
Fault Injection System for SEU Emulation in Zynq

SoCs

Igor Villalta, Unai Bidarte, Gorka Santos, Asier Matallana, Jaime Jiménez

Department of Electronics And Telecommunications

University of the Basque Country UPV/EHU

Bilbao, Spain

 Abstract— This paper presents a fault injection method

for SEU (Single Event Upset) emulation in FPGAs based on

loading at the programmable logic a configuration file with an

erroneous bit. A “Xilinx Zynq®-7000 All Programmable SoC”

device has been used to implement it, which combines a hard

microprocessor (Processing System PS) with Programmable

Logic (PL). The emulation tool is fully implemented on the

Zynq chip, which means that neither additional external

equipment nor PCB modifications are needed.

Communications to external devices that slow down the

configuration process are avoided, so a high fault-injection rate

is achieved. Previous works consider including fault injection

circuitry at the PL. This circuitry can be affected by a faulty

configuration file, leading the device to an unrecoverable state,

which is named as “injection side effects”. In the method

proposed in this paper the injection is implemented in the

processing system of the Zynq device, making the injection

system independent to the programmable logic and avoiding

the previously mentioned effect. This method allows using

complete bitstreams, partial bitstreams and one-frame

bitstreams to inject faults. A comparison is done so as to find

the most appropriate bitstream type.

Keywords—SEU, FPGA, emulation; fault injection; fault

tolerance; ZYNQ;

I. INTRODUCTION

Modern manufacturing technologies are leading to
smaller device sizes. As a result, chips performing more
complex functions and operating at a higher frequency are
being developed. However, they are becoming more and
more vulnerable to radiation-induced SEUs. A radiation-
induced SEU happens when a high-energy particle hits the
semiconductor storing an erroneous value at a memory cell
[1]. The device-size reduction makes more likely for these
particles to hit inverse-polarized p-n junctions, which are the
most sensitive parts of electronic devices.

According to [2] a fault is a physical phenomenon that
leads to an error. And an error is an incorrect part of the
system that can lead to a failure, which means that the
equipment does not deliver correctly the service it has been
designed for. Electronic devices are widely used in systems
called safety critical, where a failure can lead to
environmental damage, injury or death. So measures have to
be taken when a radiation-induced SEU (fault) leads to a bit

flip (error) that may provoke a malfunction (failure), which
is not allowed in any way.

SRAM based FPGAs are more vulnerable to SEUs than
other semiconductor devices. In [1] it is mentioned that SEU
events have a greater impact in SRAM cells than in DRAM
or in Flash cells. In [3] the architecture of a SRAM based
FPGA is presented and the effects produced by radiation are
analyzed. The key element of a FPGA is the configuration
memory, where the information about hardware resources is
stored. If a critical bit of this memory flips, the implemented
design’s functionality changes and a failure is provoked.

The aim of SEU emulation systems is to quantify the
amount of critical bits of a design. Device manufacturers as
Xilinx publish a reliability report [5], where it is specified the
failure rate per configuration memory Mb. So when the
amount of critical bits in the configuration memory is
known, the failure rate is immediately calculated.

In [4] a method for critical bit estimation for standard
designs is provided by Xilinx. Here it is mentioned that
FPGA designs have a criticality ratio between 1% and 11%,
as a result, it can be assumed that no more than 11% of the
configuration bits are critical, even when the device is almost
full. So according to [4] and Xilinx reliability report [5],
where it is mentioned that SEU is 86FIT/Mb for 7series
FPGAs at sea level, the failure rate of a ZYNQ7020 device,
which has 32Mb configuration bits, would be:

32Mb x 86FIT/Mb x 0.11= 302.72 FIT

(1 FIT = 1 failure / 10^9 hours)

The effect of radiation-induced SEU at sea level is quite
low, when the device is used at another altitude for avionics
or aerospace application the FIT value has to be multiplied
by a derating factor as it is explained in [10]. At 40000ft the
FIT value has to be multiplied by 561.70 [10], so the FIT
value is:

302.72FIT x 561.70 = 170037.82FIT

However, when analyzing redundant fault tolerant
systems this is not suitable. Only a few bits corresponding to
majority voters or routing resources are critical in this case.
So a fault injection environment is needed to evaluate the
fault tolerance of these systems.

