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 Abstract— This paper presents a fault injection method 

for SEU (Single Event Upset) emulation in FPGAs based on 

loading at the programmable logic a configuration file with an 

erroneous bit. A “Xilinx Zynq®-7000 All Programmable SoC” 

device has been used to implement it, which combines a hard 

microprocessor (Processing System PS) with Programmable 

Logic (PL). The emulation tool is fully implemented on the 

Zynq chip, which means that neither additional external 

equipment nor PCB modifications are needed. 

Communications to external devices that slow down the 

configuration process are avoided, so a high fault-injection rate 

is achieved. Previous works consider including fault injection 

circuitry at the PL.  This circuitry can be affected by a faulty 

configuration file, leading the device to an unrecoverable state, 

which is named as “injection side effects”. In the method 

proposed in this paper the injection is implemented in the 

processing system of the Zynq device, making the injection 

system independent to the programmable logic and avoiding 

the previously mentioned effect. This method allows using 

complete bitstreams, partial bitstreams and one-frame 

bitstreams to inject faults. A comparison is done so as to find 

the most appropriate bitstream type. 

Keywords—SEU, FPGA, emulation; fault injection; fault 

tolerance; ZYNQ;   

I. INTRODUCTION

Modern manufacturing technologies are leading to 
smaller device sizes. As a result, chips performing more 
complex functions and operating at a higher frequency are 
being developed. However, they are becoming more and 
more vulnerable to radiation-induced SEUs. A radiation-
induced SEU happens when a high-energy particle hits the 
semiconductor storing an erroneous value at a memory cell 
[1]. The device-size reduction makes more likely for these 
particles to hit inverse-polarized p-n junctions, which are the 
most sensitive parts of electronic devices. 

According to [2] a fault is a physical phenomenon that 
leads to an error. And an error is an incorrect part of the 
system that can lead to a failure, which means that the 
equipment does not deliver correctly the service it has been 
designed for. Electronic devices are widely used in systems 
called safety critical, where a failure can lead to 
environmental damage, injury or death. So measures have to 
be taken when a radiation-induced SEU (fault) leads to a bit 

flip (error) that may provoke a malfunction (failure), which 
is not allowed in any way. 

SRAM based FPGAs are more vulnerable to SEUs than 
other semiconductor devices. In [1] it is mentioned that SEU 
events have a greater impact in SRAM cells than in DRAM 
or in Flash cells. In [3] the architecture of a SRAM based 
FPGA is presented and the effects produced by radiation are 
analyzed. The key element of a FPGA is the configuration 
memory, where the information about hardware resources is 
stored. If a critical bit of this memory flips, the implemented 
design’s functionality changes and a failure is provoked.  

The aim of SEU emulation systems is to quantify the 
amount of critical bits of a design. Device manufacturers as 
Xilinx publish a reliability report [5], where it is specified the 
failure rate per configuration memory Mb. So when the 
amount of critical bits in the configuration memory is 
known, the failure rate is immediately calculated.  

In [4] a method for critical bit estimation for standard 
designs is provided by Xilinx. Here it is mentioned that 
FPGA designs have a criticality ratio between 1% and 11%, 
as a result, it can be assumed that no more than 11% of the 
configuration bits are critical, even when the device is almost 
full. So according to [4] and Xilinx reliability report [5], 
where it is mentioned that SEU is 86FIT/Mb for 7series 
FPGAs at sea level, the failure rate of a ZYNQ7020 device, 
which has 32Mb configuration bits, would be: 

32Mb x 86FIT/Mb x 0.11= 302.72 FIT 

(1 FIT = 1 failure / 10^9 hours) 

The effect of radiation-induced SEU at sea level is quite 
low, when the device is used at another altitude for avionics 
or aerospace application the FIT value has to be multiplied 
by a derating factor as it is explained in [10]. At 40000ft the 
FIT value has to be multiplied by 561.70 [10], so the FIT 
value is: 

