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ABSTRACT Fall detection has become an area of interest in recent years, as quick response to these
events is critical to reduce the morbidity and mortality rate. In order to ensure proper fall detection, several
technologies have been developed, including vision system, environmental detection systems, and wearable
sensor based systems. However, in elderly or impaired people, it has been shown that the implementation
of sensors in Assistive Devices for Walking, such as crutches or canes, can also be a promising alternative.
In this work, a Support Vector Machine (SVM) based Fall Detection system is proposed, which uses the
data provided by a Sensorized Tip which can be attached to different Assistive Devices for Walking (ADW).
Unlike other approaches, the developed one is able to differentiate the fall of the ADW from the fall of the
user. For that purpose, the developed Fall Detector uses two modules connected in series. The first one detects
all falls, while the second differentiates between user and ADW falls. The proposed approach is validated in
a set of experimental tests carried out by healthy volunteers that have simulated different falls. In addition,
a comparative analysis is carried out by comparing the performance of the Sensorized Tip based Fall Detector
and a state-of-the-art commercial accelerometer system. Results demonstrate that the proposed approach
provides high Fall Detection Ratios (over 90%), similar or higher to wearable-sensor based approaches.

INDEX TERMS Machine learning, support vector machine, random forest, fall detection, wearable sensors,

instrumented crutch, monitoring.
I. INTRODUCTION
Recent studies, including relevant ones from the World
Health Organization (WHO) [1], [2], state that more than 28 %
of the population over 64 years suffers at least one fall per
year. In elderly or physically impaired people falls can have
a great impact on their health and daily life [3], [4]. In fact,
falls cause physical injuries in 6% of the cases [5], [6], from
which 14% can be serious injuries [7]. Moreover, the fear
to falls in elderly people has an important impact in their
social life, as 15% reduce their social activity outside their
home [6].

Studies have emphasised that quick action in the event of
a fall is critical, especially in people who live alone, since the
longer it takes to react to the event, the higher the morbidity
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or mortality rate is [8], [9]. Hence, the development of novel
approaches to detect falls and reduce the reaction time is
critical to minimize the impact of these situations.

In the literature, three main sensing systems have been
proposed to detect falls, which are differentiated considering
the nature of the captured signals [10]-[12]: 1) vision sys-
tems; 2) environmental detection systems; and 3) wearable
sensor-based systems.

Vision systems [13]-[21], process images of one or several
cameras to detect falls. An advantage of these systems is
that they can also provide an image of the fallen person,
which helps evaluating the severity of the fall. However, as the
system is designed to be static, they present limited range
of capture, typically constrained to a specific room, being
unable to detect falls outside this area. Moreover, having a
constantly active home vision-based system can cause pri-
vacy problems [15].
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Environmental detection systems are based on the detec-
tion of the variation of environmental signals such as radio
signals [22]-[24], sound signals [25], [26] or ground vibra-
tions [27] to detect falls. These approaches present less pri-
vacy concerns, but their applicability is also limited to a
specific capture range. In addition, in home environments,
different activities can cause interference with the monitoring
systems.

Wearable sensors are small sensors that can be placed
almost anywhere in the body. Thanks to their small size
and weight, they can be carried out by the person to be
monitored, increasing their capture range significantly. Most
of the approaches to detect falls based on wearable sensors are
based on the use of inertial sensors. Among these, multiple
solutions can be found using accelerometers in the litera-
ture [19], [28]-[39]. Some works also propose the use of
IMUs (Inertial Measurement Unit) which combine the former
with gyroscopes and magnetometers and allow to estimate
the 3D orientation of the device in a global reference sys-
tem [40]-[43]. A particular subset of these approaches use
the internal IMUs of current smartphones [44]-[47]. Other
approaches propose the use of barometers [48] or even the
microphone of smartphones [25].

In recent years, wearable sensors have become one of the
main approaches for Fall Detection. However, it is to be noted
that their placement with respect to the body is a critical issue
when processing the captured data, as the received signals
will vary depending on this relative position. Most of the
works propose to place the sensors on the waist [29], [31],
[34], [35], [48]. Nevertheless, others propose their use on
the wrist [19], [28], [33], the foot [32] or the back [41].
Defining the optimal placement of sensors has been the focus
of different studies [30], [42], evaluating their placement in
the ankles, chest and waist [30], and adding to these the head,
wrists and thigh [42]. The aforementioned studies conclude
that the best position to perform Fall Detection is at the waist,
although optimal results are also achieved with the sensor
element located on the chest [30], [38].

