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A B S T R A C T

Emergency Medical Services are essential for health systems as their effective management can improve patient
prognosis. Nevertheless, designing an optimized distribution of resources is a difficult task due to the complex
nature of these systems. Moreover, locating the resources is particularly challenging in heterogeneous density
territories where, in addition to their efficient management, the equity principle in the medical access of
inhabitants of rural areas is also desirable.

This paper approaches the ambulance (re)location–allocation problem in the geographical area of the
Basque Country. The area has three major cities, which account for a third of the emergencies, while there
are few emergencies in rural areas, with a sparse population. To that end, a two-stage stochastic 0-1 integer
linear programming model that balances the response time between densely populated and isolated areas is
proposed. Specifically, the model incorporates two relevant principles: (1) optimizing emergency attendance
through the option of allocating ambulances via a multi-interval response time and (2) equitably responding
to emergencies so remote areas are not neglected. Conducted experiments have been validated and indicate
that the proposed model can improve the success rate in rural areas by 23 percentage points, while reducing
the overall success rate by less than 9 percentage points.
1. Introduction

1.1. Management challenges

Effective management of Emergency Medical Service (EMS) vehi-
cles is crucial for saving people’s lives. The corresponding decision-
making process frequently includes the location of ambulance stations
(strategic phase) and call allocation (operational phase). The main
performance measures in the literature rely on the Response Time (RT),
which (Aboueljinane et al., 2013) defined as the period between the
receipt of a call and the first arrival of a rescue team at the scene.

However, healthcare providers face a trade-off between global be-
havior and the underlying inequities in heterogeneous regions. For
example, concerning the location of ambulances, cities with high pop-
ulation density are usually the preferred sites, to the detriment of rural
areas. Additionally, as regards call allocation, call center operators aim
to provide the fastest possible response to a call while ensuring that
they do not leave areas without assistance. Therefore, a need often
arises for managerial frameworks that incorporate multiple intervals.
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1.2. Literature review

The literature related to the (re)location–allocation problem is ex-
tensive and covers different singularities and points of view: we refer
the interested reader to the healthcare resources location–allocation
models survey works by Bélanger et al. (2019) and Brotcorne et al.
(2003) for extensive reviews. The problem is tackled in many different
ways, but the (re)location–allocation models can be divided into two
main categories: static location models and dynamic relocation models.

Static location models focus on strategic decisions such as selecting
the appropriate location for the stations or deciding on the suitable
number of ambulances in each station. The objective function of these
models varies from one to another: Toregas et al. (1971), for instance,
present the Location Set Covering Model (LSCM). This model minimizes
the number of ambulances required to cover an area. On the contrary,
the model presented by Church and ReVelle (1974), the Maximal
Covering Location Problem (MCLP), maximizes the covered area for
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a given number of facilities. Gendreau (1997) presents the Double
Standard Model (DSM), which ensures a double coverage using two
different time thresholds. All the demand is covered in a particular time
𝑟2, and part of the demand is covered in less time 𝑟1 (𝑟1 < 𝑟2). The
main issue with all the above-mentioned deterministic models is that
they do not consider the moments when the resources are occupied
and consider that they are always available. This issue is avoided in
the following stochastic model. Daskin (1983) presents the Maximum
Expected Covering Location Problem (MEXCLP), which maximizes the
expected coverage by considering the unavailability of resources.

Dynamic relocation models are usually real-time multi-period mod-
els that have to be revised in each period to take into account the
changes in the system that have occurred up to that point. These models
introduce the possibility of the ambulances being relocated every time
a decision has to be made, i.e., every time an emergency call has to
be allocated. One of the first relocation dynamic works is the one
developed by Gendreau et al. (2001), which is tested with actual data
from Montreal, Canada. Schmid (2012) uses dynamic programming to
follow a relocation strategy. The work is also tested with real data,
in that case, with data from Vienna (Austria). Karpova et al. (2023)
develop heuristic algorithms to dynamically relocate ambulances and
improve the prehospital care services. When it comes to approaching
the ambulance (re)location–allocation problem, several research lines
are followed: queuing theory models (Larson, 1974; Takeda et al.,
2007), simulations (Bell & Allen, 1969 and a survey by Aboueljinane
et al., 2013) and mathematical optimization (Aringhieri et al., 2017).

Undoubtedly, EMS inherently contains several sources of uncer-
tainty, such as where and when the following emergency will occur,
how long a busy ambulance will be occupied, or the urgency level of
the emergency. Therefore, stochastic programming is a useful frame-
work that deals with real-world variability and uncertainty. Stochastic
modeling allows us to consider several scenarios, representing the
disparity of the situations that can occur. Better decisions can im-
prove the current emergency system by considering all these scenarios
and giving them their importance. The stochastic programming model
presented by Beraldi et al. (2004) aims to solve dimensioning and
location problems using probabilistic constraints. Two-stage models
have been used to deal with the stochasticity of the problem: Naoum-
Sawaya and Elhedhli (2013) present a stochastic model for relocat-
ing ambulances. Noyan (2010) presents a two-stage stochastic model
with stochastic demand. Nickel et al. (2016) also deal with stochastic
demand and present a two-stage stochastic programming model to
optimize the location and number of ambulances and their stations.
More recently, Yoon et al. (2021) present a two-stage stochastic model
with two types of ambulances, and Wang et al. (2022) formulate a
two-stage stochastic programming model incorporating uncertainty in
emergency demand and traffic congestion.

Additionally, the characteristics of the area where the problem is
addressed greatly influence the optimization approaches. The terrain
of the area (Humphreys et al., 2012; Swan et al., 2008), the number
of ambulance stations (McLay & Mayorga, 2010) and, particularly,
the heterogeneity population density across the country (Leknes et al.,
2017) are critical when designing efficient models. Emergency calls
are generally concentrated in densely populated areas, while there
are far fewer calls in isolated areas per year (Leknes et al., 2017).
Accordingly, when optimizing any resource allocation by minimizing
the general response time, proposed models tend to ignore the calls
in isolated areas and focus their attention on cities and their sub-
urbs (Bélanger et al., 2016). In fact, optimizing ambulance allocation
in areas with different population densities has been a recurrent topic
in this research field (Erkut et al., 2008; Jagtenberg & Mason, 2020)
as ethical issues arise related to the equity of the access of inhabitants
in isolated areas to the medical emergency services. In this context,
some studies seek to solve the allocation problem by enabling equity
decisions (Chanta et al., 2014; Smith et al., 2013). To that end, the
2

term rurality is proposed to characterize the areas according to their
population density: those that are densely populated, also known as
urban, and those weakly populated, referred to as rural. Intermediate
terms such as suburban (Clement et al., 2018) or subcategories such as
rural-peripheral and rural-accessible (Jonard et al., 2007) are sometimes
used as well. However, there is no agreement in the literature on the
definition of rurality. Most research defines it as a characteristic related
to geography: Humphreys et al. (2012) and Swan et al. (2008) propose
using indicators such as population density or distance to the nearest
resources to measure rurality. Conversely, Phillimore and Reading
(1992) define rurality as a set of community characteristics, such as
being a commuter, industrial, or agricultural village. Rousseau (1995)
and, recently Kaneko et al. (2021) propose a wide range of definitions
of rurality. As Karsu and Morton (2015) state, there are three main
approaches to looking for more equitable solutions: (1) methods based
on the maximin principle by Rawls (1971), which optimize the worst-
off outcome of a rural area, (2) incorporating inequity indexes directly
in the model (for instance, Gutjahr and Fischer (2018) use the Gini
coefficient and McLay and Mayorga (2013) use the range between
the minimum and maximum outcomes) and (3) using inequity-averse
aggregation functions which not only focus on equity but also try to
obtain the most efficient solution (Marín et al., 2010). Recently, Xiny-
ing Chen and Hooker (2023) provided a study about incorporating
inequity measures to mathematical optimization models. In addition,
it also includes a compilation of formulations made in previous studies
and several references to the literature covering these aspects from an
ethical perspective (Lamont & Favor, 2017).

Equity between rural–urban areas is only one of many difficul-
ties when addressing the (re)location–allocation problem. As discussed
above, minimizing emergency RT is essential, but it is challenging to
model the different responses when allocating ambulances to emergen-
cies. In this sense, the model developed by Schmid (2012) minimizes
the average RT of all emergencies. Jagtenberg et al. (2015) and Naoum-
Sawaya and Elhedhli (2013), on the contrary, take a response time
threshold into account, surpassing which implies a failure to respond to
an emergency successfully. Hence, Naoum-Sawaya and Elhedhli (2013)
divide the emergency responses into two groups, those under the target
time and those over it, which are unacceptable. Nevertheless, this
dichotomous division means that attending an emergency in a remote
location is impossible when it cannot be reached by any available
ambulance. Consequently, different time response thresholds may be
added, with greater importance given to lower RT-intervals.

1.3. Contributions and limitations

In this paper, we approach the optimal (re)location–allocation of
the ambulances of the Basque Public EMS system. To that end, we
present a two-stage stochastic 0–1 integer linear programming model.
Locating the ambulances to stations is optimized in the first-stage, and
resources are allocated to emergencies in the second. The changes to
the ambulance fleet can be carried out in two different ways. The first,
which we refer to as relocation, is by changing the location of current
resources. The second possible change is to add new ambulances to
the fleet; we use the location term for this case. Unlike the Maximum
Covering Model, our model formulation enables tracking the workload
carried out by all ambulances: when are where they were allocated.
From a management point of view, this is very useful because decision-
makers could analyze the occupancy rate of each ambulance and its
performance.