302.72FIT x 561.70 = 170037.82FIT 

However, when analyzing redundant fault tolerant 
systems this is not suitable. Only a few bits corresponding to 
majority voters or routing resources are critical in this case. 
So a fault injection environment is needed to evaluate the 
fault tolerance of these systems.  
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II. BITSTREAM FILE

A file named bitstream is used to configure Xilinx 
FPGAs. Here configuration and initial values of different 
elements of the FPGA are stored. Configuration values 
define the implemented hardware and remain unmodified at 
configuration memory during execution. Initial values are 
loaded into memory elements while configuration and are 
modified during operation.  

Most of the bits of a bitstream configure the routing 
resources and the CLBs (Configurable Logic Blocks), which 
are the key elements of FPGAs.  

The bitstream also contains initial values of flip-flops. If 
the LUT is used as distributed RAM or shift register, bits 
belonging to it are also initial value bits and not 
configuration bits. 

Besides, the bitstream contains configuration information 
of other elements as BRAMs, IOBs, DSP48 or clock 
resources (BUFGP, MCMM, PLL...). 

In figure 1 the structure of different bitstream files is 
represented. Xilinx bitstream file begins with a set of 32-bit 
commands. Different kinds of bitstream commands are 
documented at [11]. The file begins with a synchronization 
sequence, which is followed by a set of commands 
depending on the bitstream type. After these commands are 
sent the configuration data frames are loaded. 

The most common bitstream is the complete bitstream. It 
is generated by Xilinx development tools following the 
normal design flow and it contains configuration and initial 
value data for all the elements of the programmable device. 
Complete bitstream commands contain timing, 
synchronization, security and encryption. Then the 
configuration data is loaded and CRC check is done in order 
to assure bitstream integrity. If it is correct a command is 
sent in order to start the device and the file ends with a 
DESYNC command, which ends the configuration interface 
transfer. 

Fig. 1. Structure of different types of bitstream files 

Another bitstream type is the partial bitstream. The 
purpose of this file is to reconfigure only a part of the device 
while other parts work normally, which is named DPR 
(Dynamic Partial Reconfiguration). It is generated by 
following the partial reconfiguration design flow of Xilinx 

design tools. As it is thought to be loaded while the FPGA is 
working it does not contain the start order. The number of 
words loaded into the configuration memory has to be 
specified as well as the address of the programmable logic 
where these data has to be stored. It is organized in 
fragments and the size and address are specified for each 
fragment. In the end a CRC check is performed in order to 
check the integrity of the file. 

The time needed for a bitstream to be loaded is 
proportional to its size. As a result, partial bitstreams are 
loaded in a much shorter time than complete ones.  

Since configuration data is structured in frames, the 
optimum bitstream for fast fault injection is the one-frame 
bitstream. There are two ways to generate them, using the 
SEU Controller [7] or sending a read order to the 
configuration memory [9].  

Fault injection in FPGAs is based on reprogramming the 
device with a bitstream that has an erroneous bit. Once it has 
been reprogrammed a test vector is sent to circuit’s inputs 
and the device operation is observed. If a malfunction 
appears the flipped bit is considered to be critical. If a bit of 
the bitstream has been artificially modified, CRC check 
would not match. Thus, it must be disabled. The result of 
the check would be incorrect and the new data would never 
be stored. 

The content of sequential elements such as flip-flops, 
distributed RAM, LUT implemented shift registers, DSP 
registers and BRAMs should always be taken as critical. 
However, the first step after having reconfigured the device 
and before the verification process starts, the system has to 
be taken into a known state, which means that values of 
sequential elements are overwritten (more information at 
section 4.B.4 of this article). So the effect of having 
modified a bit containing the initial value of a sequential 
element is cancelled and the bit is wrongly considered as no 
critical. The amount of initialization bits of BRAMs, 
distributed RAM and flip-flops can be easily counted by the 
designer and they should be added to overall critical bits. 