Although in the last years the size of wearable sensors
has reduced, in elderly or impaired people, the attachment
of the sensor to the body can cause rejection by the user.
In these cases, several works have proposed to introduce
sensors into Assistive Devices for Walking (ADW) such as
crutches [49] or canes [50]-[52] in order to detect falls.
The proposed devices use inertial sensors [52] which can be
combined with force sensors [49], [50], or GPS and heart
rate sensors [51]. These devices allow minimal discomfort
of the user, but also require a proper algorithm to detect the
fall.

Fall Detection is carried out by interpreting the data pro-
vided by the sensors integrated in the aforementioned devices.
Two main approaches exist for this purpose. The first pro-
cesses directly the raw data of the sensors [28], [33], requiring
algorithms that typically imply higher computational cost.
The second considers a pre-processing step, in which a set
of features are extracted from the raw data, reducing the
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dimensionality of the problem [32], [34], [37], [42], [46],
[53], [54].

The implementation of the Fall Detection algorithm is typi-
cally addressed by the design of a machine learning technique
based classifier [55]. Among the different approaches, Arti-
ficial Neural Networks (ANN) based on MLP (Multi-Layer
Perceptron) [31], [33], [34], [41], [42], [53], Convolutional
Neural Networks (CNN) [17], [19], [24], or Deep Learn-
ing approaches [22], [28], [35], [46] can be found. Other
classification approaches based on SVM (Support Vector
Machine) [26], [30], [32], [36], [37], [41], [42], [46]-[48],
or K-NN (K-Nearest Neighbor) [14], [15], [37] have been
also proposed. The aforementioned solutions provide a high
rate of Fall detection when applied to different devices. How-
ever, in the case of Fall Detectors developed for ADW, the
proposed approaches have not been designed to differentiate
between the user falling with the ADW, and the ADW falling
without the user.

In summary, it can be concluded that due to the importance
of quick action in the event of falls, their detection using
monitoring devices has raised as a relevant research line in
recent years. In the case of impaired or elderly people the
use of sensorized ADW has been proposed as an appropriate
approach. However, most works proposed in this area do not
consider these devices. Moreover, the proposed ADW-based
Fall Detectors are prone to false positives, as they are not able
to discern when he ADW has fallen with the user or without
1t.

Hence, in this work, a novel Fall Detection approach is pro-
posed for people that require ADW. The proposed approach
is based on a Sensorized Tip which can be attached to a
standard crutch or cane, and aims to give some insight into
the previously cited issues, with four relevant contributions:
1) The approach is focused on people that require ADW;
2) A comprehensive set of features to detect falls is pro-
posed and optimized using a Feature Selection methodology;
3) Falls of the ADW without the user (false positives) are con-
sidered; 4) A comparative analysis is carried out considering
four different scenarios: using only data from the Sensorized
Tip, from the wearable sensors, from all accelerometer data;
or using all data.

The rest of the work is structured as follows. Section II
details both the developed Sensorized Tip and the wear-
able sensors used for the development of the Fall Detectors.
Section III presents an overview of the proposed two-step
Machine Learning-based Fall Detection approach. Section IV
details the experiments executed to generate the datasets to
develop the Fall Detector. Section V explains the methodol-
ogy used to define the fall Detection algorithms. Section VI
shows the results of the comparative analysis carried out to
evaluate the approach. Finally, the most important ideas are
summarized in Section VIIL.

Il. FALL MONITORING SYSTEMS
In this work, the use of the Sensorized Tip developed in [56]
is proposed to monitor the user that requires an Assistive
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FIGURE 1. Sensorized Tip used for fall detection (on a crutch and off) and
local axes of the Sensorized Tip.

Device for Walking. As it can be seen in Figure 1, the
Sensorized Tip can be easily attached to a crutch or cane,
providing data of both the user’s motion and the force
exerted.

The Sensorized Tip is made of a lightweight aluminum
structure, which contains a set of sensors: an Inertial Mea-
surement Unit with 9 degrees of freedom MTi-3 from XSens,
which provides information on the 3D motion of the Sen-
sorized Tip (linear acceleration, angular velocity and mag-
netic field in the local xyz axes); a BMP280 barometer from
Bosch that can provide estimation on the relative height of
the Sensorized Tip; and a C9C force sensor from HBM that
provides the axial force applied on the ADW. In addition, the
MTi-3 provides an estimation of the global orientation of the
device on a global XYZ coordinate system, which allows to
estimate its angle of inclination («) with respect to the ground
by,

o = 1 /2 — acos(projzz/|projzz|) (1)

where projzz is the projection of the local z axis (Figure 1)
in the global Z axis (normal to the ground) and |projzz| is its
module.

It is to be noted that the data from the magnetometer and
the BMP280 barometer will not be used in this work.