We designed the model to deal with the intrinsic characteristics of
the Basque Country: three major urban areas which account for a third
of the emergencies, along with isolated areas with a sparse population
in steep terrain. In particular, the proposed model introduces a new
definition of rurality that classifies each municipality of the region
according to the number of calls received in its catchment area. This
new definition, together with adding a regional equity component to

the model, means areas of the Basque Country are not left unattended.



Expert Systems With Applications 249 (2024) 123665I. Gago-Carro et al.

w

Moreover, we introduce a multi-interval response time to the model,
enabling faster response time. We use actual data from the Basque
Public EMS system to implement the model. We look for a balance
between equity and efficiency using an inequity-averse weighted sum
function as the objective function. By varying the weights of this
function, we compare several variants of the model, ranging from the
most efficient to the most equitable one. A sequence of results is also
presented and discussed.

Moreover, as the number of resources that can be added to the
fleet is limited due to its high cost, the model settles for several
prefixed maximum numbers of changes that can be made to compare
the obtained results. As the terrain of the Basque Country is not regular
(there are urban, mountainous, and coastal areas), and the habits of its
inhabitants vary throughout the year, the distribution of emergencies
differs between hours of the day, days of the week, and months of
the year. Experiments are conducted for various randomly chosen sets
of days and for the day time interval with more activity. The results
are validated for the whole year under two different scopes. All the
work presented in this paper has been discussed with the decision-
makers of the Basque Public EMS system. Together with their previous
experiences and knowledge, it can be a valuable tool to improve the
current situation of the EMS.

Regarding the limitations, the models proposed in this article suffer
from some drawbacks: (a) since the available data only includes the mu-
nicipality where emergencies occur, we assumed that all emergencies
take place at the center of each municipality. While this assumption
may have a negligible impact on small municipalities, it could de-
viate more from reality in larger municipalities where the distances
are greater; (b) we have considered deterministic average response
times based on data from Google Developers (2020); (c) although the
proposed models are designed to be generic, the results obtained are
specific to the Basque Country and, therefore, a priori not extrapolable
to other regions. In addition, it is worth mentioning the irregular
orography of the Basque Country, which has urban and rural areas and
mountain and coastal areas.

The rest of the paper is organized as follows: the socio-geographical
context of the Basque Country is explained in Section 2. Section 3
provides the problem modeling, the (re)Location–Allocation Baseline
(LAB) model and the Equitably Multi-Interval (re)Location–Allocation
(EMILA) model. The inputs and calibration of the models, together with
the computational experiments for performance assessment and their
validation, are considered in Section 4. Finally, the conclusions and
future research lines are discussed in Section 5.

2. Case study: Ambulance (re)Location–Allocation problem for the
basque public EMS system

The case study conducted to develop the models presented in this
paper is set in the Basque Country, a region of 7234 km2 in the north
of Spain. This region is divided into three provinces (Araba, Bizkaia,
and Gipuzkoa), which, in turn, are divided into 251 municipalities. The
population density in each of these municipalities is heterogeneous (see
Fig. 1(a)): while there are some cities where the population density
exceeds 5000 inhabitants per km2, there are also rural municipalities

ith less than ten inhabitants per km2. As expected, the number of
emergencies depends, to a large extent, on the population of each
municipality.

The Basque Public EMS system is responsible for providing the
required response to all emergency calls received. To that end, the
organization has a call center that manages the responses by assigning
the appropriate ambulance to each call. Nowadays, the Basque Public
EMS system has a fleet of 88 ambulances distributed in 80 base stations.
This fleet can be divided into two groups: 11 Advanced Life Support
(ALS) ambulances, with a doctor onboard and which take care of the
most serious emergencies, and 77 Basic Life Support (BLS) ambulances,
3

which are usually assigned to medium-low urgency emergencies and,
occasionally, are equipped with a nursing technician. Due to the limited
number of ALS and their importance, the scope of the research focuses
on optimizing the ALS fleet’s location and service.

According to the Basque Public EMS Contract Program (Emer-
gentziak Osakidetza, 2019), an emergency is considered to be re-
sponded to in time if an ambulance arrives within 15 min. Moreover,
the Basque Public EMS system considers that the success rate (the
percentage of emergencies reached in time) should be over 75%. Not
all emergencies are taken into consideration to measure these success
rates. False alarms and special operations (for example, previously
scheduled interhospital transfers) are not included in the success rate
measures. We conducted a data analysis of the response times for all the
emergencies in this region in 2019. This analysis shows that the success
rate varies depending on the area of the Basque Country. Table 1
shows that while more dense areas (>5000 inhabitants/km2) had 3953
calls and 3613 full-service calls (those emergency calls considered to
measure the goodness of the system) and a success rate of 90.3%,
there were hardly any emergencies in low-density areas (36 emergency
calls and 30 full-service calls) and the success rate plummeted to
36.7%. These differences are maintained if we only focus on the time
slot between 9:00 and 17:00, the times of the day with the highest
emergency per hour rate. Because of such differences, we classify the
Basque Country’s municipalities according to a call index defined as
the number of emergencies in 2019 that an ambulance located in a
municipality could have been able to handle in the Threshold Time
(TT) (see Fig. 1(b)). In this way, municipalities with a high call index
are those where many emergencies occur and which are usually large
cities or towns. Conversely, a municipality with a low call index implies
that there will not be many emergencies in that municipality or nearby
ones. In essence, the lower the call index is, the higher its rurality is,
and vice versa.

3. Problem modeling

This section presents two two-stage stochastic 0–1 integer linear
programming models to approach the optimal (re)location for the am-
bulances and the suitable allocations of ambulances to emergencies. We
will represent uncertainty by random variables defined on a probability
space (𝛺, , 𝑃 ), where 𝛺 is a discrete finite set of all possible outcomes
(random parameter values related to geographical and time issues of
the emergencies), equipped with the 𝜎-algebra  of all its subsets and
𝑃 ∶  → [0, 1] a probability measure.

In two-stage problems, two types of decisions are usually repre-
sented in the models with variables. The values of first-stage variables
are chosen before the uncertainty of the problem is resolved. Once the
randomness of the problem is revealed and conditioned by the solution
of the first-stage variables, second-stage decisions have to be made. In
the problem we face, the first-stage decisions are tactical and consist
of (re)locating ambulances to stations. Then, the randomness of the
problem, which consists of the location, time, and type of emergency,
is revealed, and second-stage decisions have to be made. These oper-
ational decisions determine how the emergency calls are responded
to, allocating the most appropriate ambulance to each call in each
scenario. Both stages are solved simultaneously, and the (re)locations
are made considering the emergencies in all the randomly sampled
scenarios. Section 3.1 presents a single-objective two-interval variant of
the model. In Section 3.2, a regional equity component and the option
of dividing the response time in a weighted hierarchy are added to the
model, obtaining a bi-objective multi-interval (re)location–allocation
model.

3.1. (re)Location–Allocation Baseline (LAB) model

The LAB model presented in this section is inspired by the model
presented by Naoum-Sawaya and Elhedhli (2013). Although there are
some similarities, such as the definition of variables of the first-stage,
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Fig. 1. Population density (a) and call index (b) of the Basque Country by municipality: a low number in the call index (which indicates the number of emergencies that occurred
within 15 min of the municipality during 2019) represents a rural area, while most urban municipalities have a high number.
Table 1
Total number of emergencies, full-service emergencies, success rate, and emergencies per hour during 2019 by density area and time slot.

Density group Number of 0:00–24:00 9:00–17:00

(inhab./km2) municipalities Number of emergencies Success rate Emergencies per Number of emergencies Success rate Emergencies per

Tot. Full-serv. (%) hour Tot. Full-serv. (%) hour

0–10 13 36 30 53.3 0.00 11 9 66.7 0.00
10–50 79 298 229 56.8 0.03 148 113 58.4 0.05
50–100 41 406 369 59.9 0.05 189 161 57.8 0.06
100–500 67 1,960 1,680 70.9 0.22 879 743 71.6 0.30
500–1000 26 4,158 3,869 84.1 0.47 1822 1676 85.0 0.62
1000–5000 19 4,443 3,991 90.6 0.51 2006 1784 90.6 0.69
>5000 6 3,953 3,613 94.2 0.45 1707 1541 94.6 0.58

Total 251 15,254 13,781 85.8 1.74 6762 6027 86.2 2.32
𝑎

𝑎

the model is generalized, adding new relevant contributions: we in-
troduce a new RT-interval to make the model closer to reality as
we add the opportunity to respond to emergencies either successfully
(faster than the TT) or unsuccessfully (within a second time threshold
TT′). Another significant change is the classification of the call types
to interact differently with each of them, giving them the priority
they deserve. Moreover, a limitation to the number of (re)locations
is added to measure the effect of increasing the number of changes
allowed. Additionally, the model can also be used to find the optimal
location of new ambulances, changing from relocation–allocation to
location–allocation by adapting the set of available resources. A final
contribution to the model concerns the objective function where, unlike
the design of Naoum-Sawaya and Elhedhli (2013), we maximize the
number of successfully answered calls in this paper.

Let us define the sets, parameters, and variables of the model:

Sets:

𝐼 , set of resources, 𝑖 ∈ 𝐼 , where 𝐼0 is the initial vehicle fleet, and 𝐼1
is the set of resources that can be added to the fleet, 𝐼 = 𝐼0 ∪ 𝐼1.

𝐽 , set of potential stations, 𝑗 ∈ 𝐽 .
𝛺, set of scenarios (days of the year), 𝜔 ∈ 𝛺.
𝐸𝜔, set of emergency calls in scenario 𝜔, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔. Where 𝐸∗

𝜔 is
the subset of full-service calls, i.e., those calls that are taken into
consideration to measure the goodness of the system, 𝐸∗

𝜔 ⊂ 𝐸𝜔.

