01702,(K01703+K01704)) K00052

B021101 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K00674
(K00821,K14267) K01439 K01778 (K01586,K12526)

B021102 Lysine Amino acid
biosynthesis

K00928 K00133 K01714 K00215 K05822 K00841 K05823 K01778 K01586

B021103 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K03340
(K01586,K12526)

B021104 Lysine Amino acid
biosynthesis

(K00928,K12524,K12525,K12526) K00133 K01714 K00215 K10206 K01778
(K01586,K12526)

B021105 Lysine Amino acid
biosynthesis

K01655 ((K17450 K01705),(K16792+K16793)) K05824
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B021106 Lysine Amino acid
biosynthesis

K05827 K05828 K05829 K05830 K05831

B021201 Arginine Amino acid
biosynthesis

K00611 K01940 (K01755,K14681)

B021202 Arginine Amino acid
biosynthesis

K22478 K00145 K00821 K09065 K01438 K01940 K01755

B021301 Proline Amino acid
biosynthesis

((K00931 K00147),K12657) K00286

B021401 Glutamate Amino acid
biosynthesis

K00673 K01484 K00840 K06447 K05526

B021402 Glutamate Amino acid
biosynthesis

K01745 K01712 K01468 (K01479,K00603,K13990,(K05603 K01458))

B021501 Histidine Amino acid
biosynthesis

K00765 ((K01523 K01496),K11755,K14152) (K01814,K24017)
((K02501+K02500),K01663) ((K01693 K00817
(K04486,K05602,K18649)),(K01089 K00817)) (K00013,K14152)

B021601 Tryptophan Amino acid
biosynthesis

((((K01657+K01658),K13503,K13501,K01656) K00766),K13497)
(((K01817,K24017) (K01656,K01609)),K13498,K13501)
((K01695+(K01696,K06001)),K01694)

B021701 Phenylalanine Amino acid
biosynthesis

(((K01850,K04092,K14187,K04093,K04516,K06208,K06209)
(K01713,K04518,K05359)),K14170) (K00832,K00838)

B021801 Tyrosine Amino acid
biosynthesis

(((K01850,K04092,K14170,K04093,K04516,K06208,K06209)
(K04517,K00211)),K14187) (K00832,K00838)

B021802 Tyrosine Amino acid
biosynthesis

(K01850,K04092,K14170) (K00832,K15849) (K00220,K24018,K15227)

B021901 GABA Amino acid
biosynthesis

K09470 K09471 K09472 K09473

B022001 Beta-alanine Amino acid
biosynthesis

(K00207,(K17722+K17723)) K01464 (K01431,K06016)

B022002 Beta-alanine Amino acid
biosynthesis

6.2.1.17 1.3.8.1 4.2.1.116 3.1.2.4 1.1.159 2.6.1.18

B022101 Ornithine Amino acid
biosynthesis

(K00618,K00619,K14681,K14682,K00620,K22477,K22478)
(((K00930,K22478) K00145),K12659) (K00818,K00821)
(K01438,K14677,K00620)

B022102 Ornithine Amino acid
biosynthesis

K19412 K05828 K05829 K05830 K05831

B022103 Ornithine Amino acid
biosynthesis

2.3.1.1 2.7.2.8 1.2.1.38 2.6.1.11 3.5.1.16

B030201 Betaine Amino acid
derivative
biosynthesis

1.1.99.1 1.2.1.8

B030202 Betaine Amino acid
derivative
biosynthesis

2.1.1.156 2.1.1.157

B030301 Ectoine Amino acid
derivative
biosynthesis

K00928 K00133 K00836 K06718 K06720

B030701 Spermidine Amino acid
derivative
biosynthesis

(K01583,K01584,K01585,K02626) K01480

B030901 Putrescine Amino acid
derivative

K01476 K01581
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biosynthesis

B031001 Tryptamine Amino acid
derivative
biosynthesis

(4.1.1.28,4.1.1.105)

B040101 Acetate SCFA biosynthesis (K00625,K13788,K15024) K00925

B040103 Acetate SCFA biosynthesis K01067

B040104 Acetate SCFA biosynthesis 5.4.3.2 5.4.3.3 1.4.1.11 2.3.1.247 1.3.1.109 2.8.3.9 (2.3.1.9,2.3.1.16) 2.3.1.8
(2.7.2.1,2.7.2.15)

B040105 Acetate SCFA biosynthesis 1.21.4.2 (2.7.2.1,2.7.2.15)

B040106 Acetate SCFA biosynthesis (1.2.7.1,1.2.1.104) 2.3.1.8 (2.7.2.1,2.7.2.15)

B040201 Butyrate SCFA biosynthesis 1.2.7.1 (2.3.1.9,2.3.1.16) 1.1.1.35 4.2.1.150 1.3.1.109 2.3.1.19
(2.7.2.7,2.7.2.14)

B040202 Butyrate SCFA biosynthesis 2.3.1.8 (2.7.2.1,2.7.2.15) (2.8.3.1,2.8.3.8)

B040203 Butyrate SCFA biosynthesis (2.3.1.9,2.3.1.16) 1.1.1.36 4.2.1.55 1.3.1.109 (2.8.3.1,2.8.3.8)

B040204 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040205 Butyrate SCFA biosynthesis 5.4.3.2 5.4.3.3 1.4.1.11 2.3.1.247 1.3.1.109 2.8.3.9

B040206 Butyrate SCFA biosynthesis 2.8.3.18 1.2.1.76 1.1.1.61 2.8.3.M6 4.2.1.120 1.3.1.109 (2.8.3.1,2.8.3.8)

B040207 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040208 Butyrate SCFA biosynthesis 1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5 1.3.1.109 (2.8.3.1,2.8.3.8)

B040301 Propionate SCFA biosynthesis (4.2.1.28,1.1.1.1) 1.2.1.87 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)

B040302 Propionate SCFA biosynthesis 4.3.1.19 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)

B040304 Propionate SCFA biosynthesis 2.1.3.1 1.1.1.37 4.2.1.2 1.3.5.1 2.8.3.27

B040305 Propionate SCFA biosynthesis 2.8.3.1 4.2.1.54 1.3.1.95 2.8.3.1

B040306 Propionate SCFA biosynthesis 2.6.1.2 1.1.1.28 2.8.3.1 4.2.1.54 1.3.1.95 2.8.3.1

B050101 Indole-3-acetate Indolic compound
biosynthesis

1.13.12.3 3.5.1.4

B050102 Indole-3-acetate Indolic compound
biosynthesis

4.2.1.84 3.5.1.4

B050103 Indole-3-acetate Indolic compound
biosynthesis

3.5.5.1

B050104 Indole-3-acetate Indolic compound
biosynthesis

(2.6.1.1,2.6.1.27) 4.1.1.74 1.2.3.7

B050105 Indole-3-acetate Indolic compound
biosynthesis

(4.1.1.28,4.1.1.105) 1.4.3.4 1.2.3.7

B060401 indole-3-lactate Organic anion
biosynthesis

1.1.1.27

B060402 L-lactate Organic anion
biosynthesis

1.1.1.22

B060501 D-lactate Organic anion
biosynthesis

1.1.1.28

B060101 Succinate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060102 Succinate Organic anion
biosynthesis

((((K00164+K00658),K01616)+K00382),K00174)
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
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K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060103 Succinate Organic anion
biosynthesis

K01580 (K13524,K07250,K00823,K16871) (K00135,K00139,K17761)

B060104 Succinate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) K01007 K01595 K00024
(K01677+K01678) (K00239+K00240) (K01902+K01903) (K15038,K15017)
K14465 (K14467,K18861) K14534 K15016 K00626

B060105 Succinate Organic anion
biosynthesis

(K02160+K01961+K01962+K01963) K14468 K14469 K15052 K05606
(K01847,(K01848+K01849)) (K14471+K14472) (K00239+K00240+K00241)
K01679 K08691 K14449 K14470 K09709

B060106 Succinate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) (K01959+K01960) K00024
(K01677+K01678) (K18209+K18210) (K01902+K01903)
(K00174+K00175+K00176+K00177)

B060201 Fumarate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060202 Fumarate Organic anion
biosynthesis

((((K00164+K00658),K01616)+K00382),K00174)
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060203 Fumarate Organic anion
biosynthesis

K01948 K00611 K01940 (K01755,K14681) K01476

B060204 Fumarate Organic anion
biosynthesis

(K00815,K00838,K00832,K03334) K00457 K00451 K01800
(K01555,K16171)

B060205 Fumarate Organic anion
biosynthesis

K00241+(K00242,K18859,K18860)+K00239+K00240

B060206 Fumarate Organic anion
biosynthesis

K00244+K00245+K00246+K00247

B060207 Fumarate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) K01007 K01595 K00024
(K01677+K01678) (K00239+K00240) (K01902+K01903) (K15038,K15017)
K14465 (K14467,K18861) K14534 K15016 K00626

B060208 Fumarate Organic anion
biosynthesis

(K02160+K01961+K01962+K01963) K14468 K14469 K15052 K05606
(K01847,(K01848+K01849)) (K14471+K14472) (K00239+K00240+K00241)
K01679 K08691 K14449 K14470 K09709

B060209 Fumarate Organic anion
biosynthesis

(K00169+K00170+K00171+K00172) (K01959+K01960) K00024
(K01677+K01678) (K18209+K18210) (K01902+K01903)
(K00174+K00175+K00176+K00177)

B060210 Fumarate Organic anion
biosynthesis

(K18029+K18030) K14974 K18028 K15357 K13995 K01799

B060211 Fumarate Organic anion
biosynthesis

K00611 K01940 (K01755,K14681)

B060212 Fumarate Organic anion
biosynthesis

K22478 K00145 K00821 K09065 K01438 K01940 K01755

B060213 Fumarate Organic anion
biosynthesis

2.6.1.1,2.6.1.5,2.6.1.27,2.6.1.57 1.13.11.27 1.13.11.5 5.2.1.2 3.7.1.2

B060301 Citrate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)
((((K00164+K00658),K01616)+K00382),(K00174+K00175))
((K01902+K01903),(K01899+K01900),K18118)
((K00234+K00235+K00236+(K00237,K25801)),(K00239+K00240+K00241),(
K00244+K00245+K00246)) (K01676,K01679,(K01677+K01678))
(K00026,K00025,K00024,K00116)

B060302 Citrate Organic anion
biosynthesis

(K01647,K05942) (K01681,K01682) (K00031,K00030)

B060303 Citrate Organic anion
biosynthesis

K01647 (K01681,K01682) K01637 (K01638,K19282)
(K00026,K00025,K00024)

B060304 Citrate Organic anion K01647 K01681 K00031 K00261 (K19268+K01846) K04835 K19280
K14449 K19281 K19282 K00024
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biosynthesis

B070101 Thiamine (B1) Vitamin
biosynthesis

(((K03148+K03154) K03151),(K03150 K03149)) K03147 ((K00941
K00788),K14153,K21219) K00946

B070102 Thiamine (B1) Vitamin
biosynthesis

(((K03148+K03154) K03151),(K03153 K03149 K10810)) K03147 K00941
K00788 K00946

B070103 Thiamine (B1) Vitamin
biosynthesis

(K22699,K03147) ((K00941 (K00788,K21220)),K21219) K00946

B070104 Thiamine (B1) Vitamin
biosynthesis

(K00941 K00788),K14153,K21219

B070201 Riboflavin (B2) Vitamin
biosynthesis

(((K01497,K14652) ((K01498 K00082),K11752)
(K22912,K20860,K20861,K20862,K21063,K21064)),(K02858,K14652))
K00794 K00793 ((K20884 K22949),K11753)

B070301 Niacin (B3) Vitamin
biosynthesis

3.6.1.22 (3.2.2.6,3.2.2.4) 3.4.1.19

B070401 Pantothenate (B5) Vitamin
biosynthesis

((K00826 K00606 K00077),K01579) (K01918,K13799)

B070402 Pantothenate (B5) Vitamin
biosynthesis

((K00606 K00077),(K13367 K00128)) K01918

B070501 Pyridoxal-P (B6) Vitamin
biosynthesis

K03472 K03473 K00831 K00097 K03474 K00275

B070502 Pyridoxal-P (B6) Vitamin
biosynthesis

K06215 K08681

B070601 Biotin (B7) Vitamin
biosynthesis

K00652 (((K00833,K19563) K01935),K19562) K01012

B070602 Biotin (B7) Vitamin
biosynthesis

K00652 K25570 K01935 K01012

B070603 Biotin (B7) Vitamin
biosynthesis

K16593 K00652 K19563 K01935 K01012

B070604 Biotin (B7) Vitamin
biosynthesis

K01906 K00652 (K00833,K19563) K01935 K01012

B070701 Tetrahydrofolate (B9) Vitamin
biosynthesis

(K01495,K09007,K22391) (K01077,K01113,(K08310,K19965))
((K13939,((K13940,(K01633 K00950)) K00796)),(K01633 K13941))
(K11754,K20457) (K00287,K13998)

B070702 Tetrahydrofolate (B9) Vitamin
biosynthesis

K14652 K22100 K01633 K13941 K22099 K00287

B070801 Cobalamin (B12) Vitamin
biosynthesis

(K02302,((K02303,K13542) (K02304,K24866))) (K02190,K03795,K22011)
K03394 (K05934,K13541,K21479) K05936 (K02189,K13541) K02188
K05895 ((K02191 K03399),K00595) K06042 K02224

B070802 Cobalamin (B12) Vitamin
biosynthesis

(K02303,K13542) (K03394,K13540) K02229 (K05934,K13540,K13541)
K05936 K02228 K05895 K00595 K06042 K02224 K02230+K09882+K09883

B070803 Cobalamin (B12) Vitamin
biosynthesis

(K00798,K19221) K02232 (K02225,K02227) K02231 K00768
(K02226,K22316) K02233

B070901 Tocopherol/tocotorienol
(E)

Vitamin
biosynthesis

K09833 (K12502,K18534) K09834 K05928

B071001 Phylloquinone (K1) Vitamin
biosynthesis

((K02552 K02551 K08680 K02549),K14759) (K01911,K14760) K01661
(K19222,K12073) K23094 K17872 K23095

B071101 Menaquinone (K2) Vitamin
biosynthesis

K02552 K02551 K08680 K02549 K01911 K01661 K19222 K02548 K03183

B071102 Menaquinone (K2) Vitamin
biosynthesis

K11782 K18285 (K18286,K20810) K11783 K11784 K11785
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B071103 Menaquinone (K2) Vitamin
biosynthesis

K11782 K18285 K18284 K11784 K11785

B071201 Ubiquinone (Q10) Vitamin
biosynthesis

(K03181,K18240) K03179 (K03182+K03186) K18800 K00568 K03185
K03183 (K03184,K06134) K00568

B071202 Ubiquinone (Q10) Vitamin
biosynthesis

K06125 K06126 K00591 K06127 K06134 K00591

B080101 Salicylate Aromatic
compound
biosynthesis

5.4.4.2 4.2.99.21

B080201 Gallate Aromatic
compound
biosynthesis

4.2.1.10

B080301 Chorismate Aromatic
compound
biosynthesis

4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080302 Chorismate Aromatic
compound
biosynthesis

2.5.1.54 3.2.3.4 4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080303 Chorismate Aromatic
compound
biosynthesis

2.7.2.4 1.2.1.11 2.2.1.10 1.4.1.24 4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5

B080404 Dipicolinate Aromatic
compound
biosynthesis

2.7.2.4 1.2.1.11 4.3.3.7

B090101 Staphyloferrin Metallophore
biosynthesis

K21898 K23446 K23447

B090102 Staphyloferrin Metallophore
biosynthesis

(5.1.1.10,5.1.1.12) 6.3.2.58 6.3.2.57

B090103 Staphyloferrin Metallophore
biosynthesis

K23371 K21949 K21721 K23372 K23373 K23374 K23375

B090104 Staphyloferrin Metallophore
biosynthesis

2.7.1.225 2.5.1.140 1.5.1.51 6.3.2.54 4.1.1.117 6.3.2.55 6.3.2.56

B090201 Aerobactin Metallophore
biosynthesis

K03897 K03896 K03894 K03895

B090202 Aerobactin Metallophore
biosynthesis

1.14.13.59 2.3.1.102 6.3.2.38 6.3.2.39

B090301 Staphylopine Metallophore
biosynthesis

(5.1.1.10,5.1.1.24) 2.5.1.152 1.5.1.52

B100402 Bacilysin Antibiotic
biosynthesis

5.4.99.5 4.1.1.100 5.3.3.19 ((5.3.3.19 1.3.1.aa),1.3.1.aa) 1.1.1.385 6.3.2.49

B100601 Carbapenem-3-carboxy
late

Antibiotic
biosynthesis

K18317 K18316 K18315

B100801 Clavaminate Antibiotic
biosynthesis

K12673 K12674 K12675 K12676

B100802 Clavaminate Antibiotic
biosynthesis

2.5.1.66 6.3.3.4 1.14.11.21 3.5.3.22 1.14.11.21

B101101 Erythromycin Antibiotic
biosynthesis

2.1.1.254 1.14.13.154
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B101102 Erythromycin Antibiotic
biosynthesis

2.3.1.94 1.14.15.35 2.4.1.328 2.4.1.278

B101202 Fosfomycin Antibiotic
biosynthesis

5.4.2.9 4.1.1.82 1.1.1.309 2.7.7.104 2.1.1.308 1.11.1.23

B101401 Kanosamine Antibiotic
biosynthesis

K18652 K18653 K18654

B101402 Kanosamine Antibiotic
biosynthesis

1.1.1.361 2.6.1.104 3.1.3.92

B102101 Novobiocin Antibiotic
biosynthesis

6.3.1.15 2.1.1.284 2.4.1.302 2.1.1.285 2.1.3.12

B102201 Paromamine Antibiotic
biosynthesis

4.2.3.124 2.6.1.100 (1.1.1.329,1.1.99.38) 2.6.1.101 2.4.1.283 3.5.1.112

B102401 Pentalenolactone Antibiotic
biosynthesis

K12250 K15907 K18056 K17747 K18091 K18057 K17476

B102402 Pentalenolactone Antibiotic
biosynthesis

4.2.3.7 1.4.15.32 1.14.11.35 1.1.1.340 1.14.13.170 1.14.11.36 1.14.19.8

B102601 Prodigiosin Antibiotic
biosynthesis

((K21780+K21781) K21782 K21783 K21784 K21785 K21786) (K21428
K21778 K21779) K21787

B102801 Pyocyanin Antibiotic
biosynthesis

K13063 K20261 K06998 K20260 K20262 K21103 K20940

B102802 Pyocyanin Antibiotic
biosynthesis

2.1.1.327 1.14.13.218

B102901 Pyrrolnitrin Antibiotic
biosynthesis

K14266 K19981 K14257 K19982

B104101 Validamycin A Antibiotic
biosynthesis

K19969 K20431 K20432 K20433 K20434 K20435 K20436 K20437 K20438

B104102 Validamycin A Antibiotic
biosynthesis

4.2.3.152 5.1.3.33 2.7.1.214 (2.6.1.M1,2.7.7.91) 2.5.1.135 3.1.3.101
2.4.1.338 1.14.11.52

B104201 Violacein Antibiotic
biosynthesis

K20086 (K20087+K20088) K20089 K20090

B104202 Violacein Antibiotic
biosynthesis

1.4.3.23 1.21.98.2 1.14.13.217 1.14.13.224

D010101 Triglyceride Lipid degradation (K01046,K12298,K16816,K13534,K14073,K14074,K14075,K14076,K22283,
K14452,K22284,K14674,K14675,K17900) (K01054,K25824)

D010102 Triglyceride Lipid degradation (3.1.1.3,3.1.1.34) (3.1.1.34,3.1.1.79,3.1.1.116) (3.1.1.23,3.1.1.79)

D010201 Fatty acid Lipid degradation (K01897,K15013) (K00232,K00249,K00255,K06445,K09479)
(((K01692,K07511,K13767)
(K00022,K07516)),K01825,K01782,K07514,K07515,K10527)
(K00632,K07508,K07509,K07513)

D010301 Oleate Lipid degradation 6.2.1.3 1.3.8.8 4.2.1.17 1.1.1.35 2.3.1.16 1.3.8.8 4.2.1.17 1.1.1.35 2.3.1.16
1.3.8.8 4.2.1.17 (1.1.1.35,1.1.1.211) 2.3.1.16 5.3.3.8 4.2.1.74

D010401 Dicarboxylic acids Lipid degradation 6.2.1.5 1.3.8.7 4.2.1.17 1.1.1.35 2.3.1.174

D020101 Cellulose Polysaccharide
degradation

(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73) (3.2.1.176,3.2.1.4,3.2.1.14)
(1.14.99.54,1.14.99.56,1.14.99.53) (1.14.99.54,1.14.99.53) 1.14.99.54
(1.14.99.54,1.14.99.56) (1.14.99.54,1.14.99.56,1.14.99.53)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.4,3.2.1.91)
(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.8,3.2.1.32,3.2.1.4) 3.2.1.4 (3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(3.2.1.4,3.2.1.151) (3.2.1.4,3.2.1.151,3.2.1.78)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
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4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.4,3.2.1.91)
(3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.8,3.2.1.32,3.2.1.4) 3.2.1.4 (3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(3.2.1.4,3.2.1.151) (3.2.1.4,3.2.1.151,3.2.1.78)

D020201 Xyloglucan Polysaccharide
degradation

(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.4,3.2.1.151,3.2.1.73,2.4.1.207)
(2.4.1.207,3.2.1.103,3.2.1.39,3.2.1.6,3.2.1.73,3.2.1.81,3.2.1.83,3.2.1.151,3.2
.1.181,3.2.1.178,3.2.1.35,3.2.1.181) (3.2.1.4,3.2.1.151)
(3.2.1.4,3.2.1.151,3.2.1.78) (3.2.1.176,3.2.1.4,3.2.1.14)
(3.2.1.4,3.2.1.150,3.2.1.151) (1.14.99.54,1.14.99.56)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.8,3.2.1.32,3.2.1.4)
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D020301 Starch Polysaccharide
degradation

(3.2.1.1,3.2.1.41,2.4.1.19,3.2.1.54,3.2.1.93,3.2.1.10,3.2.1.133,3.2.1.135,3.2.
1.20,3.2.1.60,3.2.1.68,3.2.1.70,3.2.1.98,3.2.1.116,2.4.1.18,5.4.99.16,2.4.1.2
5,2.4.1.4,2.4.1.7,3.2.1.141,5.4.99.11,5.4.99.15,3.2.1.33,2.4.99.16) 3.2.1.2
(3.2.1.1,3.2.1.22,3.2.1.41,3.2.1.54,2.4.1.18,2.4.1.25) 3.2.1.1 3.2.1.33
(3.2.1.3,3.2.1.70,3.2.1.28,2.4.1.2) (3.2.1.3,3.2.1.20,3.2.1.22)

D020401 Chitin Polysaccharide
degradation

(3.2.1.14,3.2.1.17,3.2.1.96) (3.2.1.14,3.2.1.17) (3.2.1.17,4.2.2.n1,3.2.1.14)
(3.2.1.17,3.2.1.96) (3.2.1.52,3.2.1.140)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.52,3.2.1.35,3.2.1.169) (3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52)
(1.14.99.54,1.14.99.56,1.14.99.53) (1.14.99.54,1.14.99.53)
(3.1.1.72,3.5.1.41)

D020501 Pectin Polysaccharide
degradation

(3.2.1.15,3.2.1.40,3.2.1.67,3.2.1.82,3.2.1.171,3.2.1.173)
(4.2.2.2,4.2.2.9,4.2.2.10) (4.2.2.2,4.2.2.9) (4.2.2.2,4.2.2.9) 4.2.2.2
(4.2.2.23,4.2.2.24) 4.2.2.6 4.2.2.24 4.2.2.23 (3.2.1.40,3.2.1.174) 3.2.1.173
3.1.1.11 3.2.1.172 (3.2.1.122,3.2.1.20,3.2.1.22,3.2.1.86,3.2.1.139,3.2.1.67)
3.1.1.72
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D020601 Alpha galactan Polysaccharide
degradation

3.2.1.49 (3.2.1.22,3.2.1.49,3.2.1.94,3.2.1.88) 3.2.1.22
(3.2.1.122,3.2.1.20,3.2.1.22,3.2.1.86,3.2.1.139,3.2.1.67)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.22,3.2.1.49,2.4.1.67,2.4.1.82) (3.2.1.3,3.2.1.20,3.2.1.22)

D020701 Beta-galactan Polysaccharide
degradation

3.2.1.89
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)
(3.2.1.23,3.2.1.165) 3.2.1.23
(3.2.1.21,3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.62,3.2.1.74,3.2.1.
85,3.2.1.86,3.2.1.105,3.2.1.108,3.2.1.117,3.2.1.118,3.2.1.119,3.2.1.125,3.2.1
.147,3.2.1.149,3.2.1.161,3.2.1.175,3.2.1.182) (3.2.1.23,3.2.1.46)

D020801 Mixed-Linkage glucans Polysaccharide
degradation

3.2.1.71 (3.2.1.8,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.45,3.2.1.75,3.2.1.136)
(3.2.1.39,3.2.1.58,3.2.1.73,3.2.1.175) (3.2.1.4,3.2.1.176,3.2.1.132,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.6,3.2.1.21,3.2.1.73,3.2.1.74,3.2.1.91,3.2.1.151,3.2.1.165)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.58,3.2.1.39) 3.2.1.39
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(2.4.1.207,3.2.1.103,3.2.1.39,3.2.1.6,3.2.1.73,3.2.1.81,3.2.1.83,3.2.1.151,3.2
.1.181,3.2.1.178,3.2.1.35,3.2.1.181) (3.2.1.39,3.2.1.58,3.2.1.73,3.2.1.175)
(3.2.1.58,3.2.1.39)
(3.2.1.21,3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.62,3.2.1.74,3.2.1.
85,3.2.1.86,3.2.1.105,3.2.1.108,3.2.1.117,3.2.1.118,3.2.1.119,3.2.1.125,3.2.1
.147,3.2.1.149,3.2.1.161,3.2.1.175,3.2.1.182)

D020901 Xylans Polysaccharide
degradation

(3.2.1.8,3.2.1.32,3.2.1.4) (3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73)
(3.2.1.132,3.2.1.4,3.2.1.73,3.2.1.8,3.2.1.156)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146) (3.2.1.8,3.2.1.32)
(3.2.1.8,3.2.1.31,3.2.1.37,3.2.1.38,3.2.1.45,3.2.1.75,3.2.1.136)
(3.2.1.102,3.2.1.8,3.2.1.8) (3.2.1.51,3.2.1.8) (3.2.1.76,3.2.1.37)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) 3.2.1.37 (3.2.1.139,3.2.1.131)

D021001 Beta-mannan Polysaccharide
degradation

3.2.1.78 (3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73)
(3.2.1.4,3.2.1.8,3.2.1.21,3.2.1.25,3.2.1.45,3.2.1.58,3.2.1.73,3.2.1.74,3.2.1.75
,3.2.1.78,3.2.1.91,3.2.1.104,3.2.1.123,3.2.1.132,3.2.1.149,3.2.1.151,3.2.1.16
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4,3.2.1.168,3.2.1.73,3.2.1.39,3.2.1.52,3.2.1.132,3.2.1.146)
(3.2.1.78,3.2.1.100,3.2.1.32,3.2.1.73) (2.4.1.281,2.4.1.319,2.4.1.320)
3.2.1.78 3.1.1.72
(3.2.1.23,3.2.1.25,3.2.1.31,3.2.1.55,3.2.1.152,3.2.1.165,3.2.1.37,3.2.1.146)

D021101 Alpha-mannan Polysaccharide
degradation

3.2.1.130 (3.2.1.101,3.2.1.20) (3.2.1.101,3.2.1.20) (3.2.1.113,3.2.1.24)
(3.2.1.24,3.2.1.113,3.2.1.114,3.2.1.170)
(3.2.1.106,3.2.1.84,3.2.1.20,3.2.1.170,3.2.1.208) 3.2.1.113
(2.4.1.281,2.4.1.319,2.4.1.320)

D021201 Arabinan Polysaccharide
degradation

(3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.11,3.2.1.57,3.2.1.95)
(3.2.1.37,3.2.1.55,3.2.1.8,3.2.1.99,3.2.1.145,3.2.1.146)
(3.2.1.4,3.2.1.8,3.2.1.37,3.2.1.55,3.2.1.73)
(3.2.1.21,3.2.1.37,3.2.1.45,3.2.1.52,3.2.1.55,3.2.1.58,3.2.1.74,3.2.1.120,3.2.
1.126) (3.2.1.55,3.2.1.37) 3.2.1.55

D021301 Mucin Polysaccharide
degradation

3.2.1.97 (3.2.1.22,3.2.1.49,3.2.1.94,3.2.1.88) 3.2.1.49 (2.4.1.211,2.4.1.247)
(3.2.1.20,3.2.1.22,3.2.1.24,3.2.1.84,3.2.1.48,3.2.1.10,3.2.1.177,4.2.2.13,2.4.
1.161) (3.2.1.22,3.2.1.49,2.4.1.67,2.4.1.82)

D030101 Lactose Sugar degradation 3.2.1.85 5.3.1.26 2.7.1.144 4.1.2.40

D030201 Sucrose Sugar degradation 2.7.1.211 3.2.1.48 2.7.1.4

D030302 D-Apiose Sugar degradation 1.1.1.420 3.1.1.115

D030401 D-Arabinose Sugar degradation 5.3.1.3 2.7.1.47

D030402 D-Arabinose Sugar degradation 5.3.1.3 2.7.1.51 4.1.2.17 1.2.1.21

D030501 D-Mannose Sugar degradation 2.7.1.191 5.3.1.8

D030502 D-Mannose Sugar degradation 2.7.1.7 5.3.1.8

D030601 D-Xylose Sugar degradation 5.3.1.5 2.7.1.17

D030602 D-Xylose Sugar degradation 1.1.1.9 2.7.1.17

D030603 D-Xylose Sugar degradation 1.1.1.424 3.1.1.68 4.2.1.82 4.2.1.141 1.2.1.26

D030604 D-Xylose Sugar degradation 1.1.1.359 3.1.1.110 4.2.1.82 4.1.2.28 1.1.1.26 2.3.3.9

D030605 D-Xylose Sugar degradation 1.1.1.175 3.1.1.110 4.2.1.82 4.2.1.1.141 1.2.1.26

D030701 L-Fucose Sugar degradation 5.1.3.29 5.3.1.25 2.7.1.51 4.1.2.17

D030702 L-Fucose Sugar degradation 5.1.3.29 4.2.1.68 1.1.1.M68 3.7.1.26

D030801 L-Rhamnose Sugar degradation 5.1.3.32 5.3.1.14 2.7.1.5 4.1.2.19

D030802 L-Rhamnose Sugar degradation (1.1.1.173,1.1.1.378) 3.1.1.65 4.2.1.90 4.1.2.53

D030803 L-Rhamnose Sugar degradation (1.1.1.173,1.1.1.378) 3.1.1.65 4.2.1.90 1.1.1.401 3.7.1.26

D030901 Galactose Sugar degradation K01785 K00849 K00965 K01784

D031001 NeuAc Sugar degradation 4.1.3.3 5.1.3.8

D031002 NeuAc Sugar degradation 4.1.3.3 2.7.1.60 5.1.3.9

D040101 Albumin Protein
degradation

A1A (S8A C13 (S1A (S8B S26B)))

D040201 Actin Protein
degradation

S1A (M10A A1A M35 (M9B S1B S1C C1A (M12A C14A A2A C13 M10C)))

D040301 Collagen Protein
degradation

C1A M10A (M12B (S1A A1A (C13 M35 (M12A S1D S8A A2A M4 S8B))))

D040401 Elastin Protein
degradation

M10A (S1A (M23A S01C C1A))

D040501 Glutelin Protein
degradation

S26B S8A S9A

D040601 Keratin Protein
degradation

S1D M12A S1A

D040701 Tropomyosin Protein S1B (C2A C1A S1A (M4 C13 M10A (S1D M12A)))
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degradation

D040801 Troponin Protein
degradation

C2A (A2A M35 C14A)

D050101 Serine Amino acid
degradation

4.3.1.17,4.3.1.18

D050201 Threonine Amino acid
degradation

4.3.1.19

D050301 Cysteine Amino acid
degradation

4.4.1.1,4.4.1.28

D050302 Cysteine Amino acid
degradation

2.6.1.3 2.8.1.2

D050401 Methionine Amino acid
degradation

4.4.1.11

D050501 Valine Amino acid
degradation

2.6.1.42 1.2.1.25 1.3.8.5 4.2.1.150 3.1.2.4 1.1.1.31 1.2.1.27

D050502 Valine Amino acid
degradation

2.6.1.42 4.1.1.72 1.1.1.1

D050601 Isoleucine Amino acid
degradation

2.6.1.42 1.2.1.25 1.3.8.5 4.2.1.150 1.1.1.178 2.3.1.16

D050602 Isoleucine Amino acid
degradation

2.6.1.42 1.2.7.7

D050701 Leucine Amino acid
degradation

K00826 (((K00166+K00167),K11381)+K09699+K00382) (K00253,K00249)
(K01968+K01969) (K05607,K13766) K01640

D050801 Lysine Amino acid
degradation

4.1.1.18 2.6.1.82 1.2.1.19 2.6.1.48 1.2.1.20 1.14.11.64 1.1.5.13

D050802 Lysine Amino acid
degradation

1.13.12.2 3.5.1.30 1.6.1.48 1.2.1.20 2.8.3.13

D050803 Lysine Amino acid
degradation

2.6.1.36 1.2.1.31

D050804 Lysine Amino acid
degradation

4.1.1.18 2.6.1.82 1.2.1.19 2.6.1.48 1.2.1.20 2.8.3.13

D050805 Lysine Amino acid
degradation

K01582 K09251 K00137 K07250 K00135 K15737 K15736

D050806 Lysine Amino acid
degradation

K00468 K01506 (K14268,K07250) K00135 ((K15737 K15736),(K01041
K00252 (K01692,K01825,K01782) (K01825,K01782) K00626))

D050901 Arginine Amino acid
degradation

4.1.1.19 3.5.3.11

D050902 Arginine Amino acid
degradation

4.1.1.19 3.5.3.12 3.5.1.53

D050903 Arginine Amino acid
degradation

1.13.12.1 3.5.1.4 3.5.3.7

D050904 Arginine Amino acid
degradation

K01476 K01581

D050905 Arginine Amino acid
degradation

K00613 K00542 K00933

D050906 Arginine Amino acid
degradation

(K01583,K01584,K01585,K02626) K01480 K01611 K00797
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D051001 Proline Amino acid
degradation

5.1.1.4 1.21.4.1

D051101 Glutamate Amino acid
degradation

1.4.1.2,1.4.1.3

D051102 Glutamate Amino acid
degradation

2.6.1.1 4.3.1.1

D051103 Glutamate Amino acid
degradation

1.4.1.2 1.1.1.399 2.8.3.12 4.2.1.167 7.2.4.5

D051104 Glutamate Amino acid
degradation

5.4.99.1 4.3.1.2 4.2.1.34 4.1.3.22

D051105 Glutamate Amino acid
degradation

4.1.1.15

D051201 Histidine Amino acid
degradation

K01745 K01712 K01468 (K01479,K00603,K13990,(K05603 K01458))

D051301 Tryptophan Amino acid
degradation

(K00453,K00463) (K01432,K14263,K07130) K00486 K01556 K00452
K03392 (K10217,K23234)

D051302 Tryptophan Amino acid
degradation

4.1.99.1

D051601 Beta-alanine Amino acid
degradation

2.6.1.18 1.2.1.18

D051602 Beta-alanine Amino acid
degradation

2.6.1.120 1.1.1.298

D051701 Ornithine Amino acid
degradation

4.1.1.17 ((2.6.1.82 1.2.1.19),(6.3.1.11 1.4.3.M3 1.2.1.00 3.5.1.94))

D051801 GABA Amino acid
degradation

2.6.1.19 (1.2.1.24,1.2.1.16)

D051802 GABA Amino acid
degradation

2.6.1.19 1.1.1.61 2.8.3.M6 4.2.1.120 1.3.1.109 (2.8.3.1,2.8.3.8)

D060101 Nitrate Nitrogen
compound
degradation

((K00370+K00371+K00374),(K02567+K02568))
((K00362+K00363),(K03385+K15876))

D060102 Nitrate Nitrogen
compound
degradation

1.7.5.1 1.7.2.1 1.7.2.5 1.7.2.4

D060103 Nitrate Nitrogen
compound
degradation

1.9.6.1 1.7.2.2

D060105 Nitrate Nitrogen
compound
degradation

1.7.7.2 1.7.7.1

D060201 Urea Nitrogen
compound
degradation

6.3.4.6 3.5.1.54

D060202 Urea Nitrogen
compound
degradation

3.5.1.5

D060301 Urate Nitrogen
compound

1.7.3.3 3.5.2.17 4.1.1.97
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degradation