In order to evaluate the aforementioned device as a fall
monitoring system, in this work, the Fall Detectors will
be also be developed for a wearable sensor system. The
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FIGURE 2. GENEACctiv accelerometer sensors positions in the body.

GENEActiv commercial 3-axis accelerometers, manufac-
tured by Activinsights, have been selected for this purpose.
In particular the GENEActiv devices were located on the non-
dominant wrist, on the chest, on the lower back, and in the
pocket corresponding to the dominant side (see Figure 2).
The GENEActiv wearable sensors on the wrist and in the
pocket are used to simulate a smartwatch and a smartphone
respectively. This way, the different sensor data provided by
the Sensorized Tip and the Wearable system can be evaluated
to analyze their effectiveness to detect falls.

Ill. OVERVIEW

This paper presents a novel Fall Detector approach based on
the data provided by a Sensorized Tip attached to an Assis-
tive Device for Walking (ADW). The proposed approach is
composed by two modules connected in series, as detailed in
Figure 3. The first module (ADW Fall Detector) is focused
on detecting the fall of the ADW; while the second (User &
ADW Fall Detector) uses the fall data to evaluate if the user
has fallen with the ADW, or only the ADW has fallen. This
latter module is designed to avoid false positives due to ADW
accidental falls.

For the development of the ADW Fall Detector module,
two experimentally obtained datasets will be used to gener-
ate the training set: a dataset composed by user falls and a
dataset that includes different physical activities carried out
by the user. For the User & ADW Fall Detector module,
where the goal is to determine if the user has fallen with
the ADW, the user fall dataset will be combined with a
set of experiments in which only the ADW has fallen to
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FIGURE 3. Two-module methodology followed for falls detection.

generate the training set. The protocol that was defined to
obtain the different datasets will be detailed in Section IV.
This two-module approach has been designed in order to
develop two different Machine-Learning based detectors. The
presented two-module approach has also a reduced computa-
tional cost. In fact, if a fall of the ADW is not detected by the
first module, the second module is not applied.

The training datasets are processed to generate a set of
features to characterize each fall, and a feature evaluation
procedure is implemented to detect the most relevant ones to
design each Machine Learning-based module. In particular
a Support Vector Machine (SVM) approach will be used to
implement the algorithm of each module. The procedure will
be detailed in Section V.

Finally, in order to evaluate the proposed approach, this
will be compared with the performance of a Fall Detector that
uses different sets of sensor data: with GENEActiv wearable
sensor data, all possible accelerometers (Sensorized Tip inter-
nal accelerometer and four GENEActiv accelerometers) and
all data sensors. It is to be noted that for these particular cases,
only the first module (see Figure 3) will be implemented,
as the sensors are placed also in the user. Results will be
analyzed in Section VI.

IV. EXPERIMENTAL PROTOCOL AND DATASET
GENERATION
In order to develop a Machine Learning-based algorithm,
a proper database is to be generated. This requires the def-
inition and execution of a protocol containing a set of falls
and physical activities while using an ADW. In this section,
the definition of the experiments is detailed.

The simulations were carried out by 12 healthy volun-
teers (4 women and 8 men, ranging between 25-40 years,
3 left-handed and the rest right-handed) in a controlled
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environment. In order to perform the falling simulations,
a mattress was used, to avoid possible injuries to the vol-
unteers. The volunteers wore the GENEActiv accelerometers
during the experiments, and the Sensorized Tip was attached
to the crutch (Figure 2). The protocol was approved by the
Ethics Committee at University of Bologna and all partici-
pants provided informed written consent.

Three datasets have been created in order to generate the
training set of each module (ADW Fall Detector and User
& ADW Fuall Detector): a) User Fall dataset, which included
data from people falling while using a crutch; b) User
Physical Activities dataset, which included data from peo-
ple performing different physical activities using the crutch;
c) ADW Fall dataset, in which the crutch was left standing
still at different positions, and then forced to fall without the
user. As previously detailed, datasets 1 and 2 will be used to
train the ADW Fuall Detector module, while datasets 1 and 3
are used to train the User & ADW Fall Detection mod-
ule. Next, the experiments included in each dataset are
detailed:

A. USER FALL DATASET

In order to simulate as close as possible real falls, videos
associated to falls of people falling while using ADW from
the Databrary database [57], [58] were analyzed. From this
analysis, 16 scenarios were considered, in particular the pro-
tocol defined includes 8 static falls from an upright position
(1-8) and 8 dynamic falls from walking (9-16):

1) While standing still, try to take a step and trip over the
ADW and fall forwards.

2) Fall forwards.

3) Fall backwards simulating a faint.