ACCEPTED

MANUSCRIP
T

I. Villalta, U. Bidarte, G. Santos, A. Matallana and J. Jiménez, "Fault injection system for SEU emulation in Zynq SoCs," Design of Circuits and Integrated
Systems, Madrid, Spain, 2014, pp. 1-6, doi: 10.1109/DCIS.2014.7035579.© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. BITSTREAM FILE

A file named bitstream is used to configure Xilinx
FPGAs. Here configuration and initial values of different
elements of the FPGA are stored. Configuration values
define the implemented hardware and remain unmodified at
configuration memory during execution. Initial values are
loaded into memory elements while configuration and are
modified during operation.

Most of the bits of a bitstream configure the routing
resources and the CLBs (Configurable Logic Blocks), which
are the key elements of FPGAs.

The bitstream also contains initial values of flip-flops. If
the LUT is used as distributed RAM or shift register, bits
belonging to it are also initial value bits and not
configuration bits.

Besides, the bitstream contains configuration information
of other elements as BRAMs, IOBs, DSP48 or clock
resources (BUFGP, MCMM, PLL...).

In figure 1 the structure of different bitstream files is
represented. Xilinx bitstream file begins with a set of 32-bit
commands. Different kinds of bitstream commands are
documented at [11]. The file begins with a synchronization
sequence, which is followed by a set of commands
depending on the bitstream type. After these commands are
sent the configuration data frames are loaded.

The most common bitstream is the complete bitstream. It
is generated by Xilinx development tools following the
normal design flow and it contains configuration and initial
value data for all the elements of the programmable device.
Complete bitstream commands contain timing,
synchronization, security and encryption. Then the
configuration data is loaded and CRC check is done in order
to assure bitstream integrity. If it is correct a command is
sent in order to start the device and the file ends with a
DESYNC command, which ends the configuration interface
transfer.

Fig. 1. Structure of different types of bitstream files

Another bitstream type is the partial bitstream. The
purpose of this file is to reconfigure only a part of the device
while other parts work normally, which is named DPR
(Dynamic Partial Reconfiguration). It is generated by
following the partial reconfiguration design flow of Xilinx

design tools. As it is thought to be loaded while the FPGA is
working it does not contain the start order. The number of
words loaded into the configuration memory has to be
specified as well as the address of the programmable logic
where these data has to be stored. It is organized in
fragments and the size and address are specified for each
fragment. In the end a CRC check is performed in order to
check the integrity of the file.

The time needed for a bitstream to be loaded is
proportional to its size. As a result, partial bitstreams are
loaded in a much shorter time than complete ones.

Since configuration data is structured in frames, the
optimum bitstream for fast fault injection is the one-frame
bitstream. There are two ways to generate them, using the
SEU Controller [7] or sending a read order to the
configuration memory [9].

Fault injection in FPGAs is based on reprogramming the
device with a bitstream that has an erroneous bit. Once it has
been reprogrammed a test vector is sent to circuit’s inputs
and the device operation is observed. If a malfunction
appears the flipped bit is considered to be critical. If a bit of
the bitstream has been artificially modified, CRC check
would not match. Thus, it must be disabled. The result of
the check would be incorrect and the new data would never
be stored.

The content of sequential elements such as flip-flops,
distributed RAM, LUT implemented shift registers, DSP
registers and BRAMs should always be taken as critical.
However, the first step after having reconfigured the device
and before the verification process starts, the system has to
be taken into a known state, which means that values of
sequential elements are overwritten (more information at
section 4.B.4 of this article). So the effect of having
modified a bit containing the initial value of a sequential
element is cancelled and the bit is wrongly considered as no
critical. The amount of initialization bits of BRAMs,
distributed RAM and flip-flops can be easily counted by the
designer and they should be added to overall critical bits.

Modifying bits belonging to commands has to be avoided
as well. These are not going to be stored at the configuration
memory, and they are not going to result affected by a
radiation-induced SEU.

III. BACKGROUND ON FPGA SEU INJECTION METHODS

A. Internal Fault Injection

An internal subsystem decides which bit is flipped and

controls the interface. As no cables to other boards or

equipments are needed the injection rate is high. Up to now

an internal configuration port implemented in the

programmable logic has been used. In devices from Xilinx,

a provider of programmable technologies and devices, it is

called ICAP (Integrated Configuration Access Port).

However, if a configuration bit belonging to the logic

controlling the internal configuration port is flipped, the

ACCEPTED

MANUSCRIP
T

injection subsystem can be damaged and the system stops

working properly. Errors produced by this phenomenon are

called injection side effects [6].