Parameters:

𝑛′, number of emergency calls, where 𝑛′𝜔 is the number of calls in
scenario 𝜔, ∑𝜔∈𝛺 𝑛′𝜔 = 𝑛′.

𝑛, number of full-service calls, where 𝑛𝜔 is the number of full-service
calls in scenario 𝜔, ∑𝜔∈𝛺 𝑛𝜔 = 𝑛.

𝛿𝑖𝑗 , 1 if assigning location 𝑗 to ambulance 𝑖 involves a (re)location; 0
otherwise, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 .

𝑐 , capacity of station 𝑗, 𝑗 ∈ 𝐽 .
4

𝑗

𝛽, rate of calls that must be attended, 𝛽 ∈ (0, 1].
𝜋, rate of full-service calls that must be attended within the TT,

𝜋 ∈ (0, 1].
𝑘, number of changes in the system allowed.

Stochastic parameters:

𝑢𝑒𝜔, time an ambulance that is attending emergency 𝑒 of scenario 𝜔 in
less than TT will be unavailable to attend a new call, 𝜔 ∈ 𝛺, 𝑒 ∈
𝐸𝜔. Let us define 𝑈𝑒𝜔 as the set of these emergencies.

𝑢′𝑒𝜔, time that an ambulance that is attending emergency 𝑒 of scenario
𝜔 between TT and TT′ will be unavailable to attend a new call,
𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔. Let us define 𝑈 ′

𝑒𝜔 as the set of these emergency
calls.

𝑗𝑒𝜔, 1 if call 𝑒 of scenario 𝜔 is reachable from station 𝑗 in less than
TT; 0 otherwise, 𝑗 ∈ 𝐽 , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔.

′
𝑗𝑒𝜔, 1 if call 𝑒 of scenario 𝜔 is reachable from station 𝑗 in over TT, but

less than TT′; 0 otherwise, 𝑗 ∈ 𝐽 , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔.
𝜀𝑖𝑒𝜔, 1 if ambulance 𝑖 is operational for attending emergency call 𝑒 of

scenario 𝜔; 0 otherwise, 𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔.
𝑝𝜔, likelihood for each scenario 𝜔 ∈ 𝛺, ∑𝜔∈𝛺 𝑝𝜔 = 1.

Variables:

𝑦𝑖𝑗 , 1 if ambulance 𝑖 is assigned to location 𝑗; 0 otherwise, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 .
𝑥𝑖𝑒𝜔, 1 if ambulance 𝑖 attends emergency 𝑒 of scenario 𝜔 and it arrives

in less than TT; 0 otherwise, 𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔.
𝑥′𝑖𝑒𝜔, 1 if ambulance 𝑖 attends emergency 𝑒 of scenario 𝜔 and it arrives

between TT and TT′; 0 otherwise, 𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔. As
an example, ambulances that are only operational during the
summer months cannot be used during the rest of the year

𝑧𝜔, success rate in scenario 𝜔, defined as the percentage of full-service
calls responded to in less than TT, 𝜔 ∈ 𝛺.

We consider the following assumptions:
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1. Emergency responses are classified into three groups: responses
to emergencies in no more than the demanded TT or between
TT and TT′ and a third group of non-attended emergencies. We
consider that no emergency can be responded to over TT′, so
the model does not contemplate assigning an ambulance to an
emergency that is too far away.

2. The ambulances are allocated to the calls instantly. Conse-
quently, the model does not allow delayed allocations.

Let us define 𝑍 = {𝑧𝜔}𝜔∈𝛺 as a discrete random variable over the
set of scenarios 𝛺, representing the success rate. It takes the value 𝑧𝜔

ith likelihood 𝑝𝜔 for each scenario 𝜔, where

𝜔 = 𝑃 (𝑍 = 𝑧𝜔) =
𝑛𝜔
𝑛

and 𝑧𝜔 = 1
𝑛𝜔

∑

𝑖∈𝐼

∑

𝑒∈𝐸𝜔

𝑥𝑖𝑒𝜔 (1)

The LAB model is defined as a two-stage stochastic 0–1 integer
linear programming model as follows:

max E𝛺 [𝑍] (2a)

𝑠.𝑡.
∑

𝑗∈𝐽
𝑦𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐼 (2b)

∑

𝑖∈𝐼
𝑦𝑖𝑗 ≤ 𝑐𝑗 ∀𝑗 ∈ 𝐽 (2c)

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝛿𝑖𝑗 ⋅ 𝑦𝑖𝑗 ≤ 𝑘 (2d)

𝑥𝑖𝑒𝜔 −
∑

𝑗∈𝐽
𝑎𝑗𝑒𝜔 ⋅ 𝑦𝑖𝑗 ≤ 0 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (2e)

𝑥′𝑖𝑒𝜔 −
∑

𝑗∈𝐽
𝑎′𝑗𝑒𝜔 ⋅ 𝑦𝑖𝑗 ≤ 0 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (2f)

𝑥𝑖𝑒𝜔 + 𝑥𝑖𝑒′𝜔 + 𝑥′𝑖𝑒′𝜔 ≤ 1 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔, 𝑒′ ∈ 𝑈𝑒𝜔 (2g)

𝑥′𝑖𝑒𝜔 + 𝑥𝑖𝑒′𝜔 + 𝑥′𝑖𝑒′𝜔 ≤ 1 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔, 𝑒′ ∈ 𝑈 ′
𝑒𝜔 (2h)

∑

𝑖∈𝐼
(𝑥𝑖𝑒𝜔 + 𝑥′𝑖𝑒𝜔) ≤ 1 ∀𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (2i)

∑

𝑖∈𝐼

∑

𝜔∈𝛺

∑

𝑒∈𝐸𝜔

(𝑥𝑖𝑒𝜔 + 𝑥′𝑖𝑒𝜔) ≥ 𝛽 ⋅ 𝑛′ (2j)

E𝛺 [𝑍] ≥ 𝜋 (2k)

𝑥𝑖𝑒𝜔 + 𝑥′𝑖𝑒𝜔 ≤ 𝜀𝑖𝑒𝜔 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (2l)

𝑦𝑖𝑗 , 𝑥𝑖𝑒𝜔, 𝑥′𝑖𝑒𝜔 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (2m)

The objective function (2a) maximizes the expected global success
rate over the set of scenarios. The expression of the objective function
is equivalent to (3).

E𝛺 [𝑍] =
∑

𝜔∈𝛺
𝑝𝜔 ⋅ 𝑧𝜔 = 1

𝑛
∑

𝜔∈𝛺

∑

𝑖∈𝐼

∑

𝑒∈𝐸∗
𝜔

𝑥𝑖𝑒𝜔 (3)

Constraints (2b) ensure that ambulances always return to their
tation. Constraints (2c) prevent a station from allocating more am-
ulances than its capacity. Constraint (2d) restricts the number of
hanges (either relocations or locations) in the system. Constraints (2e)
tate that if ambulance 𝑖 attends emergency 𝑒 of scenario 𝜔 in less
han TT, then 𝑒 is reachable in TT from the station of the ambulance.
imilarly, constraints (2f) state that if ambulance 𝑖 attends emergency
of scenario 𝜔 between TT and TT′, then emergency 𝑒 is reachable

n that time from the station of the ambulance. Constraints (2g) and
2h) ensure that if ambulance 𝑖 is attending emergency 𝑒 of scenario
𝜔, then that ambulance will be unavailable for the following 𝑢𝑒𝜔 (or
𝑢′𝑒𝜔) seconds, a period of time that depends on the type of emergency.
Constraints (2i) hold that at most one ambulance can be allocated to
emergency call 𝑒 of each scenario 𝜔. Constraint (2j) forces that at least
𝛽 ⋅100% of calls must be handled. Similarly, constraint (2k) forces that at
least 𝜋 ⋅ 100% of full-service calls taken into consideration to measure
the goodness of the system must be handled in time. This constraint
forces that a minimum level of compliance must be fulfilled. Constraints
(2l) prevent a non-operational ambulance from being assigned to an
5

emergency. Finally, the integrality conditions for the binary variables
are given in the constraints (2m).

3.2 Equitable Multi-Interval (re)Location–Allocation (EMILA) model

As set out above, the LAB model (2) maximizes the percentage of
emergencies attended in time. However, when the response to an emer-
gency exceeds the TT, the model has no preferences in the response
time: it can indistinctly allocate a resource that is TT + 1 away or
one that is TT′ away to the emergency. For example, in the study
case of the Basque Country, the allocation of an ambulance that is
16 min away from the emergency has the same impact on the objective
function as one that is 45 min away. We improve the model by defining
a new set of RT-intervals to prioritize sooner responded emergencies.
Moreover, as previously mentioned in Section 2, the studied region is
divided into different population densities and emergency call activity
areas. The success rate in those areas varies according to the population
density, and remarkable differences exist. We incorporate a regional
equity component into the model, which induces conflicting criteria
for optimization, to reduce the differences in the success rate. On the
one hand, the aim is to respond to the maximum possible number of
emergencies in time. On the other hand, equity in terms of regions is
sought. Thus, the model is updated by adding the following new sets,
parameters, and variables to balance the two criteria.

Sets:

, set of RT-intervals bounded by their corresponding thresholds,
𝓁 ∈ .

𝑅, set of regions, 𝑟 ∈ 𝑅.
𝐸𝜔𝑟, subset of emergency calls originated in region 𝑟, 𝑟 ∈ 𝑅,𝜔 ∈ 𝛺.