4) Fall backwards.
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FIGURE 4. Graphical representation of some of the simulated falls during the walking: a) Cases 9, 10, 11, 12 and 13. b) Cases 14,

15. c) Case 16.

Rotate 90° to the right and fall on the right side.

Fall on the right side.

Rotate 90° to the left and fall on the left side.

Fall on the left side.

Walk towards the mattress, trip over the ADW and fall
forwards (see Figure 4a).

Walk towards the mattress, simulate a trip over an
object and fall forwards (see Figure 4a).

Walk towards the mattress, simulate a trip over an
object and fall on the left side (see Figure 4a).

Walk towards the mattress, simulate a trip over an
object and fall on the right side (see Figure 4a).

Walk towards the mattress, simulate a trip over an
object and fall backwards (see Figure 4a).

Loss of balance, try to recover it by walking a few
meters and fall forwards (see Figure 4b).

Loss of balance, try to recover it by walking a few
meters and fall backwards (see Figure 4b).

16)

Walk and slide to end up falling backwards (see
Figure 4c).

B. USER PHYSICAL ACTIVITY DATASET

In order to complete the database with no-fall activities,
a total of 7 different physical activities using ADW have been
simulated:

1y

2)

3)

4)

5)

Walking at a normal pace: a circuit (see Figure 5) has
been defined in which the volunteer has to walk straight
in several directions and make turns.

Walking quickly: the same circuit (see Figure 5) per-
formed previously is repeated, but in this case walking
approximately 30% faster.

Standing still: stay still in place for 30 seconds.

Going up and down stairs: going up and down stairs
repeatedly.

Get up and sit in a chair: get up and sit down repeatedly
for 30 seconds.
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FIGURE 5. Graphical representation of some of the physical activities walking circuit.

6) Pick up an object from the floor and stand up repeatedly
for 30 seconds.

7) Loss of balance without falling (near fall), repeated
4 times.

C. ADW FALL DATASET

Finally, a series of tests has been carried out in which the
ADW falls without the user:

1) Crutch placed in different static positions on the floor
or while leaning on a site.

2) Dropping the crutch while standing still, or while walk-
ing. 80 crutch falls will be performed.

The dataset consists of 192 user falls (using ADW),
108 minutes of physical activities (using ADW), 5 minutes
of different static ADW positions and 80 ADW falls.

V. DESIGN METHODOLOGY

Once the datasets have been generated, the two algorithms
proposed in Figure 3 will be designed. The first will be a ADW
Fall Detection module, which will be designed to detect a fall;
while the second will determine if the user is involved in the
fall (or only the ADW). As the system is designed so that the
first module output is used in the second one, each algorithm
will require different input data, as it will be explained next.

A. ADW FALL DETECTOR DESIGN

The purpose of the ADW Fall Detection module is to detect
when a fall happens while using the ADW. In this section,
the methodology used to design the Machine Learning-based
detector will be detailed (see Figure 7). This methodol-
ogy is based on well-established methodologies ones in the
literature [39].

1) DATA SEGMENTATION AND SET GENERATION FOR
TRAINING

The data used to design the ADW Fall Detector module is
extracted from the User Fall dataset and the User Physical
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Activity dataset previously detailed. The time sequences cap-
tured in these datasets are first processed using a segmenta-
tion process, allowing to extract a set of features from each
segment or window.

For this purpose, the data is divided into fixed-size sliding
windows. The window size has been set to 100 samples
(2 seconds), as in the experiments this value allows to capture
the fall (see Figure 6a). In addition, the beginning of each
window will be shifted by 20 samples (0.4 seconds) from
the beginning of the previous one (see Figure 6b) to limit the
computational cost.

Once segmentation has been carried out, each window
will be considered a sample for the design of the ADW
Fall Detector. For this purpose, each window is labelled to
define if it corresponds to a fall or not. The event of a fall
will be considered if a window contains more than 50% of
its data samples associated to a fall (see Figure 6a). Note
that the physical activity related samples are not tagged as
falls.

In order to develop the Machine Learning-based ADW
Fall Detector, the aforementioned set is divided into two: a
training dataset, which will be used to develop the ADW Fall
Detector, and a test dataset, which will be used to validate its
generalization capabilities. The training dataset is composed
the simulations carried out by 8 subjects, while the remaining
data (4 subjects) are used for testing. In addition, in order to
balance the number of fall/not falls samples, an adjusted set
is generated, as detailed in Table 1. This adjustment has been
made, in the case of falls, by eliminating those windows that
do not have 50% of the window in the fall period. In the case
of physical activities, this adjustment has been made trying
to maintain a similar number of samples with respect to the
falls.