Modifying bits belonging to commands has to be avoided 
as well. These are not going to be stored at the configuration 
memory, and they are not going to result affected by a 
radiation-induced SEU. 

III. BACKGROUND ON FPGA SEU INJECTION METHODS 

A. Internal Fault Injection

An internal subsystem decides which bit is flipped and 

controls the interface. As no cables to other boards or 

equipments are needed the injection rate is high. Up to now 

an internal configuration port implemented in the 

programmable logic has been used. In devices from Xilinx, 

a provider of programmable technologies and devices, it is 

called ICAP (Integrated Configuration Access Port). 

However, if a configuration bit belonging to the logic 

controlling the internal configuration port is flipped, the 
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injection subsystem can be damaged and the system stops 

working properly. Errors produced by this phenomenon are 

called injection side effects [6].  

In [8] a system based on partial reconfiguration is 

presented. The unit under test is placed at a reconfigurable 

region while the injection subsystem is located at the static 

region. This does not avoid injection side effects because 

static part can be routed across reconfigurable partitions. 

The time needed to reconfigure the logic with this partial 

bitstream depends on its size, but overall it is notably faster 

than loading a complete bitstream.  

When the unit under test is placed at a bounded region 

smaller than the whole device, the routing tool has fewer 

resources to carry the signals. This means that the final 

routing is more complex and signals have to go across more 

interconnection points, leading to a higher error rate. A SEU 

emulation platform should be as close to the final design as 

possible, and unluckily there is a great difference between 

an implementation occupying the whole FPGA and the 

same circuit implemented in a smaller bounded region. 

Xilinx has an IPcore called SEM (soft error mitigation 

controller) [7] that is used for SEU mitigation. It can be 

used for SEU emulation, although it is not its main 

functionality. After the flipped bit being addressed, the SEM 

performs a readback of the needed frame, flips the desired 

bit and partially reconfigures the FPGA. A one-frame partial 

bitstream needs very little time to be programmed. 

Nevertheless, the SEM has also influence on injection side 

effects.  

B. External Fault Injection Methods

The flipped bit is decided by an entity out of the FPGA 

device, and it is programmed through an external interface, 

such as JTAG or SelectMAP . The main advantage of 

external fault injection system is the fact that the emulation 

platform stays always unmodified and it is totally 

independent to the implemented design. The difficulty lies 

in managing the interface. JTAG, which is used in [9] is 

slow. And SelectMAP, although it can be fast, it is not easy 

to cope with. It usually requires a CPLD controlling it, 

which means that the PCB has to be modified. Note that all 

the systems mentioned [6][7][8][9] and the proposed in this 

paper are general methods that can operate on any board . 

C. Internal-External fault injection

In [6] a mixed internal-external approach is proposed. 

The SEU controller is used, which is the previous version of 

the SEM [7]. And to minimize the effects of self damage an 

external reconfiguration is periodically done. In this way the 

high rate of internal systems is mixed with the independence 

of external systems. 

D. Specific Board Based Fault Injection

In [14][15] fault injection platforms based on a specific 

board are presented. They achieve high injection 

performance and they avoid injection side-effects. The 

design has to be placed and routed for these platforms to 

perform the test. After having performed the test, the design 

has to be placed and routed again for the product board. So 

the obtained test results don't belong to the implementation 

that would operate under SEU conditions. 

IV. PRESENTED METHOD

A. System Architecture

A Xilinx ZYNQ-7000 All Programmable SoC device is 

chosen to implement this SEU emulation system. This 

system-on-chip combines a hard dual core ARM9 with a 

FPGA. To configure the programmable logic a hard 

interface controlled by the processing system is provided, 

which is called PCAP (Processor Configuration Access 

Port). In figure 2 a general scheme of the system is shown. 

Note that the UUT (Unit Under Test) is placed in the PL, 

and the fault injection system is set at the non-

reprogrammable part of the ZYNQ device. The system has 

been developed at a ZedBoard, which is a standard board 

containing a ZYNQ7020 device. 

