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Laburpena

Diseinu konplexuetatik eratorritako datuen erabilera nabarmen hazi da azken ur-

teetan, Estatistika Ofizialaren testuinguruan inkestak burutzeko bereziki. Inkeste-

tako datuak lortzeko, inkestaren helburuak betetzeko interesekoa den populazioa

lagindu ohi da aurretik definitutako diseinu konplexu zehatz bat jarraituz. Lagin-

keta prozesu hau etapa batean edo gehiagotan burutu daiteke laginketa teknika

desberdinak euren artean konbinatuz. Laginketa teknika ezagunenetako batzuk es-

tratifikazioa (populazioko indibiduoak talde ezberdinetan banatzea) eta cluster edo

multzokatze teknika (populazioko indibiduoak multzoka elkartzea) dira. Zorizko

laginketa sinplearen bidez lagindutako datuekin alderatuta, diseinu konplexuetan

oinarrituta lortutako datuetan populazioko indibiduo bakoitzari lagindua izateko

probabilitate bat esleitzen zaio. Probabilitate hauek guztiak 0-ren desberdinak dira

eta, horrez gain, populazioko indibiduo guztien probabilitateak ez dira berdinak.

Ondorioz, lagindua izan den indibiduo bakoitzari laginketa-pisu bat esleitzen zaio

laginketa prozesuaren amaieran. Laginketa-pisu hauetako bakoitzak, lagindutako in-

dibiduo horrek ordezkatzen dituen populazioko indibiduo kopurua adierazten du, eta

lagindua izateko esleitu zaion probabilitatearen alderantzizkoa kalkulatuz definitzen

dira. Diseinu konplexuko laginketak oso baliagarriak dira, adibidez, populazioko

talde gutxituen ordezkapen hobeak lortzeko. Horrez gain, datu-bilketaren gastu

ekonomikoak murrizteko ere oso erabilgarriak dira. Hau dela eta, gizarte eta osasun

zientzietan besteak beste, gero eta gehiago biltzen dituzte datuak laginketa diseinu

konplexuetan oinarrituz.

Gaur egun, beste helburu batzuez gain, diseinu konplexuko laginketetan oina-

xi
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rrituz bildutako datuak eredu aurresaleak garatzeko ere erabiltzen dira. Eredu au-

rresaleen garrantzia azpimarragarria da hainbat eta hainbat arlotan. Eredu aurre-

saleen helburu nagusia, aldagai azaltzaile batzuen inguruko informazioa erabilita,

intereseko erantzun aldagaiaren balioak aurresatea da, aurretik behatutako datue-

tan oinarrituta. Baina eredu aurresale hauek egunerokotasunean erabili ahal izateko,

beharrezkoa da eredu aurresale hauen garapen prozesuan zehar pausu ezberdinak

jarraitzea, lortu dugun eredua ona eta praktikan erabilgarria dela bermatu ahal iza-

teko. Adibidez, eskura ditugun aldagai azaltzaile guztien artetik garrantzitsuenen

aukeraketa egitea pauso garrantzitsua da eredu aurresale onak garatu ahal izateko.

Gainera, doitutako ereduaren aurresateko gaitasuna aztertu behar da eredu aurre-

saleak praktikan erabiltzen hasi aurretik. Aurretik aipatutako pauso hauek eta beste

batzuk jarraitzea da gakoa praktikan erabilgarriak izango diren eredu aurresaleak

lortu ahal izateko.

Dena dela, eredu aurresale onak garatzeko erabili ohi diren teknika estatistiko

gehienek erabiltzen ari garen datuak askeak eta berdinki banatuak direla asumitzen

dute, eta ez dira egokiak baldintza hauek betetzen ez dituzten datuentzat. Diseinu

konplexuko laginketetan oinarritutako datuek ordea, datuak biltzeko jarraitutako

prozedura konplexua dela-eta, ez dituzte baldintza hauek betetzen. Ondorioz, ez

da egokia teknika estatistiko tradizional hauek zuzenean aplikatzea mota honetako

datuekin lan egiten ari garenean. Hori dela eta, doktorego tesi honen helburu na-

gusia eredu aurresaleen garapen prozesurako proposamen berriak egitea da, diseinu

konplexuko laginketetan oinarritutako datuekin eredu aurresale onak garatu ahal

izateko baliagarriak izango direnak. Zehazki, lau ekarpen egin dira doktorego tesi

honetan, eta ekarpen hauetako bakoitza eredu aurresaleen garapen prozesuaren atal

ezberdin bat hobetzeaz arduratzen da.

Bereziki, diseinu konplexuko laginketetan oinarritutako datuak erabilita, eredu

aurresaleen parametroak estimatzeko moduak eztabaida izugarria piztu du ikertzai-

leen artean. Laginketa-pisuak ereduen parametroak estimatzeko erabili beharko

liratekeen edo ez zalantzan jartzen dute arlo honetako ikertzaile askok, gaur egun

ere. Hortaz, lehenik eta behin, simulazio-ikerketa bat egin dugu parametroak es-

timatzeko teknika ezberdinen jokaera konparatzeko asmoz, non teknika hauetako

batzuk laginketa-pisuak erabiltzen dituzten eta beste batzuek ez, diseinu konplexuko

laginketetan oinarritutako datuentzat eredu aurresaleak doitzerako orduan. Ikerketa

honetan, erantzun aldagai dikotomikoen jokaera azaltzeko hain ohikoak diren erre-

gresio logistikoko ereduetan zentratu gara. Simulazio-ikerketan erabilitako datuak,

inkesta errealetako datuetan oinarrituta simulatu ditugu, diseinatu diren eszenari-
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oek praktikan eskuartean izan ditzakegun arazo errealak ondo ordezkatzen dituztela

bermatu ahal izateko. Simulazio-ikerketa honen emaitzetan oinarrituta, laginketa-

pisuak kontuan hartzen dituzten estimazio teknikak erabiltzea gomendatuko genuke,

ereduen koefizienteentzat estimazio alboragabeak lortu ahal izateko.

Gainera, doktorego tesi honetan, aldagai azaltzaile garrantzitsuenen aukeraketa

egiterako orduan diseinu konplexuko laginketek duten eragina ere aztertu dugu. Ze-

hazki, LASSO erregresio ereduetan oinarritu gara helburu hau betetzeko. Eredu

mota hauetan penalizazio parametro bat aukeratu behar da aldagai azaltzaile guz-

tien artetik erantzun aldagaiaren jokaera ondoen azaltzen dutenak aukeratu ahal

izateko. Penalizazio parametro hau balidazio-teknika ezberdinak erabiliz auker-

atu ohi da, besteak beste, cross-validation edo balidazio-gurutzatuaren teknika da

erabiliena arlo honetan. Balidazio-gurutzatuaren teknika tradizionalak ordea, ez

du kontuan hartzen datuak biltzeko erabilitako laginketaren izaera konplexua jato-

rrizko laginaren entrenamendu eta balidazio azpimultzoak sortzerako orduan. Hor-

taz, lan honetan, diseinuan oinarritzen den balidazio-gurutzatuaren teknika berri

bat proposatu dugu (design-based cross-validation izena eman diogu teknika berri

honi), datuak biltzeko erabili den laginketa prozesuaren izaera konplexua kontuan

hartzen duena. Horretaz gain, laginketa-pisuak erabiltzea proposatzen dugu LASSO

erregresio ereduak doitzerako orduan. Simulazio-ikerketa sakon bat burutu dugu

proposamen hauen baliozkotasuna aztertzeko asmoz. Ikerketa honen emaitzetan

oinarrituta, bi proposamen hauen arteko elkarlanak emaitzak modu esanguratsuan

hobetzea dakarrela ikusi dugu, diseinu konplexuko datuekin aldagai aurresale ga-

rrantzitsuenen aukeraketa egitean.

Lehen esan bezala, doitutako eredu aurresaleak praktikan aplikatu aurretik, be-

harrezkoa da euren aurresateko gaitasuna aztertzea. Erregresio logistikoko ereduen

aurresateko gaitasuna ROC kurba (bere ingeleseko sigletatik dator izena, receiver

operating characteristic curve) eta AUC (area under the ROC curve) parametroaren

bidez neurtzen da. Edonola ere, ROC kurba eta AUC parametroaren estimatzaile

tradizionalak zorizko laignketa sinpleetan oinarritutako datuekin erabiltzeko sortu

ziren eta ez daude prest diseinu konplexuko laginketetako datuekin lan egiteko. Hau

dela eta, diseinua kontuan hartzen duten estimatzaileak proposatu ditugu lan hone-

tan ROC kurba eta AUC-a estimatzeko laginketa-pisuak erabilita. Proposatutako

estimatzaile hauen jokaera aztertzeko simulazio-ikerketa bat egin dugu. Ikerketa

honen emaitzetan oinarrituta, laginketa-pisuak kontuan hartzen dituzten proposa-

tutako estimatzaile berriak erabili beharko liratekeela ondorioztatu dugu, erregresio

logistikoko ereduen aurresateko gaitasuna neurtzeko diseinu konplexuko datuetan
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oinarrituta.

Doktorego tesi honetan egin dugun laugarren, eta azken, ekarpena indibiduoen

sailkapenari lotuta dago erregresio logistikoko ereduen testuinguruan. Erregresio

logistikoko ereduen bidez, indibiduo batek aztertzen ari garen gertaera jasateko

duen probabilitatea estimatzen da. Dena dela, kasu batzuetan probabilitate haue-

tan oinarrituta, indibiduoaren gaineko erabakiak hartu behar ditugu eta, horre-

tarako, indibiduo hau gertaera jasan duen edo gertaera jasan ez duen indibiduo

bezala sailkatzea komeni zaigu. Erabaki hau hartu ahal izateko, mozketa-puntu bat

aukeratu ohi da, eta indibiduoarentzako estimatutako probabilitatea aukeratutako

mozketa-puntua baino handiagoa edo berdina bada, indibiduo hau gertaera jasan

duen indibiduo bezala sailkatzen da, eta estimatutako probabilitatea aukeratutako

mozketa-puntua baino txikiagoa bada aldiz, gertaera jasan ez duen indibiduo gisa

sailkatu ohi da. Ahalik eta mozketa-puntu hoberena aukeratu ahal izateko (mozketa-

puntu “optimoa”) teknika ezberdinak proposatu dira literaturan eta teknika haue-

tako bakoitzak kriterio jakin bat maximizatzen du. Teknika hauek, dena den, zorizko

laginketa sinpleetatik lortutako datuetan erabili izan dira orain arte, eta ondorioz, ez

dituzte laginketa diseinu konplexuak kontuan hartzen. Hau horrela izanik, doktorego

tesi honetan, laginketa-pisuak kontuan hartzen dituzten estimatzaile berriak pro-

posatu ditugu mozketa-puntu optimoak estimatu ahal izateko. Estimatzaile hauen

jokaera simulazio ikerketa baten bidez aztertu eta teknika tradizionalen jokaerarekin

konparatu da diseinu konplexuko datuetan. Simulazio ikerketa honen emaitzetan

oinarrituta, pisuak kontuan hartzen dituzten estimatzaileak erabiltzea gomendatuko

genuke mota honetako datuekin lanean dihardugunean.

Horrez gain, doktorego tesi honetan proposatutako metodoak inkesta ezberdine-

tako datu errealetara aplikatu dira eta R software estatistikoko bi pakete berritan

inplementatu dira (wlasso eta wROC). R software libreko edozein erabiltzailerentzat

eskuragarri daude bi pakete hauek, inkestetako datuak aztertu behar dituzten es-

tatistikari, teknikari eta ikertzaileek tesi honetan proposatu diren metodoak modu

erraz batean aplikatu ahal izan ditzaten euren eguneroko jardunean.

Laburtuz, doktorego tesi honetan hainbat ekarpen egin dira eredu aurresaleen

garapen prozesua hobetzeko asmoz, diseinu konplexuko laginketetan oinarrituta ja-

sotako datuekin lan egitean. Bereziki, ereduaren parametroen estimazioan, alda-

gai garrantzitsuenen aukeraketa prozesuan, ereduen aurresateko gaitasunaren esti-

mazioan eta indibiduoen sailkapenaren arloan proposatu dira hobekuntza hauek.

Proposatutako teknika guztiak simulazio ikerketen bidez balioztatu dira, eta iker-

keta guzti hauetako emaitzek proposatutako teknika berrien erabilera gomendatzen
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dute laginketa diseinua kontuan hartzen ez duten teknika tradizionalen ordez. Pro-

posamen hauek R paketean daude eskuragarri, eta modu honetan ekarpen garran-

tzitsua egin zaio gizarteari, erabiltzeko errazak diren tresnen bidez metodo hauek

inplementatu ahal izatea baimenduz.
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Summary

Complex survey data are being increasingly used nowadays, especially in the context

of Official Statistics. In this framework, complex survey data are usually obtained

by sampling the population of interest for the survey, following some particular

complex sampling design. This sampling process may be carried out in one or

more sampling stages, for which the combination of techniques such as stratification

and clustering is very common practice. One of the most special characteristics of

complex sampling data, in comparison to data obtained based on simple random

sampling, is that each individual in the population has a probability (different from

0) of being included in the sample. These inclusion probabilities are not equal for

all the individuals in the population. Then, each individual that finally ends up in

the sample is assigned a sampling weight, calculated as the inverse of its inclusion

probability, which indicates the number of units from the finite population that is

represented by this individual in the sample. Complex sampling designs are a good

way of obtaining better representations of minority groups in the population and

can also help reduce the cost of data collection. As a result, they are becoming more

and more relevant in various fields, such as social and health sciences, among others.

Currently, complex survey data are being widely used to fit prediction models,

among other purposes. The relevance of prediction models in numerous areas is un-

deniable. The main goal of prediction models is to make predictions on a response

variable of interest based on the information observed for several explanatory vari-

ables or covariates. In order to end up with good prediction models that can be

applied in daily practice, it is necessary to consider taking several steps. For exam-

xvii
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ple, the selection of the most relevant covariates and the analysis of the predictive

performance of the fitted model are some important key points in the development

process of prediction models.

However, most of the statistical techniques developed for fitting good prediction

models are based on a number of assumptions, such as the units that are being

analyzed are independent and identically distributed (iid). The problem comes

from the fact that complex survey data, due to the way in which it was collected,

do not satisfy iid conditions. Hence, the straightforward application of traditional

statistical techniques, including those techniques developed for fitting prediction

models, is not appropriate in this context. Therefore, the main objective of this

Ph.D. thesis is to make new proposals on the development process of prediction

models, so that they can be used to develop prediction models for complex survey

data. In particular, four contributions are made, each of them regarding a different

part of the development process of prediction models.

In the first place, the estimation of model parameters in the context of complex

survey data has been the source of a large debate in the literature. Specifically,

whether sampling weights should or should not be considered in the estimation pro-

cess of model parameters has generated many doubts among statisticians. Thus,

a simulation study is carried out in order to compare the performance of several

coefficient estimation techniques, some of which consider the sampling weights and

some which do not, for estimating the prediction model coefficients based on com-

plex survey data. In particular, this study focuses on logistic regression models for

dichotomous response variables. Data is generated based on real surveys in order to

design more realistic scenarios. The results suggest the use of weighted estimation

techniques in order to obtain unbiased model coefficient estimates.

In addition, in this Ph.D. thesis, we also analyze the impact of complex sam-

pling designs on the selection of the most relevant predictor variables. In particular,

we lay on LASSO regression models for this purpose. In LASSO regression mod-

els, a tuning parameter must be selected to obtain a subset of the most important

variables that best explain the behavior of the response variable. This tuning pa-

rameter is usually selected based on validation techniques such as cross-validation.

However, the traditional cross-validation does not consider the complex sampling

design in the way in which it generates training and test sets. Thus, we propose a

new design-based cross-validation technique that accounts for the complex nature

of the sampling process. Moreover, we also suggest considering sampling weights

for estimating LASSO regression model coefficients. An extensive simulation study
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has been carried out in order to analyze the validity of these proposals. The re-

sults suggest that the combination of these two proposals results in a considerable

improvement in the variable selection process with complex survey data.

Before implementing prediction models in practice, their predictive performance

should be analyzed. In the context of logistic regression, the predictive performance

of the models is commonly quantified in terms of discrimination ability and calibra-

tion. In this Ph.D. thesis, we focus our attention on the discrimination ability, which

is usually measured by means of the receiver operating characteristic (ROC) curve

and the area under that curve (AUC). However, the traditional ROC curve and AUC

estimators are not thought to be applied to complex survey data and, hence, do not

account for complex sampling designs. Therefore, we propose new design-based es-

timators considering sampling weights. The performance of the proposed estimators

is analyzed by means of a simulation study. The results suggest that the proposed

weighted estimators should be used in order to estimate the discrimination ability

of logistic regression models in the context of complex survey data.

The fourth contribution of this Ph.D. thesis is related to the classification of

individuals in the context of logistic regression models. When logistic regression

models are used for making predictions, a predicted probability of event can be

estimated for an individual. However, in some cases, we should decide whether we

classify this unit as event or non-event, based on its estimated predicted probability.

In this context, a cut-off point is usually selected, and if the predicted probability is

greater or equal to the selected cut-off point, the unit is classified as event, while if

the predicted probability is lower than that cut-off point, then the unit is classified

as non-event. Several techniques are proposed in the literature to select the optimal

cut-off point that maximizes a particular criterion. However, those techniques are

thought to be applied to simple random samples, and hence, they do not consider

complex sampling designs. In this Ph.D. thesis, we propose new weighted estimators

for estimating optimal cut-off points, and the performance of those estimators is

compared to the traditional unweighted ones by means of a simulation study. The

results suggest the use of weighted estimators in the context of complex survey data.

In addition, the methods proposed in this Ph.D. thesis have been applied to real

survey data and implemented in two R-packages (wlasso and wROC) that are freely

available for any R user so that survey statisticians can easily apply those proposals

in their particular surveys in daily practice.

In summary, in this Ph.D. thesis, we make several contributions to the improve-

ment of the development process of prediction models for complex survey data, in
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particular, regarding the estimation of the model, variable selection, estimation of

the discrimination ability, and the classification of individuals. All these proposals

have been validated by means of simulation studies, the results of which recommend

the use of the proposed methods against the traditional ones. The new methodolog-

ical proposals have been incorporated into two R-packages, providing society with

accessible tools for easy implementation of these proposals.



CHAPTER1
Introduction

To explain the context in which this Ph.D. thesis emerged, we need to go back to

September 2017. At that time, the Official Statistics Basque Office EUSTAT (Eu-

skal Estatistika Erakundea - Instituto Vasco de Estad́ıstica, hereinafter EUSTAT)

contacted the Biostit Research Group due to their experience in the development of

prediction models to help them with the modeling of a data set, specifically, the data

set obtained from the Survey on the Information Society in Companies (ESIE, due

to its Spanish acronym). Biostit Research Group hired the present Ph.D. candidate

to work as a research technician in this collaboration.

When we (the Ph.D. candidate and the supervisors of this dissertation) started

working with the ESIE survey data set, we realized that the sample in which the

survey was carried out was obtained following a particular complex sampling design.

Given that we had neither previous experience nor knowledge related to complex

survey data, we first started reviewing the literature on the analysis of this type

of data. We realized that the conditions that are assumed in order to apply the

traditional statistical techniques to develop prediction models were not satisfied for

1
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the data we were handling, and therefore, we had to question all the steps we would

usually follow when developing prediction models for traditional data.

Hence, this Ph.D. thesis covers two important fields within statistics: prediction

models and complex survey data. Therefore, we will start this chapter by introducing

these two topics. In Section 1.1, prediction models are introduced, while complex

survey data are described in Section 1.2. In Section 1.3, we define the objectives we

have addressed in this thesis, and finally, in Section 1.4, we describe the organization

of the subsequent chapters of this dissertation.

1.1 Prediction models

The relevance of prediction models is undeniable in many areas nowadays. Health

sciences, biology, ecology, official statistics, meteorology, and finance are just some

examples of a large number of fields in which prediction models play an essential

role. Prediction models are used to explain the behavior of the characteristic of

interest, response variable, or outcome by means of a set of explanatory variables

or covariates. One of the main goals of prediction models is to make predictions for

unobserved data based on the information and patterns that have been previously

observed. For example, the evolution that a patient may have can be estimated

considering the evolution that other patients with similar characteristics have pre-

viously had. There are different types of prediction models, and depending on the

distribution of the response variable and its association with the covariates, the

most appropriate model should be chosen to describe the relationship between the

response variable and the covariates. Throughout this document, in particular, we

will consider linear regression models (for response variables following a Gaussian

distribution) and logistic regression models (appropriate for response variables fol-

lowing a Bernoulli distribution).

Prediction models are widely used as a tool for decision-making. For example,

in finance, they can be useful for predicting loan defaults (Li et al. 2022); in ecology,

particularly in fisheries, they are often used to make conservation decisions (Guisan

et al. 2013, Li et al. 2020); medicine is another field in which prediction models are

widely implemented as a support for decision-making, where, they can be helpful

for deciding whether a patient should be admitted to an intensive care unit or not,

among other purposes (Arostegui et al. 2019).

Given the impact of these models in daily practice, it is essential to ensure

that the prediction models are valid and useful before implementing them in new
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data, especially if the goal is to use them as support to make decisions. Thus, the

development process and validation of models before making predictions for new

data are key points when working in this context. Steyerberg (2008) and Steyerberg

and Vergouwe (2014) offer interesting guidelines to end up with good prediction

models that can be effectively applied in practice. Several steps need to be followed

for this purpose. First, the most appropriate model that will properly fit our data

needs to be selected. Another important step is a proper selection of the variables

to be considered in the model. How to treat these covariates and how to deal with

missing values (in case they are present in the data set being managed) should be

considered during the process of developing the prediction models. The predictive

performance of the fitted models also needs to be checked before implementing them

in new data sets, particularly if they are going to be used as support for decision-

making. Finally, the final model needs to be validated before being implemented

into new data sets by means of internal and external validation techniques.

Different techniques to handle the development process of prediction models are

available for independent and identically distributed (iid) data (see, e.g., Steyerberg

(2008)). But what happens if our data violate iid conditions? This dissertation

focuses on this context.

1.2 Complex survey data

The history of complex survey data dates back to a little over a century ago, when

Kaier (1895) defined the first theoretical basis for obtaining representative samples

of a population (for more information on the origins of the sampling theory and

the social situation of that time we recommend Lie (2002)). In the following years,

the basis of randomization (Fisher 1992) and different sampling techniques were

proposed, and the basis of the theory on the estimation of population statistics and

their variance estimation were set (see, e.g., Cochran (1977), Horvitz and Thompson

(1952), Kish (1965), Neyman (1934)). Nowadays, complex survey data have become

an important tool for society, being the basis of most large-scale national surveys

(see, e.g., Fisher et al. (2020)), which cover a wide range of social topics, including

but not limited to: health (see, e.g., National Health and Nutrition Examination

Survey (NHANES)1 carried out in the United States, the European health interview

survey2, or the Hortega Study in Spain (Tellez-Plaza et al. 2019)); labor force or pop-

1https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
2https://ec.europa.eu/eurostat/web/microdata/european-health-interview-survey

https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
https://ec.europa.eu/eurostat/web/microdata/european-health-interview-survey
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ulation activity surveys (such as the one conducted by Eurostat3 or by the Spanish

National Statistics Institute (INE)4); or income and economic related surveys used to

analyze, among other purposes, the poverty indicators among the inhabitants (such

as the Living Conditions Monitoring Survey conducted in Zambia5 or the Poverty

and Social Inequalities Survey6 carried out by the Basque Government).

Complex survey data are obtained by carrying out the survey on a representa-

tive sample of the population of interest, which in this context is assumed to be

finite. These samples are usually drawn following complex sampling designs, such

as stratification, clustering, or a combination of them in different stages of the sam-

pling process. In order to compensate for the unbalanced sample that is usually

obtained based on these sampling schemes, a sampling weight is usually assigned to

each sampled observation, which indicates the number of elements it represents in

the population.

Due to their special characteristics, complex survey data do not satisfy iid condi-

tions (see, e.g., Skinner et al. (1989)). Therefore, the analysis of this kind of data has

been the source of a great deal of discussion. In particular, the way that prediction

models should be fitted based on this kind of data has generated a large discussion

among researchers and statisticians. Fuller (1975) and Binder (1981; 1983) proposed

accounting for complex sampling designs when fitting regression models. However,

the researchers of that time began having serious doubts about the best way of pro-

ceeding with the estimation of the models, wondering whether the sampling weights

were needed in this context.

In order to introduce the problem very briefly, this discussion can be seen as

a large debate of two different perspectives for facing the same question. These

approaches are usually known as model-based and design-based perspectives in the

literature (Binder and Roberts 2009, Chambers and Skinner 2003). The researchers

with the model-based point of view claim that if the prediction model is well speci-

fied, then sampling weights are not necessary, and thus, the probability distribution

induced by the sampling design is usually ignored by these researchers. This per-

spective can be seen as a theoretical way of facing the problem, given that it assumes

the existence of a prediction model that perfectly explains the relationship between

3https://ec.europa.eu/eurostat/web/microdata/public-microdata/labour-force-surve

y
4https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176

918&menu=ultiDatos&idp=1254735976595
5https://catalog.ihsn.org/catalog/7105/study-description
6https://www.euskadi.eus/gobierno-vasco/-/informacion/encuesta-de-pobreza-y-des

igualdades-sociales-epds/

https://ec.europa.eu/eurostat/web/microdata/public-microdata/labour-force-survey
https://ec.europa.eu/eurostat/web/microdata/public-microdata/labour-force-survey
https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176918&menu=ultiDatos&idp=1254735976595
https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176918&menu=ultiDatos&idp=1254735976595
https://catalog.ihsn.org/catalog/7105/study-description
https://www.euskadi.eus/gobierno-vasco/-/informacion/encuesta-de-pobreza-y-desigualdades-sociales-epds/
https://www.euskadi.eus/gobierno-vasco/-/informacion/encuesta-de-pobreza-y-desigualdades-sociales-epds/
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the outcome and a set of covariates that are available (also known as the super-

population model, where the superpopulation is the infinite population from which

the finite population on which the survey is conducted is derived (Chambers and

Skinner 2003)) and refuses the adequacy of fitting a model that does not satisfy

this condition. In contrast, the researchers adopting the design-based perspective

warn that biased estimates may be obtained if the sampling design is ignored in the

estimation process. Hence, they recommend the use of sampling weights in order

to correct this bias. This point of view is more focused on the real needs of daily

practice, given that the researchers that adopt this perspective note that not always

exists a theoretical model that perfectly explains the behavior of the response vari-

able based on the available covariates, and they are more inclined to adjust the best

possible model according to the circumstances of each situation.

As an example of this discussion, Brewer and Mellor (1973) published an enter-

taining paper in the form of a dialogue between a survey statistician and a mathe-

matical statistician, which makes it clear that the questions and issues related to how

to work with this type of data are far from being trivial. Some years later, Smith

(1988) gave a name to the question asked by many researchers when working with

complex survey data by publishing an article entitled “To weight or not to weight,

that is the question”. This debate is still ongoing today, as we will discuss throughout

this dissertation, and many researchers continue to hesitate about how to treat this

type of data. As an example, it is worth reading the title of an article published by

Gelman (2007) that needs no further explanation: “Struggles with survey weighting

and regression modeling”. In the paper, the author defines survey weighting as “a

mess”. This discussion will be analyzed in more detail in the subsequent chapters.

The point we aim to emphasize here is that, due to the debate between these two

approaches, the researchers who need to work with survey data have serious doubts

about which one would be the best way for them to proceed with their analysis. Even

though Heeringa et al. (2017) states that the more practical design-based perspective

is the one that most survey statisticians currently adopt, there still are researchers

that question this point.

Lumley (2010) points out that one of the potential reasons why most researchers

may have adopted the model-based perspective in the past was the lack of software

available to do the analysis from the design-based perspective. As the same author

states, this is not a very important problem nowadays since most of the frequently

used statistical programs such as R (by means of the survey package (Lumley 2020)),

SAS (Lewis 2016) or Stata are prepared to perform those analyses (see, e.g., Heeringa
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et al. (2017) for a summary of the available statistical software to work under the

design-based perspective).

However, the Ph.D. candidate and her advisors would like to add another reason

why some researchers may still be in favor of avoiding performing the analysis from a

design-based point of view when possible. The analysts who adopt the model-based

perspective have available all the traditional statistical techniques that are proposed

to develop good prediction models to iid data. In contrast, there is a considerable

lack of proposals to develop good prediction models following the design-based ap-

proach. As stated above, one of the most discussed topics in the context of complex

surveys is the effect of the sampling design on the estimation of model parameters

(see, e.g., Binder and Roberts (2009), Holt et al. (1980), Lumley and Scott (2017),

Reiter et al. (2005), Scott and Wild (1986; 2002)). Nevertheless, beyond the esti-

mation of the model parameters, complex survey data have shown to have a great

impact on the development of prediction models, and numerous advances have been

made in the last years in this field, including the following ones, among others:

Lumley and Scott (2015) proposed new design-based estimators for estimating two

widely used parameters for model selection, Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC), considering the sampling design; focusing on

the evaluation of model performance, Archer et al. (2007) and Lumley (2017) pro-

posed goodness-of-fit tests that consider complex sampling designs to analyze the

calibration of the models fitted to complex survey data; in the context of the dis-

crimination ability, Yao et al. (2015) proposed a modification of the Mann-Whitney

U-statistic in order to consider the sampling design to estimate the AUC of the

models. Nevertheless, we believe that there is still a lack of design-based techniques

to develop good prediction models, and this fact can make some researchers avoid

adopting the design-based perspective. Therefore, the research work performed in

the framework of this thesis was defined in order to provide new tools and make

improvements for developing good prediction models for complex survey data from

the design-based perspective.

1.3 Objectives of the thesis

Coming back to our particular situation in which we signed a collaboration agree-

ment with EUSTAT for the modeling of the ESIE survey, we realized we would have

problems responding to their petitions due to the lack of tools to develop good, valid,

and useful prediction models that consider the complex sampling design of the data.
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Later on, more questions related to other datasets were raised based on different

complex sampling surveys that our collaboration with EUSTAT required answering.

Specifically, the collaboration has continued with two other surveys besides the ESIE

survey: the Population in Relation to Activity (PRA) survey and the Innovation

survey. This EUSTAT collaboration has given rise to numerous new questions that

have led us to open a new research line, the results of which have begun to be visible

in this thesis and will continue to be reflected in future works. We noticed that it

would be necessary to continue researching this line, not only to be able to respond

to the petitions of EUSTAT properly but also because we realized that, given the

increasing interest of society in the analysis of survey data, many researchers would

have the same problems as us. Therefore, we set the goals of this thesis in order

to resolve the questions, doubts, and problems we came across when we began to

work in this collaboration, and thus, all the questions addressed in this work are

fully motivated by the real needs and gaps we found when we started trying to fit

prediction models to complex survey data in practice.

In summary, the main objective of this thesis is to make new proposals for de-

veloping good prediction models with complex survey data from the design-based

perspective, as well as to provide computational tools in order for other researchers

to use the methods we propose in this thesis. Among the different types of pre-

diction models, we have focused, in particular, on linear and logistic regression

models. Within this main objective, four specific goals have been defined, each of

them related to a different section of the development process of prediction models.

Specifically, in this Ph.D. thesis, we have focused on (1) the estimation of prediction

model parameters, (2) variable selection, (3) analysis of the predictive performance,

and (4) classification of individuals. These four goals are defined in more detail

below.

Goal 1. Estimation of model parameters.

The first goal of this thesis is to analyze the performance of different existing

estimation methods, some of which consider the sampling design and others

do not, for estimating prediction model coefficients. Specifically, we focus on

the framework of logistic regression models for dichotomous response variables.

The hypothesis we aim to check is that the use of sampling weights may be

crucial when fitting logistic regression models.

When we started working with complex survey data, the first questions that

came to our minds were related to the estimation methods for fitting prediction
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models. We realized that there are plenty of works in the literature addressing

this issue which are commonly carried out under two different situations:

(a) Theoretical works and simulation studies based on artificial data sets

generated based on previously established known theoretical models, but

which do not work under realistic scenarios with real surveys (see, e.g.,

Pfeffermann (1993), Scott and Wild (1986)).

(b) Studies with fully practical objectives, in which the performance of dif-

ferent estimation methods for estimating the model parameters are com-

pared among them, but the true parameters are not known (see, e.g.,

Chambless and Boyle (1985), Masood et al. (2016)).

However, none of these papers completely solved our concerns, given that our

main focus was analyzing the impact of the issues of the above-mentioned

studies in real survey data but under controlled scenarios in which the theo-

retical values of the parameters were known. Therefore, we aim to conduct a

simulation study based on real survey data to address this goal.

Goal 2. Variable selection.

The second goal of this thesis is to analyze the impact of complex sampling

designs on the variable selection process of prediction models and to propose

new design-based methods for this purpose. In particular, we focus on the

variable selection by means of the Least Absolute Shrinkage and Selection Op-

erator (LASSO) regression, which allows the selection of a subset of predictor

variables that best describes the behavior of the response variable based on a

tuning parameter. In addition, both linear and logistic regression are consid-

ered (in particular, this is the only goal we address for linear regression models

in this thesis). We expect the new design-based proposal to make a difference

in the selection of variables based on either linear or logistic LASSO regression

models.

Goal 3. Analysis of the predictive performance.

The third goal of this dissertation is to make new proposals for estimating

the predictive performance of prediction models considering complex sampling

designs. In particular, we focus on the logistic regression framework, for which

discrimination ability may be used to analyze the predictive performance of

the models. The discrimination ability of logistic regression models is usually

measured by means of the Receiver Operating Characteristic (ROC) curve and
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the area under it (AUC). We aim to propose new estimators that account for

complex sampling designs to estimate the ROC curve and AUC of the models.

We expect these new proposals to be unbiased estimators of the ROC curve

and AUC, and to outperform the traditional estimators, which do not account

for complex sampling designs.

Goal 4. Classification of individuals.

The fourth and last goal of this dissertation is to make new proposals that

consider complex sampling designs for selecting the optimal cut-off points for

individual classification. Remaining in the context of logistic regression mod-

els, the probability of event can be estimated for each individual based on the

fitted model. However, it is sometimes interesting to classify these individuals

as individuals with or without the event of interest. For example, a doctor may

obtain a probability indicating the risk that a patient will have to be admit-

ted to the Intensive Care Unit (ICU) but may want to make a decision about

whether or not he or she should ultimately admit that patient to the ICU.

The individuals can then be classified as events or non-events based on their

probability of event. Usually, if the probability is greater than a pre-specified

cut-off point, the individual is classified as event and, otherwise, as non-event.

In this context, different methods can be applied in order to select the optimal

cut-off points for individual classification. However, the traditional methods

are not thought to be applied to complex survey data, and hence, they do not

consider complex sampling designs. Thus, the hypothesis is that these new

design-based estimators would be a better option to estimate optimal cut-off

points than the traditional ones.

The four goals described above have been addressed throughout this Ph.D. thesis

thanks to the financial contract offered by Biostit Research Group (IT620-13), the

Predoctoral Grant PIF18/213 of the University of the Basque Country (UPV/EHU),

and the financial support of MATHMODE: Group on Applied Mathematical Mod-

eling, Statistics and Optimization (IT1294-19, IT1456-22), S3M1P4R (PID2020-

115882RB-I00) and MTM2016-74931-P.
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1.4 Organization of the subsequent chapters

This section describes the organization of the following chapters, in which the goals

described in Section 1.3 have been addressed.

Chapter 2 mathematically defines the basic notation and definitions of funda-

mental concepts related to complex survey data that will be necessary to understand

the rest of the dissertation. In addition, we introduce the methodological background

to estimate prediction models for complex survey data from the design-based per-

spective. In particular, throughout this document, we work with linear and logistic

regression models, so we introduce the design-based approach to fit these two types

of models.

In Chapter 3, we introduce the two real survey data sets that have motivated

this work and are continuously referenced throughout the document. In particular,

the Survey on the Information Society in Companies (ESIE) and the Population in

Relation to Activity (PRA) Survey are described. Both surveys have been designed

and collected by EUSTAT.

Chapter 4 offers an extensive bibliographical review and all the details address-

ing the first goal of this dissertation regarding the estimation of logistic regression

model parameters. In this chapter, we conduct a simulation study based on real

survey data. With this simulation study, we aim to analyze the impact of complex

sampling designs when estimating logistic regression model parameters under real-

istic but controlled scenarios, in which the true parameter values are known. We

generate simulated data based on ESIE and PRA surveys and sample these popula-

tions by mimicking the corresponding true sampling designs. Since the outcomes of

these two real surveys are dichotomous response variables, we compare the perfor-

mance of different estimation methods for estimating logistic regression parameters.

In addition, beyond the simulation study, we also compare the estimates obtained by

means of different estimation methods in the true real surveys. The work presented

in this chapter has been accepted for publication:

Iparragirre, A., Barrio, I., Aramendi, J., & Arostegui, I. (2024). Estimation of

logistic regression parameters for complex survey data: simulation study based

on real survey data. SORT - Statistics and Operations Research Transactions,

in press.

In Chapter 5, we address the second goal of this dissertation by analyzing the
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impact of complex sampling designs on the variable selection of linear and logistic

LASSO regression models. On the one hand, the impact of the sampling weights in

the estimation of LASSO regression models is analyzed. On the other hand, new

methods that consider complex sampling designs for selecting the optimal tuning pa-

rameter for LASSO regression models fitted to complex survey data are proposed.

The performance of different methods is compared by means of a simulation study.

The work presented in this chapter has been published in the following scientific

paper:

Iparragirre, A., Lumley, T., Barrio, I., & Arostegui, I. (2023). Variable selec-

tion with LASSO regression for complex survey data. Stat, 12(1), e578.

In Chapter 6, we address the third goal of this dissertation. In particular, we an-

alyze the impact of complex sampling designs on the estimation of the discrimination

ability of logistic regression models fitted to complex survey data. Two new estima-

tors that consider sampling weights are proposed for estimating the ROC curve and

AUC of the models. The performance of the proposals is validated and compared to

the traditional estimators by means of a simulation study. The proposed estimators

are also applied to ESIE survey data. The work presented in this chapter has been

published in the following scientific paper:

Iparragirre, A., Barrio, I., & Arostegui, I. (2023). Estimation of the ROC

curve and the area under it with complex survey data. Stat, 12(1), e635.

In Chapter 7, we face the fourth goal of this thesis, in which we propose new

weighted estimators for estimating the optimal cut-off points for individual classifi-

cation in the context of logistic regression models. A simulation study is conducted

in order to analyze the performance of the proposed methods, which are compared

to the traditional unweighted estimators. The proposed estimators are also applied

to ESIE real survey data. The work described in this chapter has been published in

the following scientific paper:

Iparragirre, A., Barrio, I., Aramendi, J. & Arostegui, I. (2022) Estimation

of cut-off points under complex-sampling design data. SORT-Statistics and

Operations Research Transactions, 46(1), 137–158.
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All the proposals developed in the previous chapters have been programmed

in the statistical software R. Specifically, two packages have been created and set

publicly available to any user of R. The wlasso package allows to carry out the

selection of variables by means of the proposals described in Chapter 5 (Goal 2).

The wROC package can be used to estimate the ROC curve and the AUC of logistic

regression models fitted to complex survey data and to estimate the optimal cut-off

points for the classification of individuals in this context, as described in Chapter 6

(Goal 3) and Chapter 7 (Goal 4), respectively. In Chapter 8, these two packages

are described in detail.

Finally, we close this document in Chapter 9 with a discussion regarding the

main conclusions and limitations of this dissertation, further research topics that we

aim to address in the future in relation to the matter related to the development of

prediction models to complex survey data and the main contributions emerged from

this Ph.D. thesis.



CHAPTER2
Basic notation of complex survey data and

background of design-based prediction models

This work addresses two important statistical fields that need to be introduced in

detail: complex survey data and prediction models. The goal of this chapter is to

introduce these two fields to the reader and set the basic notation that will be used

throughout the rest of the document.

In particular, in Section 2.1, we set the notation related to complex surveys, and

we describe the two sampling designs that are considered throughout the document:

the one-stage stratified sampling and the two-stage stratified cluster sampling. It

should be noted that the context of complex surveys is very broad, and the goal of

this chapter is not to make a summary of it but to define the basic terms related to

complex surveys that are necessary to understand the concepts considered and the

methods proposed in this work. Therefore, in this chapter, we focus on describing

only those terms that will be used in the following chapters, while many important

aspects of complex survey data (which include other kinds of sampling designs, post-

13
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stratification, or the modification of sampling weights to account for non-responses,

among others) are not explained here, as they have not been treated in this work.

For more information on these topics, we recommend Cochran (1977), Heeringa et al.

(2017), Kalton (1983), Kish (1965), Kott (2012), Little and Vartivarian (2003) and

Särndal et al. (2003).

In Section 2.2, we describe the existing methodological background to fit predic-

tion models to complex survey data from the design-based framework. In particular,

throughout this document, we work with linear and logistic regression models. Thus,

in this section, we first briefly introduce these models traditionally defined for iid

data. The main objective of this section is to familiarize the reader with the esti-

mation of predictive models from the design perspective, and we thus introduce the

methodological background for fitting linear and logistic regression models in this

framework. It should be noted that the methodological background described in this

section will be necessary to understand the methodology implemented and proposed

in the following chapters. However, some fundamental concepts in the development

of prediction models (such as variable selection or the predictive ability of the fitted

models) have been omitted from this chapter and are explicitly addressed in the

corresponding chapter.

2.1 Basic notation of complex survey data

The objective of this section is to define the basic concepts related to complex

survey data and to establish the notation that will be used throughout the rest of

the document. Specifically, we mathematically define the basic elements of this type

of data, which include the finite population, complex sampling designs, inclusion

probabilities, and sampling weights.

A survey is usually conducted with one objective in mind: to analyze a par-

ticular characteristic in a specific population. For example, we may be interested

in analyzing the employment status of inhabitants in a certain city, in the amount

of money invested by companies in a particular country in research, development,

and innovation, or in studying the evolution of pain in patients in a region who are

receiving a particular treatment. The first task is usually to correctly define the

population of interest where we want to carry out the research. In the framework

that we have considered in this work, we work with a finite population for which

all the individuals that are part of it are identifiable in some way. For example, the

inhabitants of a city can be identified by the registration documents of that city,
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the companies of a country are registered by means of a tax identification number,

and the patients of a region who are receiving that treatment are registered by the

health system of that region. Hereinafter, we will denote as U the finite population

of interest and N its size.

In practice, it is often unfeasible and/or inefficient to survey all individuals in the

population, and it is decided to take a sample representing the population in which

to conduct the survey instead. The simplest way to sample the population is to

choose individuals at random. Let n be the number of individuals to be sampled. In

this way, each individual has an identical probability of n/N of being sampled. This

sampling design is known in the literature as simple random sampling. However,

in most cases, survey statisticians decide to use other types of sampling in order to

obtain more efficient and/or economically more feasible samples by implementing

more complex sampling techniques. More information about survey sampling tech-

niques can be found in Cochran (1977), Kish (1965) and Särndal et al. (2003). A

good summary can also be found in Kalton (1983).

In particular, in this work, we focus on probability-based sampling designs. In

this type of sampling, each unit of the population is assigned a probability (different

from zero) to be included in the sample (also known as “inclusion probability”),

and these probabilities can be different for each population unit. Methods such as

stratification or clustering can be applied at one or several stages of the sampling

process. The sampled individuals are assigned a sampling weight, which is defined

as the inverse of their inclusion probability (thus, can also be denoted as “inverse

probability weights”) and indicates the number of units that this sampled observa-

tion represents in the finite population. Throughout this document, we work with

two different complex sampling designs. In particular, in Section 2.1.1, we describe

the one-stage stratified sampling design. Briefly, this sampling design consists in

defining several non-overlapping population subsets (denoted as strata) and sam-

pling individuals by simple random sampling in each of the strata. In Section 2.1.2,

the two-stage stratified cluster sampling design is described, based on which, in the

first stage, some clusters or groups of individuals are selected to be included in the

sample from each stratum, and in the second stage, only a number of individuals are

sampled by simple random sampling process from each cluster selected in the first

stage to be finally included into the sample. We proceed to describe both sampling

designs in detail below.
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2.1.1 One-stage stratified sampling

In this section, we describe the one-stage stratified sampling process. In order to

sample the finite population based on this design, we need to follow the next steps.

First, the finite population U is divided into several strata, which are usually

defined based on the information on a variable or a combination of some of them.

These strata are mutually excluding subsets of the population, that is,

U =

H⋃
h=1

Uh, where Uh ∩ Uh′ = ∅, ∀h, h′ = 1, . . . ,H : h ̸= h′, (2.1)

being H the total number of defined strata. Let us denote as Nh the size of stratum

h, ∀h = 1, . . . ,H, where,
H∑

h=1

Nh = N. (2.2)

Then, a previously specified number of individuals is randomly sampled from

each population stratum. Let us denote as nh the number of units to be sampled

from Uh, ∀h = 1, . . . ,H and form the subset Sh. Then, each individual i ∈ Uh has

the inclusion probability πi, where,

πi = P (i ∈ S) = P (1Sh
(i) = 1) =

nh
Nh

, ∀i ∈ Uh, ∀h = 1, . . . ,H, (2.3)

where,

1Sh
(i) =

{
1 if i ∈ Sh,

0 if i /∈ Sh,
∀h = 1, . . . ,H. (2.4)

Once nh elements have been selected from Uh they form the subset Sh ⊂ Uh, ∀h =

1, . . . ,H. Finally, the sample S is constructed by joining all the subsets Sh,

S =
H⋃

h=1

Sh, where Sh ∩ Sh′ = ∅, ∀h, h′ = 1, . . . ,H : h ̸= h′, (2.5)

and the total sample size is denoted as n =
∑H

h=1 nh.

One of the major advantages of stratified sampling is that a different proportion

of individuals can be sampled from each stratum, oversampling some of them so

that a sufficiently large sample size can be ensured in each subset. Thus, a sampling

weight is assigned to each sampled unit in order to solve the imbalance that this

act would imply. These sampling weights are defined as the inverse of inclusion
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probabilities, and they indicate the number of units that each sampled observation

represents in the finite population. For each unit i sampled from Uh, the correspond-

ing sampling weight is calculated as follows:

wi =
1

πi
=
Nh

nh
, ∀i ∈ Sh, (2.6)

or equivalently, in a more general way, ∀i ∈ S:

wi =
H∑

h=1

1Sh
(i) · Nh

nh
, ∀i ∈ S. (2.7)

Note that, following the notation set above, the sum of the sampling weights is equal

to the population size,

∑
i∈S

wi =
∑
i∈S

H∑
h=1

1Sh
(i) · Nh

nh
=

H∑
h=1

∑
i∈S

1Sh
(i) · Nh

nh
=

H∑
h=1

∑
i∈Sh

Nh

nh
=

=
H∑

h=1

Nh

nh
· nh =

H∑
h=1

Nh = N.

(2.8)

A graphical example of the stratified simple random sampling scheme can be

found in Figure 2.1. In this figure, it can be seen how the finite population (depicted

as the rectangle painted in dark blue) is partitioned into different strata (which are

defined by means of gray lines). Two of these population strata are zoomed in, and

all the individuals in each of them are shown. On the one hand, the greatest stratum

of both that are zoomed in (which is depicted on the left side, let us indicate this

stratum as Uh∗) is formed by Nh∗ = 20 individuals, from which nh∗ = 4 of them

are sampled. On the other hand, from the smallest stratum depicted on the right

side (which will be indicated as Uh∗∗), nh∗∗ = 2 out of Nh∗∗ = 4 individuals are

sampled. Note that when sampling 4 out of 20 individuals or 2 out of 4, the sampling

proportions of these strata are not equal, and thus, the inclusion probabilities for the

units in these strata are not the same. Following eq. (2.3), the inclusion probability

for the units in Uh∗ is:

πi =
4

20
= 0.2, ∀i ∈ Uh∗ , (2.9)

while the inclusion probability for the units in Uh∗∗ is calculated as follows:

πi =
2

4
= 0.5, ∀i ∈ Uh∗∗ . (2.10)
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Figure 2.1: Stratified simple random sampling without replacement. The dark blue
rectangle indicates the finite population. The gray lines separate the strata. The
sampled individuals are represented in red.

Therefore, the sampling weights assigned to these sampled units also differ. Follow-

ing eq. (2.6), the sampling weight for the 4 units sampled from Uh∗ is the following:

wi =
20

4
= 5, ∀i ∈ Sh∗ , (2.11)

indicating that each of them represents 5 units as themselves in the finite population

(given that since they belong to the same stratum, they are assumed to be similar).

In the same way, the sampling weight for the 2 units sampled from Uh∗∗ is,

wi =
4

2
= 2, ∀i ∈ Sh∗∗ . (2.12)

Finally, note that the sum of the weights corresponding to the units sampled from

these two strata gives the total number of units in the corresponding finite popula-
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tion, i.e., ∑
i∈Sh∗

wi +
∑

i∈Sh∗∗

wi = 4 · 5 + 2 · 2 = 20 + 4 = 24. (2.13)

In this example, we only show the sampling process in two of them for illustration

purposes. However, it is important to note that, in order to properly obtain a

representative sample for the whole finite population, the sampling must be done

one by one in each of the strata. In that case, the sum of all the sampling weights of

the sampled units must result in the total population size N , as shown in eq. (2.8).

2.1.2 Two-stage stratified cluster sampling

In this section, we describe the two-stage stratified cluster sampling process, which,

as its name indicates, is carried out in two stages. In the first place, as described for

the one-stage stratified sampling in eq. (2.1), the finite population U is partitioned

into H mutually excluding strata,

U =

H⋃
h=1

Uh, where Uh ∩ Uh′ = ∅, ∀h, h′ = 1, . . . ,H : h ̸= h′. (2.14)

In addition, in each population stratum Uh,∀h = 1, . . . ,H individuals are grouped

into non-overlapping clusters, that is,

Uh =

Ah⋃
α=1

Uh,α, where Uh,α ∩ Uh,α′ = ∅, ∀α, α′ = 1, . . . , Ah : α ̸= α′, (2.15)

being Ah the total number of clusters in Uh, ∀h = 1, . . . ,H and Nh,α the population

size of each cluster Uh,α.