As defined in Section II, each set associated to the ADW
Fall Detector will contain the segmented windows related to
the data captured from the Sensorized Tip: 3-axis accelerom-
eter, 3-axis gyroscope, force sensor and estimated inclination
() with respect to the ground (see Table 2).
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TABLE 1. Distribution of the dataset and adjustment of the number of
data.

Windows
Train | Test | Total
Participants 8 4 12
Fall Nop Falls 2770 1216 | 3986
Detector Adjusted | Not Falls 5805 2600 | 8405
Set Adjusted Falls 759 382 1141
Not Falls 866 433 1299
User Fall User Falls 128 64 192
Detector Set ADW Falls 50 30 80

2) POTENTIAL FEATURES SET GENERATION

The use of segmentation allows to obtain a dataset composed
by discrete data units, one for each window, from which a
set of features can be easily extracted. These features (such
as mean, variance, ...) allow to reduce the dimensionality
of the data, generating numeric values that can be easily
processed by Machine Learning-based approaches. In this
section, a methodology to select the most appropriate features
to design a Machine Learning (ML)-based Fall Detector is
detailed (see Figure 7).

In the literature, there are different approaches to define the
set of potential features. A typical approach is to use statistical
operators to characterize the data from the window. In this
work, the following statistical features will be extracted:

e Mean (MEAN).

o Standard Deviation (STD).

e Variance (VAR).

o Kurtosis (KUR).

« Intercuartile Range (IR).

o Area Under the Signal (AUS).

o Maximum value of the window (MAX).
e Minimum value of the window (MIN).

These statistical operators are applied to the previously
defined training dataset, composed by the segmented win-
dows or samples related to each of the signals provided by the
monitoring device (Sensorized Tip’s force sensor, Sensorized
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Tip’s gyroscope (x, y, z), Sensorized Tip’s accelerometer
(x, ¥, z) and Sensorized Tip’s inclination angle («)). The
combination of these operators on each sensor signal device
generates a feature. In the case of the Sensorized Tip, a total
of 64 features can be defined per each sample.

3) ADW FALL DETECTOR TRAINING

Although all possible features can be used to train the
ML-based Fall Detector, due to the high dimension of the
input data, it is advisable to perform an analysis to detect
the most relevant features. This will allow to reduce the
computational cost of the approach, if implemented in real-
time.

In the literature, different approaches are proposed to deter-
mine the relative importance of a feature for a classification
problem, such as Random Forest (RF) [59] and Relief [60].
In this work, the Random Forest approach has been selected,
as it provided better results. This approach consists of the
generation of a large set of decision trees for classification
purposes, also known as a forest. The trees are generated
by using a random set of samples and features, so that in
the training process different features can be tested and their
relative importance evaluated.

Hence, once the training dataset is processed by the Ran-
dom Forest and the features have been ordered considering
their relative importance to the Fall Detection process, a set
of Support Vector Machines (SVMs) will be trained, consid-
ering different subsets of features. The goal is to determine
the minimum number of features to achieve an appropriate
Fall Detection performance.

To achieve this goal, first the most relevant features will be
used to train the Fall Detector SVM, then the number of fea-
tures will be gradually increased. Each SVM is trained using
Matlab’s Statistic and Machine Learning toolbox, where the
SVM hyperparameters are optimized by the use of a K-Fold
cross validation approach with K = 10. Once trained, the test
set is used to evaluate the Fall Detection performance of each
SVM. Results will be detailed in Section VI.
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FIGURE 7. Methodology followed for the design of the Fall Detector modules based on Machine Learning.

B. USER AND ADW FALL DETECTOR

This algorithm is executed only when the ADW Fall Detector
module has detected a fall. In this scenario, User & ADW Fuall
Detector module analyzes the fall data in order to determine
if the user has fallen with the ADW, or only the ADW has
fallen. This is one of the novel contributions of the present
work.

The methodology used for the development of this module
is similar to the previous one (see Figure 7). However, the
input datasets differ, as data from the ADW Fall and User
Fall datasets are used to train and test this algorithm.

1) DATA SEGMENTATION AND SET GENERATION FOR
TRAINING

This module uses the data provided by the ADW Fall Detec-
tion module. Hence, the sample detected as a fall by the latter
ADW Fall Detector will be processed in this algorithm. Based
on this premise, a set of fall samples is generated from the
User Fall dataset, in which the detected central fall window
is only considered for this module. In addition, the falls
associated to ADW fall dataset will also be included, tagged
as negative user falls. A set composed by a total of 192 user
falls and 80 ADW falls (without the user) is generated, from
which 128 user falls and 50 ADW falls are used for training
(Table 1).