The UUT is placed at the PL. Data transfer between PS 
(Processing System) and PL (Programmable Logic) is EMIO 
(Extendable Multiplexed I/O) signals using the GPIO 
peripheral of the ARM system.   

The bitstream manipulation software is placed at the PS, 
and faulty bitstreams are loaded to PL through PCAP 
(Processor Configuration Access Port), which is a hardware 
implemented configuration interface. As it is hard 
implemented, it is never modified by faulty bitstream 
carrying the system to an unrecoverable state. A SD card is 
used to store the correct bitstream generated by Xilinx tools.  

  Fig. 2. System architecture 

B. Fault Injection Flow
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First of all a bitstream is obtained, then it is modified to 

emulate a SEU, afterwards the device is reconfigured, then 

verification is done and finally  the injected fault is repaired. 

The test continues by modifying a new bit at the present 

bitstream. When all of the bits of the bitstream are analyzed 

a new bitstream is obtained (only if partial reconfiguration 

has been chosen). If all possible partial bitstreams have been 

analyzed the test is ended. In figure 3 the fault injection 

flow diagram is presented. 

1) Bitstream Generation

First of all the bitstream has to be obtained. As it has 

been mentioned before, there are 3 types of fault injection 

bitstreams; the complete bitstream, the partial bitstream and 

the one-frame bitstream. 

If a complete reconfiguration is chosen, the bitstream 

file is picked directly from the Xilinx BitGen tool. To 

generate a partial bitstream is not so immediate if the unit 

under test has not been placed at a bounded region in the 

programmable logic. After the address and the size of the 

bitstream has been specified, it has to be fulfilled with the 

content, which is stored in the complete bitstream. The 

addres has to be specified in a Xilinx format, and it is no 

way to convert from this format to linear address of the 

complete bitstream.  

This can be solved by brute-force attack, generating 

partial bitstreams and complete bitstreams containing those 

partials. Then the content of the partial is searched in the 

complete bitstream and in this way the position can be 

found. 

Once the position is found the content of the complete 

bitstream at that point is copied in the partial one. 

It is not possible to generate one-frame bitstreams at 

Xilinx Tools. It has been mentioned before that there are 

two ways to generate them, using the SEM IPcore or 

reading the content from the configuration memory. The 

first option has been discarded because it is implemented in 

the PL and injection side-effects are present.  

So the one-frame bitstream generation process starts 

with a readback order. Then the interface copies the content 

of the configuration memory at the processor’s memory. 

Finally bitstream headers are created. 

2) Erronoeous Bitstream Generation

Once the bitstream has been generated the value of a bit 

is changed emulating a SEU. CRC check has to be disabled. 

This action is done always after having repaired the 

previous injected error, unless there are no more bits 

remaining at the present bitstream. When all of the bits of 

the present bitstream have been tested a new bitstream is 

generated. 

3) Device reconfiguration

This is one of the most critical part of the system in 

terms of time performance. The PCAP is a 32bit 100MHz 

interface, so the time needed to load the full bitstream of 

ZYNQ7020, which has 4MB is: 

4MB *(1s/100E6 cycles)*(1cycle/4B) = 10ms 

However, in [12] it is mentioned that due to software 

overheads and DMA transfer time the overall time needed to 

load the whole file is 32ms. So the time needed to analyze 

the 4MB*8 bits of the full bitstream when complete 

reconfiguration is used is: 

4MB* (8bits/Byte) * 32ms = 1024000s = 284h 

 In [12] it is also mentioned that the time needed to load 

a partial bitstream of 134kB is 1060µs, so the time needed 

to analyze the 4MB of the complete bitstream is: 

4MB * (8bits/Byte) * 1060µs = 33920s = 9.42h 

Doing an extrapolation from these data it can be 

concluded that the time needed for loading a 1 frame 

bitstream of 404 Bytes is 3.18 µs. So the time needed to 

analyze 4MB of configuration bits is: 

4MB * (8bits/Byte) * 3.18µs = 101s 

So there is no doubt that using 1 frame bitstream is 

optimum in terms of time performance.  