D060302 Urate Nitrogen
compound
degradation

1.14.13.113 3.5.2.17 4.1.1.97

D060401 GlcNAc Nitrogen
compound
degradation

2.7.1.59 3.5.1.25 3.5.99.6

D060402 GlcNAc Nitrogen
compound
degradation

3.5.1.25 3.5.99.6

D060601 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.9 3.5.3.26 (1.1.1.350,1.1.1.154) 2.1.3.5

D060602 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.4 4.3.2.3

D060603 Allantoin Nitrogen
compound
degradation

3.5.2.5 3.5.3.9 3.5.3.26 4.3.2.3

D060701 Creatinine Nitrogen
compound
degradation

3.5.4.21 3.5.2.14 3.5.1.59 1.5.3.1

D060801 Betaine Nitrogen
compound
degradation

2.1.1.5 1.5.3.10 (1.5.3.24,1.5.3.1)

D060901 L-carnitine Nitrogen
compound
degradation

1.14.13.239 1.2.1.4 1.1.1.38

D061001 Methylamine Nitrogen
compound
degradation

1.4.9.1

D061002 Methylamine Nitrogen
compound
degradation

6.3.4.12 2.1.1.21 1.5.99.5

D061101 Phenylethylamine Nitrogen
compound
degradation

(1.4.3.4,1.4.3.21) 1.2.1.39

D061201 Hypotaurine Nitrogen
compound
degradation

2.6.1.77 1.2.1.3

D061301 Taurine Nitrogen
compound
degradation

2.6.1.77

D061303 Taurine Nitrogen
compound
degradation

2.5.1.55

D070101 2,3-Butanediol Alcohol
degradation

1.1.1.4,1.1.1.76

D070201 Ethanol Alcohol
degradation

1.1.1.1 1.2.1.10
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D070202 Ethanol Alcohol
degradation

1.1.1.1 1.2.1.3 6.2.1.1

D070401 Glycerol Alcohol
degradation

2.7.1.30 1.1.5.3

D070402 Glycerol Alcohol
degradation

1.1.1.6 2.7.1.29

D070403 Glycerol Alcohol
degradation

4.2.1.30 1.1.1.202

D070404 Glycerol Alcohol
degradation

1.1.1.6 2.7.1.121

D070501 Propylene glycol Alcohol
degradation

4.2.1.28 (1.1.1.1,(1.2.1.87 2.3.1.222 (2.7.2.1,2.7.2.7,2.7.2.14,2.7.2.15)))

D070601 Ethylene glycol Alcohol
degradation

1.1.1.77 1.2.1.21

D070801 Phytol Alcohol
degradation

1.1.1.1 1.2.1.3 6.2.1.3 1.3.1.38

D070901 Polyvinyl alcohol Alcohol
degradation

1.1.2.6

D080101 Toluene Xenobiotic
degradation

(K15760+K15761+K15763+K15764) K00055 K00141

D080103 Toluene Xenobiotic
degradation

K07540 (K07543+K07544) K07545 K07546 (K07547+K07548)
(K07549+K07550)

D080201 Xylene Xenobiotic
degradation

(K15757+K15758) K00055 K00141

D080402 Benzene Xenobiotic
degradation

K16249+K16243+K16244+K16242+K16245+K16246

D080501 Benzoate Xenobiotic
degradation

(K05549+K05550+K05784) K05783

D080502 Benzoate Xenobiotic
degradation

K04116 K04117 K07534 K07535 K07536

D080601 Anthranilate Xenobiotic
degradation

(K05599+K05600+K11311),(K16319+K16320+K18248+K18249)

D080701 Catechol Xenobiotic
degradation

K03381 K01856 K03464 (K01055,K14727)

D080702 Catechol Xenobiotic
degradation

(K00446,K07104) ((K10217 K01821 K01617),K10216) (K18364,K02554)
(K18365,K01666) (K18366,K04073)

D080801 Cumate Xenobiotic
degradation

(K10619+K16303+K16304+K18227) K10620 K10621 K10622 K10623

D080901 Biphenyl Xenobiotic
degradation

(K08689+K15750+K18087+K18088) K08690 K00462 K10222

D081001 Carbazole Xenobiotic
degradation

K15751 (K15754+K15755) K15756

D081101 Benzoyl-CoA Xenobiotic
degradation

((K04112+K04113+K04114+K04115),(K19515+K19516)) K07537 K07538
K07539

D081201 Naphthalene Xenobiotic
degradation

(K14579+K14580+K14578+K14581) K14582 K14583 K14584 K14585
K00152

D081301 Salicylate Xenobiotic K18242+K18243+K14578+K14581
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degradation

D081401 Terephthalate Xenobiotic
degradation

(K18074+K18075+K18077) K18076

D081501 Phthalate Xenobiotic
degradation

(K18068+K18069) K18067 K04102

D081601 Phenylacetate Xenobiotic
degradation

K01912 (K02609+K02610+K02611+K02612+K02613) K15866 K02618
K02615 K01692 K00074

D081701 Trans-cinnamate Xenobiotic
degradation

(((K05708+K05709+K05710+K00529) K05711),K05712) K05713 K05714
K02554 K01666 K04073

D081801 Caffeine Xenobiotic
degradation

K21722 K21723 K21724

D081901 Mercury Xenobiotic
degradation

4.99.1.2 1.16.1.1

D090101 Penicillin Antibiotic
degradation

K18698,K18699,K18796,K18767,K18797,K19097,K19317,K18768,K18970,
K19316,K22346,K18795,K19218,K19217,K17836,K18766

D090201 Carbapenem Antibiotic
degradation

K17837,K18782,K18781,K18780,K19099,K19216

D090301 Cephalosporin Antibiotic
degradation

K19095,K19096,K19100,K19101,K19214,K19215,K20319,K20320,K01467

D090401 Oxacillin Antibiotic
degradation

K17838,K18790,K18791,K19098,K18792,K19213,K21276,K18793,K18971,
K22352,K19209,K18976,K18973,K18794,K18972,K21277,K19210,K19211,
K19212,K22335,K19319,K22331,K22351,K19320,K19318,K19321,K19322,
K21266,K22334,K22333,K22332

D090501 Streptogramin Antibiotic
degradation

K19349,K19350

D090601 Fosfomycin Antibiotic
degradation

K21252

D090701 Tetracycline Antibiotic
degradation

K08151,K08168,K18214,K18218,K18220,K18221

D090801 Macrolide Antibiotic
degradation

K06979,K08217,K18230,K18231,K21251

D091001 Chloramphenicol Antibiotic
degradation

K00638,K08160,K18552,K18553,K18554,K19271

D091101 Lincosamide Antibiotic
degradation

K18236,K19349,K19350,K19545

D091201 Streptothricin Antibiotic
degradation

K19273,K20816
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Figure S1:
Top 2% bacteria drivers of the enterotypes identified by Dirichlet Multinomial Models. Each
bacteria is given a value for the contribution it makes to the community type. The model
identified two community types at days 7 and 21, but recognised 3 community types at day
35. Trial C individuals were always clustered together except for day 7, where some animals
from trial C grouped with animals from trials A and B, as can be seen in the RDA (Figure 1b).
We defined the distinct enterotype based on the community type 2, where Campylobacterota
and Bacteroidota strains are more abundant and all animals belong to trial C. The rest of the
communities were defined as the standard enterotype.
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Figure S2:
Relative abundances of each bacterial strain for the standard and distinct enterotypes for the
three sampling points, 7, 21 and 35.
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Figure S3:
Spanning tree of joint genome-scale metabolic network model between Campylobacter jejuni

and C. coli. Campylobacter_D jejuni: ERR4836918_bin_11 Campylobacter_D coli:

ERR4836965_bin_9.

https://fluxer.umbc.edu/model?id=f7dd951a9e005ee384ef401dda3e7c111a89d711_2d5898fa

efe218fd2c2bb5aba37f1a7e75398404_obj_merge#
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Figure S4:
Body weight changes between experimental trials across the three sampling time points,
days 7, 21 and 35. We used linear mixed effect models as implemented in the R package
lme4 (Bates et al. 2014). Chicken body weight (g) was used as response variable and trial,
chicken age, sex and genetic line were included as fixed explanatory variables. To account
for the fact that chickens were nested within pens we included a pen-level random intercept
(1|pen). Models were plotted separated by sampling time (a-c) and together (d). Different
letters in panel a-c represent significant differences (p-value < 0.05) between groups, based
on a Tukey’s HSD post hoc test.

Supplementary Figure S5:
Volcano plots of Differential Gene Expression analyses carried out between both enterotypes
in each one of the sampling periods. Points in red represent genes that are differentially
expressed, i.e., had a corrected p-value under 0.05 through the Benjamini-Hochberg method.
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Figure S6:
Overall community MCI values between experimental trials across the three sampling time
points, days 7, 21 and 35. We used linear mixed effect models as implemented in the R
package glmmPQL() of R package MASS (Venables and Ripley 2002). Overall community
MCI was used as response variable and trial, chicken age, sex and genetic line were
included as fixed explanatory variables. We used a quasibinomial distribution with logit link
function because the response variable was fractional (i.e. values were between 0 and 1). To
account for the fact that chickens were nested within pens we included a pen-level random
intercept (1|pen). Models were plotted separated by sampling time (a-c). Different letters in
panel a-c represent significant differences (p-value < 0.05) between groups, based on a
Tukey’s HSD post hoc test.
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General discussion
and concluding remarks

Chapter 6
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Overview of thesis outcomes
The advent of omic technologies, together with a higher awareness of microbial communities
associated with animals and plants, has led to a rapid expansion of hologenomic studies
(Rosenberg & Zilber-Rosenberg, 2018). Today, hologenomics is applied to understand a
myriad of biological processes, including dietary adaptations (Cheng et al., 2023), phenotypic
plasticity (Baldo et al., 2023; Fontaine & Kohl, 2023), and evolutionary processes
(Rasmussen et al., 2023). The food industry is equally immersed in understanding
animal-microbiota systems to improve animal performance and welfare, and thereby
acquiring sustainable practices (He et al., 2023; X. Wang et al., 2019; Xue et al., 2020).
However, there were many challenges and limitations related to studies on host-microbiota
systems when the project started back in 2019, as discussed in Annex 1. HoloFood aimed to
develop a holo-omic framework for gaining greater knowledge of host-microbiota interactions
in broiler chickens reared under intensive farming conditions. Within the project, this doctoral
thesis intended to investigate host-microbiota interplay through integrating (meta)genomics
and (meta)transcriptomics.

In Chapter 3, my colleagues and I came to the conclusion that trial-and-error strategies need
to be replaced by knowledge-based approaches that aim to comprehend the intricate
biological processes unfolding chicken performance. Such knowledge should not be limited
to results provided by traditional methods used to monitor animal health and nutrition, but
should leverage the novel omic techniques that provide a much more detailed overview of
the biomolecular mechanisms taking place in the organism.

Based on multi-omic data, Chapter 4 revealed that we still lack a proper understanding of the
functional dynamics of chickens’ caecal microbiota. We found that while functional diversity
increased as chickens grew, the overall functional capacity of the community decreased. By
clustering gene annotations into functional traits, we for the first time saw that metabolic
capacity was inversely correlated with animal performance. Analysing functional
characteristics of microbial communities opens up new avenues to understand the
mechanistic interactions between both domains.

Lastly, we determined in Chapter 5 that zoonotic agents need to be studied in combination
with the host and its microbiota to better understand the tripartite interactions among them.
Genome-scale metabolic networks revealed that the distinct enterotype was metabolically
favourable for Campylobacter spp., and functional activity of the microbial community could
explain the reduced chicken growth. These findings pave the way for exploring strategies to
manipulate early-life microbiota and prevent Campylobacter colonisation.

General discussion
Searching for signs of hologenomic variation
This thesis aimed to study host-microbiota variability in intensively bred broilers. For this
purpose, 3 replicate trials were performed, where chickens from 2 genetic lines and 2 sexes
were distributed in pens and grown under 3 dietary treatments. When the study was
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designed, we assumed that most of the differences in broiler performance would be
explained by the experimental groups. Nevertheless, the analyses explained in Chapter 3
revealed that the differences in performance between pens were negligible compared to the
inter-individual and inter-experimental variabilities observed in the trials. This was mainly due
to the limited effect of treatments, which could be partly explained by the high complexity of
the study design, which was not oriented towards maximising treatment outcomes. But even
if we had simplified the study, the effect sizes would still be very limited, and probably barely
significant for production purposes. In addition, the analyses explained in Chapter 4 showed
no significant effect of treatment on microbiome composition, nor evidence of the probiotic
strains in the bacterial genome catalogue, which prevented further attempts to explore the
reasons for their poor success. Thus, we were unable to address issues related to in vivo
experiments that are currently under debate: “How do additives modulate gut microbiota?”,
“To what extent do host-microbe characteristics influence the outcome of additives?”, and
“Does host colonisation success influence the outcome of probiotics?” (Suez et al., 2019,
2020). However, we faced this caveat as an opportunity to explore host-microbiota
interactions related to the inter-individual and inter-experiment variabilities that emerged in
our study. W(Bilal et al., 2021; Rehman et al., 2020) usually considered biological noise and
assumed to be uncontrollable in animal trials (Bilal et al., 2021; Rehman et al., 2020) to study
the relationship between the two domains at the animal level. In addition, the unexpected
differences between experiments prompted us to delve into the connections between
zoonotic agents, the rest of the microbiota, and the host.

Hologenomic perspective revealed novel avenues for microbiome
monitoring, selecting probiotic candidates and preventing zoonotic
agents
Caecal genome-resolved metagenomics enabled us to assemble 822 bacterial genomes, of
which 435 constituted new species after comparing the generated catalogue to the most
extensive one available at the time (Gilroy et al., 2021). Moreover, multi-omic datasets
generated for 613 chicken individuals across the three sampling points, a sample collection
frequency similar to previous studies (Ocejo et al., 2019; Zhou et al., 2021), revealed
compositional and functional dynamics of the caecal microbiome at unprecedented levels.
With the intention of delving into the possible implications of the microbiota on host
performance, we distilled the millions of microbial gene annotations into 170 genome-inferred
functional traits (GIFTs) (Koziol et al., 2023), which also enabled us to generate quantitative
estimations of gene expression associated with these GIFTs, yielding a unique functional
overview of the metabolic capacity and activity of gut microbiomes. Such a data clustering
and filtering strategy drastically increased our interpretative capacity, by decreasing
computational requirements and gaining statistical power for downstream analyses (Shaffer
et al., 2020). For instance, functional distillation was essential to unveil discordances
between functional diversity and functional capacity, as shown in Chapter 4, as well as a
functional specialisation of the distinct microbiome as a result of a compositional divergence
from the standard microbiome I included in Chapter 5. In fact, both observations were for the
first time correlated with chicken performance. This provided initial observations to the
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questions posed after analysing performance and health parameters, which were “Are
chicken caecal microbiomes correlated with chicken performance, and if so why?” and “Is
Campylobacter spp. responsible for the reduced chicken weight?”. While the implications of
the microbiome in host biological processes are largely acknowledged, there is still much
debate about what is a beneficial microbiota in a production context (Bindari & Gerber, 2022;
Diaz Carrasco et al., 2019). Our microbial multi-omic analyses significantly contributed to this
discussion not only unveiling community-wide trends, but also species-level interactions,
associated with chicken growth.

In addition, multi-omics casted light onto hitherto understudied taxa, such as the recently
described TANB77, UBA1242, RF39, and RF32 clades comprising uncultured
microorganisms. These bacterial taxa share many characteristics, including
reduced-genomes and several auxotrophies, that have raised interest in the multiple
metabolic dependencies they may have with the host (Chklovski et al., 2023). Indeed, they
have been found in bacterial catalogues of dozens of vertebrate species (Antton Alberdi,
pers. comm.), which could suggest a close evolutionary trajectory with vertebrates. In
salmonids, which possess less complex and diverse microbiomes, a study shed more light
on the symbiotic relation these bacteria might have with the host by studying Mycoplasma, a
genus from the phylum Firmicutes like RF39, and with genomic features similar to the latter
(Rasmussen et al., 2021). Further analyses showed that bacterial genomic variations were
better explained by the genetic background of the host rather than the sampling location,
suggesting a joint evolutionary trajectory (Rasmussen et al., 2023). In our study, we
employed hierarchical modelling of species communities (HMSC) framework, a very versatile
approach and gives the opportunity to easily handle big metagenomic datasets for later
associating (Tikhonov et al., 2020), to explore their temporal dynamics across chicken
development. Based on the results, we classified them as increasers or decreasers and then
associated them with chicken performance. The mentioned taxa increased with chicken age,
and positively correlated with chicken body weight in the last stages of production.
Furthermore, their active role in producing SCFAs gives us clues about the potential benefits
for the host. In fact, some of these taxa were correlated with host metabolic balance in
chickens (Jiang et al., 2023) and mice (L. Wang et al., 2017; Wu et al., 2023). It could be that
these taxa may even stop the colonisation of opportunistic or pathogenic bacteria (Bozzi et
al., 2021). Therefore, in a context where broiler chickens have reduced microbial community
because of the characteristics of intensive production practices (Rychlik, 2020), it seems
pertinent to focus on those bacteria that may have closer evolutionary relationship with the
host rather than administering non-indigenous strains (Anee et al., 2021). Future analyses
about their phylogenomics, comparative genomics and metabolic network reconstructions,
while taking into account the genomic background of the host, could greatly benefit the
research community to better understand their shared evolution and potential benefits in
production.

Lastly, we discovered not a single but three Campylobacteraceae strains and their
colonisation dynamics, which illustrates how opportunistic or pathogenic colonisations are
often orchestrated by several strains (Diaz Caballero et al., 2023). Campylobacter jejuni
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peaked at day 21, but then declined to give rise to other two strains C. coli and Helicobacter
pullorum. However, we are not certain whether this is a case of competition or
commensalism between them, as some individuals showed all three strains at days 21 and
35. On the origin of the colonisation, our study showed a change in the microbial composition
already for day 7. This leaves more room for action to redirect the microbiome before
Campylobacter takes hold, as the window of opportunity of Campylobacter is considered to
be between days 14-21 (Ijaz et al., 2018). Moreover, identifying Bacteroides fragilis_A as the
primary driver of the distinct microbiome before Campylobacter colonisation is a major step
forward, as it can be used as an early biomarker. Unfortunately, we could not know whether
the excessive colonisation of B. fragilis_A was due to a cross-contamination on the farm or if
it happened during transport from the breeding companies (Mota-Gutierrez et al., 2022).
Metabolites obtained from genome-scale metabolic networks (Karp et al., 2021), revealed
that the distinct microbiome provided numerous essential metabolites to Campylobacter,
which most of them were acquired from B. fragilis_A. This B. fragilis_A-Campylobacter
interaction could be just one of the many possibilities that can exist. Moreover, metabolite
exchange could occur in the opposite direction, thus being an interdependent relationship
rather than a codependent one (Culp & Goodman, 2023). It is also unclear the possible
effects Campylobacter has on the host, as we did not see any evidence of an immune
response in the intestinal samples. Transcriptomics of the spleen, which was collected for
future analyses as detailed in Chapter 3, may provide more information about this matter. In
summary, future works studying pathogen/opportunistic colonisations could benefit from a
host-microbiome-coloniser perspective.

Technical challenges and opportunities of holo-omics
Being part of an European project means that this thesis benefited from a massive collective
effort for gathering samples, generating data and analysing results; but it was not without
technical constraints. We expected high host contamination in ileal and caecal metagenomic
samples (Rasmussen et al., 2021). However, we obtained highly uneven host DNA for both
intestinal sections. With more than 90% of host DNA in ileum samples, we ultimately decided
to remove them from downstream analyses. Studying both sections would have enabled us
to have a broader view of host-microbiota interactions through the gastrointestinal tract
(Huang et al., 2018; Zhang et al., 2022). Alternatively, the disparate host percentages from
both intestinal sections was used to explore a strategy to recover host genomes from
metagenomics samples in Annex 2. This strategy was tested because host genomics was
initially assessed to see whether host genetic variations could partly explain microbiota
changes with noteworthy impact on performance. For this purpose, we made an effort to
generate reference genomes for both chicken genetic lines (Rhie et al., 2021), but their
assembly was delayed due to Covid-19. Despite unexpected setbacks, Edward Rice and
colleagues successfully published a chicken pangenome in Annex 3. In retrospect, analysing
genetic variations for the purposes of this thesis would increase the interpretative capacity,
but after seeing the robust trends of the microbiome, as well as the small differences
between chicken genomic backgrounds in the annexes, much contribution from the host
would not be expected.
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Lastly, this dissertation successfully employed a multi-staged approach that facilitated the
formulation of hypotheses with a clear directionality (Graw et al., 2021). We combined
metagenomics, metatranscriptomics and host transcriptomics with host performance
parameters, and obtained significant results despite the noise, likely generated by the high
variability of the experimental design. The results were very consistent across chicken
genetic lines, origins and sexes. That is, the positive association between low-capacity
bacteria and weight was robust between experimental groups, but at the same time we did
not see significant differences in the abundance of either Campylobacter spp. or B.fragilis_A
strains between pens. In addition, we observed these clear temporal trends at the population
level despite having a cross-sectional study, as we prioritised invasive samples instead of
repeatedly collecting faecal samples from the same individual. Therefore, we have
reasonable evidence to believe that these results could be generalised to other genetic lines,
as long as the particularities of the administered diet are taken into account.

Future perspectives
Holo-omics has indeed emerged as a powerful tool to unveil biological connections that
would remain hidden with targeted methods (Alberdi et al., 2021). However, the effectiveness
of this approach is counterbalanced by the high costs of data generation, as well as the
advanced computer and statistical skills for integrating multiple omic layers (Graw et al.,
2021). Therefore, conducting exploratory metadata analyses and preliminary assessments
on a limited set of individuals becomes crucial for deciding the feasibility of employing
holo-omics, and if so, identifying the optimal omic layers for the study (Nyholm et al., 2020).
Despite these challenges, our study highlights the need to move from trial-and-error
experiments to knowledge-based strategies for testing novel feeds, additives, or drugs.

This dissertation comprehensively explores the caecal microbiomes of the chicken from a
hologenomic perspective, focusing on their temporal trends and their relation with the host.
Throughout the analytical process, specific taxa were highlighted that played major roles in
host energy balance. By harnessing available resources, future studies have the opportunity
to integrate the generated data with publicly available datasets, enabling a comprehensive
exploration of the bacterial genomic attributes of highlighted taxa across various vertebrates.
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SUMMARY

Fromontogenesis tohomeostasis, thephenotypesof complexorganismsareshaped
bythebidirectional interactionsbetweenthehostorganismsandtheir associatedmi-
crobiota. Current technology can reveal many such interactions by combiningmulti-
omic data frombothhosts andmicrobes.However, exploring the full extentof these
interactions requires careful consideration of study design for the efficient
generation and optimal integration of data derived from (meta)genomics, (meta)
transcriptomics, (meta)proteomics, and (meta)metabolomics. In this perspective,
we introduce the holo-omic approach that incorporates multi-omic data from both
host andmicrobiota domains to untangle the interplay between the two.We revisit
the recent literature on biomolecular host-microbe interactions and discuss the im-
plementation and current limitations of the holo-omic approach. We anticipate
that theapplicationof thisapproachcancontributetoopeningnewresearchavenues
and discoveries in biomedicine, biotechnology, agricultural and aquacultural sci-
ences, nature conservation, as well as basic ecological and evolutionary research.

Research conducted over the last decade has fundamentally changed how we perceive the biology and

underlying genetic properties of macroorganisms, from looking at individuals as isolated genetic entities

to recognizing how they interact with their associated microorganisms in a myriad of biological processes.

These microorganisms associated with plants and animals are now acknowledged as relevant—even

essential—assets to many basic biological processes, including nutrient acquisition (Falcinelli et al.,

2015), immune response (Wu and Wu, 2012), development (Rudman et al., 2019), biomolecule synthesis

(Nicholson et al., 2012), and behavior (Liang et al., 2018). This realization has promoted the notion of the

holobiont (see Box 1 for definitions of this and other terms in bold), a term used to collectively describe

the host organism and all its associated microorganisms.

Historically, the phenotypic variation of plants and animals has been attributed to the interplay between

genomic properties (Koonin et al., 2000) and environmental factors (Schmid, 1992). However, a long history

of research on some insects and domestic vertebrates suggested that microorganisms associated with host

animals should also be included in the equation. For example, termites have long been known (Leidy, 1881)

to require gut microbes to be able to digest their food. In the last decade, researchers have benefited from

the rapid development of high-throughput sequencing technology to more intensively explore how the

metagenomic features of host-associated microorganisms also shape plant and animal phenotypes

(Gilbert et al., 2018; Stringlis et al., 2018). These advances have expanded our knowledge on the role of

host-microbe interactions in the evolution and ecology of modern-day organisms and how knowledge

of such interactions can be beneficial in applied sciences. They basically revealed the termite example

to be closer to the norm than the exception. Although individually both genomic and metagenomic ap-

proaches have proven useful for understanding many biological processes, each type of study has typically

ignored the effect of the other domain and, critically, their interplay. Hence, the knowledge gained through

such approaches is, at the very least, incomplete. The recognition of the importance of these host-micro-

biota interactions has recently opened up new research avenues based on the integrated analysis of

coupled genomic and metagenomic data (Limborg et al., 2018), which can be referred to as the research

field of hologenomics (Figure 1A).
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Efforts to study the effects of host andmicrobial genes and their consequences have become embedded in

layer upon layer of jargon. Because the concepts being discussed are new, some of these new terms are

necessary, so as to have common reference points. But they only serve as effective reference points if

they are well defined. Here we propose that hologenomics (the combined genetic content of the host

and the microbiota) can be expanded to the holo-omic level by the incorporation of data from multiple

omic levels from both host and microbiota domains (Limborg et al., 2018) (Figure 1B). This approach is

inspired by elements originating from systems biology (e.g., metagenomics systems biology [Greenblum

et al., 2012] and the use of multi-omic data integration [Bersanelli et al., 2016; Heintz-Buschart et al., 2016;

Liu et al., 2020]). However, multi-omics implies omic data from only one domain, whereas holo-omics is

defined by the incorporation of both host and microbial data. In theory, implementing a holo-omic

approach would allow researchers to reveal a range of biomolecular interactions responsible for shaping

the phenotype of complex organisms, using a variety of molecular tools, and would ultimately provide

great potential for application across many different fields of research. The holo-omic toolbox requires

bothmethodological and analytical tools. Within the methodological tools are the nucleic acid sequencing

and mass spectrometry technologies that enable tracking the biomolecular pathways linking host and mi-

crobial genomic sequences with biomolecular phenotypes by generating (meta)transcriptomes, (meta)

proteomes, and (meta)metabolomes. The same technologies also enable epigenomic and exposomic

profiling, which can further contribute to disentangling the biochemical associations between host-micro-

biota-environment interactions and their effect on host phenotypes (Kumar et al., 2014; Rogler and Vav-

ricka, 2015). The analytical tools required to extract useful information from the enormous amount of highly

complex data generated by current high-throughput technologies are still limited. Association studies—

identifying correlations between genetic variants and phenotypes—have been used to detect the genetic

contributions to complex phenotypes (Welter et al., 2014). This approach has been extended to metabo-

lomic profiles (Luo, 2015) and metagenomic variants (Blekhman et al., 2015; Qin et al., 2012), but methods

that jointly leverage the multiple omic levels to infer the causal pathways between genomic processes and

phenotypes are still scarce.

In this context, the technology to generate large amounts of data to be used in a holo-omic context is

already available, but the analytical tools to reveal and identify host-microbiota interactions are still limited.
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Figure 1. From Hologenomic to Holo-Omic

(A) Simplified visualization of the hologenomic domain.

(B) Host-microbiota interactions within the holo-omic domain here exemplified by zooming in on the luminal surface of

the host intestine. Red arrows indicate host-microbiota holo-omic interactions. Solid red arrows indicate interactions

supported in the primary literature (numbers refer to the publications listed in Table 1), whereas dashed red arrows

indicate potential holo-omic interactions that, to the best of our knowledge, have not yet been documented. Solid black

arrows indicate omic levels influencing host phenotype, and dashed black arrows indicate omic levels influenced by

environmental factors.
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As a consequence, only a handful of research groups worldwide have been able to effectively implement

the holo-omic approach. To contribute to the development of this new field, in this perspective we first

revisit the available evidence for the biological importance of host-microbiota interactions. Second, we

present how the holo-omic toolbox can be used to study host-microbiota interactions at varying levels

of complexity to guide researchers through applying the holo-omic approach. Third, we showcase the

potential provided by the holo-omic approach to host-microbiota interactions in both basic and applied

biological sciences and finally we identify the limiting factors that currently prevent the widespread imple-

mentation of the holo-omic approach and discuss possible solutions to overcome them.

HOST-MICROBIOTA INTERACTIONS IN LIGHT OF HOLO-OMICS

The holo-omic approach to host-microbiota interactions relies on three major assumptions: (1) host-asso-

ciated microorganisms interact not only with each other but also with their host (Bredon et al., 2018; Fischer

et al., 2017; Stringlis et al., 2018; Vaishnava et al., 2011); (2) these interactions affect, either positively or

negatively, central biological processes of hosts and microorganisms (Wu and Wu, 2012); and (3) the inter-

play can be traced using biomolecular tools (Bansal et al., 2010; Bredon et al., 2018; Kelly et al., 2015; Virtue

et al., 2019).

It has been estimated that the number of host-associatedmicrobial cells and genes greatly outnumber that

of their hosts’ (Gilbert et al., 2018; Stringlis et al., 2018). These microorganisms do not passively inhabit the

surfaces of their hosts but instead continuously interact with each other and their hosts through a myriad of

complex feedback processes (e.g., Falcinelli et al., 2015; Kelly et al., 2015; Stringlis et al., 2018). For

example, host genomic features are co-responsible for shaping the microbiota composition (Suzuki

et al., 2019) through the differential biosynthesis of antibacterial peptides (Carvalho et al., 2012), differen-

tial composition of intestinal mucosa (Vaishnava et al., 2011), or differential release of nutrients (Reese et al.,

2018). Gene expression interdependencies are also common between hosts and microorganisms. For

instance, administration of Lactobacillus rhamnosus increases the uptake of fatty acids in zebrafish by

down-regulating the transcription of host genes related to cholesterol and triglycerides metabolism (Fal-

cinelli et al., 2015). Similarly, the metabolism of microbiota-derived butyrate in epithelial cells stabilizes the

function of the hypoxia-inducible transcription factor, which regulates the expression of a number of genes

related to host immunity (Kelly et al., 2015). Further examples of similar causal relationships between

different omic levels from hosts and microorganisms are compiled in Table 1, and undoubtedly, many

more will be revealed in the years to come.

Host-microbiota interactions can have both positive and/or negative influences on host fitness. This has,

for instance, been illustrated in studies on relatively well-defined bacteria-insect interactions. Such

studies have revealed that the nature of these influences are often context dependent (Fry et al.,

2004; Werren et al., 2008) and that these interactions can have both negative and positive influences

on evolutionary adaptations (Bennett and Moran, 2015). For other, less studied and more complex

host-microbiota consortiums, it has been found that positive interactions can, for instance, lead to in-

creases in nutrient uptake through the degradation of recalcitrant organic compounds (Bredon et al.,

2018), increase survival through modulating the resistance toward infectious diseases (Rosshart et al.,

2017), or lengthen lifespan through modulating the aging process (Kim and Jazwinski, 2018). On the con-

trary, host-microbiota interactions can also have negative outcomes for the host. This is most obvious in

the context of pathogens that cause infectious diseases (Fei and Zhao, 2013), but it is also apparent, for

example, in the context of dysbiosis associated with chronic diseases such as inflammatory bowel syn-

drome (IBS) (Imhann et al., 2018). The origin of such microbial imbalances remains a cause of contention

due to difficulty determining whether a disrupted microbiota is the cause or effect of a given illness

(Walker, 2017) and it seems likely that such dysbioses have many different causes in different host spe-

cies, genotypes, and contexts. This debate raises the question of how to determine what constitutes a

healthy microbiome, a question that is difficult to answer, especially for wild organisms, owing to in-

ter-population variation caused by environmental and genetic factors as well as the lack of functional

annotation of many microbial genes (Lloyd-Price et al., 2016).

All these examples highlight the relevance of acknowledging and understanding the biomolecular interac-

tions occurring between different omic levels of hosts and microorganisms. In the following section we will

describe how holo-omics can be implemented by addressing different methodological, experimental, and

analytical approaches.
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IMPLEMENTING THE HOLO-OMIC APPROACH

The holo-omic approach can be implemented by using a range of different methodological tools in diverse

experimental setups that might require a variety of analytical and statistical approaches (Figure 2).

Regarding data generation, most studies linking the host and the microbiota domains have relied on tar-

geted approaches (e.g., amplicon sequencing, targeted RNA-sequencing, and western blotting) to char-

acterize the microbial domain. However, untargeted approaches (e.g., shotgun DNA sequencing and

shotgun proteomics), which non-selectively provide a snapshot of nucleotides, proteins, and metabolites

Omic Levels Organism Major Findings Reference Arrow in Figure 1

Genome, microbial 16S Mouse 20 host genes are associated

with microbiome

composition

Suzuki et al. (2019) 1

Genome, microbial 16S Human Genetic disposition for

inflammatory bowel disease

is associated with a

reduction in abundance of

the genus Roseburia in the

gut microbiome

Imhann et al. (2018) 1

Transcriptome,

metagenome

Pill-bug (Armadillidium

vulgare)

Potential collaboration

between microbiota and pill-

bug in degrading

lignocellulose

Bredon et al. (2018) –

Proteome, microbial 16S Mouse Lack of the TLR5 protein

increases Proteobacteria

and decreases Bacteroidetes

inmicrobiome and promotes

gut inflammation

Carvalho et al. (2012) 2

Metabolome, metagenome Thale cress (Arabidopsis

thaliana)

Beneficial rhizobacteria

induce excretion of the

metabolite scopoletin that

stimulates iron uptake and

suppresses soil-borne

pathogens

Stringlis et al. (2018) 3

Metametabolome,

transcriptome

Human epithelial cells Metabolism of microbiota-

derived butyrate stabilizes

the HIF transcription factor in

human epithelial cells

Kelly et al. (2015) 4

Metametabolome,

transcriptome

Human epithelial cells The presence of microbiota-

derived indole stimulates the

expression of host genes

connecting to the formation

of tight junctions with a

resulting higher pathogen

resistance

Bansal et al. (2010) 4

Metametabolome,

transcriptome

Mouse Microbiota-derived indole

controls expression of host

miR-181 expression that

regulates adiposity and

insulin sensitivity

Virtue et al. (2019) 4

Table 1. Examples of Holo-Omic Studies in the Current Litterature

Examples of studies considering different omic levels from hosts and associated microorganisms at different levels of resolution. When evidence of host-micro-

biota interactions are available numbers link the table to the corresponding interaction in Figure 1.
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present in a sample, are progressively complementing or replacing targeted approaches. For instance,

coupled untargeted host/microbe data from shotgun sequencing offers advantages over targeted ap-

proaches, such as the construction of metagenome assembled genomes (MAGs) from metagenomic

data (Almeida et al., 2019) and the generation of individual genomic profiles (Blekhman et al., 2015).

Furthermore, the (meta)genomic data needed for implementing the hologenomic approach to host-

microbe interactions are often derived from samples containing DNA from both domains (Blekhman

et al., 2015). At the same time, the ever-decreasing costs of sequencing coupled with increases in compu-

tational efficiency are expected to boost this trend toward shotgun sequencing (Quince et al., 2017). In

recent years, single cell sequencing has expanded our ability to link specific genetic properties to single

cells (Xu and Zhou, 2018), which could be used to study the interactions between in vitro cultures of eukary-

otic and prokaryotic cells in great detail. In addition to this, the use of spatial metagenomics is capable of

resolving the geographical distribution of individual microbes within a community (Sheth et al., 2019), and

we foresee that this method will prove valuable in the future of holo-omics to highlight the effect of relative

spatial orientation between host and microbial cells. In 10 years, incorporating a range of approaches in a

single study with massive replication will probably be trivial from a cost perspective. In this context, the

burden (and key challenge) is combining theoretical insight and analytical clarity.

If the metagenomic data include some proportion of host DNA, often considered as host contamination, in

silico approaches can be used to also profile the host genotype and screen for potential associations be-

tween genetic markers and microbial traits (Blekhman et al., 2015). In vitro approaches, in which the host

environment is reproduced in simpler physical models such as miniature organs grown from stem cells

(i.e., epithelial organoids), might provide the required resolution when trying to uncover the interaction

between well-defined binary interactions, e.g., the effect of microbiota-produced butyrate on host
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Figure 2. Overview of Different Approaches in Holo-Omics and Their Influence on the Level of Complexity

Approaches are divided into methodological, experimental, and statistical. Arrows indicate the level of complexity

relative to each segment of the figure.
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transcriptomics in epithelial cells (Kelly et al., 2015). In vivo approaches using single-symbiont or gnotobi-

otic organisms are chosen when trying to uncover the complete effect of a symbiont, beyond the effect of a

single molecule (Koch and McFall-Ngai, 2019), whereas wild organisms might provide the most direct ev-

idence about the effect of host-microbiota interactions in natural processes (Alberdi et al., 2016).