2) USER AND ADW FALL DETECTOR TRAINING

Once the datasets are generated, the statistical operators pre-
viously detailed are applied on the sensor signals of the
Sensorized Tip to extract the 64 features associated to each
sample. These are then processed through a Random-Forest
approach, obtaining the relative importance of each feature.
A set of SVMs is trained using the same approach as the ADW
Fall Detector module.

VI. RESULTS AND COMPARATIVE ANALYSIS

This section focuses on evaluating the proposed two-module
Fall Detection approach using the data provided by the
Sensorized Tip. For that purpose, a comparative analysis is
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carried out by considering also the data provided by the
wearable sensor GENEActiv detailed in Section II.

In the analysis four cases are compared: 1) The proposed
approach based on the Sensorized Tip Data; 2) The use of the
GENEActive wearable sensor data; 3) The use of all possible
accelerometers (Sensorized Tip internal accelerometer and
four GENEActiv accelerometers); 4) The use of all data
sensors (Table 2).

In order to perform the comparison, the procedure to design
the ADW Fall Detector module has been applied to all afore-
mentioned cases: feature generation, Random Forest-based
relative importance detection and SVM training. Note that the
User & ADW Fall Detection module has been only used for
the Sensorized Tip case, as no sensor is placed on the user.
Hence, this case will be analyzed in a separate subsection.

A. ADW FALL DETECTOR MODULE EVALUATION

1) FEATURE RELEVANCE ANALYSIS

Following the feature extraction procedure, a set of 64 fea-
tures per sample are generated for the dataset based on
the Sensorized Tip’s sensor data; 96 for the case of the
GENEACctiv wearable sensors; 120 if all accelerometer data
is considered; and 160 if all sensor data is considered.

As the number of features is important, in order to
reduce the dimensionality of the problem, a Random-Forest
approach is used for each case to detect the most relevant
features, detailed in Section VI. These are detailed in the Fall
Detector columns of Table 3.

As it can be seen, when the angle of inclination of the ADW
is considered in the set of data, the features extracted from this
signal are among the most relevant, the maximum angle being
the most important, as it reflects large variations due to falls.

In the case of GENEActiv sensors, the 3 most important
features are derived from the sensor on the lower back of
the user (in particular its X axis, vertical), which is the one
which suffers the most variation when the user falls. Note that
features from sensors located on the chest are also among the
10 most relevant features.

If only accelerometer data is used from both the Sen-
sorized Tip and the GENEActiv sensors, the most relevant
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TABLE 2. Analyzed Cases considering sensor input.

Device Sensors

Different analysis forms

Sensorized

Tip

GENEActiv  Accelerometer All
Sensors Sensors Sensors

Angle of
inclination («)
3 axis
Gyroscope
Force

Sensor

3 axis
Accelerometer

Sensorized
Tip

XXX X

X

4x GENEActiv
Accelerometers

3 axis
Accelerometer

LT I T

TABLE 3. Weight of the features provided by the RF in the different case studies. (« = ADW inclination angle, accel = accelerometer, gyro = gyroscope),

for the ADW Fall Detector and the User & ADW Fall Detector.

Evaluated Fall Detector approaches

Sensorized Tip GENEActiv fl DeteCtorAccelerometers All Sensors User & ADW Fall Detector
Feature Weight Feature Weight Feature Weight Feature Weight Feature Weight
a MAX 3.587 f{‘gz;“gfgxis 2619 E%Z‘ff% wis | 2293 | aMAX 1.773 giTpr"rce 4.988
P Y o R BT B R o B R B i R
KORXasis | 2758 | AUsxais | 229 | MEANXaxs | 2125 | MEAN Xanis | 1715 | Als | 4236
o MEAN 2.630 ﬁ‘g;‘l\?c)iixis 2.147 11\3/[*‘1‘;\11‘ ;‘(Cjis 2091 | a MEAN 1.460 ﬁ}ég);]ce 4232
MINXais | 25| AUSxas | 200 | AUsXawis | 89 | AUSXads | 1% | stoZavs | 100
o STD 2455 | NNz | 199 | Avsxas | | MEANZaxis | 90 | VAR Zawis | 359
a VAR 2379 Eﬁ; ?i‘;‘h 1.535 ;\F/i[g;)lgcze]axis 1626 | o AUS 1.418 E/}%\?Czcixis 3.648
g/}%zcl\cleé axis 2.341 E/Ialil)((a)c(cg)l(is 1.519 g/i[%?CZCZIXiS 1315 XISSA CZczlxis 1.341 E{%l%y\rfoaxis 2.730
K/}[I)l\%er(;xis 2.167 gﬁflzt ;ngs 1,505 gilPDacYcealxis 1246 ]I;igliy)zoaxis 1213 ITIIQng Z)r((i)s 2721
PO X I e P S M VTR o R R e
g/}%i(cczelaxis 2.095 Ilz(gll;etzaac)fiil 1.441 ?(Vlrlllsit ;Cz;fils 1227 FI?Bl%y;Oaxis 1.091 3&%{)’;’ axis 2.355
KORzaxs | 197 | AUszms | "% | MEANYaxs | 101 | MiNZaus | 1O | @R 2345

features include both the Sensorized Tip’s accelerometer and
the GENEActiv sensor on the lower back, as in the previous
case.