In [8] a system based on partial reconfiguration is

presented. The unit under test is placed at a reconfigurable

region while the injection subsystem is located at the static

region. This does not avoid injection side effects because

static part can be routed across reconfigurable partitions.

The time needed to reconfigure the logic with this partial

bitstream depends on its size, but overall it is notably faster

than loading a complete bitstream.

When the unit under test is placed at a bounded region

smaller than the whole device, the routing tool has fewer

resources to carry the signals. This means that the final

routing is more complex and signals have to go across more

interconnection points, leading to a higher error rate. A SEU

emulation platform should be as close to the final design as

possible, and unluckily there is a great difference between

an implementation occupying the whole FPGA and the

same circuit implemented in a smaller bounded region.

Xilinx has an IPcore called SEM (soft error mitigation

controller) [7] that is used for SEU mitigation. It can be

used for SEU emulation, although it is not its main

functionality. After the flipped bit being addressed, the SEM

performs a readback of the needed frame, flips the desired

bit and partially reconfigures the FPGA. A one-frame partial

bitstream needs very little time to be programmed.

Nevertheless, the SEM has also influence on injection side

effects.

B. External Fault Injection Methods

The flipped bit is decided by an entity out of the FPGA

device, and it is programmed through an external interface,

such as JTAG or SelectMAP . The main advantage of

external fault injection system is the fact that the emulation

platform stays always unmodified and it is totally

independent to the implemented design. The difficulty lies

in managing the interface. JTAG, which is used in [9] is

slow. And SelectMAP, although it can be fast, it is not easy

to cope with. It usually requires a CPLD controlling it,

which means that the PCB has to be modified. Note that all

the systems mentioned [6][7][8][9] and the proposed in this

paper are general methods that can operate on any board .

C. Internal-External fault injection

In [6] a mixed internal-external approach is proposed.

The SEU controller is used, which is the previous version of

the SEM [7]. And to minimize the effects of self damage an

external reconfiguration is periodically done. In this way the

high rate of internal systems is mixed with the independence

of external systems.

D. Specific Board Based Fault Injection

In [14][15] fault injection platforms based on a specific

board are presented. They achieve high injection

performance and they avoid injection side-effects. The

design has to be placed and routed for these platforms to

perform the test. After having performed the test, the design

has to be placed and routed again for the product board. So

the obtained test results don't belong to the implementation

that would operate under SEU conditions.

IV. PRESENTED METHOD

A. System Architecture

A Xilinx ZYNQ-7000 All Programmable SoC device is

chosen to implement this SEU emulation system. This

system-on-chip combines a hard dual core ARM9 with a

FPGA. To configure the programmable logic a hard

interface controlled by the processing system is provided,

which is called PCAP (Processor Configuration Access

Port). In figure 2 a general scheme of the system is shown.

Note that the UUT (Unit Under Test) is placed in the PL,

and the fault injection system is set at the non-

reprogrammable part of the ZYNQ device. The system has

been developed at a ZedBoard, which is a standard board

containing a ZYNQ7020 device.

The UUT is placed at the PL. Data transfer between PS
(Processing System) and PL (Programmable Logic) is EMIO
(Extendable Multiplexed I/O) signals using the GPIO
peripheral of the ARM system.

The bitstream manipulation software is placed at the PS,
and faulty bitstreams are loaded to PL through PCAP
(Processor Configuration Access Port), which is a hardware
implemented configuration interface. As it is hard
implemented, it is never modified by faulty bitstream
carrying the system to an unrecoverable state. A SD card is
used to store the correct bitstream generated by Xilinx tools.

 Fig. 2. System architecture

B. Fault Injection Flow

ACCEPTED

MANUSCRIP
T

First of all a bitstream is obtained, then it is modified to

emulate a SEU, afterwards the device is reconfigured, then

verification is done and finally the injected fault is repaired.

The test continues by modifying a new bit at the present

bitstream. When all of the bits of the bitstream are analyzed

a new bitstream is obtained (only if partial reconfiguration

has been chosen). If all possible partial bitstreams have been

analyzed the test is ended. In figure 3 the fault injection

flow diagram is presented.

1) Bitstream Generation

First of all the bitstream has to be obtained. As it has

been mentioned before, there are 3 types of fault injection

bitstreams; the complete bitstream, the partial bitstream and

the one-frame bitstream.