Parameters:

𝜇𝓁 , the priority of attending calls in RT-interval 𝓁 ∈ , such as
𝜇𝓁1 ≥ 𝜇𝓁2 ≥ ⋯ ≥ 𝜇𝓁

|| ≥ 0.
𝑛𝑟, number of full-service calls in region 𝑟, 𝑟 ∈ 𝑅, where ∑

𝑟∈𝑅 𝑛𝑟 = 𝑛.
𝑚, number of full-service calls of the region with the most full-service

calls: 𝑚 = max𝑟∈𝑅 𝑛𝑟.
𝛼, inequity-aversion parameter, 𝛼 ∈ [0, 1].

Stochastic parameters:

𝑢𝓁𝑒𝜔, time an ambulance attending emergency 𝑒 of scenario 𝜔 in RT-
interval 𝓁 will be occupied and, therefore, unavailable to attend
a new call, 𝓁 ∈ , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔.

𝓁
𝑗𝑒𝜔, 1 the emergency call 𝑒 of scenario 𝜔 is reachable from station 𝑗

in RT-interval 𝓁; 0 otherwise, 𝑗 ∈ 𝐽 , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔,𝓁 ∈ .
𝑝𝑟𝜔, likelihood for each scenario 𝜔 ∈ 𝛺 when referring to the region

𝑟, ∑𝜔∈𝛺 𝑝𝑟𝜔 = 1, 𝑟 ∈ 𝑅.

Variables:

𝑥𝓁𝑖𝑒𝜔, 1 if ambulance 𝑖 attends emergency call 𝑒 of scenario 𝜔 and it
arrives in RT-interval 𝓁 time; 0 otherwise, 𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈
𝐸𝜔,𝓁 ∈ .

𝑧𝓁𝜔, percentage of full-service calls responded to in the RT-interval 𝓁,
𝜔 ∈ 𝛺, 𝓁 ∈ .

𝑧𝓁,𝑟𝜔 , percentage of full-service calls of the region 𝑟 responded to in the
RT-interval 𝓁, 𝜔 ∈ 𝛺, 𝓁 ∈ , 𝑟 ∈ 𝑅.

Assumptions:

1. Attended emergencies are classified into || intervals. The first
interval (𝓁1) consists of response times not exceeding threshold
TT. The LAB model can be recovered when || = 2.

2. 𝛼 is a parameter whose value must be chosen by the decision-
makers and which is used to balance the relevance of efficiency

and equity components in the model. When 𝛼 = 0, efficiency
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is maximized. On the contrary, when 𝛼 = 1, the model gives
the same importance to success rates of all regions, and regional
equity will be sought. Intermediate values of 𝛼 balance both
objectives.

Now, for each RT-interval 𝓁 ∈ , let us define 𝑍𝓁 as a discrete
andom variable over the set of scenarios 𝛺 that measures the percent-
ge of full-service calls responded to in the RT-interval 𝓁. The variable
𝓁 takes the value 𝑧𝓁𝜔 with likelihood 𝑝𝜔, see (4). In addition, for each
∈  and 𝑟 ∈ 𝑅, let us define 𝑍𝓁,𝑟 as a discrete random variable over

he set of scenarios 𝛺 that measures the percentage of full-service calls
ccurred in region 𝑟 that are responded to in the RT-interval 𝓁. It takes
he value 𝑧𝓁,𝑟𝜔 with likelihood 𝑝𝑟𝜔, see (5):

𝑝𝜔 = 𝑃 (𝑍𝓁 = 𝑧𝓁𝜔) =
𝑛𝜔
𝑛

where 𝑧𝓁𝜔 = 1
𝑛𝜔

∑

𝑖∈𝐼

∑

𝑒∈𝐸∗
𝜔

𝑥𝓁𝑖𝑒𝜔 (4)

𝑟
𝜔 = 𝑃 (𝑍𝓁 = 𝑧𝓁𝜔 ∣ 𝑅 = 𝑟) =

𝑛𝑟𝜔
𝑛𝑟

and 𝑧𝓁,𝑟𝜔 = 1
𝑛𝑟𝜔

∑

𝑖∈𝐼

∑

𝑒∈𝐸∗
𝜔𝑟

𝑥𝓁𝑖𝑒𝜔 (5)

The EMILA model is defined as a two-stage stochastic 0–1 integer
inear programming model as follows:

max (1 − 𝛼) ⋅ 𝐸𝐹 + 𝛼 ⋅ 𝐸𝑄 (6a)

𝑠.𝑡.
∑

𝑗∈𝐽
𝑦𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐼 (6b)

∑

𝑖∈𝐼
𝑦𝑖𝑗 ≤ 𝑐𝑗 ∀𝑗 ∈ 𝐽 (6c)

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝛿𝑖𝑗 ⋅ 𝑦𝑖𝑗 ≤ 𝑘 (6d)

𝑥𝓁𝑖𝑒𝜔 −
∑

𝑗∈𝐽
𝑎𝓁𝑗𝑒𝜔 ⋅ 𝑦𝑖𝑗 ≤ 0 ∀𝑖 ∈ 𝐼, 𝓁 ∈ , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (6e)

𝑥𝓁𝑖𝑒𝜔 +
∑

𝓁∗∈
𝑥𝓁∗

𝑖𝑒′𝜔 ≤ 1 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝓁 ∈ , 𝑒 ∈ 𝐸𝜔, 𝑒′ ∈ 𝑈𝓁
𝑒𝜔 (6f)

∑

𝑖∈𝐼

∑

𝓁∈
𝑥𝓁𝑖𝑒𝜔 ≤ 1 ∀𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (6g)

∑

𝑖∈𝐼

∑

𝜔∈𝛺

∑

𝑒∈𝐸𝜔

∑

𝓁∈
𝑥𝓁𝑖𝑒𝜔 ≥ 𝛽 ⋅ 𝑛′ (6h)

E𝛺
[

𝑍𝓁1
]

≥ 𝜋 (6i)
∑

𝓁∈
𝑥𝓁𝑖𝑒𝜔 ≤ 𝜀𝑖𝑒𝜔 ∀𝑖 ∈ 𝐼, 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (6j)

𝑦𝑖𝑗 , 𝑥𝓁𝑖𝑒𝜔 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝓁 ∈ , 𝑗 ∈ 𝐽 , 𝜔 ∈ 𝛺, 𝑒 ∈ 𝐸𝜔 (6k)

The objective function (6a) is a linear combination of the two cri-
teria to be maximized (Ehrgott, 2005): the efficiency component (𝐸𝐹 )
and the equity component (𝐸𝑄). The efficiency component maximizes
the expected value over the scenario set of the weighted success rate
(it is detailed in (7a) and equivalently, in (7b)). On the contrary, the
equity component maximizes the conditional expected value over the
scenario set of the regional weighted success rate (7c). By using the
non-decreasing weight parameter 𝜇𝓁 over the set of RT-intervals, both
components give more importance to emergencies responded to in less
time. By using the 𝑛𝑟

𝑛 versus the 𝑚
𝑛 ratio coefficients, the 𝐸𝐹 component

prioritizes the number of answered calls, while the 𝐸𝑄 component
gives the same weight to all the regions.

𝐸𝐹 =
∑

𝓁∈
𝜇𝓁 ⋅ E𝛺

[

𝑍𝓁] =
∑

𝓁∈
𝜇𝓁 ⋅

(

∑

𝜔∈𝛺
𝑝𝜔 ⋅ 𝑧𝓁𝜔

)

(7a)

=
∑

𝓁∈
𝜇𝓁

∑

𝑟∈𝑅

𝑛𝑟

𝑛
⋅ E𝛺

[

𝑍𝓁|
|

|

𝑅 = 𝑟
]

= 1
𝑛
∑

𝜔∈𝛺

∑

𝓁∈

∑

𝑟∈𝑅

∑

𝑖∈𝐼

∑

𝑒∈𝐸∗
𝜔𝑟

𝜇𝓁 ⋅ 𝑥𝓁𝑖𝑒𝜔

(7b)

𝐸𝑄 =
∑

𝓁∈
𝜇𝓁

∑

𝑟∈𝑅

𝑚
𝑛
⋅ E𝛺

[

𝑍𝓁|
|

|

𝑅 = 𝑟
]

= 1
𝑛
∑ ∑ ∑ 𝑚

𝑛𝑟

⎛

⎜

⎜

∑ ∑

∗
𝜇𝓁 ⋅ 𝑥𝓁𝑖𝑒𝜔

⎞

⎟

⎟

(7c)
6

𝜔∈𝛺 𝓁∈ 𝑟∈𝑅
⎝

𝑖∈𝐼 𝑒∈𝐸𝜔𝑟 ⎠
Table 2
Summary of the proposed model variants.
Model name Model variant 𝛼 || 𝜇 = (𝜇𝓁1 , 𝜇𝓁2 ,… , 𝜇𝓁

|| ) Reference

LAB Baseline – 2 𝜇 = (1, 0) (2)
EMILA Efficiency 𝛼 = 0 >2 𝜇𝓁1 ≥ 𝜇𝓁2 ≥ ⋯ ≥ 𝜇𝓁

|| (6)
Balanced 𝛼 ∈ (0, 1) >2 𝜇𝓁1 ≥ 𝜇𝓁2 ≥ ⋯ ≥ 𝜇𝓁

|| (6)
Equity 𝛼 = 1 >2 𝜇𝓁1 ≥ 𝜇𝓁2 ≥ ⋯ ≥ 𝜇𝓁

|| (6)

where E𝛺

[

𝑍𝓁|
|

|

𝑅 = 𝑟
]

=
∑

𝜔∈𝛺
𝑝𝑟𝜔 ⋅ 𝑧𝓁,𝑟𝜔

Therefore, the objective function (6a) can be reformulated as fol-
lows:
1
𝑛
∑

𝜔∈𝛺

∑

𝓁∈

∑

𝑟∈𝑅

∑

𝑖∈𝐼

∑

𝑒∈𝐸∗
𝜔𝑟

(

1 + 𝛼
( 𝑚
𝑛𝑟

− 1
))

⋅ 𝜇𝓁 ⋅ 𝑥𝓁𝑖𝑒𝜔 (8)

Constraints (6b), (6c) and (6d) remain as in model (2). In the rest
of constraints (from (6e) to (6k)), the new formulations for parameters
𝑢𝑒𝜔 and 𝑎𝓁𝑗𝑒𝜔 and variables 𝑥𝓁𝑖𝑒𝜔, 𝑧𝓁𝜔 and 𝑧𝓁,𝑟𝜔 are used.