In the first stage of the sampling, a pre-specified number of clusters ah (being

ah ≤ Ah, ∀h = 1, . . . ,H) are randomly selected from each stratum. The units (in

this case, clusters) that are sampled in the first stage of the sampling process are

usually also known as primary sampling units (PSU). Let us define the next indicator

function:

1h(α) =

{
1 if the cluster Uh,α is selected in the first stage,

0 otherwise.
(2.16)

Let πh,α be the inclusion probability for the population cluster Uh,α, to be selected.



20 Chapter 2.

Then, note that,

πh,α = P (1h(α) = 1) =
ah
Ah

, ∀α = 1, . . . , Ah, ∀h = 1, . . . ,H. (2.17)

In the second stage of the sampling, a given number of individuals is sampled

from each cluster selected in the first stage, which form in this way the sample subset

Sh,α ⊂ Uh,α. Then, if cluster Uh,α is selected in the first stage (i.e., 1h(α) = 1),

∀i ∈ Uh,α the probability for being included into the sample is,

πi|h,α = P (i ∈ Sh,α|1h(α) = 1) = P (1Sh,α
(i) = 1|1h(α) = 1) =

nh,α
Nh,α

, ∀i ∈ Uh,α,

(2.18)

where,

1Sh,α
(i) =

{
1 if i ∈ Sh,α,

0 if i /∈ Sh,α,
∀α = 1, . . . , Ah, ∀h = 1, . . . ,H. (2.19)

Finally, note that two conditions need to be satisfied for ∀i ∈ Uh,α to be included

in the sample. First, the cluster Uh,α needs to be selected. Then, unit i needs to

be one of the units from Uh,α selected for being sampled. Therefore, the inclusion

probability for each unit i ∈ Uh,α can be calculated as follows:

πi = P (i ∈ S) = P
[
(1h(α) = 1) ∩ (1Sh,α

(i) = 1)
]
=

= P
[
1Sh,α

(i) = 1|1h(α) = 1
]
· P [1h(α) = 1] = πi|h,α · πh,α =

=
nh,α
Nh,α

· ah
Ah

, ∀i ∈ Uh,α, ∀h = 1, . . . ,H, ∀α = 1, . . . , Ah,

(2.20)

which can also be rewritten in more general terms as,

πi =
H∑

h=1

Ah∑
α=1

πi|h,α · πh,α · 1Uh,α
(i) =

H∑
h=1

Ah∑
α=1

·
nh,α
Nh,α

· ah
Ah

· 1Uh,α
(i), ∀i ∈ U, (2.21)

where,

1Uh,α
(i) =

{
1 if i ∈ Uh,α,

0 if i /∈ Uh,α,
∀α = 1, . . . , Ah, ∀h = 1, . . . ,H. (2.22)

In summary, the subset Sh,α ⊂ Uh,α is formed by the nh,α units of Uh,α that are

selected in the second stage of the sampling, assuming that the cluster Uh,α has been

selected in the first stage, that is, 1h(α) = 1. Note that if the cluster Uh,α has not
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been selected in the first stage, then none of the units of Uh,α are selected to be part

of the sample, that is, ∀h ∈ {1, . . . ,H} and ∀α ∈ {1, . . . , Ah},

if 1h(α) = 0 =⇒ Sh,α = ∅. (2.23)

∀h ∈ {1, . . . ,H}, let us define the set Ah as follows:

Ah = {α ∈ {1, . . . , Ah} : 1h(α) = 1}. (2.24)

In other words, the set Ah is the set of indexes indicating the clusters from stratum

h, ∀h ∈ {1, . . . ,H} that have been selected in the first stage. Sample S is then

formed as follows:

S =
H⋃

h=1

Ah⋃
α=1

Sh,α, (2.25)

which can also be rewritten as in eq. (2.26) taking into account the implication

indicated in eq. (2.23):

S =

H⋃
h=1

⋃
α̇∈Ah

Sh,α̇, (2.26)

being Ah the set defined in eq. (2.24). Hereinafter, we use the indicator α to

indicate the indexes of all the clusters in the population and the indicator α̇ to

indicate specifically the clusters that have been selected in the first stage and end

up in the sample.

The sampling weight assigned to each sampled observation is now calculated as

the inverse of its inclusion probability:

wi =
1

πi
=
Nh,α̇

nh,α̇
· Ah

ah
, ∀i ∈ Sh,α̇. (2.27)

or equivalently,

wi =
1

πi
=

H∑
h=1

∑
α̇∈Ah

Nh,α̇

nh,α̇
· Ah

ah
· 1Sh,α̇

(i), ∀i ∈ S. (2.28)

The sum of the sampling weights of all the units in the sample can then be calculated
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as in eq. (2.29):

∑
i∈S

wi =
∑
i∈S

H∑
h=1

∑
α̇∈Ah

Nh,α̇

nh,α̇
· Ah

ah
· 1Sh,α̇

(i) =
H∑

h=1

∑
α̇∈Ah

∑
i∈Sh,α̇

Nh,α̇

nh,α̇
· Ah

ah
=

=
H∑

h=1

∑
α̇∈Ah

nh,α̇ ·
Nh,α̇

nh,α̇
· Ah

ah
=

H∑
h=1

∑
α̇∈Ah

Nh,α̇ · Ah

ah
.

(2.29)

Let us suppose that the clusters in the same stratum are of the same size, i.e.,

Nh,α = Nh,α′ , ∀α, α′ = 1, . . . , Ah : α ̸= α′, ∀h = 1, . . . ,H. (2.30)

Then, given that Nh =
∑Ah

α=1Nh,α, Nh,α =
Nh

Ah
. Thus, note that if eq. (2.30)

is satisfied, rewriting eq. (2.29), the sum of the sampling weights is equal to the

population size:

∑
i∈S

wi =
H∑

h=1

∑
α̇∈Ah

Nh,α̇ · Ah

ah
=

H∑
h=1

∑
α̇∈Ah

Nh

Ah
· Ah

ah
=

H∑
h=1

Nh

Ah
· Ah

ah
· ah =

H∑
h=1

Nh = N.

(2.31)

In other words, if all the clusters are the same size, then the sum of the sampling

weights of all the units in the sample is equal to the population size.

Throughout this document, we will work under the assumption that eq. (2.30) is

satisfied. In practice, it is recommended that the clusters of the same stratum, even

if they are not exactly the same size, should not be too different in size (Kalton 1983).

It should be noted that one of the greatest advantages of this type of sampling is that

it can considerably reduce the economic costs of surveys, especially those conducted

face-to-face, by being able to conduct the survey in specific areas, such as specific

hospitals in a state or specific neighborhoods in a city.

Figure 2.2 depicts a visual description of this type of sampling design as an

example. The finite population (dark blue rectangle) is partitioned into several

strata (which are indicated with gray lines), and two of them are zoomed in. These

strata have 5 clusters (on the left, let us denote as h∗ this stratum) and 4 clusters

(on the right, which will be denoted as h∗∗), respectively. From stratum h∗, two

clusters are selected to be sampled. Therefore, the probability of being sampled for

each cluster in this stratum can be calculated following eq. (2.17):

πh∗,α =
2

5
= 0.4, ∀α = 1, . . . , 5. (2.32)
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And in the same way, given that two out of four clusters are sampled, the probability

of being sampled for each cluster in stratum h∗∗ is,

πh∗∗,α =
2

4
= 0.5, ∀α = 1, . . . , 4. (2.33)

Let us denote as α′ and α′′ the clusters sampled from strata h∗ and h∗∗. All of

them are zoomed in, and the number of units in each of them is shown. In both

selected clusters from stratum h∗, there are Nh∗,α′ = Nh∗,α′′ = 10 units from which

nh∗,α′ = 5 and nh∗,α′′ = 2 are sampled, being the inclusion probability for each unit

of these clusters defined as in eq. (2.18):

πi|h∗,α′ =
5

10
= 0.5, ∀i ∈ Uh∗,α′ , (2.34)

πi|h∗,α′′ =
2

10
= 0.2, ∀i ∈ Uh∗,α′′ . (2.35)

Therefore, the inclusion probability and the corresponding sampling weight for the

units in the clusters α′ and α′′ from stratum h∗ can be calculated as in eqs. (2.20)

and (2.27), respectively:

πi = πi|h∗,α′ ·πh∗,α′ =
5

10
· 2
5
= 0.2 =⇒ wi =

1

πi
=

5

2
· 10
5

= 5, ∀i ∈ Sh∗,α′ , (2.36)

πi = πi|h∗,α′′ · πh∗,α′′ =
2

10
· 2
5
= 0.08 =⇒ wi =

1

πi
=

5

2
· 10
2

= 12.5, ∀i ∈ Sh∗,α′′ .

(2.37)

Similarly, following the same steps as the ones described previously, we can easily

calculate the sampling weights for the units sampled from clusters α′ and α′′ from

stratum h∗∗ (which in this case are equal, given that the same number of units are

sampled from both clusters):

wi =
4

2
· 4
2
= 4, ∀i ∈ Sh∗∗,α′ and ∀i ∈ Sh∗∗,α′′ . (2.38)

In this example, we only show the sampling process in two of the strata for illus-

tration purposes. However, it is important to note that, in order to properly obtain

a representative sample for the whole finite population, the sampling must be done

one by one in each of the strata, and the sampling process followed in the two

strata shown in the picture should be replicated in the rest of the strata of the finite

population.
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Figure 2.2: Two-stage stratified cluster sampling. The dark blue rectangle indicates
the finite population. The gray lines separate the strata. The circles indicate clusters
(in green, the ones that have been sampled). The sampled units from each cluster
are indicated in red.
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2.2 Background of the design-based estimation of pre-

diction models

The goal of this chapter is to set the basic notation and methodological background

to fit prediction models to complex survey data from the design-based perspective.

In particular, throughout the document, we work with linear (Section 2.2.1) and

logistic (Section 2.2.2) regression models, which will be introduced in the following

lines. First, we introduce the traditional methodology to fit these prediction models

to iid data. It should be noted that, in the context of survey data, when a prediction

model is fitted, we aim to analyze the relationship between the characteristic of

interest and the predictor variables in the finite population. Therefore, the finite

population models would be the gold standard that we aim to approach based on

the sampled information in this context. Thus, we first define finite population

models, and finally, we introduce the methodology proposed to fit these models

based on the sample obtained following complex sampling designs from the design-

based perspective.

First of all, let us denote the basic notation. We denote as Y the characteristic

of interest or the response variable (which follows either the Gaussian distribution

for linear regression models or a Bernoulli distribution for logistic regression mod-

els) and as XXX = (1, X1, . . . , Xp) the set of covariates or predictor variables. Let

{(yi,xxxi)}i∈S indicate the set of observations of the response and predictor variables

for the individuals in sample S of size n, where xxxi = (1, xi1, . . . , xip). The vector

of regression coefficients will be denoted by βββ = (β0, β1, . . . , βp)
T in both linear

and logistic regression models. For ease of notation, let us indicate X0 = 1 and

x0i = 1, ∀i ∈ S the variable and observations that are multiplying the intercept β0,

respectively.

2.2.1 Linear regression models

For a continuous response variable Y , the linear regression model for the observed

data is defined as follows:

yi = xxxiβββ + ϵi, ϵi ∼ N(0, σ2), (2.39)

and the vector of regression coefficients is estimated (let us denote the vector of

estimated regression coefficients as β̂ββ = (β̂0, β̂1, . . . , β̂p)
T ) based on sample S by
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minimizing the residual sum of square (RSS):

RSS(βββ) =
∑
i∈S

(yi −
p∑

j=0

βjxij)
2, (2.40)

which can also be rewritten in a matrix form as follows:

RSS(βββ) = (yyy −Xn×(p+1)βββ)
T (yyy −Xn×(p+1)βββ), (2.41)

where

yyy = (y1, . . . , yn)
T , Xn×(p+1) =


1 x11 . . . x1p

1 x21 . . . x2p
...

...
...

...

1 xn1 . . . xnp

 . (2.42)

Then, the linear regression coefficients are estimated by minimizing the RSS function

described in eq. (2.40) and eq. (2.41). For this purpose, first, the function is derived

with respect to each coefficient βj , ∀j = 0, . . . , p, and the resulting equations are

equated to 0 to obtain the coefficient estimates, i.e.,

∂ RSS(βββ)

∂βj
= −2

∑
i∈S

xij(yi − xxxiβββ) = 0, ∀j = 0, . . . , p, (2.43)

which in matrix form can be rewritten as follows:

XT
n×(p+1)(yyy −Xn×(p+1)βββ) = 0. (2.44)

The coefficients that solve the previous equation are the ones that will be used for

estimating the linear regression model (β̂ββ):

β̂ββ = (XT
n×(p+1)Xn×(p+1))

−1XT
n×(p+1)yyy. (2.45)

Linear regression models from the design-based perspective

Let us suppose that information about the response variable Y and the vector of

covariatesXXX is available for all the units in the finite population U , i.e., {(yi,xxxi)}Ni=1.

Then, the linear population model can be defined as follows:

yi = xxxiβββ
pop + ϵi, (2.46)
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where the finite population regression coefficients βββpop can be computed by mini-

mizing the population residual sum of square (RSSpop(βββ)) in eq. (2.47):

RSSpop(βββ) =
∑
i∈U

(yi −
p∑

j=0

βjxij)
2, (2.47)

Then, the vector of population coefficients, which will be denoted as βββpop hereinafter,

could be obtained by following eqs. (2.43) and (2.45).

However, the problem arises from the fact that commonly the information on

the response variable and covariates is not available for all the individuals in the

finite population U , but only for those that have been incorporated into sample S,

together with their respective sample weights, i.e., {(yi,xxxi, wi)}i∈S , and thus, the

population regression coefficients need to be estimated based on the sample S. In

this context, Fuller (1975) proposed to minimize the weighted residual sum of square

(WRSS) described in eq. (2.48) in order to estimate the population coefficients for

linear regression models when working with complex survey data. Let Wn×n be a

n× n diagonal matrix with the sampling weights wi, ∀i = 1, . . . , n in the diagonal,

i.e., Wn×n = diag({wi}i∈S). Then,

WRSS(βββ) =
∑
i∈S

wi(yi − xxxiβββ)
2 = (yyy −Xn×(p+1)βββ)

TWn×n(yyy −Xn×(p+1)βββ). (2.48)

This function is differentiated with respect to βj , ∀j = 0, . . . , p, i.e.,

∂WRSS(βββ)

∂βj
= −2

∑
i∈S

wixij(yi−xxxiβββ) = XT
n×(p+1)Wn×n(yyy−Xn×(p+1)βββ) = 0. (2.49)

Solving the previous equations, we have that,

β̂ββ = (XT
n×(p+1)Wn×nXn×(p+1))

−1XT
n×(p+1)Wn×nyyy. (2.50)

2.2.2 Logistic regression models

In a similar way, if Y is a dichotomous response variable, the logistic regression

model is defined as,

logit(P (Y = 1|xxxi)) = logit(p(xxxi)) = ln

[
p(xxxi)

1− p(xxxi)

]
= xxxiβββ, (2.51)
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where,

p(xxxi) = P (Y = 1|xxxi) =
exxxiβββ

1 + exxxiβββ
, (2.52)

and β̂ββ is obtained by maximizing the likelihood function L(βββ):

L(βββ) =
∏
i∈S

p(xxxi)
yi(1− p(xxxi))

1−yi . (2.53)

Equivalently, for ease of calculation, the log-likelihood function ℓ(βββ) described in eq.

(2.54) is maximized instead:

ℓ(βββ) = ln(L(βββ)) =
∑
i∈S

[yi ln(p(xxxi)) + (1− yi) ln(1− p(xxxi))] =

=
∑
i∈S

[
yi ln

(
exxxiβββ

1 + exxxiβββ

)
+ (1− yi) ln

(
1

1 + exxxiβββ

)]
=

=
∑
i∈S

{
yi

[
xxxiβββ − ln

(
1 + exxxiβββ

)]
− (1− yi) ln

(
1 + exxxiβββ

)}
=

=
∑
i∈S

{
yixxxiβββ − ln

(
1 + exxxiβββ

)}
.

(2.54)

This function is differentiated for all the coefficients to end up with the following

likelihood equations:

∂ ℓ(βββ)

∂βj
=
∑
i∈S

xij

(
yi −

exxxiβββ

1 + exxxiβββ

)
= 0, ∀j = 0, . . . , p. (2.55)

Given that there is not a closed form that solves the likelihood equations, logistic

regression coefficients are usually estimated by means of iterative methods such as

the Iterative Weighted Least Squares (IWLS) (McCullagh and Nelder 1989).

Logistic regression models from the design-based perspective

Let us suppose that information about the response variable Y and the vector of

covariatesXXX is available for all the units in the finite population U , i.e., {(yi,xxxi)}Ni=1.

Then, the logistic regression population model can be defined as follows, respectively:

logit(p(xxxi)) = xxxiβββ
pop, (2.56)
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where the finite population regression coefficients βββpop can be computed by maxi-

mizing the population likelihood function (Lpop(βββ)) in eq. (2.57):

Lpop(βββ) =
∏
i∈U

p(xxxi)
yi(1− p(xxxi))

1−yi . (2.57)

Then, the population coefficients βββpop could be obtained by following the procedures

previously explained in eq. (2.54) and eq. (2.55).

However, given that only the information of sampled units is available, Binder

(1981; 1983) proposed to use the pseudo-likelihood function described in eq. (2.58)

that considers the sampling weights to estimate the population regression coefficients

(β̂ββ):

PL(βββ) =
∏
i∈S

p(xxxi)
yiwi(1− p(xxxi))

(1−yi)wi . (2.58)

In order to ease the calculations, the logarithm of the pseudo-likelihood function

defined in eq. (2.59) is maximized:

pℓ(βββ) = ln(PL(βββ)) =
∑
i∈S

[wiyi ln(p(xxxi)) + wi(1− yi) ln(1− p(xxxi))] =

=
∑
i∈S

[
wiyi ln

(
exxxiβββ

1 + exxxiβββ

)
+ wi(1− yi) ln

(
1

1 + exxxiβββ

)]
=

=
∑
i∈S

{
wiyi

[
xxxiβββ − ln

(
1 + exxxiβββ

)]
− wi(1− yi) ln

(
1 + exxxiβββ

)}
=

=
∑
i∈S

{
wiyixxxiβββ − wi ln

(
1 + exxxiβββ

)}
.

(2.59)

This function is differentiated for all the coefficients to end up with the following

likelihood equations:

∂ pℓ(βββ)

∂βj
=
∑
i∈S

wixij

(
yi −

exxxiβββ

1 + exxxiβββ

)
= 0, ∀j = 0, . . . , p, (2.60)

which are solved by means of iterative methods in the same way as the traditional

logistic regression model (Heeringa et al. 2017).
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CHAPTER3
Motivating Data Sets

The goals raised in this dissertation are motivated by two real surveys designed

and collected by the Official Statistics Basque Office (EUSTAT): the Survey on the

Information Society in Companies7 (ESIE) and the Survey on the Population with

Relation to Activity8 (PRA). In Section 3.1 and Section 3.2, we describe these two

real surveys, giving information about the finite population, the sample, and the

sampling process of each of them. In addition, in the upcoming chapters, we carry

out several simulation studies based on these surveys. Thus, in this chapter, we also

describe the generation process of the synthetic data that have been used in those

studies.

7https://en.eustat.eus/estadisticas/tema_150/opt_1/tipo_7/temas.html
8https://en.eustat.eus/estadisticas/tema_37/opt_0/temas.html
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3.1 Survey on the Information Society in Companies

(ESIE)

The Survey on the Information Society in Companies is usually denoted as ESIE due

to its Spanish acronym (specifically, Encuesta sobre la Sociedad de la Información

en Empresas). ESIE provides regular information on the implementation of New

Information and Communication Technology in the companies of Basque Country

(BC, hereinafter). This survey collects information about the use of the Internet

in different establishments of the companies in BC. EUSTAT conducts this survey

annually. In particular, the information that will be used for illustration purposes

throughout this dissertation was collected in 2010 (we would like to point out that,

for the purposes of this thesis, the year in which the data was collected is not relevant

and we picked one at random).

3.1.1 Descriptive analysis of real data

In the ESIE survey, from the 2010 finite population of 195 222 establishments, 7 725

were sampled by one-stage stratified sampling (see Section 2.1.1 for more information

on the sampling process). Strata are defined by means of the combination of three

categorical variables: the province where the company is located (3 categories), the

activity of the company (65 categories), and the number of employees (categorized

in 3 categories, i.e., < 10, 10− 99, ≥ 100). In this way, a total of 3× 65× 3 = 585

different strata have been defined. However, it should be noted that in some of these

strata there are no units in the population, so in fact, we have 515 non-empty strata

in total (h = 1, . . . ,H, where H = 515). In particular, strata sizes in the finite

population range from 1 to 14 535, where the median is 38 and the interquartile

range is 7− 185.5. It can be seen that due to the large number of total strata, most

of them are relatively small. The sampling probabilities for each stratum also vary

considerably and range from 0.006 to 1, with a median of 0.283 and an interquartile

range of 0.097− 0.842.

However, due to the large number of establishments in BC, EUSTAT is some-

times interested in analyzing particularly the behavior of the greatest establishments

that have at least 10 employees. In this case, the finite population in 2010 was

formed by 14 200 establishments from which 2 852 were sampled. When reducing

the number of employees, the categories of that variable are reduced from 3 to 2

when defining the strata, and thus, in this situation, a total of 390 strata have been

https://en.eustat.eus/estadisticas/tema_150/opt_1/tipo_7/temas.html


3.1. Survey on the Information Society in Companies (ESIE) 33

defined, from which 325 have at least one company (i.e., H = 325). Strata sizes

in the finite population (i.e., Nh, ∀h ∈ {1, . . . ,H}) range from 1 to 860, where the

median is 12 and the interquartile range 4− 44. The probabilities of being sampled

from each stratum (i.e., nh/Nh, ∀h ∈ {1, . . . ,H}) range from 0.039 to 1 (with a me-

dian of 0.667 and an interquartile range of 0.260− 1). We will use both populations

(the complete one with all establishments and the one with only medium and large

establishments) in the different chapters of this document.

Regarding the variables of interest, even though in the survey more information

about other response variables is also collected, in the data set provided by EU-

STAT, we have available information about the following four dichotomous response

variables, the ones that indicate whether the company:

• has access to the internet (Y1),

• carries out online transactions (Y2, only recorded in case the company has

access to the internet, i.e., Y1 = 1),

• has its own website (Y3),

• has its own website in the Basque language (Y4, only recorded in case the

company has its own website, i.e., Y3 = 1).

In order to describe more clearly the relationship between the different variables of

interest, Figure 3.1 is shown below.

Figure 3.1: Relationship between the variables of interest of the ESIE survey data.
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A descriptive analysis of the dichotomous variables of interest can be found in

Table 3.1. All of them have been considered to generate the synthetic data set based

on the ESIE survey data in order for it to be as similar as possible to the true finite

population. Thus, all of them are described in Table 3.1. Nevertheless, only one

of them has been considered as the response variable in the models fitted to this

data set in the following chapters. In particular, the dichotomous response variable

considered for this work indicates whether a company has its own website (1) or

not (0) (i.e., the one we have previously defined as Y3). The probability of event

estimated in the sample without considering the sampling weights is 0.822 (i.e., the

number of units with the event of interest, divided by the total number of units

in the sample), while the weighted estimate of the probability of event is 0.754,

computed by taking into account the number of units that each element represents

in the finite population by means of the sampling weights as follows:

p̂Y3,w =

∑
i∈S wi · I(y3i = 1)∑

i∈S wi
, (3.1)

where

I(y3i = 1) =

{
1 if y3i = 1,

0 if y3i = 0,
∀i ∈ S. (3.2)

Note that, regarding the notation of Table 3.1, N̂ indicates the number of units

from the finite population represented by means of the sampled units (as the sum

of their weights) that take a value in a particular response variable. In particular,

for Y3, this is calculated as follows, given that this information is available for all

the sampled units:

N̂Y3 =
∑
i∈S

wi. (3.3)

In a similar way, N̂Y=0 and N̂Y=1 indicate the number of units represented by means

of the sampled units without and with the variable of interest, which in case of Y3

would be:

N̂Y3=0 =
∑
i∈S

wi · I(y3i = 0), and N̂Y3=1 =
∑
i∈S

wi · I(y3i = 1). (3.4)

Thus, note that the weighted estimate of the probability of event can also be ex-

pressed as follows:

p̂Y3,w =
N̂Y3=1

N̂Y3

. (3.5)
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The differences between the weighted and unweighted estimates of the probabil-

ity of event are remarkable. It should also be noted that, due to the large number

of strata and their relatively small size, the behavior of the response variable varies

considerably depending on the strata. Particularly, the unweighted sample prob-

ability of event ranges from 0 to 1 across different strata with a median of 0.769

and an interquartile range of 0.472− 1. These differences, together with the imbal-

anced sampling across the strata, make the weighted and unweighted estimates of

the probability of event differ.

Due to the large number of available covariates in the real data set, a descriptive

analysis of those covariates included in the models fitted throughout this disserta-

tion can be observed in Table 3.2 (accounting for all the establishments in BC) and

Table 3.3 (considering only the establishments with at least 10 employees). Those

covariates include information about the ownership of the establishments (7 cate-

gories), the type of activity they undertake (categorized in 3 categories), the number

of employees they have (6 categories), and the province in which the establishment

is located (3 categories). It should be noted that information on these four covari-

ates is available not only for the sampled units but for all the establishments in the

finite population, as shown in the tables. In addition, three out of four variables are

the same variables previously used to define the strata, but not necessarily with the

same categorization. In particular, the activity and the number of employees (both

of them with a different categorization) and the province (with exactly the same

categorization indicated before).
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Table 3.1: Descriptive analysis of the response variables available in the ESIE sur-
vey data (corresponding to 2010), which include information about the number of
sampled units with information on the response variable (n), the number of sam-
pled units without (nY=0) and with (nY=1) the event of interest; the number (and
percentage %) of units that the n sampled units represent by means of the sampling
weights (N̂ , calculated as the sum of their weights), and the number of units and
percentages that represent the units without (N̂Y=0 (%)) and with (N̂Y=1 (%)) the
event of interest considering sampling weights.

All the establishments in BC

n nY=0 (%) nY=1 (%) N̂ N̂Y=0 (%) N̂Y=1 (%)

Y1 7 725 1 320 (17.1) 6 405 (82.9) 195 222 58 704 (30.1) 136 518 (69.9)

Y2 6 405 1 725 (26.9) 4 680 (73.1) 136 518 52 628 (38.6) 83 890 (61.4)

Y3 7 725 3 444 (44.6) 4 281 (55.4) 195 222 129 124 (66.1) 66 098 (33.9)

Y4 4 281 2 470 (57.7) 1 811 (42.3) 66 098 41 865 (63.3) 24 232 (36.7)

Establishments with at least 10 employees

n nY=0 (%) nY=1 (%) N̂ N̂Y=0 (%) N̂Y=1 (%)

Y1 2 852 80 (2.8) 2 772 (97.2) 14 200 542 (3.8) 13 658 (96.2)

Y2 2 772 317 (11.4) 2 455 (88.6) 13 658 2 067 (15.1) 11 591 (84.9)

Y3 2 852 507 (17.8) 2 345 (82.2) 14 200 3 488 (24.6) 10 712 (75.4)

Y4 2 345 1 298 (55.4) 1 047 (44.6) 10 712 6 236 (58.2) 4 476 (41.8)
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3.1.2 Pseudo-population generation and sampling process

In order to carry out different simulation studies for various challenges faced through-

out this dissertation, an artificial population (denoted as the pseudo-population,

hereinafter) was generated based on the available information on the true finite

population and the sample corresponding to ESIE. The pseudo-population has been

generated considering all the establishments in BC. In the cases in which we have

worked with establishments with at least 10 employees, the subset of the whole

pseudo-population has been considered. The data generation process, as well as the

sampling process of this pseudo-population, are explained in the following lines.

In order to distinguish between the real and simulated data, let us denote as

S the original (real) survey sample and as U the real finite population of size N

(S ⊂ U). As explained above, a total of H strata have been defined (i.e., {1, . . . ,H})
combining information of three categorical variables, which will be denoted as X

(H)
1 ,

X
(H)
2 and X

(H)
3 .

Our goal is to generate a pseudo-population (U) based on the known real ESIE

survey data, for which all the information of the covariates X1, . . . , Xp and the

response variables Y1, . . . , Y4 will be available (note that in the real finite population

Y1, Y2, Y3 and Y4 are not available). This new pseudo-population U will be the same

size as the true ESIE population U (N). In order to ease the notation, the variable

names of the pseudo-population are the same as in the real finite population. In

contrast, the units of the real ESIE population will be denoted as i′ ∈ U while the

units that are artificially generated for the pseudo-population will be denoted as

i ∈ U .

As explained above, several dichotomous response variables are available in the

original survey. All possible combinations of these response variables have been

examined. Let us go back to Figure 3.1 for a better understanding. If the response

variable Y1 = 0, then information about Y2 is not recorded, and the same happens

to Y4 if Y3 = 0. Thus, let us define two new variables as follows. ∀i′ ∈ S,

y
(∗)
1i′ =


0, if y1i′ = 0,

1, if y1i′ = 1, y2i′ = 1,

2, if y1i′ = 1, y2i′ = 0,

and y
(∗)
3i′ =


0, if y3i′ = 0,

1, if y3i′ = 1, y4i′ = 1,

2, if y3i′ = 1, y4i′ = 0.

(3.6)

Let then yyy
(∗)
i′ = (y

(∗)
1,i′ , y

(∗)
3,i′) indicate the set of values of the response variables,

corresponding to ∀i′ ∈ S. Then, yyy
(∗)
i′ is necessarily equal to one of the following
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combinations:

C = {c1, . . . , c9} = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} . (3.7)

That is, ∀i′ ∈ S, ∃!c ∈ C : yyy
(∗)
i′ = c.

For each stratum h ∈ {1, . . . ,H} and for each possible combination of the re-

sponses (i.e., ∀c ∈ C) we generate Nh,c units in the pseudo-population (U) with

information about the response variable and strata. This procedure is summarized

in Figure 3.2 and can be written mathematically as follows:

Figure 3.2: Graphical representation of the generation of the pseudo-population U
with N =

∑H
h=1

∑
c∈CNh,c elements.

Nh,c =
∑
i′∈S

wi′ · 1Uh
(i′) · I

(
yyy
(∗)
i′ = c

)
, (3.8)

where,

1Uh
(i′) =

{
1, if i′ ∈ Uh,

0, if i′ /∈ Uh,
(3.9)
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and

I
(
yyy
(∗)
i′ = c

)
=

{
1 if yyy

(∗)
i′ = c,

0 if yyy
(∗)
i′ ̸= c.

(3.10)

In this way, Nh,c is the number of units of the pseudo-population U in stratum h,

which take the values of responses yyy
(∗)
i′ = (y

(∗)
1,i′ , y

(∗)
3,i′) = c. Once we repeat the process

for ∀h ∈ {1, . . . ,H} and ∀c ∈ C a pseudo-population of N units is generated with

the information of response variables and strata (hence, information for the design

variables X
(H)
1 , X

(H)
2 and X

(H)
3 will also be generated), where N is calculated as:

N =
H∑

h=1

∑
c∈C

Nh,c =
∑
i′∈S

wi′ . (3.11)

Finally, we generate the rest of the covariates (note all of them are categorical) as

follows. ∀j ∈ {1, . . . , p} for ease of notation we assume that Xj is a categorical vari-

able with a total of G categories denoted as {1, . . . , G}. ∀i ∈ U, ∃!h ∈ {1, . . . ,H} :

i ∈ Uh, that is, 1Uh
(i) = 1. Then, we generate the value xji ∈ {1, . . . , G} following

a categorical distribution:

xji ∼ Cat(π
(h)
j1 , . . . , π

(h)
jG ), where h satisfies 1Uh

(i) = 1, (3.12)

and the probability corresponding to each category g ∈ {1, . . . , G}, π(h)jg , is calculated

as the fraction of the number of units in the true ESIE finite population in stratum h

that takes the value g in the covariate Xj (let us denote this value as Nh,jg) and the

total number of units in that stratum (Nh) (see Figure 3.3), which can be defined

as follows mathematically:

π
(h)
jg =

∑
i′∈U 1Uh

(i′) · I(xji′ = g)∑
i′∈U 1Uh

(i′)
=
Nh,jg

Nh
, ∀g ∈ {1, . . . , G}, (3.13)

where 1Uh
(i′) is defined in eq. (3.9) and,

I(xji′ = g) =

{
1 if xji′ = g,

0 if xji′ ̸= g,
∀i′ ∈ U and ∀g ∈ {1, . . . , G}. (3.14)
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Figure 3.3: Graphical explanation of the calculation of the probabilities to be con-
sidered in the categorical distribution defined in eq. (3.12).

In this way, the pseudo-population based on the ESIE survey has been generated

with the response variable Y , the vector of explanatory variables XXX, and the strata.

Note that these variables follow the same distribution as the real survey data shown

in Tables 3.1 and 3.2 due to the way in which they have been generated.

The pseudo-population U has been sampled following a single-stage stratified

sampling design (as described in Section 2.1.1), mimicking the original sampling

procedure. Thus, a pre-specified number of units (nh, ∀h = 1, . . . ,H), established

by EUSTAT, were sampled from each pseudo-population stratum, forming in this

way the sample S. We calculated the sampling weights for sampled units following

eq. (2.7), i.e.,

wi =

H∑
h=1

1Sh
(i) · Nh

nh
, ∀i ∈ S. (3.15)

It should be noted that the objective of generating the pseudo-population is not

to be able to draw conclusions about the real population based on the simulated

data. Rather, these data have simply been used in simulation studies where the

main objective has been to analyze the effect of a realistic sampling design (defined
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in a real survey) that allows us to understand a little better what can happen when

we work with real complex survey data. Thus, we are aware that there may be

reasonable differences between the simulated population and the real one, so we

should not use the simulated one to draw conclusions related to reality, but it does

allow us to draw conclusions regarding the effect of the sampling design.

3.2 Survey on the Population with Relation to Activity

(PRA)

On the other hand, the Population with Relation to Activity (PRA) Survey is con-

ducted among the inhabitants of BC aged 16 and over every three months, with

the aim of estimating the percentage of the labor force of BC. In this dissertation,

we consider information related to the last quarter of 2016 for illustration purposes.

Specifically, the response variable Y that we consider in this study indicates whether

each individual is active (1) or not (0). Following the definition of EUSTAT, we de-

note as active those that are part of the working population, that is, “those persons

who work to produce goods and services, and who do not have a current job, are

seeking employment and are available to start work”.

From a total of 1 851 316 individuals 10 609 were sampled following one-stage

stratified sampling. In this survey, strata are defined as the regions of BC, which

are a total of 23. Specifically, strata sizes range from 2 768 to 438 595, being the

median 44 335 and 22 024−72 834 the interquartile range. Thus, we can say that the

strata defined in this survey are few (given the number of units in the population)

and large. The sampling probabilities range from 0.004 to 0.049, with a median of

0.006 (the interquartile range is 0.006− 0.010).

The sample estimate of the probability of event (without considering sampling

weights) is 0.540, while if we account for the sampling weights, the weighted estimate

is 0.564. The unweighted sample estimates of the probability of event across the

strata do not vary considerably either, given that it ranges from 0.484 to 0.632, with

a median of 0.549 and interquartile range of 0.526− 0.559.

Among the most important covariates, we found age, educational level, nation-

ality, and sex, which are described in Table 3.4.

To perform the simulation studies related to this survey, instead of generating

a pseudo-population, EUSTAT provided us with one they have generated based on

their own analysis. The main characteristics of the real population and the pseudo-

https://en.eustat.eus/estadisticas/tema_37/opt_0/temas.html
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population are similar. In the pseudo-population, information about 1 830 443 indi-

viduals is available, and the population probability of event is 0.581. Strata sizes

range from 2 541 to 438 887, with a median of 46 211 and an interquartile range of

20 818 - 73 227. A descriptive analysis of the variables is displayed in Table 3.5.

Note that in the pseudo-population, in contrast to the true population, there are no

missing values.

To sample the pseudo-population, a one-stage stratified sampling design was fol-

lowed as in the original sample. The number of units to be sampled from each stra-

tum (nh, ∀h ∈ {1, . . . ,H}) was established by EUSTAT, and the sampling weights

for the sampled units were calculated as usual following eq. (2.7):

wi =
H∑

h=1

1Sh
(i) · Nh

nh
, ∀i ∈ S. (3.16)
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Table 3.5: Descriptive analysis of the pseudo-population of PRA survey data: the
name of the variable (in brackets, the codification of those variables we use through-
out this dissertation), the category (in brackets, their codification), and the number
(and percentage) of the units that take each category in the pseudo-population (N
(%)), and the number of units without (NY=0) and with (NY=1) the event of interest
in the pseudo-population.

Variable Category N (%) NY=0 NY=1

Age (X1)

16-24 (1) 159 471 (8.7) 115 491 43 980
25-29 (2) 96 973 (5.3) 14 840 82 133
30-34 (3) 122 968 (6.7) 10 195 112 773
35-44 (4) 342 660 (18.7) 24 292 318 368
45-54 (5) 341 728 (18.7) 38 354 303 374
55-64 (6) 297 289 (16.2) 104 986 192 303
≥ 65 (7) 469 354 (25.6) 459 274 10 080

Education level (X2)

No studies (1) 104 763 (5.7) 78 677 26 086
Primary (2) 635 125 (34.7) 370 111 265 014

Professionals (3) 320 218 (17.5) 75 634 244 584
Secondary (4) 385 499 (21.1) 172 612 212 887

Medium-superior (5) 140 981 (7.7) 30 040 110 941
Higher (6) 243 857 (13.3) 40 358 203 499

Sex (X3)
Male (1) 881 410 (48.2) 331 584 549 826

Female (2) 949 033 (51.8) 435 848 513 185

Nationality (X4)
Spanish (1) 1 714 330 (93.7) 731 740 982 590
Other (2) 116 113 (6.3) 35 692 80 421

Active (Y )
Inactive (0) 767 432 (41.9)
Active (1) 1 063 011 (58.1)



CHAPTER4
Estimation of logistic regression parameters

The work presented in this chapter has been accepted for publication:

Iparragirre, A., Barrio, I., Aramendi, J., & Arostegui, I. (2024) Estimation of

logistic regression parameters for complex survey data: simulation study based

on real survey data. SORT - Statistics and Operations Research Transactions,

in press.

This chapter mostly replicates the above-mentioned article. However, some changes

have been made to keep the notation and ensure cohesion with the rest of the docu-

ment.
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Summary

In the context of complex survey data, whether sampling weights should or should

not be considered in the estimation process of model parameters is a question that

still continues to generate much discussion among researchers in different fields. We

contribute to this debate by means of a simulation study based on real survey data

in the framework of logistic regression models. Three methods have been considered

for estimating the coefficients of the logistic regression model: a) the unweighted

model, b) the weighted model, and c) the unweighted mixed model. A simulation

study has been conducted in order to study their performance. The results suggest

that the performance of the weighted logistic regression model is superior, showing

the importance of using sampling weights in the estimation of the model parameters.

4.1 Introduction

As introduced in Chapter 1, whether or not to use the sampling weights when fitting

prediction models is a question that has been widely discussed in the literature by

a number of researchers (Brewer and Mellor 1973, Smith 1981). As stated previ-

ously, different perspectives can be adopted when fitting prediction models to survey

data, which are usually denoted as model- and design-based approaches (Binder and

Roberts 2009, Chambers and Skinner 2003). On the one hand, the researchers that

adopt the design-based perspective warn that if the complex sampling design, and

in particular, the sampling weights are not considered in the estimation process of

model parameters, the variances tend to be underestimated and biased estimates

may be obtained (Binder and Roberts 2009, Heeringa et al. 2017). Therefore, they

claim that the sampling weights should be considered in the estimation process of

model parameters.

On the other hand, from a model-based point of view, if the model is well spec-

ified, the coefficient estimates must be unbiased even though the sampling weights

are not considered directly in the estimation process, and considering them may

increase the standard deviations of the estimates, particularly for small sample sizes

(Chambers and Skinner 2003, Korn and Graubard 1995, Reiter et al. 2005, Scott

and Wild 1986). In this context, Rubin (1976), Scott (1977) and Sugden and Smith

(1984) established conditions under which the sampling design may be ignored for
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inference purposes. As explained by Skinner et al. (1989), a condition for a design to

be ignorable is to be noninformative. A sampling design is denoted as informative if

the response variable is related to the sampling weights, even after considering the

covariates that are going to be part of the model (Pfeffermann and Sverchkov 2009).

Different methods have been proposed from the model-based perspective in order to

ensure that the design is ignorable and the models are well specified (Pfeffermann

and Sverchkov 2009). Researchers that adopt this perspective propose, among other

techniques, to incorporate into the model as covariates all the design variables that

have been considered in the sampling process and the interactions between them

(see, e.g., DeMets and Halperin (1977), Gelman (2007), Nathan and Holt (1980)).

Although it was already pointed out by Chambers and Skinner (2003), the dis-

cussion between the two perspectives is still alive. Some more recent works, such as

Reiter et al. (2005), Masood et al. (2016) and Lumley and Scott (2017), show that

this debate still generates doubts among researchers and makes it difficult to decide

whether or not to use sampling weights in their analyses. Most researchers agree

that it is not advisable to ignore sampling weights if the design is informative or the

model is not well specified, but at the same time, they encourage analysts to ignore

the sampling weights when they are not strictly necessary. The difficulty usually

lies in identifying whether or not sampling weights are necessary to estimate model

parameters based on our particular survey data or, put another way, whether or

not the design is informative. As explained by Pfeffermann and Sverchkov (2009),

informativeness depends not only on the sampling design but also on the model that

is going to be fitted, the response variable of that model, and the covariates that

will be included. Therefore, commonly it is not easy to know whether the sampling

design of the survey data to be analyzed is informative or not to fit a particular

model. In addition, it is not always possible to include all the design variables and

the interactions between them in the model due to several reasons, such as the lack

of information or the large number of design variables (Pfeffermann and Sverchkov

2009). Consequently, nowadays, it is still not easy in practice to decide whether

sampling weights should or not be considered for estimating model parameters. For

this reason, we believe that further studies are needed in this area, and in particu-

lar, we consider that it is necessary to provide insight considering simulation studies

based on real survey data as a complement to the theoretical results and case studies

that have been most discussed so far.

Throughout this work, we focus on the estimation of model parameters and, in

particular, on the logistic regression framework for dichotomous response variables.
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Although, in general, there are more studies concerning the linear regression model

(see, e.g., DeMets and Halperin (1977), Hausman andWise (1981), Holt et al. (1980),

Nathan and Holt (1980)), a number of works have also been carried out in order

to address this problem arising from complex samplings in the context of logistic

regression models. In particular, Scott and Wild (1986; 2002) work with simulated

data inspired by a case-control study. It should be noted that case-control studies

consist on stratifying the data based on the dichotomous response variable and,

therefore, are always based on informative sampling designs. But, what if we do

not know whether our sampling design is informative or not to fit a certain model?

As mentioned above, in practice, this is the situation that usually occurs when

working with real complex survey data. Chambless and Boyle (1985), Lumley and

Scott (2017) and Reiter et al. (2005) raise this issue in their analysis with real

survey data and they compare several estimation methods adopting both, model-

and design-based perspectives and they finally select the most appropriate model for

their analysis. However, how can we know in practice whether these differences in

estimates are large or not, and if so, which of the estimates is the most appropriate?

In this chapter, we aim to go a step further and contribute to the work that has been

done in the above-mentioned papers by analyzing the differences among different

methods by means of a simulation study based on real survey data in order to

work under a real-life scenario that allows us to compare the coefficient estimates

to the theoretical ones. Hence, data were generated based on real surveys, and

a priori, whether these data are informative or not to fit different models is not

known to us in advance. Our goal is to analyze by means of a simulation study a

situation that frequently occurs in practice and to evaluate the consequences or the

effect of making the decision to consider or not the sampling weights to estimate

the coefficients of the logistic regression model in each situation. Therefore, we

compare the performance of several estimation methods that are commonly applied

for estimating the coefficients of the logistic regression model (see, e.g., Lumley and

Scott (2017)). In particular, we compare the coefficient estimates obtained by: a)

the unweighted logistic regression model (defined in Section 2.2.2), b) the weighted

logistic regression model (also introduced in Section 2.2.2), and c) the unweighted

logistic regression mixed model with random intercept. Different scenarios were

defined based on a) data obtained from two different real surveys (specifically, ESIE

and PRA surveys, which are described in Sections 3.1 and 3.2, respectively, and

were obtained based on a one-stage stratified sampling design); and b) the number

of covariates/parameters in the model.
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The rest of the chapter is organized as follows. In Section 4.2, the methods that

were applied for estimating the model parameters are described. Information about

the simulation procedure, scenarios that were drawn, and the results we obtained

can be found in Section 4.3. In Section 4.4, we apply the described methods to

real survey data for illustration purposes. Finally, the chapter concludes with a

discussion in Section 4.5.

4.2 Methods

In this section, we describe the methods we have considered in order to estimate the

logistic regression coefficients for complex survey data, so let Y indicate a dichoto-

mous response variable. Sample S is drawn from the finite population U following

a one-stage stratified sampling design.

Let us remind some methodological concepts defined in Chapter 2. The finite

population logistic regression model is defined as follows (also shown in eq. (2.56)):

logit(p(xxxi)) = ln

[
p(xxxi)

1− p(xxxi)

]
= xxxiβββ

pop, (4.1)

where p(xxxi) = P (Y = 1|xxxi) denotes the probability of event for the unit i given the

values of covariates xxxi (∀i ∈ U) and the coefficients βββpop = (βpop0 , βpop1 , . . . , βpopp )T

are obtained by maximizing the population likelihood:

Lpop(βββ) =
∏
i∈U

p(xxxi)
yi(1− p(xxxi))

1−yi . (4.2)

However, it should be noted that responses yi are usually known only for the

sampled units, i ∈ S. For this reason, the model should be estimated based on the

sample S. Therefore, a simple logistic regression model can be fitted to the complex

survey sample S, which can be defined as follows:

logit(p(xxxi)) = ln

[
p(xxxi)

1− p(xxxi)

]
= xxxiβββ. (4.3)

Different methods can be applied to estimate the vector of regression coefficients

βββ = (β0, . . . , βp)
T based on S. The unweighted and weighted logistic regression

models have already been defined in Chapter 2. Let us remind them briefly in the

following lines:
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M1. Unweighted logistic regression model (unw)

Let us denote as β̂ββunw the coefficients estimated by maximizing the likelihood

function (eq. (4.4), previously defined in eq. (2.53)), throughout this chapter:

L(βββ) =
∏
i∈S

p(xxxi)
yi (1− p(xxxi))

1−yi . (4.4)

M2. Weighted logistic regression model (w)

Let us denote as β̂ββw the coefficient estimates obtained based on maximizing

the pseudo-likelihood function (eq. (4.5), previously defined in eq. (2.58)) and

considers the sampling weights wi:

PL(βββ) =
∏
i∈S

p(xxxi)
yiwi (1− p(xxxi))

(1−yi)wi . (4.5)

M3. Unweighted logistic regression model with random intercept (mix)

In addition to the above-mentioned methods, another option is to fit a mixed

model considering the complex sampling design as second-level units (see, e.g.

Lumley and Scott (2017), Masood et al. (2016)). In this study, in particular,

we consider a random intercept model in the same way as in Lumley and

Scott (2017). Note that if sample S is partitioned into non-overlapping strata

as explained in Chapter 2, ∀i ∈ S, ∃!h ∈ {1, . . . ,H} : i ∈ Sh. In order to ease

the notation, let i(h) indicate that i ∈ Sh, and xxxi(h) and yi(h) be the values of

the vector of covariates and response variable for i ∈ Sh, respectively. Then,

we aim to fit the following model to our sample S:

logit(pi(h)) = ln

(
pi(h)

1− pi(h)

)
= xxxi(h)γγγ + uh, uh ∼ N(0, σ2u). (4.6)

where pi(h) = P (Y = 1|xxxi(h), uh) =
exxxi(h)γγγ+uh

1 + exxxi(h)γγγ+uh
.

In this case, the likelihood function is defined as follows:

Lmix(γγγ, σ
2
u) =

H∏
h=1

∫ +∞

−∞
f(yi(h)|xxxi(h), uh)f(uh) duh , (4.7)

where

f(yi(h)|xxxi(h), uh) =
∏
i∈Sh

p
yi(h)
i(h) (1− pi(h))

1−yi(h) ,
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and

f(uh) =
1

σu
√
2π
e−u2

h/2σ
2
u .

The parameters γγγ and σ2u are commonly estimated by maximizing the likeli-

hood function in eq. (4.7) numerically, usually by means of Laplace approx-

imation (Lee and Nelder 2001). Let us denote as γ̂γγ and σ̂2u those estimates,

respectively, hereinafter.

However, the comparison of the coefficients obtained from conditional ran-

dom effect models and the corresponding marginal models is not straightfor-

ward (Lee and Nelder 2004). In the case of logistic random intercept models,

marginal coefficients βββ can be obtained based on conditional parameters γγγ as

follows:

βββ =
γγγ√

1 + c̃2σ2u
, (4.8)

where c̃ = (16
√
3)/(15π) (Diggle et al. 2002). Let us denote as β̂ββmix the

coefficient estimates obtained based on γ̂γγ and σ̂2u.