The implementation of a full holo-omic approach withmultiple omic levels from both hosts andmicroorganisms

begins with the generation of high-dimensional data. Depending on the aims of the study, data from each sam-

ple in the study can encompass measurements on genes, genomes, transcripts, proteins, or metabolites. Spe-

cifically, the microbiota can be characterized by hundreds of MAGs, thousands of gene orthologs, or millions of

genes. The number of independent measurements and the high dimensionality of the resulting data pose sig-

nificant challenges to traditional statistical approaches, such as correlation-based methods and linear models.

One possible approach to reducing the complexity of the problem is to use some form of dimensionality reduc-

tion, such as clustering MAGs by taxonomy or ecological guilds (Zhao et al., 2018), or grouping genes by their

functional properties (Qin et al., 2010). Although such dimensionality reduction simplifies the analyses and re-

duces computational complexity, it can lead to loss of biologically relevant information (Wang et al., 2019).

Pioneering studies in hologenomics have relied on association analyses to identify correlations between

hosts and related microorganisms. Genome-wide association studies (GWASs) have linked specific loci

in the host genome to the presence of pathogenic or beneficial microbes (Blekhman et al., 2015; Imhann

et al., 2018). Similar approaches have been used in the study of epigenomes (Wan et al., 2016),

metabolomes (Sekula et al., 2016), and proteomes (Okada et al., 2016). GWASs served as inspiration for

metagenome-wide association studies (MGWASs) linking specific genes in the metagenome to pheno-

typic traits of interest in the host (Qin et al., 2012). So far, most methods used to integrate multi-omic

data from both host and microbiota domains have relied on standard statistical methods, such as general

linear models and linear mixedmodels in GWASs andMGWASs (Blekhman et al., 2015; Imhann et al., 2018;

Qin et al., 2012). These methods are often hampered by the high-dimensional nature of the metagenomic

data, highlighting the need for specialized methods to deal with highly complex holo-omic data (Wang

et al., 2019).

Aiming to advance holo-omic research beyond association analyses, we recently introduced a methodo-

logical framework proposing a two-step approach to reveal the mechanisms underlying phenotypic vari-

ance modulated by the interactions between the host and related microorganisms (Limborg et al.,

2018): an initial association phase based on GWAS and MGWAS analysis, followed by an interaction phase

to identify bidirectional interactions at different omic levels. The initial association phase can identify var-

iants (SNPs) within the genome and metagenome (e.g., amplicon sequence variants, operational taxo-

nomic units, MAGs, or genes) associated with certain host phenotypes. In the following interaction phase,

the effects of the associated GWAS variants on other omic domains are explored, thus identifying the

important aspects of the molecular machinery that lead from genotypic variation to phenotypic variation.

Although the two-step approach allows us to dig deeper into the interactions between the different omic

domains that affect the phenotype, we are still limited by the power of the GWAS performed in the first step

in identifying causal variants. In essence, the first step acts as a dimensionality reduction step, reducing the

space of interactions that need to be interrogated. The problem of integrated inference by leveraging

different omics data is a difficult one, and the development of computational methods in this field have

been hindered by the inherent complexity of holo-omic data and the biological process underlying

them. The current state of the art in integrating different omics dataset relies either on network-based

methods (Langfelder and Horvath, 2008), regularized regression-based methods (Rohart et al., 2017), or

other niche tools (Hernandez-Ferrer et al., 2017). However, none of these methods were designed for

the analysis of metagenomic, metatranscriptomic, or metametabolomic data.

The methodological, experimental, and analytical approaches mentioned above are challenged by the

high costs of data generation and the complexity of downstream analyses. This requires that researchers

consider at least three fundamental questions about the system under study before taking on a holo-omic study

(Box 2).

APPLYING THE HOLO-OMIC APPROACH ACROSS BIOLOGICAL SCIENCES

The holo-omic approach outlined above can be implemented in many basic and applied biological

research fields to address relevant scientific questions concerning host-microbiota interactions. In the
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following, we showcase and discuss the application of the holo-omic approach in diverse fields of biolog-

ical sciences. For some fields, we include boxes containing case examples to better illustrate its potential

implementation.

Agricultural and Aquacultural Sciences

The holo-omic approach could prove a meaningful tool in developing animal and plant production as mi-

croorganisms are increasingly considered essential assets to improve efficiency and sustainability (Małyska

et al., 2019). Among other strategies, animal feed and feed additives are used to modulate animal gut mi-

crobiota and improve host growth and health. More sustainable feed formulas are being developed such as

the use of seaweed to decrease dairy cows methane emissions (Machado et al., 2014). It has also been sug-

gested that piscivorous fish can be fed with a plant-based diet in aquaculture systems to replace fish meal

(Gatlin et al., 2007). On the other hand, feed additives, such as probiotics, prebiotics, and synbiotics, are

extensively used in animal breeding owing to many attributed benefits including protection against

Box 1. Glossary

Amplicon sequencing:PCR amplification-based targeted sequencing of a specific genetic region.

Dysbiosis:Any change to the components of resident commensal microbial communities relative to the community

found in healthy individuals.

Epigenome:The heritable alteration of DNA or proteins associated with DNA that changes gene expression levels in a

cell or tissue without modifying the sequence of DNA.

Epigenotype:The pattern of epigenetic modification (alteration of DNA or proteins that changes gene expression) in

a cell or tissue.

Exposome:Every exposure that an organism is subjected to throughout its lifetime.

Genome:The complete set of genetic material of an organism.

Genome-wide association study(GWAS):An examination of a genome-wide set of genetic variations associated with

a trait of interest.

Holobiont:A host organism and its associated microorganisms.

Hologenome:The combined genetic content of the host and its associated microbiota.

Holo-omics:The analysis of multiple omic levels from both host and associated microbiota domains.

Hologenome theory of evolution:The theory that posits host, symbionts, and their associated hologenome, acting in

consortium, function as a biological entity and as a level of selection in evolution.

Metagenome-assembled genome (MAG):Genome assembled from shotgun sequencing data generated from the

entire genetic content present in a given environment.

Metabolome:The entire pool of metabolites present in an organism.

Metagenome:The entire genetic content present in a given environment.

Metametabolome:The entire pool of metabolites present in an environmental sample.

Metaproteome:The complete set of proteins/peptides present in an environmental sample.

Metatranscriptome:The entire pool of mRNA in an environmental sample.

Metagenome-wide association study (MGWAS):An examination of a metagenome-wide set of genetic variations

associated with a trait of interest.

Microbiome:The sum of genetic material in a microbial community.

Microbiota:The ecological community of microorganisms.

Multi-omics:The analysis of multiple types of omic data (e.g., metagenome and metaproteome).

Omic:Term used to describe any level of multi-omics (i.e., (meta)genomics, epigenomics, (meta)transcriptomics,

(meta)proteomics, and (meta)metabolomics).

Proteome:The entire pool of proteins present in an organism.

Shotgun DNA sequencing:The non-targeted sequencing of the entire genetic content of a sample.

Shotgun proteomics:The direct analysis of complex protein mixtures to generate global profiles of proteins within a

sample.

Single cell sequencing:Sequencing of the nucleic acid content within a single cell.

Spatial metagenomics:Characterization of the spatial orientation of microbes in their environment by fixation in a

matrix followed by either amplicon sequencing or shotgun sequencing.

Systems biology:A holistic approach, often employing quantitative modeling, to study biological systems that

cannot be reduced to the sum of the systems individual parts.

Targeted RNA sequencing:Sequencing of specific RNA molecules using probes complementing the transcript of

interest.

Transcriptome:The sum of RNA transcripts produced by a single organism.

Western blotting:Separation and identification of proteins in a gel matrix using antibodies.
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pathogens, stimulation of the immunological response, and increment of production capacity, but yet, lit-

tle is known about their specific mode of action (Markowiak and �Sli _zewska, 2018). For instance, positive ef-

fects were reported on the use of probiotics to control diarrhea syndrome in post-weaning piglets (Kyriakis

et al., 1999) and have been found to result in decreasedmortality in rainbow trout (Irianto and Austin, 2002).

The implementation of the holo-omic approach can help us unveil how feed, microbiota, and the host

interact in the intestinal environment, which could prove essential for optimizing the production of host or-

ganisms and improving management practices (Box 3). A similar initiative implemented for plants could

aim at enhancing adaptation and response to rapid climate change.

Biotechnology

The holo-omic approach could also contribute to developing and optimizing biotechnological solutions.

For instance, it could be used to better understand host-microbiota systems capable of enzymatically de-

grading complex polysaccharides (Ni and Tokuda, 2013) in the search for novel sustainable ways of trans-

forming organic waste compounds into industrially relevant biomolecules and biofuels. Many wood-

feeding organisms are capable of partially digesting lignocellulose into glucose, but to complete the

Box 2. Three Main Questions that Researchers Need to Consider to Maximize the Outcome of a Holo-Omic
Study

(1) Are host-microbiota interactions relevant in the system under study?

Researchers must assess whether host-microbiota interactions are relevant for understanding the system under study.

The impact of microorganisms associated with complex hosts is now regarded as almost universal (Barko et al., 2018),

but the effect sizes can vary from low (Kong et al., 2019) to high (Rosshart et al., 2017) values. Hence, an initial

screening of the variability of hosts’ phenotypic traits and microbial communities associated with them is recom-

mendable to elucidate potential correlations. This could be done using a cost-effective targeted gene sequencing

approach to later study the system in more detail using non-targeted approaches.

(2) Is it meaningful to implement a holo-omic approach?

It is necessary to evaluate whether the implementation of a holo-omic approach is reasonable given the properties of

the biological system and its environment. Holo-omics relies on the premise that genomic and metagenomic dif-

ferences across individuals, treatments, populations, or species affect biological processes and phenotypic out-

comes. Thus, the existence of genomic or metagenomic variation in the system is essential. It is also necessary to bear

in mind that the capacity to recover genomic and metagenomic signatures is largely affected by environmental

variables (Figure 3). The background noise introduced by these variables contains information on how the environ-

ment influences the dependent variables (Figure 3), but as they are often difficult to measure or control in non-lab-

oratory settings they will often complicate signal recovery. Factors extrinsic to the host (diet, temperature, humidity,

etc.) are known to affect both the composition of the microbiota and the expression of its genes (Cernava et al., 2019;

David et al., 2014; Moran and Yun, 2015). The level and structure of (meta)genomic and environmental variation will

therefore dictate the biological meaning and design of any holo-omic study (Figure 3).

Assessing the economic and technical feasibility of the study is also paramount. This includes acknowledging the

genome size of the host, as the genome of some species can be magnitudes larger than others, e.g., amphibians

(Nowoshilow et al., 2018) versus birds (Zhang et al., 2014), or questioning whether optimal sample preservation

conditions can be ensured, especially critical for (meta)transcriptomics (Ferreira et al., 2018). Assessing the bio-

molecular properties of the samples (e.g., host:microbiota DNA/RNA ratios) is a relevant preliminary step that aids in

outlining an optimal study design (Human Microbiome Project Consortium, 2012).

(3) Which omic levels are relevant and how to maximize the amount of useful data derived from them?

Lastly, researchers should identify which omic levels are the most relevant, both by considering the biological and

technical features of the experimental system and their relevance to the research questions. The omic levels selected

for analysis will largely determine the number of samples to include (Ching et al., 2014; Hong and Park, 2012), where

and how to collect the samples (e.g., which part of the intestinal tract (Kokou et al., 2019), preservation and storage

conditions (Ferreira et al., 2018; Hickl et al., 2019), sequencing depth, or how to maximize the amount of biological

information coming from them (Quince et al., 2017). The ability of the downstream statistical analyses is dependent

not just on these factors but also on the genetic architecture of the phenotype being studied. Prior knowledge of the

functional basis of the phenotype can be used to markedly improve the experimental design and improve the power

of the statistical analyses (Kichaev et al., 2019).
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degradation they need the complementary enzymes produced by their resident microbes (Bredon et al.,

2018). Similarly, several studies based on metagenomics and metaproteomics in termites have shown

that the microbiota is responsible for producing some of the most complex enzymes involved in the degra-

dation of lignocellulose (Ni and Tokuda, 2013). Most of such complex biochemical reactions occur under

anaerobic environments; hence, setting up appropriate bioreactors tends to be a complex process. The

holo-omic approach can assist in determining specific bioreactor conditions by ascertaining the enzymatic

and metabolic contribution of microorganisms and animal hosts, thus facilitating the replication of the

optimal chemical conditions that mimic the hosts’ gut environment (Gutleben et al., 2018).

Biomedical Research

Incorporating the holo-omics approach to biomedical research offers an exciting new avenue toward bet-

ter treatments of many modern human diseases. Most people in industrialized societies exhibit depau-

perate gut microbiotas (Gupta et al., 2017), which is often held co-responsible for the concomitant explo-

sion in the rate of autoimmune diseases (Bach, 2002), all diseases that have been associated with a dysbiotic

microbiome in patients including IBS (Imhann et al., 2018), diabetes, or colorectal cancer (Feng et al., 2015).

Although we rarely know whether such a dysbiotic microbiome (Walker, 2017) is the cause or an effect of a

disease trait, it is now clear that the field of holo-omics provides an attractive approach to better under-

stand how such changes in host-microbiome interactions occur and potentially how they can be reverted

to healthy states. Better understanding of how human genotypes and the exposome of an individual affect

the interactions between patients and associated microorganisms would enable advances toward more

A

C D

B

Figure 3. Overview of Different Variables that Will Impact Holo-Omic Studies

In this conceptualization, two independent variables, the environment and the host genome, affect dependent

variables (center), the metagenome, and downstream omic levels and their interactions with the host genome and

derived omic levels. Different combinations enable implementing different types of experimental approaches.

(A) When both genetic background and environment are constant (e.g., laboratory conditions) the underlying

composition and functionality of the microbiota as well as the underlying interaction with the host domain can be

determined. These conditions allow researchers to manipulate microbiota composition and functionality and to

manipulate the host genome (e.g., using CRISPR-Cas9 genome editing technology).

(B) When the genetic background is variable and the environment is relatively consistent, the impact of genetic

variants on downstream omic levels can be isolated.

(C) When the genetic background is similar and the environment is variable, the impact of environmental factors on

the different omic levels can be studied.

(D) When both genetic background and environment are variable, the high level of variability will

complicate the isolation of factors responsible for modifying the omic levels. Increasing sample size can mitigate this

problem.
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accurate personalized medicine (Ginsburg and McCarthy, 2001). A holo-omics-based personalized medi-

cine would recognize not only the genetic and exposomic features of patients but also the associated mi-

crobiota (Box 4).

Ecology and Evolution

Implementation of a holo-omic approach holds the potential to address many basic questions regarding

the ecology and evolution of species. Most pertinent of these are in regards to the holobiont and testing

specific hypotheses derived from the hologenome theory of evolution (Rosenberg et al., 2007). For

example, how does selection occur on the holobiont and what mechanisms underpin the cross talk be-

tween the host andmicrobiota axes. One potential application is to measure the impact of microorganisms

in vertebrate adaptation and improve predictions from anthropogenic disturbances, such as climate

change and habitat destruction, on species distributions. It has been proposed that metagenomes could

confer enhanced adaptive capacity to their hosts (Alberdi et al., 2016), potentially enabling rapid adapta-

tion to changing environmental conditions (Fontaine and Kohl, 2020). The adaptive capacity of hosts and

their associated microbiota through linking specific host genotypes with metagenomes has been demon-

strated with regard to toxicity resilience (Macke et al., 2017), heat tolerance (Moran and Yun, 2015), drought

and desiccation (Cernava et al., 2019), disease resistance (Rosshart et al., 2017), and nutrient acquisition

(Falcinelli et al., 2015). Through characterizing host-microbiota pathways it is possible to catalog these

interactions and begin to assess evolutionary adaptations within the metagenome. This could enable

metagenomic—rather than only genomic (e.g., Razgour et al. (2019))—adaptations to be considered

when predicting species range shifts owing to climate change and potentially improves the predictive ca-

pacity of species distributions. Likewise, such an approach could also be adopted to improve predictions of

the adaptive capacity relevant to modeling invasive species (Fontaine and Kohl, 2020), enabling better es-

timates of invasion trajectories and ecological impact forecasts.

Box 3. Implementing the Holo-Omic Approach in Poultry Farming

Chickens are an important source of high-quality protein for a large proportion of the human population. The gut

microbiota of broilers (chicken bred for meat production) is highly variable since they are slaughtered before reaching

an age in which the microbial community dynamics stabilize (Rychlik, 2020). Although the administration of probiotics

and prebiotics to modulate the gut microbiota is becoming increasingly popular, results are still inconclusive and

further research is needed (Ducatelle et al., 2015).

(1) Are host-microbiota interactions relevant in the system under study?

The controlled environmental conditions in intensive poultry production systems, which use the same feeding

strategy and environment for all individuals, indicate that the likely reason behind variation in the chicken perfor-

mance and their gut microbiota when administered pre- and probiotics might be explained by microbial founding

effects and microgenomic variation of broilers (Box 2. Figure 3B: Impact of Genome) not only across but also within

breeds. An initial examination of the genotypes along with a targeted screening of the microbiota of each individual

in the broiler population can allow researchers to discover any potential association between the two domains using

GWASs and MGWASs with a particular focus on pre- and probiotics-related phenotypic responses (e.g., inflamma-

tory markers, stress response molecules).

(2) Is it meaningful to implement a holo-omic approach?

Pre- and probiotics interact with native gut microorganisms as well as with the host. The gut microbiota of broilers is

relatively simple because of the closed environment where the broilers are reared. The genetic diversity of

conventionally bred broilers is low, yet even small interindividual differences can be crucial and might have wide

implications on the response to pre- and probiotics. These system properties allow the successful application of the

holo-omic framework for obtaining relevant microbe-microbe and microbe-host interactions, which can help re-

searchers optimize feed additives design, production, and administration, thereby preventing production ineffi-

ciency driven by gut dysbiosis.

(3) Which omic levels are relevant and how to maximize the amount of useful data derived from them?

If associations are detected between the (meta)genome and host phenotypic traits, the study of transcriptome,

metatranscriptome, and metabolome can unveil the nature of microbe-microbe and host-microbe interactions and

how they affect the host. Detecting molecular pathways that are activated or deactivated in the presence of pre- and

probiotics can enable researchers to identify production-related phenotypic changes in the host.
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Species Conservation

Holo-omics could also be relevant for developing optimal active conservation actions, such as captivity breeding

and animal translocations (Box 5). As captive conditions differ extensively from those experienced in the wild,

many species kept in captivity diverge in their microbiota compositions compared with their wild counterparts

(McKenzieetal., 2017). This couldhave implications forattempts to translocate species (i.e., introduction, re-intro-

duction, and re-stocking) as the functionality of the microbiota might be compromised thereby diminishing the

chance of successful translocation (Bahrndorff et al., 2016). Microbiota composition and functionality varies be-

tween localenvironments, and identifying the local variants can impactconservationeffort success.Althoughcon-

servationists have traditionally focusedon a species genetic traits (Allendorf et al., 2010), the holo-omic approach

posit to match this information with information on microbiota composition and functionality, to avoid mixing

populations with different hologenomic adaptations to a given environment. Matching captive individuals with

a ‘‘wildmicrobiota’’ prior to their release andmonitoring their fitness and associated temporal changes of themi-

crobiota in the wild could reveal the efficiency of the holo-omic approach in the field of conservation.

CURRENT LIMITATIONS AND FUTURE PERSPECTIVES

Although holo-omics represent a valuable tool for many fields, its implementation is still hampered by eco-

nomic, technical and biological limitations. A main economic hurdle is the high cost of shotgun

sequencing. Targeted sequencing or DNA microarrays approaches can be cost-effective alternatives for

characterizing (meta)genomes in some cases, although shallow shotgun sequencing can in some instances

recover higher taxonomic resolution at the same cost, while also providing direct inference about function-

ality (Hillmann et al., 2018). Targeted approaches might enable researchers to establish correlation be-

tween the presence of specific microorganisms and genetic or phenotypic traits of the host, but to infer

causation the use of shotgun sequencing will often be necessary to provide whole genome resolution.

Alternatively, a cost-effective approach, mostly useful when the microbial diversity is limited, is to combine

targeted amplicon sequencing with deep shotgun sequencing on a subset of samples in a dataset (Lesker

Box 4. Holo-Omic Approach to Fecal Transplant Treatments

The use of fecal transplants, i.e., transferring fecal material from a healthy donor to a patient with a gastrointestinal

disorder, is now becoming a promising treatment for multiple gastrointestinal disorders (Mcilroy et al., 2019).

Although such treatments have shown some success, outcomes often vary among patients despite receiving the

same treatment (Sbahi and Di Palma, 2016). Therefore, we hypothesize that the holo-omics approach can be applied

to improve the success rate of such treatments by matching the genotype between fecal donors and recipients similar

to procedures for organ transplants.

(1) Are host-microbiota interactions relevant in the system under study?

The success of fecal transplants relies on the capability of beneficial microbes from the donor fecal sample being able

to colonize and establish themselves in the gut environment of the recipient. One can hypothesize that the probability

of success relates to differences among patient gut ‘‘environments’’ that depends not only on the existing microor-

ganism community but also on the genotype or epigenotype of the human host (Box 2. Figure 3D: Impact of Genome

and Environment).

(2) Is it meaningful to implement a holo-omic approach?

The information gained from a holo-omic approach will ultimately lead to more efficient treatments by, for example,

optimizing the biological match between a fecal donor and recipient. For example, a holo-omics analysis in a

controlled cohort can reveal concrete genotypes of a host that are associated with the gut microbiota composition.

Then, once we have accumulated knowledge about specific candidate genes directly associated with composition

and function of gut microbiota, we can screen these genes to optimize the genetic match between donor and

recipient, thereby improving the odds that the recipient is likely to adopt the healthy microbes from the donor and

thereby counteract the negative effect from microbes such as Clostridioides difficile (Gough et al., 2011).

(3) Which omic levels are relevant and how to maximize the amount of useful data derived from them?

A holo-omic approach to identify the factors underlying the differential success of fecal transplants could include the

patients’ genomic and epigenomic features coupled with transcriptomic, metagenomic, metatranscriptomic, and

metabolomic variation before and after a fecal transplant. Associating these features with the success of the treat-

ment, and with each other, would shed light on the functional changes introduced by the transplant, which would

enable identifying the factors leading to a success or failure of the treatment.
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et al., 2020). However, if the required resolution can only be achieved using shotgun approaches, it is essen-

tial to consider the costs of generating the required amount of data and to design the experiments and

sampling strategies accordingly. One of the advantages of the holo-omic approach is that all generated

data are useful in qualitative terms (i.e., host DNA is valuable information, rather than contamination).

However, this does not imply that all generated data are quantitatively useful. The usefulness and cost-

effectiveness are influenced by the proportion of host- or microbiota-derived nucleic acids, amino acids,

or metabolites. These proportions change drastically across sample types (Marotz et al., 2018) and host

taxa (Human Microbiome Project Consortium, 2012; Singh et al., 2014), and an incorrect estimation can

require drastic budget adjustments.

The holo-omic approach faces essential challenges, such as those linked to the quantity and complexity of

the data to be analyzed. The interactions between different microbes, each synthesizing and metabolizing

a variety of molecules, and the interactions betweenmicrobes and host cells is extremely complex, with the

nature of these interactions being far from uniform and linear. This demands an integrative approach that

can account for the different data types under the same inference framework. Generative/mechanistic

models exist for many of the individual omics data, such as transcriptome, proteome, and metagenome,

but integrating these models under a single inference framework is challenging, given the different data

types (compositional versus absolute abundance, discrete vs. continuous) and the vastly different biolog-

ical processes that underlie them. Thus, developing mechanistic models for such data are an active area of

research. In addition, in most current studies, the holo-omics data contain a lot of missing values, e.g., the

transcriptomics andmicrobiome data may not come from the same individuals, and the generated data fall

Box 5. Implementing the Holo-Omic Approach in Conservation Biology

In winter, the Western capercaillie (Tetrao urogallus) feeds almost exclusively on conifer needles rich in resin and

phenol and low in nutrients (Bryant, 1980). It has been proposed that the microbiota might be of major importance in

aiding the metabolism of these hard-to-digest compounds (Wienemann et al., 2011). Failure of translocated captive-

bred individuals to survive in the wild is suspected to be a consequence of the lack of specific microbes capable of

digesting the toxic compounds in the diet (Wienemann et al., 2011).

(1) Are host-microbiota interactions relevant in the system under study?

The highly specialized diet with many hard-to-digest components of the capercaillie suggests that the digestion of

these compounds might be facilitated by the microbiota. An initial screening using shallow shotgun sequencing will

indicate microbial differences between wild and captive capercaillies to identify taxa and functions related to the

degradation of resin and phenol that might be missing in captive individuals.

(2) Is it meaningful to implement a holo-omic approach?

If the captive bred individuals originate from the same population as they aremeant to be released in, then the system

is relatively simple with two similar genetic backgrounds (wild and captive-bred from the same wild population). This

means that the effect of genetics is roughly the same for wild and captive conspecifics, which will allow researchers to

study the impact of the environment (i.e., a diet of pine needles) on microbiota functionality (Box 2. Figure 3C: Impact

of Environment). If captive bred individuals originating from one population are to be released to increase the

number of animals in another population, then it becomes increasingly important to consider that host gene func-

tionality between populations might vary and the contribution from themicrobiota to these functions are likely to also

vary. It is therefore important to consider if the genes or allelic variants necessary for an optimal digestion of conifer

needles are present, either inherent to the host genome or in the metagenome.

(3) Which omic levels are relevant and how to maximize the amount of useful data derived from them?

If the initial screening of the metagenome indicates a lack of functions related to the metabolism of phenol and resin

in captive capercaillies, the next step will be to gradually feed them more of their natural diet of pine needles and

subsequently screen both the metagenome and (meta)transcriptome. Screening both the transcriptome and meta-

transcriptome will allow conservationists to uncover complementary interactions between host and microbiota

genes. If the genes of interest are suddenly present and expressed then the dietary change has been enough to

provide the captive capercaillies with a ‘‘wild microbiota’’ and released animals can then be monitored and their

fitness compared with control animals with a captive microbiota. If captive individuals fail to acquire the needed

functionalities through the gradual change to a more natural diet other vectors of enrichment should be tested (e.g.,

natural soil or feces from wild capercaillies).
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under the small N (sample size), large P (features) paradigm. That is, the data contain a limited number of

independent observations of a large number of features. In the case of holo-omics data, features can

include millions of genomic variants, mRNA quantification for thousands of genes, abundance estimates

of hundreds to thousands of taxa in the microbiome, and tens to hundreds of phenotypes such as health

parameters and growth rates. Unfortunately, the large number of features (P) are not accompanied by a

corresponding increase in sample sizes (N), owing to the high cost of generating such comprehensive

data for a large number of individuals. Identifying the important determining features in such datasets

can be very challenging given the limited number of independent observations. Statistical advances in

the last decade including development of deep learning methods are helping address the challenges

posed by the high dimensionality and complex correlation structure of the data. Development of such

methods is an area of active research where several advances have been made in integrating host-micro-

biome data (Bersanelli et al., 2016; Heintz-Buschart et al., 2016; Liu et al., 2020).

CONCLUSION

Although still challenged by many limitations, the feasibility to conduct holo-omic research will only increase in

the near future, aided by the continuous publication and improvement of macro- andmicroorganism genomes,

the decrease of costs for DNA/RNA sequencing and mass spectrometry, the increase of computational capac-

ities, and the uninterrupted development of analytical tools to analyze the huge amounts of data generated.

These trends will allow a broader range of research groups to conduct holo-omic studies and as the need for

detailed information on host-microbiota interactions increases in both applied and basic sciences there is no

doubt that the holo-omic approach will gain popularity in the future.
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Recovering High-Quality Host Genomes from Gut
Metagenomic Data through Genotype Imputation
Sofia Marcos,* Melanie Parejo, Andone Estonba, and Antton Alberdi*

Metagenomic datasets of host-associated microbial communities often
contain host DNA that is usually discarded because the amount of data is too
low for accurate host genetic analyses. However, genotype imputation can be
employed to reconstruct host genotypes if a reference panel is available. Here,
the performance of a two-step strategy is tested to impute genotypes from
four types of reference panels built using different strategies to low-depth
host genome data (≈2× coverage) recovered from intestinal samples of two
chicken genetic lines. First, imputation accuracy is evaluated in 12 samples
for which both low- and high-depth sequencing data are available, obtaining
high imputation accuracies for all tested panels (>0.90). Second, the impact
of reference panel choice in population genetics statistics on 100 chickens is
assessed, all four panels yielding comparable results. In light of the
observations, the feasibility and application of the applied imputation strategy
are discussed for different species with regard to the host DNA proportion,
genomic diversity, and availability of a reference panel. This method enables
leveraging insofar discarded host DNA to get insights into the genetic
structure of host populations, and in doing so, facilitates the implementation
of hologenomic approaches that jointly analyze host and microbial genomic
data.

1. Introduction

The large molecular datasets generated through shotgun DNA
sequencing regularly contain useful information to characterize
taxa, functions, and structures beyond the primary aim of the
study. This is especially true in metagenomic datasets that of-
ten present mixtures of DNA from eukaryotic, prokaryotic, and
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viral origin.[1] While primarily used for
characterizing the genomic architecture
of microbial communities, metagenomic
data generated from intestinal contents
or feces can also be used for extract-
ing useful genomic information of the
animal host.[2] In fact, hologenomic ap-
proaches, that entail joint analysis of an-
imal genomes along with metagenomes
of host-associated microorganisms to
study animal-microbiota interactions,
can benefit from such optimization
strategies.[3,4]

However, mining host genomic data
from metagenomic datasets presents a
number of challenges. The fraction of
host sequences in the metagenomic mix-
ture is often unpredictable, and can range
from a negligible proportion (<5%) to an
almost complete representation (>95%)
of the sample,[5] even within a single
taxon and sample type.[6] Hence, a given
amount of metagenomic sequencing ef-
fort does not ensure that the desired
depth of host DNA sequencing will be
reached. When the host DNA fraction

in the metagenomic mixture is low, achieving the desired se-
quencing depth requires increasing sequencing effort, with its
respective economic burden. In consequence, the amount of host
DNA sequences generated is often insufficient for accurate vari-
ant calling.
One useful strategy for efficient data mining of host genomic

information is genotype imputation, which consists in estimat-
ing missing haplotypes of poorly characterized genomes using a
reference panel of high-quality genotypes.[7] Thus, information
gaps of genomes with very low sequencing depth can be recon-
structed based on the haplotype information of a properly charac-
terized representative panel. Genotype imputation of single nu-
cleotide polymorphisms (SNPs) is a widely employed approach
in association studies to increase the density of variants of ge-
nomic datasets.[8,9] The recent generation of large high-quality
genomic databases, such as the human 1000 Genomes Project
(1000G)[10] and the 1000 Bull Genomes Project,[11] has improved
the accuracy of imputation and increased the statistical power of
association analyses, especially for rare variants.[12,13] However,
ideal reference panels are only available for a limited number of
model and farm species, and they require high computational ca-
pacity.
When large reference panels are not available, an alternative

strategy is to create a custom panel using a representative subset
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of genomes of the studied population.[14,15] This approach can be
more cost-efficient because when haplotype diversity is limited,
genomic information of a subset of the population can success-
fully impute haplotype information to the rest of the population.
Moreover, the study-specific panel can be combined with indi-
viduals from public databases,[14,15] which has been previously
employed in sheep,[16] pig,[17] and chicken studies.[18]

Nevertheless, in addition to the size and diversity of the
panel,[19] imputation strategy may also affect the accuracy of re-
covered genotypes.[20] In contrast to the standard imputation
method, in which low density SNP arrays are imputed to high
density based on a reference panel, shallow shotgun sequenced
data display particular challenges, as no genotype is known with
certainty. Recently, a two-step imputation strategy for ultra low-
depth coverage samples (<1×) was introduced.[21] This approach
relies on updating genotype likelihoods using a reference panel
before imputing the missing genotypes in order to recover a
higher density of SNPs with greater confidence. It was first pro-
posed in human population genetics as an alternative to geno-
typing arrays,[21] and later applied to recover ancient human
genomes.[22] To the best of our knowledge, such an imputation
strategy has not been implemented yet in non-model animal pop-
ulations with a limited number of available samples as a refer-
ence panel.
Here, we present a straightforward approach to recover high-

quality host genomes from gut metagenomic data, showcased
in farm chickens. We evaluate how the reference panel compo-
sition and sample depth of coverage affects imputation perfor-
mance using four panels designed according to the resources
scientists studying microbial metagenomics may have access to.
We first calculate imputation accuracy between imputed and true
genotypes in three chromosomes using 12 validation samples for
which high-depth sequencing data are also available. Then, we
employ a bigger dataset of 100 individuals to impute all autoso-
mal chromosomes and explore how the choice of the reference
panel affects commonly used population genetics statistics. Aim-
ing at facilitating its implementation in other study systems, we
provide the bioinformatic pipeline and discuss suitable panels
and minimal depth thresholds required for successful imputa-
tion in light of the characteristics of the study system.

2. Experimental Section

2.1. Ethical Statement

Animal experiments were performed at IRTA’s experimentation
facilities in Tarragona under the permit FUE-2018-00813123 is-
sued by the Government of Catalonia, in compliance with the
Spanish Royal Decree on Animal Experimentation RD53/2013
and the European Union Directive 2010/63/EU about the pro-
tection of animals used in the experimentation.

2.2. Target Population and Reference Panels

2.2.1. Target Population

Genomic information of the target population of 100 chickens
belonging to two broiler lines (Cobb500 and Ross308, hereafter

simply Cobb and Ross) was generated from metagenomic DNA
extracted from the cecum contents of the birds. In short, ce-
cum content (≈100 mg) was collected right after euthanizing
the animal, and preserved in E-matrix tubes with DNA/RNA
Shield buffer (Zymo Research, Cat. No. BioSite-R1200-125) at
−20 °C until extraction. After physical cell disruption through
bead-beating using a Tissuelyser II machine (Qiagen, Cat. No.
85300), DNA extraction was performed using a custom nucleic
acid extraction protocol (details explained in Bozzi et al.),[23] and
sequencing libraries were prepared using the adapter ligation-
based BEST protocol.[24] Paired-end 150 bp-long reads were
generated on a MGISEQ-2000 sequencing platform over multi-
ple sequencing lanes. Sequencing effort was decided based on the
desired depth of the metagenomic fraction of the samples, which
was the primary objective of the data generation. A preliminary
screening revealed that cecum contents contained a large fraction
of microbial DNA (>80–95%), and a limited relative amount of
host DNA (<5–15%) (Figure 1A). Aiming at ≈15 GB (gigabases,
≈50 million reads) of bacterial DNA per sample, cecum samples
yielded between 0.5 and 4 GB of host DNA, which was equivalent
to 0.5–4× depth of coverage of the chicken genome (≈1.05 GB).
Raw data will be available from European Nucleotide Archive
(ENA), with BioProject accession no. PRJEB43192 (https://www.
ebi.ac.uk/ena/browser/view/PRJEB43192?show = component-
projects). Until the release date, data will be made available upon
request.

2.2.2. Reference Samples

Internal and external high-quality genome sequence data were
used to create the four reference panels tested in the study.
The internal reference data were generated from ileum con-
tent samples of 12 randomly selected individuals included in
the target population (5 Cobb and 7 Ross), following the same
procedures as explained above. In contrast to cecum samples,
ileum contents contain a very large fraction (>90–95%) of host
DNA, and a small representation of microbial DNA. Hence,
in order to generate a comparable amount of microbial data
to that of the cecum, ileum samples were sequenced aiming
100 GB/sample. This sequencing effort yielded ≈90 GB of host
DNA (≈80–90× depth of chicken genome), which enabled gen-
erating a high-quality internal panel from a subset of the stud-
ied population. In addition, chicken DNA sequence data of
40 broilers (meat producers), 20 layers (egg producers), and
20 red junglefowls (RJF, wild chickens) generated by Qanbari
et al. from blood samples were used as external reference data
(Figure 1A).[25]

2.2.3. Composition of Reference Panels

Different combinations of the internal and external reference
samples were used to create the four reference panels: i) the
internal panel comprised 12 animals from the target population,
ii) the external panel comprised 40 animals from two broiler
lines (different from the target population), iii) the combined
panel combined the previous two panels, and iv) the diverse
panel also contained more distant populations (Figure 1B). The
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(a) (c)

(b)

Figure 1. Study design and imputation pipeline for recovering host DNA. A) The characteristics of the three datasets. B) Composition and number of
samples of the four reference panels used for imputation. Breeds are coded as Br1 = broiler line A, Br2 = broiler line B, L1 = white layer, L2 = brown
layer, RJF = red junglefowl. C) The study design has three datasets: the target population, and internal and external reference samples. The bioinformatic
procedure is divided into three steps: pre-processing, variant calling, and imputation. The input format of the starting step is a FASTQ file. After mapping
we obtain a BAM file and from variant calling to the final step, procedures are performed using VCF file. The green box represents the steps proposed
by Hui et al. (2020). Genotype probability (GP) filters are used during imputation and missing call rate (MCR) filters during panel design.

four panels varied in size and genomic diversity in order to
see whether the composition of the reference panels affected
imputation accuracy. With the internal panel, it was tested if a
small subset of the target population was enough for a proper
imputation in low-quality host sequence data derived from
metagenomic samples. The use of just an external panel was
considered to test whether it was a viable option for studies with
a shortage of samples or a limited budget for high-depth host
sequencing. The combined panel on the other hand, permits
combining both resources. Last, the diverse panel enabled to test
whether including distantly related individuals would be more
effective than the three previously mentioned strategies.