These trends seem to be confirmed if all sensors are
used, being the Tip inclination angle, the acceleration of
the back sensor and tip sensor among the most relevant
ones.

2) PERFORMANCE ANALYSIS

As defined in Section V, once the relative importance of
features has been determined, a set of SVMs is trained with an
increasing number of features, taking into account the most
relevant features.
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Table 4 shows the performance results for the Fall Detector
associated to each number of the first n most relevant features
(first column). In general, all the analyzed cases provide
F-score over 0.96, which validate the use of the Sensorized
Tip. In addition, it can be seen that the number of features
used is not especially relevant, since very good results are
achieved for all scenarios. However, there are slight differ-
ences between the approaches that can be analyzed.

Using only the sensors included in the Sensorized Tip,
results for this case are good for any number of features.
Considering the 2 most relevant features (¢ maximum and
Tip gyroscope minimum in Z axis, Table 3) provide the
best results: a precision of 0.986, a specificity of 0.988,
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TABLE 4. Results of the different cases to be analyzed of the SVM-based Fall Detectors (P=Precision, Sp=Specificity, Se=Sensitivity, F=F-score).

Sensorized Tip GENEActiv Accelerometers All Sensors

I\III?' P SP Se F P SpP Se F P SpP Se F P SpP Se F

1 0.982 | 0.984 | 1.000 | 0.991 | 0.941 | 0.945 [ 0.984 | 0.962 | 0.979 | 0.982 | 0.979 | 0.979 | 0.970 | 0.972 | 1.000 | 0.985
2 0.986 | 0.988 | 1.000 | 0.993 | 0.956 | 0.960 | 1.000 | 0.978 | 0.979 | 0.982 | 0.981 | 0.980 | 0.986 | 0.988 | 1.000 | 0.993
3 0.980 | 0.982 | 1.000 | 0.990 | 0.957 | 0.960 | 1.000 | 0.978 | 0.982 | 0.984 | 0.989 | 0.985 | 0.986 | 0.988 | 1.000 | 0.993
4 0.982 | 0.984 | 1.000 | 0.991 | 0.957 | 0.961 | 1.000 | 0.978 | 0.984 | 0.985 | 1.000 | 0.992 | 0.982 | 0.984 | 1.000 | 0.991
5 0.983 | 0.985 | 1.000 | 0.991 | 0.953 | 0.957 | 0.999 | 0.976 | 0.980 | 0.982 | 1.000 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000
6 0.983 | 0.984 | 1.000 | 0.991 | 0.969 | 0.972 | 1.000 | 0.984 | 0.990 | 0.991 | 1.000 | 0.995 | 1.000 | 1.000 | 1.000 | 1.000
7 0.987 | 0.988 | 1.000 | 0.993 | 0.978 | 0.980 | 1.000 | 0.989 | 0.997 | 0.998 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
8 0.982 | 0.983 | 1.000 | 0.991 | 0.971 | 0.973 | 1.000 | 0.985 | 0.981 | 0.983 | 1.000 | 0.991 | 1.000 | 1.000 | 1.000 | 1.000
9 0.982 | 0.984 | 1.000 | 0.991 | 0.970 | 0.973 | 0.999 | 0.985 | 0.984 | 0.986 | 1.000 | 0.992 | 0.992 | 0.993 | 1.000 | 0.996
10 0.982 | 0984 | 1.000 | 0.991 | 0.974 | 0.977 | 0.997 | 0.986 | 0.982 | 0.983 | 1.000 | 0.991 | 0.989 | 0.991 | 1.000 | 0.995
11 0.982 | 0.984 | 1.000 | 0.991 | 0.969 | 0.972 | 0.992 | 0.980 | 0.977 | 0.979 | 1.000 | 0.988 | 0.993 | 0.994 | 1.000 | 0.996
12 0.983 | 0.985 | 1.000 | 0.991 | 0.969 | 0.972 | 0.999 | 0.984 | 0.980 | 0.982 | 1.000 | 0.990 | 0.997 | 0.998 | 1.000 | 0.999
13 0.982 | 0984 | 1.000 | 0.991 | 0.968 | 0.971 | 0.999 | 0.983 | 0.979 | 0.981 | 0.999 | 0.989 | 0.998 | 0.998 | 1.000 | 0.999
14 0.982 | 0.984 | 1.000 | 0.991 | 0.974 | 0.977 | 1.000 | 0.987 | 0.976 | 0.979 | 0.998 | 0.987 | 0.987 | 0.988 | 1.000 | 0.993
15 0.984 | 0.985 | 1.000 | 0.992 | 0.976 | 0.979 | 1.000 | 0.988 | 0.979 | 0.981 | 0.999 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000