The goal is to analyze the performance of the above-mentioned methods by

comparing the estimates β̂ββunw, β̂ββw and β̂ββmix (which are commonly considered for

estimating the coefficients of the logistic regression models in the context of complex

survey data, e.g., Lumley and Scott (2017)) to the true finite population coefficients

βββpop. Note that, as stated above, in practice, the responses yi are usually known

only for the sampled units, i.e., ∀i ∈ S. Nevertheless, when a finite population is

simulated, the responses yi are known in both, the finite population U and the sample

S, and thus, the true finite population coefficients βββpop and the estimates β̂ββunw, β̂ββw

and β̂ββmix can be compared. In the following section, we explain the simulation study

process in detail.

4.3 Simulation study

In this section, we describe the simulation study that we have conducted in order

to analyze the behavior of the estimation methods described in Section 4.2 for es-

timating the coefficients of the logistic regression model based on complex survey

data under different scenarios. As mentioned previously, our goal is to compare

the coefficient estimates to the true finite population coefficients in real data-based

scenarios.
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In Section 4.3.1 the simulation process is described in detail and in Section 4.3.2

the results obtained in the simulation study are shown.

4.3.1 Scenarios and set up

In this section, we describe the different scenarios under which the simulation study

has been conducted and the steps that have been followed. The simulation process

is described below, step by step:

Step 1. Generate the pseudo-population U of N units from the set of random variables

(Y,XXX): {(yi,xxxi)}Ni=1.

Step 2. Compute βββpop by maximizing the population likelihood in eq. (4.2).

For r = 1, . . . , R repeat the following steps:

Step 3. Obtain a sample Sr ⊂ U by one-stage stratified sampling and assign the cor-

responding sampling weights wi,∀i ∈ Sr.

Step 4. Fit the models to Sr by the likelihood functions in eqs. (4.4), (4.5) and (4.7)

and obtain β̂ββ
r

unw, β̂ββ
r

w and β̂ββ
r

mix, respectively.

Finally, for the results obtained based on samples r = 1, . . . , R and for each

method m, ∀m ∈ {unw, w,mix}, let us define the bias of the coefficient vector

estimates as shown in eq. (4.9). Note that all the covariates considered in this

simulation study are categorical and one coefficient was estimated for each category,

except for the one considered as reference category. Thus, let p indicate the number

of covariates included in the model and p′ > p the total number of model parameters

(including the intercept). Then,

biasrj = β̂rj,m − βpopj , ∀j = 0, 1, . . . , (p′ − 1). (4.9)

The average bias (AvBias) and the mean squared error (MSE) across ∀r = 1, . . . , R

are defined in eqs. (4.10) and (4.11), respectively:

AvBiasj =
1

R

R∑
r=1

(
biasrj

)
=

1

R

R∑
r=1

(
β̂rj,m − βpopj

)
, ∀j = 0, 1, . . . , (p′ − 1), (4.10)

MSEj =
1

R

R∑
r=1

(
biasrj

)2
=

1

R

R∑
r=1

(
β̂rj,m − βpopj

)2
, ∀j = 0, 1, . . . , (p′ − 1). (4.11)
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Two scenarios have been defined based on the two real surveys described in

Chapter 3, ESIE (Scenario 1, hereinafter) and PRA (Scenario 2, hereinafter). One

finite pseudo-population was generated based on each of the surveys (as indicated

in Step 1.). Those populations were sampled based on the complex sampling de-

signs that were applied by EUSTAT in the corresponding real surveys (indicated in

Step 3.). The pseudo-population was generated and the samples were obtained as

described in Chapter 3. In particular, in Scenario 1 related to the ESIE survey data,

all the establishments were considered. A total of R = 500 samples were obtained

from each pseudo-population.

In addition, two different models were fitted to the finite population as well as

to the samples for each of the surveys with different numbers of covariates (Step

2). In particular, in Scenario 1, models with p = 1 covariate (X1, p
′ = 7 parameters

including the intercept β0) and p = 3 covariates (X1, X2 andX3, p
′ = 14 parameters)

were fitted. In the same way, in Scenario 2, the models were fitted with p = 1

covariate (X1, p
′ = 7 parameters) and p = 4 covariates (X1, X2, X3 and X4, p

′ = 14

parameters). Those readers interested in the meaning of the covariates can go back

to Chapter 3 (in particular, Tables 3.2 and 3.4) where the codification implemented

in the descriptive analysis of both datasets is explained in detail.

All computations were performed in (64 bit) R 4.0.5 (R Core Team, 2021) and

a workstation equipped with 32GB of RAM, an Intel i7-8700 processor (3.20 Ghz)

and Windows 10 operating system. In particular, the unweighted logistic regression

models (unw) were fitted by means of the glm() function from the stats package, the

weighted logistic regression models (w) by means of the svyglm() from the survey

package (Lumley 2020) and the unweighted mixed models with random intercept

(mix) by the glmer() of the lme4 package (Bates et al. 2015).

4.3.2 Results

In this section, we describe the results we obtained in both scenarios: Scenario 1

(which is based on the ESIE survey) and Scenario 2 (which is based on the PRA

survey). As explained in Section 4.3.1, in each scenario, two models were fitted with

different numbers of covariates. Our goal is to compare the estimates obtained based

on the three coefficient estimation methods described in Section 4.2 (which are the

unweighted estimates obtained based on the unweighted logistic regression (unw),

the weighted estimates based on the weighted logistic regression (w) and the mixed

estimates for the unweighted logistic regression with random intercept (mix)) to the
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finite population coefficients (βββpop), in terms of bias and MSE.

Due to the large number of results obtained, we begin by summarizing the main

findings. When comparing the performance of the three methods in each scenario,

we observe that the results differ depending on the scenario. In Scenario 1, the

weighted estimates, in general, outperform the unweighted and mixed ones in terms

of bias and MSE, while the weighted estimates had a greater variance than the

others. On the other hand, in Scenario 2, there are no differences among the results

obtained with the three methods. The results also show that the weighted method

performs correctly in both scenarios and the results are quite similar in terms of

bias (which is negligible in all scenarios) and MSE. However, the performance of

the unweighted and mixed models in terms of bias (and consequently, also in terms

of MSE) differ depending on the scenario, being much lower in Scenario 2 than in

Scenario 1. We proceed below to analyze the graphical and numerical results related

to each scenario.

Figure 4.1 depicts the box-plots of the bias of the unweighted (unw), weighted

(w) and mixed (mix) estimates for the models with p = 1 (Figure 4.1 (a)) and p = 3

(Figure 4.1 (b)) covariates in Scenario 1. As can be observed, the weighted estimates

are the ones that perform the best in terms of bias in both models, with either p = 1

or p = 3 covariates. This can also be observed in Table 4.1. This table describes

the numerical results of the mean, standard deviation, average bias, and MSE of

those estimates, as well as the true finite population coefficients in Scenario 1 for

the models with p = 1 and p = 3 covariates, respectively. As can be seen, while the

weighted estimates are quite similar to the population coefficients (βββpop, which leads

to low average biases for this method), the unweighted and mixed estimates differ

considerably. In the estimates obtained for the model with p = 1, for example, for

the coefficient β1,6 for instance, the average bias obtained by the weighted model is

-0.095, which is considerably lower than the one of the unweighted model (0.378) and

the mixed model (-1.377). It can also be observed that the average bias decreases

for all the methods (and most notably for unweighted and mixed ones) when p = 3

covariates are included in the model. In particular, the average bias of the coefficient

estimates related to the category β1,6 decreases to 0.050 for the unweighted estimates,

to 0.007 for the weighted, and to -0.771 for the mixed ones in the model with p = 3

covariates.

In Figure 4.1, it can also be seen that the variability of the weighted estimates

is the greatest one in comparison to the rest. This is also shown in Table 4.1, where

the standard deviations of these estimates can be up to twice as large as that of the
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unweighted and mixed ones. For example, the standard deviations corresponding to

the estimates of β1,3 (for p = 1) are 0.063, 0.132 and 0.070 for unweighted, weighted

and mixed models, respectively. The source of variability could also be related to

data. It is especially remarkable the variability of the estimates of the coefficient β1,2

for all the methods, in general, and most importantly for the weighted ones. It should

be noted that there are very few units in category 2 of the covariate X1 in Scenario

1. In particular, 450 units in the simulated population (0.2% of the total of units

in the finite population) take this category on that covariate, and in the samples,

this amount varies from 27 (0.3%) to 53 (0.7%) (similar to the distribution shown

for the real finite population in Table 3.2 in Chapter 3). This may be affecting the

estimates of the parameter β1,2, specifically for the weighted model. The behavior

of the estimates of β1,4 could be explained in the same way, for which a greater

variability is also observed, especially for the weighted ones (2008 units (1.0%) in

the simulated finite population, from 178 (2.5%) to 232 (3.2%) in the samples). In

addition, in Table 4.1, it should also be noted that for all the methods, the standard

deviations are slightly greater for the model with p = 3 than for the one with p = 1

covariates.

Finally, as shown in Table 4.1, the mixed estimates are, in most cases, the ones

with the greatest MSE because of their large bias. For instance, the MSE of the

coefficient corresponding to the category β1,4 in the model with p = 1 is 0.942 for

the mixed model, while for the weighted and unweighted models, the MSE are 0.085

and 0.378, respectively. Given that the bias decreases while adding covariates for

the unweighted and mixed models, the MSE also decreases in the same way. For

the same coefficient, when p = 3, the MSE related to the mixed estimates decreases

to 0.576. The MSE of the weighted estimates is quite similar in both models, with

p = 1 and p = 3 covariates. Comparing the MSE of weighted and unweighted

estimates, it can be observed that the MSE of the unweighted estimates is greater

when p = 1. However, in Scenario 1 with p = 3, there are no differences in terms

of MSE between weighted and unweighted estimates due to the larger variability of

the weighted estimates despite their smaller bias.

Figure 4.2 depicts the box-plots of the bias of the unweighted, weighted and

mixed estimates for the models with p = 1 and p = 4 covariates in Scenario 2. In

this case, as shown in Figure 4.2, the performance of the three methods is quite

similar in terms of bias and variability. The differences are not considerable, neither

among the different methods nor between the different models (fitted with p = 1 and

p = 4 covariates). Table 4.2 describes the numerical results of the mean, standard
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deviation, average bias, and MSE of those estimates and the true finite population

coefficients for p = 1 and p = 4 in Scenario 2. The average bias is very low for

all the methods and in both models, either with p = 1 or p = 4 covariates. The

largest observed average bias is -0.067, which corresponds to the coefficient β4,2 of

the weighted model with p = 4. The variability of the weighted estimates is usually

slightly greater than that of the rest of the methods. However, as noted above,

those differences are very small. The greatest difference in terms of the standard

deviation of the estimates and MSE is observed in the model with p = 4 for the

coefficient estimates corresponding to β2,5. The standard deviation of the estimates

obtained by means of the weighted model is 0.185, while the ones corresponding

to the unweighted and mixed models are 0.174. In the same way, the MSE of the

weighted model for this coefficient is 0.035, while for the unweighted and mixed

models is 0.030. It can be concluded that all the studied methods perform properly

to estimate the finite population model coefficients in Scenario 2.
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Figure 4.1: Box-plots of the bias of the estimates obtained by the methods unw,
w, and mix for the coefficients in the models with (a) p = 1 (p′ = 7) and (b)
p = 3 (p′ = 14) covariates in Scenario 1, ∀r = 1, . . . , R.
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Figure 4.2: Box-plots of the bias of the estimates obtained by the methods unw,
w, and mix for the coefficients in the models with (a) p = 1 (p′ = 7) and (b)
p = 4 (p′ = 14) covariates in Scenario 2, ∀r = 1, . . . , R.
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4.4 Application to the real data sets

In this section, we apply the methods described in Section 4.2 to the real survey data

described in Chapter 3. The goal is to compare the coefficient estimates obtained by

means of the different methods among them. Note that in this case, the real finite

population coefficients are not known for us, given that we are working with real

survey data, and hence, the information of the response variable is not available for

all the units in the finite population.

One model was fitted to each of the surveys. In particular, we fitted the model

with three covariates (p = 3) to the ESIE survey and the model with four covariates

(p = 4) to the PRA survey. Those covariates are the ones that were considered in

the simulation study for both surveys and are also considered in the models that are

applied in practice by EUSTAT. Note that a descriptive analysis of those covariates

is available in Tables 3.2 and 3.4. To fit those models, the three methods described

in Section 4.2 were applied: the unweighted logistic regression (unw), the weighted

logistic regression (w), and the unweighted logistic regression with random intercept

(mix). Table 4.3 and Table 4.4 depict the coefficient estimates and their standard

errors obtained for models fitted to the ESIE and PRA surveys, respectively.

As shown in Table 4.3, the coefficient estimates, as well as their standard errors,

obtained by means of the three above-mentioned methods differ considerably in the

ESIE survey. It should be noted that these differences in the estimations and their

standard errors could lead to considerable differences in the Wald statistic, defined

as the fraction among those parameters. However, in this case, those differences did

not affect the significance of the model parameters, and all of them are statistically

significant (results not shown). The largest standard errors are, in most of the

cases, the ones obtained by means of the weighted logistic regression. In addition,

the standard errors related to the coefficient β1,2 are larger than any other, which is

in line with the large variability observed in the simulation study for this coefficient

(in Scenario 1). Based on the results obtained in the simulation study, we may

conclude that the weighted model would be the preferred one in this case.

In contrast, the coefficient estimates and their standard errors obtained for the

PRA survey are very similar among them, as can be observed in Table 4.4. This

is also in line with the results observed in the simulation study (in Scenario 2). As

expected, the standard errors of the weighted estimates are usually slightly greater

than the rest, although there are not great differences, in general.
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Table 4.3: Coefficient estimates (Estimate) and their standard errors (SE) obtained
by means of the methods unw, w, and mix for the ESIE survey with p = 3 covariates.

ESIE survey

β̂ββunw β̂ββwww β̂ββmix

Estimate SE Estimate SE Estimate SE

β0 -2.261 0.097 -2.482 0.133 -2.217 0.140

β1,2 1.892 0.338 1.293 0.444 1.697 0.368

β1,3 2.490 0.107 2.718 0.161 2.337 0.119

β1,4 2.248 0.196 2.577 0.299 2.151 0.215

β1,5 1.550 0.084 1.721 0.111 1.458 0.094

β1,6 2.260 0.146 2.544 0.206 2.092 0.181

β1,7 1.341 0.103 1.130 0.133 1.197 0.119

β2,2 -0.774 0.148 -0.613 0.189 -0.883 0.329

β2,3 0.453 0.073 0.358 0.107 0.538 0.123

β3,2 0.669 0.069 0.632 0.097 0.750 0.077

β3,3 0.996 0.096 0.965 0.132 1.124 0.134

β3,4 1.479 0.114 1.452 0.152 1.698 0.149

β3,5 2.230 0.182 2.205 0.241 2.461 0.209

β3,6 2.454 0.143 2.532 0.151 2.787 0.195
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Table 4.4: Coefficient estimates (Estimate) and their standard errors (SE) obtained
by means of the methods unw, w, and mix for the PRA survey with p = 4 covariates.

PRA survey

β̂ββunw β̂ββwww β̂ββmix

Estimate SE Estimate SE Estimate SE

β0 -2.039 0.176 -2.040 0.171 -2.037 0.179

β1,2 2.508 0.164 2.523 0.172 2.515 0.164

β1,3 3.106 0.179 3.105 0.191 3.113 0.179

β1,4 3.191 0.121 3.292 0.126 3.194 0.122

β1,5 2.836 0.114 2.934 0.118 2.835 0.114

β1,6 1.455 0.103 1.543 0.108 1.454 0.103

β1,7 -3.170 0.184 -3.102 0.199 -3.182 0.184

β2,2 1.005 0.174 0.899 0.177 1.016 0.174

β2,3 1.689 0.178 1.587 0.182 1.700 0.179

β2,4 1.167 0.171 1.056 0.170 1.170 0.172

β2,5 2.123 0.207 1.970 0.227 2.128 0.208

β2,6 2.357 0.192 2.177 0.201 2.360 0.193

β3,2 -0.596 0.063 -0.546 0.067 -0.596 0.063

β4,2 0.547 0.158 0.530 0.190 0.551 0.159
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4.5 Discussion

In this work, we compared the performance of three different methods to estimate

model coefficients in the logistic regression framework for complex survey data by

means of a simulation study based on real survey data. In general, the results

obtained are in line with the ones observed in related works, based on either logistic

(Chambless and Boyle 1985, Lumley and Scott 2017, Reiter et al. 2005, Scott and

Wild 1986; 2002) or linear regression framework (DeMets and Halperin 1977, Holt

et al. 1980, Nathan and Holt 1980, Smith 1981). Nevertheless, there are also some

differences between this work and the above-mentioned studies. We proceed to

comment on these similarities and differences in the following lines.

One of the greatest differences between this study and the ones mentioned pre-

viously is that this work is a simulation study based on real survey data. The

objective has been to work in a realistic scenario that allows us to compare the

results we obtain to the true coefficients of the finite population models. Thus, data

for the simulation study have been simulated based on two real surveys conducted

by EUSTAT. In both surveys, the finite population was sampled by one-stage strat-

ified sampling. However, the strata were defined in very different ways, as explained

in Chapter 3. In the ESIE survey, the strata were defined by means of the combina-

tion of three categorical variables with many categories, resulting in a total of 515

non-empty small strata. On the other hand, in the PRA survey, strata were defined

by means of the region to which each individual belongs, which leads to 23 different

strata. In addition to the sampling design, the impact of the number of covariates

included in the model and the number of parameters were also analyzed. It should

be noted that in this simulation study the theoretical model from which the finite

population is generated is not known for us. Thus, we compare the model estimates

obtained based on the methods under study to the true coefficient values obtained

by fitting the model to the finite population.

The main conclusions of this study are that the weighted logistic regression (w)

performed properly in both scenarios, and the estimates we obtained were unbiased.

In contrast, the behavior of the unweighted logistic regression (unw) and the un-

weighted logistic regression with random intercept (mix) depended on the scenario

and on the number of covariates/parameters estimated in the model. In the scenario

related to the ESIE survey, unlike in the scenario based on the PRA survey, biased

estimates were obtained with unweighted and mixed models. These results are in

line with Holt et al. (1980), Nathan and Holt (1980), Scott and Wild (1986) among
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others, which also warn about the bias of the unweighted coefficient estimates in

both, linear and logistic regression frameworks. Scott and Wild (1986) claim that

the bias of the unweighted coefficient estimates is smaller when the model fitted to

the sample is exactly the same as the true theoretical model from which the data is

derived than when the model fitted is “reasonable but not perfect”. As mentioned

previously, the theoretical model from which the finite population is generated is

not known for us. Nevertheless, in this study, we have also observed that the bias

becomes smaller when more covariates are included in the model, which would be in

line with the results obtained in the above-mentioned studies. However, this bias is

still larger than the bias obtained by means of the weighted logistic regression. For

this reason, the message we aim to transmit with this work is the recommendation

of fitting weighted models. However, it should also be noted that in line with Reiter

et al. (2005), we agree that comparing the estimates obtained with the unweighted

and weighted models can help to detect if the model is well specified (and improve

the model if the needed variables are available) since a large difference between the

two estimates can suggest that the fitted model is misspecified.

The variability of the estimates obtained by the weighted logistic regression

model is greater than that of the estimates obtained by means of the unweighted

logistic regression model (with and/or without random intercept), which is in line

with Chambless and Boyle (1985), Lumley and Scott (2017) and Scott and Wild

(1986). These differences are not very large in most cases. However, we have ob-

served that when there are few individuals in a particular category of a categorical

variable, then the variability of the weighted estimates of the coefficient correspond-

ing to that category can be much greater than the unweighted ones. We conclude

that we should be careful when we have categorical variables with an imbalanced

distribution of individuals in the categories. It should be noted that in the simula-

tion study we have conducted, it was unfeasible to put all the design information as

a fixed effect (as recommended for strata) because of the problems that would arise

for both model estimation and interpretation. For this reason, we have opted to

use the strata as a random effect. Through this study, we have been able to verify

that the mixed model does not provide us with advantages compared to the other

models.

We also applied the three methods under study to real survey data and the

estimates we obtained are in line with the results observed in the simulation study.

On the one hand, in the PRA survey, the estimates are quite similar among them,

and there are not many differences between the standard errors of these estimates,
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which leads us to conclude that all the studied methods work properly in this case.

On the other hand, in the ESIE survey, there are many differences in the estimates

of the parameters among different methods. Observing the similarities between the

simulation study and the application to real data sets, and taking into account that

those results are also in line with the results obtained in similar empirical studies,

such as Chambless and Boyle (1985) and Lumley and Scott (2017), we can assume

that the weighted logistic regression would be preferred when working with ESIE

survey data.

We now proceed to comment on the limitations of this study. First of all, in this

simulation study, we are unable to know which is the theoretical model from which

the data is derived due to the fact that we aimed for the simulation study to be

based on real survey data and hence, we have focused on comparing the estimates

obtained based on the samples with the true coefficients of the model fitted to

the finite population. It should be noted that often the objective in working with

survey data is to draw conclusions related to that particular finite population, and

therefore, this comparative study makes sense in that context. For those readers

who are interested in comparisons with the theoretical infinite population model,

we suggest checking Scott and Wild (2002). Secondly, as mentioned above, some

authors recommend including the design variables and the interactions between them

as covariates in the model. However, in this case, and in particular in the case of the

ESIE survey, this option would not be feasible due to the large number of parameters

(a total of 515) to be estimated within the model. Therefore, we have decided to

fit the mixed model, replicating in this way the comparison made by Lumley and

Scott (2017) on real data sets. In addition, some of the covariates included in the

models are related to the stratification variables. Finally, we would also like to point

out that the estimation of the weighted mixed model (that takes into account the

sampling weights when estimating the model coefficients) is ongoing research (see,

e.g., Lumley and Huang (2023a) and Lumley and Huang (2023b)), and it would be

interesting to analyze its behavior by means of a simulation study based on real

survey data in the future.

To sum up, the weighted logistic regression performs properly in all the scenarios

we have drawn. In contrast, the behavior of the unweighted logistic regression (both

with and without random intercept) depends on the scenario. Therefore, based on

the results of the simulation study, we believe that not using sampling weights when

necessary leads to worse results than using them when they are not needed. For

this reason, we would recommend the use of the weighted logistic regression model
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in the context of complex survey data.
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CHAPTER5
Variable selection with LASSO regression

The paper related to the work presented in this chapter has been published:

Iparragirre, A., Lumley, T., Barrio, I., & Arostegui, I. (2023). Variable selec-

tion with LASSO regression for complex survey data. Stat, 12(1), e578.

This chapter mostly replicates the above-mentioned article. However, some changes

have been made to keep the notation and ensure cohesion with the rest of the docu-

ment.

The code to reproduce the simulation study conducted in this study as well as the R

package wlasso derived from this work can be found on GitHub9 and is presented in

Chapter 8 of this document.

9https://github.com/aiparragirre/wlasso
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Summary

Variable selection is an important step to end up with good prediction models.

LASSO regression models are one of the most commonly used methods for this pur-

pose, for which cross-validation is the most widely applied validation technique to

choose the tuning parameter (λ). Validation techniques in a complex survey frame-

work are closely related to “replicate weights”. However, to our knowledge, they have

never been used in a LASSO regression context. Applying LASSO regression models

to complex survey data could be challenging. The goal of this chapter is two-fold.

On the one hand, we analyze the performance of replicate weights methods to select

the tuning parameter for fitting LASSO regression models to complex survey data.

On the other hand, we propose new replicate weights methods for the same purpose.

In particular, we propose a new design-based cross-validation method as a combi-

nation of the traditional cross-validation and replicate weights. The performance of

all these methods to select the tuning parameter for LASSO regression models has

been analyzed and compared to the traditional cross-validation technique by means

of an extensive simulation study. The results suggest a considerable improvement

when the new proposal design-based cross-validation is used instead of the traditional

cross-validation.

5.1 Introduction

In this chapter, we focus on variable selection for complex survey data in linear and

logistic regression frameworks. In particular, throughout this chapter, we work under

the two-stage stratified cluster sampling design, in which, as described in Chapter

2.1.2, the clusters are the Primary Sampling Units (PSU) or, in other words, the

elements sampled in the first stage of the sampling process. However, the methods

we propose in this chapter can easily be extended to one-stage stratified samples.

Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshi-

rani 1996), is nowadays a widely used technique for variable selection, especially

when a large amount of predictor variables are available, in order to obtain more

parsimonious, and hence, more interpretable prediction models. Very briefly, one

goal of LASSO regression models, is to set some model coefficients to zero, reduc-

ing in this way the dimension of the model by selecting a subset of the available
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predictor variables. The selection of this subset depends in turn on the election of

a tuning parameter (λ) for which techniques such as bootstrap or cross-validation

can be applied, the latter being the most widely used technique, in practice. These

techniques, commonly known as validation methods, are used in order to select the

tuning parameter with which the error of the final model, evaluated in a sample dif-

ferent from the one used to develop the model, is minimized (see, e.g., Hastie et al.

(2009), James et al. (2013)). Shortly, those techniques consist in defining different

training sets (in which models are fitted considering several tuning parameters) and

test sets (in which the error of the models is estimated). The tuning parameter

that minimizes the error of the training models in the test sets is selected to fit the

LASSO model to the whole sample.

However, fitting LASSO regression models to complex survey data could be

problematic for two reasons. In the first place, the debate mentioned in previous

chapters and analyzed in particular in Chapter 4 about the need for considering sam-

pling weights when fitting prediction models, could be extended to LASSO regres-

sion models. In addition, with the traditional above-mentioned validation methods

(bootstrap or cross-validation, among others), training and test sets are randomly

defined without considering the sampling design in the process. This may be a prob-

lem when working with complex survey data, given that PSUs could be split into

training and test sets which may lead the training sets to underestimate the variabil-

ity produced due to the sampling process and underestimate population error. This

problem is usually known as “data leakage” (Kaufman et al. 2011). Both of these

problems (weights-related as well as design-related) have recently been discussed in

the literature. McConville et al. (2017) proposed incorporating sampling weights

into the LASSO linear regression estimation process and Kshirsagar et al. (2017)

extended this proposal to logistic regression models. Nonetheless, both of them ap-

plied the traditional K-fold cross-validation, which consists in randomly splitting

sampled units into K subsamples (or folds) and defining K training sets, exclud-

ing a different fold (test set) each time. Nevertheless, if we apply this method to

complex survey data, we may come across two types of problems. In the first place,

sampling weights of the units in neither the training sets nor the test sets properly

represent the entire finite population. Besides, and more importantly, as mentioned

above, sampling design is not reflected in the way the folds are defined. Wieczorek

et al. (2022) warned about this problem and proposed mimicking the structure of the

sample obtained from the finite population in each fold. For example, for stratified

sampling designs, Wieczorek et al. (2022) proposed making each fold a stratified
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sample of PSUs from each stratum, i.e., creating simple random sample folds sepa-

rately within each stratum (being all the elements from a given PSU placed in the

same fold) and then combine them across strata. In this way, the weights of the

units in the training and test sets represent the finite population properly and the

variability of the data is also represented. However, as pointed out by the authors,

it should be noted that in this way the number of folds could be limited by means

of the sampled PSUs in each stratum (cannot be defined more folds than the max-

imum number of sampled PSUs per stratum). In other words, we need at least K

PSUs per stratum for the proper application of this method. Furthermore, if we

have a different (and non-proportional to K) number of PSUs in each stratum, the

sampling weights of the training and test sets would also incorrectly represent the

finite population.

In complex survey frameworks, other approaches, different from the abovemen-

tioned validation techniques, are usually used to define partially independent subsets

of the sample. Those approaches are known as “replicate weights” methods. These

methods consist of modifying the sampling weights to define new subsamples that

replicate the original sample, in the way that these subsamples by means of these new

weights (i.e., the “replicate weights”) correctly represent the finite population. The

most well-known replicate weights methods which are implemented in the survey R

package (Lumley (2010), Lumley (2020)), are Jackknife Repeated Replication (JKn),

Balanced Repeated Replication (BRR) and Rescaling Bootstrap (Bootstrap). Note

that Jackknife term is usually used in variance estimation framework but this term

is commonly denoted as leave-one-cluster-out (LOCO) (Merkle et al. 2019) or leave-

one-group-out (LOGO) cross-validation (Kuhn and Johnson 2019) when the goal

is validation. However, in order to be consistent with the terminology used in the

survey R package (Lumley 2020) we denote this method as Jackknife throughout

this chapter.

Therefore, the aim of the work presented in this chapter is two-fold. On the one

hand, we aim to analyze the performance of the above-mentioned replicate weights

methods, instead of traditional validation techniques, to select the tuning parameter

for fitting LASSO regression models. On the other hand, our goal is to propose new

methods to this end based on the idea of replicating weights. In particular, due to the

popularity of cross-validation in this context, we propose a new design-based cross-

validation method based on replicate weights, which will be more flexible than the

one proposed by Wieczorek et al. (2022). In addition to the cross-validation, we also

propose two new techniques (which we denote as split-sample repeated replication
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(split) and extrapolation (extrap)) to select the tuning parameter for LASSO models.

In this study we aim to analyze a) the impact of considering complex designs when

using validation techniques for the selection of the tuning parameter, and b) the

impact of the sampling weights when fitting LASSO models. Therefore, we compare

by means of a simulation study the performance of different proposals based on

replicate weights, to a) the traditional K-fold cross-validation that defines the folds

by ignoring the sampling design but considers sampling weights for fitting LASSO

models (weighted simple random sample cross-validation, w-SRSCV), and b) the

unweighted simple random sampleK-fold cross-validation ignoring weights for fitting

LASSO models (unw-SRSCV).

The rest of the chapter is organized as follows. In Section 5.2 the basic notation

on linear and logistic regression models and LASSO regression are given, existing

replication methods applied in this work for the selection of the tuning parameter are

defined and new methods based on the idea of replicating weights are also proposed.

The performance of all the methods is analyzed by means of a simulation study,

which is described in Section 5.3. Finally, we close the chapter with the main

conclusions in Section 5.4.

5.2 Methods

This section is divided into three different parts. In Section 5.2.1, the basic nota-

tion previously described in Section 2.2 and implemented in this chapter is briefly

reminded. In Section 5.2.2, the traditional LASSO regression is described and the

modifications we propose to incorporate the sampling design into the process are set.

Finally, Section 5.2.3 describes replicate weights methods considered in this study,

both the ones previously defined in the literature together with the new methods

proposed by the authors.

5.2.1 Basic Notation

Let us recall the basic notation that is necessary to properly follow the contents of

this chapter. For more details on the models mentioned in this section, the readers

can go back to Section 2.2.

As described in eq. (2.39), for a continuous response variable Y , the linear

regression model is defined as follows:

yi = xxxiβββ + ϵi, ϵi ∼ N(0, σ2), (5.1)
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and the vector of regression coefficients βββ is estimated (β̂ββ) based on sample S by

minimizing the residual sum of square (RSS(βββ)) as in eq. (5.2) (previously defined

in eq. (2.40)),

RSS(βββ) =
∑
i∈S

(yi −
p∑

j=0

βjxij)
2. (5.2)

In a similar way, if Y is a dichotomous response variable, the logistic regression

model is defined in eq. (5.3) (previously defined in eq. (2.51))

logit(P (Y = 1|xxxi)) = logit(p(xxxi)) = ln

[
p(xxxi)

1− p(xxxi)

]
= xxxiβββ, (5.3)

where p(xxxi) =
exxxiβββ

1 + exxxiβββ
and β̂ββ is obtained by maximizing the log-likelihood func-

tion ℓ(βββ) defined in eq. (5.4) (previously defined in eq. (2.54)) (or equivalently,

minimizing −ℓ(βββ)):

ℓ(βββ) =
∑
i∈S

[yi ln(p(xxxi)) + (1− yi) ln(1− p(xxxi))] . (5.4)

However, as explained in Section 2.2, when working with complex survey data,

the weighted residual sum of square (WRSS(βββ)) and the pseudo-log-likelihood (pℓ(βββ))

functions can be considered instead of eqs. (5.2) and (5.4), respectively (note that

these functions have previously been defined in eqs. (2.48) and (2.59)):

WRSS(βββ) =
∑
i∈S

wi(yi −
p∑

j=0

βjxij)
2, (5.5)

and

pℓ(βββ) =
∑
i∈S

wi [yi ln(p(xxxi)) + (1− yi) ln(1− p(xxxi))] . (5.6)

After estimating the regression coefficients, a value for the response variable can

be estimated given the values of covariates xxxi for unit i ∈ U as ŷi = xxxiβ̂ββ in linear

regression framework and as p̂(xxxi) =
exxxiβ̂ββ

1 + exxxiβ̂ββ
in logistic regression. In order to ease

the notation, let us denote as f̂(·) the fitted (either linear or logistic) model and as

f̂(xxxi) the corresponding estimated response for unit i, hereinafter, i.e.,

f̂(xxxi) =

{
ŷi, in linear regression framework,

p̂(xxxi), in logistic regression framework.
(5.7)
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5.2.2 LASSO regression for variable selection

When a large amount of predictor variables are available, the LASSO regression

model is commonly used for variable selection. Briefly, this method forces some

regression coefficients to zero, and thus more interpretable models are obtained.

This variable selection method is briefly described below. For more information and

details on this topic related to the performance and geometrical interpretation of

LASSO regression models we recommend Hastie et al. (2009), James et al. (2013),

Sanchez and Marzban (2020) and Tibshirani (1996).

For a given value of the tuning parameter λ, linear and logistic LASSO regression

models are fitted by minimizing the following functions, respectively:

min

RSS(βββ) + λ

p∑
j=1

|βj |

 and min

−ℓ(βββ) + λ

p∑
j=1

|βj |

 . (5.8)

In practice, K−fold cross-validation is usually applied to select the optimum value

for λ in order to minimize the error of the fitted model. Sampled units are randomly

split into K subsamples of the same size. In each step, ∀t = 1, . . . ,K the tth

subsample is set as the test set (Stest(t)), while the rest K − 1 subsets form the

training set (Str(t)). Then, a grid for λ values is defined (λl, ∀l = 1, . . . , L), and

for each of these values a model is fitted to each training set Str(t), ∀t = 1, . . . ,K

following eq. (5.8) (let us denote this model (either linear or logistic) as f̂ ltr(t)(·)) and
applied to the test set (let f̂ ltr(t)(xxxi) indicate the predicted value, ∀i ∈ Stest(t)). The

estimation error for each unit is calculated by means of the loss function defined

in eq. (5.9) depending on the framework, linear or logistic regression, as follows.

∀i ∈ Stest(t),

L(yi, f̂ ltr(t)(xxxi)) =

 (yi − f̂ ltr(t)(xxxi))
2, linear,

−yi ln
(
f̂ ltr(t)(xxxi)

)
− (1− yi) ln

(
1− f̂ ltr(t)(xxxi)

)
, logistic.

(5.9)

∀t = 1, . . . ,K, the error in subset t of the model fitted considering λl, ∀l = 1, . . . , L

in eq. (5.8) is estimated as follows:

Êrr
l

(t) =
1

ntest(t)

∑
i∈Stest(t)

L(yi, f̂ ltr(t)(xxxi)), (5.10)

being ntest(t) the size of Stest(t), ∀t = 1, . . . ,K. This process is repeated K times,
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by setting a different subset t as the test set each time. The cross-validated error

corresponding to the tuning parameter λl, ∀l = 1, . . . , L is finally estimated as

follows:

ÊrrCV (λl) =
1

K

K∑
t=1

Êrr
l

(t). (5.11)

Among all the values considered as tuning parameters, the one that minimizes the

cross-validated error is selected as the “optimal” penalty parameter,

Λ = argmin
λl : l∈{1,...,L}

{ÊrrCV (λl)}, (5.12)

and the model is fitted to the whole sample S, including Λ as the tuning parameter

in eq. (5.8), i.e.,

β̂ββ = argmin
βββ

RSS(βββ) + Λ

p∑
j=1

|βj |

 and β̂ββ = argmin
βββ

−ℓ(βββ) + Λ

p∑
j=1

|βj |

 .

(5.13)

However, in the whole process explained above, sampling design and sampling

weights are not considered (let us denote the method described above as the un-

weighted simple random sample cross-validation (unw-SRSCV), hereinafter). We

believe that when working with complex survey data, sampling design should be

considered in the whole process: 1) when fitting the model, 2) when defining train-

ing and test sets, and 3) when estimating the error. Below, we explain how we

propose to address these three points as a whole.

In the first place, when fitting the LASSO regression models, sampling weights

should be considered as in eq. (5.14) instead of eq. (5.8) for linear and logistic

regression models, respectively (Kshirsagar et al. 2017, McConville et al. 2017):

min

WRSS(βββ) + λ

p∑
j=1

|βj |

 and min

−pℓ(βββ) + λ

p∑
j=1

|βj |

 . (5.14)

Secondly, in Section 5.2.3 we describe different methods based on replicate weights

that could be considered to take into account the sampling design when defining

training and test sets. Finally, sampling weights should also be considered when es-

timating the error. In particular, if we focus on the above-mentioned cross-validation

method, we could rewrite eq. (5.10) as follows in order to consider the weights when
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estimating the error in subset t:

Êrr
l

(t) =
1∑

i∈Stest(t)
wi

∑
i∈Stest(t)

wiL(yi, f̂ ltr(t)(xxxi)). (5.15)

We denote as weighted simple random sample cross-validation (w-SRSCV) the

method that considers eq. (5.14) to fit the model and eq. (5.15) to estimate the

error, but defines the folds by randomly splitting sampled units into different subsets

ignoring the sampling design as described previously.

5.2.3 Selecting LASSO model’s tuning parameter with complex

survey data

In this work, we propose to use replicate weights for the selection of the tuning

parameter λ. In the following lines, we describe the six replicate weights methods

we considered in this work to define training and test sets when selecting the tuning

parameter for LASSO models (three of which are existing methods and the other

three are new proposals of the authors). The goal of replicate weights methods is to

modify the sampling weights to define new partially independent subsamples that

replicate the original sample, in the way that the finite population is properly rep-

resented in each subsample by means of the modified weights known as “replicate

weights”. Some of the replicate weights methods that are described below are com-

monly applied for other purposes, such as variance estimation, when working with

complex survey data. These methods are known as Jackknife Repeated Replication

(JKn), Rescaling Bootstrap (Bootstrap), and Balanced Repeated Replication (BRR)

(see, e.g., Heeringa et al. (2017) and Wolter (2007) for more information about these

methods). However, as far as we know, they have never been used for selecting the

tuning parameter for LASSO regression models. In this work, we propose to incor-

porate the abovementioned replicate weights methods in this context. In addition,

we also propose three new methods based on the idea of replicating weights, which

we denote as the design-based K-fold cross-validation (dCV), Split-sample Repeated

Replication (split) and extrapolation (extrap) for the same purpose. Figures from

5.1 to 5.6 depict a graphical summary of all these methods (note that the figures are

not self-explanatory and should be read in combination with the descriptions below

for a correct understanding of each method).

As mentioned at the beginning of the chapter, in this study, a two-stage stratified

cluster sampling has been considered, thus PSUs are the clusters sampled from
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each stratum. Nevertheless, it should also be noted that all the methods described

below can be extended to one-stage stratified samples in which different numbers of

individuals (which would be the PSUs in that case) rather than clusters are sampled

from each stratum.

For a better understanding of the methods’ performance, let us recall the basis of

two-stage stratified cluster sampling designs and the notation previously described

in Section 2.1.2. As indicated in eqs. (2.14) and (2.15), the finite population U is

partitioned into H strata, which at the same time are partitioned into Ah clusters,

i.e.,

U =

H⋃
h=1

Ah⋃
α=1

Uh,α. (5.16)

The sampling process is carried out in two stages. In the first stage, from each

stratum h ∈ {1, . . . ,H} a previously specified number of clusters (which we denote

as ah) is randomly selected to be part of the sample. Recall that Ah in eq. (5.17)

(previously defined in eq. (2.24)) is the set of cluster indexes from stratum h, that

are selected in the first stage.

Ah = {α ∈ {1, . . . , Ah} : 1h(α) = 1}, (5.17)

where the indicator function 1h(α) in eq. (5.18) (previously defined in eq. (2.16))

indicates whether the cluster Uh,α has been selected in the first stage:

1h(α) =

{
1 if the cluster Uh,α is selected in the first stage,

0 otherwise.
(5.18)

Then, ∀α̇ ∈ Ah, the set of individuals in the cluster α̇ from stratum h, Uh,α̇, has

been selected in the first stage. In the second stage of the sampling process, ∀h ∈
{1, . . . ,H} and ∀α̇ ∈ Ah, out of the Nh,α̇ units in Uh,α̇ only a given number of units

nh,α̇ are finally sampled and end up in the sample subset Sh,α̇ ⊂ Uh,α̇, the union of

which form finally the sample S as defined in eq. (5.19) (previously defined in eq.

(2.26)),

S =
H⋃

h=1

⋃
α̇∈Ah

Sh,α̇. (5.19)

We now proceed to describe, one by one, each of the replicate weights methods

considered. We start by defining the three methods that are already proposed in

the literature (JKn, Bootstrap and BRR), and, afterward, we describe in detail the
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new methods proposed by the authors (dCV, split, and extrapolation). A different

number of training and test sets are generated for each method that has been con-

sidered. In order to unify the notation for all the methods, let Tm indicate the total

number of training and test sets for each method m considered. The training and

test sets are indicated as Sm
tr(t) and S

m
test(t) for the method m, ∀t = 1, . . . , Tm.

Jackknife Repeated Replication (JKn)

Based on this method, the number of training and test sets are exactly the total

number of sampled PSUs (i.e., TJKn =
∑H

h=1 ah = a). A different PSU is set as the

test set each time, while the rest form the training set. That is, ∀h ∈ {1, . . . ,H}
and ∀α̇ ∈ Ah, ∃! t ∈ {1, . . . , TJKn} : SJKn

test(t) = Sh,α̇, being the corresponding training

set formed by the rest a − 1 sampled PSUs excluding Sh,α̇ (i.e., SJKn
tr(t) = S − Sh,α̇).

See Figure 5.1 for a graphical explanation.

Replicate weights for the tth training set are defined as follows. The sum of all

the sampling weights of the individuals in the test set SJKn
test(t) = Sh,α̇ is assumed

by the individuals of the same stratum Sh that are part of the training set. The

replicate weight of the rest of the units that end up in the training set but are not

in stratum Sh, is the same as their original sampling weight. This is mathematically

defined in eq. (5.20):

w
∗,tr(t)
i,JKn =


0, if i ∈ SJKn

test(t) = Sh,α̇,

wi, if i ∈ SJKn
tr(t) and i /∈ Sh,

wi ·
ah

ah − 1
, if i ∈ SJKn

tr(t) and i ∈ Sh,

∀i ∈ S. (5.20)

Even though each test set is formed by the PSU Sh,α̇ excluded from the corre-

sponding training set, the error is usually estimated considering the whole sample.

Hence, the replicate weights of the units in the test set, are assumed to be equal to

the original sampling weights, as defined in eq. (5.21):

w
∗,test(t)
i,JKn =

 0, if i ∈ SJKn
tr(t),

wi, if i ∈ SJKn
test(t).

∀i ∈ S. (5.21)

Rescaling Bootstrap (Bootstrap)

TBootstrap = B bootstrap resamples are generated as proposed by Rao and Wu

(1988). ∀h ∈ {1, . . . ,H} ah − 1 PSUs are selected with replacement, which form
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the tth training set, ∀t = 1, . . . , TBootstrap (see Figure 5.2). For each stratum h ∈
{1, . . . ,H} and each sampled cluster from h, α̇ ∈ Ah let us denote as v

(t)
h,α̇, the

number of times that the PSU Sh,α̇ is selected to be part of the bootstrap resample

t. Note that if the PSU Sh,α̇ is not selected to form the resample t, then v
(t)
h,α̇ = 0.

Then, ∀t = 1, . . . , TBootstrap the replicate weights for the tth training set are defined

as follows. ∀i ∈ S, ∃! h ∈ {1, . . . ,H} and ∃! α̇ ∈ Ah : i ∈ Sh,α̇. Then,

w
∗,tr(t)
i,Bootstrap =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi ·

ah
ah − 1

· v(t)h,α̇, ∀i ∈ S, (5.22)

where 1Sh,α̇
(i) is the indicator function taking the value 1 in case i ∈ Sh,α̇ and 0

otherwise (see eq. (2.19)).

The test set corresponding to each training set is the original sample S =

SBootstrap
test(t) , ∀t = 1, . . . , TBootstrap. Hence, for this method, the replicate weights

of the test set are the original sampling weights as defined in eq. (5.23), ∀t =

1, . . . , TBootstrap:

w
∗,test(t)
i,Bootstrap = wi, ∀i ∈ SBootstrap

test(t) = S. (5.23)

Balanced Repeated Replication (BRR)

This method was originally designed to be applied in samples with 2 PSUs per

stratum. ∀h = 1, . . . ,H one of the PSUs from the stratum h is set to the training

set while the other is set to the test set (depicted in Figure 5.3). There are 2H

different possible training and test sets to define in this way, which may usually

be computationally unfeasible. Instead, TBRR (where TBRR ≤ H + 4) different sets

are usually defined by selecting the PSU splits in a particular way by means of

the Hadamard matrix as proposed by McCarthy (1966). Nowadays, this method is

extended to be also applied when an even number of PSUs per stratum are available

(Lumley 2020, Wolter 2007). ∀i ∈ S, the replicate weights for the tth training set

are defined as follows, ∀t = 1, . . . , TBRR:

w
∗,tr(t)
i,BRR =

{
0, if i ∈ SBRR

test(t),

2wi, if i ∈ SBRR
tr(t) ,

∀i ∈ S. (5.24)
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Replicate weights for the corresponding test sets (w
∗,test(t)
i,BRR ) are defined by exchanging

the roles of test and training sets in eq. (5.24), as shown in eq. (5.25):

w
∗,test(t)
i,BRR =

{
0, if i ∈ SBRR

tr(t) ,

2wi, if i ∈ SBRR
test(t),

∀i ∈ S. (5.25)

Design-based K-fold cross-validation (dCV)

This method is summarized in Figure 5.4. The a =
∑H

h=1 ah sampled PSUs are

randomly split into K subsets and TdCV = K training and test sets are defined. For

t = 1, . . . , TdCV the tth subset is set as test set (SdCV
test(t)), being the corresponding

training set (SdCV
tr(t) ) formed by the rest K − 1 subsets (excluding the tth one). ∀t =

1, . . . , TdCV let a∗h,test(t) indicate the number of PSUs from Sh that has ended up in

SdCV
test(t), while a

∗
h,tr(t) = ah−a∗h,test(t) indicates the number of PSUs from Sh in SdCV

tr(t) .

For each sampled unit i ∈ S, we propose to define replicate weights as follows for

the tth training set:

w
∗,tr(t)
i,dCV =

 0, if i ∈ SdCV
test(t),∑H

h=1 1Sh
(i) · wi ·

ah
ah − a∗h,test(t)

, if i ∈ SdCV
tr(t) ,

∀i ∈ S. (5.26)

That is, the sum of all the sampling weights of the units in the test set is assumed

by the units from the same stratum in the training set. In the same way, replicate

weights for the tth test sets (which will be denoted as w
∗,test(t)
i,dCV hereinafter) can be

defined in the same way exchanging the roles of the training and test sets with each

other in eq. (5.26), that is,

w
∗,test(t)
i,dCV =

 0, if i ∈ SdCV
tr(t) ,∑H

h=1 1Sh
(i) · wi ·

ah
ah − a∗h,tr(t)

, if i ∈ SdCV
test(t),

∀i ∈ S. (5.27)

Note that our goal is to get at least one PSU from each stratum in every training

set (not in every fold) in order to have all the strata represented in the training mod-

els. In contrast, we are not concerned about not having any PSU from a particular

stratum in a particular test set. In other words,

1 ≤ a∗h,tr(t) ≤ ah, ∀t = 1, . . . , TdCV, (5.28)

and note that if a∗h,tr(t) = ah, then necessarily, a∗h,test(t) = 0. The condition set in
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eq. (5.28) will be satisfied as long as no stratum ends up with all its PSUs in the

same fold t, ∀t = 1, . . . , TdCV (given that in that case, when the tth fold is left as the

test set SdCV
test(t), a

∗
h,tr(t) = 0). After PSUs are randomly assigned to folds, the dCV

method checks whether the condition in eq. (5.28) is satisfied or not. In case any

stratum has all its PSUs in the same fold, then this method reassigns folds until the

condition in eq. (5.28) is satisfied.

Therefore, at least two PSUs per stratum are needed for the correct application

of this method (i.e., ∀h = 1, . . . ,H, ah ≥ 2), each of them classified in a different

fold. This is an advantage over the method proposed by Wieczorek et al. (2022),

which requires at least K PSUs per stratum (∀h = 1, . . . ,H, ah ≥ K).

Split-sample Repeated Replication (split)

A given percentage of PSUs is randomly set into the training set and the rest into

the test set (see Figure 5.5). This process could be repeated Tsplit times with a

different split each time, defining in this way Tsplit training and test sets. Replicate

weights for units in either training or test sets, can be defined in two different ways,

∀t = 1, . . . , Tsplit:

• split-cv: As previously described in eq. (5.26) for the dCV, in this method,

the sum of the weights of the units that end up in the test set is assumed by

the units that end up in the training set in the same stratum. Thus, replicate

weights of the tth training set are defined as in eq. (5.29):

w
∗,tr(t)
i,split-cv =

 0, if i ∈ Ssplit-cv
test(t) ,∑H

h=1 1Sh
(i) · wi ·

ah
ah − a∗h,test(t)

, if i ∈ Ssplit-cv
tr(t) , ∀i ∈ S,

(5.29)

where a∗h,test(t) indicates the number of clusters from stratum h in Ssplit-cv
test(t) .