If a complete reconfiguration is chosen, the bitstream

file is picked directly from the Xilinx BitGen tool. To

generate a partial bitstream is not so immediate if the unit

under test has not been placed at a bounded region in the

programmable logic. After the address and the size of the

bitstream has been specified, it has to be fulfilled with the

content, which is stored in the complete bitstream. The

addres has to be specified in a Xilinx format, and it is no

way to convert from this format to linear address of the

complete bitstream.

This can be solved by brute-force attack, generating

partial bitstreams and complete bitstreams containing those

partials. Then the content of the partial is searched in the

complete bitstream and in this way the position can be

found.

Once the position is found the content of the complete

bitstream at that point is copied in the partial one.

It is not possible to generate one-frame bitstreams at

Xilinx Tools. It has been mentioned before that there are

two ways to generate them, using the SEM IPcore or

reading the content from the configuration memory. The

first option has been discarded because it is implemented in

the PL and injection side-effects are present.

So the one-frame bitstream generation process starts

with a readback order. Then the interface copies the content

of the configuration memory at the processor’s memory.

Finally bitstream headers are created.

2) Erronoeous Bitstream Generation

Once the bitstream has been generated the value of a bit

is changed emulating a SEU. CRC check has to be disabled.

This action is done always after having repaired the

previous injected error, unless there are no more bits

remaining at the present bitstream. When all of the bits of

the present bitstream have been tested a new bitstream is

generated.

3) Device reconfiguration

This is one of the most critical part of the system in

terms of time performance. The PCAP is a 32bit 100MHz

interface, so the time needed to load the full bitstream of

ZYNQ7020, which has 4MB is:

4MB *(1s/100E6 cycles)*(1cycle/4B) = 10ms

However, in [12] it is mentioned that due to software

overheads and DMA transfer time the overall time needed to

load the whole file is 32ms. So the time needed to analyze

the 4MB*8 bits of the full bitstream when complete

reconfiguration is used is:

4MB* (8bits/Byte) * 32ms = 1024000s = 284h

 In [12] it is also mentioned that the time needed to load

a partial bitstream of 134kB is 1060µs, so the time needed

to analyze the 4MB of the complete bitstream is:

4MB * (8bits/Byte) * 1060µs = 33920s = 9.42h

Doing an extrapolation from these data it can be

concluded that the time needed for loading a 1 frame

bitstream of 404 Bytes is 3.18 µs. So the time needed to

analyze 4MB of configuration bits is:

4MB * (8bits/Byte) * 3.18µs = 101s

So there is no doubt that using 1 frame bitstream is

optimum in terms of time performance.

While a partial bitstream is being configured uncontrolled

outputs may be generated. In order to not disrupt the static

logic the DPR flow [13] requires the reconfigurable

partition to be placed at a bounded region independent from

the static part. It is also defined that some glue logic should

be placed between dynamic and static parts so as to create a

safe interface between them.

Fig. 3. Flow diagram

ACCEPTED

MANUSCRIP
T

In this method there is not a bounded region for the

dynamic part isolated from the static part. If a partial

bitstream for fault injection is loaded, a region of the design

is reconfigured while the rest continues working. During

reconfiguration, dynamic part can provide uncontrolled

outputs to the surrounding logic provoking damage out of

the reconfigurable region. These effects will be named in

this document as “DPR side-effects”.

4) Verification

The objective of this part is to decide if a functional

error has occurred after having reconfigured the device with

a faulty bitstream. It is also very sensitive to overall testing

time. An input is sent to the PL and after having waited the

time the hardware needs to perform the operation the output

of the PL is read and compared to the golden value.

Before sending any input it is recommendable to carry

the unit under test to a known state by overwriting register

and memory contents. The easiest way to do this is to apply

a reset. However, sequential circuits not containing a reset

are becoming more and more typical nowadays. For

example, in [16] it is recommended to use resets unless they

are totally necessary. In this case it is more complex to

return to the initial state. One idea is to apply a set of inputs

that would carry the values of sequential elements to a

known state. This can be complex and can require long

initialization vectors.

 The other possibility is to apply complete bitstreams to

inject faults. In this case the sequential elements are

initialized while a fault is being injected.

5) Reparation

After having verified a faulty configuration the system

has to return to a known state. This step is not necessary

when complete reconfiguration has been chosen for fault

injection. A complete reconfiguration loads initial values of

all the elements of the device bringing it to a known state.