While a partial bitstream is being configured uncontrolled 

outputs may be generated. In order to not disrupt the static 

logic the DPR flow [13] requires the reconfigurable 

partition to be placed at a bounded region independent from 

the static part. It is also defined that some glue logic should 

be placed between dynamic and static parts so as to create a 

safe interface between them.   

Fig. 3. Flow diagram 
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In this method there is not a bounded region for the 

dynamic part isolated from the static part. If a partial 

bitstream for fault injection is loaded, a region of the design 

is reconfigured while the rest continues working. During 

reconfiguration, dynamic part can provide uncontrolled 

outputs to the surrounding logic provoking damage out of 

the reconfigurable region. These effects will be named in 

this document as “DPR side-effects”. 

4) Verification

The objective of this part is to decide if a functional 

error has occurred after having reconfigured the device with 

a faulty bitstream. It is also very sensitive to overall testing 

time. An input is sent to the PL and after having waited the 

time the hardware needs to perform the operation the output 

of the PL is read and compared to the golden value. 

Before sending any input it is recommendable to carry 

the unit under test to a known state by overwriting register 

and memory contents. The easiest way to do this is to apply 

a reset. However, sequential circuits not containing a reset 

are becoming more and more typical nowadays. For 

example, in [16] it is recommended to use resets unless they 

are totally necessary. In this case it is more complex to 

return to the initial state. One idea is to apply a set of inputs 

that would carry the values of sequential elements to a 

known state. This can be complex and can require long 

initialization vectors. 

 The other possibility is to apply complete bitstreams to 

inject faults. In this case the sequential elements are 

initialized while a fault is being injected.  

5) Reparation

After having verified a faulty configuration the system 

has to return to a known state. This step is not necessary 

when complete reconfiguration has been chosen for fault 

injection. A complete reconfiguration loads initial values of 

all the elements of the device bringing it to a known state. 

When a faulty bitstream is loaded, the erroneous bit can 

provoke a fault in a region out of the influence area of the 

loaded bitstream (DPR side-effects). This means that if the 

device is reconfigured again with the correct partial 

bitstream that error would not be solved, and next injections 

would be taken as critical bits even when they are not. 

In order to mitigate the effects of DPR side-effects, the 

partial bitstream without the erroneous bit is loaded. A test 

is done after reparation, and if the error remains a complete 

reconfiguration is done. 

C. Comparing to Other fault Injection Systems

In the following table a comparison between injection 

and verification subsystems is presented. Note that the 

presented method can test an unbounded design. It has high-

speed internal injection having solved the issue of injection 

side effects. 

TABLE I.  INJECTION SUBSYSTEM COMPARISON 

Methods 
Fault injection subsystem 

Injectio

n type 
Dynamic part  

Bitstream 

type 

Injection side 

effects 

Xilinx SEM Internal Whole FPGA 1 Frame Yes 

[6] 

Internal 
& 

External 

Whole FPGA 1 Frame 
Yes but mitigated 
with external 

reconfiguration 

[8] Internal 
Bounded 

region 

Partial 

bitstream 
Yes 

[9] External 
Bounded 

region 
1 Frame No 

[11] [12] 
Specific 

board 
Whole FPGA - No 

Proposed  Internal Whole FPGA 

Complete/ 

Partial /One 

frame 

No 

V. RESULTS

The objective of this document, in addition to presenting 

the method, is to compare the different bitstream types find 

out which is the most appropriate to do the fault injections. 

A 1500 adder chain has been implemented as UUT at the 

PL, occupying the 70% of the device. After a faulty 

bitstream is loaded a vector of 30 elements is sent to the 

UUT and the result is compared to the golden value. All the 

sequential circuits of the design have a reset, so there is no 

trouble at carrying the system to the initial state. 