Similarly, as described in eq. (5.27) for the dCV method, the replicate weights

of the tth test set are defined as in eq. (5.30), in which the sum of the sampling

weights of the units in the training set are assumed by the units in the test set

in the same stratum:

w
∗,test(t)
i,split-cv =

 0, if i ∈ Ssplit-cv
tr(t) ,∑H

h=1 1Sh
(i) · wi ·

ah
ah − a∗h,tr(t)

, if i ∈ Ssplit-cv
test(t) ,

∀i ∈ S,

(5.30)

where a∗h,tr(t) indicates the number of clusters from stratum h in Ssplit-cv
tr(t) .
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• split-boot: This method consists of replicating by replacement the PSUs of both

the training and test sets until having ah − 1 in each stratum and calculating

the weights as in eq. (5.22) for the Bootstrap, that is,

w
∗,tr(t)
i,split-boot =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi ·

ah
ah − 1

· v(t)h,α̇, ∀i ∈ S, (5.31)

w
∗,test(t)
i,split-boot =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi ·

ah
ah − 1

· ṽ(t)h,α̇, ∀i ∈ S, (5.32)

where v
(t)
h,α̇ indicates the number of times that the PSU Sh,α̇ is selected to be part

of the tth training set Ssplit-boot
train(t) , ∀α̇ ∈ Ah, ∀h ∈ {1, . . . ,H} (note that if Sh,α̇ is set

to the test set, then, v
(t)
h,α̇ = 0). Similarly, ṽ

(t)
h,α̇ indicates the number of times that

the PSU Sh,α̇ is selected to be part of the tth test set Ssplit-boot
test(t) (if Sh,α̇ is set to the

training set, then, ṽ
(t)
h,α̇ = 0).

In the same way as in the dCV method, and due to the same reasons, we force

the algorithm to have at least one PSU from each stratum in every training set, in

both split-cv and split-boot methods.

Extrapolation (extrap)

A given percentage of strata are set as training set and the rest as test set (Figure

5.6). The process is repeated Textrap times with a different split each time, defining

Textrap different training and test sets. In this case, replicate weights are equal to

sampling weights for units in the training set and 0 for units in the test set when

fitting the models, ∀i ∈ S. ∀t = 1, . . . , Textrap:

w
∗,tr(t)
i,extrap =

{
0, if i ∈ Sextrap

test(t) ,

wi, if i ∈ Sextrap
tr(t) ,

∀i ∈ S. (5.33)

Replicate weights w
∗,test(t)
i,extrap are described in the same way, exchanging the roles of

training and test sets in eq. (5.33) as described in eq. (5.34):

w
∗,test(t)
i,extrap =

{
0, if i ∈ Sextrap

tr(t) ,

wi, if i ∈ Sextrap
test(t) ,

∀i ∈ S. (5.34)
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5.3 Simulation Study

This section describes the simulation study conducted in order to analyze the perfor-

mance of different methods when selecting the tuning parameter for fitting LASSO

regression models. Our goal is to compare the performance of the replication meth-

ods proposed in Section 5.2.3 (i.e., JKn, Bootstrap, BRR, dCV, split-cv, split-boot

and extrap), to the methods described in Section 5.2.2 (unw-SRSCV and w-SRSCV).

The goal is to compare the differences between the tuning parameters selected with

different methods, the number of covariates that would be selected if the models

were fitted considering that tuning parameter, and the error we would obtain with

that model. We compare those results with the “true” results we would obtain if

the finite population were known in practice.

The rest of the section is organized as follows: Section 5.3.1 describes the process

of data simulation and scenarios, Section 5.3.2 describes the simulation set-up, and

Section 5.3.3 depicts and summarizes the main results.

5.3.1 Data generation and sampling design

In the following lines data simulation process is described. Let us define as N =

100 000 the finite population size and as p = 75 the number of variables denoted

as X1, . . . , X50, Z1, . . . , Z25. In this simulation study, we consider the variables

Z1, . . . , Z25 to be latent variables, that are used to define the response variable,

but are not available in the samples to fit the models. In this way, we aim to de-

fine more realistic scenarios, in which the perfect models cannot be fitted. Instead,

Z1, . . . , Z25 are used to define the sampling design.

For a given value of p∗, where p∗ ≤ p, let µµµp∗ indicate the null vector of dimension

1 × p∗ and Σp∗×p∗ a matrix of dimension p∗ × p∗ of values of η = 0.15 off-diagonal

and values of 1 on the diagonal, i.e.,

µµµ(p∗) = (0, . . . , 0)T and Σp∗×p∗ = (1− η) · Ip∗×p∗ + η · Jp∗×p∗ , (5.35)

being Ip∗×p∗ the identity matrix and Jp∗×p∗ the matrix of 1s. In addition, the vector

of regression coefficients βββ = (β0,βββ
XXX ,βββZZZ)T is defined as follows:

βββXXX = (−2, . . . ,−2︸ ︷︷ ︸
(11)

, 0, . . . , 0︸ ︷︷ ︸
(9)

,−2, . . . ,−2︸ ︷︷ ︸
(10)

, 0, . . . , 0︸ ︷︷ ︸
(9)

,−2, . . . ,−2︸ ︷︷ ︸
(11)

)T , βββZZZ = (2, . . . , 2︸ ︷︷ ︸
(25)

)T ,

(5.36)
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and the value of β0 changes depending on the nature of the response variable (con-

tinuous or dichotomous), and hence, will be defined later on.

We describe below the steps followed to generate the finite populations of this

simulation study. Two scenarios are defined generating two different populations.

In Scenario 1 (S1), the p = 75 covariates are unit-level variables (i.e., there are

d = 0 cluster-level variables), while in Scenario 2 (S2), d = 5 variables are defined

as cluster-level variables, while the rest of p − d = 70 variables are unit-level. In

each population, two response variables have been generated: (a) a continuous re-

sponse variable (linear regression), and (b) a dichotomous response variable (logistic

regression).

1. For d = 0 (S1) and d = 5 (S2), two finite populations are generated by making

N realizations of:

(Xd+1, . . . , X50, Z1, . . . , Z25) ∼ N(µµµ(p−d),Σ(p−d)×(p−d)). (5.37)

2. Let us denote as {zzzi = (zi,1, . . . , zi,25)}Ni=1 the set ofN realizations of Z1, . . . , Z25.

Data is sort based on zzziβββ
ZZZ , ∀i = 1, . . . , N . Strata are defined by partitioning

the population data set on sets of the same size (H = 5) and clusters by par-

titioning each stratum on sets of the same size (Ah = 20, ∀h = 1, . . . ,H, being

Ah the number of clusters generated in stratum h in the population). In this

way, a total of 100 clusters of size Nh,α = 1000 are generated, ∀h = 1, . . . ,H

and ∀α = 1, . . . Ah.

3. If d ̸= 0, generate d cluster-level variables by making A =
∑H

h=1Ah realizations

of:

(X1, . . . , Xd) ∼ N(µµµ(d),Σ(d)×(d)). (5.38)

Note that for two different units in the same cluster, their corresponding

cluster-level covariates should take the same values, i.e., ∀i, j in the same

cluster, (xi,1, . . . , xi,d) = (xj,1, . . . , xj,d). Therefore, we repeat each realization

Nh,α times. We now have defined the values corresponding to X1, . . . , X50

variables for all the units in the finite population: {xxxi = (xi,1, . . . , xi,50)}Ni=1.

4. Generate the values for the response variables as follows:

(a) Linear regression framework: The values for the continuous response



5.3. Simulation Study 91

variable are randomly generated as follows,

yi = xxxiβββ
XXX + zzziβββ

ZZZ + ϵi, (5.39)

where ϵi is a realization of ϵi ∼ N(0, 102), ∀i = 1, . . . , N (β0 = 0 in this

case).

(b) Logistic regression framework: First, we generate the probabilities

of event ∀i = 1, . . . , N in the following way,

logit(p(xxxi, zzzi)) = β0 + xxxiβββ
XXX + zzziβββ

ZZZ =⇒ p(xxxi, zzzi) =
eβ0+xxxiβββ

XXX+zzziβββ
ZZZ

1 + eβ0+xxxiβββXXX+zzziβββZZZ
,

(5.40)

where we set β0 = −10. Finally, the value for the response variable yi is

randomly generated by following Bernoulli’s distribution, i.e.,

yi ∼ Bernoulli(p(xxxi, zzzi)), ∀i = 1, . . . , N. (5.41)

In this way, given the value we set for β0, the probability of event in the

finite population is around 25%.

Then, the finite population U is defined as the set of values corresponding to

the response variable yi and the covariates xxxi, ∀i = 1, . . . , N (excluding the

latent variables zzzi, given that they have already been used for defining the

sampling design and will not be included in the LASSO models as previously

explained) as well as strata and cluster indicators corresponding to each of

them.

5. Sampling design is defined as a two-stage stratified cluster sampling.

First, ah = 4, ∀h ∈ {1, . . . ,H} clusters or PSUs are sampled per stratum (out

of Ah = 20 clusters in the population stratum Uh).

Afterward, a different number of units (denoted as nh,α̇) is sampled from each

selected PSU (or cluster) α̇ ∈ Ah of stratum h ∈ {1, . . . ,H}. In particular,

∀h ∈ {1, . . . ,H} and ∀α̇ ∈ Ah the following number of units nh,α̇ have been
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sampled in each scenario:

S1(G): n1,α̇ = 500, n2,α̇ = 50, n3,α̇ = 25, n4,α̇ = 10, n5,α̇ = 5,

S1(B): n1,α̇ = 5, n2,α̇ = 10, n3,α̇ = 25, n4,α̇ = 50, n5,α̇ = 500,

S2(G): n1,α̇ = 250, n2,α̇ = 100, n3,α̇ = 50, n4,α̇ = 25, n5,α̇ = 5,

S2(B): n1,α̇ = 5, n2,α̇ = 25, n3,α̇ = 50, n4,α̇ = 100, n5,α̇ = 250.

Note that the names of the scenarios refer to the distribution of the response

variable: “G” for Gaussian distribution with reference to the framework of the

linear regression and “B” for the Bernoulli distribution indicating the logistic

regression framework. In this way, a total of four different scenarios were

defined as a combination of S1 and S2 (d = 0 and d = 5 cluster-level variables),

and the response variable considered (continuous (“G”) or dichotomous (“B”)).

6. As previously defined in eq. (2.28), the sampling weights are then calculated

as indicated in eq. (5.42):

wi =

H∑
h=1

∑
α̇∈Ah

Nh,α̇

nh,α̇
· Ah

ah
· 1Sh,α̇

(i), ∀i ∈ S. (5.42)

5.3.2 Set-up

As explained above, in this simulation study we aim to compare the performance of

the replication methods described in 5.2.3, to the w-SRSCV, and to the unw-SRSCV

(both of them described in Section 5.2.2). In order to ease the notation, we could

define replicate weights for training and test sets of the w-SRSCV as the original

weights, i.e.,

w
∗,tr(t)
i,w-SRSCV = w

∗,test(t)
i,w-SRSCV = wi, ∀i ∈ S, (5.43)

for the tth training and test sets, ∀t = 1, . . . , Tw-SRSCV = K. In the same way, the

unw-SRSCV would be equivalent to setting all the replicate weights for training and

test sets to one:

w
∗,tr(t)
i,unw-SRSCV = w

∗,test(t)
i,unw-SRSCV = 1, ∀i ∈ S, (5.44)

for the tth training and test sets, ∀t = 1, . . . , Tw-SRSCV = K. Considering this

notation, the lines below describe the process of the simulation study for all the

methods, including w-SRSCV and unw-SRSCV.

In order to compare the performance and analyze the validity of different meth-
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ods for selecting the optimal tuning parameter for LASSO regression models, the

steps described below are followed. Given the length and complexity of the simula-

tion process, we separate it into three different parts and provide the Figures 5.7,

5.8 and 5.11 for a more visual explanation.

First, we need to obtain the true optimal tuning parameter that minimizes the

error of the model fitted to the whole sample S in the finite population and calculate

the number of variables that are kept in the model when considering this tuning

parameter. This parameter and the corresponding number of covariates are the

ones that we would like to obtain in practice based on our analysis. Thus, we start

the simulation study as follows (see a graphical summary in Figure 5.7).

For r = 1, . . . , R:

Step 1. Obtain the sample Sr.

Step 2. Define the penalty grid based on Sr using the default approach in glmnet

(Friedman et al. 2010): λr1, . . . , λ
r
L. It should be noted that the number of

elements in the grid, L, also depends on r. Nevertheless, in order not to

complicate the notation too much, we avoid using more under or superscripts

to indicate it.

Step 3. For each value λrl , ∀l = 1, . . . , L:

Step 3.1 Fit the LASSO model to Sr (f̂ r,l(·)) considering the vector of covariates

xxxi, sampling weights wi, ∀i ∈ Sr and λrl following eq. (5.14).

Step 3.2 Apply the model f̂ r,l(·) to the finite population and estimate the response:

f̂ r,l(xxxi), ∀i = 1, . . . , N .

Step 3.3 Calculate the error of the model f̂ r,l(·) in the finite population (i.e., true

population error of the model fitted to Sr):

Êrr
r

true(λ
r
l ) =

1

N

N∑
i=1

L(yi, f̂ r,l(xxxi)), (5.45)

where L(yi, f̂ r,l(xxxi)) is calculated as in eq. (5.9).

Step 3.4 Define the “true” optimal tuning parameter as the one that minimizes

the true population error (not available in practice):

Λr
true = argmin

λr
l : l∈{1,...,L}

{Êrr
r

true(λ
r
l )}. (5.46)
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Then, we calculate the tuning parameter that we would actually obtain by ap-

plying each of the methods considered in this work. We continue the simulation

study as follows (depicted in Figure 5.8):

Step 4. For each method m, where m ∈ {JKn, dCV, Bootstrap, BRR, split-cv, split-

boot, extrap, w-SRSCV, unw-SRSCV}:

Step 4.1 Define training and test sets following Section 5.2.3 (Sr,m
tr(t) and Sr,m

test(t),

∀t = 1, . . . , Tm, respectively) and calculate the corresponding replicate

weights for the sampled units: w
∗,r,tr(t)
i,m and w

∗,r,test(t)
i,m , ∀i ∈ Sr.

Step 4.2 For t = 1, . . . , Tm and l = 1, . . . , L:

Step 4.2.1 Fit the model to Sr,m
tr(t) considering λ

r
l and the corresponding replicate

weights w
∗,r,tr(t)
i,m following eq. (5.14): f̂ r,l,mtr(t) (·).

Step 4.2.2 Apply f̂ r,l,mtr(t) (·) to ∀i ∈ Sr,m
test(t) and estimate the response: f̂ r,l,mtr(t) (xxxi).

Calculate the error of the training model in the test set (this is the

error that can be estimated in practice):

Êrr
r,m,t

test (λrl ) =
1∑

i∈Sr,m
test(t)

w
∗,r,test(t)
i,m

∑
i∈Sr,m

test(t)

w
∗,r,test(t)
i,m L(yi, f̂ r,l,mtr(t) (xxxi)).

(5.47)

Step 4.3 Define the average error of the training models in the test sets:

Êrr
r,m

test(λ
r
l ) =

1

Tm

Tm∑
t=1

Êrr
r,m,t

test (λrl ). (5.48)

It should be noted that the process followed for the JKn method is a bit

different from the rest. For the JKn method, a unique error is calculated

considering all the test sets jointly. Thus, the error in eq. (5.47) is not

calculated for this method, and in contrast, the test error of the training

models in the test sets is estimated as shown in eq. (5.49) considering

the sample Sr as a whole:

Êrr
r,JKn

test (λrl ) =

∑TJKn
t=1

∑
i∈Sr,JKn

test(t)
w

∗,r,test(t)
i,JKn · L(yi, f̂ r,l,JKn

tr(t) (xxxi))∑TJKn
t=1

∑
i∈Sr,JKn

test(t)
w

∗,r,test(t)
i,JKn

, (5.49)

where w
∗,r,test(t)
i,JKn have been defined in eq. (5.21).
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Step 4.4 Define the optimal tuning parameter for method m as follows:

Λr,m
test = argmin

λr
l : l∈{1,...,L}

{Êrr
r,m

test(λ
r
l )}. (5.50)

Finally, we analyze the performance of each method m by comparing the param-

eters obtained based on it to the true population parameters:

Step 5. Fit the models to Sr by considering Λr
true and Λr,m

test in eq. (5.14), and de-

note them as f̂ r,⋆true(·) and f̂
r,⋆,m
test (·), being the corresponding model coefficients

denoted as β̂ββ
r,⋆

true and β̂ββ
r,⋆,m

test , respectively. Then:

Step 5.1 Define the difference between the true optimal tuning parameter and the

one obtained based on method m as follows:

diffr,m = log(Λr,m
test)− log(Λr

true). (5.51)

Step 5.2 Define δrtrue and δr,mtest as the number of regression coefficients different to

0, when fitting LASSO models considering the tuning parameters Λr
true

and Λr,m
test, respectively. That is,

δrtrue =

p∑
j=1

I(β̂r,⋆true,j ̸= 0) and δr,mtest =

p∑
j=1

I(β̂r,⋆,mtest,j ̸= 0). (5.52)

The former indicates the number of variables that would be selected based

on LASSO if the finite population were available (i.e., the “true” number

of variables selected based on LASSO), while the latter indicates the

number of variables that would be selected based on each method m.

Step 5.3 For each selected tuning parameter Λr
true and Λr,m

test, the true population

error (obtained by applying the models f̂ r,⋆true(·) and f̂
r,⋆,m
test (·) to the finite

population) is calculated following eq. (5.45):

Êrr
r

true(Λ
r
true) =

1

N

∑
i∈U

L(yi, f̂ r,⋆true(xxxi)), (5.53)

Êrr
r

true(Λ
r,m
test) =

1

N

∑
i∈U

L(yi, f̂ r,⋆,mtest (xxxi)). (5.54)

In this simulation study, a total of R = 500 samples were obtained. Cross-

validation methods were applied for K = 10 number of folds, B = 200 Bootstrap
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resamples were considered, and a total of 20 train and test sets were defined for

split and extrap methods. For split methods, 70% of clusters are used for defining

training sets, while for extrap training sets are defined by means of 3 out of 5 strata.

All computations were performed in (64 bit) R 4.2.0 (R Core Team 2022) and a

workstation equipped with 32GB of RAM, an Intel i7-8700 processor (3.20 Ghz),

and a Windows 10 operating system. In particular, LASSO models were fitted by

means of glmnet R package (Friedman et al. 2010) and for applying JKn, BRR and

Bootstrap methods survey package (Lumley 2020) was used.
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5.3.3 Results

In this section, we summarize the main results of the simulation study, related to the

performance of the analyzed methods when selecting the optimal tuning parameter

and the number of covariates that end up in the final models.

Specifically, we compare the optimal tuning parameters obtained based on each

method, the number of covariates kept in the model by those parameters, and the

error of those models to the true population parameters described in Section 5.3.2.

In particular, Figure 5.9 depicts the differences between the logarithms of the true

optimum tuning parameter and the ones obtained based on each method (see eq.

(5.51)), while Figure 5.10 shows the number of variables that would be selected

based on those tuning parameters. Numerical results for linear (S1(G) and S2(G))

and logistic (S1(B) and S2(B)) models with cluster-level variables (S2(G) and S2(B))

or without them (S1(G) and S1(B)) are described in Tables 5.1 and 5.2. Due to the

large number of results, we proceed to summarize the main findings.

The unw-SRSCV performs poorly in all scenarios, it selects unnecessarily com-

plex models with a large number of variables. In particular, in more than 50% of

the samples in scenario S1(G), all the 50 covariates are kept in the final model based

on this method. This method is also the one with the highest error in all scenarios

except in S1(G), where the extrap method showed the worst results in this aspect.

Such a bad performance indicates the need to consider sampling weights when fitting

LASSO models to complex survey data. In contrast, BRR, split-cv, split-boot and,

in particular, extrap methods select large tuning parameters, that lead to models

with very few numbers of covariates, increasing the population error estimated based

on them.

The performance of the rest of the methods depends on the scenario. No great

differences have been observed comparing the results obtained from scenarios re-

lated to linear (S1(G) and S2(G)) and logistic (S1(B) and S2(B)) regression models.

However, the results obtained in scenarios with cluster-level variables (S2(G) and

S2(B)) or without them (S1(G) and S1(B)) differ considerably for some methods.

In S1(G) and S1(B) the selected tuning parameters based on the JKn and the dCV

are unbiased with respect to the true population parameter, which leads to keeping

a similar number of variables in the final models. In S2(G) and S2(B), these meth-

ods select slightly greater tuning parameters, which leads them to select in general

models with less number of variables. Nevertheless, there are no great differences in

terms of error, compared to the error that would be obtained if the true tuning pa-
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rameter were selected. Therefore, it can be concluded that the performance of these

methods is correct in all scenarios. In S1(G) and S1(B), there are no differences

between w-SRSCV and dCV methods, and as mentioned above, all of them perform

quite properly. In contrast, in S2(G) and S2(B), the tuning parameter selected by

means of w-SRSCV is lower than the true one, which leads to select unnecessarily

complex models with a large number of parameters, without a gain in terms of the

error of the model, in comparison to the dCV method. The Bootstrap method is the

one that performs the best in terms of the error in all the scenarios. However, its

performance in terms of the number of variables of the selected models depends on

the scenario: even though it shows a good performance in selecting a similar number

of covariates to the true model in S2(G) and S2(B), it tends to select a too large

number of covariates in the models corresponding to S1(G) and S1(B).
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5.3.4 Analyzing the differences between dCV and w-SRSCV

In the results shown in the previous section, we have seen that the dCV and w-

SRSCV methods behave differently under some scenarios. In this section, we will

further analyze the behavior of these two methods. The difference between the two

methods is based on the way in which the training and test subsets are created.

For this reason, we analyze the adequacy of the subsets obtained by the dCV and

w-SRSCV methods to represent the population and the sampling design. For this

purpose, we add the following steps to the simulation set-up described in Section

5.3.2 incorporating some modifications to Step 4., as summarized in Figure 5.11

and described below:

Step 4.(∗) For each method m, where m ∈ {dCV, w-SRSCV} and r = 1, . . . , 500:

Step 4.1(∗) Define training and test sets (Sr,m
tr(t) and Sr,m

test(t), ∀t = 1, . . . , Tm, respec-

tively) and calculate the corresponding replicate weights for the sampled

units: w
∗,r,tr(t)
i,m and w

∗,r,test(t)
i,m , ∀i ∈ Sr.

Step 4.2(∗) For t = 1, . . . , Tm and l = 1, . . . , L:

Step 4.2.1(∗) Fit the model to Sr,m
tr(t) considering λ

r
l and the corresponding replicate

weights w
∗,r,tr(t)
i,m following eq. (5.14): f̂ r,l,mtr(t) (·).

Step 4.2.2(∗) Apply f̂ r,l,mtr(t) (·) to ∀i ∈ U and calculate the error of the model in the

population (this indicates the true performance of the training model

in the finite population):

Êrr
r,m,t

tr.pop(λ
r
l ) =

1

N

∑
i∈U

L(yi, f̂ r,l,mtr(t) (xxxi)). (5.55)

Step 4.3(∗) Define the average error of the training models in the finite population:

Êrr
r,m

tr.pop(λ
r
l ) =

1

Tm

Tm∑
t=1

Êrr
r,m,t

tr.pop(λ
r
l ). (5.56)
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On the one hand, Figures 5.12 and 5.13 compare Êrr
r,m

tr.pop(λ
r
l ) defined in eq.

(5.56) (i.e., the true error of the training models estimated in the finite population)

to Êrr
r

true(λ
r
l ) defined in eq. (5.45) (that is, the finite population error of the model

fitted to the whole sample Sr), ∀r = 1, . . . , R and ∀l = 1, . . . , L for the dCV and

w-SRSCV methods, respectively, in all the scenarios depicted in Section 5.3.1. It

can be observed that the finite population error of the training models Êrr
r,m

tr.pop(λ
r
l )

is quite similar to the error of the model fitted to the whole sample Êrr
r

true(λ
r
l ),

for both, dCV (see Figure 5.12) and w-SRSCV (Figure 5.13) methods. From these

results, we can conclude that the training models fitted based on both methods rep-

resent properly the models fitted to the whole samples and the differences observed

in Section 5.3.3 between dCV and w-SRSCV methods do not occur due to poor

performance of the training models.

On the other hand, Figures 5.14 and 5.15 compare Êrr
r,m

test(λ
r
l ) defined in eq.

(5.48) (i.e., the error of the training models estimated in the test sets) to Êrr
r

true(λ
r
l )

defined in eq. (5.45), ∀r = 1, . . . , R and ∀l = 1, . . . , L for the dCV and w-SRSCV

methods, respectively, in all the scenarios depicted in Section 5.3.1. It can be

observed that the results vary depending on the scenario. In Scenarios S1(G)

and S1(B), the performance of both methods is quite similar, and their test er-

ror Êrr
r,m

test(λ
r
l ) approximates the true population error Êrr

r

true(λ
r
l ) quite properly,

being sometimes above and other times below the true population error (in line with

the results shown in Section 5.3.3 for Scenarios S1(G) and S1(B)). In contrast, in

Scenarios S2(G) and S2(B), the performance of the methods and the way in which

they approximate the true population error Êrr
r

true(λ
r
l ) differ, and hence, they offer

different results in scenarios S2(G) and S2(B) as shown in Section 5.3.3. The error

estimated by means of the dCV method is commonly slightly greater than the true

population error. In contrast, the w-SRSCV usually underestimates the true popu-

lation error. Note that in the w-SRSCV method, the same clusters are part of both,

training and test sets. Then all the clusters are considered for fitting the models

as well as for estimating the error. Hence, the way of creating training and test

sets based on w-SRSCV does not represent properly the real relationship between

the sample and population, given that only a small proportion of clusters in the

population are used to fit the models to the samples. The sampling design is better

represented in the dCV method, in which some of the clusters are used to fit the

models and others to estimate the error.
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5.4 Discussion

In this study, we worked on the variable selection process by means of LASSO re-

gression models for complex survey data. As discussed throughout the chapter, two

issues need to be analyzed before implementing LASSO regression to complex sur-

veys. In the first place, the need to incorporate sampling weights into the estimation

process of LASSO models should be checked. In addition, the validity of the tradi-

tional cross-validation techniques commonly applied to simple random samples for

selecting the tuning parameters for LASSO models should also be analyzed when

working with complex survey data. In this chapter, the performance of methods

based on replicate weights that are well-known for other purposes in complex survey

data framework but, to our knowledge, have never been used for LASSO, have been

compared to the traditional cross-validation techniques to select the tuning param-

eter λ. In addition, new methods based on the idea of replicating weights have been

proposed, among others, the dCV. This method could be seen as an extension of the

Survey CV method proposed by Wieczorek et al. (2022), which in combination with

replicate weights, allows us to be more flexible when defining different folds, and

thus, it is valid for more types of designs, for example when a different number of

PSUs per stratum is available, or a few numbers of PSUs per stratum are sampled.

The performance of all those methods for selecting the tuning parameter for

LASSO models has been compared by means of an extensive simulation study. The

sampling design considered in this study is a two-stage stratified cluster sampling in

which a different number of units are sampled from each cluster. Let us highlight

some of the most interesting conclusions of the simulation study in the following

lines.

In the first place, the bad performance of the unw-SRSCV, which leads to very

complex regression models selecting almost all variables, shows the need to incorpo-

rate sampling weights into the estimation process of LASSO regression models. It

should be noted that in this work we have not considered the option to fit “perfect”

prediction models (i.e., prediction models for which the sampling design is uninfor-

mative given the covariates included in the model). In line with previous works (see,

e.g., Pfeffermann (1993), Scott and Wild (1986), Sugden and Smith (1984)), if we

try to fit perfect models sampling weights are not needed in the estimation process

of linear and logistic regression models. These conclusions can also be extended to

LASSO models, and hence, this method would perform properly in that situation.

However, it is important to point out, that when working with LASSO regression
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models, as we are using a sparse shrinkage estimator, the sampling design must be

uninformative given, not all the covariates, but the ones that actually end up in the

final model, which is even more complicated and beyond the researcher’s control. In

addition, it should also be noted that when we work with real data, we will hardly

ever be able to fit “perfect” regression models. Therefore, we would not recommend

the use of this method in practice, in order to avoid fitting too complex regression

models with biased estimates of regression coefficients.

The second point that should be mentioned is the similarities and differences

between the performance of the w-SRSCV (which does not consider the sampling

design when defining folds) and the new proposal dCV. It is striking that for the

same sampling design (two-stage stratified cluster sampling), such different results

were obtained across different scenarios. This fact could be explained as follows. In

the scenario where cluster-level variables were incorporated, most of the variability

induced by the sampling design could be explained by means of the sampling weights.

In contrast, the inclusion of cluster-level variables leads to an increase in the effect

of the sampling design that cannot be explained by means of the sampling weights

themselves, thus offering greater differences between one method and the other.

When no cluster-level variable is considered in the model, both methods perform

properly and lead to reasonable and parsimonious regression models. In contrast,

when including cluster-level variables into the process, models selected based on

those methods differ considerably, being the ones selected by the w-SRSCV more

complex than necessary. This is in line with the results obtained by Lumley and

Scott (2015), in which the effect of the sampling design has shown an important

role in the model selection, in particular, on the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC). Briefly, this work shows that for samples

with greater design effect, more parsimonious models are selected, given that the

design effect penalizes more strongly the incorporation of the covariates into the

model. Coming back to our study, we have observed that the greater the cluster

effect, the greater the differences between the tuning parameters selected for fitting

the models and the number of variables selected based on those methods. The w-

SRSCV tends to select a larger number of variables than the dCV. Therefore, we

recommend the use of the dCV rather than the w-SRSCV, in order to select more

parsimonious models when fitting LASSO regression models to complex survey data.

In addition, given the similarities of this work and Lumley and Scott (2015), we

believe that the trace of the variance-covariance matrix (also used to define dAIC

and dBIC parameters) could be used to analyze the cluster effect and thus diagnose
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whether there may be differences between the dCV and w-SRSCV. However, the

magnitude of the relationship between the trace of the variance-covariance matrix

and the differences between w-SRSCV and dCV on the variable selection by means

of LASSO will be further analyzed in future work.

Another consequence of the abovementioned cluster effect, which is reflected

in the differences between the dCV and w-SRSCV, is the so-called “data leakage”

(Kaufman et al. 2011). When the cluster effect is significant, splitting the clusters

between training and test sets, (i.e., setting some units of a cluster into the training

set and others into the test set as w-SRSCV does), has two consequences. On the

one hand, we fit the models with more information than we should, given that

all the clusters are considered in the process. The fact that all the clusters are

considered when fitting the training models means that the sampling variability

will be underestimated across them. On the other hand, very similar information

to the one used when fitting the models is used to evaluate the error in the test

sets given that, actually, the training and test sets are not independent sets since

units of the same cluster are in both of them. Thus, the true population error is

also underestimated. When applying the training models to the test sets, it can be

observed that the w-SRSCV underestimates the true population error in contrast

to the dCV, particularly in the scenarios with cluster-level variables. We have also

observed that the variability of the training models is greater when the dCV is

applied compared to the w-SRSCV (results not shown).

Note that the methods proposed and applied throughout this work can be ex-

tended in a very simple way to data obtained from a one-stage stratified sampling

design. However, the behavior of the methods in such a situation has not been an-

alyzed in this simulation study. The authors expect that the results may be similar

to S1, where cluster-level variables have not been incorporated and have shown to

have a low cluster-effect, but this should be studied in future work to be confirmed.

Neither other types of sampling, such as sampling probability proportional to sam-

ple size nor post-stratification have been considered, so the conclusions obtained are

limited to the schemes we have analyzed. In order to reduce the number of results

shown, we set the number of folds in the cross-validation methods as K = 10, given

that it is the one most commonly used in the literature (see, e.g., Witten et al.

(2016)). Note also that other tries have been made by changing the number of folds

in the methods based on cross-validation to K = 5, but no significant differences

have been observed (results not shown). Also, cross-validation techniques allow re-

peating the process of splitting the sample several times, which is usually known as
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cross-validation with replication. Those replicates have not been considered in the

results shown in this chapter for the same reason. In this simulation study, we did

not consider the method proposed by Wieczorek et al. (2022) as another alternative.

First, it should be noted that the goal of our proposal is not to improve the perfor-

mance of the Survey CV in the situations in which it works, but to gain flexibility

and to be applicable in more situations. It should be noted that in the scenarios

we analyzed, the Survey CV can only be applied with K = ah = 4 folds, which

is not usually considered in practice, and hence, we believe that the comparisons

we would make would not be very interesting in that situation, and the design of

more scenarios would distract the readers from the main goal of the study. We also

believe that under scenarios in which both methods, Survey CV as well as dCV can

be considered, they will probably perform similarly. However, a specific simulation

study would be necessary to compare the performance of both methods and ana-

lyze their pros and cons in each situation. We should also comment that we have

decided to discuss the number of variables that end up in the final LASSO models

rather than to contrast whether those covariates are actually the ones that form the

theoretical model. The main reason to take this decision is that given that the co-

variates are correlated and taking into account that we are working with simulated

data in which the covariates do not have any particular meaning, we found it quite

difficult to quantify whether the final models selected based on different methods

are close or far from the theoretical one. However, we find it interesting to analyze

this point in more detail as further work by means of a simulation study based on

real data. Finally, the methods applied and proposed in this work could be used for

other purposes beyond LASSO to define partially independent subsets of the sam-

ple. For example, it is straightforward the application of the analyzed methods to

fit other types of models, such as ridge regression which is appropriate to deal with

multicollinearity problems (Hoerl and Kennard 1970, Kidwell and Brown 1982) or

elastic nets which is a combination of LASSO and ridge regression (Zou and Hastie

2005). However, the performance of the methods should be previously checked in

that context.

In summary, the methods that have performed the best in all the scenarios are

the dCV and the JKn, which have shown a similar performance in the scenarios that

have been considered. It should also be noted the good performance of the Bootstrap,

particularly in the scenarios with cluster-level variables, being the best in terms of

error but considerably less parsimonious than JKn and the dCV. In addition, in

terms of computational efficiency, the fastest has been the dCV, beating JKn and
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Bootstrap, being twice as fast as JKn on average and between 15 and 20 times

faster than Bootstrap in the scenarios that have been considered. In particular, in

the scenarios that have been analyzed, the dCV needs on average between 0.26-0.45

seconds in both linear scenarios (S2(G)-S1(G)) and 1.09-1.70 seconds in logistic

scenarios (S2(B)-S1(B)), JKn needs between 0.48-0.72 and 2.18-3.43 seconds on

average and the Bootstrap between 5.28-7.43 and 16.68-23.8 seconds on average,

respectively, in the same scenarios. In summary, this study shows that the K-fold

cross-validation technique, which is commonly applied to select tuning parameters

for fitting LASSO regression models to simple random samples, can be extended to

the dCV when working with complex survey data and it will provide parsimonious

regression models. For this reason, we recommend the use of this method for fitting

LASSO regression models to complex survey data.



CHAPTER6
Estimation of the Receiver Operating

Characteristic (ROC) curve and the area

under the curve (AUC)

The paper related to the work presented in this chapter has been published:

Iparragirre, A., Barrio, I., & Arostegui, I. (2023). Estimation of the

ROC curve and the area under it with complex survey data. Stat, 12(1),

e635.

This chapter mostly replicates the above-mentioned article. However, some changes

have been made to keep the notation and ensure cohesion with the rest of the docu-

ment. In addition, Sections 6.2.3 and 6.3.4 incorporate new contents that were not

included in the above-mentioned paper.

The R package wROC derived from this work can be found on GitHub10 and is pre-

sented in Chapter 8 of this document.

10https://github.com/aiparragirre/wROC
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Summary

Before implementing logistic regression models in daily practice, it is necessary to en-

sure they have an adequate predictive performance and, in particular, a good discrim-

ination ability. In the context of logistic regression models, discrimination ability is

usually estimated by means of the receiver operating characteristic (ROC) curve and

the area under it (AUC). Traditional estimators of these parameters are thought to

be applied to simple random samples, they do not consider complex sampling designs

and, hence, are not appropriate for complex survey data. The goal of this work is

to propose new weighted estimators for the ROC curve and AUC based on sampling

weights. The behavior of the proposed estimators is evaluated and compared to the

traditional unweighted ones by means of a simulation study. Finally, weighted and

unweighted ROC curve and AUC estimators are applied to real survey data in or-

der to compare the estimates in a real scenario. The results suggest the use of the

weighted estimators proposed in this work in order to obtain unbiased estimates for

the ROC curve and AUC of logistic regression models fitted to complex survey data.

6.1 Introduction

Given the impact of prediction models in many fields in daily practice, it is necessary

to ensure that these models are valid and applicable in practice. In particular, when

the goal is prediction, ensuring good model performance is essential. In this chapter,

we focus on logistic regression models for dichotomous response variables. Model

performance of logistic regression models is usually analyzed by means of calibration

and discrimination ability (Steyerberg 2008). Calibration measures the agreement

between outcomes and predictions (see, e.g., the goodness-of-fit test proposed by

Hosmer and Lemesbow (1980)). In this study, we bring discrimination ability into

focus, which measures the ability of the models to distinguish between units with

the event of interest and without it. This is usually measured by means of the re-

ceiver operating characteristic (ROC) curve, which is defined as the curve formed

by specificity and sensitivity parameters (i.e., probability of properly classifying in-

dividuals without and with the event of interest, respectively) across all the possible

cut-off points (Green and Swets 1966, Pepe 2003, Swets and Pickett 1982). The area

under the ROC curve (AUC), is one of the most widely used summary measures to
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analyze the discrimination ability of logistic regression models (Pepe 2003). Bam-

ber (1975) showed the equivalence between the area under the ROC curve and the

Mann-Whitney U-statistic, offering in this way an interesting interpretation of the

AUC as the probability that an individual with the event of interest is given by the

model a higher probability of event than an individual without the event of interest.

In the area of complex design surveys, both calibration and discrimination of

models have been of interest, and new proposals have been made in both directions

in the last 20 years. On the one hand, Archer et al. (2007) proposed a goodness-of-fit

test that considers complex sampling designs to analyze the calibration of the models

fitted to complex survey data. Similarly, Lumley (2017) proposed a design-consistent

estimator for the Cox-Snell and Nagelkerke R2 (Cox and Snell 1991, Nagelkerke

1991). On the other hand, in the context of the discrimination ability, Yao et al.

(2015) proposed a modification of the Mann-Whitney U-statistic in order to consider

the sampling design to estimate the AUC of the models, incorporating pairwise

sampling weights, which are defined as the inverse joint inclusion probability of a

pair of observations (i∗, i∗∗) (Horvitz and Thompson 1952, Särndal et al. 2003), i.e.,

wi∗i∗∗ = 1/πi∗i∗∗ where, πi∗i∗∗ = P [(i∗ ∈ S) ∩ (i∗∗ ∈ S)], ∀i∗, i∗∗ ∈ S.

As mentioned previously, in this work, we aim to focus on the evaluation of

the discrimination ability of logistic regression models. Even though Yao et al.

(2015) proposed a weighted estimator for the AUC, to our knowledge, there is a lack

of proposals for estimating the ROC curve considering complex sampling designs.

Therefore, the main goal of this work is to propose a weighted estimator for the ROC

curve. In particular, we propose weighted specificity and sensitivity estimators to

define a new weighted estimator for the ROC curve. In addition, we calculate the

area under the curve in order to estimate the AUC following Bamber (1975) and

Tsuruta and Bax (2006), and finally, we show that this AUC estimator defined as the

area under the weighted estimate of the ROC curve is equal to the weighted Mann-

Whitney U-statistic considering marginal sampling weights wi, ∀i ∈ S, rather than

pairwise sampling weights wi∗i∗∗ , ∀i∗, i∗∗ ∈ S as proposed by Yao et al. (2015). The

estimation of the AUC is then a simple weighted expression that can easily be cal-

culated in practice, given that the marginal sampling weights are usually explicitly

available when working with complex survey data, in contrast to the pairwise sam-

pling weights, which usually need to be calculated by means of some computational

package. The performance of this proposal is analyzed by means of a simulation

study, in which the weighted and unweighted estimates of the ROC curve and AUC

are compared to the true population ones. In addition, the proposed methods are
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applied to real survey data, and the weighted estimates of the ROC curve and AUC

are compared to the unweighted ones.

The rest of the chapter is organized as follows. In Section 6.2, we first set the

basic notation needed to ease the reading of this chapter. Then, we define the

proposed weighted estimator of the ROC curve and we calculate the area under

it. We continue by proving the equivalence between the area under the weighted

estimate of the ROC curve and the weighted Mann-Whitney U-statistic, considering

marginal sampling weights. Finally, we define the AUC estimator proposal based

on the pairwise sampling weights (Yao et al. 2015). In Section 6.3, the simulation

study conducted in order to analyze the performance of the proposed estimators is

defined and the results obtained are depicted and summarized. In Section 6.4, the

proposed estimators are applied to real survey data. Finally, the chapter concludes

with a discussion in Section 6.5.

6.2 Methods

The goal of this section is to describe our proposal to estimate the ROC curve

of logistic regression models fitted to complex survey data considering marginal

sampling weights. We calculate the area under the weighted estimate of the ROC

curve in order to estimate the AUC and we show the equivalence between this area

and a modification of the Mann-Whitney U-statistic considering marginal sampling

weights, which leads us to conclude that this estimator can be used in order to obtain

unbiased estimates of the AUC.

The rest of the section is organized as follows. In Section 6.2.1 we denote the

basic notation related to the logistic regression model, ROC curve, and AUC. In Sec-

tion 6.2.2, we define our proposal to consider sampling weights to estimate the ROC

curve and the area under the curve (AUC) and we show the equivalence between

the area under the weighted estimate of the ROC curve and the Mann-Whitney

U-statistic considering marginal sampling weights. Finally, in Section 6.2.3 we de-

fine the proposal of Yao et al. (2015) based on the pairwise sampling weights for

estimating the AUC.

6.2.1 Background and basic notation

Let us remind the basic notation of logistic regression models, focusing on their dis-

crimination ability and defining, in particular, the receiver Operating Characteristic
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(ROC) curve and the area under the ROC curve (AUC).

Let p(xxxi) = P (Y = 1|XXX = xxxi) indicate the conditional probability of event for an

individual i given the values of its vector of covariates xxxi. As defined in eq. (2.52),

the specific form of the logistic regression model in terms of the probability of event

is:

p(xxxi) =
exxxiβββ

1 + exxxiβββ
. (6.1)

Based on the probability p(xxxi) and a cut-off point c, each individual can be classified

as event (if p(xxxi) ≥ c) or non-event (p(xxxi) < c). However, this classification may be

correct or incorrect depending on the selected cut-off point c. The correct classifi-

cations, based on a particular cut-off point c, are usually quantified by specificity

(Sp(c)) and sensitivity (Se(c)) parameters, which are defined as the probabilities of

correctly classifying the non-events and events, respectively, i.e.,

Sp(c) = P [p(xxxi) < c|Y = 0] and Se(c) = P [p(xxxi) ≥ c|Y = 1] . (6.2)

The ROC curve is defined as the set of pairs 1 − Sp(c) and Se(c) across all the

possible cut-off points c (Green and Swets 1966, Swets and Pickett 1982), i.e.,

ROC(·) = {(1− Sp(c), Se(c)), c ∈ (−∞, ∞)} . (6.3)

The discrimination ability of a logistic regression model is usually evaluated by

means of the AUC, which is defined as the area under the ROC curve defined in eq.

(6.3). The AUC ranges from 0.5 (an uninformative model) to 1 (a perfect model in

terms of discrimination) (Steyerberg 2008).

Before going through the estimation of the above-mentioned parameters in the

context of complex survey data, let us explain the process for simple random samples.

Let S indicate a sample of n observations of the vector of random variables (Y,XXX),

i.e., {(yi,xxxi)}ni=1. Let β̂ββ indicate the vector of estimated regression coefficients,

estimated (for the moment) by means of the likelihood function in eq. (6.4) (first

defined in eq. (2.53)) and let p̂i = p̂(xxxi) be the corresponding estimated probabilities

of event, ∀i ∈ S (McCullagh and Nelder 1989):

L(βββ) =
∏
i∈S

p(xxxi)
yi(1− p(xxxi))

1−yi . (6.4)

Let S0 and S1 be the subsamples of sizes n0 and n1 formed by the units without the

event of interest and with the event of interest, respectively (note that S0 ∩ S1 = ∅



120 Chapter 6.

and S0 ∪ S1 = S). In order to distinguish between the units with and without the

event of interest, let us use i0 ∈ S0 as the indicator for the units without the event of

interest and i1 ∈ S1 for the units with the event of interest, hereinafter. In practice,

specificity and sensitivity parameters for a particular cut-off point c are estimated as

proportions of correctly classified sampled non-events and events, respectively (see,

e.g., Pepe (2003)), i.e.:

Ŝp(c) =
1

n0

∑
i0∈S0

I(p̂i0 < c) and Ŝe(c) =
1

n1

∑
i1∈S1

I(p̂i1 ≥ c), (6.5)

where I(·) denotes the indicator function, which takes the value 1 if the expression

between brackets is satisfied, and 0 otherwise. Then, the estimated ROC curve is

defined by means of each estimated pair of sensitivity and specificity parameters,

for each possible cut-off point (Pepe 2003) as shown in eq. (6.6):

R̂OC(·) =
{
(1− Ŝp(c), Ŝe(c)), c ∈ (−∞, ∞)

}
. (6.6)

Bamber (1975) showed that the area under the ROC curve defined in eq. (6.6)

can be estimated (ÂUC) as described in eq. (6.7), by means of the Mann-Whitney

U-statistic:

ÂUC =
1

n0 · n1

∑
i0∈S0

∑
i1∈S1

[I(p̂i0 < p̂i1) + 0.5I(p̂i0 = p̂i1)] . (6.7)

However, in the context of complex survey data, we aim to obtain information

related to the finite population of interest U . If the whole finite population were

known, we would be able to fit a logistic regression model by maximizing the popu-

lation likelihood defined in eq. (2.57), i.e.,

Lpop(βββ) =
∏
i∈U

p(xxxi)
yi(1− p(xxxi))

1−yi , (6.8)

and computing in this way the model coefficients (i.e., βββpop) and the corresponding

probabilities of event for all the units in the finite population ppopi , ∀i ∈ U where,

ppopi = ppop(xxxi) =
exxxiβββ

pop

1 + exxxiβββpop . (6.9)

Let N0 and N1 indicate the sizes of the subsets formed by the non-events (U0) and

events (U1) of the finite population U . Then, the ROC curve and AUC of the
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population model could be easily calculated following the definitions given above as

follows, respectively:

ROCpop(·) = {(1− Sppop(c), Sepop(c)), c ∈ (−∞,∞)} , (6.10)

where,

Sppop(c) =
1

N0

∑
i0∈U0

I(ppopi0
< c) and Sepop(c) =

1

N1

∑
i1∈U1

I(ppopi1
≥ c), (6.11)

and,

AUCpop =
1

N0 ·N1

∑
i0∈U0

∑
i1∈U1

[
I(ppopi0

< ppopi1
) + 0.5I(ppopi0

= ppopi1
)
]
. (6.12)

However, information on covariates and/or the response variable is not available for

the finite population U , but only for a sample S obtained sampling U following

some complex design. Thus, the model, as well as the ROC curve and AUC, need

to be estimated based uniquely on S. As discussed throughout this dissertation, the

regression coefficients and the corresponding probabilities of events are estimated

by maximizing the pseudo-likelihood function (Binder 1983) shown in eq. (6.13)

(defined in eq. (2.58)) in the context of complex surveys:

PL(βββ) =
∏
i∈S

p(xxxi)
yiwi (1− p(xxxi))

(1−yi)wi . (6.13)

Taking into account the results obtained in Chapter 4, all the model parameters for

the samples will be estimated based on the pseudo-likelihood function in eq. (6.13)

(the likelihood function in eq. (6.4) will not be considered again in the whole chap-

ter). Hence, for ease of notation, let us indicate the estimated regression coefficients

as β̂ββ (instead of β̂ββw, which was used in Chapter 4). In addition, for the same reason,

p̂i = p̂(xxxi), ∀i ∈ S indicate the predicted probabilities for the sampled units obtained

based on the pseudo-likelihood function in eq. (6.13), hereinafter.