a sensitivity of 1 and an F-score of 0.993 is achieved. More-
over, using the maximum inclination angle («) can also pro-
vide very good results.

The GENEActiv wearable devices, provide the lower per-
formance of all analyzed cases. A maximum F-score of 0.989,
with a precision of 0.978, specificity of 0.980 and sensibility
of 1, can be achieved using the 7 most relevant features.
On the other hand, the accelerometer only approach can
provide near 0.999 F-score, precision of 0.997, specificity of
0.998 and sensibility of 1, with the same 7 features. If all data
is considered, 5 features are required to obtain a precision,
specificity, sensibility and F-score of 1 with the proposed test
dataset.

B. USER AND ADW FALL DETECTOR

1) FEATURE RELEVANCE ANALYSIS

The User & ADW Fall Detector is only used if the Sensorized
Tip data is used. This algorithm is used to determine if a fall
detected by the ADW Fall Detection module is a user fall or
an ADW fall without the user.

In order to develop the detector, a Random-Forest analysis
is performed over the 64 features defined for the sensor
data. Results are summarized in Table 3, where the 10 most
relevant features are shown. As it can be seen, the four
most relevant features are associated to the Tip Force, which
measures the load the user applies on the ADW. The relative
importance of these features is derived from the fact that when
a person falls with an ADW, he/she tries to recover balance
by leaning on the ADW. This, however does not happen when
the ADW falls without the user.

2) PERFORMANCE ANALYSIS
Table 5 summarizes the results obtained for each SVM trained
with the n most relevant features detailed in Table 3. The
precision, specificity, sensitivity and F-score data are shown
for each case.

Results show that the best results are achieved using at least
the most relevant 6 features, with a F-score of 0.963, precision
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TABLE 5. Results of the ADW Fall Detector with and without user
(P=Precision, Sp=Specificity, Se=Sensitivity, F=F-score).

Number
Input P Sp Se F

Features
1 0.876 | 0.717 | 0.936 | 0.905
2 0.880 | 0.733 | 0.917 | 0.898
3 0.888 | 0.757 | 0.906 | 0.897
4 0.880 | 0.737 | 0.906 | 0.893
5 0.940 | 0.867 | 0.984 | 0.962
6 0.943 | 0.873 | 0.984 | 0.963
7 0.940 | 0.867 | 0.984 | 0.962
8 0.930 | 0.843 | 0.969 | 0.949
9 0.926 | 0.833 | 0.967 | 0.946
10 0.943 | 0.873 | 0.981 | 0.962
11 0.942 | 0.870 | 0.983 | 0.962
12 0.946 | 0.880 | 0.978 | 0.962
13 0.925 | 0.830 | 0.977 | 0.950
14 0.928 | 0.837 | 0.981 | 0.954
15 0.912 | 0.797 | 0.983 | 0.946

of 0.943, specificity of 0.873 and sensitivity of 0.984. These
can be considered good results, and demonstrate that the
proposed approach can also be an effective one to detect falls.

VII. CONCLUSION

Early detection of falls is critical, especially in those peo-
ple that require the use of ADW. Current Fall Detection
approaches do not traditionally consider people with ADW,
which has opened a new research area focused on developing
sensorized ADW for monitoring purposes.

This work presents a novel Fall Detector based on the
data provided by a Sensorized Tip that can be attached to
different ADW such as crutches or canes. The approach has
four relevant contributions: 1) The approach is focused on
people that require ADW; 2) A methodology is proposed
to present and evaluate a set of features to develop the Fall
Detector; 3) Falls without the user are considered as false
positives; 4) A comparative analysis is carried out to evaluate
the approach.

In order to validate the innovative Fall Detector sys-
tem, a set of experiments has been designed, including
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simulated falls and regular activities (walking, walking faster,
go up/down stairs, sit, bend down to pick something...),
carried out by 12 volunteers. The experiments have been used
to train a set of Machine Learning-based approaches to detect
falls. The results of the proposed approach demonstrate that
it can provide high Fall Detection ratios using the Sensorized
Tip, similar or higher than state-of-the-art devices.
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