A summary of the proposed models and their variations is shown
in Table 2. By varying the weight 𝛼 from 0 to 1, the relevance of the
equity component is increased. This effect can be easily seen in Eq. (8):
when 𝛼 = 0, such a component is not considered and is what we call
the efficiency model. In this model, regardless of the region where they
occur, as many emergencies as possible are attended to in time. On the
contrary, when 𝛼 = 1, equity in success rates between different regions
is sought. We refer to this model as the equity model. This regional
equity is achieved through the importance given to each of the regions
according to the number of calls ( 𝑚

𝑛𝑟 ). In addition, it is easy to simplify
the EMILA model into the LAB model (2) by giving appropriate values
to specific parameters and sets.

4 Experimental study

This section shows the computational experiments with the models
described in Section 3. First, we detail the input parameters for repro-
ducibility purposes. Second, we describe the calibration phase. Third,
the optimization outcomes are shown. Finally, the validation of the pro-
posed models is presented. We implemented the model in the optimiza-
tion software IBM ILOG CPLEX Optimization Studio V20.1 (IBM, 2020)
in the computational cluster ARINA from SGI/IZO-SGIker (UPV/EHU)
(2020). We used nodes with 128 GB of RAM and a solid-state hard
drive for these computational experiments. Eight cores were used for
each optimization problem, and the memory and the time were limited
to 20 GB and 2 h, respectively. The EMILA model codes and an example
of small size are available at Gago-Carro et al..

4.1 Input data

Regarding the specific study case of the Basque Country, we con-
sider the following sets and parameters.

Sets:

𝐼 : the eleven ALS ambulances that, according to Emergentziak Os-
akidetza (2017), are currently operative in the Basque Country
are considered. In addition, we consider at most five potential
ambulances with no pre-assigned station to solve the location
problem (|𝐼0| = 11, |𝐼1| ≤ 5, |𝐼| ≤ 16).

𝐽 : the set of potential stations for ALS ambulances consists of all the
current stations in the Basque Country. Adding the BLS and ALS
ambulance stations, there are 80 ambulance stations (|𝐽 | = 80).

𝐸𝜔: the set emergency calls of each scenario 𝜔 ∈ 𝛺 consists of all
the emergencies that occurred during the 8 h with more activity,
i.e., from 9:00 to 17:00 h. We consider three different emergency
call types. First, false alarms, which do not belong to the subset
of full-service calls. In that case, an ambulance leaves its base
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Table 3
SAA lower and upper bounds and optimality GAPs for 95 CIs when 11 ambulances are relocated.
∣ 𝛺 ∣ SAA upper bound SAA lower bound SAA optimality GAP

Estimation CI Average time Estimation CI Estimation CI

30 0.8664 (0.8664,0.8665) 04:22 0.8383 (0.8377,0.8391) 0.0273 (0,0.0288)
60 0.8591 (0.8591,0.8591) 19:19 0.8542 (0.8537,0.8549) 0.0042 (0,0.0055)
90 0.8584 (0.8584,0.8584) 46:31 0.8542 (0.8537,0.8549) 0.0035 (0,0.0048)

120 0.8568 (0.8568,0.8568) 2:05:54 0.8550 (0.8543,0.8556) 0.0012 (0,0.0024)
𝑎

station, but before reaching the emergency, the emergency is
canceled, and it returns to its station. Second, the subset of full-
service calls comprises emergencies that do not require hospital
evacuation and those that do. In any of the three call types, and
for simplification purposes, the ambulance is occupied until it
returns to its station, i.e., no call is assigned while en route.

𝛺: the set of scenarios consists of randomly selected days from the
historical database. We conducted a Sample Average Approxi-
mation (SAA) (Kleywegt et al., 2002) to determine the size of
Omega. We consider a compromise between the computational
tractability of the problem and the SAA results. As the tractability
of the problem is crucial in this analysis, we run the relocation
variant of the LAB model (6) for 𝑘 = 11, which is the LAB model
variant with more computational requirements. The procedure
to calculate the appropriate number of scenarios is described
in Algorithm 1. We conducted the analysis by increasing the
size of 𝛺 from 𝑁1 = 30 scenarios to 𝑁4 = 120. On the one
hand, we obtained the upper bounds of the problem by carrying
out randomly sampled M = 30 optimization runs of the model
for each size of 𝛺. On the other hand, the lower bounds were
obtained by fixing the first-stage variables (𝑦𝑖𝑗) and optimizing
the second-stage allocation problem for the whole year (𝐾 = 365
days).

Algorithm 1: Sample Average Approximation (SAA)
Input: Potential candidates for |𝛺| ∈ {𝑁1,… , 𝑁𝑃 }. Sample size 𝑀 .
1: for each 𝑁𝑖 = 𝑁1,… , 𝑁𝑃 do
2: for 𝑚 = 1,… ,𝑀 do
3: Generate a sample of 𝑁𝑖 random scenarios.
4: Solve the EMILA model and save objective value (𝑣𝑚) and

CPU time to solve the problem (𝑇𝑚).
5: end for
6: Obtain most repeated First-Stage solution 𝑦∗𝑁𝑖

.
7: Compute bilateral (1 − 𝛼) CI for SAA upper bound.
8: Generate a set 𝐾 independent scenarios, where 𝐾 ≫ 𝑁𝑖.
9: for 𝑘 = 1,… , 𝐾 do

10: Fix first-stage solution 𝑦∗𝑁𝑖
and solve second-stage EMILA

problems over scenario 𝑘.
11: Save objective value (𝑣𝑘).
12: end for
13: Compute bilateral (1 − 𝛼) CI for SAA lower bound.
14: Fix first-stage solution 𝑦∗𝑁𝑖

and solve EMILA problem with 𝐾
scenarios.

15: Save objective value (𝑣𝐾 ) and compute 𝑔𝑚 ∶= 𝑣𝐾 − 𝑣𝑚.
16: Compute unilateral (1 − 𝛼) CI for SAA optimality gap
17: end for
Output: CPU Time and three CI for each 𝑁𝑖 ∈ {𝑁1,… , 𝑁𝑃 }.

The results of this analysis are summarized in Table 3. Based
on the results, we concluded that 60 is an appropriate size of 𝛺
because the SAA optimality GAP is lower than 0.01 and compu-
tationally tractable.

: since TT and TT′ in our study case are 15 and 45 min, respec-
tively, and since we add an intermediate threshold of 30 min, we
have the following four groups: emergencies responded to in less
than 15 min (𝓁1), between 15 and 30 min (𝓁2), between 30 and
45 min (𝓁3) and non-attended emergencies.
7

𝑅: we consider three regions according to the call index as follows:
if an ambulance located in a municipality could handle under
1000 emergencies in 2019, the region of the municipality is rural;
if it could handle between 1000 and 10,000 calls, the region is
suburban and, finally, if it could handle more than 10,000, it is
considered urban.

Parameters:

𝑢𝓁𝑒𝜔: the number of seconds an ambulance is unavailable because it
is attending an emergency 𝑒 of scenario 𝜔 in the RT-interval
𝓁 is calculated based on the actual data in the database. The
median value that an ambulance is occupied (from the time
it is assigned to the emergency until it returns to its station)
is considered for each combination of emergency type and RT-
interval. Then, the value of its emergency type is selected for each
(𝑒, 𝜔) combination.

𝓁
𝑗𝑒𝜔: the time required to travel from the ambulance stations to the

emergencies (needed to calculate parameter 𝑎𝓁𝑗𝑒𝜔) is calculated
with an API by Google Developers (2020). We compared the ac-
tual time ambulances took for each emergency and the simulated
time obtained through the API. As this API calculates the time for
a regular car and ambulances usually go faster, simulated times
are more pessimistic than real times (see Fig. 2(a)).
Let us classify the provided data according to its region. The
differences between actual times and calculated times are shown
in Fig. 2(b): while these mean differences remain low in urban
and suburban areas (2 min and 11 s in urban areas and 2 min
5 s in suburban areas), the difference in rural areas on average
reaches 6 min and 55 s (see Fig. 2(b)).

𝜀𝑖𝑒𝜔: as the carried out optimization runs take the most intensive
time of the day into account, i.e., between 9:00 to 17:00 h. The
parameter indicates whether an ambulance is operational (𝜀𝑖𝑒𝜔 =
1) or not (𝜀𝑖𝑒𝜔 = 0) for each emergency call.

𝑐𝑗 : the stations where the ambulances wait until they are allocated
to emergencies are of several types, such as hospitals or parking
lots in the street. The station’s capacities (𝑐𝑗) are calculated from
the current capacities and two new potential ambulances added
to each station.