When a faulty bitstream is loaded, the erroneous bit can

provoke a fault in a region out of the influence area of the

loaded bitstream (DPR side-effects). This means that if the

device is reconfigured again with the correct partial

bitstream that error would not be solved, and next injections

would be taken as critical bits even when they are not.

In order to mitigate the effects of DPR side-effects, the

partial bitstream without the erroneous bit is loaded. A test

is done after reparation, and if the error remains a complete

reconfiguration is done.

C. Comparing to Other fault Injection Systems

In the following table a comparison between injection

and verification subsystems is presented. Note that the

presented method can test an unbounded design. It has high-

speed internal injection having solved the issue of injection

side effects.

TABLE I. INJECTION SUBSYSTEM COMPARISON

Methods
Fault injection subsystem

Injectio

n type
Dynamic part

Bitstream

type

Injection side

effects

Xilinx SEM Internal Whole FPGA 1 Frame Yes

[6]

Internal
&

External

Whole FPGA 1 Frame
Yes but mitigated
with external

reconfiguration

[8] Internal
Bounded

region

Partial

bitstream
Yes

[9] External
Bounded

region
1 Frame No

[11] [12]
Specific

board
Whole FPGA - No

Proposed Internal Whole FPGA

Complete/

Partial /One

frame

No

V. RESULTS

The objective of this document, in addition to presenting

the method, is to compare the different bitstream types find

out which is the most appropriate to do the fault injections.

A 1500 adder chain has been implemented as UUT at the

PL, occupying the 70% of the device. After a faulty

bitstream is loaded a vector of 30 elements is sent to the

UUT and the result is compared to the golden value. All the

sequential circuits of the design have a reset, so there is no

trouble at carrying the system to the initial state.

Then reparation is applied, (if complete bitstream has

not been used) and verification is performed. If the error

persists it is classified as type_2 error (and requires a

complete reconfiguration). If the reparation removes the

error the modified bit is classified as type_1.

A. One column test

One CLB column of the PL has been tested using the

three mentioned bitstream types; one-frame, partial and

complete. The used device has 3 rows of 72 column and one

CLB column contains 50 CLBs. The same test has been

done three times for each bitstream type. The result is never

the same. It is not possible to know which element is

addressed by each bit of the configuration file. As a result it

is not possible to find out why some bits are sometimes

classified as critical and sometimes no. However, it can be

concluded from the following table that the accuracy of the

method is above 99%. In brackets the amount of type_2

errors is represented, which are only present when one-

frame bitstream is used.

TABLE II. ONE COLUMN TEST

ACCEPTED

MANUSCRIP
T

Injection

type
Injections Test1 errors Test2 errors Test3 errors

Complete 116352 10873 (0) 10846 (0) 10860 (0)
Partial 116352 10891 (0) 10888 (0) 10886 (0)

One frame 116352 10896 (227) 10914 (233) 10891 (228)

Then the position of the first 1964 errors has been

monitored for the three bitstream types. It has been observed

that 2 errors that are classified as critical at the complete

bitstream are not detected at the partial and one-frame

bitstreams. 3 errors detected at the one-frame bitstream are

not detected at the others. 9 errors are detected at the partial

bistream and at the one-frame bitstream, and not at the

complete. The other 1950 errors are the same for the three

bitstream types. From this it can be concluded that the

accuracy of the method is above 99%.

All the bits classified as type_2 errors at the one-frame

bitstream are detected as type_1 errors at the other bitstream

types.

B. Critical Bit calculation

Finally, the amount of critical bits has been measured by

testing all the bits for the different kind of bitstream types.

This is done in order to evaluate the coverage level of the

injection part. The complete bitstream has 32349088 bits, so

32349088 different fault injections can be done. The partial

bitstream method allows doing 18645408 injections. If

injections are done at block RAM the number is higher.

Injection in block RAMs has been discarded because they

are not used by the unit under test and errors at that point are

always 0. Something similar happens with the one-frame

bitstream method. This method allows (without block

RAM) 17782464 injections. The FIT value is given for

40000ft

Even when fault injection is done at block RAM, the

maximum possible fault injection number does not reach the

32349088 bits of the complete bitstream. This happens

because Xilinx tools don’t allow creating partial bitstreams

containing IO blocks, clocking or other special configurable

resources. This is not a big problem because failures at IO

blocks can’t be detected in internal verification approaches

and the other resources are usually not used in normal

designs.