At this point, it should be noted that the model fitted to the population and the

model fitted to the sample are not exactly the same models, given that regression

coefficient estimates βββpop (population model) and β̂ββ (sample model) may differ. In

practice, the regression coefficients βββpop are not known and the model that will be

applied is the one defined by β̂ββ (i.e., the sample model). Thus, we are particularly in-

terested in analyzing whether the sample model (rather than the population model)
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has a good discrimination ability or not. That is, the question we aim to address

is the following: how good is the fitted sample model to discriminate between units

with and without the event of interest? To answer this question, we first wonder

about what the “true” discrimination ability of the sample model is and how it

is defined. Let us think in the following way. The real discrimination ability of

the sample model can be seen as the ability of that model to discriminate between

units with and without the event of interest considering all the possible units, i.e.,

considering the whole finite population U . Hence, in case the finite population U

were available in practice, the way to obtain the ROC curve and AUC of the sample

model would be to extend it to the finite population and estimate those parameters

by following the definitions given in eqs. (6.15) and (6.17) below. Specifically, the

probabilities of event could be estimated for all the units in the finite population

considering β̂ββ obtained by maximizing the pseudo-likelihood function in eq. (6.13):

p̂i = p̂(xxxi) =
exxxiβ̂ββ

1 + exxxiβ̂ββ
, ∀i ∈ U. (6.14)

Then, the population ROC curve of the sample model is estimated as follows:

R̂OCtrue(·) =
{
(1− Ŝptrue(c), Ŝetrue(c)), c ∈ (−∞,∞)

}
, (6.15)

where,

Ŝptrue(c) =
1

N0

∑
i0∈U0

I(p̂i0 < c) and Ŝetrue(c) =
1

N1

∑
i1∈U1

I(p̂i1 ≥ c). (6.16)

Similarly, the sample model’s AUC in the finite population could then be defined as

follows:

ÂUCtrue =
1

N0 ·N1

∑
i0∈U0

∑
i1∈U1

[I(p̂i0 < p̂i1) + 0.5I(p̂i0 = p̂i1)] . (6.17)

At this point, we think it is important to remark on the differences between the

ROC curves defined in eqs. (6.10) and (6.15), and the AUCs in eqs. (6.12) and

(6.17). The ROC curve and AUC defined in eqs. (6.10) and (6.12) (i.e., ROCpop

and AUCpop) are the parameters that indicate the real (theoretical) discrimination

ability of the model fitted to the whole finite population (which is not available in

practice). That is, they indicate the real discrimination ability of the best model we

could fit with the considered covariates, given that the model is fitted with all the



6.2. Methods 123

possible units, and hence, it is reasonable to assume that its performance will be

better than the performance of the model fitted to the sample S. In contrast, the

ROC curve and AUC defined in eqs. (6.15) and (6.17) (i.e., R̂OCtrue and ÂUCtrue),

indicate the real discrimination ability of the model fitted to the sample S (i.e.,

its ability to discriminate between units with and without the event of interest in

the whole finite population). These real discrimination ability parameters R̂OCtrue

and ÂUCtrue are neither available in practice, given that to obtain them, we would

need the information of the whole finite population. Hence, in order to analyze

the discrimination ability of the model fitted to the sample, we will be particularly

interested in properly estimating the R̂OCtrue and ÂUCtrue parameters.

We believe that in the context of complex survey data, if the ROC curve and the

AUC of the fitted model are estimated based on eqs. (6.6) and (6.7), which were

designed to be applied in simple random samples and do not consider the sampling

weights, then biased estimates can be obtained. For this reason, we propose a new

estimator for the ROC curve and the AUC, which considers the sampling weights

to estimate the ROC curve and AUC of the model fitted to S. This proposal is

described in Section 6.2.2 below.

6.2.2 Proposal

In this section, we first propose an estimator to estimate the ROC curve for logistic

regression models fitted with complex survey data and the AUC as the area under

the curve. Then, we show the equivalence between the proposed AUC estimator and

the Mann-Whitney U-Statistic incorporating marginal sampling weights. Finally, we

define the AUC estimator that considers pairwise sampling weights instead of the

marginal ones (Yao et al. 2015).

Estimation of the ROC curve and the area under it

We propose to estimate the ROC curve considering the sampling weights, as follows:

R̂OCw(·) =
{
(1− Ŝpw(c), Ŝew(c)), c ∈ (−∞,∞)

}
, (6.18)

for which specificity and sensitivity parameters are estimated by means of the sam-

pling weights:

Ŝpw(c) =

∑
i0∈S0

wi0 · I(p̂i0 < c)∑
i0∈S0

wi0

and Ŝew(c) =

∑
i1∈S1

wi1 · I(p̂i1 ≥ c)∑
i1∈S1

wi1

. (6.19)
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Therefore, we propose to calculate the area under R̂OCw(·) in order to estimate the

AUC (Tsuruta and Bax 2006). Let us denote as A the area under the curve. We

now proceed to describe how the area under the ROC curve defined in eq. (6.18)

can be calculated. Note that in practice, we always work with finite sample sizes

and, hence, the number of different estimated probabilities is finite. Let us denote

as Q the total number of different estimated probabilities, i.e., p̂(Q) < . . . < p̂(1)

(where Q ≤ n, being Q = n if and only if all the estimated probabilities for each

sampled unit are different). Note that for every cut-off point chosen between two

ordered probabilities, the same values for the specificity and sensitivity parameters

will be obtained, and therefore, the same pair (1− Ŝpw(c), Ŝew(c)) will be obtained.
Then, the ROC curve will be completely defined with Q+1 different cut-off points.

Specifically, the smallest possible cut-off point is cQ < p̂(Q), which will classify all

the sampled units as events and therefore, the estimate of the sensitivity will be 1

and the specificity will be 0 (see eq. (6.19)), i.e., the cut-off point cQ will draw the

following point in the ROC curve:

(1− Ŝpw(cQ), Ŝew(cQ)) = (1, 1). (6.20)

In the same way, the point drawn in the ROC curve for c0 > p̂(1) will be the following

one:

(1− Ŝpw(c0), Ŝew(c0)) = (0, 0). (6.21)

Let us denote and sort the rest of the Q− 1 cut-off points as follows:

cQ < cQ−1 < cQ−2 < . . . < c2 < c1 < c0. (6.22)

For ease of notation, ∀q = 1, . . . , Q − 1, each cut-off point cq can be defined as the

average value of the probabilities p̂(q+1) and p̂(q), i.e.,

cq =
p̂(q+1) + p̂(q)

2
, ∀q = 1, . . . , Q− 1. (6.23)

Note that in this way, all the defined cut-off points will be different from the esti-

mated probabilities, and since between any two different ordered predicted proba-

bilities a cut-off point has been defined, only one different predicted probability lies

in the interval [cq, cq−1) , ∀q = 1, . . . , Q. Each cut-off point cq will draw a point

of the ROC curve, (1 − Ŝpw(cq), Ŝew(cq)). In this way, the estimated ROC curve

will be a polygonal line defined by Q segments. Each of these segments will define
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an area with the abscissa axis. Let us denote as Aq, ∀q ∈ {1, . . . , Q} each of these

areas. A graphical explanation can be seen in Figure 6.1.

We now proceed to calculate analytically the area under the ROC curve defined

in eq. (6.18). In particular, as the area A1 is a triangle of base [1 − Ŝpw(c1)] and

height Ŝew(c1), it can be calculated as follows:

A1 =
[1− Ŝpw(c1)] · Ŝew(c1)

2
. (6.24)

For q = 2, . . . , Q, the areas Aq are right-angled trapezoids, the area of which can

be easily calculated as the sum of the triangle A1
q of base Ŝpw(cq−1)− Ŝpw(cq) and

height Ŝew(cq)−Ŝew(cq−1) and rectangle A2
q of the same base and height Ŝew(cq−1):

Aq = A1
q +A2

q

=
[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq)− Ŝew(cq−1)]

2

+ [Ŝpw(cq−1)− Ŝpw(cq)] · Ŝew(cq−1)

=
[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq) + Ŝew(cq−1)]

2
.

(6.25)

Then, the area under the ROCw(·) curve (A) can be calculated as the sum of the

areas defined in eqs. (6.24) and (6.25). Note that, Ŝew(c0) = 0 and Ŝpw(c0) = 1.

Then, eq. (6.24) that defines A1 can be rewritten in terms of those values for

convenience. Finally, the area under the curve can be easily calculated as follows:

A = A1 +

Q∑
q=2

Aq

=
[Ŝpw(c0)− Ŝpw(c1)] · [Ŝew(c1) + Ŝew(c0)]

2

+

Q∑
q=2

[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq) + Ŝew(cq−1)]

2

=
1

2

Q∑
q=1

[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq) + Ŝew(cq−1)]

=
1

2

Q∑
q=1

[Ŝpw(cq−1) · Ŝew(cq)− Ŝpw(cq) · Ŝew(cq−1)].

(6.26)
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Figure 6.1: Graphical explanation of the weighted estimate of the ROC curve, where
cQ < cQ−1 < . . . < cq < . . . < c1 < c0.



6.2. Methods 127

In the above explanations and graphical description, we have assumed the general

case in which there may be ties (or, in other words, equal predicted probabilities)

between units with and without the event of interest. It should be noted that the

case in which there are no ties between the predicted probabilities of any of those

pairs of units is a particular case of the general explanations we have previously

made, and hence, all the equations described above are also valid for this particular

situation.

Equivalence between the area under the R̂OCw(·) curve and Mann-Whitney

U-statistic

We propose to incorporate the marginal sampling weights into the Mann-Whitney

U-Statistic as follows to estimate the weighted AUC:

ÂUCw =

∑
i0∈S0

∑
i1∈S1

wi0wi1 [I(p̂i0 < p̂i1) + 0.5 · I(p̂i0 = p̂i1)]∑
i0∈S0

∑
i1∈S1

wi0wi1

. (6.27)

In the following lines, we show that the area under the estimated ROC curve A
defined in eq. (6.26) is equivalent to the Mann-Whitney U-statistic considering

marginal sampling weights as defined in eq. (6.27). In order to prove the equivalence

between both approaches, our goal is to rewrite eq. (6.27) in terms of sensitivity

and specificity parameters. Let us rewrite it as follows as the first step:

ÂUCw =

∑
i0∈S0

∑
i1∈S1

wi0wi1I(p̂i0 < p̂i1)∑
i0∈S0

wi0

∑
i1∈S1

wi1

+
1

2
·
∑

i0∈S0

∑
i1∈S1

wi0wi1I(p̂i0 = p̂i1)∑
i0∈S0

wi0

∑
i1∈S1

wi1

.

(6.28)

Then, we can rewrite the expressions I(p̂i0 < p̂i1) and I(p̂i0 = p̂i1) as a function of

the previously defined cut-off points. Given that cQ < cQ−1 < . . . < c2 < c1 < c0,

let us denote:

I(cq ≤ p̂i1 < cq−1) = I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1), ∀q = 1, . . . , Q. (6.29)

Note that ∀i1 ∈ S1, ∃!q ∈ {1, . . . , Q} : p̂i1 ∈ [cq, cq−1). Then, ∀i0 ∈ S0 the inequality

p̂i0 < p̂i1 will be satisfied if and only if p̂i0 < cq, as graphically shown in Figure 6.2.

Thus, note that I(p̂i0 < p̂i1) can be rewritten as follows. ∀i0 ∈ S0 and ∀i1 ∈ S1,

I(p̂i0 < p̂i1) =

Q∑
q=1

I(p̂i0 < cq) · [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)] . (6.30)
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cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

Figure 6.2: This image is intended to be helpful to better understand eq. (6.30)
and indicates in which situations I(p̂i0 < p̂i1) = 1. Given that ∀i1 ∈ S1, ∃! q ∈
{1, . . . , Q − 1} : p̂i1 ∈ [cq, cq−1) (in red), locations for p̂i0 (∀i0 ∈ S0) which satisfy
I(p̂i0 < p̂i1) = 1 are indicated in green (p̂i0 < cq).

Then, following eq. (6.30) and the definitions given in eq. (6.19), let us rewrite the

first term of eq. (6.28) in terms of sensitivity and specificity parameters as follows:∑
i0∈S0

∑
i1∈S1

wi0wi1I(p̂i0 < p̂i1)∑
i0∈S0

wi0

∑
i1∈S1

wi1

=

∑
i0∈S0

∑
i1∈S1

wi0wi1

∑Q
q=1 I(p̂i0 < cq) · [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)]∑
i0∈S0

wi0

∑
i1∈S1

wi1

=

Q∑
q=1

{∑
i0∈S0

wi0I(p̂i0 < cq)∑
i0∈S0

wi0

·
∑

i1∈S1
wi1 [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)]∑

i1∈S1
wi1

}

=

Q∑
q=1

Ŝpw(cq) · [Ŝew(cq)− Ŝew(cq−1)].

(6.31)

In the same way, we will now proceed to rewrite the expression I(p̂i0 = p̂i1). As

stated above, ∀i1 ∈ S1, ∃! q ∈ {1, . . . , Q} : p̂i1 ∈ [cq, cq−1). Thus, ∀i0 ∈ S0, the

equality p̂i0 = p̂i1 will only be satisfied if p̂i0 is in the same range as p̂i1 , that is,

p̂i0 ∈ [cq, cq−1) (see Figure 6.3).

For convenience, let us rewrite:

I(cq ≤ p̂i0 < cq−1) = I(p̂i0 < cq−1)− I(p̂i0 < cq). (6.32)
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cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

cQ cQ−1 cQ−2 · · · cq cq−1 · · · c2 c1 c0

Figure 6.3: This image is intended to be helpful to better understand eq. (6.33)
and indicates in which situations I(p̂i0 = p̂i1) = 1. Given that ∀i1 ∈ S1, ∃! q ∈
{1, . . . , Q − 1} : p̂i1 ∈ [cq, cq−1) (in red), locations for p̂i0 (∀i0 ∈ S0) which satisfy
I(p̂i0 = p̂i1) = 1 are indicated in green (p̂i0 ∈ [cq, cq−1)).

Then, note that, ∀i0 ∈ S0, and ∀i1 ∈ S1:

I(p̂i0 = p̂i1) =

Q∑
q=1

[I(p̂i0 < cq−1)− I(p̂i0 < cq)] · [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)] .

(6.33)

Following eq. (6.33) and the definitions given in eq. (6.19), let us rewrite the second

term of eq. (6.28) in terms of sensitivity and specificity parameters as follows:∑
i0∈S0

∑
i1∈S1

wi0wi1I(p̂i0 = p̂i1)∑
i0∈S0

wj
∑

i1∈S1
wi1

=

∑
i0∈S0

∑
i1∈S1

wi0wi1

∑Q
q=1 [I(p̂i0 < cq−1)− I(p̂i0 < cq)] · [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)]∑

i0∈S0
wi0

∑
i1∈S1

wi1

=

Q∑
q=1

{∑
i0∈S0

wi1 [I(p̂i0 < cq−1)− I(p̂i0 < cq)]∑
i0∈S0

wi0

·
∑

i1∈S1
wi1 [I(p̂i1 ≥ cq)− I(p̂i1 ≥ cq−1)]∑

i1∈S1
wi1

}

=

Q∑
q=1

[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq)− Ŝew(cq−1)].

(6.34)
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Finally, eq. (6.28) can be rewritten as the sum of eqs. (6.31) and (6.34):

ÂUCw =

Q∑
q=1

Ŝpw(cq) · [Ŝew(cq)− Ŝew(cq−1)]

+
1

2

Q∑
q=1

[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq)− Ŝew(cq−1)]

=
1

2

Q∑
q=1

{
2Ŝpw(cq)[Ŝew(cq)− Ŝew(cq−1)]

+[Ŝpw(cq−1)− Ŝpw(cq)] · [Ŝew(cq)− Ŝew(cq−1)]
}

=
1

2

Q∑
q=1

[Ŝpw(cq−1) + Ŝpw(cq)] · [Ŝew(cq)− Ŝew(cq−1)]

=
1

2

Q∑
q=1

[Ŝpw(cq−1) · Ŝew(cq)− Ŝpw(cq) · Ŝew(cq−1)].

(6.35)

Note that eq. (6.26) and eq. (6.35) are equal, so we have shown that A = ÂUCw.

6.2.3 Estimation of the AUC with pairwise sampling weights

In Yao et al. (2015), the authors propose a weighted estimator for the AUC that

considers pairwise sampling weights instead of marginal sampling weights (which we

consider in our proposal as shown in eq. (6.27)). In order to better understand the

differences between both approaches, let us first define the pairwise sampling weights

wi∗i∗∗ ∀i∗, i∗∗ ∈ S. Let us remind that, as introduced in Section 6.1, ∀i∗, i∗∗ ∈ S, the

pairwise sampling weight wi∗i∗∗ is defined as the inverse joint inclusion probability,

i.e., wi∗i∗∗ = 1/πi∗i∗∗ where,

πi∗i∗∗ = P [(i∗ ∈ S) ∩ (i∗∗ ∈ S)] = P (i∗∗ ∈ S|i∗ ∈ S)P (i∗ ∈ S) = πi∗∗|i∗πi∗ . (6.36)

Taking this into account, in the following lines, we first define the pairwise sampling

weights for both sampling designs considered in this study: the one-stage stratified

sampling design and the two-stage stratified cluster sampling design. Then, we

introduce the proposal made by Yao et al. (2015) for the estimation of the AUC.
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Pairwise sampling weights in one-stage stratified sampling designs

Before defining the pairwise sampling weights for one-stage stratified sampling de-

signs, let us briefly recall the basis of this sampling process (more information is

given in Section 2.1.1). The finite population U is partitioned into H mutually ex-

cluding strata as explained in eq. (2.14), i.e., U =
⋃H

h=1 Uh. ∀h ∈ {1, . . . ,H}, out
of the Nh units in the population subset Uh, a total of nh are randomly selected

to be sampled and form the sample subset Sh corresponding to stratum h. Finally,

S =
⋃H

h=1 Sh.

In order to define the pairwise sampling weights in this context, let us consider

two sampled units i∗, i∗∗ ∈ S, each of them corresponding to a particular stratum

h∗, h∗∗ ∈ {1, . . . ,H}, i.e., i∗ ∈ Sh∗ and i∗∗ ∈ Sh∗∗ . To calculate the pairwise

sampling weight wi∗i∗∗ for these units, we first need to calculate their joint inclusion

probability πi∗i∗∗ which is the product between the inclusion probability πi∗ and the

conditional inclusion probability πi∗∗|i∗ , as previously defined in eq. (6.36).

The marginal inclusion probability πi∗ , ∀i∗ ∈ Sh∗ ⊂ Uh∗ is shown in eq. (6.37)

(defined in eq. (2.3)):

πi∗ =
nh
Nh

, ∀i∗ ∈ Sh∗ ⊂ Uh∗ . (6.37)

In contrast, in order to properly define the conditional probability πi∗∗|i∗ , two situ-

ations need to be distinguished:

(i) If both units i∗ ∈ Sh∗ and i∗∗ ∈ Sh∗∗ are from different strata (i.e., h∗ ̸= h∗∗),

then, πi∗∗|i∗ is equal to the marginal inclusion probability πi∗∗ as defined in eq.

(6.38):

πi∗∗|i∗ = πi∗∗ =
nh∗∗

Nh∗∗
. (6.38)

(ii) If both units i∗ ∈ Sh∗ and i∗∗ ∈ Sh∗∗ are from the same stratum (i.e., h∗ =

h∗∗), then, the conditional and marginal inclusion probabilities differ. The

conditional probability πi∗∗|i∗ is then defined as in eq. (6.39):

πi∗∗|i∗ =
nh∗ − 1

Nh∗ − 1
. (6.39)
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Then, the joint inclusion probability πi∗i∗∗ is defined in eq. (6.40):

πi∗i∗∗ = πi∗∗|i∗πi∗


nh∗∗

Nh∗∗
· nh

∗

Nh∗
, if h∗ ̸= h∗∗,

nh∗ − 1

Nh∗ − 1
· nh

∗

Nh∗
, if h∗ = h∗∗.

(6.40)

Finally, the pairwise sampling weights are defined as in eq. (6.41), ∀i∗ ∈ Sh∗ and

∀i∗∗ ∈ Sh∗∗ :

wi∗i∗∗ =
1

πi∗i∗∗
=


Nh∗

nh∗
· Nh∗∗

nh∗∗
= wi∗wi∗∗ , if h∗ ̸= h∗∗,

Nh∗

nh∗
· (Nh∗ − 1)

(nh∗ − 1)
, if h∗ = h∗∗.

(6.41)

Pairwise sampling weights in two-stage stratified cluster sampling designs

In order to define the pairwise sampling weights for two-stage stratified cluster sam-

ples, we first summarize this sampling process (defined in detail in Section 2.1.2).

In this case, the finite population U is partitioned into H strata, which at the same

time, are partitioned into Ah clusters, i.e., U =
⋃H

h=1

⋃Ah
α=1 Uh,α. In the first stage

of the sampling process, ah clusters are randomly selected out of the Ah clusters in

the population stratum Uh, ∀h ∈ {1, . . . ,H}. We denote as Ah the set of indexes of

the clusters selected from stratum h in the first stage of the sampling, as shown in

eq. (6.42) (defined in eq. (2.24)):

Ah = {α ∈ {1, . . . , Ah} : 1h(α) = 1} , ∀h ∈ {1, . . . ,H}, (6.42)

where, 1h(α) is the indicator function that takes the value 1 if Uh,α is selected

in the first stage and 0 otherwise. In the second stage of the sampling process,

∀h ∈ {1, . . . ,H} and ∀α̇ ∈ Ah, out of Nh,α̇ units in Uh,α̇, nh,α̇ are sampled and form

Sh,α̇. Finally, S =
⋃H

h=1

⋃
α̇∈Ah

Sh,α̇.

Let us consider two sampled units, i∗ ∈ Sh∗,α′ and i∗∗ ∈ Sh∗∗,α′′ , where h∗, h∗∗ ∈
{1, . . . ,H}, α′ ∈ Ah∗ and α′′ ∈ Ah∗∗ . In order to define the pairwise sampling weight

wi∗i∗∗ , let us first calculate the joint inclusion probability πi∗i∗∗ = πi∗∗|i∗πi∗ (see eq.

(6.36)). The marginal inclusion probability πi∗ is shown in eq. (6.43) (previously
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defined in eq. (2.20)):

πi∗ =
nh∗,α′

Nh∗,α′
· ah

∗

Ah∗
, ∀i∗ ∈ Sh∗,α′ ⊂ Uh∗,α′ . (6.43)

However, in order to properly define the conditional inclusion probability πi∗∗|i∗ in

this context, we need to distinguish three different situations:

(i) If both units, i∗ ∈ Sh∗,α′ and i∗∗ ∈ Sh∗∗,α′′ , are from different strata (i.e.,

h∗ ̸= h∗∗) the conditional inclusion probability is equal to the marginal one as

shown in eq. (6.44):

πi∗∗|i∗ = πi∗∗ =
nh∗∗,α′′

Nh∗∗,α′′
· ah

∗∗

Ah∗∗
. (6.44)

(ii) If the sampled units i∗ ∈ Sh∗,α′ and i∗∗ ∈ Sh∗∗,α′′ are from the same stratum

but different clusters, (i.e., h∗ = h∗∗ and α′ ̸= α′′) the conditional inclusion

probability can be defined as in eq. (6.45):

πi∗∗|i∗ =
nh∗,α′′

Nh∗,α′′
· ah

∗ − 1

Ah∗ − 1
. (6.45)

(iii) If the sampled units i∗ ∈ Sh∗,α′ and i∗∗ ∈ Sh∗∗,α′′ are sampled from the same

cluster (i.e., h∗ = h∗∗ and α′ = α′′), then, the expression for the conditional

probability is the one given in eq. (6.46):

πi∗∗|i∗ =
nh∗,α′′ − 1

Nh∗,α′′ − 1
· 1. (6.46)

Then the joint inclusion probability for any pair of units i∗ ∈ Sh∗,α′ and i∗∗ ∈ Sh∗∗,α′′ ,

is defined as in eq. (6.47):

πi∗i∗∗ =



(
ah∗

Ah∗
·
nh∗,α′

Nh∗,α′

)
·
(
ah∗∗

Ah∗∗
·
nh∗∗,α′′

Nh∗∗,α′′

)
, if h∗ ̸= h∗∗,

(
ah∗

Ah∗
·
nh∗,α′

Nh∗,α′

)
·
(
(ah∗ − 1)

(Ah∗ − 1)
·
nh∗,α′′

Nh∗,α′′

)
, if h∗ = h∗∗ but α′ ̸= α′′,

(
ah∗

Ah∗
·
nh∗,α′

Nh∗,α′

)
·
(nh∗,α′ − 1)

(Nh∗,α′ − 1)
, if h∗ = h∗∗ and α′ = α′′,

(6.47)

from which the definition of the pairwise sampling weights is defined in eq. (6.48),
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taking into account that wi∗i∗∗ = 1/πi∗i∗∗ :

wi∗i∗∗ =



(
Ah∗

ah∗
·
Nh∗,α′

nh∗,α′

)
·
(
Ah∗∗

ah∗∗
·
Nh∗∗,α′′

nh∗∗,α′′

)
= wi∗wi∗∗ , if h∗ ̸= h∗∗,

(
Ah∗

ah∗
·
Nh∗,α′

nh∗,α′

)
·
(
(Ah∗ − 1)

(ah∗ − 1)
·
Nh∗,α′′

nh∗,α′′

)
, if h∗ = h∗∗ but α′ ̸= α′′,

(
Ah∗

ah∗
·
Nh∗,α′

nh∗,α′

)
·
(Nh∗,α′ − 1)

(nh∗,α′ − 1)
, if h∗ = h∗∗ and α′ = α′′.

(6.48)

AUC estimator approach with pairwise sampling weights

The estimator proposed in Yao et al. (2015), is defined in eq. (6.49), i.e.,

ÂUCpairw =
1∑

i0∈S0
wi0 ·

∑
i1∈S1

wi1

∑
i0∈S0

∑
i1∈S1

wi0i1 [I(p̂i0 < p̂i1) + 0.5I(p̂i0 = p̂i1)] ,

(6.49)

where wi0i1 = 1/πi0i1 and πi0i1 indicates the joint inclusion probability for i0 ∈ S0

and i1 ∈ S1 for both of them being sampled, as defined in eq. (6.36). Given that

wi0i1 ̸= wi0wi1 (unless for a pair of units, being each of them in two different strata),

the proposal that considers the pairwise sampling weights (eq. (6.49)) and our

proposal that considers the marginal sampling weights (eq. (6.27)) differ.

AUC estimator in matrix form: pairwise or marginal weights?

Yao et al. (2015) state that their proposal, defined in eq. (6.49), can be summarized

in matrix form as follows for one-stage stratified sampling designs:

(p̂ppY=0
(H) )

T · Θ̂(H×H) · p̂ppY=1
(H) , (6.50)

where, p̂ppY=0
(H) and p̂ppY=1

(H) are two vectors of dimension H defined as in eq. (6.51),

respectively:

p̂ppY=0
(H) =

(
N̂0,1

N̂0

, . . . ,
N̂0,h

N̂0

, . . . ,
N̂0,H

N̂0

)T

,

p̂ppY=1
(H) =

(
N̂1,1

N̂1

, . . . ,
N̂1,h

N̂1

, . . . ,
N̂1,H

N̂1

)T

,

(6.51)
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being N̂0 = N̂Y=0 and N̂1 = N̂Y=1 the ones previously defined in eq. (3.4) and we

set again in eq. (6.52) (given that we consider only one response variable, Y , we

suppress it from the subindices for ease of notation), i.e.,

N̂0 =
∑
i∈S

wi · I(yi = 0) =
∑
i0∈S0

wi0 ,

N̂1 =
∑
i∈S

wi · I(yi = 1) =
∑
i1∈S1

wi1 ,
(6.52)

and ∀h ∈ {1, . . . ,H}, N̂0,h and N̂1,h are defined in eq. (6.53):

N̂0,h =
∑
i∈Sh

wi · I(yi = 0),

N̂1,h =
∑
i∈Sh

wi · I(yi = 1),
(6.53)

or equivalently, if we consider the sample subsets of units without and with the

event of interest (i.e., S0 and S1, respectively) and given that those subsets can

be separated into disjoint groups depending on the strata as S0 =
⋃H

h=1 S0,h and

S1 =
⋃H

h=1 S1,h, then note that eq. (6.53) can be rewritten as follows:

N̂0,h =
∑

i∈S0,h

wi0,h ,

N̂1,h =
∑

i∈S1,h

wi1,h .
(6.54)

In addition, if we take into account that ∀h ∈ {1, . . . ,H}, all the units in Sh have

the same sampling weight, which is defined as wi =
Nh

nh
, ∀i ∈ Sh, as explained in

(2.6), then let us rewrite eq. (6.54) as follows for convenience:

N̂0,h =
∑

i0,h∈S0,h

wi0,h = n0,h ·
Nh

nh
,

N̂1,h =
∑

i1,h∈S1,h

wi1,h = n1,h ·
Nh

nh
.

(6.55)
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where n0,h and n1,h indicate the size of S0,h and S1,h, ∀h ∈ {1, . . . ,H}, respectively.
Finally, Θ̂(H×H) is defined as in eq. (6.56):

Θ̂(H×H) =



θ̂(1, 1) · · · θ̂(1, h) · · · θ̂(1, H)
...

. . .
...

. . .
...

θ̂(h, 1) · · · θ̂(h, h) · · · θ̂(h,H)
...

. . .
...

. . .
...

θ̂(H, 1) · · · θ̂(H,h) · · · θ̂(H,H)


, (6.56)

where ∀ h∗, h∗∗ ∈ {1, . . . ,H}, θ̂(h∗, h∗∗) indicates the unweighted estimate of the

AUC considering all the possible pairs between the non-events in stratum h∗ and

the events in h∗∗, i.e.,

θ̂(h∗, h∗∗) =
1

n0,h∗ · n1,h∗∗

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

ψ(p̂i0,h∗ , p̂i1,h∗∗ ), (6.57)

where, ∀i0,h∗ ∈ S0,h∗ and ∀i1,h∗∗ ∈ S1,h∗∗ ,

ψ(p̂i0,h∗ , p̂i1,h∗∗ ) =
[
I(p̂i0,h∗ < p̂i1,h∗∗ ) + 0.5I(p̂i0,h∗ = p̂i1,h∗∗ )

]
, (6.58)

and n0,h∗ and n1,h∗∗ indicate the number of units in the subsets S0,h∗ and S1,h∗∗ ,

respectively. We use indicators i0,h∗ and i1,h∗∗ to easily differentiate between units

without and with the event of interest and the stratum they belong to.

However, it can be proven that eq. (6.50) is not equivalent to the ÂUCpairw

defined in eq. (6.49) (i.e., Yao’s proposal based on pairwise sampling weights).

For this purpose, we only need to develop the matrix calculations of eq. (6.50)

considering the definitions given in eqs. (6.51) and (6.57), i.e.,

(p̂ppY=0
(H) )

T · Θ̂(H×H) · p̂ppY=1
(H) =

H∑
h∗=1

H∑
h∗∗=1

N̂0,h∗

N̂0

· θ̂(h∗, h∗∗) ·
N̂1,h∗∗

N̂1

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

N̂0,h∗N̂1,h∗∗ θ̂(h∗, h∗∗)

(6.59)

Taking into account the equalities given in eq. (6.55) and the definition of θ̂(h∗, h∗∗)
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in eq. (6.57), we can continue as follows:

1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

N̂0,h∗N̂1,h∗∗ θ̂(h∗, h∗∗)

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

n0,h∗
Nh∗

nh∗
n1,h∗∗

Nh∗∗

nh∗∗
θ̂(h∗, h∗∗)

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

n0,h∗
Nh∗

nh∗
n1,h∗∗

Nh∗∗

nh∗∗
· {

1

n0,h∗ · n1,h∗∗

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

ψ(p̂i0,h∗ , p̂i1,h∗∗ ) }

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

Nh∗

nh∗
· Nh∗∗

nh∗∗

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

ψ(p̂i0,h∗ , p̂i1,h∗∗ )

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

Nh∗

nh∗
· Nh∗∗

nh∗∗
· ψ(p̂i0,h∗ , p̂i1,h∗∗ )

(6.60)

Given that ∀i ∈ Sh, wi =
Nh

nh
as defined in eq. (2.6), note that,

wi0,h∗ =
Nh∗

nh∗
, ∀i0,h∗ ∈ S0,h∗ ⊂ Sh∗ ,

wi1,h∗∗ =
Nh∗∗

nh∗∗
, ∀i1,h∗∗ ∈ S1,h∗∗ ⊂ Sh∗∗ .

(6.61)

Then, we have that:

1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

Nh∗

nh∗
· Nh∗∗

nh∗∗
· ψ(p̂i0,h∗ , p̂i1,h∗∗ )

=
1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

wi0,h∗wi1,h∗∗ ψ(p̂i0,h∗ , p̂i1,h∗∗ ).

(6.62)

In addition, taking into account that, as we consider all the strata, we can summarize

the four sum operators in two, considering in this way the whole subsamples of non-
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events (S0) and events (S1) instead of the disjoint subgroups separately for each

stratum, i.e.,

1

N̂0 · N̂1

H∑
h∗=1

H∑
h∗∗=1

∑
i0,h∗∈S0,h∗

∑
i1,h∗∗∈S1,h∗∗

wi0,h∗wi1,h∗∗ ψ(p̂i0,h∗ , p̂i1,h∗∗ )

=
1

N̂0 · N̂1

∑
i0∈S0

∑
i1∈S1

wi0wi1 ψ(p̂i0 , p̂i1).

(6.63)

Finally, regarding eq. (6.58) and rewriting N̂0 and N̂1 by considering eq. (6.52),

1

N̂0 · N̂1

∑
i0∈S0

∑
i1∈S1

wi0wi1 ψ(p̂i0 , p̂i1)

=
1∑

i0∈S0
wi0

∑
i1∈S1

wi1

∑
i0∈S0

∑
i1∈S1

wi0wi1 [I(p̂i0 < p̂i1) + 0.5I(p̂i0 = p̂i1)]

=

∑
i0∈S0

∑
i1∈S1

wi0wi1 [I(p̂i0 < p̂i1) + 0.5I(p̂i0 = p̂i1)]∑
i0∈S0

∑
i1∈S1

wi0wi1

= ÂUCw.

(6.64)

Therefore, beginning in eq. (6.59) and finishing in eq. (6.64), we have shown that,

(p̂ppY=0
(H) )

T · Θ̂(H×H) · p̂ppY=1
(H) = ÂUCw. (6.65)

All the definitions given above can also be extended to the two-stage stratified cluster

samples, and hence, the ÂUCw can also be summarized in matrix form when this

complex sampling design is considered.

6.3 Simulation study

The goal of this simulation study is to analyze the performance of the proposed es-

timators in comparison to the traditional unweighted estimators of the ROC curve

and AUC. In Section 6.3.1, we describe the data generation process and different

scenarios considered throughout the study. In Section 6.3.2, we describe the simu-

lation set-up. In Section 6.3.3, we summarize the main results. Finally, in Section

6.3.4, we extend the simulation study to analyze the performance of the proposed

estimators under uninformative sampling designs.
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6.3.1 Data generation and scenarios

The data simulation process described below is similar to the one described in Section

5.3.1. Let us define as N = 10 000 the finite population size. A set of p = 5

covariates (X1, . . . , X5) and two latent variables (Z1 and Z2, which are used to

define the response variable and the sampling design, but are not available in the

samples when fitting models) have been generated.

A total of three different scenarios have been defined based on different sampling

designs. On the one hand, a one-stage stratified sampling design was defined (let us

denote this scenario as SH, hereinafter), in which different strata are defined in the

finite population, and a number of individuals are sampled from each stratum. On

the other hand, we defined a two-stage stratified cluster sampling design (scenario

SC), in which different strata are defined in the finite population, a number of

clusters or groups of units are selected from each stratum, and finally, a number of

individuals are sampled from each selected cluster. In addition, in this scenario SC,

two situations have been distinguished: first, all the variables have been considered

as unit-level variables (we denote this scenario as SC.0, given that there are d = 0

cluster-level variables), and second, in the other scenario, one cluster-level variable

(d = 1) has been considered (scenario SC.1). Note that in scenario SH, all the

variables must be defined at unit-level (d = 0) since there is no cluster. We proceed

below to explain the data generation process for each of these scenarios:

1. For d = 0 (SH and SC.0) and d = 1 (SC.1), N realizations have been made

following the Gaussian distribution defined in eq. (6.66):

(Xd+1, . . . , X5, Z1, Z2) ∼ N(µµµ(p−d),Σ(p−d)×(p−d)), (6.66)

where µµµ(p−d) indicates the null vector of dimension 1×(p−d) and Σ(p−d)×(p−d)

a matrix of dimension (p− d)× (p− d) defined by values of 1 on the diagonal

and η = 0.15 off-diagonal, i.e.,

µµµ(p−d) = (0, . . . , 0)T and Σ(p−d)×(p−d) = (1−η)·I(p−d)×(p−d)+η·J(p−d)×(p−d),

(6.67)

being I(p−d)×(p−d) the identity matrix and J(p−d)×(p−d) the matrix of 1s.

2. Let us denote as {zzzi = (zi,1, zi,2)}Ni=1 the set of N realizations of Z1 and Z2.
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Data is sort based on zzziβββ
ZZZ , ∀i = 1, . . . , N , where:

βββZZZ = (βZ1
1 , βZ2

2 )T = (−3.5, −3.5)T . (6.68)

Strata are defined by partitioning the ordered population data set on sets of

the same size (H = 10 strata) in all the scenarios, being each stratum of

size Nh = 1000, ∀h = 1, . . . ,H. In addition, in scenarios SC.0 and SC.1, each

stratum has been partitioned into Ah = 10 clusters ∀h = 1, . . . ,H. In this way,

a total of A = 100 clusters of size Nh,α = 100 are generated, ∀h = 1, . . . ,H

and ∀α = 1, . . . Ah.

3. If d = 1, then X1 is a cluster-level variable (SC.1). We generate it by making

A =
∑H

h=1Ah realizations of X1 ∼ N(0, 1). Note that for two different units

in the same cluster, their corresponding cluster-level covariates should take

the same value, i.e., ∀i, j in the same cluster, xi,1 = xj,1. Therefore, we repeat

each realization Nh,α times, ∀α = 1, . . . , Ah, ∀h = 1, . . . ,H.

4. We now have defined the values corresponding to X1, . . . , X5 variables for all

the units in the finite population: {xxxi = (xi,1, . . . , xi,5)}Ni=1. Let us define βββXXX

as follows:

βββXXX = (βX1
1 , . . . , βX5

5 )T = (2.5, . . . , 2.5)T . (6.69)

Then, we generate the probabilities of event as follows:

p(xxxi, zzzi) =
eβ0+xxxiβββ

XXX+zzziβββ
ZZZ

1 + eβ0+xxxiβββXXX+zzziβββZZZ
, ∀i = 1, . . . , N, (6.70)

and the value for the response variable yi is randomly generated by following

Bernoulli(p(xxxi, zzzi)), i.e.,

yi ∼ Bernoulli(p(xxxi, zzzi)). (6.71)

We set β0 = −5, defining in this way a probability of event of around 25%.

The finite population U is defined as the set of values corresponding to the

response variable yi and the covariates xxxi, ∀i = 1, . . . , N (excluding the latent

variables zzzi), as well as strata and cluster indicators corresponding to each of

them.

5. Different sampling schemes have been considered in this simulation study. On
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the one hand, in the scenario in which a one-stage stratified sampling design

is defined (SH), the following number of units have been sampled from each

stratum (nh, ∀h = 1, . . . H):

SH (a) n1 = n10 = 150, n2 = n9 = 100, n3 = n8 = 50,

n4 = n7 = 40, n5 = n6 = 30,

SH (b) n1 = n10 = 30, n2 = n9 = 40, n3 = n8 = 50,

n4 = n7 = 100, n5 = n6 = 150.

On the other hand, in the scenarios in which a two-stage stratified cluster

sampling design is considered (SC.0 and SC.1), ah = 2, ∀h = 1, . . . ,H clusters

have been selected in the first stage. Then, a different number of units is

sampled from each selected cluster of each stratum (nh,α̇). In particular, ∀h ∈
{1, . . . ,H} and ∀α̇ ∈ Ah the following number of units have been sampled in

each scenario:

SC.0 (a), SC.1 (a) n1,α̇ = n10,α̇ = 75, n2,α̇ = n9,α̇ = 50, n3,α̇ = n8,α̇ = 25,

n4,α̇ = n7,α̇ = 20, n5,α̇ = n6,α̇ = 15,

SC.0 (b), SC.1 (b) n1,α̇ = n10,α̇ = 15, n2,α̇ = n9,α̇ = 20, n3,α̇ = n8,α̇ = 25,

n4,α̇ = n7,α̇ = 50, n5,α̇ = n6,α̇ = 75.

It should be noted that due to the way in which the sample design has been

defined, the probabilities of event given the covariates are roughly ordered from

highest to lowest in the different strata. Therefore, by sampling many units

from the strata at the edges, we are sampling more individuals with higher and

lower probabilities (scheme (a)). In contrast, when sampling more individuals

from the central strata, more individuals with medium probabilities of event

are sampled (scheme (b)). The two sampling schemes differ on this point.

6. Depending on the sampling design defined in each scenario, sampling weights

are calculated as follows. In scenarios designed based on one-stage stratified

sampling (SH), the sampling weights are calculated as defined in eq. (2.7),

i.e.,

wi =

H∑
h=1

1Sh
(i) · Nh

nh
, ∀i ∈ S. (6.72)
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Similarly, in the scenarios based on two-stage stratified cluster sampling (SC.0

and SC.1), the sampling weights are calculated as previously defined in eq.

(2.28):

wi =
H∑

h=1

∑
α̇∈Ah

Nh,α̇

nh,α̇
· Ah

ah
· 1Sh,α̇

(i), ∀i ∈ S. (6.73)

6.3.2 Set-up

Considering the scenarios described in Section 6.3.1, a finite population was simu-

lated in each scenario. The theoretical model is fitted to the finite population, and

the ROC curve (ROCpop) and AUC (AUCpop) of this model are calculated following

eqs. (6.10) and (6.12). Note that, as explained in Section 6.2.1, these parameters

measure the performance of the theoretical finite population model. Each popula-

tion is sampled R = 500 times, following in each case the corresponding complex

sampling design. In each of the samples, a weighted logistic regression model was

fitted and its ROC curve and AUC were estimated, ignoring the sampling weights

(unweighted method, R̂OC and ÂUC) and considering them (weighted method,

R̂OCw and ÂUCw). Note that in practice, we aim to analyze how those estimators

perform in order to estimate the fitted model’s ROC curve and AUC in the finite

population. Therefore, in order to analyze and compare the performance of both es-

timators, we compare each of the estimates to the true finite population ROC curve

and AUC estimates of the model fitted to the sample (R̂OCtrue and ÂUCtrue, which

are calculated by extending the fitted sample model to the finite population), rather

than to the theoretical population model parameters. These parameters indicate the

true performance of the fitted sample model in the finite population. This process

is described in detail below and summarized in Figure 6.4. For each scenario:

Step 1. Generate the finite population U following the process described in Section

6.3.1. In particular, note that two finite populations have been generated: one

for the scenarios SH and SC.0 (without cluster-level variables) and the other

for the scenario SC.1 (with a cluster-level variable).

Step 2. Obtain the finite population model coefficients βββpop and the corresponding

probabilities of event ppopi , ∀i ∈ U , following eqs. (6.8) and (6.9), respectively.

Step 3. Compute the ROC curve and AUC of the finite population model following

eqs. (6.10) (ROCpop) and (6.12) (AUCpop), respectively.

Step 4. For r = 1, . . . , R:
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Step 4.1 Obtain a sample Sr ⊂ U by means of one of the sampling designs de-

scribed in Section 6.3.1 and calculate the sampling weights wr
i ,∀i ∈ Sr

following the corresponding equation, eq. (6.72) or eq. (6.73).

Step 4.2 Fit the model to Sr maximizing the pseudo-likelihood function in eq.

(6.13) by means of the covariate values xxxi and the sampling weights

wr
i , ∀i ∈ Sr (note that the latent variable values zzzi are only consid-

ered to define the sampling design and are not considered in the model

estimation process). Obtain β̂ββ
r
and the estimated probabilities of event

p̂ri , ∀i ∈ Sr.

Step 4.3 Estimate the ROC curve (R̂OC
r

unw following eq. (6.6) and R̂OC
r

w fol-

lowing eq. (6.18)) and AUC (ÂUC
r

unw following eq. (6.7) and ÂUC
r

w

following eq. (6.27)), to obtain unweighted and weighted estimates, re-

spectively. In addition, we estimate the AUC by means of pairwise sam-

pling weights following the proposal of Yao et al. (2015) (ÂUC
r

pairw).

Step 4.4 By means of the β̂ββ
r
estimated in Step 4.2, estimate the probabilities of

event for all the units in the finite population, p̂ri , ∀i = 1, . . . , N . Estimate

the true ROC curve and AUC in the population following eqs. (6.15) and

(6.17): R̂OC
r

true and ÂUC
r

true.

Step 4.5 Calculate the difference between the unweighted or weighted estimates

and the true population AUC:

diff r
unw = ÂUC

r

unw−ÂUC
r

true, and diff r
w = ÂUC

r

w−ÂUC
r

true. (6.74)

In addition, in order to compare our proposal that considers marginal

sampling weights to the proposal considering pairwise sampling weights,

we define the difference between pairwise estimates to the true population

model and to our proposal as follows:

diff r
pairw = ÂUC

r

pairw − ÂUC
r

true, and wdiff r = ÂUC
r

pairw − ÂUC
r

w.

(6.75)

All computations were performed in (64 bit) R 4.2.2 (R Core Team 2022) and a

MacBook Pro equipped with 16GB of RAM, Apple M1 Chip, and macOS Monterey

12.2.1 operating system. Logistic regression models were fitted by means of survey

R package (Lumley (2010), Lumley (2020)).
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Figure 6.4: Graphical explanation of the simulation study set-up.

6.3.3 Results

In this section, we summarize the main results we obtained from the simulation

study. In Figure 6.5, the ROC curve of the finite population model (ROCpop), as

well as the true population ROC curves (R̂OC
r

true) and the weighted (R̂OC
r

w) and

unweighted (R̂OC
r

unw) estimates obtained based on the models fitted across R = 500

samples are shown. Figure 6.6 depicts the boxplots of the differences between the

unweighted (diff r
unw) and weighted (diff r

w) estimates and the true population AUC of

the models fitted to the samples (see eq. (6.74)). Figure 6.7 depicts the boxplots of

the differences between the AUC estimates obtained by means of the pairwise and

marginal sampling weights (wdiff r). Table 6.1 summarizes the numerical results.

Due to the large number of results we obtained, we begin by summarizing the main
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conclusions, and then we proceed to analyze the differences between the different

scenarios.

As shown in Figure 6.5, the ROC curve of the population model (ROCpop) is

above most of the true ROC (R̂OCtrue) curves of the models fitted to the samples

(i.e., estimated in the finite population based on the sample models). Similarly,

as can be observed in Table 6.1, the average true population AUCs are lower than

the AUCs of the population model. This indicates that population models have a

greater discrimination ability than the models fitted to the samples, which is not at

all surprising, given that the population model has been fitted with more data than

the sample model. Therefore, in order to make fairer comparisons and compare

the AUCs of the same models, we compare the ROC curve and AUC estimates

obtained with different methods, to the true population parameters rather than the

theoretical ones.

In general terms, the results of the simulation study show that, under the scenar-

ios that have been considered, the weighted estimates of the AUC are closer than the

unweighted ones to the true population AUC. The weighted estimates are slightly

optimistic on average, given that a bit greater AUCs than the true ones have been

estimated. In contrast, unweighted estimates sometimes overestimate the true finite

population AUC, and other times underestimate it, depending on the scenario (in

any case, showing a greater absolute bias than the weighted estimates). In terms

of variability, no major differences have been observed between the two estimators,

and, depending on the scenario, one estimator or the other shows more variability.

The marginal and pairwise weighted estimators perform quite similarly in all the

scenarios, both in terms of bias as well as variability. However, it should be noted

that as shown in Figure 6.7, the estimates based on pairwise sampling weights are

slightly greater than the ones obtained based on marginal sampling weights. Thus,

the estimates based on pairwise weights overestimate the true population AUC a

little more than the estimates based on marginal weights, even though those differ-

ences are minimal in terms of bias. In contrast, computation times are considerably

improved with the estimator proposed in this work (up to five times more efficient,

as can be seen in Table 6.1), given that the pairwise sampling weights need to be

calculated for each particular sampled pair, in contrast to the marginal ones, which

are easily available in most cases when working with this kind of data.

We now proceed to comment on the results in more detail. First of all, it is im-

portant to understand the differences between the different scenarios. As explained

above, the scenarios SH, SC.0 and SC.1 differ in the sampling design based on which
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the finite population has been sampled and the number of cluster-level covariates

available. In contrast, the sampling schemes (a) and (b) differ in the number of units

sampled from each stratum and, more specifically, in the number of units sampled

with (a) higher and lower (extreme) predicted probabilities or (b) central predicted

probabilities. See Figures 6.8 (scheme (a)) and 6.9 (scheme (b)) for a clearer expla-

nation of this point. These figures depict for each stratum the probabilities of event

for all the sampled units in the iteration r = 250 in scenario SH obtained based

on the fitted model, separately for units without (i.e., p̂i0 , ∀i0 ∈ S0) and with (i.e.,

p̂i1 , ∀i1 ∈ S1) the event of interest. Note that the predicted probabilities for both,

units without and with the event of interest, decrease across different strata. In sam-

pling scheme (a), more units are sampled from the strata located at the edges (see

Figure 6.8) in comparison to sampling scheme (b), in which more units are sampled

from central strata (see Figure 6.9). Therefore, note that in scheme (a) more com-

parisons are made between non-events from h = 1 and events from h = 10 than the

ones would be made if the sample were obtained totally at random (i.e., by simple

random sampling). Hence, note that more non-event and event pairs whose proba-

bilities of event are “wrongly ordered” (i.e., p̂i0 > p̂i1 , where i0 ∈ S0, and i1 ∈ S1)

are sampled in proportion, which decreases the estimate of the AUC for the un-

weighted method. This is the reason why the unweighted estimates of the AUC

in scenarios with sampling scheme (a) underestimate the true AUC. In contrast, in

sampling scheme (b), just the opposite situation occurs, given that fewer “wrongly

ordered” pairs than the ones in the population have been sampled in proportion,

which leads to an increment in the unweighted estimate of the AUC overestimating

the true AUC. For the weighted estimates, no great differences have been observed in

terms of difference in comparison to the true population AUC, neither in sampling

scheme (a) nor in (b), given that the sampling weights correct the imbalances of

sampling schemes giving to the pairs of units the relevance they should have in the

finite population. For example, as can be observed in Table 6.1, in Scenario SC.0

(a) the average difference between the unweighted estimates and the true population

AUC is -0.081, while in Scenario SC.0 (b) the average difference is 0.073. For the

weighted estimates, under the same scenarios, the average differences are 0.005 and

0.008, respectively. These differences can also be observed in Figure 6.5, where the

unweighted ROC curves are under the true population ROC curves in scenarios (a)

while in scenarios (b) the unweighted ROC curves are over the true ones, as well

as, over the weighted ones, indicating that the unweighted estimates overestimate

more than the weighted ones in these scenarios. However, in terms of variability,
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the performance of the unweighted and weighted estimates differ under sampling

schemes (a) and (b). In scenarios considering sampling scheme (a) the variability

of the unweighted estimates is greater than the variability of the weighted ones,

while in scenarios considering sampling scheme (b) the difference is reversed. As

shown in Table 6.1, in Scenario SH (a) the standard deviation of the unweighted es-

timates is 0.018, slightly greater than the variability of the weighted estimates which

is 0.014. In contrast, in Scenarios SH (b) the standard deviation of the unweighted

and weighted estimates are 0.012 and 0.020, respectively. In addition, the variability

of the unweighted estimates is greater in (a) than in (b) (for the weighted estimates

this difference is not as remarkable as for the unweighted estimates). For example,

in SC.0 (a) the standard deviation of the unweighted estimates (0.035) is 2.5 times

greater than the standard deviation in SC.0 (b) (0.014).