Then reparation is applied, (if complete bitstream has 

not been used) and verification is performed. If the error 

persists it is classified as type_2 error (and requires a 

complete reconfiguration). If the reparation removes the 

error the modified bit is classified as type_1.  

A. One column test

One CLB column of the PL has been tested using the 

three mentioned bitstream types; one-frame, partial and 

complete. The used device has 3 rows of 72 column and one 

CLB column contains 50 CLBs. The same test has been 

done three times for each bitstream type. The result is never 

the same. It is not possible to know which element is 

addressed by each bit of the configuration file. As a result it 

is not possible to find out why some bits are sometimes 

classified as critical and sometimes no. However, it can be 

concluded from the following table that the accuracy of the 

method is above 99%. In brackets the amount of type_2 

errors is represented, which are only present when one-

frame bitstream is used.  

TABLE II. ONE COLUMN TEST 
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Injection 

type 
Injections Test1 errors  Test2 errors Test3 errors 

Complete 116352 10873 (0) 10846 (0) 10860 (0) 
Partial 116352 10891 (0) 10888 (0) 10886 (0) 

One frame 116352 10896 (227) 10914 (233) 10891 (228) 

Then the position of the first 1964 errors has been 

monitored for the three bitstream types. It has been observed 

that 2 errors that are classified as critical at the complete 

bitstream are not detected at the partial and one-frame 

bitstreams. 3 errors detected at the one-frame bitstream are 

not detected at the others. 9 errors are detected at the partial 

bistream and at the one-frame bitstream, and not at the 

complete. The other 1950 errors are the same for the three 

bitstream types. From this it can be concluded that the 

accuracy of the method is above 99%. 

All the bits classified as type_2 errors at the one-frame 

bitstream are detected as type_1 errors at the other bitstream 

types. 

B. Critical Bit calculation

Finally, the amount of critical bits has been measured by 

testing all the bits for the different kind of bitstream types. 

This is done in order to evaluate the coverage level of the 

injection part. The complete bitstream has 32349088 bits, so 

32349088 different fault injections can be done. The partial 

bitstream method allows doing 18645408 injections. If 

injections are done at block RAM the number is higher. 

Injection in block RAMs has been discarded because they 

are not used by the unit under test and errors at that point are 

always 0. Something similar happens with the one-frame 

bitstream method. This method allows (without block 

RAM) 17782464 injections. The FIT value is given for 

40000ft 

Even when fault injection is done at block RAM, the 

maximum possible fault injection number does not reach the 

32349088 bits of the complete bitstream. This happens 

because Xilinx tools don’t allow creating partial bitstreams 

containing IO blocks, clocking or other special configurable 

resources. This is not a big problem because failures at IO 

blocks can’t be detected in internal verification approaches 

and the other resources are usually not used in normal 

designs. 

When complete bitstream has been used only the 25% of 

the total bits have been tested in order to cut down the test 

time. 15 days are needed to analyze the 100% of the bits of 

the complete bitstream. The obtained result is multiplied by 

4 to obtain the amount of critical bits of the device. This is 

the result of an extrapolation, thus, it is not very exact. 

TABLE III. CRITICAL BITS CALCULATION 

Injection 

type 
Injections Errors  Time FIT 

Complete 8087272 346027 76h 66860 
Partial 18645408 1512430 19h 73059 

One frame 17782464 1470651 8h 71041 

VI. CONCLUSIONS 

A fast and accurate method for SEU characterization has 

been presented. It is fast because the injection and the 

verification are done internally Since the final implemented 

design can be tested an accurate result is provided. The three 

presented bitstream types give an accurate result, (above 99%). 

Complete bitstream is more appropriate when sequential 

elements without reset are used. When it is easy to carry the 

sequential elements of the system to a known state, a fast 

injection test based on one-frame bitstreams can be done. 
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