2.3. Pipeline for Recovering Host Genotypes from Metagenomic
Data

2.3.1. Data Pre-Processing

All the metagenomic sequence data that contained both
host and microbial DNA, were pre-processed using identi-
cal bioinformatic procedures. In short, sequencing adapters
were removed using AdapterRemoval (v2.2.4)[26] and exact du-
plicates using seqkit “rmdup” (v0.7.1)[27] prior to the read-
mapping. Read-alignment to the chicken reference genome
(galGal6; NCBI Assembly accession GCF_000002315.6) was
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conducted with BWA-MEM (v0.7.16a).[28] Default parameters, ex-
cept for the minimum seed length (-k) were employed, which
was increased to 25 in order to reduce the number of incor-
rectly aligned read pairs as recommended by Robinson et al.[29]

This strategy was employed because the standard alignment
(-k 19) presented an unconventional distribution of reads across
the genome, that is, unspecified readmapping leading to regions
being stacked with 80+ reads (Table S1, Supporting informa-
tion). The “-M” flag, which was used to mark shorter split hits
as secondary mappings were added. Aligned reads were sorted
and converted into sample-specific BAM files before filtering
out the metagenomic fraction (unmapped) using SAMtools view
(v1.11)[30] with “-b” and “-F12” flags. Mapping statistics including
depth and breadth of coverage as well as percentage of mapped
reads were calculated using SAMtools’ depth and flagstat func-
tions. DNA damage of 10 cecum samples was assessed by Dam-
ageProfiler (v1.1).[31]

Pure genomic data (with no microbial fraction) generated by
others[25] were downloaded from the EMBL-EBI ENA database,
and mapped to the same chicken reference genome using BWA-
MEM with “-k” default value and “-M” flag.

2.3.2. Variant Calling and Genotyping

Variants in the target population were called by chromosome
with the mpileup utility of SAMtools using standard parame-
ters (-C 50 -q 30 -Q 20). Variant calling was performed with “-m”
and “-v” flags to allow variants to be called on all samples simul-
taneously. Raw variants were filtered using BCFtools (v1.11)[32]

commands “-m2,” “-M2,” and “-v snps” to keep only bi-allelic
SNPs.
Variants of the internal reference samples were called the same

way, but additionally, low quality variants with a lower base qual-
ity than 30 (QUAL<30) and variants with a base depth higher
than three times the average (DP<(AVG(DP)*3) were removed
to ensure only highly reliable variants were retained.
Since the interest was solely in imputing variants present

in the target population, the external reference samples were
genotyped by defining variant sites detected in the internal ref-
erence samples. Genotyping was performed for all autosomal
chromosomes with GATK (v4.1.7.0)[33] HaplotypeCaller using
the “–min-base-quality-score 20,” “–standard-min-confidence-
threshold-for-calling 30,” “–alleles,” and “-L” parameters to ob-
tain calls at all given positions, followed by GATK SelectVariants
"–“select-type-to-include SNP” to only include SNPs.
In preliminary analyses, variants in the external panel were

also called to examine the overlap with the variants present in
the internal reference samples. The same procedures explained
abovewere used for chromosome one (GGA1). Genotyping based
on the positions of the internal panel and variant calling from
scratch were compared by using the 40 broilers from the external
panel (Figure 1B). A similar number of variants were obtained
for the genotyped (2.5 m) and the variant called VCF files (2.7
m). Moreover, 28% of the variants from the 40 broilers were not
present in the internal reference samples (Figure S2, Support-
ing information). Thus, it was decided to genotype the rest of the
samples to reduce possible bias through the high number of vari-
ants specific to the external reference for the imputation of the
target population.

2.3.3. Two-Step Imputation via Genotype Likelihood Updates

Genotypes were imputed from the four aforementioned refer-
ence panels to the target population using a two-step strategy.
Prior to imputation, the reference panels were filtered by ex-
cluding variants with missing genotypes to remove any potential
noise caused by inference errors, and subsequently phased using
SHAPEIT (v4).[34]

Imputation was performed in two steps following Homberg
et al. (2019) and Hui et al. (2020). First, genotype likelihoods
were updated based on one of the reference panels using Beagle
4.1.[35] Beagle 4.1 accepted a probabilistic genotype input with “-
gl” mode, and it only updated sites that were present in the input
file. Second,missing genotypes in the input file were imputed us-
ing Beagle 5.1 with “-gt” mode using the same reference panel.
Beagle 5.1 only accepts files with a genotype format field, like
later versions than Beagle 4.1. Therefore, the latest version can-
not be used for both steps. Format field genotype probabilities
(GP) were generated in both steps in order to enrich confident
genotypes. The highest GP was required to exceed a threshold of
0.99 after both steps using BCFtools “+setGT” plugin. The rest
of the parameters were set to default. Both steps’ input and out-
put files were in VCF format. The schematic steps detailed in
methods can be found in Figure 1C. Bioinformatic resources, in-
cluding scripts, sample ENA accession codes and data files have
been archived in the following link (10.5281/zenodo.6473506).

2.4. Imputation Accuracy Using 12 Validation Samples

The accuracy of the imputation using the four reference panels
was tested using the 12 individuals for which both low-depth (tar-
get population) and high-depth (internal reference samples) se-
quence data were generated from cecum and ileum contents, re-
spectively, hereafter referred to as validation samples. The low-
depth samples of the 12 individuals had a depth of coverage
spanning 0.05× to 3.73×, and breadth of coverage from 10% to
80%. For an unbiased evaluation, a leave-one-out cross-validation
(LOOCV) approach was employed by excluding each of the 12 val-
idation samples once from the reference panel in each of the dif-
ferent imputation scenarios. Considering the large size-variation
of avian chromosomes, a macrochromosome (GGA1, 197.6 MB),
a mid-size chromosome (GGA7, 36.7 MB), and a microchromo-
some (GGA20, 13.9 MB) were selected for the test to optimize
runtime and computational resources. Concordance between the
internal reference samples and imputed genotypes was calcu-
lated for each individual chicken using VCFtools, with the “–diff-
discordance-matrix” option. Precision of heterozygous (het.) sites
was also calculated, since these alleles were the most difficult
to impute correctly. Last, imputation accuracy was estimated for
variants in different minor allele frequency (MAF) bins to eval-
uate whether rare variants were correctly imputed. The variant
frequencies were thus extracted from the internal panel by ana-
lyzing the precision of het. sites for the GGA1 in bins of 0–0.05,
0.05–0.1, 0.1–0.3, and >0.3.

2.5. Impact of Reference Panel on Population Genetics Inference

The implications of using different reference panels in down-
stream population genetics analyses were explored, including
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inferences of population structure, estimates of genetic diversity,
and genome scans for signatures of selection.
These analyses were run in all but two outlier samples with

depths of coverage of 0.07 and 0.05×, which were below the
threshold of 0.28× corresponding to the lowest successfully im-
puted sample in the validation set (genotype concordance of
>0.90 and het. sites precision of >0.75, see results below). 100
samples were thus used (47 Cobb and 53 Ross) for which the host
DNA recovery pipeline for all the autosomal chromosomes was
run, and the commonly used population genetics statistics were
analyzed, including observed heterozygosity (Ho), nucleotide di-
versity (𝜋), pairwise distance as estimated through identity-by-
state (1-IBS), and kinship estimates. The same analyses were
also conducted for 10 validation samples (for the low-depth and
high-depth samples) after excluding two of them, whose re-
spective counterparts in the target populations (with 0.05 and
0.07× depth) were filtered out as mentioned above. The imputed
datasets with each of the panels were filtered for missingness 0
with PLINK (v1.9).[36]

For measuring population genetics parameters, the VCF files
were filtered for MAF >0.05. Ho, the percentage of het. sites
over the number of variant sites, was calculated for each indi-
vidual using“–het” in PLINK. 𝜋, the average pairwise sequence
difference per nucleotide site, was calculated in 40 kb win-
dows with 20 kb step size across autosomal chromosomes us-
ing VCFtools.[37] For the validation samples whole-genome win-
dowed values were averaged to generate a genome-wide 𝜋 for
each individual. For the target population, 𝜋 was calculated
for each broiler line. Pairwise distance was calculated using “–
distance square 1-ibs” in PLINK. Kinship was calculated with the
command “–make-king square” using Manichaikul et al.’s esti-
mator in PLINK (v2).[38]

It was further tested whether genome scans for selection be-
tween the Cobb and Ross population with each of the imputed
datasets yielded consistent results. To this end, population differ-
entiation along the genome was calculated using Weir and Cock-
erham’s fixation index (FST) estimate for each panel.[39] FST was
calculated in sliding windows of 40 kb with 20 kb overlap across
autosomal chromosomes. Window-based FST values were then
normalized, and regions with values above the 99th and 99.9th
empirical percentile were considered as candidates for selective
sweep regions.[40] The overlap of these regions across the datasets
using the different reference panels was used as an estimate of
consistency.

2.6. Statistical Analysis

Kruskal-Wallis test was performed to test for differences in av-
erage concordance across chromosomes in the 12 validation
samples.[41] A paired sample T-test and F-test were performed
for concordance and precision of het. sites to verify if the dif-
ference in means and variances were significant between refer-
ence panels.[42] T-test p-values were adjusted using Bonferroni’s
correction method.[43] Paired sample T-tests were performed for
Ho and 𝜋 estimates in the 100 chicken population. Mantel test
was performed with the R package ade4 to test the correlation
between the resulting matrices from the pairwise distance and
kinship analyses.[44]

3. Results

3.1. Alignment and Coverage

The mapping statistics of the 100 samples used to characterize
the target population (cecum content), and the 12 internal refer-
ence samples (ileum content) were drastically different. Cecum
samples showed an average of 1.84± 2.35× (mean± SD) depth of
coverage and 52.41± 24.20% breadth of coverage. Ileum samples
had 92.70 ± 7.64% of host DNA and an average depth of 93.16 ±
9.07×, practically covering the entire reference genome (98.89 ±
0.01%).

3.2. Imputation Accuracy of 12 Validation Samples

The internal (I, n = 12), external (E, n = 40), combined (C, n =
52), and diverse (D, n= 92) reference panels were used to study (i)
the effect of panel size and diversity, and (ii) sample depth of cov-
erage threshold on imputation accuracy in three chromosomes
with contrasting dimensions. Variant calling in the internal ref-
erence samples detected 2.4 m, 470 K, and 182 K putative SNPs
in chromosomes GGA1, GGA7, and GGA20, respectively. After
genotyping the external reference samples and combining them
to create the external, combined, and diverse panels, each panel
was filtered before being phased. As a consequence, the filtering
step decreased the number of SNPs by 13.83 ± 1.36% for the ex-
ternal and combined, and by 23.80± 0.99% for the diverse, which
yielded panels with different numbers of SNPs (Figure 2A). Re-
garding the percentage of imputed variants in the 12 validation
samples, more than 96% of the total SNPs in each panel suc-
cessfully passed the multiple filters of the pipeline, even for sam-
ples with less than 1× coverage (Figure 2B). The proportion of
imputed SNPs increased and gained uniformity across samples
when the panel was larger but had fewer SNPs. The mean num-
ber of imputed SNPs across samples differed between all the
panels: I versus E (T = 14.58, p<0.001), E versus C (T = 13.56,
p<0.001), and C versus D (T = 11.63, p<0.001). The F-test was
significant only between the diverse and the rest of the panels: I
versus D (F = 30.54, p<0.001), E versus D (F = 24.24, p<0.001),
and C versus D (F = 11.31, p<0.001). Results indicate that the
variance across samples for the diverse panel greatly decreased
compared to the rest (Figure 2B).
For each imputation scenario, genotype concordance, and

precision of het. sites were assessed in the validation samples
by comparing imputed and true genotypes per individual. Af-
ter performing LOOCV with the four reference panels, average
values of genotype concordance exceeded 0.90 for every panel
(Figure 3A) and precision of het. sites ranged from 0.78 to 0.91
(Figure 3B). According to Kruskal Wallis tests, the values of con-
cordance (pI>0.85, pE>0.85, pC>0.95, and pD>0.95), and preci-
sion of het. sites (pI>0.95, pE>0.85, pC>0.85, and pD>0.85) did
not differ across chromosomes. However, mean values differed
between panels for each chromosome (Figure 3). Concordance
values significantly differed when comparing the internal, exter-
nal, and combined panels (Figure 3A). However, no significant
differences were detected between the combined and the diverse
panels, indicating that imputation accuracy in terms of overall
concordance does not increase by adding more distant individ-
uals. For precision of het. sites, differences were detected for all
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Figure 2. Imputation statistics. A) Number of SNPs in each reference panel for chromosomes GGA1, GGA7, GGA20. B) Depth of coverage and pro-
portion of successfully imputed variants of the 12 validation samples for the three chromosomes tested. Capitalized letters refer to panel names: I =
internal, E = external, C = combined, and D = diverse.
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Figure 3. LOOCV test results and comparison of imputation reference panels. A) Genotype concordance, and B) precision of heterozygous (het.) sites
between imputed (low-depth 12 validation samples) and true (internal reference samples) genotypes on chromosomes GGA1, GGA7, and GAA20. Paired
T-tests were performed to identify significant differences in means: the following symbols (“**,” “*”) indicate different p-value cut-points (<0.001, 0.05).
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Figure 4. Minor allele frequency variants of LOOCV test. A) Precision of heterozygous sites, and B) number of imputed low-frequency variants for
chromosome one (GGA1) divided into four different bins of minor allele frequency ranges: 0–0.05, 0.05–0.1, 0.1–0.3, and >0.3. The lower bars represent
correctly imputed variants, while the bars with greater transparency represent the number of all imputed variants within the respective MAF bin. Variants
that coincided between imputed (low-depth 12 validation samples) and true (internal reference samples) genotypes were considered correctly imputed
variants. Paired T-tests were performed to identify significant differences in means across panels: the following symbols (“**,” “*”) indicate different
p-value cut-points (<0.001, 0.05).

panels (Figure 3B), including for the combined and the diverse,
except for GGA20. This suggests that the het. positions are the
most sensitive to the imputation process.
In an attempt to further assess imputation accuracy, we classi-

fied variants according to their MAF in four bins (0–0.05, 0.05–
0.1, 0.1–0.3, and >0.3) and calculated precision of het. sites, and
the number of correctly imputed variants for GGA1 (Figure 4).
The internal panel, while recovering the largest number of vari-
ants, was also the panel with the lowest performance in ade-
quately inferring low-frequency variants, especially for the vari-
ants withMAF<0.1 (Figure 4A). Although there was no improve-
ment from the external to the combined panel for the smallest
MAF bin, a substantial improvement was seen for the rest of the
bins. Some significant differences but not as pronounced were
also observed when switching from the combined to the diverse
panel. Therefore, the combined panel showed overall the best re-
sults with the highest number of correctly imputed variants in
all MAF bins (Figure 4B), while maintaining a very similar num-
ber of imputed SNPs as the external panel. The diverse panel in-
ferred fewer low-frequency variants, but did so more effectively
(Figure 4).

Despite the high overall imputation accuracy, the two samples
with depths of 0.05 and 0.07× were outliers that did not achieve a
sufficiently high concordance (>0.90) and precision (>0.75) with
any of the panels and chromosomes (Figure 3). They were thus
excluded from the target population, and we refer from now on
to 10 validation samples instead of 12.

3.3. Panel Choice Impact on Population Genetic Inference

3.3.1. Number of Variants and Their Allele Frequency Distribution in
the Imputed Target Population

The final number of SNPs recovered from all autosomal chromo-
somes in the target population with different panels decreased as
more distant individuals were included (Figure 5A). This was due
to the missing call rate (MCR) filter. Using the internal panel, we
recovered 11.7 m filtered SNPs in the target population. These
were 30% more recovered variants than when using the diverse
panel (8.9 m). Most of the excess variants from the internal panel
are low-frequency variants that cannot be confidently recovered
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Figure 5. Comparison of the choice of reference panels for imputed target population for all autosomal chromosomes. A) Number of variants in the
target population when imputed using the different panels. B) Minor allele frequency spectrum of the imputed variants in Cobb and Ross populations.
C) Percentage of variants with a MAF lower than 0.05 by broiler line for all the panels. D) Observed heterozygosity for the 10 validation samples (true
genotypes) and for the imputed target population by chicken broiler line (Cobb and Ross). Capitalized letters in the legend refer to the following names:
I = internal, E = external, C = combined D = diverse, and V = validation samples. E) Nucleotide diversity of the target population by chicken broiler
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(Figure 5B), as seen in the lower effective imputation of low-
frequency variants with the internal panel (Figure 4A). Both Cobb
and Ross populations showed similar allele frequency profiles,
with a high proportion of intermediate MAF (Figure 5B) reveal-
ing a substantial loss of rare alleles in the respective populations.

3.3.2. Population Genetic Inference of the Target Population

MeanHo values differed across all panels for both Cobb and Ross
(Figure 5D). The values estimated by imputation tended to in-
crease with panel size and diversity for both broiler lines. Indi-
vidual Ho values displayed a higher variance when imputed with
the internal panel and tended to equalize across samples with the
rest of the panels, following the same trend as with the accuracy
statistics (Figures 3 and 5D). This high variance displayed by the
internal panel might stem from the fewer correctly imputed vari-
ants. For the Cobb population, none of the panels reached the
Ho values seen with the 4 Cobb individuals (from the high-depth
validation samples) (Figure 5D). For Ross, on the contrary, the
external, and combined panels showed very similar values to the
validation samples, while the diverse panel overestimated them.
The very same trend could be seenwhen comparing imputed and
high-depth validation samples (Figure S3, Supporting Informa-
tion). There were some outlier samples (two from Cobb and one
from Ross) that presented lower Ho than the high-depth valida-
tion samples (Figure 5D). These samples apparently underwent
an incorrect imputation process, but it was not necessarily related
to a low mapping depth.
Nucleotide diversity on the other side, decreased with increas-

ing panel size and diversity (Figure 5E), which was directly re-
lated to the lower number of variants retained in the rest of the
panels compared to the internal. There were significant differ-
ences inmeans except between the external and combined panels
for both genetic lines, most likely because of the similar number
of variants both panels share (Figure 5A). When comparing the
imputed population with the validation samples, 𝜋 of imputed
samples and of the target population were underestimated for all
panels (Figure 5E and Figure S3, Supporting Information).
Cobb and Ross populations were very similar, but the impu-

tation tended to accentuate differences between both (Figure 5,
Figures S4 and S5, Supporting Information). Within population,
pairwise distance and kinship estimates did not vary much ac-
cording to the panel. For pairwise distance, the diverse panel
resulted in larger interindividual distances within genetic lines
(Figure S4, Supporting Information). Kinship estimates were
lower when computed with the internal panel, since a larger
number of SNPs were retained, in particular, low-frequency vari-
ants, which are typically unique to one or few individuals, thus
decreasing kinship (Figure S5, Supporting Information). Mantel
tests did not show any significant differences for pairwise dis-
tance and kinship matrices, giving the same result for all panel
comparisons (Mantel statistic, p-value < 0.001). Correlation val-

ues for pairwise distance were very similar and close to 1 (Fig-
ure 5F), even for the validation samples (true genotypes) when
compared with any panel (Figure S3, Supporting Information).
For kinship instead, it seemed that the internal panel differed
more from the rest (Figure 5G and Figure S3, Supporting In-
formation). In both cases, the 10 validation samples were most
correlated with samples imputed with the combined and diverse
panels (Figure S3, Supporting Information).
Whole-genome mean FST values between Cobb and Ross pop-

ulationswere very similar (I= 0.071, E= 0.071, C= 0.072 andD=
0.072) indicating overall low differentiation between the genetic
lines. When analyzing the putative selective sweep regions us-
ing as threshold the 99th percentile, 68.2% of the windows coin-
cided across the four panels, but more interestingly, 75.9% of the
windows were shared across the external, combined, and diverse
panels. When we raised the threshold to the 99.9th percentile,
77% of windows were identified by the genome-scans regardless
of the choice of panel, indicating that the strongest signals are
detected with any panel. Yet, there were some regions that only
passed the threshold when imputation was performed with a par-
ticular panel (Figure 5I). The combined panel did not show spe-
cific sweeps when the percentile was set at 99.9, and it was the
panel with the lowest panel-specific regions with the 99th per-
centile as well, potentially indicating themost robust results, that
is, without panel-specific biases. Surprisingly, the diverse panel
detected the most panel-specific sweeps after the internal panel
(Figure 5I). On the other side, in terms of density of variants in
the commonwindows, themean number of variants reduced sig-
nificantly from the internal to the diverse panel (Figure 5H). This
suggests that although in a broad sense the same outlier FST re-
gions tend to be recovered by all panels, a reduced number of
imputed variants might decrease the probability of detecting true
outliers.

4. Discussion

Shotgun metagenomic datasets of host-associated microbial
communities often contain host DNA that is usually discarded
because the amount of data is too low for accurate host genetic
analyses. Here, we introduced an effective and accurate approach
to recover high-quality host genomes from gut metagenomic
data, which can be used to study host population genetic anal-
yses and ultimately contribute to a better understanding of host-
microbiota interactions.
Our analyses yielded drastic differences in mapping statistics

between cecum samples used to characterize the target popula-
tion and ileum samples employed to generate the internal panel.
Although both sample types were derived from gut contents, the
cecum harbored a very small amount of the host DNA compared
to the ileum, because the latter is known to contain fewer
bacteria,[45] and a higher permeability and thinner mucus layer
of the ileum probably entails higher release of epithelial cells to

line. Paired T-tests were performed to identify significant differences in means: the following symbols (“**,” “*”) indicate different p-value cut-points
(<0.001, 0.05). F) Kinship and G) pairwise distance correlation matrices for the target population. Capitalized letters in the x– and y–axes refer to panel
names: I = internal, E = external, C = combined and D = diverse. H) Boxplot showing number of variants in the common windows of the 99th percentile
from the FST genome scan. I) Venn diagram depicting overlap of significantly differentiated windows as estimated by FST genome scans between Cobb
and Ross populations using the different panels for imputation. Significance thresholds were set at the 99th and 99.9th percentiles.
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the lumen.[46] Moreover, the low, yet variable, proportion of host
DNA retrieved from cecum samples renders sequencing depth
adjustment highly unpredictable, as previously reported.[6] Nev-
ertheless, we showed that if a proper reference panel is designed,
the low and variable fractions of host DNA recovered from such
suboptimal samples can be used for accurately inferring host
genetic features.

4.1. Adjustment of the Imputation Strategy for Metagenomic
Samples

The two-step imputation strategy performed efficiently despite
the structural (e.g., study design, animal taxa, reference panel
size) differences between our study system and the ones the strat-
egywas originally designed for.[21,22] First, the data pre-processing
steps were adapted to the characteristics of the metagenomic
samples. As metagenomic data contain multi-species sequences,
mapping seed length was increased in order to increase map-
ping specificity,[29] although there are also examples where they
have set standard parameters for the alignment.[2,47] With stan-
dard (19) and increased (25) seed lengths, mapping gaps across
the reference genome were unevenly distributed. This is evi-
denced by the large difference between depth (K19 = 2.78x, K25
= 1.8x) and breadth (K19 = 57%, K25 = 50%) of coverage (Figure
S1 & Table S1, Supporting Information), likely hampering accu-
rate computation across the genome. However, in our study, ac-
curacy only dropped significantly in samples below 0.1×, while
more than 0.90 of the variants were recovered. Similarly, Hui
et al. reported that the proportion of correctly imputed heterozy-
gous sites started decreasing at 0.5× of depth of coverage, reach-
ing 50% of correctly imputed sites at 0.1×.[22] Homburger et al.
also reported that imputation performance decreased for sam-
ples below 0.5× of coverage, being imputation r2 = 0.90 for
samples with 0.5× of coverage.[21] Regarding the generation of
genotype likelihoods, results should be minimally affected by the
choice of the variant caller.[22] We also verified that the DNA ob-
tained from cecum samples was not partially degraded (i.e., short
read length, deamination in last bases of the read). Misincor-
porations at the 5′ (C to T) and 3′ (G to A) ends due to deam-
ination were less than 0.6% (mean = 0.4 ± 0.03%), and read
length was consistent across samples (150 bp) (Tables S2 and S3,
Supporting Information), thus, we did not apply a deamination
filter.
Second, we used custom reference panels with less than one

hundred individuals, while the two-step strategy was originally
tested with a large human reference panel (i.e., 1000G).[22] Nev-
ertheless, the accuracy of imputed low-frequency variants for all
panels was comparable to Hui et al., most likely because the indi-
viduals in our target population were closely related as evidenced
by the high kinship estimates, and the stringent genotype filter-
ing (MCR= 0) we used for generating the custom panels in order
to reduce the error rate.
Finally, unlike humans, avian genomes present macro- and

micro-chromosomes, and the latter show higher interchromoso-
mal interactions and recombination rates.[48] However, it seems
that the possible crossovers did not affect imputation in contrast
to previous studies,[49,50] since we did not find any significant dif-
ferences in imputation accuracies between chromosomes. This

suggests that the strategy worked equally well for large, mid-
sized, and small chromosomes with potentially different linkage
patterns.

4.2. Effect of Reference Panel on Accuracy Statistics

Reference panel design depends on data availability as well
as computational capacity. It is a common strategy for impu-
tation of inbred populations to resequence a subset of sam-
ples with higher resolution in order to optimize imputation
performance.[35] Based on previous works, we estimated that 12
individuals out of 100 would be sufficient to represent the ge-
netic diversity of the population. For instance, previous chicken
studies deep-sequenced 25 individuals to impute ≈450 chickens
genotyped with 600 K SNP arrays (≈5% of sample size).[18,51]

In terms of the panels’ SNP density, we decided to genotype
variants that did appear in our target population rather than call-
ing specific variants in the rest of the breeds that composed the
reference panels. Thereby, we aimed at reducing the noise that
the excess variant density could cause in the imputation pro-
cess. Nevertheless, as the genetic distance between the reference
chicken populations and our broilers is very small,[52] we ex-
pected them to share many variants, as we evidenced in prelimi-
nary analyses (Figure S2, Supporting Information).
The internal panel resulted in a larger variance across sam-

ples for overall accuracy statistics. In addition, SNPs with low
MAF had the lowest accuracy when imputed with the internal
panel, but were also the poorest imputed across panels. How-
ever, incorrectly imputed low-frequency variants can be easily re-
moved if a strict MAF filter is applied for downstream analysis.
Another possible option is to sequence more individuals of the
target population to increase the reference panel size. Hence, de-
spite the internal panel only representing a small subset of the
target population, and showing lower imputation values than the
rest of the panels, for scientists without access to external refer-
ence samples, this approach is equally useful as overall imputa-
tion accuracy was higher than 0.90. In this sense, host resequenc-
ing of a small subset of the target population might represent a
cost-efficient option, especially for researchers working with non-
model organisms and inbred populations.
Our results showed that the combined panel performed better

in terms of overall accuracy, and - specifically for MAF variants -
than the internal and external panels alone. Despite the fact that
the external and combined panels had the same number of SNPs,
including a subset of individuals from the target population was
beneficial. Many studies already mentioned an improvement for
the combined option.[53,54] Last, the diverse panel showed the
highest values of concordance and precision of het. sites, most
probably because of the lower number of SNPs recovered, es-
pecially low-frequency variants, which generally yielded lower
imputation accuracies. In terms of imputation of low-frequency
variants, the combined panel outperformed the diverse one, that
is, it correctly imputed a larger number of variants and tended to
improve the precision of het. sites in some MAF bins. A recent
large-scale study performed in aHanChinese population showed
that a Chinese-specific reference panel worked better than fre-
quently used reference panels such as 1000G.[19] Imputation was
greatly improved when the reference panel contained a fraction
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Table 1.Metagenomic datasets and available reference panels. Percentage of host DNA was calculated for the studies that did not mention host mapping
percentage. Alignment with standard parameters was performed with 10 samples (marked with “*”).

System Pop.
characteristics

N Sample types Host DNA Metagenomic
dataset

Ref. panel Downstream analysis

Buffalo River, swamp, and
hybrid buffaloes

695 Gut, intestine, and
rectum

<20% [65] [66] Selection signatures

Cattle Three crossbreeds
and one pureline

282 Gut *3% [67] [11] Selection signatures

Pig Various breeds 287 Fecal 2% [68] [69] Selection signatures

Pig Various breeds 470 Fecal *2% [70] [69] Selection signatures

Chicken Lohmann Brown
and Silkie hens

90 Fecal 8% [71] Custom[57] Selection signatures

Chicken Red Junglefowl 51 Fecal 49% [72] Custom[57] Implication on
domestication

Rat Sprague Dawley 49 Fecal 11% [73] Custom[74] Host-microbiota
association

Rat SpragueDawley 84 Cecal *51% [75] Custom[74] Host-microbiota
interactions

Mouse Various breeds 184 Fecal 9% [76] Custom[77] Differences between
populations

Mouse C57BL/6J 88 Fecal <5% [78] Custom[77] Differences between
populations

Zebrafish Single cohort 29 Fecal *9% [79] Custom[80] Population genetic
inference

Honey bee Eastern and
Western honey

bees

40 Gut <10% [81] [82] Differences between
species

of an extra diverse sample, but they obtained a different pattern
when the panel size was fixed.[19] Thus, taking into consideration
our and previous results on selection of imputation panels, it can
be concluded that increasing panel size and diversity improves
imputation, but a balance has to be found in the composition of
the panel. The distance between the panel and the target popula-
tion has to be taken into account.

4.3. Effect of Reference Panel on Population Genetic Inference

Besides crude imputation accuracy statistics, we evaluated the
impact of the panels on downstream population genetic statis-
tics and their biological interpretation. As imputation accuracies
were generally high with our applied pipeline and the stringent
filtering approach, we expected population genetic inferences to
follow similarly.
Although overall results were in agreement, all the tested pa-

rameters showed slight trends according to the used reference
panel. Observed heterozygosity, pairwise distance, and kinship
values increased while mean FST and 𝜋 values decreased with
panel size and diversity (Figure 5, Figures S4and S5, Supporting
Information). Such biases were related to the composition of the
panels and the associated number and distribution of recovered
SNPs.
Imputation performance was slightly different for the two

broiler lines, as Ross population estimations were closer to the
true values than for the Cobb population. Thus, accentuating
the distance between both genetic lines. This is most likely due

to a smaller representation of Cobb individuals in the reference
panels, that is, 5 Cobb and 7 Ross samples constituted the in-
ternal panel. Second, there were some samples that were incor-
rectly imputed because of their low Ho values (Figure 5D). We
do not know if there are individuals with lower Ho in our Cobb
and Ross populations. For instance, a Ross individual from the
high-depth validation samples had considerably lower Ho than
the rest of Ross individuals. Each broiler line came from two dif-
ferent hatcheries, which might be the reason why some individ-
uals might have slightly different genetic features. We may have
under-represented one of the origins in the internal reference
samples. Thus, it is necessary to be more cautious for the inter-
pretation of individual genomes. Nevertheless, results appeared
to be robust and similar across panels at the population level. The
genome scans yielded overall very consistent results with major
differentiation signals identified by any of the imputed datasets,
likely indicative of a true selection signature between both lines.
However, downstream analyses, such genome scans, and GWAS
must be performed with caution since imputation is sensitive to
low-frequency variant quality.
Both broiler lines exhibited high density of intermediate-

frequency variants, with similar allele frequency distributions to
previously described commercial breed populations.[25,55] A high
density of intermediate alleles is indicative of genetic drift due
to selection in a closed breeding population.[55] Domestication
and breeding history are the two major processes that shape
haplotype structure.[25,56] Cobb and Ross, together with other
commercial lines, have much smaller effective population sizes
than other chicken populations.[57] Broiler breeding methods
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are described as a pyramid strategy, in which pure, inbred lines
are crossed, then F1 individuals are crossed between each other.
In some cases, even a second or a third cross is performed in F2
and F3 generations before raising them for meat.[58,59] Therefore,
broilers are highly related populations, but at the same time
present highHo values. Ho of our studied broiler lines wasmuch
higher than of local populations,[60] but similar to other commer-
cial lines.[56] Similarly, nucleotide diversity and mean fixation
index values were comparable to those previously reported.[25]

4.4. Potential Applications

The possibility to retrieve genomic data frommetagenomic sam-
ples can help reanalyze already published data, and reduce re-
sources spent on population genetic studies. For instance, our
approach could be useful to study genome features of endan-
gered populations relying on fecal samples recovered from the
environment.[61,62] In an attempt to elucidate the possible applica-
tions of the here presented imputation strategy, examples of pub-
lished metagenomic datasets with potential haplotype reference
panels are provided (Table 1). Asmentioned above, host DNAper-
centage varies depending on the study system, sample type, and
sequencing effort.[63] Some studies collect samples frommultiple
body sites from each individual,[2,64] and if combined, the amount
of host DNA can be greatly increased.[3] Or as in our case, sam-
ples with high host DNA can serve as individuals for the refer-
ence panel to impute low-coverage samples. Imputation can also
be useful for making preliminary explorations of host genome
characteristics, while higher quality samples are being processed
or sequenced.
The implemented strategy is rather dependent on the availabil-

ity of a reference genome and high-quality genomic data. Global
efforts such as The Vertebrate Genome Project,[83] European Ref-
erence GenomeAtlas,[84,85] initiatives are contributing to study an
increasing number of species, and thereby providing useful ref-
erence resources for the scientific community. Likewise, phased
haplotype panels are being generated for various species.[69,82]

When generating a custom panel in the absence of a publicly
available option, the genetic diversity and sample size of the study
population have to be taken into account. Larger reference panels
are needed withmore diverse and heterogeneous populations,[16]

while in more isolated populations, reference panels that include
population-specific individuals can improve imputation of rare
alleles.[19,86,87]

5. Conclusion

Our results show that the two-step imputation implemented in
this study can be used to successfully reconstruct genotypes and
study population genetic properties of hosts from suboptimal
metagenomic samples. The comparison among reference pan-
els also demonstrated that this method is versatile and flexible.
This approach could be used in many contexts and exploit dif-
ferent data sources to address a variety of research questions.
This includes the possibility of mining published metagenomic
datasets to recover discarded host DNA sequences. In our partic-
ular case, the reconstructed genotypes will be employed in the

H2020 project HoloFood to detect interactions with microbial
metagenomic features, and thus implement a hologenomic ap-
proach to improve animal production.[88]
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Abstract 

Background  The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference 
for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commer‑
cial importance. However, the use of a single reference genome does not capture diversity present among modern 
breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based 
resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions 
and deletions, it is mostly inadequate to discover more complex structural variation in the genome.

Methods  We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from differ‑
ent breeds and research lines.

Results  We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds 
and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domes‑
tic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This 
approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering 
locus using short reads, which would not be possible using a linear reference.

Conclusions  We expect that this new paradigm of genomic reference will allow better pinpointing of exact muta‑
tions responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new 
sustainability criteria and are resilient to quickly evolving pathogen threats.
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Background
Accurately detecting sequence variation associated 
with traits of economic importance in the domestic 
chicken is a major goal of genetic research into this 
globally widespread dietary protein source [1]. Many 
groups are now genotyping chicken genomes to dis-
cover the underlying molecular basis of specific traits 
[2–6], but current methods, both sequence- and array-
based, have unquantified limitations in assessing the 
underlying variation that connects many loci to studied 
traits. Investigations in other species into the variant 
sets compiled by techniques relying on existing linear 
references have revealed large gaps in variation discov-
ery ability [7–10]. For the domestic chicken, improved 
completeness and accuracy of bioinformatic queries 
into this variation are of vital importance to the field, 
as computational experiments are rapidly becoming 
the venue of choice to assess the potential of artificial 
selection to improve qualities such as growth, nutrient 
digestibility, reproduction, and perhaps most impor-
tantly, immune resilience.