Results also show that the performance of the two estimators differs depending

on the sampling design. In particular, a greater optimism of the weighted estimates

has been observed in scenarios with cluster-level variables SC.1 than in scenarios

SC.0 and SH. For example, in scenario SC.1 (a) the average difference between the

weighted estimates and the true population has been 0.023 while in scenario SH (a)

the average difference has been 0.005. This effect can also be observed in Figure 6.6.

The ROC curves depicted in Figure 6.5 also show that in Scenarios SC.1 (a) and SC.1

(b) most of the weighted ROC curves are above the true population curves, while

in the rest of the scenarios, the true population ROC curves are more or less in the

center of the weighted ROC curves’ band. This effect has not been observed for the

unweighted estimates. In contrast, the sampling design has affected the variability

of both, unweighted and weighted estimates. Specifically, the standard deviation of

the estimates in scenario SH is lower than that in scenario SC.0 which, in turn, is

lower than the standard deviation in scenario SC.1 (see Table 6.1 for more details).

It should also be noted that the standard deviation of the true population AUCs

across R = 500 samples is greater in scenarios SC.1 than in the rest of the scenarios

(Table 6.1). This can also be observed in Figure 6.5, where the true population ROC

curves show the greatest variability in scenarios SC.1.
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Figure 6.8: Probabilities of event for the sampled units obtained based on the fitted
model in scenario SH (a) for the sample r = 250.
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Figure 6.9: Probabilities of event for the sampled units obtained based on the fitted
model in scenario SH (b) for the sample r = 250.
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6.3.4 What if the design is uninformative to fit a particular model?

In previous chapters (particularly, in Chapter 4), we have discussed that if a “per-

fect” model is fitted, in the sense that it contains all the information of the sampling

design as covariates in the model, previous works show that, then sampling weights

are not needed to fit that model (see, e.g., Scott and Wild (1986) and Pfeffermann

(1993)). In the simulation study depicted in Section 6.3.2, we avoid fitting “perfect”

logistic regression models in order to simulate more realistic scenarios. However,

we also find it interesting to give an answer to the following question: if we fit a

“perfect” logistic regression model, can sampling weights also be ignored when es-

timating the ROC curve and AUC of that model? Or, in contrast, do they play

an important role in the estimation process of those parameters even though they

are not necessary to fit the model? The goal of this section is to shed light on this

question.

With this goal in mind, we modify one of the scenarios considered in the above-

mentioned study. In particular, we focus on the one-stage stratification (SH) in

order to fit perfect prediction models in which the design variables Z1 and Z2 are also

considered as covariates when fitting the models. First, we slightly modify the data

generation process described in Section 6.3.1. Specifically, we define p = 3 covariates

(X1, X2, X3) and two design-variables (Z1, Z2), being all of them unit-level variables

(i.e., d = 0 cluster-level variables). We increase the correlation between covariates

by setting η = 0.25 in eq. (6.67) and we modify the coefficient values as indicated

in eq. (6.76):

β0 = −1.5,

βββXXX = (0.5, 0.5, 0.5)T ,

βββZZZ = (−1,−1)T .

(6.76)

Finally, in the simulation set-up defined in Section 6.3.2, in Step 4.2 in addition to

the covariates values xxxi, we also consider the variable values zzzi,∀i ∈ Sr when fitting

the models. We keep the rest of the data generation and the simulation set-up steps

as described in Sections 6.3.1 and 6.3.2 (including the number of units sampled from

each stratum, denoted as sampling schemes SH (a) and SH (b)).

Coefficient estimates are obtained by maximizing the pseudo-likelihood function

defined in eq. (6.13). We have checked that the unweighted and weighted model

coefficients (estimated by maximizing the likelihood (eq. (6.4)) and the pseudo-

likelihood (eq. (6.13)) functions, respectively) are indeed quite similar, indicating
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that sampling weights are not needed when fitting the models (even though we did

not find it necessary to mention in the previous section, we take this opportunity

to clarify that in the previous simulation study, in which design-variables are not

considered as model covariates, unweighted and weighted model estimates clearly

differ).

Results of the small simulation study described above are depicted in Figures

6.10, 6.11 and 6.12. These figures show that the sampling weights, although un-

necessary when fitting the models, may be crucial when estimating the ROC curve

and AUC of those models. The results are similar to the ones shown and discussed

in Section 6.3.3. Briefly, as shown in Figures 6.11 and 6.11, unweighted estimates

sometimes overestimate and otherwise underestimate the true ROC curve and AUC

of the fitted models, and for obtaining better estimates, sampling weights should be

considered. It should be noted that the differences between sampling schemes SH

(a) and SH (b) are reversed to the ones discussed in Section 6.3.3. However, note

that this effect is not surprising given that when changing the theoretical model

coefficients to the ones in eq. (6.76), then the probabilities of event of the units

in the finite population are also different to the ones shown in Figures 6.8 and 6.9.

Anyway, the differences in the behavior of unweighted and weighted estimates can

be explained in a similar way. In addition, as can be observed in Figure 6.12, dif-

ferences between the weighted estimates based on marginal and pairwise sampling

weights are similar to the ones depicted in Figure 6.7.
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Figure 6.11: Boxplots of the difference (see eq. (6.74)) between the estimated AUCs
by means of the unweighted (unw, eq. (6.7)) and weighted (w, eq. (6.27)) estimators
and the true population AUC of the models fitted across r = 1, . . . , 500 samples
considering “perfect” models.
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Figure 6.12: Boxplots of the differences between the estimated AUCs by means of
the AUC estimator based on pairwise sampling weights and the one that considers
marginal sampling weights (wdiff, see eq. (6.75)), when estimating the AUC of the
models fitted across r = 1, . . . , 500 samples considering “perfect” models.
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6.4 Application to ESIE survey data

The methodology proposed in Section 6.2 has been applied to the ESIE survey, which

was described in detail in Chapter 3. All the establishments in BC were considered

for this application (i.e., the whole sample with n = 7725 was used) and the AUC

of the model fitted in Chapter 4 was estimated. Covariates included in the model

represent the activity of the company, the number of employees, and the ownership.

The unweighted and weighted AUC estimates and the corresponding Bootstrap

95% confidence-intervals (CI) are shown in Table 6.3. For the 95% CI of the un-

weighted estimate, the Bootstrap confidence interval is calculated by means of the

pROC R package (Robin et al. 2011), while the 95% CI of the weighted estimate is

calculated by generating Bootstrap resamples based on replicate weights (Rao and

Wu 1988) using the survey R package (Lumley 2020), both of them considering

B = 2000 Bootstrap resamples. The unweighted and weighted ROC curve estimates

are depicted in Figure 6.13. Note that in this case, as we are working with real

survey data, we cannot know which the true population ROC curve and AUC are.

Even though the differences between the unweighted and weighted estimates are

not as large as the ones analyzed in the simulation study, the unweighted estimate

is larger than the weighted estimate, as it happens in sampling scheme (b) of the

simulation study. Considering the results of the simulation study, we can assume that

the weighted estimate will be a bit above the true population AUC, and therefore, we

can conclude that probably the unweighted estimate of the AUC is overestimating

it. In addition, note that the overlap between the two confidence intervals is very

slight.

Table 6.3: Estimated unweighted and weighted AUCs and the corresponding Boot-
strap 95% CI of the model fitted to ESIE survey data.

Estimated AUC 95% CI (Bootstrap)

Unweighted 0.831 0.823− 0.840

Weighted 0.809 0.795− 0.823
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Figure 6.13: Weighted and unweighted ROC curves of the models fitted to the ESIE
survey data.

6.5 Discussion

In this work, we propose new weighted estimators to estimate the ROC curve and

AUC of logistic regression models fitted to complex survey data. In addition, we

show that the area under the proposed weighted estimator of the ROC curve is

equivalent to the weighted Mann-Whitney U-statistic incorporating marginal sam-

pling weights, which are defined as the inverse probability weights for each sampled

unit. A simulation study has been conducted in order to analyze the performance

of the proposed estimators and they have also been applied to real survey data.

The results of the simulation study suggest the use of the proposed weighted

estimators rather than the unweighted ones. In addition, the results of this study
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also show that even when sampling weights are not needed for estimating logistic

regression models, they may be important when estimating the ROC curve and AUC

of those models.

The unweighted estimators overestimate or underestimate the true population

parameters, depending on the proportion of units sampled from each stratum. In

particular, as more units with extreme (higher and lower) predicted probabilities

are sampled in proportion, more non-events with higher predicted probabilities as

well as events with lower predicted probabilities are also sampled. This results in

a lower estimate of the AUC. In contrast, as more central predicted probabilities

are sampled, less extreme (higher and lower) predicted probabilities than necessary

to properly represent the finite population will be sampled, leading to a greater

estimate of the AUC due to the same reason. Weighted estimates correct for this

bias, providing ROC curve and AUC estimates that are closer to the true finite

population parameters since the presence of sampling weights gives each pair of

individuals with and without the event of interest the relevance that they should

have in representing the finite population.

The ROC curve and AUC estimated by means of the proposed estimators slightly

overestimate the true population parameters. Moreover, we have also observed that

the optimism is higher when a variable at the cluster level is included in the model,

increasing in this way, the cluster effect. We decided to compare weighted and

unweighted estimates to the true finite population parameters of the sample model

rather than to the theoretical parameters of the population model. At this point, it

should be noted that the bias we just mentioned would be lower if the comparisons

were made considering the parameters of the population model. However, we believe

that comparing the estimates to the population parameters of the sample model

is fairer (due to the reasons given throughout the chapter) and we consider it is

important to mention the optimism of the weighted estimates.

In any case, we believe that the optimism observed in the weighted estimates is

not due to a bias of the estimator itself, but rather to the fact that the same data set

is being used both to estimate the model and to estimate its discrimination ability. In

other words, when working with a simple random sample, it is well known that if the

same data is used to fit the model as well as to evaluate its predictive performance,

this estimate is usually optimistic given that the fitted models are optimal for data

that have been considered for that purpose. This effect is known as “overfitting”

(see, e.g., Copas (2002), Steyerberg (2008)). Several validation techniques such as

Bootstrap and K-fold cross-validation are proposed to correct for the optimism of
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the AUC estimates when working with simple random samples (see, e.g., Airola

et al. (2011), Austin and Steyerberg (2017), Copas (2002), Iparragirre et al. (2019),

Steyerberg et al. (2001)). We believe it would be interesting to understand how

the optimism of the weighted estimates varies in different scenarios, as well as, to

analyze the performance of different replicate weights methods to correct for the

optimism of the proposed estimators in the context of complex survey data. This

study will be conducted as further work.

In this work, we propose the use of marginal sampling weights rather than pair-

wise sampling weights as proposed by Yao et al. (2015) to estimate the AUC (in

order to avoid confusion with the title of the paper, it should be noted that even

though the authors mention the ROC curve in the main title, they make a proposal

for estimating the AUC but not the ROC curve). The results suggest that the dif-

ferences between the two weighted estimators are small, at least under the scenarios

that have been considered, but the estimates obtained based on pairwise sampling

weights are slightly more optimistic than the ones obtained based on marginal sam-

pling weights. Furthermore, it is worth noting that another disadvantage is that

the AUC estimates obtained considering the pairwise sampling weights may result

in AUCs greater than 1, given the way in which the estimator is defined (see eq.

(6.49)). In addition, computation times are considerably improved with the esti-

mator proposed in this work. As further work, it would be interesting to analyze

and compare the mathematical properties of both estimators, which consider the

marginal and pairwise sampling weights. In addition, in this chapter, we show that

the matrix form expression proposed by Yao et al. (2015) to summarize their esti-

mator is not equal to their proposal but to ours, which considers marginal sampling

weights. This issue has caused us many troubles in carrying out this work, specifi-

cally when comparing both proposals and analyzing the differences between them,

and therefore, we have considered it convenient to mention it.

Another interesting issue that is not handled in this chapter is the variance

of the proposed ROC curve and AUC estimators. Estimation of the variance for

those estimators would allow us to define confidence intervals for estimates of the

ROC curve and AUC in the context of complex survey data. Yao et al. (2015)

proposed the Jackknife and Balanced Repeated Replication methods (Wolter 2007)

to estimate the variance of their AUC estimator. Those methods could also be

applied to estimate the variance of the AUC estimator we propose in this work. In

addition, we believe that the Rescaling Bootstrap (Rao and Wu 1988), which is a

modification of the traditional Bootstrap (Efron and Tibshirani 1994) and which has



162 Chapter 6.

been defined in Chapter 5, could also be an interesting technique for this purpose,

given the popularity of the Bootstrap for variance estimation in simple random

samples (we have implemented this method to calculate the confidence interval of

the weighted AUC estimate in the application). However, in addition to checking

the validity of these methods for variance estimation, it could also be interesting to

obtain analytical expressions for the variance of the proposed AUC as well as ROC

curve estimators. Comparison of the performance of different validation techniques

to estimate the variance of the proposed estimators by means of a simulation study,

as well as the analytical expression for the variance of those parameters, will be

developed as future work.

Note that in this study, we work with probability samples and we assume 100%

of response rate. Neither other types of sampling, such as sampling probability

proportional to sample size nor post-stratification or calibration of the weights have

been considered, so the conclusions obtained are limited to the scenarios that have

been analyzed.

To sum up, in order to obtain unbiased estimates, we recommend the use of the

estimators proposed in this work to estimate the ROC curve and AUC of logistic

regression models when working with complex survey data. An R package (wROC)

has been developed and is available on GitHub and explained in detail in Chapter 8

to plot ROC curves and estimate the AUC to complex survey data by means of the

proposed methods.

https://github.com/aiparragirre/wROC


CHAPTER7
Estimation of optimal cut-off points for

individual classification

The paper related to the work presented in this chapter has been published:

Iparragirre, A., Barrio, I., Aramendi, J. & Arostegui, I. (2022) Esti-

mation of cut-off points under complex-sampling design data. SORT-

Statistics and Operations Research Transactions, 46(1), 137–158.

This chapter mostly replicates the above-mentioned article. However, some changes

have been made to keep the notation and ensure cohesion with the rest of the doc-

ument. In addition, Section 7.3.3 incorporates new contents that were not included

in the above-mentioned paper.

The methods proposed in this chapter have been incorporated into the R package

wROC, which is available on GitHub10.

10https://github.com/aiparragirre/wROC
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Summary

In the context of logistic regression models, a cut-off point is usually selected to

dichotomize the predicted probabilities of event estimated based on the model. The

techniques proposed to estimate optimal cut-off points in the literature are commonly

developed to be applied in simple random samples, and their applicability to complex

sampling designs could be limited. Therefore, in this work, we propose a methodol-

ogy to incorporate sampling weights in the estimation process of the optimal cut-off

points, and we evaluate its performance by means of a simulation study based on real

survey data. The results suggest the convenience of considering sampling weights for

estimating optimal cut-off points in the context of complex survey data.

7.1 Introduction

In this chapter, we focus on the logistic regression framework to predict a dichoto-

mous response variable Y . As discussed in previous chapters, from a practical point

of view, one of the most important characteristics of these kinds of models is the sup-

port they provide for decision-making, since increasing knowledge about potential

predictors helps the decision-making process (Baker and Gerdin 2017, Steyerberg

2008). In this context, decisions such as whether or not to recommend a patient

to start treatment, or to give a diagnosis about a disease, are based on the indi-

vidual risk or probability of event given by the estimates of the logistic regression

model. In order to make these decisions, first, for each individual, the predicted

probability of event is classified based on a cut-off point. In this way, for example,

if the individual’s probability of suffering from extreme poverty is greater than the

selected cut-off point, he or she is assigned a social benefit, while in contrast, if

that is lower, no social support is provided (Pauker and Kassirer 1980, Steyerberg

2008). Hence, cut-off point estimation is widely employed in practice in the field of

prediction models, especially but not exclusively, in clinical prediction models (Chen

et al. 2015, Spence et al. 2018, Steyerberg et al. 1999).

At this point, the main issue is usually to select a valid cut-off point that will

provide the best classification of individuals in practice. Many strategies have been

proposed in the literature in order to estimate optimal cut-off points. It should

be noted that we can not talk about optimal cut-off points in general terms. In



7.1. Introduction 165

contrast, a cut-off point will or will not be optimal depending on the objective of a

particular study. Therefore, when we talk about selecting an optimal cut-off point,

we are talking about selecting the one that satisfies a certain optimality criterion.

Hence, as we have mentioned above, different techniques have been proposed to

select optimal cut-off points, given a particular criterion. For instance, some of those

methods select the optimal cut-off point with the aim of obtaining a certain value of

sensitivity or specificity (i.e., probability of classifying correctly an individual with

or without the event of interest) or maximizing a function of these two parameters

as for example the Youden index (Youden 1950). Some others select the cut-off

point that maximizes some particular indexes, such as Kappa (Cohen 1960, Greiner

et al. 2000). Greiner (1995; 1996) proposed a method to select the optimal cut-off

point that minimizes the error or either maximizes the accuracy of the classification

rule. There are some other methods that select optimal cut-off points based on some

other criteria related to several parameters such as predicted values (i.e., probability

of event/non-event for an individual classified as event/non-event) (Vermont et al.

1991) or the probability of event in the population (Manel et al. 2001), among others.

Besides, other methods are based on the analysis of the cost of incorrect and the

benefit of correct diagnosis (Pauker and Kassirer 1980, Swets 1992, Wynants et al.

2019). An extensive review of those techniques can be found in López-Ratón et al.

(2014).

However, those techniques have usually been designed and applied for simple

random samples and, as far as we know, there is a lack of proposals to consider

complex sampling designs, and in particular sampling weights, throughout the es-

timation process of optimal cut-off points. Following the same direction as in the

previous chapters of this dissertation, we believe that sampling weights should not

be ignored when estimating optimal cut-off points when working with complex sur-

vey data. Therefore, in this chapter, we propose a modification of the methods that

have been proposed in the literature to select optimal cut-off points of the proba-

bility of event in the logistic regression framework, considering sampling weights in

the estimation process. In addition, the performance of the proposed methods is

compared to the performance of those which ignore the sampling weights, by means

of a simulation study. In particular, we focus on surveys that are based on one-stage

stratified sample designs.

The rest of the chapter is organized as follows. In Section 7.2, we recall some basic

notation that will be used throughout the rest of the chapter. Then, we describe

some of the methods that are usually applied in practice to estimate optimal cut-off
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points of the probability of event in the logistic regression framework, and finally, we

propose a new methodology that takes into account the effect of the sampling weights

in the cut-off point estimation process. In Section 7.3, we describe the simulation

process that has been carried out so as to study the performance and effectiveness of

the proposed methods to incorporate sampling weights into the estimation process of

optimal cut-off points and we show the results we have obtained. The methodology

proposed in this work has been applied to ESIE survey data and this application is

described in Section 7.4. Finally, we conclude with a discussion in Section 7.5.

7.2 Methods

In this section, we begin by describing some of the methods that are usually applied

for estimating optimal cut-off points in the context of diagnostic tests in general

and logistic regression models in particular, based on different optimality criteria

for simple random samples. Next, we develop a new estimation method, in which

we propose introducing the sampling weights in these existing methods for simple

random samples so that they are valid in samples derived from complex sampling

designs.

Let {(yi,xxxi, wi)}i∈S indicate the set of observations of the response variable Y ,

predictor variables (1, X1, . . . , Xp) and sampling weights for the individuals in sample

S. For each sampled unit i ∈ S, its probability of event is described as p(xxxi) =

P (Y = 1|XXX = xxxi), which can be estimated as follows (previously defined in eq.

(6.14)):

p̂i = p̂(xxxi) =
exxxiβ̂ββ

1 + exxxiβ̂ββ
∀i ∈ S, (7.1)

where the estimated regression coefficients β̂ββ = (β̂0, . . . , β̂p)
T , are obtained by maxi-

mizing the pseudo-likelihood function in eq. (7.2) in the complex survey data frame-

work (defined in eq. (2.58)):

PL(βββ) =
∏
i∈S

p(xxxi)
yiwi(1− p(xxxi))

(1−yi)wi . (7.2)

7.2.1 Optimal cut-off point estimation methods

As introduced above, it is usually very useful in practice to select a cut-off point in

order to distinguish between units with and without the event of interest. In our

particular case, we are interested in discriminating between units with and without
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the event of interest based on their estimated probability of event. In this context,

one observation i ∈ S is usually classified as event if its estimated probability of event

p̂i exceeds a previously selected cut-off point c (Magder 2003, Pepe 2003). However,

it should be noted that this classification may be correct or incorrect depending

on the selected cut-off point c. The correct classification of an observation with the

event of interest is usually denoted as true positive, while the correct classification of

an observation without the event of interest is commonly denoted as true negative.

But usually, those classifications are not entirely accurate. Therefore, some of the

observations are commonly classified incorrectly: an observation with the event of

interest may be classified as non-event (false negative) or an observation without

the event of interest may be classified as event (false positive).

Therefore, different methods of estimation of the optimal cut-off point have been

developed in the literature, with the aim of optimizing diverse measures. In par-

ticular, many methods consist on the optimization of an objective function of the

Receiver Operating Characteristic (ROC) curve, which as described in Chapter 6,

is a curve that measures the global accuracy of a logistic regression model (Bamber

1975, Pepe 2003). Let us recall that, as described in eq. (6.6), the ROC curve of

a logistic regression model can be defined as follows (Hosmer and Lemeshow 2000,

Pepe 2003):

ROC(·) = {(1− Sp(c), Se(c)) , c ∈ (−∞,∞)} , (7.3)

where specificity (Sp(c)) and sensitivity (Se(c)) parameters are defined as the prob-

abilities of properly classifying units without and with the event of interest, re-

spectively, as shown in eq. (7.4) (note that these parameters have previously been

defined in eq. (6.2)):

Sp(c) = P [p(xxxi) < c|Y = 0] and Se(c) = P [p(xxxi) ≥ c|Y = 1] , (7.4)

As previously stated in eq. (6.5), specificity and sensitivity parameters are estimated

as follows in the simple random sample context:

Ŝp(c) =
1

n0

∑
i0∈S0

I(p̂i0 < c) and Ŝe(c) =
1

n1

∑
i1∈S1

I(p̂i1 ≥ c), (7.5)

where S0 and S1 indicate the subsets of units without and with the event of interest,

respectively. In other words, specificity and sensitivity parameters are estimated as

the proportions of correctly classified sampled units without and with the event of
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interest, respectively, based on a particular cut-off point c.

In this study, we have focused on some of the optimal cut-off point estimation

methods based on several optimality criteria related to sensitivity and specificity

parameters. In particular, in this work, we consider the four following methods:

• Youden (Greiner et al. 2000, Youden 1950): This method selects the cut-off

point (cYouden) that maximizes the Youden Index, which is defined as the sum

of sensitivity and specificity parameters minus one, i.e.,

cYouden = argmax
c

{
Ŝe(c) + Ŝp(c)− 1

}
. (7.6)

• MaxProdSpSe (Lewis et al. 2008): This method selects the cut-off point c that

maximizes the product between sensitivity and specificity parameters, i.e.,

cMaxProdSpSe = argmax
c

{
Ŝe(c) · Ŝp(c)

}
. (7.7)

• ROC01 (Metz 1978, Vermont et al. 1991): This method selects the cut-off

point c that minimizes the distance between the ROC curve and the point

(0,1), i.e.,

cROC01 = argmin
c

{
(Ŝe(c)− 1)2 + (Ŝp(c)− 1)2

}
. (7.8)

• MaxEfficiency (Greiner 1995; 1996): This method selects the cut-off point c

that maximizes the efficiency or, in other words, minimizes the error, i.e.,

cMaxEfficiency = argmax
c

{
p̂Y Ŝe(c) + (1− p̂Y )Ŝp(c)

}
, (7.9)

where p̂Y is the population probability of event estimated based on the sample

and is calculated as follows:

p̂Y =
1

n

∑
i∈S

I(yi = 1). (7.10)

7.2.2 Cut-off point estimation proposal with sampling weights

Although sensitivity and specificity parameters, as well as the population probability

of event, can be estimated by expressions in eqs. (7.5) and (7.10) in any kind of

data (including complex survey data), these expressions have been defined in a

simple random sampling scenario, and we believe that the estimates obtained by
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means of the above-mentioned formulas may be misleading for complex survey data

and they should be pondered so that they incorporate the sampling weights in order

to select more appropriate cut-off points. In this way, instead of the proportions

of correct or incorrect classifications in sample S, they should be considered the

proportions that these correctly or incorrectly classified observations represent in

the finite population. For this reason, we propose to consider the sampling weights

wi to estimate sensitivity (Ŝew(c)) and specificity (Ŝpw(c)) parameters as previously

defined in eq. (6.19), i.e.,

Ŝpw(c) =

∑
i0∈S0

wi0 · I(p̂i0 < c)∑
i0∈S0

wi0

and Ŝew(c) =

∑
i1∈S1

wi1 · I(p̂i1 ≥ c)∑
i1∈S1

wi1

. (7.11)

In addition, note that sampling weights should also be considered to estimate

the probability of event in the population (p̂Y,w), as previously defined in eq. (3.1),

i.e.,

p̂Y,w =

∑
i∈S wi · I(yi = 1)∑

i∈S wi
. (7.12)

Therefore, we propose to estimate the optimal cut-off points based on the modified

parameters of sensitivity (Ŝew(c)), specificity (Ŝpw(c)), and probability of event

(p̂Y,w) when working with complex survey data, i.e.:

cYoudenw = argmax
c

{
Ŝew(c) + Ŝpw(c)− 1

}
, (7.13)

cMaxProdSpSe
w = argmax

c

{
Ŝew(c) · Ŝpw(c)

}
, (7.14)

cROC01
w = argmin

c

{
(Ŝew(c)− 1)2 + (Ŝpw(c)− 1)2

}
, (7.15)

cMaxEfficiency
w = argmax

c

{
p̂Y,wŜew(c) + (1− p̂Y,w)Ŝpw(c)

}
. (7.16)

7.3 Simulation study

This section describes the simulation process developed in the work presented in

this chapter and the scenarios that have been drawn. The results obtained in this

simulation study are also presented in this section.

As stated above, the aim of the work presented in this chapter of the dissertation

is to study the influence of sampling weights in the estimation process of optimal
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cut-off points for the methods described in Section 7.2. Since the decision of which

optimal cut-off point estimation method to use in practice depends on the research

of interest, the objective of this work is not to compare the behavior of the methods

among them, but to compare the estimates that we obtain for each of these methods

when sampling weights are considered (Section 7.2.2) or not (Section 7.2.1) in the

estimation of sensitivity and specificity parameters.

In addition, we study the impact that the proposed estimators have in the esti-

mation of the probability of event in the finite population. Therefore, a theoretical

finite population is required, in which the response variable is known for all the units

in the finite population. Thus, a simulation study was carried out based on ESIE

survey data (described in Section 3.1), and the process followed to generate and

sample the pseudo-population is explained in detail in Section 3.1.2. In particular,

in this study, we limited to the establishments of the BC with at least 10 employees,

and a total of four covariates have been considered (see Table 3.2): ownership (X1),

activity (X2), number of employees (X3) and province (X4).

7.3.1 Scenarios and set up

Let U be the pseudo-population generated by following the steps described in Section

3.1.2 to which {(yi,xxxi)}Ni=1 are assigned. From this pseudo-population, a total of

R = 500 samples have been obtained by one-stage stratification and the sampling

weights have been calculated as explained in Section 3.1.2. The optimal cut-off points

estimation methods that have been considered in this study are the ones described

in Section 7.2, i.e., m ∈ {Youden, MaxProdSpSe, ROC01, MaxEfficiency}.
We describe below the simulation study set-up. For r = 1, . . . , R:

Step 1. Draw a sample Sr ⊂ U by one-stage stratification, mimicking the sampling

process carried out for the real-life dataset as described in Section 3.1.2.

Step 2. Fit the logistic regression model to Sr and estimate β̂ββ
r
by eq. (7.2).

Step 3. Estimate p̂ri by means of β̂ββ
r
following eq. (7.1), ∀i ∈ Sr.

Step 4. Estimate the optimal cut-off points, cm,r (see eqs. (7.6), (7.7), (7.8), (7.9))

and cm,r
w (see eqs. (7.13), (7.14), (7.15), (7.16)) for each method m.

As mentioned above, the selection of the optimality criteria for selecting the cut-off

points is based on the particular goal of each study. Therefore, our goal is not to

compare the performance of the described methods between them. That is, the
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aim is not to compare the performance of a method m ∈ {Youden, MaxProdSpSe,

ROC01, MaxEfficiency}, to the rest of the methods, but to compare the cut-off

points selected by means of the method m when sampling weights are considered or

not in the estimation process. Thus, we define the difference and absolute difference

between weighted and unweighted cut-off points as follows:

diff m,r = cm,r − cm,r
w and abs.diff m,r = |cm,r − cm,r

w | . (7.17)

In addition, we would also like to regard the impact that the decision to select

weighted or unweighted optimal cut-off points may have in the classification of all

the units in the finite population. Thus, we continue with the simulation study as

follows:

Step 5. Calculate p̂ri by means of β̂ββ
r
(estimated in Step 2.) following eq. (7.1), ∀i ∈ U .

Step 6. Classify each unit as event or non-event based on p̂ri , ∀i ∈ U and the selected

cut-off points. That is, we define two estimated responses (ŷm,r
i and ŷm,r

w,i ) for

each unit based on the cut-off points cm,r and cm,r
w (selected in Step 4.) as in

eq. (7.18). For each method m and ∀i ∈ U :

ŷm,r
i =

{
1 if p̂ri ≥ cm,r,

0 if p̂ri < cm,r,
and ŷm,r

w,i =

{
1 if p̂ri ≥ cm,r

w ,

0 if p̂ri < cm,r
w .

(7.18)

Finally, in order to account for the error that may be introduced in the classi-

fication of the units in the finite population by the selected optimal cut-off points,

one more parameter is defined. The error is estimated by comparing the population

probability of event estimated by means of the estimated responses (defined in Step

6) to the true probability of event in the finite population considering the true values

of the response variable for the units in the pseudo-population, yi, ∀i ∈ U . For this

purpose, we split the finite population U in K disjointed subsets of the same size

where U =
⋃K

k=1 Uk. We repeat this process T = 10 times, where ∀t ∈ {1, . . . , T },
U =

⋃K
k=1 U

t
k. In this way, we get T ×K subsets from U and the population prob-

ability of event will be estimated in each one of these subsets. Let N t
k indicate the

number of units in the subset U t
k, ∀k = 1, . . . ,K and ∀t = 1, . . . , T .

We denote as the global mean squared error (GMSE) of the population proba-
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bility of event with T = 10 replicates the following parameters:

GMSEm,r
(K) =

1

T ×K

∑T
t=1

∑K
k=1

(
1

N t
k

∑
i∈U t

k
ŷm,r
i − 1

N t
k

∑
i∈U t

k
yi

)2

,

GMSEm,r
w,(K) =

1

T ×K

∑T
t=1

∑K
k=1

(
1

N t
k

∑
i∈U t

k
ŷm,r
w,i − 1

N t
k

∑
i∈U t

k
yi

)2

,

(7.19)

Different number of subsets have been selected in order to evaluate the impact

that the sample size of each subset may have: K ∈ {1, 10, 100, 500}. In addition,

we considered the GMSE evaluated considering the H strata as the subsets where

Uh, ∀h = 1, . . . ,H indicates the subset corresponding to stratum h and U =
⋃H

h=1 Uh,

i.e.,

GMSEm,r
(H) =

1

H

∑H
h=1

(
1

Nh

∑
i∈Uh

ŷm,r
i − 1

Nh

∑
i∈Uh

yi

)2

,

GMSEm,r
w,(H) =

1

H

∑H
h=1

(
1

Nh

∑
i∈Uh

ŷm,r
w,i − 1

Nh

∑
i∈Uh

yi

)2

.

(7.20)

This simulation study has been carried out by means of the statistical software

R. In particular, some functions of the R package OptimalCutpoints (López-Ratón

et al. 2014) have been modified in order to incorporate an argument that provides

us with the option to consider sampling weights in the estimation process of the

optimal cut-off points for the described methods.

7.3.2 Results

In this section, we show the results obtained in the simulation study described in

Section 7.3.1. Figures 7.1, 7.2, 7.3 and 7.4 depict the box-plots of unweighted and

weighted estimates of the optimal cut-off points and the results of the parameters diff

and GMSE (see eqs. (7.17), (7.19) and (7.20)) for Youden, MaxProdSpSe, ROC01

and MaxEfficiency methods, respectively. Numerical results of the simulation study

are summarized in Table 7.1.

In general, except for the MaxEfficiency method, the results suggest that the

optimal cut-off point estimates differ when sampling weights are ignored or con-

sidered in the estimation process. The difference has always been positive (i.e. the

unweighted estimates have been greater than the weighted ones), except in the Max-

Efficiency method, where both positive and negative differences have been observed.

For this reason, the mean and standard deviation of the difference and absolute dif-
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ference parameters are equal for all the methods except for MaxEfficiency (see Table

7.1). The error generated and accounted in terms of GMSE described in eq. (7.19)

decreases considerably when sampling weights are taken into account. In addition,

similar results have been obtained for different K ∈ {1, 10, 100, 500} values, which

indicates that the difference between estimated and true prevalence in the whole

finite population is similar to that in smaller homogeneous subsets. However, it

could be observed that the average of GMSE becomes slightly greater as the num-

ber of subsets K increases (for both, weighted and unweighted estimates), indicating

that the differences between the estimated and true prevalence tend to be a little bit

greater in smaller subsets. When considering the strata as non-homogeneous subsets

defined by the H strata of the population, the GMSE obtained as described in eq.

(7.20) with the weighted estimates is still smaller than with the unweighted ones.

However, the difference between weighted and unweighted GMSE is slightly smaller

for the non-homogenous partition than for homogeneous partitions. We believe that

the reason is that the difference obtained between estimated and true prevalence dif-

fers depending on the number of individuals sampled in each strata, being increased

in very small strata. Note that if the population size of a particular stratum is 1,

then the error in this stratum is 0 (if the unit is classified correctly) or 1 (other-

wise). This is not common when working with homogeneous strata where, in all

the randomly selected subsets, the difference between estimated and true prevalence

seems to be similar (results not shown). In addition, note that even though strata

are of different sizes, the stratum size is not taken into account when computing

the GMSE parameter. The behavior of each of the methods that have been studied

throughout this work will be analyzed one by one below.

The optimal cut-off point estimated by the Youden method in this simulation

study, is 0.830 on average when sampling weights are not taken into account while

the weighted estimates are smaller on average (0.752), with standard deviations of

0.021 and 0.028, respectively. The difference between the unweighted and weighted

estimates is on average 0.078 with a standard deviation of 0.034 (see Figure 7.1).

In terms of GMSE, the error produced by means of the weighted estimates in the

finite population is more or less 5 times smaller than the error produced by means

of the unweighted estimates on average. The standard deviation is also smaller for

the weighted estimates. When the GMSE is computed over the H = 325 strata,

the GMSE turns out to be 0.130 and 0.281, for weighted and unweighted estimates,

respectively.

The unweighted estimates obtained by the MaxProdSpSe method are again
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greater than the weighted ones, being on average 0.812 and 0.753, respectively (see

Figure 7.2). The difference between those estimates is 0.058 on average with a

standard deviation of 0.019. GMSE becomes again 5 times smaller when sampling

weights are considered in the estimation process and the standard deviation of the

weighted estimates is half of that of the unweighted ones. The GMSE measured

over the different strata for weighted and unweighted estimates is 0.126 and 0.243,

respectively.

For the ROC01 method, weighted estimates are also lower than the unweighted

ones (0.753 and 0.808 on average, respectively) and the standard deviations are

slightly greater (0.017 and 0.015, respectively) (see Figure 7.3 and Table 7.1). The

error generated by the weighted estimates in the finite population is lower than the

error produced by the unweighted estimates in terms of GMSE.

Finally, in contrast to the results obtained by the rest of the methods, for the

MaxEfficiency method no significant differences are observed among the unweighted

and weighted estimates. Optimal cut-off point estimates throughout the R = 500

samples are quite similar in terms of mean and standard deviation. The average of

the unweighted estimates is 0.511, while for the weighted estimates the average is

0.530. In particular, in more than 50% of the cases, the difference between weighted

and weighted estimates is 0. The difference in the error produced by those estimates

in the finite population is also negligible. For K = 1, for example, the GMSE

produced by the unweighted estimates is on average 0.048 with a standard deviation

of 0.013, while the average GMSE of the weighted estimates is 0.045 with a standard

deviation of 0.014. The GMSE calculated over the H = 325 strata is 0.070 for

weighted estimates and 0.071 for unweighted estimates.
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Table 7.1: Average (mean) and standard deviation (sd) of the a) unweighted and
weighted optimal cut-off points, b) difference (diff) and absolute difference (abs.diff)
among them and, c) GMSE produced by the unweighted and weighted optimal cut-
off points when classifying units in the finite population for K ∈ {1, 10, 100, 500}
and H across R = 500 samples for all the methods considered.

Youden MaxProdSpSe ROC01 MaxEfficiency

Mean (sd) Mean (sd) Mean (sd) Mean (sd)

Cut-off unw 0.830 (0.021) 0.812 (0.016) 0.808 (0.015) 0.511 (0.058)

points w 0.752 (0.028) 0.753 (0.018) 0.753 (0.017) 0.530 (0.052)

diff 0.078 (0.034) 0.058 (0.019) 0.055 (0.017) -0.019 (0.046)

abs.diff 0.078 (0.034) 0.058 (0.019) 0.055 (0.017) 0.023 (0.044)

GMSE unw 0.311 (0.075) 0.251 (0.053) 0.237 (0.044) 0.048 (0.013)

(K=1) w 0.063 (0.050) 0.053 (0.024) 0.051 (0.020) 0.045 (0.014)

GMSE unw 0.311 (0.076) 0.251 (0.054) 0.237 (0.046) 0.048 (0.014)

(K=10) w 0.063 (0.051) 0.053 (0.025) 0.051 (0.021) 0.046 (0.014)

GMSE unw 0.313 (0.090) 0.253 (0.071) 0.239 (0.064) 0.050 (0.021)

(K=100) w 0.066 (0.057) 0.056 (0.034) 0.053 (0.031) 0.047 (0.021)

GMSE unw 0.322 (0.136) 0.263 (0.120) 0.249 (0.115) 0.056 (0.042)

(K=500) w 0.076 (0.079) 0.067 (0.062) 0.064 (0.059) 0.053 (0.041)

GMSE unw 0.281 (0.047) 0.243 (0.033) 0.234 (0.027) 0.071 (0.002)

(H) w 0.130 (0.038) 0.126 (0.025) 0.125 (0.024) 0.070 (0.003)

7.3.3 Analyzing the performance of MaxEfficiency

In the results shown and discussed in Section 7.3.2, we have pointed out that the

MaxEfficiency method is the only one by which we obtain similar weighted and

unweighted optimal cut-off point estimates. Therefore, in this section, we aim to

keep an eye on this method and further analyze whether this behavior is particular

to the simulated scenario, or in contrast, the similar performance of the weighted and

unweighted estimates in this particular case can be explained by some mathematical

properties of the method itself. In particular, we aim to know whether there can be

any scenario in which there might be differences between unweighted and weighted

optimal cut-off points estimated by means of the MaxEfficiency method.

In this method, the efficiency function, which can be defined as in eq. (7.21), is

maximized:

Ef(c) = pY Se(c) + (1− pY )Sp(c), (7.21)
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where pY = P (Y = 1). Hence, note that the efficiency function is a weighted average

of the sensitivity and specificity parameters, where the “importance” or “pondera-

tion” of each parameter is determined by means of the probability of event in the

population, pY . In particular, sensitivity is a decreasingly monotonous function;

that is, the greater the value of c, the lower or equal the sensitivity. In contrast,

specificity is increasingly monotonous by definition (see, eq. (7.4)). The efficiency,

being a weighted average of them, is not necessarily a monotonous function, but

note that the greater the probability of event in the population, pY , it will tend to

be more similar to the sensitivity curve, while the lower the probability of event, it

will tend to be more similar to the specificity curve. Figure 7.5 is displayed below

for illustration purposes.
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Figure 7.5: Example of the efficiency function for different values of pY = P (Y = 1):
pY = 0.25 (left), pY = 0.5 (center), pY = 0.75 (right).

In practice, unweighted estimates of the population probability of event (p̂Y )

and sensitivity (Ŝe(c)) and specificity (Ŝp(c)) are obtained as defined in eqs. (7.10)

and (7.5), respectively, while the corresponding weighted estimates (p̂Y,w, Ŝew and

Ŝpw) as in eqs. (7.12) and (7.11). In this simulation study, considering all the

R = 500 samples, the unweighted estimate of the population probability of event

(see eq. (7.10)) is, on average, 0.833 (with a standard deviation of 0.005), and

hence, the unweighted estimate of the efficiency function will be more similar to

the Ŝe(c), ∀c ∈ (−∞,∞) function. Similarly, regarding the weighted estimates, the

weighted estimate of the population probability of event (see eq. (7.12)) is on av-

erage 0.756, with a standard deviation of 0.014, and hence, the efficiency function

will be closer to the Ŝew(c),∀c ∈ (−∞,∞) function. Hence, both the weighted and

unweighted efficiency functions are more similar to monotonously decreasing func-

tions. Thus, it seems reasonable to think they might take their maximum values for
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relatively low cut-off points. To illustrate these explanations, we depict Figure 7.6,

corresponding to the sample r = 100, in which the unweighted and weighted sensitiv-

ity, specificity and efficiency functions are depicted, jointly with the corresponding

optimal cut-off point estimates.

Nevertheless, what if the estimated weighted and unweighted probabilities of

event differ more considerably, and one of the efficiency functions tends to be more

similar to the specificity (that is, to an increasingly monotonous function)? Then,

the efficiency function would be expected to take maximum values for greater cut-

off points. In order to analyze this situation, we artificially manipulate the original

sampling weights, as if the samples were obtained from a different population than

the simulated one. In particular, the new sampling weights for ∀i ∈ S have been

defined as in eq. (7.22):

w′
i0 = 5 · wi0 , ∀i0 ∈ S0,

w′
i1 = wi1 , ∀i1 ∈ S1.

(7.22)

In this way, the weighted estimate of the population probability of event (p̂Y,w as

defined in eq. (7.12)) of the new samples is on average 0.382 (with a standard

deviation of 0.018), being the corresponding efficiency functions more similar to the

monotonously increasing function specificity. We depict in Figure 7.7 the example

of the sample r = 100, in which can be observed that the situation has changed

considerably, and the weighted and unweighted optimal cut-off points differ in this

case.

The boxplots corresponding to the unweighted and weighted estimates of the

optimal cut-off points across the R = 500 samples are depicted in Figure 7.8, in

which it can be observed that in this scenario, we obtain different unweighted and

weighted optimal cut-off point estimates for the MaxEfficiency method. The average

of the optimal cut-off point values estimated with the unweighted method is 0.175

with a standard deviation of 0.035, while the optimal cut-off point value obtained

by means of the weighted method is 0.491 on average with a standard deviation of

0.044. Note that we are not able to calculate the GMSE in this scenario, given that

the samples have been manipulated by changing the original weights, and hence,

the corresponding finite population does not exist. However, considering the results

obtained for the rest of the methods, as well as regarding the results obtained in the

previous chapter, we believe that the weighted optimal cut-off point estimates will

probably lead us to classify the individuals more properly.
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Figure 7.6: Unweighted (in orange color) and weighted (in blue color) estimates
of the sensitivity (dashed line), specificity (dotted line), and efficiency (solid line),
jointly with weighted and unweighted optimal cut-off point estimates for the sample
r = 100 in the original scenario.
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Figure 7.7: Unweighted (in orange color) and weighted (in blue color) estimates
of the sensitivity (dashed line), specificity (dotted line), and efficiency (solid line)
across all the possible cut-off points, jointly with weighted and unweighted optimal
cut-off point estimates for the sample r = 100 in the new scenario with manipulated
sampling weights.
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Figure 7.8: Boxplots of the unweighted and weighted estimates of the optimal cut-off
points obtained based on the MaxEfficiency method across R = 500 samples in the
new scenario with manipulated sampling weights.

7.4 Application to ESIE survey data

The methodology proposed in Section 7.2 could also be applied to real-world surveys.

In particular, for illustration purposes, we have applied this methodology to the real

ESIE survey data described in Section 3.1.

As explained at the beginning of Section 7.3, in the simulation study of this

work, as well as in the application, establishments with at least 10 employees of

the BC have been considered, and four categorical variables have been used as

predictors: ownership (X1), activity (X2), number of employees (X3) and province

(X4). In this way, a logistic regression model was fitted to the sample considering

these four covariates, the regression coefficients were estimated by maximizing the

pseudo-likelihood function in eq. (7.2) and for all the sampled units ∀i′ ∈ S, p̂i′ were
obtained.

We have applied the methods described in Section 7.2 for the selection of optimal
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cut-off points, which have been estimated by both, ignoring and considering sampling

weights. The results are shown in Table 7.2. It can be observed that the unweighted

and weighted estimates differ when Youden, MaxProdSpSe, and ROC01 methods

are applied, which is in line with the results obtained in the simulation study. In

particular, the unweighted estimates are greater than the weighted estimates, which

are similar to the ones observed in Section 7.3.2 (see Table 7.1). The unweighted and

weighted estimates obtained by means of the MaxEfficiency method are equal, which

is also in line with the results observed in the simulation study. Those estimates

obtained by the MaxEfficiency method are lower than the average of the estimates

obtained in the simulation study. However, it should be noted that this may be

justified by the large standard deviation observed previously for the cut-off points

estimated by means of the MaxEfficiency method (see Figure 7.4 and Table 7.1), as

well as due to the differences between the real survey and simulated data.

Table 7.2: Optimal cut-off point estimates obtained by means of Youden, MaxProd-
SpSe, ROC01, and MaxEfficiency methods, considering or not the sampling weights.

Youden MaxProdSpSe ROC01 MaxEfficiency

Unweighted 0.800 0.800 0.800 0.388
Weighted 0.752 0.752 0.747 0.388

7.5 Discussion

In this work, new estimators have been proposed for estimating optimal cut-off

points of the probability of event in the logistic regression framework considering

sampling weights in the estimation process. In particular, we have focused on data

derived from complex sampling designs. For this purpose, four optimal cut-off point

estimation methods (which are denoted as Youden, MaxProdSpSe, ROC01, and

MaxEfficiency (López-Ratón et al. 2014)) have been selected and modified in order

to incorporate sampling weights in the estimation process. These four methods

have been selected for being the ones most commonly applied in the literature. In

particular, the so widely used pROC package in R (Robin et al. 2011) has incorporated

the Youden and ROC01 methods for the estimation of optimal cut-off points. All

these methods are based on different optimality criteria that are related to sensitivity

and specificity parameters. Therefore, we propose a methodology for considering

sampling weights in the estimation process of sensitivity and specificity parameters,
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as well as in the estimation of the probability of event, in order to estimate optimal

cut-off points based on these parameters by taking into account the sampling weights.

A simulation study has been carried out in order to analyze the behavior of both

methodologies by comparing the optimal cut-off point estimates obtained by means

of the above-mentioned methods when sampling weights are considered or ignored

in the estimation process. The error that those estimates generate in the estimation

of the probability of event in the finite population has also been analyzed in this

simulation study. In particular, we considered the GMSE in order to evaluate the

behavior of the estimated probability of event in the population (once the cut-off

point and the response for each unit based on it were estimated) by comparing it to

the true probability of event in the finite population.

We also considered it interesting to study the differences in estimating sensitivity

and specificity based on the cut-off points estimated with and without sampling

weights. We have observed that the differences are in line with those observed when

studying the GMSE (results not shown).

In general, the results suggest the convenience of incorporating sampling weights

into the estimation process of optimal cut-off points. For three out of the four meth-

ods studied, estimates obtained differ depending on whether the sampling weights

were considered or not. Furthermore, it can be observed that the error in the es-

timates of the response variable obtained by taking into account sampling weights

is much smaller than that generated by the estimates obtained by ignoring them

for the units in the finite population. Although the cut-off point estimates may not

seem very different from each other in some cases, it is observed that the effect of

applying one or the other estimate for the classification of units in the population is

considerable. In our opinion, the reason for this is that a large amount of individuals

of the finite population (specifically, more than 20% of all the units on average) has

estimated probabilities of event that range in the interval defined by the unweighted

and weighted estimates and thus, choosing the unweighted cut-off point leads to

misclassify a larger number of units in the finite population.