𝜋: is set to 0.75, the percentage indicated in the Contract Pro-
gram (Emergentziak Osakidetza, 2019).

𝛽: is set to 0.99: this value avoids infeasibilities, if any, when many
emergencies occur in very remote locations.

𝛼: we consider the following values for 𝛼 parameter: {0, 0.2, 0.4, 0.6,
0.8, 1}. According to those values, a set of solutions is obtained
and provided to the decision-makers.

4.2 Calibration of the EMILA model

The objective function of the EMILA model (6) is affected by two
types of parameters: first, 𝜇𝓁 parameter, which measures the priority
with which emergencies are attended in terms of RT-intervals; second, 𝛼
nonnegative weighted parameter, which balances the priority between
efficiency and equity components. Although 𝛼 value should be chosen
according to decision-makers’ inequity-aversion, 𝜇𝓁 parameters are

calibrated as explained below.
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Fig. 2. Comparison of travel times by origin of data and regions. Real travel times acquired from the database are in red, and the simulated times obtained using the Google API
are in blue. The general case is shown in (a), while in (b), a partition by region has been done.
In order to make the model as close to reality as possible, let us
calibrate the RT-interval priority vector 𝜇 = (𝜇𝓁1 , 𝜇𝓁2 , 𝜇𝓁3 ). Based on
the fact that it is essential to assign as many calls as possible and since
it is desirable to answer them as soon as possible, let us take 𝜇𝓁1 ≥ 𝜇𝓁2 ≥
𝜇𝓁3 ≥ 0. Considering these restrictions, we calibrate the parameter by
optimizing a battery of models, with the value of the 𝜇 parameter vector
components varying from 1 to 6. Additionally, we consider the cases
where the number of emergency calls answered in time is maximized
𝜇 = (1, 0, 0) (the LAB model) and the case in which the number of
emergencies answered in over 30 min is minimized 𝜇 = (1, 1, 0). For
each combination of the parameters, we solve thirty optimization runs
of the model’s efficiency variant (𝛼 = 0). The parameter 𝑘 is set to
0, not allowing any change in the fleet. For this calibration process,
we consider 60 scenarios of emergencies in the high activity time slot,
i.e., between 9:00 and 17:00. The calibration results are summarized in
the ternary diagram of Fig. 3, where each point shows the percentage
of emergencies attended to in each of the three RT-intervals when
solving each combination of parameters. For instance, the blue point
corresponds to the results obtained with the LAB model (𝜇 = (1, 0, 0)):
80.45% in the axis on the right (first RT-interval), 10.38% in the
left axis (second RT-interval), and 9.17% in the bottom axis (45′ RT-
interval threshold). Together with the results of the calibration, the
actual results of the historical database are also shown. A comparison
of the results reveals that the parameter combination 𝜇 = (4, 2, 1) is
the most suitable one for our model. This combination obtains one of
the best possible percentages of emergency calls responded to in time:
79.87%, only 0.56 percentual points below the LAB model. Regarding
the worse response to emergencies (these emergencies responded to
between 30 and 45 min, and these which were not responded to at all),
it is only 0.76 percentage points higher than the one obtained with the
combination 𝜇 = (6, 4, 1), which is the one with better results in this
interval. Moreover, the results obtained by the 𝜇 = (4, 2, 1) parameter
combination are the closest to the actual historical database results
(86.46%, 12.64%, 0.90%).

4.3 Optimization results

Seven optimization variants of the proposed models are solved: the
LAB model and the EMILA model for the following values of 𝛼 param-
eter: {0, 0.2, 0.4, 0.6, 0.8, 1}. For each of these variants, 11 instances are
solved: control-case (where 𝑘 = 0), five relocation–allocation problems
(having 𝑘 ∈ {1, 2, 3, 4, 5} and 𝐼1 = ∅), and five location–allocation
problems (𝑘 ∈ {1, 2, 3, 4, 5} and |𝐼1| = 𝑘). For each of the 77 cases,
we implement 30 model runs of 60 randomly chosen scenarios (days)
for a total of over 2300 instances.

The results for the relocation–allocation models are reported only
for the global validation in Section 4.4 since they do not improve the
8

control case significantly. The results for the location–allocation models
Fig. 3. Ternary diagram with the percentage of full-service emergencies attended to
in each RT-interval by optimization run when solving the efficiency variant for 𝑘 = 0.

are reported for the extreme instances (𝛼 = 0 and 𝛼 = 1) and the
balanced one for the intermediate 𝛼 = 0.4 value.

4.3.1 Results of the LAB model
The results obtained for the LAB model (2) for the location–

allocation problem are shown in Fig. 4: the boxplot for the success
rate of the 30 optimization runs is calculated for the database and
the optimization model with 𝑘 ∈ {0, 1, 2, 3, 4, 5}. The gap between the
mathematical model and reality can be measured by comparing the
percentage of full-service calls attended in time in reality (85.81%)
and in the control case (79.75%). This slightly worse result is expected
because of the assumptions and the stringency mentioned previously.
Regarding the optimization where new ambulances are added to the
fleet, the success rate is increased in 3.61%, 6.09%, 8.07%, 9.74%
and 11.13% when adding one, two, three, four, and five ambulances,
respectively. However, if we focus on the full-service calls answered
in over 15 min, the model does not distinguish between the calls
answered between 16 and 30 min and the calls answered between 31
and 45 min. Indeed, the model makes more allocations of the last type
(see Fig. 4(b)).

4.3.2 Results of the EMILA location–allocation model
The results obtained with the efficiency variant (𝛼 = 0) of the EMILA

model (6) (Fig. 5(a)) are similar to those obtained by the LAB model
(Fig. 4(b)), as far as the success rate is concerned: the success rate
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Fig. 4. Results obtained with the LAB model: (a) the success rate of emergencies answered in time; (b) the percentage of emergencies attended in each RT-interval.
Fig. 5. Percentage of emergencies attended in each RT-interval when optimizing using (a) efficiency variant (𝛼 = 0) and (b) equity variant (𝛼 = 1) of the EMILA model.
increases from a 79.75% in the control case to a 90.84% when five
ambulances are added to the fleet. However, the major improvement
compared to the LAB model lies in the response times of the ambulances
when the TT is exceeded: when the model allocates an ambulance that
does not arrive in time, the efficiency variant allocates ambulances
closer to emergencies: the percentage of emergencies answered be-
tween 31 and 45 min, compared with the number of emergencies not
responded to in time, is now much closer to reality. However, when we
disaggregate the results by region, the results are very different for each
region. While urban and suburban areas show improvement as new
ambulances are added, the success rate in rural areas remains similar to
the control case (see Fig. 6). In addition, the reason for the difference in
the success rate between reality and control cases is explained, to some
extent, as the success rates in urban areas are similar, but they are not
in suburban and rural areas. The significant difference (46.55%) in the
success rate in rural areas between reality and control cases is thought
to occur because of all the assumptions taken: for example, in reality,
some allocations were made when the corresponding ambulance was
near the emergency, although it was not at its station. Such allocations
mean significant savings in traveling time and increase the success rate.

On the contrary, when applying the equity variant (𝛼 = 1) of the
model, its equity component succeeds in the objective of reducing the
differences between regions, as this model gives greater importance
to the emergencies in the areas where fewer emergencies occur: rural
and suburban areas (see Fig. 5(b)). However, this allocation criterion
means that the general success rate does not improve as much as
with the efficiency variant when new ambulances are added to the
fleet. As mentioned in Section 4.2, intermediate values of 𝛼 weighted
parameter vary call priorities and, consequently, how allocations are
9

made. Fig. 6 presents the results of one of those balanced variants,
where the evolution from the efficiency variant to the equity variant
is remarkable. Boxplots for reality and control cases solved with the
efficiency variant are also shown.

When we optimize one of the two criteria (efficiency or equity),
the other can be worsened. An ethical dilemma undoubtedly arises
from this conflict of interests: is it better to save more lives and thus
locate new ambulances in urban areas at the expense of abandoning
rural areas, or, on the contrary, is a slight worsening of the overall
performance insignificant in order to reach more municipalities in
time? These ethical issues should be discussed thoroughly with the
health professionals. It is up to the experts to decide which model
best fits their needs and priorities: responding to as many emergen-
cies as possible, providing a more equitable emergency service, or a
commitment between both objectives.

4.4 Validation

This section describes the procedure we follow to validate the
model. Based on the validation tools explained by Sargent (2013),
we develop two own techniques: first, we carry out a so-called robust
validation to ensure that the assignments proposed in the instances of
control case are similar to the real ones, checking that the performance
is similar between hours of the day and months of the year. Second, a
global validation is carried out to guarantee that the results obtained
when considering the maximum activity moments of the randomly
selected |𝛺| days can be extrapolated to the behavior of the entire year:
24 h a day and 12 months a year.
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Fig. 6. Boxplots of the success rate obtained with efficiency (𝛼 = 0), balanced (𝛼 = 0.4) and equity (𝛼 = 1) variants of the EMILA model by region, when locating new ambulances
to the fleet.
Fig. 7. Robust validation: Comparison of emergency attendance distributions by response time and by (a) hour and (b) month. Real distributions of emergencies (database) are
displayed in a dark range of colors, while the distribution of the optimization results is shown in a softer range. The black curve represents the number of emergencies that
occurred during each period of time.
Robust validation: We validate the robustness of the efficiency variant
(𝛼 = 0) of the EMILA model (6). We analyze the control case to
verify that the assignments made in the optimization do not differ
too much from the actual allocations. We fix the parameter 𝑘 to 0,
not allowing relocation or extension. We thus manage to optimize the
allocation of ambulances to emergencies, so we can check whether the
model’s behavior is close to reality. Fig. 7 compares the results of the
control case and the actual case by showing the percentage of answered
emergencies by RT-interval and by different variables: hour of the day
(see Fig. 7(a)) and month (see Fig. 7(b)). In both cases, the general
behavior of the results is that the success rate of the optimization
instances is slightly lower than the actual success rate. However, the
performances are maintained over time, either hour of the day or the
month of the year.