Current frequently employed methods for genotyping 
whole genomes mostly share the core strategy of aligning 
short reads to a reference genome derived from a single 
individual [11]; these references are usually compressed 
haploid representations of diploid genomes, with tog-
gling of haplotypes due to haploid compression, or chi-
meric haploblocks due to allele mixing [12, 13]. Although 
these methods, given a reference genome of sufficient 
quality and reads of sufficient coverage, are able to cap-
ture most single-nucleotide variants (SNVs) and small 
insertions and deletions (indels) in populations, they 
can lead to reference bias [14, 15], and they consist-
ently underestimate all types of structural variants (SVs) 
[8]. Furthermore, for best performance, the most accu-
rate genotyping software [16] requires preexisting high-
quality data about the distribution of polymorphic sites 
throughout the genome for statistical calibration [17] or 
model training [18], information that does not exist for 
most species. Large-scale long-read resequencing can 
mitigate some of these limitations [19], but the high cost 
and low accuracy of long reads compared to short reads, 
and the large amount of existing publicly available short-
read sequencing data — for chicken, there are over 40,000 
short-read experiments on the SRA at the time of writing 
but fewer than 500 long read experiments — make a full 
transition to the use of long reads for resequencing stud-
ies unlikely in the near future. Although there have been 
improvements in algorithms for using inexpensive data 
such as short reads for SV detection, these methods have 
high false positive and false negative rates [7], so previous 
studies of SVs in chicken using these methods [4, 20] are 
likely both incomplete and inaccurate.

To counter these limitations, several methods have 
been developed to create and use pangenome graphs 
as references [21–25]. A pangenome graph is a data 
structure that encodes the sequence and variation pre-
sent among the genomes of multiple individuals [26]. 
Whereas a linear reference usually contains only the 
compressed sequence of a single individual, a pange-
nome includes sequence common to all individuals as 
well as information about the position, alleles, and fre-
quencies of each variant site within the input assemblies. 
The recent publication of a draft pangenome for human 
demonstrated that this new paradigm allows recovery 
of much sequence that appears with nonnegligible fre-
quency in the genomes of individuals across the species 
but is missing from even the telomere-to-telomere linear 
reference [27].

Alignment of short reads to a pangenome reference 
instead of a linear reference has been demonstrated in 
humans and other species, including birds, to recapitu-
late and improve downstream genotype calling accuracy 
for both small variants (i.e., SNPs and small indels) and 
larger structural variants [9, 28, 29]. Large insertions are 
nearly uncallable when using short reads aligned to lin-
ear references, with the recall of tools such as Delly [30] 
falling to zero for insertions larger than 400 bp, whereas 
graph-based tools such as VG [28] and paragraph [22] are 
mostly unaffected by variant length. The human pange-
nome’s demonstrations of improvements in read map-
ping, small variant genotyping, novel variant discovery, 
SV genotyping, and representation of complex variants 
[27] show the potential of this new paradigm for genome 
references.

In chicken, multiple alignments of reference-guided 
short-read assemblies [31] and de novo assemblies 
of high-error PacBio CLR reads [32] have revealed 
sequences present among chickens worldwide but miss-
ing from current references, as well as other previously 
unknown SVs. However, although these whole-genome 
alignments were both described as pangenomes by their 
respective authors, neither study generated a pangenome 
graph that can be used by other researchers as a reference 
for alignment to overcome the limitations presented by 
reference bias and difficulty in capturing SVs. They are 
further limited by their reliance on short reads or low-
accuracy long reads, respectively, for assembly.

In this study, we generate a pangenome graph of 30 
highly continuous genome assemblies of various chicken 
breeds, including broilers, layers, and research lines. We 
use this pangenome to catalog variation present in the 
input assemblies, including variation that was not detect-
able in studies using other methods, focussing on SVs in 
an immune system gene and a feathering-related locus 
as illustrations. We then go on to align short reads from 
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100 chickens to the graph, showing the improved perfor-
mance of this method for alignment accuracy and geno-
typing recall compared to linear reference alignment. 
We expect that adoption of this new resource will allow 
better results in genotyping in future studies, with a goal 
to move toward more effective uses of chicken genome 
references and in the process significantly improve 
researchers’ ability to discover the molecular mecha-
nisms that determine bird healthiness.

Results
Selection of chromosome‑level assemblies
To build assembly-based pangenome references, we used 
the five most continuous chromosome-level assemblies 
of the domestic chicken currently available, along with 
alternate haplotypes as applicable, and new contig-level 
assemblies of thirteen additional chickens, most of them 
locally resolved into haplotypes. The five chromosome-
level assemblies have contig N50 values ranging from 
5.47 to 91.3 Mb (see Table 1). This includes the current 
species reference assembly on NCBI RefSeq, bGalGal1b, 
also known as GRCg7b (contig N50 = 18.8  Mb), a fully 
haplotype-resolved assembly of a commercial broiler line 
created using the trio-binning method and an F1 cross 
between a representative commercial broiler and a white 
leghorn layer [33]. bGalGal1b, as the current RefSeq ref-
erence assembly, is fully annotated, so we use it as the 
source of annotations in this study. Because this assembly 
was made using trio-binning, its creation also resulted in 
a fully haplotype-resolved assembly of the genetic contri-
bution of the other parent, a white leghorn layer. We refer 
to this assembly as bGalGal1w, and it is also known as 
GRCg7w and we use both assemblies in our pangenome.

We sequenced and assembled to the chromosome 
level the genomes of two additional broilers from the 
Ross (Aviagen) and Cobb (Cobb-Vantress) lines, among 
the most commercially relevant broiler lines worldwide, 
to capture more of the diversity present among com-
mercial lines of domestic chickens, and to take advan-
tage of advances in sequencing that have occurred since 
the assembly of bGalGal1b and bGalGal1w, especially 
base-calling improvements in PacBio’s HiFi/Circular 

Consensus Sequence (CCS) technology. HiFi reads are 
accurate enough to allow the hifiasm algorithm to assem-
ble phased contigs for two pseudohaplotypes [35], so 
although we only assembled the contigs from the primary 
assemblies into chromosomes, we used the alternate con-
tigs during pangenome construction as well to take full 
advantage of their individual haploid diversity.

We also integrated the first nearly complete assembly 
of a chicken [34]. This assembly is of a Huxu, a Chinese 
broiler breed, and we refer to it as “huxu”.

Finally, we sequenced and assembled both haplotypes 
of 13 additional chickens to a contig level using HiFi 
sequencing (Additional file  1: Table  1). These chickens 
include research lines bred to study immune function as 
well as domestic breeds originating in Spain and Egypt. 
We produced sequencing coverage of at least 25 × (mean 
35 ×) for each bird based on a genome size of 1.1  Gb. 
Using the hifiasm assembler, which is able to take advan-
tage of the high accuracy of HiFi reads to create two 
locally phased haploid assemblies for each diploid indi-
vidual sequenced, we successfully generated two haploid 
contig-level assemblies for each of 10 out of 13 birds. The 
remaining three birds are all highly inbred research lines, 
so their haplotypes are mostly indistinguishable and thus 
not able to be phased. Therefore, we used the primary 
assembly output of hifiasm for these. As a result, the 
pangenome graph includes phased haploid assemblies as 
well compressed diploid assemblies of these three highly 
inbred birds. In total, this resulted in 23 assemblies with a 
minimum contig N50 of 11 Mb (mean 15 Mb).

Together, these 30 assemblies represent a diverse set of 
domestic chickens, including commercial lines, research 
lines, and broiler and layer breeds originating on three 
continents. They also were assembled using three dif-
ferent techniques: haplotype-resolved trio-binning 
of PacBio CLR reads from the F1 offspring of a cross 
between two breeds (bGalGal1b and bGalGal1w), PacBio 
HiFi haplotype-resolved assembly (bGalGal4, bGalGal5, 
and additional chickens), and the current best-practice de 
novo assembly technique using a combination of PacBio 
HiFi and Oxford Nanopore Ultralong (ONT UL) reads 
(huxu) [34]. Although collectively these genomes do not 

Table 1  The five chromosome-level assemblies used as a base for creation of pangenome references for the domestic chicken

ID Assembled bird Accession Ref Contig N50 (Mb) Contig count

bGalGal1b Commercial broiler GCA_016699485.1 [33] 18.8 677

bGalGal1w White leghorn layer GCA_016700215.2 [33] 17.7 685

bGalGal4 Ross broiler GCA_027557775.1 N/A 5.47 812

bGalGal5 Cobb broiler GCA_027408225.1 N/A 8.33 712

Huxu Huxu broiler GCA_024206055.1 [34] 91.3 54
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come close to fully capturing the diversity of domestic 
chickens worldwide, they provide a good working tem-
plate of a first pangenome reference of the domestic 
chicken genome.

Creation of pangenome references
We constructed pangenome references of the chicken 
genome using two different methods, both used by the 
Human Pangenome Reference Consortium [27]: PanGe-
nome Graph Builder (PGGB) [27] and minigraph-cactus 
[36]. PGGB and minigraph-cactus both take multiple 
assemblies as input, perform whole-genome alignments 
on them, and derive a pangenome graph from these 
alignments. However, these two pipelines differ in their 
fundamental approach: PGGB first performs reference-
free multiple sequence alignment of all input sequences 
and then infers a graph using these alignments, whereas 
minigraph-cactus uses a single reference chosen by the 
user as a backbone and then progressively adds com-
plexity to the graph by aligning the other sequences. We 
made a preliminary graph using each method and five 
chromosome-level assemblies (Table  1). For minigraph-
cactus, we then created a 30-assembly graph using these 
five chromosome-level assemblies as well as the contig-
level alternate haplotype assemblies of bGalGal4 and 
bGalGal5 and assemblies of both haplotypes of thirteen 
additional chickens from HiFi data (Additional file  1: 
Supplementary Table 1).

Due to the computational intractability of the PGGB 
graph as a reference for short-read alignment, as we 
discuss in subsequent subsections, we did not create a 
30-assembly graph with PGGB, and used only the min-
igraph-cactus graph for most downstream applications. 
Nonetheless, we describe the PGGB graph in this section 
and refer to it occasionally thereafter for the sake of com-
parison. Therefore, the final two graphs we tested were 
the 5-assembly PGGB graph and the 30-assembly mini-
graph-cactus graph. We used the minigraph-cactus graph 
for most downstream analyses.

The minigraph-cactus pangenome graph contains 49 
million nodes and 67 million edges, and therefore a mean 
degree, or the number of edges attached to a node, of 1.4. 
The total length of sequence represented in the graph — 
that is, the sum of the lengths of all nodes in the graph 
— is 1.13  Gb. The combined length of nodes traversed 
by the most complete assembly, Huxu, is 1.02  Gb. This 
is smaller than the 1.10  Gb total size of the assembly. 
This difference is because a path can traverse the same 
sequence in the graph multiple times. For example, in 
the case of a very simple graph containing three nodes, 
A, B, and C, a haplotype containing a duplication of B 
would have a path length of (A + 2B + C), whereas the 
total amount of sequence in the graph would be only 

(A + B + C). Therefore, there is in total 0.11 Gb (9.9%) of 
additional sequence in the graph compared to the total 
length of the nodes traversed by the most complete 
assembly. Of the other assemblies, bGalGal1b contrib-
utes the most additional sequence, 55.6 Mb, to the graph, 
whereas some assemblies contribute as little as 200 kb of 
additional sequence as a result of their relatedness to oth-
ers (Additional file 2: Supplementary Fig. S1).

The PGGB pangenome graph contains 33 million 
nodes and 45 million edges, and therefore also a mean 
degree of 1.4. We found that parameter choice had a large 
effect on the numbers of nodes and edges, as well as the 
maximum degree, although not the mean degree (Addi-
tional file 2: Supplementary Fig. S2). By contrast, we used 
only default parameters for minigraph-cactus other than 
those pertaining to input and output.

Although the PGGB pangenome was made up of only 
five assemblies instead of 30, it contains more sequence 
than the minigraph-cactus pangenome: the total length 
of sequence represented in the PGGB graph is 1.23 Gb, 
compared to 1.13  Gb for the minigraph-cactus graph. 
This represents an additional 147  Mb or 12.0% of 
sequence compared to the total length of graph nodes in 
the Huxu genome (1.09  Gb). The 109  Mb of additional 
sequence is closer to previous estimates of total varia-
tion in diverse groups of chickens [37–40] than 147 Mb, 
suggesting possible overestimation by PGGB. The struc-
tures of these respective graphs are visibly different at the 
chromosome level in some places, such as at the begin-
ning of chr13 (Additional file 2: Supplementary Fig. S3).

With the exception of the two sex chromosomes, only 
one of which can be present in each haplotype, all haplo-
types are represented in all of the chromosome commu-
nities or subgraphs of both graphs; however, the presence 
of gaps in all assemblies except for Huxu means that 
there are places in all chromosomes where one or more 
haplotype paths is missing. In the PGGB graph, none of 
the contigs unassigned to chromosomes were included in 
the communities used to make the initial alignments, and 
thus all unassigned sequences were excluded from the 
pangenome graph. In contrast, in the minigraph-cactus 
graph, all sequences from all assemblies were included in 
the initial alignments. For all assemblies except Huxu, for 
which there is no unassigned sequence, a mean of 20.9 
unassigned contigs containing a per-assembly total of 
1.17  Mb of sequence were not aligned to chromosome 
subgraphs in the final graph.

Cataloging of variants present in input assemblies
A pangenome graph contains the variation present in 
the input assemblies and can thus be used to genotype 
the input assemblies compared to one chosen as a refer-
ence, based on deviations from this reference path. We 
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chose bGalGal1b for the reference as it is the highest-
quality RefSeq-annotated chicken reference genome 
currently available. In total, we found 15 million vari-
ants in the minigraph-cactus graph present in at least 
one of the other 29 haplotypes compared to bGalGal1b. 
Twelve million of these variants are SNVs (Fig. 1a). This 
is a smaller number of total SNVs than has been detected 
in large panel studies [39, 40], which is likely a result of 
the smaller sample size of our experiment, with 30 hap-
lotypes compared to 678 in [39]. We found a similar total 
length of deleted sequence, 19.2 Mb, as a previous study 
based on long read alignments, 19.7  Mb [38]. However, 
we were able to recover 18.5  Mb of inserted sequence, 
whereas the previous study recovered only 6.74 Mb [38] 
(Fig.  1a). Although distributions of lengths of deletions 
found previously by read alignment and by our pange-
nome method were broadly similar, we found more long 
insertions than was possible with long-read alignment 
(Fig. 1b).

The B cell receptor gene IGLL1, which has been used 
as a marker for plasma B cells in chicken [41], contains 
examples of these different kinds of variation. The overall 
structure of the pangenome graph of IGLL1 shows that 

there are many small variants (SNVs and indels < 50 bp), 
as well as two SVs longer than 50 bp (Fig. 2). By encoding 
the presence of small variants and their allele frequencies 
into the reference (Fig. 2a), alignment to pangenomes has 
been shown to reduce reference bias compared to a linear 
reference [21], which we confirm below for our chicken 
pangenome. For example, for the SNV shown in Fig. 2a, 
short reads containing the non-reference allele are in 
less danger of mapping incorrectly as the aligner is aware 
of the 17% (5/30) chance of an A in this position of the 
genome.

The larger of the two SVs in the pangenome graph of 
IGLL1 is a ~ 5 kb deletion relative to bGalGal1b present 
in only one haplotype of one chicken, UCD312 (Fig. 2b). 
By recording this low-frequency deletion in the refer-
ence, the pangenome method ensures that reads from 
resequenced chickens containing the deletion are able to 
map to both flanking sequences through edge e1 without 
splitting, which would introduce a potential source of 
error.

Finally, a ~ 300 bp insertion relative to bGalGal1b dem-
onstrates how a pangenome graph is able to losslessly 
represent nested variation (Fig. 2c). The SNVs and indels 

Fig. 1  Cataloging variation in the pangenome graph. A Total lengths of sequence contained in insertions (INS), deletions (DEL), and SNVs, 
compared between this study (“pangenome”) and read-alignment methods [38, 39]. B Distribution of lengths of insertions and deletions found 
in this study compared to those found by Zhang et al. [38] using long reads shows that although long-read alignment finds more short insertions 
(< 1 kb) than the pangenome, the larger cumulative length of insertions found by our pangenome compared to Zhang as shown in A is driven 
by long insertions (> 1 kb), which have a larger effect on cumulative length. C A hypothetical schematic of how nested variation can evolve: 
an insertion mutation is followed by a later single-nucleotide mutation, resulting in an insertion relative to the reference that contains a segregating 
site. A genotype against a linear reference would represent these as three different alleles, whereas a pangenome conserves the nested structure 
of this variation
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within the inserted sequence are encoded in the exact 
same way as they would be in reference sequence, giving 
a full picture of the variation present in this region.

Disentangling a tandem repeat and viral insertion at the K 
locus
The K locus, short for “short wing” (kürzer Flügel), is a 
region of chrZ with an early feathering (EF) allele and 
a late feathering (LF) allele [42, 43]. The EF allele con-
tains single copies of the genes PRLR and SPEF2. The 
LF allele contains a tandem duplication of parts of both 
genes [44], and often, but not always [45, 46], an inser-
tion of the sequence of the avian leukosis virus ev21. The 
reference genome bGalGal1b has the EF allele and no 
ev21 insertion, so genotyping the K locus in other chick-
ens using this reference is difficult because ev21 has a 
length of over 7kbp [46], an order of magnitude longer 
than the maximum insertion size that can be genotyped 
with short reads and a linear reference [28]. As such, it is 

a region that can be more accurately genotyped with the 
use of a pangenome graph approach.

We first created a one-dimensional representation of 
the minigraph-cactus pangenome graph structure of 
the K locus colored by path coverage, as a node through 
which the same haplotype path travels more than once 
indicates a duplication (Fig.  3a). This representation 
shows that although most of the haplotypes represented 
in the pangenome graph contain only one copy of this 
locus, Huxu has a duplicated region and an insertion. 
The 2× path coverage region in Huxu covers parts of both 
PRLR and SPEF2, consistent with the tandem duplication 
found by Elferink et al. [44]. We also found a misassembly 
in bGalGal1w, with unassigned scaffolds containing the 
sequence (see Additional file  2: Supplementary Note 1 
[33, 44] and Supplementary Fig. S4). Furthermore, Huxu 
contains an insertion relative to the reference sequence 
bGalGal1b. Alignment verified that the inserted sequence 
is the ev21 viral genome.

Fig. 2  A visual representation of the pangenome graph for the gene IGLL1. A IGLL1 contains many SNVs, including one 
at bGalGal1b#chr15:7,955,357, in its coding sequence. The graph of this SNV shows that although all 30 haplotypes have the same sequence 
before and after the SNV, 25 haplotypes have G in this position and 5 have A. B The pangenome of IGLL1 contains a ~5 kb deletion compared 
to bGalGal1b in one haplotype of a single individual, UCD312. At the juncture in the pangenome graph where the deletion haplotype branches 
from the rest, this haplotype follows edge e1 to skip the sequence in the loop, whereas the other 29 haplotypes follow edge e2 to include 
the sequence, and then e3 to join back with the deletion haplotype afterwards. C IGLL1 also contains a ~300 bp insertion compared to bGalGal1b 
in 22 haplotypes. The inserted sequence contains SNVs, so while a linear representation of this insertion considers each version of the insertion 
as a different allele, the pangenome graph is able to correctly record it as a biallelic variant (i.e., insertion or no insertion) containing additional 
variable sites. Furthermore, reads can align to this sequence in the pangenome but would be left unmapped when aligning to bGalGal1b as it does 
not contain this sequence



Page 7 of 17Rice et al. BMC Biology          (2023) 21:267 	

Next, to better understand the structure of the locus, 
we created a two-dimensional representation of the 
graph at this locus (Fig. 3b–d). This representation of the 
graph shows the tandem duplication as a junction where 
a path can either leave the K locus or repeat it (Fig. 3c), 
and the insertion as a loop containing the ev21 genome 
covered only by Huxu (Fig. 3d).

Finally, to view the alleles linearly, we used the “untan-
gle” function of ODGI [24] to lay out each haplotype 
of the minigraph-cactus graph (Fig.  3e). The resulting 
gene layout of the two alleles is consistent with previous 
knowledge about the structure of the locus [44–46].

Genotyping ALVEs in the pangenome graph
In addition to the ev21 insertion present in some alleles 
of the K locus, chickens carry other endogenous retrovi-
ral insertions of avian leukosis virus subgroup E (ALVE) 

[47]. Many of these viral insertions remain at least par-
tially functional, retaining their ability to express individ-
ual viral proteins or even create full viral particles [48]. 
The presence of some of these insertions in the chicken 
genome has been shown to be associated with pheno-
typic traits such as egg production [49], plumage color 
[50], and disease susceptibility [51]. As such, these inser-
tions represent structural variants with known pheno-
typic effects, so we searched for and genotyped them in 
our pangenome graph.

Including ev21, we found 18 ALVEs common in com-
mercial layers and broilers (Additional file 2: Supplemen-
tary Fig. S5). Most (12/18) of these ALVEs are present 
in only one haplotype, but others are present in up to 20 
haplotypes (ALVE1). ALVE-TYR, present in 3 of the 30 
haplotypes in the pangenome, disrupts the Tyrosinase 
gene, causing a recessive white phenotype and reductions 

Fig. 3  Disentangling complex variation at the K locus with the pangenome graph. A A one-dimensional view of the pangenome subgraph 
for the K locus, with nodes colored by path coverage (i.e., the number of times a haplotype path passes through them) and the locations 
of the genes PRLR and SPEF2 denoted. Huxu shows double path coverage of part of the locus, as well as an insertion. Alignment verified that this 
insertion contains the sequence of the avian leukosis virus ev21. B A two-dimensional view of the same graph, showing both the tandem 
duplication and the ev21 insertion. C At the junction where the paths containing the tandem duplication deviate from the paths that do not, all 
paths begin by traversing edge e1 and moving through most of the sequence of the K locus. However, at the e2/e3 fork, a path can either traverse 
e2 to leave the K locus, or traverse e3 and e4 to include a tandem duplication of parts of PRLR and SPEF2. D A more detailed view of the ev21 
insertion, showing the two possible paths at this juncture: a path can traverse edge e5 to skip the insertion, or it can traverse edge e6, then 
the ev21 sequence, then e7, to include the insertion. E Linear untangled view of the locus, confirming previous studies of the structure of the locus, 
with a tandem duplication of parts of both genes and an insertion of the ev21 sequence



Page 8 of 17Rice et al. BMC Biology          (2023) 21:267 

in growth rate of muscle mass [52]. Two of the genes in 
ALVE3, gag and env, present in seven haplotypes, are 
known to be highly expressed due to their placement 
within an intron of the non-viral HCK gene. This expres-
sion offers some degree of protection from exogenous 
avian leukosis virus infection through receptor interfer-
ence [53], but can also lead to immune tolerance, with 
lower antibody production and higher mortality [54].

Use as a reference for resequencing and genotyping
Given the improvements in accuracy and recall of gen-
otyping shown in other species by using pangenome 
graph-based methods, we set out to demonstrate the use-
fulness of our pangenome representations for alignment 
and genotyping. For this, we used simulated short reads 
as well as short reads from 100 domestic and wild chick-
ens (Additional file 3: Supplementary Table 2). For com-
parison between linear and graph-based methods, we 
called genotypes using both linear alignments to bGal-
Gal1b as well as graph alignments to our pangenomes.

For downstream use by existing short-read genotype 
callers, alignments must be converted from graph coor-
dinates to linear coordinates; this process is called surjec-
tion. Alignment of short reads to the PGGB graph and 
surjection to bGalGal1b was infeasible, with a through-
put of only 1.6 reads per CPU-second on a test set of 10 k 
paired-end reads, and inability to complete alignment of 
a larger test set of 1 M paired-end reads without running 
out of memory with 250 GB allocated to the job. Further 
investigation revealed that surjection was the bottleneck, 
as graph alignment without subsequent surjection had 
a throughput of 147 reads per CPU-second and a max-
imum memory usage of 31  GB for the 1  M test set. By 
comparison, alignment of the 1  M test set to the mini-
graph-cactus graph followed by surjection to bGalGal1b 
had a throughput of 500 reads per CPU-second and a 
maximum memory usage of 24 GB, and minimap2 could 
align 1832 reads per CPU-second to bGalGal1b with 
5.4 GB memory (Fig. 4a, b).

To compare accuracy of graph alignment to linear 
alignment, we simulated one million pairs of paired-end 
reads through sampling from the graph with random 
errors added, and aligned them to both the cactus-min-
igraph pangenome with VG giraffe [9] and the linear 
bGalGal1b reference with minimap2. We then deter-
mined the accuracy of the alignments by comparing the 
location to which reads were aligned to the location from 
which they were sampled. Giraffe performed better than 
minimap at every level of stringency, based on what per-
centage of all reads were mapped correctly (Fig. 4c).

To test the downstream effects of these differences in 
mapping accuracy, we genotyped 100 chickens from 
diverse breeds using both giraffe pangenome alignments 

and minimap linear alignments of 10–15× coverage short 
reads, and compared the results between the two meth-
ods (Fig. 5). Whereas the two methods found similar sets 
of SNVs (Fig. 5a) and indels (Fig. 5b), there were substan-
tial differences. Agreement was unsurprisingly higher 
for SNVs, although the pipeline using giraffe alignments 
found a larger number with a quality score of at least 10 
than the pipeline using minimap (Fig.  5a). For variants 
found by both methods, per-sample SNV concordance 
had a mean of 97.9% with a standard deviation of 9.1% 
(Fig.  5c). Indel concordance was lower, with a mean of 
94.0% and a standard deviation of 12.9% (Fig. 5d).

To determine whether reference bias is a factor in the 
different genotyping results between the two methods, 
we examined the proportion of mapped reads containing 
the reference allele at putative heterozygous SNV sites. 
Reference bias across these sites, which we define as the 
difference between the mean fraction of reads containing 
the alternate allele and the expected alternate allele frac-
tion of 0.5, is lower for all of the 100 chickens when using 
pangenome alignment instead of linear alignment, with a 
mean reference bias reduction of 38% (Fig. 5e, Additional 
file 2: Supplementary Fig. S6).

To connect the genotypes of these chickens to the geo-
graphic origins of their breeds, we performed principal 
component analysis (PCA). Although there is not com-
plete separation of geographic origins on the PCA plot, 
as expected due to admixture, American and Northern 
European breeds fall into narrow bands on PCs 1 and 3, 
respectively, while Asian breeds are more diverse (Addi-
tional file 2: Supplemental Fig. S7).

Fig. 4  Comparing pangenome and linear aligner performance 
for short reads. A, B Alignment of short reads with VG giraffe 
is more memory-efficient (A) and faster (B) when aligning 
to the minigraph-cactus (MC) pangenome graph compared 
to the PGGB graph. Linear alignment with minimap2 is the fastest 
and most memory-efficient. C A larger percentage of all simulated 
reads is correctly aligned with giraffe regardless of how permissive 
the minimum map quality filter is
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Finally, we used the short-read alignments to the 
pangenome graph to genotype the K locus based on edge 
coverage (Fig.  5f ). All of these chickens are female and 
thus only have one copy of the Z-linked K locus. Of the 
100 chickens, 23 have the ev21 insertion (ev21+) and 24 
have the tandem repeat (late feathering/LF). As found in 
previous studies [45, 46], the ev21 insertion and the tan-
dem duplication are not inextricably linked, although 
they do usually appear together: three chickens, all stand-
ard Rhode Island breeds, have the ev21 insertion but not 
the tandem repeat, and four chickens, two Silkies and 
two Cochins, have the tandem repeat but not the ev21 
insertion.

Discussion
With the quickly accumulating numbers of haplotype-
resolved genomes for many species, the pangenome 
model of integrated presentation of within-species varia-
tion stands to become ubiquitous [26, 27]. Such resources 
already exist for other livestock such as swine [55] and 
cattle [56, 57]. One of the greatest advantages of pange-
nome references in other species has been the capture 
of sequences not present in linear reference genomes. 
Compared to the nearly complete assembly of the 
Huxu chicken genome, our pangenome graph contains 
109  Mb of additional sequence. Some of this additional 

sequence comes from SNVs or small indels that are rela-
tively straightforward to represent in the context of a lin-
ear reference, and some of it is made up of nodes whose 
sequences are similar to nodes traversed by the Huxu 
assembly, but are represented separately. Thus, the true 
accessory genome length is likely less than 109 Mb com-
pared to Huxu. Nonetheless, the tripling of total inser-
tion length detectable using this pangenome compared 
to using long-read alignments as in a previous study [38] 
shows that much of this additional sequence is made up 
of variation that cannot be represented in a traditional 
linear reference genome, and therefore, many reads from 
these regions of the genome cannot be mapped to a lin-
ear reference because it does not contain the parts of 
the genome the reads came from. By adding additional 
assembled chicken genomes of more diverse origins this 
amount of novel sequence will grow.

Other studies have presented multiple alignments of 
chickens as pangenomes [31, 32], but our graph-based 
approach, which uses assemblies based on long and 
highly accurate PacBio HiFi reads as well as one near-
complete assembly, allows the pangenome to be used not 
just as a method for cataloging variation present in the 
input assemblies, but also as a reference for future rese-
quencing studies. By comparing pipelines using linear 
versus pangenome alignments of short reads to genotype 
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Fig. 5  Genotyping 100 diverse chickens. A, B Counts in millions of common and different SNVs (A) and indels (B) found by genotyping pipelines 
using giraffe vs. minimap as the aligner. Only variants with a quality score of at least 10 are considered. C, D Concordance distributions for SNVs (C) 
and indels (D) detected by both genotyping methods with QUAL ≥ 10. E Mean fractions per sample of mapped reads containing the alternate allele 
at putative heterozygous sites show that giraffe alignments contain less reference bias for every chicken, as they deviate less from the expected 
value of 0.5. Sample information in Additional file 3: Supplementary Table 2 and full plot for all 100 chickens in Additional file 2: Supplementary Fig. 
S6. F Genotyping 100 chickens at the K locus reproduces previous results finding that although most chickens with the late feathering allele (LF) 
also have an ev21 insertion at the K locus (ev21+), some chickens have the late feathering allele without an ev21 insertion
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100 chickens from diverse breeds, we demonstrated the 
improved alignment performance of pangenome align-
ment over linear alignment and showed the downstream 
effects of these improvements on genotyping. Unfortu-
nately, there does not yet exist a high-confidence truth 
set of variant calls for chickens as there does for humans 
[16], so we cannot compare the accuracy of these differ-
ing genotype calls. Nonetheless, given the improvements 
in alignment performance we have shown in chicken 
with both simulated and real reads, and the improve-
ments in genotyping demonstrated in human and yeast 
by using the giraffe pangenome aligner [9, 27], we predict 
that the genotypes we inferred using giraffe pangenome 
alignment are substantially more accurate than those we 
inferred using linear alignment.

We tested two approaches for creating pangenome 
graphs, PGGB and minigraph-cactus, which were both 
used by the Human Pangenome Reference Consortium 
to create the first draft of the human pangenome [27]. 
These two methods each have advantages and disadvan-
tages which we explore here. PGGB uses a reference-free 
approach, whereas minigraph-cactus makes alignments 
to a single reference. The single-reference approach of 
minigraph-cactus greatly increases the efficiency of align-
ment to the graph, but also results in some regions of non-
reference sequence being clipped, as shown in Additional 
file  2: Supplementary Fig. S3. Furthermore, minigraph-
cactus is able to choose most alignment parameters auto-
matically, whereas PGGB results are highly dependent on 
parameter choice. Due to the absence of a deterministic 
process for choosing best parameters or even evaluating 
and comparing graphs made with different parameters, 
the ability of minigraph-cactus to automatically choose 
alignment parameters presents an advantage over PGGB. 
In the end, our choice of the minigraph-cactus graph 
for most downstream analyses was primarily based on 
the computational intractability of the PGGB graph for 
use as an alignment reference; regardless of accuracy or 
completeness, a graph to which only 1.6 reads per CPU-
second can be aligned is not usable for most purposes 
with the resources currently available to most genomics 
researchers.

Our determination of the structure of the K locus 
and subsequent genotyping demonstrates the power of 
pangenome graphs in the study of loci containing com-
plex structural variants. The initial discovery of the 
insertion of an endogenous avian leukosis virus in the 
late feathering allele required cell culture work [58], and 
a later study establishing the tandem repeat [44] neces-
sitated extensive quantitative PCR experiments targeted 
at 20 different segments of the locus. Although the lat-
ter was performed after a linear reference genome was 
available, this reference, like all subsequent versions of 

the reference genome for chicken, contains the early 
feathering allele and no ev21 insertion at the K locus, and 
no current method can reliably genotype SVs of this size 
using short reads and a linear reference [28]. More recent 
work on the relationship between the ev21 insertion 
and the late feathering phenotype, though undertaken 
after improved reference genomes and large amounts of 
public sequencing data from different breeds of chick-
ens became available, also relied on targeted PCR [45, 
46]. In contrast, we were able to replicate these findings 
using only existing short-read whole-genome sequenc-
ing data and pangenome methods. We expect that our 
pangenome, and future pangenomes using telomere-to-
telomere genome assemblies, which exist for increasing 
numbers of species [59–63] but not yet chickens, will 
enable discoveries about complex structural variation at 
important immune loci such as the major histocompat-
ibility complex (MHC) and T cell receptor gene (TCR), 
providing insight into the genetic diversity necessary 
to fight evolving pathogen threats in this major world-
wide source of protein, which also threaten wildlife with 
increasing frequency [64].

The tool used by both the minigraph-cactus and PGGB 
pipelines to produce a VCF of the input assemblies based 
on the graph, vg deconstruct, does not currently clas-
sify SVs based on type, e.g., as inversions or transloca-
tions, but instead represents all SVs as either inserted or 
deleted sequence. Therefore, a complex variant such as 
a translocation is represented as a deletion of sequence 
in one location and an insertion of the same sequence 
in another location. We detected the tandem duplica-
tion present at the K locus through manual examination 
of graph structure. Tools such as vcfwave [65] are able to 
secondarily reclassify these complex structural variants 
properly, but due to the rapidly changing nature of soft-
ware in this field, we report SVs only as insertions and 
deletions. We expect future versions of this pangenome 
to use new tools to report inversions and translocations 
as well.

For the most part, we were able to use best practices 
established by the human pangenome reference consor-
tium [27] for the creation and use of this pangenome. 
However, in some cases, such as our inclusion of highly 
inbred research lines that could not be phased due to the 
similarity of their haplotypes, there is no available prec-
edent from the human pangenome. As pangenomes are 
built for more species, we hope to see consensus emerge 
about best practices for cases such as this that do not 
apply to humans.

We created this first draft of the chicken pangenome 
out of a mixture of commercial and research lines and 
previously published reference assemblies. Despite this 
somewhat arbitrary sampling process based mostly on 
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sample availability, using the pangenome as a reference 
increases accuracy, decreases reference bias, and makes 
it possible to genotype structural variants that are too 
large and complex to genotype with a linear reference 
and short reads. Nonetheless, we expect future versions 
to improve these measures even further through the 
inclusion of more chickens, sampled more strategically, 
to best capture the full diversity and variant frequencies 
of chickens worldwide.

Conclusions
In this paper, we have presented the first pangenome 
graph reference for the domestic chicken. We show its 
utility as a catalog of variation, including structural vari-
ation too large or complex to be detected using previous 
methods, and as a reference for the alignment of short 
reads. Given the improvements we have demonstrated in 
this model over a linear reference, we expect this pange-
nome, and new versions with additional broadly diverse 
chicken breeds incorporated, to serve as a resource to 
the community for future resequencing studies as well 
as investigation of complex loci, especially in immune-
related genes.

Methods
Sequencing and assembly of bGalGal4 and bGalGal5
One female Ross 308 (Aviagen) and one female Cobb 
550 (Cobb-Vantress), both commercial broiler chickens, 
were euthanized in the framework of a research experi-
ment at 38  days of age. Cardiac puncture was immedi-
ately employed to collect 12 aliquots of 100 µl of blood in 
tubes with EDTA and 1 ml of ethanol > 99.7% from each 
animal. Samples were frozen at −20 °C.

For both assemblies (bGalGal4 and bGalGal5), we fol-
lowed the VGP 2.0 pipeline [12]. We generated 32× 
Pacbio HiFi data on a Sequel IIe, and then used cutadapt 
[66] to trim off adapters that were not trimmed in the 
Pacbio software processing. We assembled contigs using 
HiFiasm v0.14 [67], generating a semi-haplotyped phased 
primary contig and alternate contig assembly. From the 
primary assembly, we removed false haplotype duplica-
tion and placed them in the alternate using purge_dups 
v1.2.5 [68]. We then scaffolded the contigs with Bionano 
Genomics optical maps (319× and 459× respectively), 
generated on a Saphyr instrument using DLE label, with 
Bionano Solve. We then further scaffolded with Arima 
Genomics Hi-C v2 (65× and 122× respectively), using 
salsa v2.2 [69]. The primary assembly was then curated 
using gEVAL [70], structural errors corrected, and chro-
mosomes named according to their numbers in the 
bGalGal1 GRC7g reference. 10X Genomics data were 
also generated, and used for orthogonal validation, but 
not scaffolding. The primary and alternate assemblies 

were deposited in NCBI under accession numbers 
GCA_027557775.1 (bGalGal4) and GCA_027408465.1 
(bGalGal5), and all data are available in Genome Ark 
(https://​genom​eark.​github.​io/​genom​eark-​all/​Gallus_​
gallus/).