Nevertheless, the results related to the MaxEfficiency method appear to be dif-

ferent compared to Youden, MaxProdSpSe and ROC01. In general, in the results

obtained using this method, there are no great differences between the estimates

obtained by ignoring or considering the sampling weights, and furthermore, in most

cases, the two estimates coincide. Therefore, the errors generated in the population

by these estimates are also similar, and there are no significant differences between

them. Hence, we can say that, at least under the scenario we have worked on, there
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is no difference between the unweighted and weighted estimates obtained by the

MaxEfficiency method. However, as discussed in Section 7.3.3, we believe that this

could be due to a particular characteristic of the scenario in which we have worked

and not a specific property of the method itself, as we have seen in the scenario con-

sidered by modifying the sampling weights in Section 7.3.3. It should be mentioned

that, in that section, we analyze the effect of the MaxEfficiency in other situations

for illustration purposes. Nevertheless, studying the mathematical properties of this

behavior is part of further research. It should also be stated that, in this illustra-

tion, we have not been able to analyze the differences in the performance of weighted

and unweighted cut-off point estimates, which should be analyzed based on another

simulation study. However, due to the results obtained for the rest of the methods,

we believe that selecting weighted cut-off points would also be preferable for the

MaxEfficiency method.

Finally, we would like to comment on the limitations of this study. First of all, it

should be noted that we have conducted this simulation study based on real survey

data. Therefore, the effect that the sampling technique chosen may have on the dif-

ferences between weighted and unweighted optimal cut-off point estimates remains

to be studied as further work. For example, it should be mentioned that in this

study, we have only analyzed the effect of the sampling weights obtained by means

of one-stage stratification. Data derived from other sampling techniques, such as

the two-stage cluster sampling design, have not been considered. The performance

needs to be analyzed, but the proposed estimators are also valid and can be applied

to two-stage sampling designs. It would also be interesting to study the behavior

of the studied methods under uninformative complex sampling designs to analyze

whether there are any differences in the estimates or variability of the weighted and

unweighted methods. To answer these questions concerning the sampling designs,

the simulation study carried out in Chapter 6 could be easily extended to the frame-

work of the estimation of optimal cut-off points (further work). Secondly, it would

be interesting to analyze and compare the behavior of the methods that have been

studied throughout this document in different scenarios, for instance, with different

probability of event values. Nevertheless, it should be noted that as the simulation

study we have depicted is based on a real survey, the probability of event of the

scenario we have analyzed was also described by the observed data.

In conclusion, in this work, we have implemented four of the most commonly used

optimal cut-off point estimation methods, which are implemented in diverse software.

In the simulation study considered, out of these four methods, in three of them, the
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use of sampling weights highly improves the results, while in the fourth, the results

do not differ whether you use the sampling weights or not (hence, we neither lose

anything if sampling weights are considered in the estimation process). However, we

have also seen that, even in this fourth method, weighted and unweighted optimal

cut-off point estimates may differ in some scenarios. Therefore, our recommendation

is to incorporate the sampling weights in the estimation process of optimal cut-off

points when working with data derived from complex sampling designs. However, if

one is interested in applying other methods different from those studied throughout

this paper, it should be considered whether it is appropriate or not to use sampling

weights and, if so, how to consider them in each particular case. The optimal cut-off

point estimation methods that consider sampling weights proposed in this work have

been incorporated into the wROC package available on GitHub and is explained in

detail in Chapter 8.

https://github.com/aiparragirre/wROC
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CHAPTER8
Software development

In the previous chapters of this dissertation, new methodological approaches have

been proposed and described to improve the development of prediction models when

working with complex survey data. Two R-packages have been developed, which

incorporate these methodological proposals. In this chapter, we explain in detail

these two R-packages: wlasso and wROC.

In particular, the R-package wlasso has been developed to incorporate the

methodological proposal to fit LASSO regression models to complex survey data,

described in Chapter 5. The purpose of this package is two-fold: on the one hand,

it offers the possibility to create partially independent training and test sets of a

data set by means of replicate weights methods described in Section 5.2.3; on the

other hand, it allows to fit LASSO regression models considering sampling weights

and select the tuning parameter that minimizes the error based on replicate weights

methods, as described throughout Chapter 5, and in particular, in Sections 5.2.2

and 5.2.3. All the documentation related to this package is available in Section 8.1.

In addition, the methodological proposals described in detail in Chapters 6 and

189
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7 to estimate the ROC curve and AUC of logistic regression models with complex

survey data, as well as to estimate optimal cut-off points for individual classification,

are implemented in the R-package wROC. This package provides the functions needed

to estimate sensitivity and specificity parameters, optimal cut-off points based on

these parameters by means of the methods described in Section 7.2.2, and the ROC

curve and AUC of logistic regression models fitted to complex survey data consider-

ing sampling weights as described in Section 6.2.2. The functions incorporated into

the package and the arguments needed are described in detail in Section 8.2.

Both packages are thought to be easy to implement for survey statisticians and

professionals handling the analysis of complex survey data in their daily practice.

The most well-known R-package in this context is the survey package (Lumley

2020), and hence, all the functions of these new packages wlasso and wROC allow

(among other options) to indicate the complex survey designs with survey.design

objects generated by means of the function survey::svydesign().

At the moment of writing this dissertation, both packages are uniquely available

on two different repositories of GitHub. However, both of them will be submitted

to the official R-packages repository (i.e., the Comprehensive R Archive Network

(CRAN)), in brief. It should also be noted that these packages are dynamic packages

that are and will continue to be constantly improved, either by user requests or by

the incorporation of new methodological proposals developed by the authors.

8.1 wlasso R-package

The main goal of the R-package wlasso is to provide tools to fit LASSO regression

models for complex survey data. The methodological proposals implemented in this

package have been described in detail in Chapter 5. This package is available on

GitHub: https://github.com/aiparragirre/wlasso.

In particular, there are two ways to install this package in R. On the one hand,

the whole GitHub repository can be downloaded and the package can manually be

installed in R. On the other hand, we can also run the following code to install the

package directly without the need to download it manually:

library("devtools")

install_github("aiparragirre/wlasso/wlasso")

library(wlasso)

https://github.com/aiparragirre/wlasso
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Three main functions are available in this R-package. Table 8.1 contains a sum-

mary of these functions and their main purposes.

Specifically, the function replicate.weights() generates new training and test

subsets, considering the complex sampling design followed to obtain the original

sample, by means of any of the replicate weights methods described in Section 5.2.3.

All the details concerning this function are described in Section 8.1.1.

The main goal of the function wlasso() is to fit weighted LASSO regression

models that consider complex sampling designs as described in Sections 5.2.2 and

5.2.3. This function fits LASSO regression models for a grid of tuning param-

eters and indicates which of the parameters minimizes the error. The function

replicate.weights() is used to define training and test sets for this purpose. This

function is described in detail in Section 8.1.2.

Finally, the goal of the function wlasso.plot(), which is described in Section

8.1.3, is to provide a graphical summary of the results obtained by means of the

models fitted using the function wlasso().

Table 8.1: Summary of the functions available in the R-package wlasso, a brief
description of them, and the corresponding references to the sections in which the
implemented methodology has been described.

Function Description Methods

replicate.weights() Define training and test sets of the orig-

inal sample with replicate weights.

Section 5.2.3

wlasso() Fit LASSO models for complex survey

data.

Sections 5.2.2

and 5.2.3

wlasso.plot() Graphical visualization of the error of

the fitted LASSO models.

In addition, a simulated data set has been incorporated into the package for

illustration purposes. All the examples set to define the usage of the functions

described in Sections 8.1.1, 8.1.2 and 8.1.3 use this data set so that the readers and

package users can reproduce them. Users that install the R-package wlasso can

access this data set by running the following code:

data(simdata_lasso_binomial)

The data set simdata lasso binomial contains information about a total of 50

covariates (denoted as x.1, ..., x.50), a dichotomous response variable (y), columns
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indicating the stratum and cluster to which each unit belongs (strata and cluster,

respectively), and a column indicating the sampling weight (weights) assigned to

each of 1 720 observations in the data set.

names(simdata_lasso_binomial)

[1] "x.1" "x.2" "x.3" "x.4" "x.5" "x.6"

[7] "x.7" "x.8" "x.9" "x.10" "x.11" "x.12"

[13] "x.13" "x.14" "x.15" "x.16" "x.17" "x.18"

[19] "x.19" "x.20" "x.21" "x.22" "x.23" "x.24"

[25] "x.25" "x.26" "x.27" "x.28" "x.29" "x.30"

[31] "x.31" "x.32" "x.33" "x.34" "x.35" "x.36"

[37] "x.37" "x.38" "x.39" "x.40" "x.41" "x.42"

[43] "x.43" "x.44" "x.45" "x.46" "x.47" "x.48"

[49] "x.49" "x.50" "strata" "cluster" "y" "weights"

In the following sections, we proceed to describe in detail the usage of each of

the functions available in the package wlasso.

8.1.1 replicate.weights() function

The function replicate.weights() allows defining new training and test sets by

means of the replicate weights methods described in Section 5.2.3. In this way, the

training and test sets properly represent the finite population considered to carry

out the survey, and the complex sampling design is also represented in the way in

which these subsets are generated.

The way of calling this function is depicted below and a brief description of each

argument is given in Table 8.2:

replicate.weights(

data,

method = c("JKn",

"dCV",

"bootstrap",

"subbootstrap",

"BRR",

"split",
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"extrapolation"),

cluster = NULL,

strata = NULL,

weights = NULL,

design = NULL,

k = 10,

R = 1,

B = 200,

train.prob = 0.7,

method.split = c("dCV", "bootstrap", "subbootstrap"),

rw.test = FALSE,

dCV.sw.test = FALSE

)

Table 8.2: Summary and usage of the arguments incorporated to the function
replicate.weights().

Argument Description

data A data frame with information on (at least) cluster and strata

indicators and sampling weights. It could be NULL if the sam-

pling design is indicated in the design argument.

method A character string indicating the replicate weights method to

be applied to define training and test sets. Choose between

one of these: JKn, dCV, bootstrap, subbootstrap, BRR, split,

extrapolation.

cluster A character string indicating the name of the column with clus-

ter identifiers in the data frame indicated in data. It could be

NULL if the sampling design is indicated in the design argument

(see design).

strata A character string indicating the name of the column with

strata identifiers in the data frame indicated in data. It could

be NULL if the sampling design is indicated in the design argu-

ment (see design).



194 Chapter 8.

weights A character string indicating the name of the column with sam-

pling weights in the data frame indicated in data. It could be

NULL if the sampling design is indicated in the design argument

(see design).

design An object of class survey.design generated by

survey::svydesign(). It could be NULL if information

about cluster, strata, weights and data are given.

k A numeric value indicating the number of folds to be defined.

Default is k=10. Only applies for the dCV method.

R A numeric value indicating the number of times the sample is

partitioned. Default is R=1. Only applies for dCV, split or

extrapolation methods.

B A numeric value indicating the number of bootstrap resam-

ples. Default is B=200. Only applies for bootstrap and

subbootstrap methods.

train.prob A numeric value between 0 and 1, indicating the proportion

of clusters (for the method split) or strata (for the method

extrapolation) to be set in the training sets. Default is

train.prob=0.7. Only applies for split and extrapolation

methods.

method.split A character string indicating the way in which replicate weights

should be defined in the split method. Choose one of the

following: dCV, bootstrap or subbootstrap. Only applies for

split method.

rw.test A logical value. If TRUE, the function returns in the output

object the replicate weights to the corresponding test sets. If

FALSE, only the replicate weights of the training sets are re-

turned. Default is rw.test = FALSE.

dCV.sw.test A logical value. If TRUE, original sampling weights for the units

in the test sets are returned instead of the replicate weights.

Default is dCV.sw.test = FALSE. Only applies for dCVmethod.

See more details below.

Some of these methods (specifically JKn, bootstrap, subbootstrap and BRR),

were previously implemented in the survey R-package, to which we can access by

means of the function as.svrepdesign() (the names of the methods are kept as
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in as.svrepdesign()). Thus, the function replicate.weights() depends on this

function to define replicate weights based on these options. In contrast, dCV, split

and extrapolation have been expressly defined to be incorporated into this func-

tion.

As briefly explained in Table 8.2, some of the arguments are general arguments

and need to be incorporated for any selected method (these arguments are data,

cluster, strata and weights, or optionally design, in addition to method). Other

arguments are optional and only apply to certain methods. Hence, more details

on this function should be given to clarify this point, in particular, regarding the

different replicate weight methods that can be applied and the arguments that each

of the options needs.

Therefore, we proceed below with a brief description of the usage and output

object of each replicate weights method. Selecting any of the above-mentioned meth-

ods, the object returned by the function replicate.weights() is a new data frame,

which includes new columns into the original data set, each of them indicating repli-

cate weights for different training (always) and test (optionally, controlled by the

argument rw.test) subsets. In order to comment on all the information that may

be obtained by means of this function, we set rw.test = TRUE in all the examples

shown, which returns replicate weights of both training and test sets. The number

of new columns and the way in which they are denoted depend on the values set

for the arguments described in Table 8.2, in general, and on the replicate weights

method selected, in particular. The new columns indicating training and test sets

follow a similar structure for any of the selected methods. Specifically, the structure

of the names of the training sets is the following: rw r x train t where x=1,...,R

indicates the xth partition of the sample and t=1,...,T the tth training set. Sim-

ilarly, the structure of the new columns indicating the test sets is the following:

rw r x test t or sw r x test t (depending on the selected method, see more infor-

mation below), where x indicates the partition and t the number of the test set. In

addition, for some of the methods we also indicate the fold or set to which each unit

in the data set has been included in each partition. This information is included as

fold t or set t, depending on the method. See more detailed information below.

• The option JKn refers to the Jackknife Repeated Replication (JKn) method,

the replicate weights of which were defined in eq. (5.20) for the training sets

and in eq. (5.21) for the test sets. As the amount of training and test sets

is determined by means of the number of clusters in the data set, no more
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arguments are required to run the function replicate.weights() considering

the method JKn. Below, we show an example of the correct usage of this

function for the JKn method and the column names of the output data frame

we obtain:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "JKn",

cluster = "cluster",

strata = "strata",

weights = "weights",

rw.test = TRUE)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "rw_r_1_train_1" "rw_r_1_train_2"

[7] "rw_r_1_train_3" "rw_r_1_train_4" "rw_r_1_train_5"

[10] "rw_r_1_train_6" "rw_r_1_train_7" "rw_r_1_train_8"

[13] "rw_r_1_train_9" "rw_r_1_train_10" "rw_r_1_train_11"

[16] "rw_r_1_train_12" "rw_r_1_train_13" "rw_r_1_train_14"

[19] "rw_r_1_train_15" "rw_r_1_train_16" "rw_r_1_train_17"

[22] "rw_r_1_train_18" "rw_r_1_train_19" "rw_r_1_train_20"

[25] "sw_r_1_test_1" "sw_r_1_test_2" "sw_r_1_test_3"

[28] "sw_r_1_test_4" "sw_r_1_test_5" "sw_r_1_test_6"

[31] "sw_r_1_test_7" "sw_r_1_test_8" "sw_r_1_test_9"

[34] "sw_r_1_test_10" "sw_r_1_test_11" "sw_r_1_test_12"

[37] "sw_r_1_test_13" "sw_r_1_test_14" "sw_r_1_test_15"

[40] "sw_r_1_test_16" "sw_r_1_test_17" "sw_r_1_test_18"

[43] "sw_r_1_test_19" "sw_r_1_test_20"

In particular, note that a total of 40 columns has been added to the original

data set, with the information of the replicate weights for the units in the

20 training sets (columns 5 to 24, defined as in eq. (5.20)) and 20 test sets

(columns 25 to 44, following eq. (5.21)), given that there are A = 20 clusters

in the data set.

• The option dCV refers to the design-based K-fold cross-validation (dCV) method.

The number of folds to be defined should be indicated in the argument k (de-
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fault is k=10). The number of times the original sample should be partitioned

into k folds should also be indicated by means of the argument R (default is

R=1). See eq. (5.26) to see the replicate weights for the training sets and eq.

(5.27) for the test sets. An example of the usage and the output of the function

for the method dCV are given below:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "dCV",

cluster = "cluster",

strata = "strata",

weights = "weights",

k = 5,

R = 2,

rw.test = TRUE)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "folds_1" "rw_r_1_train_1"

[7] "rw_r_1_train_2" "rw_r_1_train_3" "rw_r_1_train_4"

[10] "rw_r_1_train_5" "rw_r_1_test_1" "rw_r_1_test_2"

[13] "rw_r_1_test_3" "rw_r_1_test_4" "rw_r_1_test_5"

[16] "folds_2" "rw_r_2_train_1" "rw_r_2_train_2"

[19] "rw_r_2_train_3" "rw_r_2_train_4" "rw_r_2_train_5"

[22] "rw_r_2_test_1" "rw_r_2_test_2" "rw_r_2_test_3"

[25] "rw_r_2_test_4" "rw_r_2_test_5"

As R = 2 is indicated, the data has been split twice, with k = 5 folds each

of them. In column 5, information on the first split of the data is given,

indicating the fold to which each individual has been included. In columns 6

to 10, information on the replicate weights of the training sets (see eq. (5.26))

related to this split is given, while in columns 11 to 15, the replicate weights of

the corresponding test sets (see eq. (5.27)) are returned. The same pattern is

followed for the second split of the data set, starting in column 16 and following

in columns 17 to 21 with replicate weights of the training sets and in columns

22 to 26 with replicate weights of the test sets.



198 Chapter 8.

The replicate weights obtained above for the units in the test sets are those

obtained by the default option dCV.sw.test = FALSE, which as stated above,

returns the replicate weights for the test set as described in eq. (5.27). How-

ever, we have another option to define the replicate weights for those units,

by turning dCV.sw.test = TRUE, given that in this way, the original sampling

weights are assigned to each unit in the test set (in a similar way as for the

JKn method in eq. (5.21)) as defined in eq. (8.1):

w
∗,test(t)
i,dCV.pool =

{
0, if i ∈ SdCV

tr(t) ,

wi, if i ∈ SdCV
test(t),

∀i ∈ S. (8.1)

The usage of the function is indicated below:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "dCV",

cluster = "cluster",

strata = "strata",

weights = "weights",

k = 5,

R = 2,

rw.test = TRUE,

dCV.sw.test = TRUE)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "folds_1" "rw_r_1_train_1"

[7] "rw_r_1_train_2" "rw_r_1_train_3" "rw_r_1_train_4"

[10] "rw_r_1_train_5" "folds_2" "rw_r_2_train_1"

[13] "rw_r_2_train_2" "rw_r_2_train_3" "rw_r_2_train_4"

[16] "rw_r_2_train_5" "sw_r_1_test_1" "sw_r_1_test_2"

[19] "sw_r_1_test_3" "sw_r_1_test_4" "sw_r_1_test_5"

[22] "sw_r_2_test_1" "sw_r_2_test_2" "sw_r_2_test_3"

[25] "sw_r_2_test_4" "sw_r_2_test_5"

The structure of the output data set is similar to the option with dCV.sw.test

= FALSE. However, note that the column names (now sw r x test t instead
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of rw r x test t for x∈ {1,...,R} and t∈ {1,...,T}) corresponding to the

test sets (i.e., from 17 to 26 in this case obtained following eq. (8.1)) have been

slightly changed in order to make the difference between the replicate weights

obtained with eqs. (5.27) and (8.1) clearer (denoted now as sw instead of

rw ).

• The option subbootstrap refers to the Rescaling Bootstrap (Bootstrap) de-

fined by Rao and Wu (1988) and explained in Section 5.2.3. Briefly, this

method selects ah − 1 clusters randomly with replacement among the ah total

clusters from each stratum h, ∀h ∈ {1, . . . ,H} and the corresponding replicate

weights have been defined in eq. (5.22). For the proper usage of this function,

we only need to indicate the number of bootstrap resamples we aim to define

by means of the argument B as shown below (the default option is B=200).

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "subbootstrap",

cluster = "cluster",

strata = "strata",

weights = "weights",

B = 20)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "rw_r_1_train_1" "rw_r_1_train_2"

[7] "rw_r_1_train_3" "rw_r_1_train_4" "rw_r_1_train_5"

[10] "rw_r_1_train_6" "rw_r_1_train_7" "rw_r_1_train_8"

[13] "rw_r_1_train_9" "rw_r_1_train_10" "rw_r_1_train_11"

[16] "rw_r_1_train_12" "rw_r_1_train_13" "rw_r_1_train_14"

[19] "rw_r_1_train_15" "rw_r_1_train_16" "rw_r_1_train_17"

[22] "rw_r_1_train_18" "rw_r_1_train_19" "rw_r_1_train_20"

As shown above, the replicate weights of the training sets (in this case, the

B=20 bootstrap resamples) are added in columns 5 to 24. As explained in

Section 5.2.3, the original sample is used as the test sets in this method, and

the replicate weights corresponding to the test sets are equal to the original
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sampling weights as indicated in eq. (5.23). Thus, with this method, the repli-

cate weights corresponding to the test sets are not returned and the argument

rw.test is always ignored.

• The option bootstrap refers to a slightly different Bootstrap variant proposed

by Canty and Davison (1999). This method randomly selects ah clusters with

replacement, ∀h ∈ {1, . . . ,H} (instead of ah − 1, as the option subbootstrap

does). Hence, the replicate weights of the training sets are calculated as defined

in eq. (8.2) with this variant, ∀t = 1, . . . , TBootstrap:

w
∗,tr(t)
i,bootstrap =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi · v(t)h,α̇, ∀i ∈ S, (8.2)

where now TBootstrap is defined by means of the argument B, 1Sh,α̇
(i) indicates

whether unit i is in cluster α̇ from stratum h in the sample S (1) or not (0),

and v
(t)
h,α̇ indicates the number of times cluster α̇ from stratum h has been

selected to be part of the tth resample, ∀α̇ ∈ Ah and ∀h ∈ {1, . . . ,H}.

The usage and structure of the output data frame are equal to those of the

subbootstrap indicated above:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "bootstrap",

cluster = "cluster",

strata = "strata",

weights = "weights",

B = 20)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "rw_r_1_train_1" "rw_r_1_train_2"

[7] "rw_r_1_train_3" "rw_r_1_train_4" "rw_r_1_train_5"

[10] "rw_r_1_train_6" "rw_r_1_train_7" "rw_r_1_train_8"

[13] "rw_r_1_train_9" "rw_r_1_train_10" "rw_r_1_train_11"

[16] "rw_r_1_train_12" "rw_r_1_train_13" "rw_r_1_train_14"

[19] "rw_r_1_train_15" "rw_r_1_train_16" "rw_r_1_train_17"

[22] "rw_r_1_train_18" "rw_r_1_train_19" "rw_r_1_train_20"
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As in the option method = "subbootstrap", the replicate weights of the train-

ing sets are added in columns 5 to 24 and the argument rw.test is ignored.

• The option BRR refers to the Balanced Repeated Replication (BRR) method,

for which replicate weights have been defined in eq. (5.24) for the training

sets and in eq. (5.25) for the test sets. As the number of the total training

and test sets is defined based on the Hadamard matrix as explained in Section

5.2.3, none of the rest of the arguments are required to apply this method.

The usage of the function for this option is shown below:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "BRR",

cluster = "cluster",

strata = "strata",

weights = "weights",

rw.test = TRUE)

names(newdata)

[1] "strata" "cluster" "y"

[4] "weights" "rw_r_1_train_1" "rw_r_1_train_2"

[7] "rw_r_1_train_3" "rw_r_1_train_4" "rw_r_1_train_5"

[10] "rw_r_1_train_6" "rw_r_1_train_7" "rw_r_1_train_8"

[13] "rw_r_1_train_9" "rw_r_1_train_10" "rw_r_1_train_11"

[16] "rw_r_1_train_12" "rw_r_1_test_1" "rw_r_1_test_2"

[19] "rw_r_1_test_3" "rw_r_1_test_4" "rw_r_1_test_5"

[22] "rw_r_1_test_6" "rw_r_1_test_7" "rw_r_1_test_8"

[25] "rw_r_1_test_9" "rw_r_1_test_10" "rw_r_1_test_11"

[28] "rw_r_1_test_12"

The replicate weights of the training sets are included in columns 5 to 16, and

the replicate weights of the test sets in columns 17 to 28.

• The option split refers to the Split-sample Repeated Replication (split) method.

As explained in Section 5.2.3, this method refers to the way in which training

and test sets should be defined, but the way in which replicate weights should

be calculated needs to be indicated by means of the argument method.split.

This function provides three different options to do so:



202 Chapter 8.

– method.split = "dCV" defines replicate weights based on the dCVmethod

as defined in eqs. (5.29) and (5.30).

– method.split = "subbootstrap" defines replicate weights based on the

Rescaling Bootstrap method as defined in eqs. (5.31) and (5.32).

– method.split = "bootstrap" defines replicate weights by means of the

Bootstrap variant proposed by Canty and Davison (1999), as defined in

eqs. (8.3) and (8.4):

w
∗,tr(t)
i,split-bootstrap =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi · v(t)h,α̇, ∀i ∈ S, (8.3)

w
∗,test(t)
i,split-bootstrap =

H∑
h=1

∑
α̇∈Ah

1Sh,α̇
(i) · wi · ṽ(t)h,α̇, ∀i ∈ S, (8.4)

where v
(t)
h,α̇ indicates the number of times that Sh,α̇ is selected to be part

of the tth training set S
split-bootstrap
train(t) , ∀α̇ ∈ Ah and ∀h ∈ {1, . . . ,H}. Note

that if Sh,α̇ is set to the test set, then, v
(t)
h,α̇ = 0. Similarly, ṽ

(t)
h,α̇ indicates

the number of times that Sh,α̇ is selected to be part of the tth test set

S
split-bootstrap
test(t) . If Sh,α̇ is set to the training set, then, ṽ

(t)
h,α̇ = 0.

In addition, we also need to indicate the proportion of primary sampling units

(i.e., clusters in two-stage stratified cluster samplings and individuals in one-

stage stratified samplings) to be set into the training set, which is controlled

by the argument train.prob (default is train.prob = 0.7), as well as, the

number of times we would like to split the original sample into training and

test sets (with the argument R, being the default option R=1). An example of

the usage of the function for this option is given below:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "split",

cluster = "cluster",

strata = "strata",

weights = "weights",

R=5,

train.prob = 0.5,

method.split = "dCV",
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rw.test = TRUE)

names(newdata)

[1] "strata" "cluster" "y" "weights"

[5] "set_1" "rw_r_1_test" "rw_r_1_train" "set_2"

[9] "rw_r_2_train" "rw_r_2_test" "set_3" "rw_r_3_test"

[13] "rw_r_3_train" "set_4" "rw_r_4_test" "rw_r_4_train"

[17] "set_5" "rw_r_5_train" "rw_r_5_test"

The data set has been split a total of R = 5 times. In column 5, we can

find information on whether each unit in the data set has been included in

the training or in the test set in the first split of the data set, being the

corresponding replicate weights of the training sets indicated in column 6 and

the ones corresponding to the test sets in column 7. The same structure is

followed in columns 9 to 19 for each of the other four splits of the data set.

• The option extrapolation refers to the Extrapolation (extrap) method, for

which replicate weights have been defined in eq. (5.33). We need to define

the proportion of strata we aim to set to the training set by means of the

train.prob argument (default is train.prob = 0.7) and the number of times

the original data set should be partitioned with the argument R (being the

default R=1). An example of the usage considering this method is given below:

newdata <- replicate.weights(data = simdata_lasso_binomial[,51:54],

method = "extrapolation",

cluster = "cluster",

strata = "strata",

weights = "weights",

R=5,

train.prob = 0.5,

rw.test = TRUE)

names(newdata)
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[1] "strata" "cluster" "y" "weights"

[5] "set_1" "rw_r_1_train" "rw_r_1_test" "set_2"

[9] "rw_r_2_train" "rw_r_2_test" "set_3" "rw_r_3_train"

[13] "rw_r_3_test" "set_4" "rw_r_4_train" "rw_r_4_test"

[17] "set_5" "rw_r_5_train" "rw_r_5_test"

The output of this option is quite similar to the method = "split", and infor-

mation of the data partition for each of the R = 5 splits (indicating whether

each unit is set into the training or test set), and the corresponding replicate

weights of the training and test sets are indicated every three columns, starting

in column 5 and until column 19.

All the commands indicated above can also be run by including the information of

the design defined by the function svydesign() from the survey R-package (Lumley

2020) instead of inserting the data and the column names indicating the clusters,

strata and sampling weights. For example, for the dCV method, we could also run

the following code:

mydesign <- survey::svydesign(ids=~cluster,

strata = ~strata,

weights = ~weights,

nest = TRUE,

data = simdata_lasso_binomial)

newdata <- replicate.weights(method = "dCV",

design = mydesign,

k = 5, R = 2,

rw.test = TRUE)

8.1.2 wlasso() function

The function wlasso() allows fitting either linear or logistic LASSO regression mod-

els to complex survey data, considering sampling weights in the estimation process.

This function also indicates the value of the tuning parameter that minimizes the

error. For this purpose, it uses the replicate.weights() function, which has been

detailed in Section 8.1.1, to define training and test sets. All the methods imple-

mented in this function have been proposed and described in detail mathematically

in Chapter 5.
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The usage of this function is shown below. The summary and explanation of the

arguments can be found in Table 8.3.

wlasso(

data = NULL,

col.y = NULL,

col.x = NULL,

cluster = NULL,

strata = NULL,

weights = NULL,

design = NULL,

family = c("gaussian", "binomial"),

lambda.grid = NULL,

method = c("dCV",

"JKn",

"bootstrap",

"subbootstrap",

"BRR",

"split",

"extrapolation"),

k = 10,

R = 1,

B = 200,

dCV.sw.test = FALSE,

train.prob = 0.7,

method.split = c("dCV", "bootstrap", "subbootstrap"),

print.rw = FALSE

)
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Table 8.3: Summary and usage of the arguments incorporated to the function
wlasso().

Argument Description

data A data frame with information about the response variable and

covariates, as well as sampling weights and strata and cluster

indicators. It could be NULL if the sampling design is indicated

in the design argument.

col.y A numeric value indicating the number of the column in which

information on the response variable can be found or a charac-

ter string indicating the name of that column.

col.x A numeric vector indicating the numbers of the columns in

which information on the covariates can be found or a vector

of character strings indicating the names of these columns.

cluster A character string indicating the name of the column with clus-

ter identifiers. It could be NULL if the sampling design is indi-

cated in the design argument.

strata A character string indicating the name of the column with

strata identifiers. It could be NULL if the sampling design is

indicated in the design argument.

weights A character string indicating the name of the column with sam-

pling weights. It could be NULL if the sampling design is indi-

cated in the design argument.

design An object of class survey.design generated by

survey::svydesign(). It could be NULL if information

about cluster, strata, weights and data are given.

family A character string indicating the family to fit LASSO models.

Choose between gaussian (to fit linear models) or binomial

(for logistic models).

lambda.grid A numeric vector indicating a grid for penalization parameters.

The default option is lambda.grid = NULL, which considers

the default grid selected by the function glmnet::glmnet()

(Friedman et al. 2010).

method A character string indicating the method to be applied to de-

fine replicate weights. Choose between one of these: JKn, dCV,

bootstrap, subbootstrap, BRR, split, extrapolation.
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k A numeric value indicating the number of folds to be defined.

Default is k=10. Only applies for the dCV method.

R A numeric value indicating the number of times the sample is

partitioned. Default is R=1. Only applies for dCV, split or

extrapolation methods.

B A numeric value indicating the number of bootstrap resam-

ples. Default is B=200. Only applies for bootstrap and

subbootstrap methods.

dCV.sw.test A logical value indicating the method for estimating the error

for dCV method. FALSE, (the default option) estimates the error

for each test set and defines the cross-validated error as the

average of all those errors as described in eqs. (5.47) and (5.48).

Option TRUE estimates the cross-validated error based on the

pooling strategy (Airola et al. 2011). See more information

below.

train.prob A numeric value between 0 and 1, indicating the propor-

tion of clusters (for the method split) or strata (for the

method extrapolation) to be set in the training sets. De-

fault is train.prob = 0.7. Only applies for split and

extrapolation methods.

method.split A character string indicating the way in which replicate weights

should be defined in the split method. Choose one of the

following: dCV, bootstrap or subbootstrap. Only applies for

split method.

print.rw A logical value. If TRUE, the data set with the replicate weights

is saved in the output object. Default print.rw=FALSE.

Let us explain in more detail the performance of this function. This function

fits (either linear (family="gaussian") or logistic (family="binomial")) LASSO

regression models for a grid of tuning parameters, considering sampling weights.

It analyzes the error produced by each of the tuning parameters by generating

training and test sets based on the function replicate.weights() and indicates

which of the tuning parameters we should select in order to minimize the error of

our LASSO model. Hence, some of the arguments employed in this function are

related to the replicate weights method selected to fit LASSO regression models and

have already been explained in detail in Section 8.1.1. Specifically, the arguments
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method, k, R, B, dCV.sw.test, train.prob and method.split have been previously

defined in Section 8.1.1. However, another issue that should also be clarified is the

implications of selecting the option TRUE or FALSE in the argument dCV.sw.test in

terms of error estimation. If the default option dCV.sw.test = FALSE is selected,

the cross-validated error for a given value of the tuning parameter λl, ∀l ∈ {1, . . . , L}
is calculated as indicated in eq. (5.48), that is,

Êrr
dCV

test (λl) =
1

TdCV

TdCV∑
t=1

Êrr
dCV,t

test (λl), (8.5)

where,

Êrr
dCV,t

test (λl) =
1∑

i∈SdCV
test(t)

w
∗,test(t)
i,dCV

∑
i∈SdCV

test(t)

w
∗,test(t)
i,dCV L(yi, f̂ l,dCV

tr(t) (xxxi)), (8.6)

where the replicate weights w
∗,test(t)
i,dCV have been defined in eq. (5.27). In contrast,

if we turn to dCV.sw.test = TRUE, then, the error is estimated as defined in eq.

(5.49) for the JKn method, that is,

Êrr
dCV.pool

test (λl) =

∑TdCV
t=1

∑
i∈SdCV

test(t)
w

∗,test(t)
i,dCV.pool · L(yi, f̂

l,dCV
tr(t) (xxxi))∑TdCV

t=1

∑
i∈SdCV

test(t)
w

∗,test(t)
i,dCV.pool

, (8.7)

where w
∗,test(t)
i,dCV.pool have been defined in eq. (8.1). This strategy is usually known in

the literature as pooling cross-validation (see, e.g., Airola et al. (2011), Swets and

Pickett (1982)).

In the following lines, we show some examples of the usage of the function

wlasso(). We can run the wlasso() function in two different ways. On the one

hand, we can indicate the name of the data set, and the names of the columns corre-

sponding to the cluster indicator, strata indicator and sampling weights as character

strings:

set.seed(1)

mdCV <- wlasso(data = simdata_lasso_binomial,

col.y = "y", col.x = 1:50,

family = "binomial",

cluster = "cluster",

strata = "strata",
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weights = "weights",

method = "dCV", k=10, R=1)

On the other hand, we can also incorporate the information of the survey design

by means of the svydesign of the survey package equivalently, i.e.,

mydesign <- survey::svydesign(ids= ~cluster,

strata = ~strata,

weights = ~weights,

nest = TRUE,

data = simdata_lasso_binomial)

set.seed(1)

mdCV <- wlasso(col.y = "y", col.x = 1:50, design = mydesign,

family = "binomial",

method = "dCV", k=10, R=1)

The output object of the function wlasso() is an object of class wlasso. This

object is a list containing 4 or 5 elements, depending on the value set to the argument

print.rw. Below we describe the contents of these elements:

• lambda: A list containing information of two elements:

– grid: A numeric vector indicating all the values considered for the tuning

parameter.

– min: A numeric value indicating the value of the tuning parameter that

minimizes the average error (i.e., selected optimal tuning parameter).

• error: A list containing information of two elements:

– average: A numeric vector indicating the average error corresponding to

each tuning parameter.

– all: A numeric matrix indicating the error of each test set for each tuning

parameter.

• model: A list containing information of two elements in relation to the fitted

models. Note that all these models are fitted considering the whole data set

(and not uniquely the training sets).
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– grid: A list with the information about the models fitted for each of

the tuning parameters considered (i.e., all the values in the lambda$grid

object):

∗ a0: a numeric vector of model intercepts across the whole grid of

tuning parameters (hence, of the same length as lambda$grid).

∗ beta: a matrix of regression coefficients corresponding to all the

considered covariates across the whole grid of tuning parameters (the

number of rows is equal to the number of covariates considered and

the number of columns to the length of lambda$grid).

∗ df: a numeric vector of the degrees of freedom (i.e., the number

of coefficients different from zero) across the whole grid of tuning

parameters (hence, of the same length as lambda$grid).

– min: A list with the information about the model fitted considering

uniquely the tuning parameter that minimizes the error in the training

models (i.e., the optimal tuning parameter selected between the elements

in lambda$grid):

∗ a0: a numeric value indicating the intercept value of the selected

model.

∗ beta: a matrix of regression coefficients corresponding to all the con-

sidered covariates for the selected tuning parameters (the number of

rows is equal to the number of covariates considered and the number

of columns is one).

∗ df: a numeric value indicating the degrees of freedom (i.e., the num-

ber of coefficients different from zero) of the selected model.

• data.rw: A data frame containing the original data set and the replicate

weights added to define training and test sets. Only included in the output

object if print.rw=TRUE.

• call: an object containing the information about the way in which the func-

tion has been run.

As an example, let us show the output obtained in the above-example and saved

into the object mdCV. The tuning parameters’ grid is available in the lambda$grid

object.
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mdCV$lambda$grid

[1] 0.0990628869 0.0902624131 0.0822437491 0.0749374411 0.0682802053

[6] 0.0622143801 0.0566874260 0.0516514713 0.0470628970 0.0428819589

[11] 0.0390724439 0.0356013557 0.0324386293 0.0295568709 0.0269311200

[16] 0.0245386335 0.0223586889 0.0203724046 0.0185625763 0.0169135282

[21] 0.0154109770 0.0140419083 0.0127944638 0.0116578389 0.0106221887

[26] 0.0096785427 0.0088187276 0.0080352962 0.0073214626 0.0066710441

[31] 0.0060784069 0.0055384180 0.0050464002 0.0045980919 0.0041896101

[36] 0.0038174167 0.0034782879 0.0031692864 0.0028877357 0.0026311972

[41] 0.0023974489 0.0021844662 0.0019904042 0.0018135822 0.0016524685

[46] 0.0015056678 0.0013719084 0.0012500319 0.0011389825 0.0010377984

[51] 0.0009456033 0.0008615985 0.0007850564 0.0007153142 0.0006517676

[56] 0.0005938664 0.0005411090 0.0004930383 0.0004492382 0.0004093291

[61] 0.0003729654 0.0003398322 0.0003096424 0.0002821347 0.0002570706

[66] 0.0002342331

The tuning parameter value that minimizes the error in the test sets can easily be

observed in the object lambda$min:

mdCV$lambda$min

[1] 0.01856258

The average error for every tuning parameter considered can be checked in the object

error$average:

mdCV$error$average

[1] 0.5819602 0.5796554 0.5768222 0.5736486 0.5707556 0.5661586

[7] 0.5561894 0.5450417 0.5351562 0.5257853 0.5172037 0.5104355

[13] 0.5040830 0.4990725 0.4939163 0.4894817 0.4859550 0.4833799

[19] 0.4822768 0.4823669 0.4832621 0.4845715 0.4863010 0.4883728

[25] 0.4900422 0.4921848 0.4950723 0.4980396 0.5008377 0.5037935

[31] 0.5069181 0.5100185 0.5131271 0.5160820 0.5189973 0.5219854
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[37] 0.5248796 0.5275667 0.5300389 0.5324649 0.5347991 0.5370334

[43] 0.5391630 0.5411648 0.5430402 0.5448048 0.5464661 0.5480274

[49] 0.5494846 0.5508856 0.5522167 0.5534747 0.5546379 0.5557256

[55] 0.5567348 0.5576666 0.5585061 0.5592891 0.5600148 0.5606996

[61] 0.5613302 0.5618975 0.5624285 0.5628735 0.5632485 0.5636692

In the same line, the error of each training model in the corresponding test set is

also available in the object error$all. We reduce the printed information about all

the errors of each test set for the reduction of used space by printing uniquely the

errors corresponding to the first, optimal and last values of the tuning parameter in

the selected grid and the optimum value that minimizes the error:

mdCV$error$all

[,1] ... [,19] ... [,66]

dCV_r_1_k_1 0.5390746 ... 0.5090328 ... 0.7527343

dCV_r_1_k_2 0.6366243 ... 0.4848907 ... 0.5121032

dCV_r_1_k_3 0.6182985 ... 0.5435209 ... 0.6622000

dCV_r_1_k_4 0.5624325 ... 0.4206534 ... 0.3967353

dCV_r_1_k_5 0.4566277 ... 0.3835127 ... 0.3734332

dCV_r_1_k_6 0.4793457 ... 0.4143847 ... 0.5151107

dCV_r_1_k_7 0.6332941 ... 0.5228030 ... 0.5300957

dCV_r_1_k_8 0.6645730 ... 0.6706335 ... 0.8423438

dCV_r_1_k_9 0.5630955 ... 0.4181648 ... 0.4299665

dCV_r_1_k_10 0.6662359 ... 0.4551716 ... 0.6219693

Finally, we can find information about all the models fitted to the data set with all

the considered tuning parameter values (in the object model$grid), as well as the

optimum model that minimizes the error in the test sets (object model$min). For

example, if we want to observe the number of covariates that end up in the model

for each tuning parameter, we can find it in the following object:

mdCV$model$grid$df

[1] 0 3 3 3 5 8 10 10 12 13 13 14 16 20 21 23 23 23 23 25 27 29

[23] 32 34 35 38 39 40 40 40 41 42 42 43 43 43 45 47 48 48 48 48 49 50

[45] 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
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In case we want to print the total number of covariates that end up in the final model

considering the optimal tuning parameter, then we can run the following code:

mdCV$model$min$df

[1] 23

In the same way, if we want to know the model coefficients estimated considering

the optimal tuning parameter, we continue as follows:

mdCV$model$min$beta

50 x 1 sparse Matrix of class "dgCMatrix"

s0

x.1 .

x.2 .

x.3 0.06834372

x.4 0.57938665

x.5 0.20271896

x.6 .

x.7 -0.08561328

x.8 .

x.9 -0.15569722

x.10 .

x.11 .

x.12 0.23198427

x.13 0.03891243

x.14 .

x.15 .

x.16 .

x.17 0.12863789

x.18 .

x.19 .

x.20 .

x.21 .

x.22 .
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x.23 -0.18228043

x.24 -0.23874770

x.25 -0.10372963

x.26 -0.17349581

x.27 -0.19391779

x.28 -0.26335366

x.29 -0.22867425

x.30 .

x.31 .

x.32 .

x.33 .

x.34 .

x.35 .

x.36 .

x.37 .

x.38 .

x.39 0.05542878

x.40 -0.05654776

x.41 -0.31603315

x.42 .

x.43 .

x.44 -0.07576487

x.45 -0.08442320

x.46 -0.28023181

x.47 -0.14774265

x.48 -0.16958293

x.49 .

x.50 .

Dots indicate that the corresponding variable does not end up in the final model

(i.e., its model coefficient takes the value 0 in the final model).

Note that this function only provides estimates for model coefficients. In order to

obtain the variance estimation of those coefficients, we should fit the corresponding

regression model considering uniquely the subset of those variables that end up in

the final model (i.e., that have coefficient values different to 0) by means of the

survey::svyglm() function.
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8.1.3 wlasso.plot() function

By means of the function wlasso.plot(), we can summarize graphically the infor-

mation of an object of class wlasso, obtained by the function wlasso() as explained

in Section 8.1.2.

wlasso.plot(x)

Table 8.4: Summary and usage of the unique argument incorporated to the function
wlasso.plot().

Argument Description

x An object of class wlasso.

The output object of this function is a graph. It depicts the average error of

the training models for each tuning parameter. The tuning parameters are depicted

in the logarithmic scale. The minimum value of the error is indicated and the

corresponding degrees of freedom of the corresponding model (i.e., the number of

covariates that end up in the model with the tuning parameter that minimizes the

average error of the training sets) is also specified.

For example, if we plot the object mdCV previously obtained by means of the

wlasso() function in Section 8.1.2, the resulting graph can be observed in Figure

8.1.

wlasso.plot(mdCV)
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Figure 8.1: An example of the output graph obtained by means of the function
wlasso.plot().

8.2 wROC R-package

The main goal of the R-package wROC is to estimate the ROC curve, AUC and

optimal cut-off points for individual classification for logistic regression models fitted

to complex survey data. The methods incorporated into this package have been

proposed and described in detail in Chapters 6 and 7. This package is available on

GitHub: https://github.com/aiparragirre/wROC.

In particular, there are two ways to install this package in R. On the one hand,

the whole GitHub repository can be downloaded and the package can manually be

installed in R. On the other hand, we can also run the following code to install the

package directly without the need to download it manually:

library("devtools")

install_github("aiparragirre/wROC/wROC")

library(wROC)

https://github.com/aiparragirre/wROC
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Six main functions are available in this R-package. Table 8.5 summarizes the

principal purposes of these functions. In addition, the particular sections, in which

the methodological details concerning each function can be found, are indicated.

Table 8.5: Summary of the functions available in the R-package wROC, a brief de-
scription of them, and the corresponding references to the sections in which the
implemented methodology has been described.

Function Description Methods

wsp() Estimation of the specificity parame-

ter considering sampling weights.

Sections 6.2.2 and 7.2.2.

wse() Estimation of the specificity parame-

ter considering sampling weights.

Sections 6.2.2 and 7.2.2.

wocp() Estimation of optimal cut-off points

considering sampling weights.

Section 7.2.2.

wauc() Estimation of the AUC considering

sampling weights.

Section 6.2.2.

wroc() Estimation of the ROC curve consid-

ering sampling weights.

Section 6.2.2.

wroc.plot() Plot the ROC curve.

In addition, a data set has been incorporated into the package for illustration

purposes. We can access this data set, once the package has been installed, as

follows:

data(example_data_wroc)

names(example_data_wroc)

"y" "weights" "phat"

This data set contains information about 740 simulated observations. We have

information on the response variable ("y"), sampling weights ("weights"), and

predicted probabilities ("phat") estimated based on a particular logistic regression

model for each observation.

We have not incorporated more information about the sampling design other

than the sampling weights, given that this information is enough for the current

purposes of this package. However, note that all the functions of this package are
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also prepared for working with objects of class survey.design obtained by the

function survey::svydesign() in the same way as explained in Section 8.1.

It should also be noted that traditional unweighted estimates of the sensitivity

and specificity parameters, ROC curve, AUC, and optimal cut-off points can be

obtained with the functions of this package by setting all the sampling weights to 1

(or any other positive value different to 1, but the same for all the units).

In the following sections, each function is explained in detail.

8.2.1 wsp() function

The function wsp() allows estimating the specificity parameter given a cut-off point

and considering sampling weights. The methods implemented in this function have

first been presented in Section 6.2.2 and, afterward, again in Section 7.2.2.

The usage of this function is specified in the following lines, and its arguments

are defined in Table 8.6.

wsp(

response.var,

phat.var,

weights.var = NULL,

tag.nonevent = NULL,

cutoff.value,

data = NULL,

design = NULL

)

Table 8.6: Summary and usage of the arguments incorporated to the function wsp().

Argument Description

response.var A character string with the name of the column indicating the

response variable in the data set or a vector (either numeric or

character string) with information of the response variable for

all the units.

phat.var A character string with the name of the column indicating the

estimated probabilities in the data set or a numeric vector con-

taining estimated probabilities for all the units.
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weights.var A character string indicating the name of the column with sam-

pling weights or a numeric vector containing information of the

sampling weights. It could be NULL if the sampling design is

indicated in the design argument.

tag.nonevent A character string indicating the label used for non-event in

response.var. The default option is tag.nonevent = NULL,

which selects the class with the greatest number of units as

non-event.

cutoff.value A numeric value indicating the cut-off point to be used. No

default value is set for this argument, and a numeric value must

be indicated necessarily.

data A data frame which, at least, must contain information on

the columns response.var, phat.var and weights.var. If

data=NULL, then specific numerical vectors must be included

in response.var, phat.var and weights.var or the sampling

design should be indicated in the argument design.

design An object of class survey.design generated by

survey::svydesign() indicating the complex sampling

design of the data. If design=NULL, information on the data

set (argument data) and/or sampling weights (argument

weights.var) must be included.

In the following lines, we show a couple of examples of the correct usage of the

function wsp(). For example, we can indicate the data set and the column names

indicating the response variable, predicted probabilities and sampling weights for

each unit, as follows:

sp.obj <- wsp(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.nonevent = 0,

cutoff.value = 0.5,

data = example_data_wroc)

Equivalently, we can also include the numeric vectors indicating the values for

the response variable, predicted probabilities and sampling weights for all the units

in the sample:
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sp.obj <- wsp(response.var = example_data_wroc$y,

phat.var = example_data_wroc$phat,

weights.var = example_data_wroc$weights,

tag.nonevent = 0,

cutoff.value = 0.5)

The output of this function is a list of 4 elements containing the following infor-

mation:

• Spw: a numeric value indicating the weighted estimate of the specificity pa-

rameter.

• tags: a list containing one element with the following information:

– tag.nonevent: a character string indicating the label used for non-events.

• basics: a list containing information of the following 6 elements:

– n: a numeric value indicating the number of units in the data set.

– n.nonevent: a numeric value indicating the number of units in the data

set without the event of interest.

– n.nonevent.class: a numeric value indicating the number of units in

the data set without the event of interest that are correctly classified as

non-events based on the selected cut-off point.

– hatN: a numeric value indicating the number of units in the population

that are represented by means of the units in the data set, i.e., the sum

of the sampling weights of all the units in the data set.

– hatN.nonevent: a numeric value indicating the number of non-event

units in the population represented by means of the non-event units in

the data set, i.e., the sum of the sampling weights of the non-event units

in the data set.