Global validation: As mentioned in Section 4.1, each optimization run
only considers emergencies between 9:00 and 17:00 h for 60 randomly
chosen days. However, it is essential to check whether the changes
proposed in those runs are extrapolable to the rest of the day and the
whole year. To that end, a validation in two phases is carried out.
First, we run 30 tests for each case of parameter 𝑘 and each of the
variants. Each of these optimizations proposes 𝑘 locations for the new
ambulances. In this way, we have a collection of potential combinations
of locations of the ambulances added to the fleet. We select the most
often repeated combinations of new locations, and in the second phase,
10
we run a total of twelve model runs (one for each month) over the
whole year 2019 for each of the selected combinations. Since the results
obtained for each location combination are similar, the collection is
suitable to be proposed to the experts to decide which best suits their
needs.

As the results obtained in this second phase do not differ signifi-
cantly from one location combination to another, only the results for
the combination of new locations most often repeated (the statistical
mode) are shown. Table 4 shows the results of the 30 initial tests
and the validation of the whole year disaggregated by model variant
and value of parameter 𝑘. The success rates obtained in the validation
phase are slightly higher than those presented in Section 4.3. This slight
improvement is because the results of the initial optimization runs are
calculated for the time slot of the day with more activity.

Regarding the results of the validation phase, the percentage of
emergencies answered in time increases as new ambulances are added
to the fleet. For instance, the success rate in the efficiency variant
increases from 80.5% when no ambulance is added to 91.2% when
adding five ambulances. On the contrary, the percentage of emergen-
cies responded to between 30 and 45 min decreases when 𝑘 increases:
in all three variants of the EMILA model, the number of responded
emergencies in this RT-interval decreases to less than a third.

Moreover, in Table 5, each variant behavior is shown: the closer to
the equity variant (𝛼 = 1), the more calls are handled in time in rural
areas. Although the success rate in rural areas is similar for the control
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Table 4
Global RT validation: percentage of answered calls by RT-interval, the value of 𝛼 parameter, and number of new ambulances added when
solving the LAB and the EMILA models for the chosen samples and the extrapolation to the whole year.

Numb. of new RT-interval Baseline Efficiency (𝛼 = 0) Balanced (𝛼 = 0.4) Equity (𝛼 = 1)

ambulances Sample Year Sample Year Sample Year Sample Year

0 [0–15] 79.8 80.5 79.8 80.5 79.6 80.3 79.6 80.3
(15–30] 9.1 8.7 17.8 17.2 17.9 17.3 18.0 17.4
(30–45] 10.3 10.1 2.3 2.3 2.3 2.3 2.3 2.2
NA 0.9 0.8 0.2 0.1 0.1 0.1 0.1 0.1

1 [0–15] 83.6 84.3 83.6 84.3 81.0 82.8 80.4 81.0
(15–30] 6.6 6.6 14.2 13.6 17.7 15.6 18.4 17.6
(30–45] 8.9 8.4 2.1 2.0 1.2 1.5 1.1 1.3
NA 0.9 0.8 0.1 0.1 0.1 0.1 0.1 0.1

3 [0–15] 87.8 88.5 87.6 88.4 85.0 87.3 81.4 81.9
(15–30] 4.3 3.8 11.4 10.2 14.3 11.8 17.9 17.3
(30–45] 6.9 6.9 0.9 1.3 0.6 0.8 0.6 0.7
NA 0.9 0.8 0.1 0.1 0.1 0.0 0.0 0.0

5 [0–15] 90.9 90.9 90.8 91.2 87.8 89.3 84.0 82.3
(15–30] 3.3 2.8 8.7 8.2 11.8 10.1 15.6 17.1
(30–45] 5.2 5.5 0.5 0.6 0.4 0.6 0.4 0.5
NA 0.6 0.7 0.1 0.0 0.0 0.0 0.0 0.0
q
–
t
&

case of each of the presented variants, when adding five ambulances
to the fleet, it varies from 28.8% in the efficient variant to 52.2% in
the equity variant (an improvement of over 23 percent points), being
30.5% in one of the balanced variants (𝛼 = 0.4). The downside of the
equity search is the loss of 8.9 percentage points in the overall success
rate: from 91.2% when solving the efficiency variant to 82.3% when
solving the equity variant.

Regarding the relocation–allocation problem, although the trend is
similar, the results are more conservative than those obtained when
adding new ambulances to the fleet. The percentage of emergencies
responded to in time is lower in the relocation–allocation problem
(see Table 6) than in the location–allocation problem: optimizing the
location of the fleet by changing up to 5 ambulances only yields an
85.4% success rate while adding five ambulances leads to a success
rate of 91.2%. As in the location–allocation problem, the obtained
results depend on the objective pursued and the variant of the model
used: Table 7 shows that the efficiency variant, seeking a maximization
of the overall success rate, improves areas with more activity. On
the contrary, the equity variant gives more importance to isolated
municipalities and improves rural areas. In this equity variant, the
more relocations are allowed, the more the rural success rate improves;
however, the overall success rate worsens (from 80.3% to 79.1%).
This worsening does not occur in the location–allocation model, where,
despite seeking equity between zones, overall success also improves
as new ambulances are added. Although the results of both problems
follow the same trend, adding more ambulances to the fleet and having
them available make a difference in the success rate.

5. Conclusions and future work

In this paper, we formulate a two-stage stochastic model for the
(re)location–allocations of medical services in the Basque Public EMS
system. Using the presented equity and multi-interval components, a
distribution of resources can be found in which the differences in the
success rates of the different types of areas are as slight as possible. At
the same time, ambulances arrive to emergencies as quickly as possible.
In that way, by adding new ambulances to the fleet and locating them
strategically, the model can propose appropriate allocations that make
an optimal coverage of the demanded attention.

The two-stage stochastic 0–1 integer linear programming models,
tested with actual data of the emergencies that occurred in the Basque
Country during 2019, propose solutions that meet the objectives pur-
sued: the success rate is increased when new ambulances are added
to the fleet: there is an improvement of 10.4, 10.7 and 2.0 percentage
11

v

points when adding five ambulances to the baseline, efficiency, and eq-
uity variants, respectively. Moreover, the developed efficiency variant
can propose efficient solutions in which nearer ambulances are allo-
cated to emergencies without worsening the success rates too much: the
number of late responses is reduced. Additionally, the equity variant
can propose solutions that minimize success rate differences between
areas with different population densities. Finally, as the parameters
used in the equity variant can be tuned, it is up to the final decision-
maker to decide the balanced efficiency-equity level that best suits their
needs.

However, even if the objectives are met with the models presented
in this paper, there are some challenges to consider in future works.
Since the ambulance (re)location–allocation problem is a very complex
problem in emergency medical services, improvements in modeling
could deal with some of the assumptions made, especially with those
that have a significant impact, as seen with the control case, such as
the possibility to assign an ambulance that is en route. Incorporating
stochasticity in the time considered for moving from station to emer-
gency is interesting for future research. Furthermore, extending the
problem to the entire ambulance fleet would be desirable, considering
all types of ambulances and the urgency level of emergencies. In
addition, one of the problem’s main challenges is resolving the conflict
of interest between efficiency and equity. While the final decision
remains within the purview of professional experts, a future avenue
for the research community involves the development of tools that
can aid in these decisions. Incorporating multi-objective optimization
techniques, such as lexicographic or compromise optimization, is envi-
sioned to play a crucial role in this collective effort. An alternative is a
multilevel and hierarchical scheme that optimizes across all the criteria
to be considered. Risk aversion functions could also be considered to
find solutions protected against worst scenarios. The difficulties that
these new challenges may bring, such as time complexity issues when
solving the proposed models, make us think it could be interesting
to implement decomposition methodologies, such as metaheuristics or
matheuristics algorithms, to obtain quasi-optimal results in reasonable
computing time.
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Table 5
Impact of adding new ambulances over the whole year by region: percentage of answered calls by RT-interval, region, the value of 𝛼 parameter,
and number of new ambulances added when solving the LAB and the EMILA models.

Numb. of new RT-interval Baseline Efficiency (𝛼 = 0) Balanced (𝛼 = 0.4) Equity (𝛼 = 1)

ambulances Urb. Sub. Rur. Urb. Sub. Rur. Urb. Sub. Rur. Urb. Sub. Rur.