Sequencing and assembly of additional chickens
High molecular weight (HMW) DNA from blood of 13 
juvenile male chickens (Additional file 1: Supplementary 
Table  1), maintained and bled under ADOL IACUC-
approved Animal Use Protocol #2019-15 for breeder 
management, was sequenced on the Pacific BioSciences 
Sequel IIe. HMW samples were sheared using a Diagen-
ode Megarupter3 shearing device targeting 18–22  kb 
fragments. Libraries were prepared with the PacBio 
SMRTbell Prep Kit 3.0. Library size distribution was 
determined on the Agilent Femto Pulse and a Qubit fluo-
rometer was used to measure concentration. Sequencing 
polymerase was bound to the SMRTbell libraries with the 
Binding Kit 3.2 and run on Sequel IIe with the Sequel II 
Sequencing Kit 2.0 and SMRT Cell 8  M. HiFi data was 
collected with Instrument Control Software Version 11.0 
and Chemistry Bundle 11.0 with a movie time of 30  h. 
The On Plate Loading Concentration was 130pmolar.

HiFi reads for each of the chickens were assembled into 
contigs using hifiasm v0.18.9 [35] with default options. 
Both haplotypes output by hifiasm were used in subse-
quent analyses.

Creation of PGGB pangenome
We constructed a pangenome reference from the five 
input assemblies bGalGal1b, bGalGal1w, bGalGal4, 
bGalGal5, and HuxuT2T (Table “assemblies”). First, we 
extracted chromosome sequences from the assemblies 
and gave them names according to the PanSN-spec, in 
the format of “[assembly name]#[chromosome name]”, 
e.g., “bGalGal4#chr5”. The PGGB pipeline recommends 
first partitioning the assemblies into communities, where 
each community is a set of sequences that should be 
aligned to each other, for example, all sequences from 
each assembly assigned to the same chromosome. We 
partitioned the assemblies into 41 communities, one for 
each chromosome based on whole-genome alignments 
made with mashmap [71] in one-to-one mode and a 
percent identity cutoff of 90%, and then constructed a 
pangenome graph for each chromosome separately. Due 
to disagreements in the naming of microchromosomes 
among the five assemblies, some of the communities 
contain chromosomes named differently in the different 
assemblies (Additional file 4: Supplementary Table 3).

For every chromosome, we constructed its pangenome 
graph using the Pangenome Graph Builder (PGGB) 
v0.4.1 [27]. Briefly, this pipeline uses wfmash v0.9.1 [72] 

https://genomeark.github.io/genomeark-all/Gallus_gallus/
https://genomeark.github.io/genomeark-all/Gallus_gallus/
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to align the input assemblies, seqwish v0.7.6 [25] to build 
a graph from the alignments, smoothxg v0.6.5 [73] and 
gfaffix v0.1.3 [74] to clean up the graph, and odgi v0.7.3 
[24] to visualize the graph. We first ran pggb with default 
parameters, except for parameter “-n” set to the number 
of assemblies being aligned for the chromosome in ques-
tion (this number is five for most chromosomes, with the 
exception of sex chromosomes and some microchromo-
somes without full representation in all five assemblies) 
and “-G 3079,3559”. For postprocessing and optimal vis-
ualization, we redrew the 2D graph visualization using 
the odgi draw command with parameters “-C -w1000,” 
and we redrew the 1D graph visualization by first resort-
ing the graph based on positions in the bGalGal5 path 
using the command odgi sort with parameters ‘-H < (echo 
“bGalGal5#${chromosome_name}”) -Y’ and then drawing 
with the odgi viz command with default parameters.

To find the optimal parameters for each chromosome, 
we performed a parameter sweep of the segment length 
(-s), mapping percent identity (-p), and minimum match 
length (-k) options to the pggb command. We tested 
every member of the cartesian product set of the param-
eter values s = {5  k, 10  k, 30  k, 50  k, 80  k}, p = {85, 90, 
94,97}, and k = {10, 19, 50, 100, 150}. We evaluated the 
results as suggested in PGGB documentation, using a 
combination of examination of graph statistics, especially 
node count and maximum degree, with the odgi stats 
command and visual inspection of the graph structure 
using the odgi viz output. For some microchromosomes, 
we made more granular adjustments to the parameters 
to fine-tune their graphs. Additional file  4: Supplemen-
tary Table 3 shows the final parameters chosen for each 
chromosome.

Finally, we created a single pangenome graph con-
taining the respective connected component for each 
community using the odgi squeeze command with 
default parameters. This resulted in a single graph file 
with extension “.og” that is easily convertible to other 
sequence graph formats such as GFA and VG.

Creation of minigraph‑cactus pangenome
We ran the minigraph-cactus pipeline [36] using the cac-
tus v2.4.2 Docker image and a nextflow pipeline built for 
this purpose [75]. As input, we used the five chromo-
some-level assemblies in Table 1, the alternate haplotypes 
of bGalGal4 and bGalGal5, and both haplotype assem-
blies of an additional 13 chickens listed in Additional 
file  1: Supplementary Table  1. We specified bGalGal1b 
as the reference, because although it is not the highest-
quality assembly, it is the best RefSeq-annotated assem-
bly on NCBI, so we wanted to call variants against it 
downstream.

Additional sequence analysis
We determined the amount of additional sequence con-
tributed to the graph by each sample through an itera-
tive process. First, we removed all nodes traversed by 
the Huxu assembly from the graph as it is the most 
complete assembly. Then, for each remaining bird, we 
summed up the length of all nodes traversed by either 
haplotype of this bird, found the bird with the largest 
sum, and removed all nodes traversed by this bird’s 
haplotypes from the graph. We repeated this process 
until there were no samples remaining. The python 
program we wrote for this purpose is included in the 
repository cited in the Code Availability statement.

Format conversions and subgraph extraction

To convert GFAv1.1 format as output by mini-
graph-cactus to OG format for downstream use in 
ODGI visualization tools, we used the command 
“vg convert -gfW” to convert to GFAv1.0, and then 
“odgi build -g -Os” to build an OG graph out of the 
GFAv1.0 file.
To convert GBZ format to HG format, we used the 
command “vg convert”.
To convert HG format to GFA format, we used the 
command “vg convert -f ”.
To convert OG format to GFA format, we used the 
command “odgi view -a -g”.
To extract regions from graphs in HG for-
mat, we used the command “vg find -p 
‘bGalGal1b#[chromosome]:[start]-[end]’”.
To extract regions from graphs in OG format, 
we used the command “odgi extract -d0 -E -r 
‘bGalGal1b#[chromosome]:[start]-[end]’”.

Genotyping input assemblies
Both assembly-based graph construction pipelines, pggb 
and minigraph-cactus, can output vcf files containing 
genotypes for the input assemblies relative to the refer-
ence, in our case bGalGal1b. Minigraph-cactus does this 
by default; pggb does with the addition of the option “-V 
‘bGalGal1b:#:’”. Where necessary, we concatenated vcf 
files for each chromosome into a single genome-wide vcf 
using the bcftools concat command v1.15.1 [76].

Graph visualization
To visualize specific regions of the pangenome graph, 
we first looked up coordinates relative to bGalGal1b 
on RefSeq, extracted them from the graph, output in 
GFA format, and visualized using bandage v0.8.1 [77]. 
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Commands for extraction and conversion are given 
under the heading “Format conversions and subgraph 
extraction”.

Genotyping ALVEs
As previously described in [4th chicken report], we 
identified assembled Avian Leukosis Virus subgroup E 
(ALVE) integrations by performing a search for ALVE1 
(GenBank: AY013303.1) with BLAST v2.10.0 [78] in each 
of the contributing fully assembled reference sequences 
using ALVE1 (GenBank: AY013303.1). We used flank-
ing sequence to annotate ALVEs with known integration 
sites [47]. We then translated all coordinates to bGal-
Gal1b coordinates using odgi position and looked up 
these insertions or deletions relative to bGalGal1b in the 
minigraph-cactus vcf output.

Read simulation
We simulated reads using the “vg sim” command with a 
nucleotide substitution error rate of 0.24% as estimated 
by Pfeiffer et al. [79] and an indel error rate of 0.029% as 
in [9]. This command randomly samples reads from the 
pangenome graph and adds errors based on the specified 
error rates, keeping information about the location from 
which the reads were sampled in the read header so that 
it can be used to test accuracy downstream.

Sequencing of short read chickens
We sampled 236 chickens from 62 breeding farms that 
specialize in heritage and rare chicken breeds in May 
and December 2021. In short, we collected 0.5–2 mL of 
blood from each bird by puncturing the brachial vein 
with a syringe (gauge size 18.5–28 depending on the size 
of the bird). The blood was immediately expelled through 
the syringe into K2EDTA vacutainers and stored on 
dry ice. Upon arrival at the lab, the blood samples were 
transferred to a −80 °C freezer. DNA was extracted using 
the QIAamp Fast DNA Tissue Kit. Library preparation 
and sequencing were performed at BGI Group. Librar-
ies were prepared using a DNA short-insert protocol for 
150  bp paired-end reads and sequenced on the DNB-
seq platform. Seven samples failed to be sequenced due 
to low quality, so were excluded from further analyses. 
We chose a subset of 100 of these samples for the final 
analysis, selecting breeds that were previously genotyped 
at the K locus [45, 46] where available and choosing the 
rest by balancing the conflicting goals of including mul-
tiple chickens from the chosen breeds and having many 
breeds represented.

Short read alignment
To align short reads to the PGGB graph, we first con-
verted the graph to GFA format using the command “odgi 

view -g” and then converted the GFA format to GBZ 
format [80] and created giraffe indices from the output 
with the command “vg autoindex -w giraffe.” The mini-
graph-cactus pipeline outputs all indices necessary to run 
giraffe by default, so no further processing was necessary 
to prepare it for alignment of reads with giraffe.

To test timing and memory usage, we arbitrarily chose 
a publicly available set of short reads from a chicken 
(SRR9967588) and subsetted the first 1 million pairs. This 
test failed for alignment to the PGGB graph due to run-
ning out of memory, but a smaller subset of 10,000 read 
pairs was successful. We aligned the test set of reads to 
the graph using the command “vg giraffe” with arguments 
“-o BAM.” Because the PGGB graph does not contain a 
reference sequence like the minigraph-cactus graph, we 
additionally specified the reference chromosomes with 
the arguments “--ref-paths bGalGal1b_paths.tsv,” where 
bGalGal1b_paths.tsv is a tab-separated file containing a 
list of all chromosomes in bGalGal1b and their sizes. For 
comparison to alignment to a linear reference with mini-
map2 v2.24 [81], we created a short-read minimap index 
of bGalGal1b with the command “minimap2 -x sr -d” and 
then aligned reads to it with the command “minimap2 -a” 
piped to “samtools view -bh” with samtools v1.16.1 [76] 
to convert to bam format for a fair comparison, since we 
ran giraffe with bam output.

For alignment of short reads from 100 chickens, we ran 
vg giraffe with default options, outputting the results in 
GAM format. We surjected the GAM files to BAM for-
mat with bGalGal1b as the reference genome using the 
command “vg surject” with default options.

Comparison of linear and graph alignments with simulated 
reads
To compare the accuracy of alignments of simulated 
reads between linear and graph aligners, we aligned the 
simulated reads both to the bGalGal1b linear reference 
using minimap2 and to the pangenome graph reference 
using giraffe, as described above. We converted the mini-
map2 output to GAM format using the command “vg 
inject,” and then compared the minimap2 and giraffe 
GAMs to the truth set using “vg gamcompare,” all as in 
[9].

Genotyping
We genotyped the 100 chickens based on these align-
ments using elprep [82] v5.1.2, a multithreaded reim-
plementation of GATK. Briefly, we generated an elfasta 
sequence reference (an indexed binary form of the refer-
ence fasta for downstream use) for bGalGal1b using the 
command “elprep fasta-to-elfasta,” created a list of sites 
from the minigraph-cactus vcf output with SVs larger 
than 1000  bp filtered out using the command “elprep 
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vcf-to-elsites,” and ran the “sfm” command with set-
tings as recommended in the manual to generate a gvcf 
for each bird, which we then combined into a single gvcf 
with GATK CombineGVCFs and joint genotyped with 
GATK GenotypeGVCFs [17]. The location of our scripts 
for genotyping, as well as all other analyses in this paper, 
is given in the “Availability of data and materials” section.

Genotyping method comparison
To compare the respective outputs of the giraffe- and 
minimap-based genotyping pipelines, we used bcftools 
v1.17 [76] command “isec -c some” to create four vcf files: 
variants only detected by the giraffe pipeline, variants 
only detected by the minimap pipeline, giraffe pipeline 
calls of variants detected by both pipelines, and minimap 
pipeline calls of variants detected by both pipelines. We 
counted variants with QUAL ≥ 10 in all of these files, sub-
setting by variant type with “bcftools view -v [snp|indel].” 
To compare the per-sample calls made by the respective 
methods for variants detected by both, we used “bcftools 
merge --force-samples” to create a single vcf containing 
calls made by both methods, and then used a custom 
python script (included in code availability) to calculate 
the percent agreement for each variant.

Reference bias estimation
We estimated the amount of reference bias by calcu-
lating the mean fraction of reads mapping to putative 
heterozygous sites containing the alternate allele, and 
comparing to the expected value of 0.5. We define puta-
tive heterozygous sites as positions with coverage of 
at least 10× where the portion of reads containing the 
minor allele is at least 25%, as in [15]. Briefly, we filtered 
low-quality mappings and multimapping reads with 
“samtools view -F2304 -q10,” created pileups with “sam-
tools mpileup -d100 –no-BAQ,” and piped the results to 
a custom C program to find putative heterozygous sites 
and calculate alternate allele frequencies at these sites. 
All code used to perform this analysis is in the project’s 
code repository.

Principal components analysis
To visualize the shared genetic ancestry across chicken 
breeds, we performed a PCA using Plink 2.0 [83]. We 
filtered for linkage disequilibrium using the parameters 
“indep 50 5 0.5” following Dementieva et  al. [84]. We 
grouped the samples by the geographic origin of the 
breed.

K locus genotyping
To genotype the K locus, we converted each GAM file 
to GAF format using the command “vg convert -G” 
and counted reads covering the edges e1 through e7 

as shown in Figure “K locus.” We used binomial tests 
with p-value cutoffs of 0.05 to assign genotypes to each 
chicken for both the ev21 insertion and the tandem 
duplication; chickens with both p(insertion) > 0.05 and 
p(no insertion) > 0.05 were marked as inconclusive.
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Table S1: Ingredient and nutrient composition of the basal diets (as fed basis).
  1st Experiment (A) 2nd Experiment (B) 3rd Experiment (C)

Period (days) 0-7 7-21 21-35 0-7 7-21 21-35 0-7 7-21 21-35

Ingredient (g/kg)

Wheat 52.75 61.24 61.97 52.31 60.52 61.05 54.3 62.19 62.15

Soybean 48% 39.4 30.5 15.8 39.88 31.24 16.79 38.02 29.66 15.75

Extruded Soyabean - - 15 - - 15 - - 15

Soyabean oil 4.16 4.8 - 4.18 4.85 - 4.01 4.71 -

Animal fat (5 Sysfeed)1 - - 4.01 - - 4.08  -  - 3.98

Dicalcium phosphate 1.84 1.66 1.5 1.84 1.66 1.5 1.86 1.67 1.5

Calcium carbonate 0.53 0.48 0.44 0.48 0.44 0.39 0.49 0.44 0.39

Vitamin-Mineral premix2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Sodium chloride 0.37 0.37 0.53 0.37 0.38 0.36 0.37 0.35 0.35

DL-methionine 0.27 0.23 0.19 0.28 0.24 0.2 0.28 0.23 0.19

L-lysine HCL 0.16 0.19 0.15 0.15 0.17 0.14 0.16 0.18 0.15

Choline Chloride 0.03 0.05 0.05 0.03 0.05 0.05 0.05 0.06 0.06

L-threonine 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04

Sodium bicarbonate - 0.01 - - - - -  0.04  -

Antioxidant (Noxyfeed 56P)3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Nutrients (g/kg)

Metabolizable Energy (Kcal/kg) 2900 3000 3100 2900 3000 3100 2900 3000 3100

Dry Matter 879 881 882 879 881 882 871 874 878

Crude Protein 255 223 206 241 209 194 241 210 195

Ether Extract 57.0 63.4 81.5 57.0 64.0 82.0 56.8 63.8 82.6
1Product of Sysfeed SLU (Granollers, Spain). It contains myristic acid (C14:0) 1.50%, palmitic acid (C16:0) 18.0%, palmitoleic acid (C16:1 n-7) 2.00%, stearic acid (C18:0) 14.0%, oleic
acid (C18:1 n-9 cis) 28.0%, linoleic acid (C18:2 n-6 cis) 12.0%, α-linolenic acid (C18:3 n-3 cis) 6.00%, saturated–unsaturated 0.7%.
2Vitamin-Mineral premix: Product of TecnoVit S.L. (Alforja, Spain). Supplied per kilogram of feed: Vitamin A: 10 000 IU; Vitamin D3: 4 800 IU; Vitamin E: 45 mg; Vitamin K3: 3 mg;
Vitamin B1: 3 mg; Vitamin B2: 9 mg; Vitamin B6: 4.5 mg: Vitamin B12: 40 ug; Folic acid: 1.8 mg; Biotin: 150 ug; Calcium pantothenate: 16.5 mg; Niacin: 65 mg; Mn (as MnSO4.H2O): 90
mg; Zn (as ZnO): 66 mg; I (as KI): 1.2 mg; Fe (as FeSO4.H2O): 54 mg; Cu (as CuSO4.5H20): 12 mg; Se (as NaSeO3): 0.18 mg; BHT: 25 mg; Calcium formiate, 5 mg; Silicic acid, dry and
precipitated, 25 mg; Calcium stearate , 25 mg; Calcium carbonate to 4 g.
3Product of Itpsa (Barcelona, Spain). It contains 56% of antioxidant substances (butylated hydroxytoluene + propyl gallate) and synergistic (Citric acid 14% + authorised support).



Table S2: Performance 0-35 days1.
  N Initial BW (g) Final BW (g) ADG (g) ADFI (g) FCR (g/g) Mortality (%) EPEF

LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)                              

BD 24 42.9 0.31 2063.3 16.86 57.7 0.48 87.9 0.73 1.523 0.013 2.64 0.469 369.1 5.37
PR 24 42.5 0.31 2042.0 16.84 57.1 0.48 87.0 0.73 1.523 0.013 1.75 0.468 368.6 5.37
PH 24 42.6 0.31 2060.0 16.80 57.6 0.48 87.1 0.73 1.512 0.013 2.82 0.467 371.2 5.36

p-value   0.6932 0.6326 0.6323 0.6143 0.7210 0.2343 0.9356
Genetic line (GL)                              

X 36 44.5 0.26 2232.0 18.84 62.6 0.54 93.6 0.80 1.497 0.015 2.53 0.524 407.7 6.01
Y 36 40.8 0.26 1878.2 18.84 52.4 0.54 81.1 0.80 1.542 0.015 2.27 0.524 331.6 6.01

p-value   <0.0001 <0.0001 <0.0001 <0.0001 0.0467 0.7754 <0.0001
Sex                              

F 36 42.4 0.26 1953.1 13.82 54.6 0.39 83.9 0.61 1.535 0.012 2.05 0.384 348.2 4.41
M 36 42.9 0.26 2157.1 13.82 60.4 0.39 90.7 0.61 1.503 0.012 2.76 0.384 391.2 4.41

p-value   0.1786 <0.0001 <0.0001 <0.0001 0.0207 0.2003 <0.0001
Experiment (EXP)                              

A 24 41.3b 0.31 2114.3a 19.33 59.2a 0.55 93.1a 0.89 1.577a 0.018 1.55 0.538 371.5 6.16
B 24 42.1b 0.31 2064.6b 17.20 57.8b 0.49 88.1b 0.81 1.524b 0.017 2.41 0.478 368.3 5.49
C 24 44.5a 0.31 1986.4c 21.41 55.5c 0.61 80.8c 0.97 1.457c 0.019 3.25 0.596 369.3 6.83

p-value   <0.0001 0.0013 0.0013 <0.0001 0.0004 0.1753 0.9173
TRT GL                              

BD X 12 45.0 0.44 2238.2 28.94 62.7 0.83 93.7 1.20 1.493 0.021 2.90 0.805 407.9 9.23
Y 12 40.7 0.44 1888.4 27.41 52.7 0.78 82.1 1.14 1.552 0.020 2.39 0.762 330.3 8.74

PR X 12 44.2 0.44 2217.7 26.02 62.1 0.74 93.6 1.09 1.508 0.019 1.08 0.724 407.9 8.30
Y 12 40.8 0.44 1866.2 27.11 52.1 0.77 80.4 1.13 1.539 0.020 2.42 0.754 329.4 8.64

PH X 12 44.3 0.44 2240.0 26.43 62.8 0.76 93.5 1.10 1.489 0.019 3.61 0.735 407.3 8.43
Y 12 40.9 0.44 1880.0 26.61 52.5 0.76 80.7 1.11 1.534 0.019 2.02 0.740 335.2 8.49

p-value   0.4816 0.9741 0.9735 0.6812 0.6819 0.0911 0.9009
TRT Sex                              

BD F 12 42.6 0.44 1969.6 23.75 55.1 0.68 84.3 1.00 1.530 0.018 2.08 0.661 351.6 7.57
M 12 43.1 0.44 2157.0 23.93 60.4 0.68 91.4 1.00 1.516 0.018 3.21 0.666 386.7 7.63

PR F 12 42.2 0.44 1936.2 23.99 54.1 0.69 84.1 1.01 1.553 0.018 1.81 0.667 342.3 7.65
M 12 42.8 0.44 2147.7 23.77 60.1 0.68 89.9 1.00 1.494 0.018 1.69 0.661 395.0 7.58

PH F 12 42.4 0.44 1953.6 23.81 54.6 0.68 83.3 1.00 1.524 0.018 2.25 0.662 350.6 7.59
M 12 42.8 0.44 2166.5 23.79 60.7 0.68 90.9 1.00 1.500 0.018 3.38 0.662 391.9 7.59

p-value   0.9718 0.8345 0.8347 0.6253 0.3558 0.5551 0.5074
GL Sex                              

X F 18 44.5 0.36 2119.4 23.21 59.3 0.66 90.4 0.98 1.523 0.017 2.80a 0.646 379.3b 7.40
M 18 44.5 0.36 2344.6 23.39 65.8 0.67 96.8 0.98 1.471 0.017 2.26a 0.651 436.2a 7.46

Y F 18 40.3 0.36 1786.8 25.28 49.8 0.72 77.5 1.06 1.547 0.019 1.30b 0.703 317.0d 8.06
M 18 41.3 0.36 1969.6 21.64 55.1 0.62 84.7 0.91 1.536 0.016 3.25a 0.602 346.2c 6.90

p-value   0.2232 0.2852 0.2850 0.6351 0.1323 0.0264 0.0313
GL Sex TRT                              

X

F
BD 6 45.2 0.63 2134.4 38.02 59.8 1.09 90.3 1.57 1.510 0.0268 3.34 1.057 383.0 12.12
PR 6 44.2 0.63 2097.1 35.21 58.7 1.01 90.5 1.46 1.543 0.0249 1.92 0.979 373.7 11.23
PH 6 44.1 0.63 2126.8 35.01 59.5 1.00 90.3 1.45 1.517 0.0248 3.15 0.974 381.1 11.16

M
BD 6 44.8 0.63 2342.0 36.90 65.7 1.05 97.0 1.52 1.477 0.0260 2.46 1.026 432.9 11.76
PR 6 44.2 0.63 2338.4 35.25 65.6 1.01 96.7 1.46 1.474 0.0250 0.25 0.980 442.1 11.24
PH 6 44.5 0.63 2353.3 36.13 66.0 1.03 96.6 1.49 1.462 0.0255 4.07 1.005 433.5 11.52

Y

F
BD 6 40.1 0.63 1804.7 38.10 50.3 1.09 78.4 1.57 1.549 0.0268 0.83 1.060 320.1 12.15
PR 6 40.2 0.63 1775.4 37.80 49.5 1.08 77.7 1.56 1.562 0.0266 1.71 1.051 310.9 12.02
PH 6 40.8 0.63 1780.4 36.14 49.6 1.03 76.3 1.49 1.531 0.0256 1.35 1.005 320.1 11.53

M
BD 6 41.3 0.63 1972.0 34.87 55.1 1.00 85.9 1.44 1.555 0.0247 3.95 0.970 340.6 11.12
PR 6 41.4 0.63 1957.1 34.72 54.7 0.99 83.1 1.44 1.515 0.0246 3.13 0.966 347.8 11.07
PH 6 41.1 0.63 1979.6 35.24 55.3 1.01 85.1 1.46 1.538 0.0250 2.69 0.980 350.3 11.24

p-value   0.6113 0.9439 0.9439 0.6821 0.8117 0.3836 0.9477
1Values are presented as least squares means (LSmeans). a–dWithin a column, values without a common superscript differ, P < 0.05. X and Y correspond to two fast growing commercial poultry genetic lines.
SE: Sta



Table S3: Performance 0-7 days1.
  N Initial BW (g) Final BW (g) ADG (g) ADFI (g) FCR (g/g) Mortality (%) EPEF

LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)                              

BD 24 42.9 0.31 178.4 0.91 19.4 0.13 20.4 0.18 1.056 0.008 0.93 0.329 182.9 1.95
PR 24 42.5 0.31 179.4 0.91 19.5 0.13 20.3 0.18 1.043 0.008 0.84 0.329 186.5 1.95
PH 24 42.6 0.31 178.9 0.90 19.5 0.13 20.3 0.18 1.050 0.008 1.36 0.328 183.9 1.94

p-value   0.6932 0.7366 0.7368 0.8873 0.4955 0.4894 0.4025
Genetic line (GL)                              

X 36 44.5 0.26 182.0 1.01 19.9 0.14 20.5 0.20 1.035 0.009 0.76 0.368 192.3 2.18
Y 36 40.8 0.26 175.9 1.01 19.0 0.14 20.2 0.20 1.064 0.009 1.33 0.368 176.6 2.18

p-value   <0.0001 0.0007 0.0007 0.4283 0.0652 0.3691 <0.0001
Sex                              

F 36 42.4 0.26 177.5 0.75 19.3 0.11 20.5 0.15 1.068 0.007 0.91 0.270 179.9 1.6
M 36 42.9 0.26 180.3 0.75 19.7 0.11 20.2 0.15 1.031 0.007 1.18 0.270 189.0 1.6

p-value   0.1786 0.0096 0.0096 0.1834 0.0003 0.4999 0.0002
Experiment (EXP)                              

A 24 41.3b 0.31 166.0c 1.07 17.6c 0.15 19.4c 0.22 1.100a 0.009 0.58 0.377 158.8c 2.24
B 24 42.1b 0.31 175.2b 0.97 18.9b 0.14 20.4b 0.20 1.078a 0.008 0.96 0.336 174.0b 1.99
C 24 44.5a 0.31 195.5a 1.18 21.8a 0.17 21.2a 0.24 0.971b 0.01 1.6 0.418 220.6a 2.48

p-value   <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2903 <0.0001
TRT GL                              

BD X 12 45.0 0.44 181.8 1.53 19.9 0.22 20.7 0.30 1.046 0.014 0.74 0.565 190.4 3.35
Y 12 40.7 0.44 175.0 1.45 18.9 0.21 20.2 0.29 1.066 0.013 1.12 0.535 175.3 3.17

PR X 12 44.2 0.44 181.3 1.38 19.8 0.2 20.4 0.27 1.036 0.012 0.15 0.508 192.5 3.01
Y 12 40.8 0.44 177.5 1.44 19.3 0.21 20.2 0.28 1.05 0.013 1.54 0.529 180.6 3.14

PH X 12 44.3 0.44 182.7 1.40 20.0 0.2 20.4 0.28 1.023 0.013 1.40 0.516 194.0 3.06
Y 12 40.9 0.44 175.0 1.41 18.9 0.2 20.3 0.28 1.076 0.013 1.33 0.519 173.7 3.08

p-value   0.4816 0.2687 0.2677 0.6184 0.1925 0.2820 0.3125
TRT Sex                              

BD F 12 42.6 0.44 178.2 1.26 19.4 0.18 20.8 0.25 1.077 0.011 1.25 0.464 178.6 2.75
M 12 43.1 0.44 178.7 1.27 19.4 0.18 20.1 0.25 1.035 0.011 0.61 0.467 187.2 2.77

PR F 12 42.2 0.44 177.1 1.27 19.2 0.18 20.2 0.25 1.053 0.011 0.65 0.468 182.3 2.78
M 12 42.8 0.44 181.7 1.26 19.9 0.18 20.4 0.25 1.032 0.011 1.04 0.464 190.7 2.75

PH F 12 42.4 0.44 177.2 1.26 19.2 0.18 20.5 0.25 1.073 0.011 0.84 0.465 178.7 2.76
M 12 42.8 0.44 180.5 1.26 19.7 0.18 20.1 0.25 1.026 0.011 1.88 0.464 189.0 2.75

p-value   0.9718 0.2511 0.2516 0.1355 0.4740 0.1970 0.9276
GL Sex                              

X F 18 44.5 0.36 180.9 1.23 19.7 0.18 20.6 0.24 1.050 0.011 0.90 0.453 188.5 2.69
M 18 44.5 0.36 183.0 1.24 20.1 0.18 20.4 0.25 1.020 0.011 0.62 0.457 196.1 2.71

Y F 18 40.3 0.36 174.2 1.34 18.8 0.19 20.4 0.26 1.085 0.012 0.93 0.493 171.2 2.92
M 18 41.3 0.36 177.6 1.15 19.3 0.16 20.1 0.23 1.042 0.010 1.73 0.422 181.9 2.50

p-value   0.2232 0.5397 0.5377 0.7905 0.4562 0.1666 0.5135
GL Sex TRT                              

X

F
BD 6 45.2 0.63 182.1 2.00 19.9 0.29 20.9 0.39 1.059 0.0179 1.56 0.742 187.7 4.40
PR 6 44.2 0.63 179.0 1.86 19.5 0.27 20.2 0.36 1.044 0.0166 0.36 0.687 187.8 4.07
PH 6 44.1 0.63 181.6 1.85 19.8 0.26 20.7 0.36 1.046 0.0165 0.78 0.683 189.9 4.05

M
BD 6 44.8 0.63 181.6 1.94 19.8 0.28 20.4 0.38 1.033 0.0174 -0.09 0.720 193.2 4.27
PR 6 44.2 0.63 183.6 1.86 20.1 0.27 20.6 0.36 1.027 0.0166 -0.06 0.688 197.1 4.08
PH 6 44.5 0.63 183.9 1.90 20.2 0.27 20.1 0.37 1.001 0.0170 2.02 0.705 198.1 4.18

Y

F
BD 6 40.1 0.63 174.3 2.01 18.8 0.29 20.6 0.39 1.095 0.0180 0.94 0.744 169.4 4.41
PR 6 40.2 0.63 175.3 1.99 18.9 0.28 20.1 0.39 1.062 0.0178 0.94 0.738 176.8 4.37
PH 6 40.8 0.63 172.9 1.91 18.6 0.27 20.4 0.37 1.100 0.0170 0.91 0.705 167.5 4.18

M
BD 6 41.3 0.63 175.7 1.84 19.0 0.26 19.7 0.36 1.037 0.0164 1.30 0.681 181.2 4.03
PR 6 41.4 0.63 179.8 1.83 19.6 0.26 20.3 0.36 1.038 0.0164 2.13 0.678 184.3 4.02
PH 6 41.1 0.63 177.2 1.86 19.2 0.27 20.2 0.36 1.052 0.0166 1.75 0.688 180.0 4.08

p-value   0.6113 0.8955 0.8942 0.7976 0.7934 0.3898 0.7461



Table S4: Performance 7-21 days1.
  N Initial BW(g) Final BW (g) ADG (g) ADFI (g) FCR (g/g) Mortality (%) EPEF

LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)                              

BD 24 178.4 0.91 898.1 5.01 51.4 0.32 70.2 1.06 1.367 0.0205 0.79 0.291 374.9 5.79
PR 24 179.4 0.91 890.6 5.01 50.8 0.32 70.1 1.06 1.380 0.0205 0.38 0.291 368.7 5.79
PH 24 178.9 0.90 897.6 4.99 51.3 0.32 69.4 1.06 1.353 0.0204 0.74 0.291 378.0 5.78

p-value   0.7366 0.5002 0.3502 0.7723 0.4920 0.5408 0.3937
Genetic line (GL)                              

X 36 182.0 1.01 970.2 5.60 56.3 0.36 75.8 1.14 1.341 0.0220 0.96 0.323 415.3 6.29
Y 36 175.9 1.01 820.7 5.60 46.1 0.36 64.0 1.14 1.392 0.0220 0.32 0.323 332.4 6.29

p-value   0.0007 <0.0001 <0.0001 <0.0001 0.1035 0.2359 <0.0001
Sex                              

F 36 177.5 0.75 869.5 4.11 49.4 0.26 67.3 0.95 1.363 0.0183 0.51 0.244 362.7 5.07
M 36 180.3 0.75 921.3 4.11 52.9 0.26 72.4 0.95 1.371 0.0183 0.77 0.244 385.0 5.07

p-value   0.0096 <0.0001 <0.0001 <0.0001 0.6784 0.4287 0.0003
Experiment (EXP)                              

A 24 166.0c 1.07 868.1c 5.75 50.1b 0.37 65.5b 1.49 1.309 0.0287 0.08 0.352 384.7 7.78
B 24 175.2b 0.97 898.4b 5.11 51.7a 0.33 71.8a 1.42 1.390 0.0274 1.02 0.320 368.0 7.35
C 24 195.5a 1.18 919.7a 6.37 51.7a 0.41 72.4a 1.56 1.402 0.0300 0.81 0.384 368.9 8.23

p-value   <0.0001 <0.0001 0.0055 0.0036 0.0651 0.1263 0.2474
TRT GL                              

BD X 12 181.8 1.53 974.9 8.61 56.6 0.55 75.7 1.57 1.330 0.0304 1.01 0.486 419.8 8.95
Y 12 175.0 1.45 821.3 8.15 46.2 0.52 64.6 1.50 1.404 0.0291 0.56 0.461 330.1 8.54

PR X 12 181.3 1.38 962.9 7.74 55.8 0.49 76.7 1.44 1.371 0.0279 0.59 0.439 406.0 8.16
Y 12 177.5 1.44 818.3 8.06 45.8 0.52 63.4 1.49 1.390 0.0288 0.18 0.457 331.3 8.46

PH X 12 182.7 1.40 972.8 7.86 56.4 0.50 74.9 1.46 1.323 0.0282 1.28 0.445 420.2 8.27
Y 12 175.0 1.41 822.4 7.91 46.2 0.51 63.9 1.46 1.383 0.0284 0.20 0.448 335.7 8.32

p-value   0.2687 0.8137 0.8897 0.5361 0.4683 0.6329 0.5525
TRT Sex                              

BD F 12 178.2 1.26 874.5 7.06 49.7 0.45 66.8 1.34 1.343 0.0259 0.42 0.402 370.1 7.55
M 12 178.7 1.27 921.7 7.12 53.1 0.46 73.6 1.35 1.391 0.0261 1.15 0.405 379.7 7.60

PR F 12 177.1 1.27 863.8 7.13 49.0 0.46 68.6 1.35 1.399 0.0262 0.30 0.406 352.2 7.62
M 12 181.7 1.26 917.4 7.07 52.6 0.45 71.5 1.34 1.361 0.0260 0.47 0.402 385.1 7.56

PH F 12 177.2 1.26 870.3 7.08 49.5 0.45 66.6 1.34 1.346 0.0260 0.81 0.403 365.7 7.57
M 12 180.5 1.26 924.8 7.07 53.2 0.45 72.2 1.34 1.360 0.0260 0.68 0.403 390.2 7.56

p-value   0.2511 0.8547 0.9421 0.2427 0.1737 0.5425 0.2381
GL Sex                              

X F 18 180.9 1.23 939.6 6.90 54.2 0.44 72.9 1.32 1.340 0.0255 1.17a 0.393 400.5 7.42
M 18 183.0 1.24 1000.7 6.96 58.4 0.44 78.7 1.33 1.343 0.0257 0.74ab 0.396 430.2 7.47

Y F 18 174.2 1.34 799.4 7.52 44.7 0.48 61.8 1.41 1.386 0.0273 -0.16b 0.427 324.9 7.97
M 18 177.6 1.15 841.9 6.44 47.5 0.41 66.2 1.25 1.399 0.0242 0.79a 0.368 339.9 7.01

p-value   0.5397 0.1163 0.0617 0.4591 0.7983 0.0390 0.2013
GL Sex TRT                              

X

F
BD 6 182.1 2.00 947.1 11.30 54.6 0.72 72.1 1.98 1.314 0.0384 1.05 0.635 410.5 11.46
PR 6 179.0 1.86 925.8 10.47 53.3 0.67 74.3 1.85 1.388 0.0359 0.79 0.589 383.6 10.67
PH 6 181.6 1.85 945.9 10.41 54.6 0.67 72.1 1.84 1.318 0.0357 1.67 0.586 407.3 10.62

M
BD 6 181.6 1.94 1002.7 10.97 58.7 0.70 79.3 1.93 1.347 0.0374 0.96 0.616 429.0 11.14
PR 6 183.6 1.86 999.9 10.48 58.3 0.67 79.2 1.85 1.353 0.0359 0.38 0.589 428.4 10.68
PH 6 183.9 1.90 999.6 10.74 58.3 0.69 77.7 1.89 1.328 0.0367 0.89 0.604 433.1 10.93

Y

F
BD 6 174.3 2.01 801.8 11.33 44.8 0.72 61.4 1.98 1.373 0.0385 -0.21 0.636 329.8 11.48
PR 6 175.3 1.99 801.7 11.24 44.7 0.72 62.9 1.97 1.411 0.0382 -0.20 0.631 320.8 11.39
PH 6 172.9 1.91 794.7 10.75 44.4 0.69 61.0 1.89 1.374 0.0367 -0.06 0.604 324.1 10.93

M
BD 6 175.7 1.84 840.7 10.37 47.5 0.66 67.9 1.83 1.434 0.0356 1.34 0.583 330.4 10.58
PR 6 179.8 1.83 834.9 10.32 46.8 0.66 63.9 1.83 1.369 0.0354 0.56 0.581 341.8 10.53
PH 6 177.2 1.86 850.0 10.48 48.1 0.67 66.8 1.85 1.392 0.0359 0.46 0.589 347.3 10.68

p-value   0.8955 0.3292 0.2888 0.6690 0.9266 0.9532 0.7353
1Values are presented as least squares means (LSmeans). a–dWithin a column, values without a common superscript differ, P < 0.05. X and Y correspond to two fast growing commercial poultry genetic lines.
SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male. BW: Body weight; ADG: Average daily gain; ADFI: Average daily feed intake; FCR: Feed conversion ratio; EPEF: European production
efficiency factor.