When complete bitstream has been used only the 25% of

the total bits have been tested in order to cut down the test

time. 15 days are needed to analyze the 100% of the bits of

the complete bitstream. The obtained result is multiplied by

4 to obtain the amount of critical bits of the device. This is

the result of an extrapolation, thus, it is not very exact.

TABLE III. CRITICAL BITS CALCULATION

Injection

type
Injections Errors Time FIT

Complete 8087272 346027 76h 66860
Partial 18645408 1512430 19h 73059

One frame 17782464 1470651 8h 71041

VI. CONCLUSIONS

A fast and accurate method for SEU characterization has

been presented. It is fast because the injection and the

verification are done internally Since the final implemented

design can be tested an accurate result is provided. The three

presented bitstream types give an accurate result, (above 99%).

Complete bitstream is more appropriate when sequential

elements without reset are used. When it is easy to carry the

sequential elements of the system to a known state, a fast

injection test based on one-frame bitstreams can be done.

VII. ACKNOWLEDGEMENTS

This work was carried out in the R&D Unit UFI11/16 of the

UPV/EHU, and supported by the Ministerio de Ciencia e

Innovacion of Spain within the projects TEC2011-28250-C02-

01/2, by the UPV/EHU within the project US13/13 and by the

Basque Governments Department of Education, Universities

and Research within the research fund of the Basque university

system IT394-10.

VIII. REFERENCES

[1] Robert C. Baumann, Radiation-Induced Soft Errors in Advanced

Semiconductor Technologies, IEEE Transactions on Device and Materials

Reliability, Volume 5, no. 3, pp 305-316

[2] Avizienis, A, Laprie, J.C, Dependable Computing: From Concepts to Design

Diversity, Proceedings of the IEEE, Volume 74, Issue 5, pp 629-638

[3] Luca Sterpone, Electronics System Design Techniques for Safety Critical

Applications, Lecture Notes in Electrical Engineering, Volume 26

[4] Ken Chapman, Virtex-5 SEU Critical Bit Information Extending the capability

of the Virtex-5 SEU controller

[5] Device Reliability Report, Third Quarter 2013, UG116 (v9.6) November 19,

2011

[6] Uli Kretzschmar, Armando Astarloa, Member, IEEE, Jesús Lázaro, Jaime

Jiménez, Aitzol Zuloaga, An Automatic Experimental Set-Up for Robustness

Analysis of Designs Implemented on SRAM FPGAs, 2011 International

Symposium on System on Chip (SoC), pp. 96 - 101Xilinx, “User guide:

Logicoretm ip soft error mitigation controllerv1.1. ” UG764 March 1, 2011

[7] L. Sterpone and M. Violante A new partial reconfiguration-based fault-injection

system to evaluate SEU effects in SRAM-based FPGAs, IEEE Transactions on

Nuclear Science, Volume 54 , Issue: 4, pp. 965 - 970

[8] M. Straka, J. Kastil, and Z. Kotasek, SEU Simulation Framework for Xilinx

FPGA: First Step towards Testing Fault Tolerant Systems, 14th Euromicro

Conference on Digital System Design (DSD), 2011, pp. 223 – 230

[9] Xilinx, NSEU Mitigation in Avionics Applications XAPP1073 (v1.0) May 17,

2010

[10] Xilinx, User guide: 7 Series FPGAs Configuration UG470 (v1.7) Octover 33,

2013

[11] Cristian Kohn, Partial Reconfiguration of a Hardware Accelerator on Zynq-

7000 All Programable SoC Devices XAPP1159 (v1.0) January 21, 2013

[12] Xilinx, Vivado Design Suite User Guide, Partial Reconfiguration UG909

(v2013.3) October 30, 2013

[13] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, G.R. Sechi, R.

Weigand Evaluation of Single Event Upset Mitigation using the FLIPERR Faut

Injection Platform, 22nd IEEE International Symposium on Defect and Fault

Tolerance inVLSI Systems pp.105,113, 26-28 Sept. 2007

[14] J. Nápoles, H. Guzmán, M. Aguirre, J.N. Tombs, F. Muñoz, V. Baena, A.

Torralba, L.G. Franquelo, Radiation Environment Emulation for VLSI Designs:

A Low Cost Platform based on Xilinx FPGA’s Industrial Electronics, 2007.

ISIE 2007. IEEE International Symposium on, pp.3334,3338, 4-7 June 2007

[15] Xilinx, UltraFast Design Methodology Guide for the Vivado Design Suite,

UG949 (v2014.1) April 2, 2014

ACCEPTED

MANUSCRIP
T