0 [0–15] 90.6 63.3 21.2 90.5 63.5 21.2 89.8 64.5 21.7 89.7 64.5 21.7
(15–30] 4.2 16.6 25.2 7.7 33.9 59.7 8.2 33.1 63.3 8.3 33.3 63.3
(30–45] 4.5 19.2 46.9 1.9 2.4 15.0 2.0 2.4 11.9 2.0 2.2 11.9
NA 0.7 0.8 6.6 0.0 0.2 4.0 0.0 0.1 3.1 0.0 0.1 3.1

1 [0–15] 96.1 63.9 21.2 95.9 64.3 21.7 93.3 64.8 27.9 90.3 64.6 37.2
(15–30] 1.0 16.7 25.7 2.3 33.6 61.9 5.6 33.2 61.1 8.8 33.4 50.0
(30–45] 2.6 18.2 43.8 1.7 2.1 12.4 1.0 2.0 8.8 0.8 1.9 10.6
NA 0.3 1.2 9.3 0.0 0.1 4.0 0.0 0.0 2.2 0.0 0.1 2.2

3 [0–15] 96.5 75.7 22.6 97.2 74.0 23.9 96.9 71.1 30.1 91.1 65.2 50.4
(15–30] 0.8 8.7 26.5 1.8 24.2 63.7 2.7 27.4 60.6 8.7 33.4 39.8
(30–45] 2.4 14.2 42.9 0.9 1.7 8.8 0.4 1.4 8.4 0.1 1.4 9.7
NA 0.3 1.4 8.0 0.0 0.1 3.5 0.0 0.0 0.9 0.0 0.0 0.0

5 [0–15] 99.2 77.7 28.8 99.2 78.5 28.8 97.2 76.4 30.5 91.5 65.6 52.2
(15–30] 0.2 7.0 23.0 0.8 20.2 60.6 2.7 22.4 61.1 8.4 33.4 38.1
(30–45] 0.5 13.7 38.9 0.0 1.2 8.8 0.1 1.2 8.4 0.1 0.9 9.7
NA 0.1 1.6 9.3 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0
Table 6
Global RT validation: percentage of answered calls by RT-interval, the value of 𝛼 parameter, and number of ambulances relocated when solving
the LAB and the EMILA models for the chosen samples and the extrapolation to the whole year.

Numb. of RT-interval Baseline Efficiency (𝛼 = 0) Balanced (𝛼 = 0.4) Equity (𝛼 = 1)

relocations Sample Year Sample Year Sample Year Sample Year

0 [0–15] 79.8 80.5 79.8 80.5 79.6 80.3 79.6 80.3
(15–30] 9.1 8.7 17.8 17.2 17.9 17.3 18.0 17.4
(30–45] 10.3 10.1 2.3 2.3 2.3 2.3 2.3 2.2
NA 0.9 0.8 0.2 0.1 0.1 0.1 0.1 0.1

1 [0–15] 82.9 83.6 82.9 83.6 80.5 80.4 78.5 80.4
(15–30] 7.3 7.0 14.6 14.0 17.1 17.3 19.2 17.5
(30–45] 9.0 8.5 2.4 2.3 2.3 2.2 2.2 2.1
NA 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1

3 [0–15] 84.9 85.2 84.9 85.2 82.8 83.6 78.1 77.6
(15–30] 5.8 5.7 12.6 12.1 14.9 14.1 19.3 20.2
(30–45] 8.5 8.3 2.4 2.5 2.2 2.2 2.5 2.1
NA 0.8 0.8 0.2 0.1 0.1 0.1 0.1 0.1

5 [0–15] 85.6 85.4 85.5 85.4 84.0 85.2 80.0 79.1
(15–30] 5.4 6.2 12.1 11.9 13.6 12.3 17.4 18.7
(30–45] 8.2 7.6 2.3 2.6 2.3 2.4 2.5 2.1
NA 0.8 0.8 0.1 0.1 0.2 0.1 0.2 0.1
Table 7
Impact of relocations over the whole year by region: percentage of answered calls by RT-interval, region, the value of 𝛼 coefficient, and number
relocations allowed when solving the LAB and the EMILA models.

Number of RT-interval Baseline Efficiency (𝛼 = 0) Balanced (𝛼 = 0.4) Equity (𝛼 = 1)

relocations Urb. Sub. Rur. Urb. Sub. Rur. Urb. Sub. Rur. Urb. Sub. Rur.

0 [0–15] 90.6 63.3 21.2 90.5 63.5 21.2 89.8 64.5 21.7 89.7 64.5 21.7
(15–30] 4.2 16.6 25.2 7.7 33.9 59.7 8.2 33.1 63.3 8.3 33.3 63.3
(30–45] 4.5 19.2 46.9 1.9 2.4 15.0 2.0 2.4 11.9 2.0 2.2 11.9
NA 0.7 0.8 6.6 0.0 0.2 4.0 0.0 0.1 3.1 0.0 0.1 3.1

1 [0–15] 95.4 63.4 21.2 95.3 63.5 21.2 89.8 64.5 28.8 89.7 64.5 28.8
(15–30] 1.9 16.6 22.1 2.8 33.8 61.1 8.2 33.4 58.8 8.3 33.6 58.8
(30–45] 2.2 19.1 47.8 1.9 2.5 13.7 2.0 2.0 10.6 2.0 1.8 10.6
NA 0.6 0.9 8.8 0.0 0.2 4.0 0.0 0.1 1.8 0.0 0.1 1.8

3 [0–15] 96.4 66.1 21.7 96.4 66.2 21.7 94.5 64.3 36.3 85.2 64.2 43.8
(15–30] 0.8 14.6 23.0 1.8 30.3 61.1 3.4 33.4 52.7 13.1 33.0 43.8
(30–45] 2.2 18.4 46.5 1.9 3.3 13.3 2.1 2.2 9.3 1.6 2.8 10.6
NA 0.6 0.9 8.8 0.0 0.2 4.0 0.0 0.1 1.8 0.0 0.0 1.8

5 [0–15] 96.6 66.6 13.7 96.6 66.6 13.7 95.8 66.5 36.3 86.6 66.1 43.8
(15–30] 0.6 16.1 29.6 1.5 29.8 66.8 2.1 30.5 52.7 12.2 30.4 43.8
(30–45] 2.4 16.1 46.0 1.8 3.3 15.5 2.0 2.9 9.3 1.1 3.5 10.6
NA 0.3 1.2 10.6 0.0 0.2 4.0 0.0 0.1 1.8 0.0 0.0 1.8
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Fig. A.8. Memory usage (left) and execution time (right) by number of new ambulances and number of potential stations.
Fig. A.9. Memory usage (left) and execution time (right) by number of admitted relocations and number of potential stations.
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Appendix. Scalability analysis

In this appendix, we provide a scalability analysis of the dimensions
of two specific sets of the model: ambulance stations (𝐽 ) and ambulance
initial fleet (𝐼0). First, we have included the analysis of the scalability
and performance of the models depending on the size of the set of
13
ambulance stations. Thus, optimization runs were conducted for five
cases, from the initial one with |𝐽 | = 80 stations up to the last one,
where we consider all the municipalities. As the Basque Country has
251 municipalities and in order to increase the size of the potential
stations regularly, it is considered that |𝐽 | = 80 + ⌈

251⋅𝑝
4 ⌉, for 𝑝 ∈

{0, 1, 2, 3, 4}. Therefore, it has been tested |𝐽 | ∈ {80, 143, 206, 269, 331}
in the analysis. For each iteration, the municipalities have been added
randomly. Figs. A.8(a) and A.8(b) show the results of this analysis
for the location–allocation problem in terms of memory and elapsed
time, respectively. There is no big deal when increasing the number of
potential stations when solving the location–allocation problem. The
memory usage (in GB) grows linearly when the number of potential
stations increases and when the number of ambulances without pre-
assigned stations does. Concerning the elapsed time, the growth is
non-linear. Nevertheless, both the memory usage and elapsed time
present no computational challenges since the former remains between
6 GB and 9 GB, and the latter does not exceed two minutes. Figs. A.9(a)
and A.9(b) show the computational results for the relocation–allocation
problem. When tackling the relocation–allocation problem, both the
time and memory requirements show substantial growth compared to
the location–allocation problem. It is worth highlighting the runtime
limit of 2 h (7200 s). While the time limitation poses no issues when
𝑘 ≤ 3, it affects the relocation–allocation problem when the number
of relocations available is equal to or greater than five (k ≥ 5). This
limitation is particularly remarkable when 7 and 9 ambulance relo-
cations are permitted. In the former case, almost every execution run
reaches this limit of 2 h. In the latter, not a single case is completed
before this limit. Regarding the memory usage, the most demanding
cases are 𝑘 = 7 and 𝑘 = 9. The optimization run with the most used
resources does not reach 14 GB.
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Fig. A.10. Memory usage (left) and execution time (right) by number of new ambulances and size of the initial ambulance fleet.
In addition, the scalability of the problem has also been tested
based on the size of the ambulance fleet. In the optimization runs
made for the previous version of the manuscript, the current ALS fleet
(11 ambulances) was used. Now, the experiments have been extended
to 5 additional tests, increasing the initial ambulance fleet by adding
2 BLS ambulances in each iteration: |𝐼0| = 11 + 2 ⋅ 𝑝 where 𝑝 ∈
{0,… , 5}, hence |𝐼0| ∈ {11, 13,… , 21}. For each 𝑝, 30 optimization
runs have been carried out. Concerning the emergency calls, all the
emergencies attended by the initial ambulance fleet during the moment
of the day with more activity (from 9 a.m. to 5 p.m.) are considered.
This way, the average number of emergencies by optimization run are
1109, 1239, 1387, 1452, 1762 and 2090 for |𝐼0| = 11, 13, 15, 17, 19
and 21, respectively. Figs. A.10(a) and A.10(b) show the memory and
time needed for these experiments. Notably, memory usage escalated
rapidly: for instance, when considering only ALS ambulances (|𝐼0| =
11), the average memory usage is 7.36 GB. However, for the cases
where |𝐼0| = 19 and |𝐼0| = 21, the average memory is 25.34 GB
and 39.74 GB, respectively. This computational requirement is also
reflected in the execution time: while for |𝐼0| ≤ 17, the most demanding
case is solved in 34 min, for |𝐼0| = 21 and 𝑘 > 3, a 70% of the cases
reached to the 2 h time limit. The memory usage and execution time
of the experiments carried out in the scalability analysis are available
at Gago-Carro et al..
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