Table S5: Performance 21-35 days1.
  N Initial BW (g) Final BW (g) ADG (g) ADFI (g) FCR (g/g) Mortality (%) EPEF

LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)                              

BD 24 898.1 5.01 2063.3 16.86 83.2 1.06 143.3 1.65 1.719 0.022 1.15 0.508 480.1 10.53
PR 24 890.6 5.01 2042.0 16.84 82.2 1.06 140.9 1.64 1.711 0.022 0.69 0.507 480.1 10.52
PH 24 897.6 4.99 2060.0 16.80 83.0 1.06 142.0 1.64 1.710 0.022 0.90 0.507 482.9 10.50

p-value   0.5002 0.6326 0.7787 0.6045 0.9385 0.7090 0.9757
Genetic line (GL)                              

X 36 970.2 5.60 2232.0 18.84 90.1 1.18 151.9 1.84 1.691 0.024 1.04 0.545 531.4 11.77
Y 36 820.7 5.60 1878.2 18.84 75.5 1.18 132.3 1.84 1.736 0.024 0.78 0.545 430.7 11.77

p-value   <0.0001 <0.0001 <0.0001 <0.0001 0.2331 0.7358 <0.0001
Sex                              

F 36 869.5 4.11 1953.1 13.82 77.4 0.88 136.1 1.35 1.750 0.019 0.80 0.455 439.6 8.64
M 36 921.3 4.11 2157.1 13.82 88.3 0.88 148.0 1.35 1.677 0.019 1.02 0.455 522.5 8.64

p-value   <0.0001 <0.0001 <0.0001 <0.0001 0.0023 0.6295 <0.0001
Experiment (EXP)                              

A 24 868.1c 5.75 2114.3a 19.33 89.0a 1.26 162.4a 1.89 1.834a 0.029 1.04 0.717 486.2 12.08
B 24 898.4b 5.11 2064.6b 17.20 83.3b 1.13 141.7b 1.68 1.700b 0.027 0.53 0.687 487.3 10.75
C 24 919.7a 6.37 1986.4c 21.41 76.2c 1.38 122.2c 2.09 1.607c 0.030 1.17 0.748 469.5 13.38

p-value   <0.0001 0.0013 <0.0001 <0.0001 <0.0001 0.7893 0.6146
TRT GL                              

BD X 12 974.9 8.61 2238.2 28.94 90.2 1.8 152.3 2.83 1.694 0.035 1.44 0.748 529.1 18.08
Y 12 821.3 8.15 1888.4 27.41 76.2 1.71 134.3 2.68 1.744 0.033 0.86 0.715 431.0 17.13

PR X 12 962.9 7.74 2217.7 26.02 89.6 1.62 150.7 2.54 1.687 0.032 0.47 0.686 533.1 16.26
Y 12 818.3 8.06 1866.2 27.11 74.9 1.69 131.2 2.65 1.736 0.033 0.91 0.709 427.1 16.94

PH X 12 972.8 7.86 2240.0 26.43 90.5 1.65 152.7 2.58 1.693 0.032 1.21 0.695 531.9 16.51
Y 12 822.4 7.91 1880.0 26.61 75.5 1.66 131.4 2.60 1.728 0.032 0.59 0.699 433.9 16.63

p-value   0.8137 0.9741 0.9425 0.7739 0.9494 0.5563 0.9534
TRT Sex                              

BD F 12 874.5 7.06 1969.6 23.75 78.2 1.48 137.7 2.32 1.751 0.029 0.49 0.640 444.8 14.84
M 12 921.7 7.12 2157.0 23.93 88.2 1.49 148.9 2.34 1.688 0.029 1.81 0.644 515.4 14.95

PR F 12 863.8 7.13 1936.2 23.99 76.6 1.50 135.4 2.34 1.757 0.029 1.14 0.645 432.1 14.99
M 12 917.4 7.07 2147.7 23.77 87.9 1.48 146.5 2.32 1.666 0.029 0.24 0.640 528.1 14.85

PH F 12 870.3 7.08 1953.6 23.81 77.4 1.49 135.3 2.33 1.742 0.029 0.78 0.641 441.9 14.88
M 12 924.8 7.07 2166.5 23.79 88.7 1.48 148.8 2.32 1.679 0.029 1.02 0.641 524.0 14.86

p-value   0.8547 0.8345 0.8804 0.8525 0.8411 0.1448 0.6938
GL Sex                              

X F 18 939.6 6.90 2119.4 23.21 84.3 1.45 147.0 2.27 1.745 0.029 0.93 0.630 481.1 14.50
M 18 1000.7 6.96 2344.6 23.39 96.0 1.46 156.9 2.29 1.638 0.029 1.15 0.633 581.7 14.62

Y F 18 799.4 7.52 1786.8 25.28 70.5 1.58 125.3 2.47 1.755 0.031 0.67 0.672 398.1 15.80
M 18 841.9 6.44 1969.6 21.64 80.6 1.35 139.2 2.11 1.717 0.027 0.90 0.598 463.3 13.52

p-value   0.1163 0.2852 0.4861 0.2958 0.1325 0.9926 0.1548
GL Sex TRT                              

X

F
BD 6 947.1 11.30 2134.4 38.02 84.8 2.35 147.5 3.71 1.740 0.045 0.86 0.943 485.6 23.76
PR 6 925.8 10.47 2097.1 35.21 83.7 2.18 145.7 3.44 1.741 0.042 1.00 0.881 478.1 22.00
PH 6 945.9 10.41 2126.8 35.01 84.3 2.17 147.8 3.42 1.753 0.042 0.93 0.877 479.5 21.88

M
BD 6 1002.7 10.97 2342.0 36.90 95.7 2.29 157.1 3.60 1.648 0.044 2.02 0.918 572.6 23.05
PR 6 999.9 10.48 2338.4 35.25 95.6 2.18 155.8 3.44 1.632 0.042 -0.07 0.882 588.1 22.02
PH 6 999.6 10.74 2353.3 36.13 96.7 2.24 157.7 3.53 1.633 0.043 1.50 0.901 584.4 22.57

Y

F
BD 6 801.8 11.33 1804.7 38.10 71.6 2.36 127.8 3.72 1.761 0.045 0.12 0.944 404.0 23.81
PR 6 801.7 11.24 1775.4 37.80 69.6 2.34 125.2 3.69 1.773 0.045 1.27 0.938 386.0 23.62
PH 6 794.7 10.75 1780.4 36.14 70.4 2.24 122.9 3.53 1.731 0.043 0.63 0.902 404.2 22.58

M
BD 6 840.7 10.37 1972.0 34.87 80.8 2.16 140.7 3.41 1.727 0.041 1.60 0.874 458.1 21.79
PR 6 834.9 10.32 1957.1 34.72 80.2 2.15 137.2 3.39 1.700 0.041 0.55 0.870 468.1 21.70
PH 6 850.0 10.48 1979.6 35.24 80.7 2.18 139.8 3.44 1.724 0.042 0.55 0.882 463.6 22.02

p-value   0.3292 0.9439 0.9922 0.8588 0.7714 0.8769 0.9561



Table S6: Concentration of corticosterone in feathers (pg/mg)1.

N Corticosterone 0-35 days N Corticosterone day 7 Corticosterone day 21 Corticosterone day 35
LSmeans SE LSmeans SE LSmeans SE LSmeans SE

Treatment (TRT)
BD 72 12.18 0.962 24 9.80b 0.625 11.81 1.129 14.94 1.749
PR 72 13.09 0.962 24 10.59ab 0.625 11.43 1.129 17.27 1.749
PH 72 12.89 0.962 24 11.59a 0.625 12.77 1.129 14.31 1.749

p-value 0.4325 0.0347 0.4555 0.2032
Genetic line (GL)

X 108 13.91 0.914 36 9.91 0.562 13.66 1.037 18.15 1.601
Y 108 11.54 0.914 36 11.41 0.562 10.35 1.037 12.86 1.601

p-value 0.0001 0.0082 0.0005 0.0004
Sex

F 108 11.68 0.914 36 9.73 0.562 11.40 1.037 13.92 1.601
M 108 13.76 0.914 36 11.59 0.562 12.61 1.037 17.09 1.601

p-value 0.0008 0.0013 0.1811 0.0281
Experiment (EXP)

A 72 13.08 1.496 24 12.62a 0.850 11.67 1.621 14.96 2.491
B 72 13.95 1.496 24 11.13a 0.850 14.25 1.621 16.46 2.491
C 72 11.14 1.496 24 8.22b 0.850 10.08 1.621 15.10 2.491

p-value 0.3989 0.0021 0.1950 0.8958
TRT GL

BD X 36 13.41 1.093 12 8.60 0.785 13.46 1.369 18.17 2.131
Y 36 10.96 1.093 12 11.00 0.785 10.15 1.369 11.71 2.131

PR X 36 14.22 1.093 12 10.26 0.785 12.22 1.369 20.18 2.131
Y 36 11.97 1.093 12 10.91 0.785 10.64 1.369 14.36 2.131

PH X 36 14.09 1.093 12 10.86 0.785 15.29 1.369 16.11 2.131
Y 36 11.69 1.093 12 12.32 0.785 10.25 1.369 12.50 2.131

P-value 0.9890 0.4363 0.2944 0.6880
TRT Sex

BD F 36 10.53 1.093 12 9.00 0.785 9.26b 1.369 13.34 2.131
M 36 13.84 1.093 12 10.61 0.785 14.36a 1.369 16.54 2.131

PR F 36 12.15 1.093 12 9.27 0.785 11.57ab 1.369 15.60 2.131
M 36 14.04 1.093 12 11.91 0.785 11.28ab 1.369 18.93 2.131

PH F 36 12.36 1.093 12 10.92 0.785 13.36a 1.369 12.81 2.131
M 36 13.41 1.093 12 12.26 0.785 12.18ab 1.369 15.80 2.131

P-value 0.3042 0.5939 0.0120 0.9949
GL Sex

X F 54 12.37 1.008 18 9.85b 0.682 12.74 1.215 14.53 1.885
M 54 15.44 1.008 18 9.96b 0.682 14.57 1.215 21.78 1.885

Y F 54 10.99 1.008 18 9.61b 0.682 10.05 1.215 13.31 1.885
M 54 12.09 1.008 18 13.21a 0.682 10.64 1.215 12.40 1.885

P-value 0.1030 0.0023 0.4878 0.0053
GL Sex TRT

X

F
BD 18 11.14 1.317 6 8.58 1.032 10.03 1.753 14.82 2.740
PR 18 12.51 1.317 6 8.63 1.032 16.89 1.753 21.53 2.740
PH 18 13.47 1.317 6 9.42 1.032 8.49 1.753 11.86 2.740

M
BD 18 15.68 1.317 6 12.58 1.032 11.82 1.753 11.56 2.740
PR 18 15.93 1.317 6 10.17 1.032 12.50 1.753 14.85 2.740
PH 18 14.71 1.317 6 10.35 1.032 11.93 1.753 25.51 2.740

Y F
BD 18 9.92 1.317 6 8.36 1.032 10.64 1.753 16.36 2.740
PR 18 11.79 1.317 6 13.46 1.032 10.64 1.753 12.36 2.740
PH 18 11.26 1.317 6 10.81 1.032 15.68 1.753 13.91 2.740

M BD 18 11.99 1.317 6 10.91 1.032 14.90 1.753 18.31 2.740



PR 18 12.15 1.317 6 11.04 1.032 11.03 1.753 11.71 2.740
PH 18 12.12 1.317 6 13.60 1.032 9.46 1.753 13.29 2.740

P-value 0.6362 0.6353 0.6390 0.2286
Day

7 72 10.66b 0.96
21 72 12.00b 0.96
35 72 15.51a 0.96

P-value <0.0001
TRT Day

BD
7 24 9.80 1.210
21 24 11.81 1.210
35 24 14.94 1.210

PR
7 24 10.59 1.210
21 24 11.43 1.210
35 24 17.27 1.210

PH
7 24 11.59 1.210
21 24 12.77 1.210
35 24 14.31 1.210

P-value 0.1203
GL Day

X
7 36 9.91d 1.093
21 36 13.66b 1.093
35 36 18.15a 1.093

Y
7 36 11.41cd 1.093
21 36 10.35d 1.093
35 36 12.86bc 1.093

P-value <0.0001
Sex Day

F
7 36 9.73 1.093
21 36 11.40 1.093
35 36 13.92 1.093

M
7 36 11.59 1.093
21 36 12.61 1.093
35 36 17.09 1.093

P-value 0.3997
1Values are presented as least squares means (LSmeans). SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.

X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05



Table S7a: Concentration of C-reactive protein (CRP), chicken haptoglobin-like protein (PIT54) and
Lipopolysaccharides (LPS) in blood 0-35 days1.

  N CRP (pg/mL) PIT54 (ng/mL) LPS (ng/L)
LSmeans SE LSmeans SE LSmeans SE

Treatment (TRT)
BD 72 2.40 0.18 1.01 0.15 25.43 2.72
PR 72 2.57 0.18 1.11 0.15 24.79 2.72
PH 72 2.47 0.18 1.26 0.15 25.20 2.72

p-value 0.8031 0.4608 0.9258
Genetic line (GL)

X 108 2.55 0.15 1.31 0.12 25.42 2.64
Y 108 2.41 0.15 0.95 0.12 24.86 2.64

p-value 0.4871 0.0354 0.6718
Sex

F 108 2.44 0.15 1.09 0.12 25.18 2.64
M 108 2.51 0.15 1.17 0.12 25.10 2.64

p-value 0.7346 0.6528 0.9466
Day

7 72 3.27a 0.18 2.10a 0.15 29.25a 2.72
21 72 2.92a 0.18 0.59b 0.15 19.23b 2.72
35 72 1.24b 0.18 0.70b 0.15 26.94a 2.72

p-value <0.0001 <0.0001 <0.0001
Experiment (EXP)

A 72 1.28c 0.19 1.07b 0.15 15.06b 4.43
B 72 2.06b 0.19 1.71a 0.15 35.15a 4.43
C 72 4.10a 0.19 0.61c 0.15 25.21ab 4.43

p-value <0.0001 <0.0001 0.0073
TRT GL

1 X 36 2.61 0.25 1.11 0.21 26.69 2.96
Y 36 2.19 0.25 0.90 0.21 24.17 2.96

2 X 36 2.51 0.25 1.39 0.21 24.58 2.96
Y 36 2.62 0.25 0.84 0.21 25.01 2.96

3 X 36 2.52 0.25 1.42 0.21 25.00 2.96
Y 36 2.41 0.25 1.10 0.21 25.39 2.96

p-value 0.5744 0.7157 0.5851
TRT Sex
BD F 36 2.26 0.25 1.10 0.21 24.50 2.96

M 36 2.54 0.25 0.91 0.21 26.35 2.96

PR F 36 2.50 0.25 0.95 0.21 26.28 2.96
M 36 2.63 0.25 1.27 0.21 23.31 2.96

PH F 36 2.56 0.25 1.22 0.21 24.78 2.96
M 36 2.37 0.25 1.31 0.21 25.62 2.96

p-value 0.6451 0.4737 0.3029
GL Sex
X F 54 2.62 0.21 1.23 0.17 25.41 2.8

M 54 2.48 0.21 1.38 0.17 25.44 2.8

Y F 54 2.27 0.21 0.95 0.17 24.96 2.8
M 54 2.54 0.21 0.95 0.17 24.75 2.8

p-value 0.3259 0.6622 0.9315
TRT Day

BD
7 24 3.09 0.31 1.74 0.25 29.73 3.18

21 24 2.80 0.31 0.58 0.25 18.87 3.18
35 24 1.32 0.31 0.71 0.25 27.68 3.18

PR
7 24 3.31 0.31 2.20 0.25 28.05 3.18

21 24 3.17 0.31 0.56 0.25 20.59 3.18
35 24 1.23 0.31 0.58 0.25 25.74 3.18

PH
7 24 3.41 0.31 2.38 0.25 29.96 3.18

21 24 2.81 0.31 0.62 0.25 18.22 3.18
35 24 1.18 0.31 0.80 0.25 27.41 3.18

p-value 0.8808 0.6893 0.7924
GL Day

X
7 36 3.54 0.25 2.56 0.21 28.74 2.96

21 36 2.89 0.25 0.67 0.21 20.65 2.96
35 36 1.21 0.25 0.70 0.21 26.88 2.96

Y
7 36 2.99 0.25 1.65 0.21 29.76 2.96

21 36 2.96 0.25 0.50 0.21 17.80 2.96
35 36 1.27 0.25 0.69 0.21 27.01 2.96

p-value 0.3632 0.0757 0.4658
Sex Day

F
7 36 3.17 0.25 2.01 0.21 28.90 2.96

21 36 2.85 0.25 0.59 0.21 19.45 2.96
35 36 1.31 0.25 0.68 0.21 27.21 2.96

M
7 36 3.37 0.25 2.20 0.21 29.60 2.96

21 36 2.99 0.25 0.58 0.21 19.00 2.96
35 36 1.18 0.25 0.71 0.21 26.68 2.96

p-value 0.7807 0.8717 0.915
TRT EXP



BD
A 24 1.25 0.31 1.09 0.25 15.62 4.72
B 24 2.02 0.31 1.23 0.25 34.87 4.72
C 24 3.92 0.31 0.70 0.25 25.80 4.72

PR
A 24 1.37 0.31 1.00 0.25 15.27 4.72
B 24 1.96 0.31 1.84 0.25 34.32 4.72
C 24 4.36 0.31 0.51 0.25 24.80 4.72

PH
A 24 1.20 0.31 1.13 0.25 14.28 4.72
B 24 2.18 0.31 2.06 0.25 36.27 4.72
C 24 4.02 0.31 0.61 0.25 25.05 4.72

p-value 0.8927 0.3365 0.9475
GL EXP

X
A 36 1.36 0.26 1.33 0.21 14.44 4.57
B 36 2.14 0.26 1.88 0.21 35.88 4.57
C 36 4.15 0.26 0.72 0.21 25.95 4.57

Y
A 36 1.20 0.26 0.81 0.21 15.67 4.57
B 36 1.98 0.26 1.54 0.21 34.42 4.57
C 36 4.05 0.26 0.49 0.21 24.48 4.57

p-value 0.9926 0.7714 0.6357
Sex EXP

F
A 36 1.32 0.26 1.14 0.21 15.45 4.57
B 36 1.93 0.26 1.51 0.21 35.25 4.57
C 36 4.07 0.26 0.63 0.21 24.86 4.57

M
A 36 1.23 0.26 1.00 0.21 14.66 4.57
B 36 2.18 0.26 1.91 0.21 35.05 4.57
C 36 4.13 0.26 0.58 0.21 25.57 4.57

p-value 0.7838 0.3832 0.898
Day EXP

7
A 24 1.47c 0.31 2.09b 0.25 11.72d 4.72
B 24 3.90b 0.31 3.48a 0.25 46.70a 4.72
C 24 4.43b 0.31 0.74c 0.25 29.33b 4.72

21
A 24 1.11c 0.31 0.54c 0.25 12.83cd 4.72
B 24 1.14c 0.31 0.72c 0.25 25.33bc 4.72
C 24 6.52a 0.31 0.50c 0.25 19.52cd 4.72

35
A 24 1.25 0.31 0.58c 0.25 20.62bc 4.72
B 24 1.12c 0.31 0.93c 0.25 33.43b 4.72
C 24 1.36c 0.31 0.58c 0.25 26.79b 4.72

p-value   <0.0001 <0.0001 <0.0001
1Values are presented as least squares means (LSmeans). SE: Standard error.
BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.
X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.



Table S7b: Concentration of C-reactive protein (CRP), chicken haptoglobin-like protein (PIT54) and Lipopolysaccharides (LPS) in blood
per day1.

  N CRP d7 (pg/mL) CRP d21 (pg/mL) CRP d35
(pg/mL) PIT54 d7 (ng/ml) PIT54 d21

(ng/ml)
PIT54 d35

(ng/ml) LPS d7 (ng/L) LPS d21 (ng/L) LPS d 35 (ng/L)
LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE

Treatment (TRT)
BD 2

4 3.09 0.22 2.80 0.57 1.32 0.08 1.74 0.42 0.58 0.04 0.71 0.08 29.73 2.96 18.87 2.38 27.68 5.95

PR 2
4 3.31 0.22 3.17 0.57 1.23 0.08 2.20 0.42 0.56 0.04 0.58 0.08 28.05 2.96 20.59 2.38 25.74 5.95

PH 2
4 3.41 0.22 2.81 0.57 1.18 0.08 2.38 0.42 0.62 0.04 0.80 0.08 29.96 2.96 18.22 2.38 27.41 5.95

P-value 0.5406 0.7581 0.2094 0.5406 0.6850 0.1543 0.1774 0.5088 0.7140
Genetic line (GL)

X 3
6 3.54 0.18 2.89 0.53 1.21 0.08 2.56 0.34 0.67 0.04 0.70 0.06 28.74 2.93 20.65 2.23 26.88 5.86

Y 3
6 2.99 0.18 2.96 0.53 1.27 0.08 1.65 0.34 0.50 0.04 0.69 0.06 29.76 2.93 17.80 2.23 27.01 5.86

P-value 0.0687 0.8870 0.3300 0.0687 0.0010 0.9519 0.2657 0.1007 0.9477
Sex

F 3
6 3.17 0.18 2.85 0.53 1.31 0.08 2.01 0.34 0.59 0.04 0.68 0.06 28.9 2.93 19.45 2.23 27.21 5.86

M 3
6 3.37 0.18 2.99 0.53 1.18 0.08 2.20 0.34 0.58 0.04 0.71 0.06 29.6 2.93 19.00 2.23 26.68 5.86

P-value 0.6824 0.7601 0.0454 0.6824 0.9344 0.7171 0.4384 0.7964 0.8000
Experiment (EXP)

A 2
4 1.47b 0.24 1.11b 0.82 1.25 0.12 2.09b 0.42 0.54b 0.04 0.58b 0.08 11.72c 5.01 12.83 3.56 20.62 9.99

B 2
4 3.90a 0.24 1.14b 0.82 1.12 0.12 3.48a 0.42 0.72a 0.04 0.93a 0.08 46.70a 5.01 25.33 3.56 33.43 9.99

C 2
4 4.43a 0.24 6.52a 0.82 1.36 0.12 0.74c 0.42 0.50b 0.04 0.58b 0.08 29.33b 5.01 19.52 3.56 26.79 9.99

P-value 0.0001 <0.0001 0.4057 0.0001 0.0012 0.0032 <0.0001 0.0535 0.6646
TRT GL

BD
X 1

2 3.49 0.3 3.11 0.7 1.23 0.1 1.88 0.59 0.65 0.06 0.81 0.11 29.99a 3.06 20.22 2.8 29.86 6.22

Y 1
2 2.68 0.3 2.49 0.7 1.40 0.1 1.59 0.59 0.50 0.06 0.60 0.11 29.47a 3.06 17.52 2.8 25.51 6.22

PR
X 1

2 3.55 0.3 2.73 0.7 1.25 0.1 2.95 0.59 0.65 0.06 0.56 0.11 25.74b 3.06 22.11 2.8 25.88 6.22

Y 1
2 3.06 0.3 3.60 0.7 1.20 0.1 1.45 0.59 0.48 0.06 0.60 0.11 30.36a 3.06 19.06 2.8 25.61 6.22

PH
X 1

2 3.59 0.3 2.84 0.7 1.14 0.1 2.84 0.59 0.71 0.06 0.72 0.11 30.49a 3.06 19.62 2.8 24.89 6.22

Y 1
2 3.23 0.3 2.79 0.7 1.22 0.1 1.92 0.59 0.52 0.06 0.88 0.11 29.44a 3.06 16.82 2.8 29.92 6.22

P-value 0.5998 0.4133 0.3487 0.5998 0.9325 0.2629 0.0235 0.9965 0.1919
TRT Sex

BD
F 1

2 2.71 0.3 2.64 0.7 1.44 0.1 2 0.59 0.62 0.06 0.69 0.11 30.52 3.06 16.79 2.8 26.2 6.22

M 1
2 3.46 0.3 2.95 0.7 1.20 0.1 1.48 0.59 0.54 0.06 0.73 0.11 28.95 3.06 20.95 2.8 29.17 6.22

PR
F 1

2 3.36 0.3 2.89 0.7 1.27 0.1 1.80 0.59 0.54 0.06 0.52 0.11 27.72 3.06 21.53 2.8 29.58 6.22

M 1
2 3.25 0.3 3.44 0.7 1.18 0.1 2.60 0.59 0.59 0.06 0.64 0.11 28.39 3.06 19.64 2.8 21.91 6.22

PH
F 1

2 3.44 0.3 3.03 0.7 1.22 0.1 2.21 0.59 0.61 0.06 0.83 0.11 28.46 3.06 20.01 2.8 25.85 6.22

M 1
2 3.38 0.3 2.59 0.7 1.15 0.1 2.54 0.59 0.62 0.06 0.77 0.11 31.47 3.06 16.43 2.8 28.96 6.22

P-value 0.5366 0.6567 0.4872 0.5366 0.5615 0.7481 0.1260 0.1606 0.0613
GL Sex

X F 1
8 3.49 0.25 3.10 0.62 1.25 0.09 2.32 0.49 0.68 0.05 0.70 0.09 28.11 3 20.89 2.53 27.23 6.04



M 1
8 3.60 0.25 2.68 0.62 1.17 0.09 2.79 0.49 0.66 0.05 0.70 0.09 29.37 3 20.42 2.53 26.52 6.04

Y
F 1

8 2.84 0.25 2.60 0.62 1.36 0.09 1.69 0.49 0.49 0.05 0.66 0.09 29.68 3 18.01 2.53 27.19 6.04

M 1
8 3.13 0.25 3.31 0.62 1.18 0.09 1.62 0.49 0.50 0.05 0.73 0.09 29.83 3 17.59 2.53 26.84 6.04

P-value 0.5776 0.2219 0.4209 0.5776 0.8065 0.6819 0.5440 0.9883 0.9311
GL Sex TRT

X

F
BD 6 3.14 0.42 3.44 0.89 1.29 0.13 2.30 0.84 0.72 0.09 0.78 0.16 31.13 3.26 16.20 3.5 29.58 6.72
PR 6 3.77 0.42 2.91 0.89 1.33 0.13 2.59 0.84 0.61 0.09 0.53 0.16 25.38 3.26 22.34 3.5 29.48 6.72
PH 6 3.56 0.42 2.97 0.89 1.13 0.13 2.07 0.84 0.71 0.09 0.78 0.16 27.83 3.26 24.12 3.5 22.63 6.72

M
BD 6 3.84 0.42 2.78 0.89 1.18 0.13 1.46 0.84 0.58 0.09 0.84 0.16 28.85 3.26 24.25 3.5 30.13 6.72
PR 6 3.33 0.42 2.56 0.89 1.18 0.13 3.30 0.84 0.69 0.09 0.60 0.16 26.11 3.26 21.88 3.5 22.28 6.72
PH 6 3.62 0.42 2.71 0.89 1.15 0.13 3.61 0.84 0.72 0.09 0.66 0.16 33.15 3.26 15.12 3.5 27.15 6.72

Y

F
BD 6 2.28 0.42 1.85 0.89 1.59 0.13 1.69 0.84 0.51 0.09 0.59 0.16 29.90 3.26 17.39 3.5 22.81 6.72
PR 6 2.94 0.42 2.87 0.89 1.20 0.13 1.02 0.84 0.46 0.09 0.51 0.16 30.05 3.26 20.73 3.5 29.67 6.72
PH 6 3.31 0.42 3.09 0.89 1.30 0.13 2.36 0.84 0.51 0.09 0.87 0.16 29.08 3.26 15.91 3.5 29.08 6.72

M
BD 6 3.08 0.42 3.12 0.89 1.22 0.13 1.50 0.84 0.50 0.09 0.62 0.16 29.04 3.26 17.64 3.5 28.21 6.72
PR 6 3.18 0.42 4.33 0.89 1.19 0.13 1.89 0.84 0.49 0.09 0.68 0.16 30.67 3.26 17.40 3.5 21.54 6.72
PH 6 3.15 0.42 2.48 0.89 1.14 0.13 1.47 0.84 0.53 0.09 0.89 0.16 29.79 3.26 17.74 3.5 30.76 6.72

P-value   0.3871 0.5218 0.4079 0.3871 0.7641 0.9213 0.3720 0.0785 0.7356
1Values are presented as least squares means (LS). SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male. X and Y correspond to two fast growing commercial poultry genetic
lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.



Table S8a: Punctuation of footpad dermatitis lesions (%) 0-35 days1.

N Punctuation 0 Punctuation 1 Punctuation 2 Punctuation 3 Punctuation 4
LSmeans SE LSmeans SE LSmeans SE LSmeans SE LSmeans SE

Treatment (TRT)
BD 72 83.29 2.217 9.21 1.046 6.11 1.086 1.31 0.580 0.08 0.088
PR 72 86.34 2.217 9.03 1.046 4.19 1.086 0.40 0.580 0.04 0.088
PH 72 87.70 2.217 7.48 1.046 3.50 1.086 1.13 0.580 0.19 0.088

p-value 0.0959 0.2274 0.0508 0.3575 0.3649
Genetic line (GL)

X 108 81.70 2.051 10.19 0.946 6.25 0.989 1.65 0.512 0.21 0.076
Y 108 89.86 2.051 6.95 0.946 2.94 0.989 0.24 0.512 0.00 0.076

p-value <0.0001 0.0005 0.0003 0.0109 0.0212
Sex

F 108 85.56 2.051 8.56 0.946 4.91 0.989 0.88 0.512 0.10 0.076
M 108 86.00 2.051 8.58 0.946 4.29 0.989 1.01 0.512 0.12 0.076

p-value 0.7928 0.9769 0.4902 0.8112 0.8320
Day

7 72 99.90a 2.217 0.11c 1.046 0.00c 1.086 0.00b 0.580 0.00 0.088
21 72 85.08b 2.217 9.29b 1.046 4.38b 1.086 1.01ab 0.580 0.25 0.088
35 72 72.36c 2.217 16.32a 1.046 9.42a 1.086 1.84a 0.580 0.06 0.088

p-value <0.0001 <0.0001 <0.0001 0.0254 0.0626
Experiment (EXP)

A 72 73.82b 3.238 16.08a 1.442 8.84a 1.528 1.01 0.752 0.25 0.106
B 72 94.08a 3.238 4.74b 1.442 1.13b 1.528 0.05 0.752 0.00 0.106
C 72 89.44a 3.238 4.88b 1.442 3.83b 1.528 1.79 0.752 0.06 0.106

p-value <0.0001 <0.0001 0.0021 0.2673 0.2151
TRT GL
BD X 36 79.13 2.655 10.94 1.303 7.65 1.334 2.12 0.748 0.16 0.118

Y 36 87.44 2.655 7.48 1.303 4.58 1.334 0.50 0.748 0.00 0.118

PR X 36 82.61 2.655 10.61 1.303 6.02 1.334 0.67 0.748 0.08 0.118
Y 36 90.07 2.655 7.45 1.303 2.35 1.334 0.13 0.748 0.00 0.118

PH X 36 83.34 2.655 9.02 1.303 5.09 1.334 2.17 0.748 0.39 0.118
Y 36 92.07 2.655 5.94 1.303 1.90 1.334 0.09 0.748 0.00 0.118

p-value 0.9517 0.9831 0.9572 0.4995 0.3649
TRT Sex
BD F 36 82.02 2.655 9.85 1.303 7.19 1.334 0.86 0.748 0.16 0.118

M 36 84.56 2.655 8.56 1.303 5.04 1.334 1.76 0.748 0.00 0.118

PR F 36 87.90 2.655 8.63 1.303 3.48 1.334 0.00 0.748 0.08 0.118
M 36 84.78 2.655 9.43 1.303 4.89 1.334 0.80 0.748 0.00 0.118

PH F 36 86.75 2.655 7.19 1.303 4.06 1.334 1.79 0.748 0.39 0.118
M 36 88.66 2.655 7.76 1.303 2.93 1.334 0.47 0.748 0.00 0.118

p-value 0.3279 0.5796 0.2495 0.1757 0.8696
GL Sex
X F 54 81.41 2.372 10.13 1.138 6.79 1.174 1.49 0.641 0.19 0.099

M 54 81.98 2.372 10.24 1.138 5.72 1.174 1.82 0.641 0.23 0.099

Y F 54 89.70 2.372 6.99 1.138 3.03 1.174 0.28 0.641 0.00 0.099
M 54 90.02 2.372 6.92 1.138 2.85 1.174 0.20 0.641 0.00 0.099

p-value 0.9398 0.9208 0.6227 0.1999 0.8320
TRT Day

BD
7 24 99.79 3.030 0.21 1.517 0.00 1.543 0.00 0.884 0.00 0.141

21 24 81.61 3.030 10.12 1.517 6.65 1.543 1.38 0.884 0.24 0.141
35 24 68.46 3.030 17.28 1.517 11.70 1.543 2.56 0.884 0.00 0.141

PR
7 24 99.89 3.030 0.11 1.517 0.00 1.543 0.00 0.884 0.00 0.141

21 24 85.10 3.030 10.49 1.517 3.67 1.543 0.62 0.884 0.13 0.141
35 24 74.03 3.030 16.50 1.517 8.89 1.543 0.59 0.884 0.00 0.141

PH
7 24 100.00 3.030 0.00 1.517 0.00 1.543 0.00 0.884 0.00 0.141

21 24 88.52 3.030 7.25 1.517 2.81 1.543 1.02 0.884 0.39 0.141
35 24 74.59 3.030 15.18 1.517 7.68 1.543 2.37 0.884 0.19 0.141

p-value 0.6399 0.7844 0.5467 0.7555 0.8764
GL Day

X
7 36 99.86a 2.655 0.14d 1.303 0.00c 1.334 0.00b 0.748 0.00 0.118

21 36 81.75c 2.655 11.13b 1.303 5.19b 1.334 1.42b 0.748 0.51 0.118
35 36 63.48d 2.655 19.29a 1.303 13.57a 1.334 3.54a 0.748 0.13 0.118

Y
7 36 99.93a 2.655 0.07d 1.303 0.00c 1.334 0.00b 0.748 0.00 0.118

21 36 88.41b 2.655 7.44c 1.303 3.56b 1.334 0.59b 0.748 0.00 0.118
35 36 81.25c 2.655 13.35b 1.303 5.27b 1.334 0.13b 0.748 0.00 0.118

p-value 0.0002 0.0297 0.0006 0.0320 0.0626
Sex Day

F
7 36 99.79 2.655 0.21 1.303 0.00 1.334 0.00 0.748 0.00 0.118

21 36 84.27 2.655 9.97 1.303 4.52 1.334 1.08 0.748 0.16 0.118
35 36 72.61 2.655 15.49 1.303 10.21 1.334 1.57 0.748 0.13 0.118

M
7 36 100.00 2.655 0.00 1.303 0.00 1.334 0.00 0.748 0.00 0.118

21 36 85.89 2.655 8.60 1.303 4.23 1.334 0.93 0.748 0.35 0.118
35 36 72.11 2.655 17.15 1.303 8.64 1.334 2.11 0.748 0.00 0.118

p-value 0.8722 0.3848 0.7483 0.8612 0.3719
TRT EXP



BD
A 24 68.39 3.840 17.19 1.813 12.80a 1.881 1.38 1.005 0.24 0.153
B 24 93.68 3.840 4.91 1.813 1.25c 1.881 0.15 1.005 0.00 0.153
C 24 87.80 3.840 5.51 1.813 4.29bc 1.881 2.40 1.005 0.00 0.153

PR
A 24 72.83 3.840 17.57 1.813 8.86b 1.881 0.62 1.005 0.13 0.153
B 24 93.60 3.840 5.31 1.813 1.10c 1.881 0.00 1.005 0.00 0.153
C 24 92.60 3.840 4.21 1.813 2.60c 1.881 0.59 1.005 0.00 0.153

PH
A 24 80.25 3.840 13.49 1.813 4.86bc 1.881 1.02 1.005 0.39 0.153
B 24 94.95 3.840 4.01 1.813 1.04c 1.881 0.00 1.005 0.00 0.153
C 24 87.92 3.840 4.93 1.813 4.59bc 1.881 2.37 1.005 0.19 0.153

p-value 0.0696 0.4692 0.0167 0.8069 0.8764
GL EXP

X
A 36 68.45c 3.552 18.46a 1.638 11.16a 1.713 1.42ab 0.887 0.51 0.131
B 36 94.33a 3.552 4.45cd 1.638 1.12b 1.713 0.10b 0.887 0.00 0.131
C 36 82.31b 3.552 7.65c 1.638 6.48a 1.713 3.44a 0.887 0.13 0.131

Y
A 36 79.19b 3.552 13.70b 1.638 6.52a 1.713 0.59b 0.887 0.00 0.131
B 36 93.82a 3.552 5.04cd 1.638 1.14b 1.713 0.00b 0.887 0.00 0.131
C 36 96.57a 3.552 2.12d 1.638 1.17b 1.713 0.13b 0.887 0.00 0.131

p-value 0.0014 0.0121 0.0333 0.0459 0.0626
Sex EXP

F
A 36 72.43 3.552 16.74 1.638 9.59 1.713 1.08 0.887 0.16 0.131
B 36 94.57 3.552 4.41 1.638 1.01 1.713 0.00 0.887 0.00 0.131
C 36 89.66 3.552 4.52 1.638 4.12 1.713 1.57 0.887 0.13 0.131

M
A 36 75.21 3.552 15.43 1.638 8.09 1.713 0.93 0.887 0.35 0.131
B 36 93.58 3.552 5.08 1.638 1.25 1.713 0.10 0.887 0.00 0.131
C 36 89.22 3.552 5.25 1.638 3.53 1.713 2.01 0.887 0.00 0.131

p-value 0.6161 0.5756 0.7336 0.9060 0.3719
Day EXP

7
A 24 99.69a 3.840 0.32d 1.813 0.00b 1.881 0.00b 1.005 0.00b 0.153
B 24 100.00a 3.840 0.00d 1.813 0.00b 1.881 0.00b 1.005 0.00b 0.153
C 24 100.00a 3.840 0.00d 1.813 0.00b 1.881 0.00b 1.005 0.00b 0.153

21
A 24 62.93cd 3.840 20.16b 1.813 13.13a 1.881 3.02a 1.005 0.76a 0.153
B 24 95.34ab 3.840 4.66d 1.813 0.00b 1.881 0.00b 1.005 0.00b 0.153
C 24 96.96ab 3.840 3.04d 1.813 0.00b 1.881 0.00b 1.005 0.00b 0.153

35
A 24 58.84d 3.840 27.77a 1.813 13.39a 1.881 0.00b 1.005 0.00b 0.153
B 24 86.89b 3.840 9.57c 1.813 3.39b 1.881 0.15b 1.005 0.00b 0.153
C 24 71.35c 3.840 11.62c 1.813 11.48a 1.881 5.36a 1.005 0.19b 0.153

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.0036
1Values are presented as least squares means (LSmeans). SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.
X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.