– hatN.nonevent.class: number of non-event units represented in the

population by the non-event units in the data set that have been correctly

classified as non-events based on the selected cut-off point, i.e., the sum

of the sampling weights of the correctly classified non-event units in the

data set.
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• call: an object saving the information about the way in which the function

has been run.

For example, the object sp.obj obtained above contains the following informa-

tion:

sp.obj

$Spw

[1] 0.9060005

$tags

$tags$tag.nonevent

[1] "0"

$basics

$basics$n

[1] 740

$basics$n.nonevent

[1] 540

$basics$n.nonevent.class

[1] 464

$basics$hatN

[1] 10000

$basics$hatN.nonevent

[1] 7305

$basics$hatN.nonevent.class

[1] 6618.333
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$call

wsp(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.nonevent = 0,

cutoff.value = 0.5,

data = example_data_wroc)

8.2.2 wse() function

The function wse() can be used to estimate the sensitivity parameter for a given

cut-off point based on its estimated probability of event and considering sampling

weights. The methods implemented in this function have first been presented in

Section 6.2.2 and, afterward, again in Section 7.2.2.

In the following lines, the usage of this function is described and the summary

of the arguments is given in Table 8.7.

wse(

response.var,

phat.var,

weights.var = NULL,

tag.event = NULL,

cutoff.value,

data = NULL,

design = NULL

)

Table 8.7: Summary and usage of the arguments incorporated to the function wse().

Argument Description

response.var A character string with the name of the column indicating the

response variable in the data set or a vector (either numeric or

character string) with information of the response variable for

all the units.

phat.var A character string with the name of the column indicating the

estimated probabilities in the data set or a numeric vector con-

taining estimated probabilities for all the units.
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weights.var A character string indicating the name of the column with sam-

pling weights or a numeric vector containing information of the

sampling weights. It could be NULL if the sampling design is

indicated in the design argument.

tag.event A character string indicating the label used to indicate the

event of interest in response.var. The default option is

tag.event = NULL, which selects the class with the lowest

number of units as event.

cutoff.value A numeric value indicating the cut-off point to be used. No

default value is set for this argument, and a numeric value must

be indicated necessarily.

data Data frame which, at least, must contain information on

the columns response.var, phat.var and weights.var. If

data=NULL, then specific numerical vectors must be included

in response.var, phat.var and weights.var or the sampling

design should be indicated in the argument design.

design An object of class survey.design generated by

survey::svydesign() indicating the complex sampling

design of the data. If design=NULL, information on the data

set (argument data) and/or sampling weights (argument

weights.var) must be included.

In the following lines, we show a couple of examples on how the function wse()

can be used:

se.obj <- wse(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.event = 1,

cutoff.value = 0.5,

data = example_data_wroc)

Or equivalently, the function can also be used in the following way, obtaining

the same result:
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se.obj <- wse(response.var = example_data_wroc$y,

phat.var = example_data_wroc$phat,

weights.var = example_data_wroc$weights,

tag.event = 1,

cutoff.value = 0.5)

The output of this function is a list of 4 elements containing the following infor-

mation:

• Sew: a numeric value indicating the weighted estimate of the sensitivity pa-

rameter.

• tags: list containing one element with the following information:

– tag.event: a character string indicating the label used to indicate event

of interest.

• basics: a list containing information of the following 6 elements:

– n: a numeric value indicating the number of units in the data set.

– n.event: a numeric value indicating the number of units in the data set

with the event of interest.

– n.event.class: a numeric value indicating the number of units in the

data set with the event of interest that are correctly classified as events

based on the selected cut-off point.

– hatN: number of units in the population, represented by all the units in

the data set, i.e., the sum of the sampling weights of the units in the data

set.

– hatN.event: number of units with the event of interest represented in

the population by all the event units in the data set, i.e., the sum of the

sampling weights of the units with the event of interest in the data set.

– hatN.event.class: number of event units represented in the population

by the event units in the data set that have been correctly classified as

events based on the selected cut-off point, i.e., the sum of the sampling

weights of the correctly classified event units in the data set.

• call: an object saving the information about the way in which the function

has been run.
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For example, the object se.obj contains the following information:

se.obj

$Sew

[1] 0.5207174

$tags

$tags$tag.event

[1] "1"

$basics

$basics$n

[1] 740

$basics$n.event

[1] 200

$basics$n.event.class

[1] 116

$basics$hatN

[1] 10000

$basics$hatN.event

[1] 2695

$basics$hatN.event.class

[1] 1403.333

$call

wse(response.var = "y",

phat.var = "phat",

weights.var = "weights",
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tag.event = 1,

cutoff.value = 0.5,

data = example_data_wroc)

8.2.3 wocp() function

Optimal cut-off points for individual classification can be calculated by means of the

function wocp() in the context of complex survey data. This function is based on

the package OptimalCutpoints (López-Ratón et al. 2014), which has been modi-

fied in order to consider sampling weights in the estimation process. The methods

implemented in this function have been described in Section 7.2.2.

The usage of the function is described below and a summary of the arguments

can be found in Table 8.8.

wocp(

response.var,

phat.var,

weights.var = NULL,

tag.event = NULL,

tag.nonevent = NULL,

method = c("Youden", "MaxProdSpSe", "ROC01", "MaxEfficiency"),

data = NULL,

design = NULL

)

Table 8.8: Summary and usage of the arguments incorporated to the function
wocp().

Argument Description

response.var A character string with the name of the column indicating the

response variable in the data set or a vector (either numeric or

character string) with information of the response variable for

all the units.

phat.var A character string with the name of the column indicating the

estimated probabilities in the data set or a numeric vector con-

taining estimated probabilities for all the units.
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weights.var A character string indicating the name of the column with sam-

pling weights or a numeric vector containing information of the

sampling weights. It could be NULL if the sampling design is

indicated in the design argument.

tag.event A character string indicating the label used for the event of

interest in response.var. The default option is tag.event =

NULL, which selects the class with the lowest number of units

as event.

tag.nonevent A character string indicating the label used for non-event in

response.var. The default option is tag.nonevent = NULL,

which selects the class with the greatest number of units as

non-event.

method A character string indicating the method to be used to select

the optimal cut-off point. Choose one of the following methods

(López-Ratón et al. 2014): MaxProdSpSe, ROC01, Youden,

MaxEfficiency.

data A data frame which, at least, must contain information on

the columns response.var, phat.var and weights.var. If

data=NULL, then specific numerical vectors must be included

in response.var, phat.var and weights.var or the sampling

design should be indicated in the argument design.

design An object of class survey.design generated by

survey::svydesign() indicating the complex sampling

design of the data. If design=NULL, information on the data

set (argument data) and/or sampling weights (argument

weights.var) must be included.

A couple of examples of the usage of the function wocp() are given below and

the resulting object is shown:

myocp <- wocp(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.event = 1,

tag.nonevent = 0,

method = "Youden",
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data = example_data_wroc)

Or equivalently:

myocp <- wocp(example_data_wroc$y,

example_data_wroc$phat,

example_data_wroc$weights,

tag.event = 1,

tag.nonevent = 0,

method = "Youden")

The output of this function is an object of class wocp. This object is a list that

contains information about the following 4 elements:

• tags: a list containing two elements with the following information:

– tag.event: a character string indicating the event of interest.

– tag.nonevent: a character string indicating the non-event.

• basics: a list containing information of the following 4 elements:

– n.event: number of units with the event of interest in the data set.

– n.nonevent: number of units without the event of interest in the data

set.

– hatN.event: number of units with the event of interest represented in

the population by all the event units in the data set, i.e., the sum of the

sampling weights of the units with the event of interest in the data set.

– hatN.nonevent: a numeric value indicating the number of non-event

units in the population represented by means of the non-event units in

the data set, i.e., the sum of the sampling weights of the non-event units

in the data set.

• optimal.cutoff: this object is a list of three elements containing the infor-

mation described below:

– method: a character string indicating the method implemented to select

the optimal cut-off point.

– optimal: a list containing information of the following four elements:
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∗ cutoff: a numeric vector indicating the optimal cut-off point(s) that

optimize(s) the selected criterion.

∗ Sew: a numeric vector indicating the estimated sensitivity parame-

ter(s) corresponding to the optimal cut-off point(s) that optimize(s)

the selected criterion.

∗ Spw: a numeric vector indicating the estimated specificity parame-

ter(s) corresponding to the optimal cut-off point(s) that optimize(s)

the selected criterion.

∗ criterion: a numeric value indicating the criterion value optimized

by means of the selected optimal cut-off point(s).

– all: a list containing information on the following four elements:

∗ cutoff: a numeric vector indicating all the cut-off points considered.

∗ Sew: a numeric vector indicating the estimated sensitivity parameters

corresponding to all the considered cut-off points.

∗ Spw: a numeric vector indicating the estimated sensitivity parameters

corresponding to all the considered cut-off points.

∗ criterion: a numeric vector indicating the values of the selected

criterion corresponding to all the considered cut-off points.

• call: an object saving the information about the way in which the function

has been run.

For example, the object myocp obtained above, contains the following informa-

tion. In the object $tags we can check the labels with which the event of interest

and the non-event are indicated:

myocp$tags

$tag.event

[1] "1"

$tag.nonevent

[1] "0"

Some basic information on the number of events and non-events (both, considering

and not the sampling weights) is available in the object $basics:
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myocp$basics

$n.event

[1] 200

$n.nonevent

[1] 540

$hatN.event

[1] 2695

$hatN.nonevent

[1] 7305

The object $optimal.cutoff contains the following information. First, the method

implemented to obtain the optimal cut-off point is saved in the object method, i.e.,

myocp$optimal.cutoff$method

[1] "Youden"

The object optimal contains information on the optimal cut-off point, which can

be accessed as follows:

myocp$optimal.cutoff$optimal

$cutoff

[1] 0.3271605

$Sew

[1] 0.737786

$Spw

[1] 0.8384668
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$criterion

[1] 0.5762528

Finally, the information of all the cut-off points considered is in the object all,

which is printed below (due to the large sizes of the vectors, only the first and last

elements are printed in this document):

myocp$optimal.cutoff$all

$cutoff

[1] 0.0003479797 0.0005718813 0.0006068810 0.0006551310

...

[737] 0.9769322384 0.9782241987 0.9830640592 0.9873385525

$Sew

[1] 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

...

[736] 0.018552876 0.011131725 0.008658009 0.004947434 0.002473717

$Spw

[1] 0.0000000000 0.0009126169 0.0054757016 0.0063883185

...

[737] 1.0000000000 1.0000000000 1.0000000000 1.0000000000

$criterion

[1] 0.0000000000 0.0009126169 0.0054757016 0.0063883185

...

[737] 0.0111317254 0.0086580087 0.0049474335 0.0024737168

8.2.4 wauc() function

The function wauc() can be used to calculate the AUC of a logistic regression

model considering sampling weights with complex survey data. This function uses

the Mann-Whitney U-statistic with marginal sampling weights to calculate the AUC

as defined in eq. (6.27) in Section 6.2.2.
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The function can be used in the following way, which arguments are described

in Table 8.9.

wauc(

response.var,

phat.var,

weights.var = NULL,

tag.event = NULL,

tag.nonevent = NULL,

data = NULL,

design = NULL

)

Table 8.9: Summary and usage of the arguments incorporated to the function
wauc().

Argument Description

response.var A character string with the name of the column indicating the

response variable in the data set or a vector (either numeric or

character string) with information of the response variable for

all the units.

phat.var A character string with the name of the column indicating the

estimated probabilities in the data set or a numeric vector con-

taining estimated probabilities for all the units.

weights.var A character string indicating the name of the column with sam-

pling weights or a numeric vector containing information of the

sampling weights. It could be NULL if the sampling design is

indicated in the design argument.

tag.event A character string indicating the label used for the event of

interest in response.var. The default option is tag.event =

NULL, which selects the class with the lowest number of units

as event.

tag.nonevent A character string indicating the label used for non-event in

response.var. The default option is tag.nonevent = NULL,

which selects the class with the greatest number of units as

non-event.
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data A data frame which must incorporate information on the

columns response.var, phat.var and weights.var. If

data=NULL, then specific numerical vectors must be included

in response.var, phat.var and weights.var or the sampling

design should be indicated in the argument design.

design An object of class survey.design generated by

survey::svydesign indicating the complex sampling de-

sign of the data. If NULL information on the data and weights

must be included in the argument data or as a vector in the

argument weights.var.

For example, one possible usage of the function is the following one:

auc.obj <- wauc(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.event = 1,

tag.nonevent = 0,

data = example_data_wroc)

Or equivalently, the function can also be used in the following way, obtaining

the same result:

auc.obj <- wauc(response.var = example_data_wroc$y,

phat.var = example_data_wroc$phat,

weights.var = example_data_wroc$weights,

tag.event = 1,

tag.nonevent = 0)

The output object of this function is a list of 4 elements containing the following

information:

• AUCw: the weighted estimate of the AUC.

• tags: a list containing two elements with the following information:

– tag.event: a character string indicating the event of interest.

– tag.nonevent: a character string indicating the non-event.
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• basics: a list containing information of the following 4 elements:

– n.event: number of units with the event of interest in the data set.

– n.nonevent: number of units without the event of interest in the data

set.

– hatN.event: number of units with the event of interest represented in

the population by all the event units in the data set, i.e., the sum of the

sampling weights of the units with the event of interest in the data set.

– hatN.nonevent: a numeric value indicating the number of non-event

units in the population represented by means of the non-event units in

the data set, i.e., the sum of the sampling weights of the non-event units

in the data set.

• call: an object saving the information about the way in which the function

has been run.

For example, the object auc.obj obtained above contains the following informa-

tion:

auc.obj

$AUCw

[1] 0.863269

$tags

$tags$tag.event

[1] "1"

$tags$tag.nonevent

[1] "0"

$basics

$basics$n.event

[1] 200

$basics$n.nonevent
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[1] 540

$basics$hatN.event

[1] 2695

$basics$hatN.nonevent

[1] 7305

$call

wauc(response.var = "y",

phat.var = "phat",

weights.var = "weights",

tag.event = 1,

tag.nonevent = 0,

data = example_data_wroc)

8.2.5 wroc() function

The function wROC() allows calculating all the information about the ROC curve of

a logistic regression model considering sampling weights with complex survey data,

which has been defined in eq. (6.18) in Section 6.2.2. Some basic information on

the optimal cut-off points (obtained by means of the function wocp() described in

detail in Section 8.2.3) can also be included to the output object.

In the following lines, we indicate the usage of the function and the information

on the arguments is summarized in Table 8.10.

wroc(

response.var,

phat.var,

weights.var = NULL,

tag.event = NULL,

tag.nonevent = NULL,

data = NULL,

design = NULL,

cutoff.method = NULL
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)

Table 8.10: Summary and usage of the arguments incorporated to the function
wroc().

Argument Description

response.var A character string with the name of the column indicating the

response variable in the data set or a vector (either numeric or

character string) with information of the response variable for

all the units.

phat.var A character string with the name of the column indicating the

estimated probabilities in the data set or a numeric vector con-

taining estimated probabilities for all the units.

weights.var A character string indicating the name of the column with sam-

pling weights or a numeric vector containing information of the

sampling weights. It could be NULL if the sampling design is

indicated in the design argument.

tag.event A character string indicating the label used for the event of

interest in response.var. The default option is tag.event =

NULL, which selects the class with the lowest number of units

as event.

tag.nonevent A character string indicating the label used for non-event in

response.var. The default option is tag.nonevent = NULL,

which selects the class with the greatest number of units as

non-event.

data Data frame which must incorporate information on the

columns response.var, phat.var and weights.var. If

data=NULL, then specific numerical vectors must be included

in response.var, phat.var and weights.var or the sampling

design should be indicated in the argument design.

design An object of class survey.design generated by

survey::svydesign indicating the complex sampling de-

sign of the data. If NULL information on the data and weights

must be included in the argument data or as a vector in the

argument weights.var.
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cutoff.method A character string indicating the method to be used to select

the optimal cut-off point. If cutoff.method = NULL, then no

optimal cut-off point is drawn. If an optimal cut-off point is to

be drawn, one of the following methods needs to be selected:

Youden, MaxProdSpSe, ROC01, MaxEfficiency.

In the following lines, we give a couple of examples of how the function wroc()

can be used. For example, we can set the information of the data set and indicate

the column names for the response variable, predicted probabilities and sampling

weights:

mycurve <- wroc(response.var = "y",

phat.var = "phat",

weights.var = "weights",

data = example_data_wroc,

tag.event = 1,

tag.nonevent = 0,

cutoff.method = "Youden")

Or equivalently, we can also use numeric vectors for these values, i.e.,

mycurve <- wroc(response.var = example_data_wroc$y,

phat.var = example_data_wroc$phat,

weights.var = example_data_wroc$weights,

tag.event = 1,

tag.nonevent = 0,

cutoff.method = "Youden")

The output object of this function is a list of class wroc, which contains infor-

mation about the weighted ROC curve of a logistic regression model and some of its

components. In particular, this list contains a total of 5 or 6 elements (depending

on the selected arguments) with the following information:

• wroc.curve: this element is a list that contains three numerical vectors.

Specifically,

– Sew.values: a vector of all the different values for the weighted estimate

of the sensitivity across all the possible cut-off points.
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– Spw.values: a vector of all the different values for the weighted estimate

of the specificity across all the possible cut-off points.

– cutoffs: this vector contains all the cut-off points that have been con-

sidered to estimate sensitivity and specificity parameters.

• wauc: a numeric value indicating the area under the weighted estimate of the

ROC curve. Actually, this value is calculated following eq. (6.26).

• optimal.cutoff: if the argument cutoff.method != NULL, this object is a

list containing the 4 elements described below:

– method: character string indicating the method implemented to calculate

the optimal cut-off point as explained in Section 8.2.3.

– cutoff.value: the optimal cut-off point value.

– Spw: the weighted estimate of the specificity for the optimal cut-off point

value (indicated in cutoff.value).

– Sew: the weighted estimate of the sensitivity for the optimal cut-off point

value (indicated in cutoff.value).

• tags: a list containing two elements with the following information:

– tag.event: a character string indicating the event of interest.

– tag.nonevent: a character string indicating the non-event.

• basics: a list containing information of the following 4 elements:

– n.event: number of units with the event of interest in the data set.

– n.nonevent: number of units without the event of interest in the data

set.

– hatN.event: number of units with the event of interest represented in

the population by all the event units in the data set, i.e., the sum of the

sampling weights of the units with the event of interest in the data set.

– hatN.nonevent: a numeric value indicating the number of non-event

units in the population represented by means of the non-event units in

the data set, i.e., the sum of the sampling weights of the non-event units

in the data set.
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• call: an object saving the information about the way in which the function

has been run.

For example, let us show one by one each element of the object mycurve obtained

above. First, we can access to the information about the ROC curve as follows (due

to the large size of the vectors, we only print information on the first and last

elements):

mycurve$wroc.curve

$Sew.values

[1] 0.000000000 0.002473717 0.004947434 0.008658009 0.011131725

...

[741] 1.000000000

$Spw.values

[1] 1.0000000000 1.0000000000 1.0000000000 1.0000000000

...

[741] 0.0000000000

$cutoffs

[1] 1.0000000000 0.9852013059 0.9806441289 0.9775782185

...

[741] 0.0000000000

The value of the area under the curve can be seen as follows:

mycurve$wauc

[1] 0.863269

Information related to the optimal cut-off point is shown below:

mycurve$optimal.cutoff
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$method

[1] "Youden"

$cutoff.value

[1] 0.3271605

$Spw

[1] 0.8384668

$Sew

[1] 0.737786

Finally, the rest of the information saved in the object, which is mostly related to

the data set, is given in the following lines:

$tags

$tags$tag.event

[1] "1"

$tags$tag.nonevent

[1] "0"

$basics

$basics$n.event

[1] 200

$basics$n.nonevent

[1] 540

$basics$hatN.event

[1] 2695

$basics$hatN.nonevent

[1] 7305
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$call

wroc(response.var = "y", phat.var = "phat", weights.var = "weights",

tag.event = 1, tag.nonevent = 0, data = example_data_wroc,

cutoff.method = "Youden")

attr(,"class")

[1] "wroc"

8.2.6 wroc.plot() function

The function wroc.plot() allows to graph the information on an object of class

wroc, obtained by means of the function wroc() as explained in Section 8.2.5.

Below, we show the usage of this function and the arguments are described in

Table 8.11.

wroc.plot(

x,

print.auc = TRUE,

print.cutoff = FALSE,

col.cutoff = "red",

cex.text = 0.75,

round.digits = 4

)

Table 8.11: Summary and usage of the arguments incorporated to the function
wroc.plot().

Argument Description

x An object of class wroc obtained by means of the function wroc.

print.auc A logical value. If TRUE, the value of the area under the ROCw

curve (AUCw) is printed (default print.auc = TRUE).

print.cutoff A logical value. If TRUE, the value of the optimal cut-off point,

and the corresponding weighted estimates of the sensitivity

and specificity parameters are printed (default print.cutoff

= TRUE).

col.cutoff A character string indicating the color in which the cut-off point

is depicted. The default option is col.cutoff = "red".
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cex.text A numerical value indicating the size with which the informa-

tion of the AUCw and the optimal cut-off point is printed. The

default option is cex.text = 0.75.

round.digits A numeric value indicating the number of digits that will be

employed when printing the information about the AUCw and

optimal cut-off point. The default option is round.digits =

4.

The output value of this function is a plot. For example, if we take the object

mycurve, obtained in Section 8.2.5, and we run the following function, we obtain

the graph depicted in Figure 8.2.

wroc.plot(x = mycurve,

print.auc = TRUE,

print.cutoff = TRUE)
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Figure 8.2: An example of the output graph obtained by means of the function
wroc.plot().
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CHAPTER9
Discussion

In this chapter, we describe the general conclusions and the main limitations of this

Ph.D. thesis (Section 9.1). In addition, we present the research questions we aim to

address in the future, which are summarized in Section 9.2. Finally, in Section 9.3,

we briefly present the main contributions that emerged from this research work.

9.1 General conclusions and limitations

The main objective of this Ph.D. dissertation has been to make new proposals for

the development and validation of prediction models for complex survey data. The

different goals addressed in this dissertation were inspired by real problems we came

across when analyzing real-life survey data provided by EUSTAT. The Ph.D. candi-

date and advisors are really grateful to EUSTAT for providing them with these data

sets, letting them work with this data and for being the major source of inspiration

to carry out this thesis.

We feel it is worth mentioning that this thesis has contributed to three impor-

245
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tant aspects of statistical research: statistical proposal, software development, and

application with social impact. From a statistical point of view, four contributions

have been made and published in four scientific papers from high-impact journals

in the category of “Statistics & Probability”, each of them related to a different

step of the development process of prediction models. Specifically, we contributed

to: (1) model estimation process by means of a comparative simulation study by

analyzing the performance of different existing estimation methods to estimate lo-

gistic regression model parameters with complex survey data (described in detail

in Chapter 4); (2) variable selection by proposing a new design-based linear and

logistic LASSO regression model estimation (Chapter 5); (3) discrimination ability

of logistic regression models with design-based proposals for estimating the ROC

curve and AUC (Chapter 6); and, (4) individual classification with new proposals

that consider sampling weights for estimating optimal cut-off points (Chapter 7).

In relation to the software development, all the above-mentioned statistical propos-

als have been incorporated into two R-packages that are freely available (wlasso

and wROC, described in detail in Chapter 8), so that researchers and data analysts

that deal with complex survey data in their daily practice can easily apply these

advances in their analysis. Finally, as a significant contribution of this doctoral the-

sis at a practical level, we believe it is worth mentioning the social impact of this

thesis, given that EUSTAT is currently publishing the results obtained by means

of prediction models developed considering the proposals described throughout this

dissertation on their official website11,12.

Since the objective of this doctoral thesis has been to address the questions that

emerged when developing prediction models for the data provided by EUSTAT, this

dissertation has focused on complex survey data that meet certain characteristics

that are worth mentioning. We describe these limitations in the following lines.

First, throughout this dissertation, we have considered sufficiently large sample

sizes, which is a common situation when working with data related to official statis-

tics. However, an important issue related to sample size is the difficulty of obtaining

good estimates for those areas where not much data has been collected. This type of

problem is known as Small Area Estimation (SAE) in the literature, and other tech-

niques different from the ones considered in this dissertation have been developed in

this field (see, e.g., Molina and Rao (2010), Rao and Molina (2015)). The problem

11https://www.eustat.eus/estadisticas/tema_150/opt_1/tipo_1/ti_encuesta-sobre-l

a-sociedad-de-la-informacion/temas.html
12https://www.eustat.eus/estadisticas/tema_37/opt_0/tipo_1/ti_poblacion-en-relac

ion-con-la-actividad-pra/temas.html

https://www.eustat.eus/estadisticas/tema_150/opt_1/tipo_1/ti_encuesta-sobre-la-sociedad-de-la-informacion/temas.html
https://www.eustat.eus/estadisticas/tema_150/opt_1/tipo_1/ti_encuesta-sobre-la-sociedad-de-la-informacion/temas.html
https://www.eustat.eus/estadisticas/tema_37/opt_0/tipo_1/ti_poblacion-en-relacion-con-la-actividad-pra/temas.html
https://www.eustat.eus/estadisticas/tema_37/opt_0/tipo_1/ti_poblacion-en-relacion-con-la-actividad-pra/temas.html
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with some of these techniques is that they do not consider the sampling weights in

the estimation of the models. It would be interesting to make a comparative study

between the estimates obtained by prediction models that have been considered

in this thesis and the traditional SAE techniques for this purpose in future work,

particularly in the context of informative sampling designs.

Moreover, we have not worked with missing data since, in practice, we have not

had to deal with them either when working with real data sets provided by EUSTAT.

Therefore, this dissertation and related research have not considered the effect that

missing values may have in this context. Nevertheless, this is an important issue in

the context of complex surveys and should be analyzed further (see, e.g., Kalpourtzi

et al. (2023)).

In this dissertation, we have focused exclusively on probability samples. There

also exist other types of samples, known as non-probability samples in the literature

(Vehovar et al. 2016). The main difference between probability and non-probability

samples is that, in the latter, participants are not randomly selected, and hence,

sampling probabilities cannot be calculated for those units. An increasingly popular

example of non-probability samples is voluntary online surveys (Andrade 2020, Cal-

legaro et al. 2015). Techniques for blending probability and non-probability samples

are also emerging in the literature (see, e.g., Robbins et al. (2021), Rueda et al.

(2023)). It would be interesting to try to develop techniques for fitting prediction

models with non-probability samples in the future.

Besides, among the different types of probability samples, only two of them

have been considered throughout this dissertation: the one-stage stratified sampling

design and the two-stage stratified cluster sampling design. The sampling can be

carried out in more than two sampling stages, which are usually known in the liter-

ature as multistage sampling designs (see, e.g., Kish (1965), Särndal et al. (2003)).

Two-phase sampling designs are also common in the literature (Breslow et al. 2009,

Neyman 1938, Saegusa and Wellner 2013, Särndal et al. 2003). In this kind of design,

the sample obtained following a complex sampling design in phase one is sampled

for the second time in phase two, which leads to smaller but more efficient samples

given that information on more variables may be obtained for a reduced sample (see,

e.g., Rivera-Rodriguez et al. (2019)). However, these kinds of designs have not been

considered in this dissertation, and the results obtained are limited to the scenarios

that have been drawn.

Similarly, it is worth noting that although two types of sampling designs have

been used in this dissertation, we have not considered both of them in all chapters.
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For example, in the simulation study carried out in Chapter 5 for variable selection,

we only considered simulated data derived from two-stage stratified cluster sampling

designs. However, the application of the methodology proposed is straightforward

for data derived from one-stage stratified sampling designs. The package wlasso

can also handle one-stage stratified samples. We expect the performance of different

replicate weights methods to be similar to the scenario in which no cluster variables

were considered, but a new simulation study should be performed in order to confirm

this assumption.

In contrast, the two real surveys provided by EUSTAT that we started working

with (ESIE described in Section 3.1 and PRA in Section 3.2) follow a one-stage

stratified sampling design, so the research proposals in which we worked first in

time (Chapter 4 and 7) only considered this sampling design. In the following

paragraphs, we detail the limitations of the works described in these two chapters,

focusing on the limitations of the considered sampling design and data sets.

In Chapter 4, a simulation study based on real survey data derived from one-stage

stratified sampling designs was conducted to analyze the performance of three esti-

mation methods to estimate the logistic regression parameters. The three methods

that we considered in the simulation study are the unweighted logistic regression

model, the weighted logistic regression model, and the unweighted mixed model.

However, we believe it would be interesting to extend this simulation study to two-

stage stratified cluster sampling designs, and we think that results may slightly differ

from the ones shown in Chapter 4. For example, in line with the results shown in

previous studies (see, e.g., Lumley and Scott (2017)), we believe that the weighted

estimates may have a larger variance than the one we have observed. In addition,

the mixed model has shown poor performance in the simulation study conducted in

Chapter 4. However, the mixed model is more commonly used in the context of two-

stage stratified cluster samples than in one-stage stratified samples. Thus, we believe

it would be a fairer comparison for the mixed model to analyze its performance in

two-stage samples.

Similarly, in the simulation study conducted in Chapter 7 for the estimation of

optimal cut-off points, we only considered one-stage stratified samples. Nevertheless,

the proposals made in this chapter can also be applied to two-stage stratified cluster

samples, and the package wROC can also handle these sorts of samples. The perfor-

mance of proposed methods in the context of two-stage stratified cluster sampling

designs can be analyzed by replicating the simulation study carried out in Chapter

6, which considers both one-stage and two-stage sampling designs. The Ph.D. can-
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didate and her advisors do not expect large differences between the results obtained

from the two different sampling designs.

Lastly, even in the studies described in Chapters 4, 6 and 7, in which real surveys

were considered, the selection of the data set used in each study differ. Let us explain

the reason for these differences in the choice of the data used in each study.

In the simulation study carried out in Chapter 4, both surveys (ESIE and PRA)

were considered in order to point out the differences in the performance of analyzed

estimation methods in one-stage stratified samples. However, regarding the results

obtained in this study, we concluded that the ESIE survey is more interesting so as

to highlight the problems we may come across when working with complex survey

data. Therefore, we only considered the ESIE survey in the studies carried out in

Chapters 6 and 7.

Furthermore, even when selecting the ESIE survey, there are differences in the

data sets we considered in different studies. In the studies described in Chapters 4

and 6, all the establishments of the BC were considered, which is in line with the

models we fitted in practice for EUSTAT. In contrast, only the establishments with at

least ten employees were considered in the study carried out in Chapter 7 related to

the estimation of optimal cut-off points. The reason for conducting the study in this

way is also related to a decision we made in practice. EUSTAT technicians suggested

that we should obtain different cut-off points for those establishments with at least

ten employees and small establishments with less than ten employees. The reason

is that the behavior of these two types of establishments is different, and we could

obtain better results by doing this analysis separately for both groups. It should be

noted that, in this case, it makes sense to do the analysis separately for both groups

since the number of employees is one of the variables used in the sampling design,

so this subsample properly represents the corresponding population. However, the

problems that may arise when obtaining the cut-off points separately according to

a variable that has not been previously used for stratification should be further

analyzed.

9.2 Further Research

Even though the initial objective of this dissertation has been fulfilled, we believe

that there is still plenty of room for improvement in the development and validation

of prediction models for complex survey data. Below, we summarize the open issues

and new research lines that have emerged from this dissertation and the collaboration
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with EUSTAT, which we aim to address in the future. In order to differentiate

the different research lines more clearly, we separate the different future objectives

according to the step of the development of prediction models to which they belong.

Table 9.1 is displayed as a summary of these research ideas.

Some of the further research ideas described below are related to the transference

of the proposed methods to real-life problems. For example, the Health Survey

carried out by the Healthy Department of the Basque Country13 is one of the surveys

to which we would like to apply the methods developed in this dissertation. In

addition, the Ph.D. candidate and her advisors have access to the population of

COVID-19-positive patients in the Basque Country, which was collected during the

pandemic (Portuondo-Jiménez et al. 2023). Having a real population data set allows

us to study some properties based on a real population rather than in simulated

data. In addition, we will be able to sample it following any sampling design we are

interested in.

Estimation

We set below a list of issues related to the model estimation to be addressed in the

future:

E1. Two-stage stratified cluster samples: a simulation study.

As explained in Section 9.1, we believe it would be interesting to replicate the

simulation study carried out in Chapter 4 for real survey data derived from a

two-stage stratified cluster sampling design and compare the performance of

the methods analyzed in Chapter 4 in this context. For this purpose, we will

use the above-mentioned population of COVID-19-positive patients in BC.

E2. Comparison to Small Area Estimation (SAE) techniques.

As discussed in Section 9.1, obtaining good estimates for areas in which small

data is collected is a big challenge in the context of complex surveys. To

compare the performance of different SAE techniques to the design-based pre-

diction models considered in this dissertation is part of further research.

E3. Patient Reported Outcomes (PRO): Beta-binomial regression.

Nowadays, personalized healthcare is becoming increasingly relevant in clinical

research, and the interest in patient-reported outcome (PRO) measurements is

13https://www.euskadi.eus/encuesta-salud/inicio/

https://www.euskadi.eus/encuesta-salud/inicio/


9.2. Further Research 251

growing. The beta-binomial regression models have been proposed in the lit-

erature for analyzing PROs (see, e.g., Arostegui et al. (2007), Najera-Zuloaga

et al. (2018)). As far as we know, there is a lack of proposals to consider

complex sampling designs in the estimation process of beta-binomial regres-

sion models. Therefore, another challenge that the Ph.D. candidate and her

advisors aim to face in the future is to study the effect of complex sampling

designs in the context of beta-binomial regression.

Variable selection

Several new research lines have emerged related to the variable selection proposal

described in Chapter 5 after discussing the research done with other colleagues in

several conferences at the national and international levels. Some of those proposals

have been previously mentioned in that chapter and are now summarized below:

V1. Application and simulation study based on a real data set.

We aim to apply the methodological proposal described in Chapter 5 to a

real data set. In this study, we aim to focus on the variables that end up in

the final model and analyze whether the variables selected by our proposal

make sense in daily practice or whether variables of high scientific interest are

discarded from the model instead. This study will be carried out with the

above-mentioned COVID-19-positive database, which will be sampled follow-

ing different complex sampling designs. LASSO regression models have been

developed to select relevant covariates in practice, so the models obtained with

the methodology proposed in Chapter 5 will be compared to those that have

shown clinical relevance in practice (Portuondo-Jiménez et al. 2023).

V2. Ridge regression and elastic nets.

As mentioned in Chapter 5, we aim to extend the methodology proposed to

fit LASSO regression models to other types of models beyond LASSO, such

as ridge regression (Hoerl and Kennard 1970, Kidwell and Brown 1982) and

elastic nets (Zou and Hastie 2005). The validity of the proposals to fit those

models will be analyzed by means of a simulation study.

V3. Statistical Boosting with complex survey data.

Nowadays, more advanced statistical techniques beyond LASSO can be used

for variable selection. In particular, Statistical Boosting algorithms are being

increasingly used in the last years in different modeling contexts (Mayr and
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Hofner 2018, Mayr et al. 2017). As further research, we aim to study the

adequacy of using Statistical Boosting with complex survey data and extend

the proposals made in Chapter 5 to this context.

V4. Analysis of the design-effect: dCV vs w-SRSCV.

One of the issues we have pointed out in Chapter 5 is the differences observed

between dCV and w-SRSCV, depending on the scenario. Specifically, when

including cluster-level variables in the analysis, the performance of both meth-

ods differs. We believe that the inclusion of cluster-level variables leads to

an increase in the effect of the sampling design, which leads to different per-

formances of both methods. This would be in line with the results obtained

by Lumley and Scott (2015), in which the effect of the sampling design has

shown an important role in the model selection. In particular, Lumley and

Scott (2015) propose to account for the design-effect by means of the trace

of the variance-covariance matrix of the model coefficients to estimate the

design-based AIC and BIC parameters. Given the similarities of both studies,

we believe that the differences between dCV and w-SRSCV methods may be

quantified by means of that trace. Thus, the magnitude of the relationship

between the trace and the differences between the methods will be analyzed

as further research.

Discrimination ability

In the context of the estimation of the discrimination ability of logistic regression,

we aim to continue making proposals in the following directions (some of which have

been previously mentioned in Chapter 6):

D1. Simulation study based on a real data set.

The simulation study conducted in Chapter 6 was based on artificial data.

We believe that it would also be interesting to conduct a simulation study

based on real survey data in order to analyze the performance of the proposed

estimators in a more realistic scenario. This study will be carried out by

sampling the COVID-19-positive population following one-stage and two-stage

sampling designs.

D2. Optimism correction.

In the simulation study of Chapter 6, we have observed that the proposed

weighted AUC estimator slightly overestimates the true population parameter.



9.2. Further Research 253

As pointed out in Chapter 6, we believed that the optimism observed in the

weighted estimates is due to the “overfitting” as the same data is used to fit

the model and estimate the AUC (see, e.g., Steyerberg (2008)). We believe it

would be interesting to analyze the performance of different replicate weights

methods to correct for the optimism of the proposed AUC estimator in the

context of complex survey data.

D3. Variance estimation.

Another interesting research line that emerged from Chapter 6 is the estimation

of the variance of the proposed ROC curve and AUC estimators. On the one

hand, we aim to analyze the validity of replicate weights methods such as the

Jackknife Repeated Replication (JKn) and the Balanced Repeated Replication

(BRR) (proposed by Yao et al. (2015)) as well as the Rescaling Bootstrap (used

in the application of Chapter 6) to estimate the variance of those estimators.

On the other hand, it would be interesting to obtain analytical expressions for

the variance of the proposed AUC and ROC curve estimators. Comparison of

the performance of different replicate weights methods to estimate the variance

of the proposed estimators by means of a simulation study, as well as the

analytical expression for the variance of those parameters, will be developed

as future work.

D4. Optimal sampling design for the maximization of the AUC.

So far, we have focused on the development of prediction models for a given

sample obtained based on some particular sampling design. However, another

interesting question is how to define an optimal sampling design (see, e.g., Chen

and Lumley (2022)). As a new research line, we aim to focus on the definition

of optimal sampling designs for the optimization of some parameters, such

as the maximization of the discrimination ability in terms of the AUC of the

models to be fitted. Although we have worked on this slightly during the last

few years (we have made one contribution to an international conference), we

would like to analyze this further.

Estimation of optimal cut-off points

In the following lines, we summarize the further ideas we aim to address in the future

regarding the estimation of optimal cut-off points:
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C1. Two-stage stratified cluster samples: a simulation study.

The simulation study carried out in Chapter 6 will be extended to analyze the

performance of the proposed methods for selecting the optimal cut-off points

for individual classification under two-stage sampling designs.

C2. Optimal cut-off points based on a non-design categorical variable.

As stated in Section 9.1, in Chapter 7, we obtained optimal cut-off points

for a subset of the whole population based on a categorical variable that was

previously used as a stratification variable. However, the validity of obtaining

different cut-off points for different categories of a variable that has not been

used in the stratification process could be problematic due to the fact that

the units in the sample subset may not properly represent the corresponding

population. This issue will be analyzed as further research.

C3. Optimal categorization of continuous covariates.

However, beyond the individual classification, another context in which the

estimation of optimal cut-off points plays an important role is the categoriza-

tion of continuous covariates to be included in prediction models (Barrio et al.

2017). As further work, we would like to extend this methodology so that it

can be applied to complex survey data.
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9.3 Main Contributions

In this section, we summarize the information about the main contributions raised

from this Ph.D. thesis, including scientific papers, developed software, the most

important contributions to prestigious national and international conferences, and

the most remarkable grants and awards received by the Ph.D. candidate directly

related to this dissertation.

Research articles

Iparragirre, A., Barrio, I., Aramendi, J. & Arostegui, I. (2022).

Estimation of cut-off points under complex-sampling design data.

SORT-Statistics and Operations Research Transactions, 46(1),

137–158.

Iparragirre, A., Lumley, T., Barrio, I., & Arostegui, I. (2023).

Variable selection with LASSO regression for complex survey data.

Stat, 12(1), e578.

Iparragirre, A., Barrio, I., & Arostegui, I. (2023). Estimation of

the ROC curve and the area under it with complex survey data.

Stat, 12(1), e635.

Iparragirre, A., Barrio, I., Aramendi, J., & Arostegui, I. (2024) Es-

timation of logistic regression parameters for complex survey data:

simulation study based on real survey data. SORT - Statistics and

Operations Research Transactions, (in press).

Software

1. wlasso R-package: https://github.com/aiparragirre/wlasso

2. wROC R-package: https://github.com/aiparragirre/wROC

Invitied contributions

1. On the development of prediction models for complex survey data. Research

Meeting, Department of Statistics, University of Auckland. Auckland, Septem-

ber 2022.

https://github.com/aiparragirre/wlasso
https://github.com/aiparragirre/wROC
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2. Dealing with sampling weights on the development of prediction models for

complex survey data. Grup de Recerca en Bioestad́ıstica i Bioinformatica

(GRBIO). Barcelona, June 2021.

3. 10th Conference of the Eastern Mediterranean Region of the International Bio-

metric Society (EMR-IBS). Development and validation of prediction models

with complex survey data: from the outset to new proposals. Iparragirre A,

Barrio I, Arostegui I. Jerusalem, December 2018.

Contributions

1. 16th International Conference of the ERCIM WG on Computational and

Methodological Statistics. On Lasso regression for complex survey data. A

new replicate weights cross-validation proposal. Iparragirre A, Lumley T, Bar-

rio I, Arostegui I. Berlin, December 2023.

2. XIX Conferencia Española y VIII Encuentro Iberoamericano de Biometŕıa.

Variable selection with LASSO regression for complex survey data. Iparragirre

A, Lumley T, Barrio I, Arostegui I. Vigo, June 2023.

3. XXXI International Biometric Conference. Optimal sampling to Maximize

the Predictive Performance of Logistic Regression Models for Complex Survey

Data. Iparragirre A, Barrio I, Gómez-Melis G. Riga, July 2022.

4. XXXIX Congreso Nacional de Estad́ıstica e Investigación Operativa y XIII

Jornadas de Estad́ıstica Pública. AUC estimation proposal under complex

survey data. Iparragirre A, Barrio I., Aramendi J, Arostegui I. Granada, June

2022.

5. XVIII Congreso de Biometŕıa. Estimation of the area under the ROC curve

with complex survey data. Iparragirre A, Barrio I, Arostegui I. Madrid, May

2022.

6. V Congreso de Jóvenes investigadores en Diseño de Experimentos y Bioes-

tad́ıstica. Estimation of logistic regression model coefficients for complex sur-

vey data: real data based simulation study. Iparragirre A, Barrio I, Arostegui

I. Almeŕıa, November 2021.

7. 30th International Biometric Conference. Estimating Logistic Regression Pa-

rameters for Complex Survey Data: a Comparative Study. Iparragirre A,
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Barrio I, Arostegui I. Online, November 2020.

8. XVII Conferencia Española y VII Encuentro Iberoamericano de Biometŕıa

(CEB-EIB 2019). Dealing with missing predictor variables in logistic regres-

sion models with complex survey data. Iparragirre A, Barrio I, Aramendi J,

Arostegui I. Valencia, June 2019.

9. XXXVII Congreso Nacional de Estad́ıstica e Investigación Operativa y XI

Jornadas de Estad́ıstica Pública. Modeling probabilities for complex survey

data. Iparragirre A, Barrio I, Arostegui I. Oviedo, June 2018.

Research stays

1. Department of Statistics, The University of Auckland. Auckland, July 2022-

October 2022.

2. Department of Statistics and Operations Research, Universitat Politecnica de

Catalunya. Barcelona, November 2021 - January 2022.

3. Department of Statistics and Operations Research, Universitat Politecnica de

Catalunya. Barcelona, June 2021.

Grants and awards

1. Award for the best work presented by a young researcher for the work entitled:

Estimation of the area under the ROC curve with complex survey data.. XVIII

Congreso de Biometŕıa. Madrid, May 2022.

2. Grant from BIOSTATNET for a two-weeks research stay in the Universitat

Politecnica de Catalunya. Barcelona, June 2021.

3. Predoctoral grant (PIF18/213). University of the Basque Country UPV/EHU.

June 2019.
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-

Effects Models Using lme4. Journal of Statistical Software, 67(1):1–48.

Binder, D. A. (1981). On the variances of asymptotically normal estimators from

complex surveys. Survey Methodology, 7(3):157–170.

Binder, D. A. (1983). On the variances of asymptotically normal estimators from

complex surveys. International Statistical Review, 51(3):279–292.

Binder, D. A. and Roberts, G. (2009). Design- and Model-Based Inference for

Model Parameters. In Handbook of Statistics, volume 29, pages 33–54. Elsevier,

Amsterdam.

Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. E., and Kulich, M.

(2009). Improved Horvitz–Thompson Estimation of Model Parameters from Two-

phase Stratified Samples: Applications in Epidemiology. Statistics in Biosciences,

1(1):32–49.

Brewer, K. R. W. and Mellor, R. W. (1973). The effect of sample structure on

analytical surveys. Australian Journal of Statistics, 15(3):145–152.

Callegaro, M., Manfreda, K. L., and Vehovar, V. (2015). Web Survey Methodology.

SAGE Publications Ltd, London.

Canty, A. J. and Davison, A. C. (1999). Resampling-based Variance Estimation

for Labour Force Surveys. Journal of the Royal Statistical Society: Series D (The

Statistician), 48(3):379–391.

Chambers, R. L. and Skinner, C. J. (2003). Analysis of Survey Data. John Wiley

& Sons, New York.



References 261

Chambless, L. E. and Boyle, K. E. (1985). Maximum likelihood methods for complex

sample data: logistic regression and discrete proportional hazards models. Commu-

nications in Statistics-Theory and Methods, 14(6):1377–1392.

Chen, J.-Y., Feng, J., Wang, X.-Q., Cai, S.-W., Dong, J.-H., and Chen, Y.-L. (2015).

Risk scoring system and predictor for clinically relevant pancreatic fistula after pan-

creaticoduodenectomy. World Journal of Gastroenterology, 21(19):5926–5933.

Chen, T. and Lumley, T. (2022). Optimal sampling for design-based estimators of

regression models. Statistics in Medicine, 41(8):1482–1497.

Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons, New York.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and

Psychological Measurement, 20(1):37–46.

Copas, J. B. (2002). Overestimation of the receiver operating characteristic curve

for logistic regression. Biometrika, 89(2):315–331.

Cox, D. and Snell, E. J. (1991). Analysis of Binary Data. Chapman & Hall/CRC,

London, 2 edition.

DeMets, D. and Halperin, M. (1977). Estimation of a Simple Regression Coefficient

in Samples Arising from a Sub-Sampling Procedure. Biometrics, 33(1):47–56.

Diggle, P., Liang, K.-Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data.

Oxford University Press, Oxford, 2 edition.

Efron, B. and Tibshirani, R. (1994). An Introduction to the Bootstrap. Chapman

and Hall/CRC, New York.

Fisher, R. A. (1992). Statistical Methods for Research Workers. In Breakthroughs

in Statistics: Methodology and Distribution, pages 66–70. Springer, New York.

Fisher, S., Bennett, C., Hennessy, D., Robertson, T., Leyland, A., Taljaard, M.,

Sanmartin, C., Jha, P., Frank, J., Tu, J. V., Rosella, L. C., Wang, J., Tait, C.,

and Manuel, D. G. (2020). International population-based health surveys linked to

outcome data: A new resource for public health and epidemiology. Health Reports,

31(7):12–23.



262 References

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Gen-

eralized Linear Models via Coordinate Descent. Journal of Statistical Software,

33(1):1–22.

Fuller, W. A. (1975). Regression analysis for sample survey. Sankhya, 37(3):117–132.

Gelman, A. (2007). Struggles with survey weighting and regression modeling. Sta-

tistical Science, 22(2):153–164.

Green, D. M. and Swets, J. A. (1966). Signal Detection Theory and Psychophysics.

John Wiley & Sons, New York.

Greiner, M. (1995). Two-graph receiver operating characteristic (TG-ROC): a

Microsoft-EXCEL template for the selection of cut-off values in diagnostic tests.

Journal of Immunological Methods, 185(1):145–146.

Greiner, M. (1996). Two-graph receiver operating characteristic (TG-ROC): update

version supports optimisation of cut-off values that minimise overall misclassification

costs. Journal of Immunological Methods, 191(1):93–94.

Greiner, M., Pfeiffer, D., and Smith, R. (2000). Principles and practical applica-

tion of the receiver-operating characteristic analysis for diagnostic tests. Preventive

Veterinary Medicine, 45(1-2):23–41.

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R.,

Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-

Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith,

J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Ferrier, S.,

Kearney, M. R., Possingham, H. P., and Buckley, Y. M. (2013). Predicting species

distributions for conservation decisions. Ecology Letters, 16(12):1424–1435.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical

learning: data mining, inference, and prediction. Springer, New York, 2 edition.

Hausman, J. A. and Wise, D. A. (1981). Stratification on endogenous variables

and estimation: The Gary income maintenance experiment. In Structural Anal-

ysis of Discrete Data with Econometric Applications, pages 365–391. MIT Press,

Cambridge.

Heeringa, S. G., West, B. T., and Berglund, P. A. (2017). Applied Survey Data

Analysis. Chapman and Hall/CRC, Boca Raton.



References 263

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for

Nonorthogonal Problems. Technometrics, 12(1):55.

Holt, D., Smith, T. M. F., and Winter, P. D. (1980). Regression analysis of data

from complex surveys. Journal of the Royal Statistical Society: Series A (General),

143(4):474–487.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without

replacement from a finite universe. Journal of the American statistical Association,

47(260):663–685.

Hosmer, D. W. and Lemesbow, S. (1980). Goodness of fit tests for the multi-

ple logistic regression model. Communications in Statistics - Theory and Methods,

9(10):1043–1069.

Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression. John Wiley

& Sons, Hoboken.
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