Table S8b: Punctuation of footpad dermatitis (FPD) lesions (%) per day1.
Day 7 Day 21 Day 35

Punctuation of
FPD (%) N 0 1 0 1 2 3 4 0 1 2 3 4

LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE LS SE
Treatment (TRT)      

BD 24 99.79 0.094 0.21 0.094 81.61 3.824 10.12 1.827 6.65 2.249 1.38 0.587 0.24 0.232 68.46 4.612 17.28 1.856 11.70 2.040 2.56 1.637 0.00 0.110
PR 24 99.89 0.094 0.11 0.094 85.10 3.824 10.49 1.827 3.67 2.249 0.62 0.587 0.13 0.232 74.03 4.612 16.50 1.856 8.89 2.040 0.59 1.637 0.00 0.110
PH 24 100.00 0.094 0.00 0.094 88.52 3.824 7.25 1.827 2.81 2.249 1.02 0.587 0.39 0.232 74.59 4.612 15.18 1.856 7.68 2.040 2.37 1.637 0.19 0.110

P-value 0.2980 0.2980 0.2519 0.2132 0.2040 0.5662 0.6179 0.3837 0.7121 0.2383 0.5123 0.3745
Genetic line (GL)    

X 36 99.86 0.076 0.14 0.076 81.75 3.437 11.13 1.637 5.19 2.058 1.42 0.512 0.51 0.204 63.48 4.164 19.29 1.529 13.57 1.789 3.54 1.448 0.13 0.089
Y 36 99.93 0.076 0.07 0.076 88.41 3.437 7.44 1.637 3.56 2.058 0.59 0.512 0.00 0.204 81.25 4.164 13.35 1.529 5.27 1.789 0.13 1.448 0.00 0.089

P-value 0.5334 0.5334 0.0523 0.0270 0.3714 0.1574 0.0253 <0.0001 0.0067 <0.0001 0.0295 0.3217
Sex    

F 36 99.79 0.076 0.21 0.076 84.27 3.437 9.97 1.637 4.52 2.058 1.08 0.512 0.16 0.204 72.61 4.164 15.49 1.529 10.21 1.789 1.57 1.448 0.13 0.089
M 36 100.00 0.076 0.00 0.076 85.89 3.437 8.60 1.637 4.23 2.058 0.93 0.512 0.35 0.204 72.11 4.164 17.15 1.529 8.64 1.789 2.11 1.448 0.00 0.089

P-value 0.0573 0.0573 0.6307 0.4032 0.8742 0.7934 0.4071 0.9000 0.4351 0.4269 0.7235 0.3217
Experiment (EXP)    

A 24 99.69b 0.094 0.32a 0.094 62.93b 5.195 20.16a 2.463 13.13a 3.198 3.02a 0.733 0.76 0.297 58.84b 6.343 27.77a 1.920 13.39a 2.590 0.00 2.132 0.00 0.110
B 24 100.00a 0.094 0.00b 0.094 95.34a 5.195 4.66b 2.463 0.00b 3.198 0.00b 0.733 0.00 0.297 86.89a 6.343 9.57b 1.920 3.39b 2.590 0.15 2.132 0.00 0.110
C 24 100.00a 0.094 0.00b 0.094 96.96a 5.195 3.04b 2.463 0.00b 3.198 0.00b 0.733 0.00 0.297 71.3ab 6.343 11.62b 1.920 11.48a 2.590 5.36 2.132 0.19 0.110

P-value 0.0292 0.0292 <0.0001 <0.0001 0.0060 0.0059 0.1227 0.0110 <0.0001 0.0200 0.1390 0.3745
TRT GL    

1 X 12 99.58 0.132 0.42 0.132 81.77 4.803 10.51 2.305 5.99 2.745 1.25 0.770 0.48 0.300 56.04 5.749 21.89 2.602 16.96 2.655 5.11 2.104 0.00 0.155
Y 12 100.00 0.132 0.00 0.132 81.45 4.803 9.74 2.305 7.31 2.745 1.50 0.770 0.00 0.300 80.88 5.749 12.68 2.602 6.44 2.655 0.00 2.104 0.00 0.155

2 X 12 100.00 0.132 0.00 0.132 81.70 4.803 12.27 2.305 4.53 2.745 1.24 0.770 0.25 0.300 66.14 5.749 19.54 2.602 13.54 2.655 0.78 2.104 0.00 0.155
Y 12 99.79 0.132 0.21 0.132 88.49 4.803 8.70 2.305 2.81 2.745 0.00 0.770 0.00 0.300 81.93 5.749 13.45 2.602 4.23 2.655 0.40 2.104 0.00 0.155

3 X 12 100.00 0.132 0.00 0.132 81.78 4.803 10.61 2.305 5.07 2.745 1.76 0.770 0.78 0.300 68.24 5.749 16.44 2.602 10.20 2.655 4.74 2.104 0.38 0.155
Y 12 100.00 0.132 0.00 0.132 95.27 4.803 3.89 2.305 0.56 2.745 0.28 0.770 0.00 0.300 80.93 5.749 13.92 2.602 5.15 2.655 0.00 2.104 0.00 0.155

P-value 0.0620 0.0620 0.2520 0.3329 0.4291 0.4164 0.6179 0.4346 0.4367 0.4936 0.3777 0.3745
TRT Sex    

1 F 12 99.58 0.132 0.42 0.132 78.75 4.803 11.33 2.305 7.95 2.745 1.74 0.770 0.24 0.300 67.73 5.749 17.82 2.602 13.62 2.655 0.84 2.104 0.00 0.155
M 12 100.00 0.132 0.00 0.132 84.48 4.803 8.92 2.305 5.34 2.745 1.01 0.770 0.25 0.300 69.20 5.749 16.75 2.602 9.78 2.655 4.28 2.104 0.00 0.155

2 F 12 99.79 0.132 0.21 0.132 88.41 4.803 9.24 2.305 2.36 2.745 0.00 0.770 0.00 0.300 75.51 5.749 16.42 2.602 8.07 2.655 0.00 2.104 0.00 0.155
M 12 100.00 0.132 0.00 0.132 81.79 4.803 11.73 2.305 4.98 2.745 1.24 0.770 0.25 0.300 72.56 5.749 16.57 2.602 9.70 2.655 1.17 2.104 0.00 0.155

3 F 12 100.00 0.132 0.00 0.132 85.65 4.803 9.35 2.305 3.25 2.745 1.50 0.770 0.25 0.300 74.60 5.749 12.23 2.602 8.93 2.655 3.86 2.104 0.38 0.155
M 12 100.00 0.132 0.00 0.132 91.40 4.803 5.15 2.305 2.37 2.745 0.54 0.770 0.54 0.300 74.57 5.749 18.12 2.602 6.43 2.655 0.88 2.104 0.00 0.155

P-value 0.2980 0.2980 0.2305 0.2281 0.4912 0.2374 0.8485 0.8987 0.3608 0.4990 0.2276 0.3745
GL Sex    

X F 18 99.72 0.108 0.28 0.108 81.19 4.176 12.19 1.999 4.98 2.426 1.32 0.654 0.32 0.256 63.32 5.019 17.92 2.134 15.38 2.264 3.13 1.806 0.25 0.126
M 18 100.00 0.108 0.00 0.108 82.31 4.176 10.07 1.999 5.41 2.426 1.51 0.654 0.69 0.256 63.63 5.019 20.66 2.134 11.76 2.264 3.95 1.806 0.00 0.126

Y F 18 99.86 0.108 0.14 0.108 87.35 4.176 7.75 1.999 4.06 2.426 0.84 0.654 0.00 0.256 81.90 5.019 13.06 2.134 5.04 2.264 0.00 1.806 0.00 0.126
M 18 100.00 0.108 0.00 0.108 89.47 4.176 7.13 1.999 3.05 2.426 0.35 0.654 0.00 0.256 80.59 5.019 13.64 2.134 5.51 2.264 0.26 1.806 0.00 0.126

P-value 0.5334 0.5334 0.8836 0.6464 0.6941 0.5573 0.4071 0.8390 0.6085 0.3023 0.8560 0.3217
GL Sex TRT    

X

F
1 6 99.17 0.187 0.83 0.187 77.82 6.322 13.16 3.044 7.02 3.534 1.52 1.044 0.48 0.403 59.44 7.524 21.05 3.663 17.84 3.582 1.67 2.815 0.00 0.219
2 6 100.00 0.187 0.00 0.187 85.72 6.322 7.86 3.044 4.95 3.534 0.98 1.044 0.49 0.403 52.65 7.524 22.72 3.663 16.08 3.582 8.55 2.815 0.00 0.219
3 6 100.00 0.187 0.00 0.187 79.67 6.322 9.49 3.044 8.89 3.534 1.96 1.044 0.00 0.403 76.02 7.524 14.58 3.663 9.40 3.582 0.00 2.815 0.00 0.219

M
1 6 100.00 0.187 0.00 0.187 83.24 6.322 9.99 3.044 5.73 3.534 1.04 1.044 0.00 0.403 85.74 7.524 10.79 3.663 3.47 3.582 0.00 2.815 0.00 0.219
2 6 100.00 0.187 0.00 0.187 87.58 6.322 9.90 3.044 2.53 3.534 0.00 1.044 0.00 0.403 65.31 7.524 20.64 3.663 14.05 3.582 0.00 2.815 0.00 0.219
3 6 100.00 0.187 0.00 0.187 75.83 6.322 14.65 3.044 6.54 3.534 2.48 1.044 0.51 0.403 66.97 7.524 18.45 3.663 13.04 3.582 1.55 2.815 0.00 0.219

Y

F
1 6 99.57 0.187 0.43 0.187 89.24 6.322 8.58 3.044 2.19 3.534 0.00 1.044 0.00 0.403 85.70 7.524 12.21 3.663 2.09 3.582 0.00 2.815 0.00 0.219
2 6 100.00 0.187 0.00 0.187 87.75 6.322 8.82 3.044 3.43 3.534 0.00 1.044 0.00 0.403 78.15 7.524 14.69 3.663 6.37 3.582 0.79 2.815 0.00 0.219
3 6 100.00 0.187 0.00 0.187 78.16 6.322 13.51 3.044 5.39 3.534 2.45 1.044 0.49 0.403 65.22 7.524 12.06 3.663 14.24 3.582 7.73 2.815 0.76 0.219

M
1 6 100.00 0.187 0.00 0.187 85.39 6.322 7.72 3.044 4.74 3.534 1.08 1.044 1.08 0.403 71.27 7.524 20.81 3.663 6.17 3.582 1.76 2.815 0.00 0.219
2 6 100.00 0.187 0.00 0.187 93.14 6.322 5.19 3.044 1.11 3.534 0.56 1.044 0.00 0.403 83.98 7.524 12.40 3.663 3.62 3.582 0.00 2.815 0.00 0.219
3 6 100.00 0.187 0.00 0.187 97.41 6.322 2.59 3.044 0.00 3.534 0.00 1.044 0.00 0.403 77.88 7.524 15.43 3.663 6.69 3.582 0.00 2.815 0.00 0.219

P-value   0.0620 0.0620 0.6213 0.4094 0.9648 0.4995 0.8485 0.2754 0.5204 0.2823 0.2368 0.3745
1Values presented as least squares means (LS). SE: Standard error. BD: Basal diet; PR: BD + probiotic; PH: BD + phytobiotic. F: female; M: male. a–dWithin a column, values without a common superscript differ, P<0.05. X and Y: two
fast growing commercial poultry genetic lines.



Table S9: Litter quality (pH)1.
  N Litter pH 0-35 days N Litter pH day 7 Litter pH day 21 Litter pH day 35

LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)

BD 72 7.27 0.086 24 6.35 0.188 7.53 0.128 7.93 0.130
PR 72 7.15 0.086 24 6.17 0.188 7.55 0.128 7.72 0.130
PH 72 7.22 0.086 24 6.43 0.188 7.45 0.128 7.79 0.130

p-value 0.6039 0.5461 0.8440 0.4271
Genetic line (GL)

X 108 7.13 0.070 36 6.11 0.160 7.44 0.104 7.83 0.112
Y 108 7.30 0.070 36 6.52 0.160 7.57 0.104 7.79 0.112

p-value 0.0896 0.0427 0.3813 0.8098
Sex

F 108 7.18 0.070 36 6.32 0.160 7.44 0.104 7.78 0.112
M 108 7.24 0.070 36 6.31 0.160 7.58 0.104 7.84 0.112

p-value 0.5088 0.9823 0.3479 0.6394
Experiment (EXP)

A 72 6.98b 0.086 24 6.27 0.216 7.38 0.128 7.29c 0.156
B 72 7.34a 0.086 24 6.69 0.216 7.55 0.128 7.79b 0.156
C 72 7.31a 0.086 24 5.98 0.216 7.59 0.128 8.35a 0.156

p-value 0.0059 0.0736 0.4607 <0.0001
TRT GL

BD X 36 7.21 0.122 12 6.29 0.255 7.37 0.180 7.98 0.174
Y 36 7.32 0.122 12 6.40 0.255 7.68 0.180 7.88 0.174

PR X 36 7.00 0.122 12 5.97 0.255 7.47 0.180 7.58 0.174
Y 36 7.29 0.122 12 6.37 0.255 7.63 0.180 7.86 0.174

PH X 36 7.17 0.122 12 6.08 0.255 7.50 0.180 7.93 0.174
Y 36 7.28 0.122 12 6.79 0.255 7.40 0.180 7.65 0.174

P-value 0.7200 0.4685 0.5246 0.2298
TRT Sex

BD F 36 7.33 0.122 12 6.34 0.255 7.72 0.180 7.95 0.174
M 36 7.20 0.122 12 6.36 0.255 7.33 0.180 7.91 0.174

PR F 36 7.10 0.122 12 6.28 0.255 7.38 0.180 7.63 0.174
M 36 7.20 0.122 12 6.06 0.255 7.73 0.180 7.80 0.174

PH F 36 7.11 0.122 12 6.34 0.255 7.22 0.180 7.76 0.174
M 36 7.34 0.122 12 6.53 0.255 7.68 0.180 7.82 0.174

P-value 0.3093 0.6976 0.0468* 0.8095
GL Sex

X F 54 7.12 0.099 18 6.11 0.213 7.43 0.147 7.83 0.146
M 54 7.13 0.099 18 6.11 0.213 7.46 0.147 7.83 0.146

Y F 54 7.24 0.099 18 6.53 0.213 7.45 0.147 7.73 0.146
M 54 7.36 0.099 18 6.52 0.213 7.70 0.147 7.86 0.146

P-value 0.5725 0.9624 0.4383 0.6364
GL Sex TRT

X

F
BD 18 7.40 0.172 6 6.26 0.353 7.91a 0.255 8.03 0.239
PR 18 6.98 0.172 6 6.32 0.353 6.82c 0.255 7.93 0.239
PH 18 6.99 0.172 6 6.41 0.353 7.53abc 0.255 7.87 0.239

M
BD 18 7.02 0.172 6 6.39 0.353 7.84a 0.255 7.89 0.239
PR 18 7.03 0.172 6 6.16 0.353 7.30abc 0.255 7.49 0.239
PH 18 7.35 0.172 6 5.77 0.353 7.64ab 0.255 7.67 0.239

Y

F
BD 18 7.27 0.172 6 6.40 0.353 7.45abc 0.255 7.78 0.239
PR 18 7.21 0.172 6 6.35 0.353 7.82a 0.255 7.94 0.239
PH 18 7.23 0.172 6 5.90 0.353 7.09bc 0.255 7.97 0.239

M
BD 18 7.37 0.172 6 6.25 0.353 7.91a 0.255 7.89 0.239
PR 18 7.37 0.172 6 6.78 0.353 7.36abc 0.255 7.55 0.239
PH 18 7.34 0.172 6 6.81 0.353 7.45abc 0.255 7.75 0.239

P-value 0.3237 0.7948 0.0149 0.8954
Day

7 72 6.32c 0.09
21 72 7.51b 0.09
35 72 7.81a 0.09

P-value <0.0001
TRT Day

BD
7 24 6.35 0.149
21 24 7.53 0.149
35 24 7.93 0.149

PR
7 24 6.17 0.149
21 24 7.55 0.149



35 24 7.72 0.149

PH
7 24 6.43 0.149
21 24 7.45 0.149
35 24 7.79 0.149

P-value 0.7528
GL Day

X
7 36 6.11 0.122
21 36 7.44 0.122
35 36 7.83 0.122

Y
7 36 6.52 0.122
21 36 7.57 0.122
35 36 7.79 0.122

P-value 0.1851
Sex Day

F
7 36 6.32 0.122
21 36 7.44 0.122
35 36 7.78 0.122

M
7 36 6.31 0.122
21 36 7.58 0.122
35 36 7.84 0.122

P-value 0.8399
1Values are presented as least squares means (LSmeans). SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.
X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.
*Analysis of variance reached significance, but the mean comparisons did not reach statistical significance between groups.



Table S10: Meat oxidative stability.
  N TBARS

LSmeans SE
Treatment (TRT)

BD 24 0.06 0.004
PR 24 0.06 0.004
PH 24 0.06 0.004

P-value 0.9670
Genetic line (GL)

X 36 0.06 0.004
Y 36 0.07 0.004

P-value 0.0538
Sex

F 36 0.07 0.004
M 36 0.06 0.004

P-value 0.3732
Experiment (EXP)

A 24 0.05b 0.006
B 24 0.10a 0.006
C 24 0.05b 0.006

P-value <0.0001
TRT GL

BD X 12 0.06 0.006
Y 12 0.07 0.006

PR X 12 0.06 0.006
Y 12 0.07 0.006

PH X 12 0.06 0.006
Y 12 0.07 0.006

P-value 0.3879
TRT Sex

BD F 12 0.06 0.006
M 12 0.06 0.006

PR F 12 0.07 0.006
M 12 0.06 0.006

PH F 12 0.07 0.006
M 12 0.06 0.006

P-value 0.7154
GL Sex

X F 18 0.06 0.005
M 18 0.06 0.005

Y F 18 0.07 0.005
M 18 0.07 0.005

P-value 0.2349
GL Sex TRT

X

F
BD 6 0.05 0.007
PR 6 0.06 0.007
PH 6 0.07 0.007

M
BD 6 0.07 0.007
PR 6 0.07 0.007
PH 6 0.06 0.007

Y

F
BD 6 0.07 0.007
PR 6 0.07 0.007
PH 6 0.07 0.007

M
BD 6 0.05 0.007
PR 6 0.06 0.007
PH 6 0.07 0.007

P-value   0.3027
1Values are presented as least squares means (LSmeans). SE: Standard error.
TBARS: Thiobarbituric acid reactive substances (TBARS units). BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.
X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.



Table S11: Carcass cuts (%)1.
  N Carcass yield % Breast yield % Thigh yield % Abdominal Fat yield %

LSmeans SE LSmeans SE LSmeans SE LSmeans SE
Treatment (TRT)

BD 24 76.6 0.24 19.0 0.12 20.4 0.09 1.5 0.03
PR 24 76.4 0.24 18.9 0.12 20.5 0.09 1.5 0.03
PH 24 76.3 0.24 18.8 0.12 20.4 0.09 1.4 0.03

P-value 0.7134 0.5932 0.5923 0.5720
Genetic line (GL)

X 36 76.7 0.24 19.6a 0.12 20.2b 0.09 1.5a 0.03
Y 36 76.2 0.24 18.2b 0.12 20.7a 0.09 1.4b 0.03

P-value 0.1676 <0.0001 0.0004 0.0066
Sex

F 36 76.7 0.23 19.6a 0.12 20.0b 0.08 1.6a 0.03
M 36 76.2 0.23 18.2b 0.12 20.8a 0.08 1.3b 0.03

P-value 0.1534 <0.0001 <0.0001 <0.0001
Experiment (EXP)

A 36 76.7 0.29 19.6a 0.15 20.2b 0.11 1.5 0.04
B 36 76.1 0.28 19.5a 0.14 20.1b 0.11 1.4 0.04
C 76.6 0.39 17.7b 0.20 21.0a 0.14 1.4 0.05

P-value 0.2266 <0.0001 0.0001 0.3580
TRT GL
BD X 12 77.1 0.35 19.9a 0.18 20.1 0.12 1.5 0.05

Y 12 76.1 0.35 18.1d 0.18 20.8 0.12 1.4 0.05

PR X 12 76.5 0.39 19.3bc 0.20 20.3 0.13 1.5 0.05
Y 12 76.4 0.36 18.5dc 0.19 20.6 0.12 1.4 0.05

PH X 12 76.5 0.36 19.6ab 0.19 20.1 0.12 1.5 0.05
Y 12 76.1 0.38 18.1d 0.20 20.6 0.13 1.3 0.05

P-value 0.3510 0.0218 0.1784 0.7382
TRT Sex
BD F 12 76.7 0.36 19.5 0.19 20.0 0.12 1.6 0.05

M 12 76.5 0.36 18.5 0.19 20.8 0.12 1.3 0.05

PR F 12 76.8 0.35 19.7 0.18 20.0 0.12 1.6 0.05
M 12 76.0 0.37 18.1 0.19 21.0 0.13 1.3 0.05

PH F 12 76.6 0.36 19.5 0.19 20.0 0.13 1.6 0.05
M 12 76.0 0.35 18.2 0.18 20.7 0.12 1.2 0.05

P-value 0.6956 0.2003 0.5371 0.2347
GL Sex
X F 18 77.0 0.28 20.1 0.14 19.9c 0.10 1.6 0.04

M 18 76.4 0.41 19.0 0.22 20.5b 0.14 1.4 0.06

Y F 18 76.4 0.35 19.0 0.18 20.1cb 0.12 1.5 0.05
M 18 76.0 0.28 17.5 0.15 21.2a 0.10 1.2 0.04

P-value 0.7640 0.1776 0.0318 0.5458
GL Sex TRT

X

F
BD 6 77.2 0.47 20.2ab 0.25 19.8 0.16 1.7 0.06
PR 6 76.7 0.47 19.8ab 0.25 19.8 0.16 1.6 0.06
PH 6 77.2 0.47 20.5a 0.25 20.0 0.16 1.7 0.06

M
BD 6 77.1 0.53 19.6bc 0.28 20.4 0.18 1.4 0.07
PR 6 76.3 0.62 18.7de 0.33 20.8 0.21 1.4 0.09
PH 6 75.9 0.55 18.7de 0.29 20.3 0.18 1.3 0.07

Y

F
BD 6 76.2 0.52 18.9cde 0.27 20.3 0.18 1.5 0.07
PR 6 77.0 0.51 19.6bcd 0.27 20.1 0.17 1.6 0.07
PH 6 76.0 0.54 18.6e 0.28 20.0 0.18 1.5 0.07

M
BD 6 75.9 0.47 17.4f 0.25 21.3 0.16 1.3 0.06
PR 6 75.8 0.48 17.4f 0.25 21.1 0.16 1.3 0.07
PH 6 76.2 0.48 17.6f 0.25 21.2 0.16 1.1 0.07

P-value   0.1869 0.0181 0.1813 0.5572
1Values are presented as least squares means (LSmeans). SE: Standard error. BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male.
X and Y correspond to two fast growing commercial poultry genetic lines.
a–dWithin a column, values without a common superscript differ, P < 0.05.



Table S12: Variability of individual body weight of sampled animals.
 

N
Individual BW

Mean SD CV
Genetic line Day

216 194 25.6 13.2
X

7
21 216 995 110.7 11.1
35 216 2280 302.6 13.3

Y
7 216 189 21.5 11.4

21 216 891 119.2 13.4
35 216 2029 322.4 15.9

Experiment Genetic line Day
72 194 27.4 14.2

A

X
7

21 72 996 111.2 11.2
35 72 2403 268.1 11.2

Y
7 72 189 22.7 12.0

21 72 892 124.9 14.0
35 72 2142 228.0 10.7

B

X
7 72 201 24.9 12.4

21 72 1004 115.1 11.5
35 72 2361 285.6 12.1

Y
7 72 195 20.7 10.6

21 72 942 94.2 10.0
35 72 2183 280.5 12.9

C

X
7 72 189 23.3 12.3

21 72 985 106.2 10.8
35 72 2077 245.1 11.8

Y
7 72 182 19.5 10.7

21 72 841 115.6 13.7
35 72 1762 274.0 15.6

Experiment Pen Genetic line Day
6 190 32.1 16.9

A

1 X
7

21 6 1020 72.6 7.1
35 6 2660 186.4 7.0

2 Y
7 6 193 41.2 21.3

21 6 848 116.0 13.7
35 6 2238 148.3 6.6

3 X
7 6 196 31.3 16.0

21 6 994 66.0 6.6
35 6 2227 250.1 11.2

4 X
7 6 190 20.2 10.6

21 6 965 96.4 10.0
35 6 2244 158.2 7.1

5 Y
7 6 183 21.0 11.5

21 6 798 81.9 10.3
35 6 2081 145.2 7.0

6 X
7 6 183 24.7 13.5

21 6 990 159.3 16.1
35 6 2390 172.0 7.2

7 X
7 6 197 25.0 12.7

21 6 1068 98.6 9.2
35 6 2661 265.4 10.0

8 Y
7 6 183 35.0 19.1

21 6 1008 159.2 15.8
35 6 2139 234.3 11.0

9 X
7 6 180 34.5 19.1

21 6 904 93.1 10.3
35 6 2229 249.1 11.2

10 Y
7 6 186 19.4 10.4

21 6 798 104.4 13.1
35 6 2143 144.9 6.8

11 Y
7 6 185 10.8 5.9

21 6 878 131.9 15.0
35 6 2161 229.8 10.6

12 Y
7 6 183 19.4 10.6

21 6 909 124.0 13.6
35 6 2156 333.7 15.5

13 X
7 6 190 22.4 11.8

21 6 1013 97.9 9.7
35 6 2562 368.6 14.4

14 Y
7 6 184 16.8 9.1

21 6 929 110.0 11.8
35 6 2127 214.6 10.1

15 X
7 6 202 28.7 14.2

21 6 1047 75.8 7.2
35 6 2309 111.6 4.8

16 X 7 6 199 20.3 10.2
21 6 1048 157.4 15.0



35 6 2585 289.4 11.2

17 Y
7 6 206 28.2 13.7

21 6 974 165.2 17.0
35 6 2221 290.5 13.1

18 X
7 6 189 35.7 18.9

21 6 961 114.5 11.9
35 6 2234 138.3 6.2

19 Y
7 6 184 19.7 10.7

21 6 856 61.8 7.2
35 6 2025 231.0 11.4

20 X
7 6 198 25.4 12.8

21 6 956 135.1 14.1
35 6 2253 108.7 4.8

21 Y
7 6 193 17.9 9.3

21 6 889 141.5 15.9
35 6 2213 328.2 14.8

22 X
7 6 208 36.4 17.5

21 6 989 114.6 11.6
35 6 2481 246.4 9.9

23 Y
7 6 198 21.8 11.0

21 6 925 90.1 9.7
35 6 2232 224.7 10.1

24 Y
7 6 185 8.8 4.8

21 6 886 92.0 10.4
35 6 1963 137.0 7.0

B

25 X
7 6 197 27.0 13.7

21 6 1010 46.2 4.6
35 6 2162 159.4 7.4

26 Y
7 6 187 16.4 8.7

21 6 924 164.2 17.8
35 6 2296 260.1 11.3

27 X
7 6 190 27.4 14.4

21 6 973 178.1 18.3
35 6 2465 224.8 9.1

28 Y
7 6 187 14.1 7.6

21 6 955 102.4 10.7
35 6 2016 189.4 9.4

29 Y
7 6 178 26.6 15.0

21 6 951 87.2 9.2
35 6 1988 197.4 9.9

30 X
7 6 183 15.4 8.5

21 6 1008 79.4 7.9
35 6 2170 187.5 8.6

31 X
7 6 208 26.5 12.8

21 6 1055 91.2 8.6
35 6 2494 340.8 13.7

32 X
7 6 204 17.1 8.4

21 6 1019 108.7 10.7
35 6 2380 324.4 13.6

33 Y
7 6 196 21.2 10.8

21 6 965 81.1 8.4
35 6 2075 349.6 16.9

34 Y
7 6 190 21.7 11.4

21 6 922 49.6 5.4
35 6 2041 170.0 8.3

35 X
7 6 207 25.4 12.2

21 6 929 70.5 7.6
35 6 2234 227.5 10.2

36 Y
7 6 205 17.3 8.4

21 6 987 125.1 12.7
35 6 2488 263.0 10.6

37 X
7 6 201 34.7 17.3

21 6 1009 102.9 10.2
35 6 2228 236.1 10.6

38 X
7 6 194 26.3 13.6

21 6 1001 34.1 3.4
35 6 2335 164.5 7.0

39 Y
7 6 196 18.1 9.3

21 6 972 65.4 6.7
35 6 2138 112.1 5.3

40 X
7 6 208 31.6 15.2

21 6 953 130.7 13.7
35 6 2511 383.6 15.3

41 X
7 6 201 21.4 10.6

21 6 1033 232.1 22.5
35 6 2554 193.1 7.6

42 Y 7 6 200 20.7 10.4



21 6 896 116.4 13.0
35 6 2370 276.1 11.7

43 Y
7 6 204 24.6 12.0

21 6 968 75.3 7.8
35 6 2288 217.9 9.5

44 Y
7 6 203 11.8 5.8

21 6 964 93.3 9.7
35 6 2432 231.4 9.5

45 Y
7 6 190 19.3 10.1

21 6 903 19.1 2.1
35 6 2023 235.1 11.6

46 Y
7 6 201 29.6 14.8

21 6 895 100.6 11.2
35 6 2039 278.5 13.7

47 X
7 6 200 20.0 10.0

21 6 1034 88.0 8.5
35 6 2157 261.7 12.1

48 X
7 6 216 25.3 11.7

21 6 1023 124.3 12.2
35 6 2643 232.1 8.8

C

49 X
7 6 187 25.8 13.8

21 6 1078 120.6 11.2
35 6 2327 282.2 12.1

50 X
7 6 172 28.4 16.5

21 6 982 112.3 11.4
35 6 2031 80.5 4.0

51 X
7 6 181 15.4 8.5

21 6 973 100.5 10.3
35 6 1993 316.6 15.9

52 Y
7 6 178 15.2 8.5

21 6 873 85.6 9.8
35 6 1647 242.5 14.7

53 X
7 6 183 24.4 13.3

21 6 954 98.4 10.3
35 6 2020 184.6 9.1

54 Y
7 6 170 12.3 7.2

21 6 764 70.2 9.2
35 6 1798 334.3 18.6

55 Y
7 6 180 18.5 10.3

21 6 838 141.2 16.9
35 6 1546 159.3 10.3

56 Y
7 6 179 25.0 14.0

21 6 859 87.1 10.2
35 6 1699 285.5 16.8

57 Y
7 6 177 19.9 11.2

21 6 811 136.7 16.9
35 6 1839 215.9 11.7

58 Y
7 6 184 20.4 11.1

21 6 808 105.0 13.0
35 6 1523 130.4 8.6

59 X
7 6 199 22.2 11.2

21 6 998 98.8 9.9
35 6 1974 105.9 5.4

60 X
7 6 186 22.1 11.9

21 6 983 124.6 12.7
35 6 2097 360.4 17.2

61 X
7 6 184 22.8 12.4

21 6 942 58.7 6.2
35 6 2185 252.1 11.5

62 X
7 6 176 18.5 10.5

21 6 917 81.0 8.8
35 6 1882 133.6 7.1

63 X
7 6 189 12.1 6.4

21 6 934 114.6 12.3
35 6 2157 297.1 13.8

64 Y
7 6 181 24.2 13.4

21 6 797 76.7 9.6
35 6 1653 211.0 12.8

65 X
7 6 211 32.7 15.5

21 6 1087 126.9 11.7
35 6 2017 245.4 12.2

66 Y
7 6 177 18.4 10.4

21 6 838 161.6 19.3
35 6 1855 178.7 9.6

67 Y
7 6 188 7.5 4.0

21 6 871 140.7 16.1
35 6 1960 179.2 9.1

68 X 7 6 191 16.0 8.4



21 6 932 53.9 5.8
35 6 2003 133.1 6.6

69 Y
7 6 195 26.9 13.8

21 6 1004 70.2 7.0
35 6 2077 343.2 16.5

70 Y
7 6 180 9.2 5.1

21 6 846 88.7 10.5
35 6 1759 289.2 16.4

71 X
7 6 207 17.9 8.7

21 6 1044 55.4 5.3
35 6 2239 177.5 7.9

72 Y
7 6 198 25.5 12.9

21 6 779 66.2 8.5
35 6 1792 263.3 14.7

All 1296 1096.4 835.3 76.2
1Values are presented as means. SD: Standard deviation; CV: coefficient of variation. BW: Body weight.
BD: Basal diet; PR: Basal diet + probiotic; PH: Basal diet + phytobiotic. F: female; M: male. X and Y correspond to two fast growing commercial poultry genetic lines.
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