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Abstract: The brain is the most complex organ in the human body and, as such, its study entails
great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of
studies about the consequences of pathological conditions on its development and functioning. This
bibliographic review aims to cover mostly findings related to changes in the physical distribution
of neurons and their connections—the connectome—both structural and functional, as well as their
modelling approaches. It does not intend to offer an extensive description of all conditions affecting
the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate
brain modelling that can subsequently be used to understand brain function and be applied to
diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.

Keywords: connectome; brain injury; neurodegenerative diseases; Parkinson’s; Alzheimer’s; dyslexia

1. Introduction

The goal of this section is to broadly unfold the topic of brain health and its importance while
superficially pondering some of the intrinsic shortcomings when attempting to model its behaviour
and evolution under certain pathologies.

The brain acts as an animal’s central computer: it generates knowledge by gathering
information obtained through the senses (as a result of external and internal stimuli) and
associative processes allowing it to change the environment. Furthermore, it regulates
biological constants essential for life, like breathing, body temperature, and heartbeat, and
more complex processes such as emotions and conscience. It is the most energy-consuming
organ in relation to its size (a fifth of the total in a resting state), despite undergoing
evolutionary optimisation in different animal species [1].

According to the World Health Organisation (WHO), two out of ten principal causes
of death globally in 2019 were directly related to brain malfunction: strokes (also called
cerebrovascular accidents, CVA) and dementia (including Huntington’s chorea; Parkin-
son’s, Alzheimer’s, and Lewy’s bodies; and many others) [2]. Strokes are caused either
by a lack (ischemic, 85% of total [3]) or excess of blood flow (haemorrhagic) in the brain
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and are thus closely related to the leading cause of death, coronary artery disease (CAD).
Dementia is an umbrella term for neurodegenerative illnesses, resulting in the loss of
mental capabilities, especially those affecting speech and memory. They can be age-related
(Alzheimer’s, Parkinson’s) or not (e.g., Huntington’s chorea), and they are not to be mis-
taken for neurodevelopmental disorders, which affect the brain in its first stages of growth.

Cancer is another prominent source of mortality worldwide. In fact, brain tumours,
despite not being the most common ones (around one-in-fifty diagnoses [4]), are amongst
the most fatal (one in three have a five-year survival rate on average in the US, around 5%
for the most aggressive types, such as glioblastoma [5]) and are alarmingly prevalent in
children under 14 (about one-sixth of total cases as of 2019, second only to leukaemia [6]).
Neurological illnesses (including injuries induced by tumours) are the leading cause of
crippling disability, and their incidence is increasing, especially affecting ever-ageing
populations in the developed world [7]. In psychiatry, the freshly emerged field of patho-
connectomics explores the links between brain wiring degeneration [8] and disorders like
depression [9], schizophrenia, or autism [10] or the association between cerebral small
vessel disease (CSVD) [11] and cognitive impairment leading to Alzheimer’s [12].

Neurological disorders are very costly not only at a personal level (suffering by the
patient and their relatives) but also on an economical one, dealing in billions of euros per year
in developed countries where diagnoses are more prevalent [13–16]. Poor health systems in
developing countries make diagnoses and treatment more challenging [7,17,18]—which poses
an inequality issue. Although data are relatively abundant, data might not be representative
enough [19–21]. In order to obtain a better panorama of the current situation, new data
managing approaches have become widespread, such as data mining [22–24] and machine
learning [25,26]—especially graph neural networks [27–33].

Overall, it is self-evident that the study and characterisation of the brain is a dire need
not only for scientific purposes but also, and most importantly, for health reasons, such
as the study and treatment of related pathologies for a better diagnosis and hopefully a
more effective treatment. Computational neuroscience, i.e., modelling the brain’s function
via computers, could bridge the gap between the plethora of unconnected partial data
available on the brain by providing a full comprehensible in silico mock-up (digital twin).
However, that goal requires multiple challenges to be overcome [34].

Some of these problems come from “traditional” experimental neuroscience (avail-
ability of representative data, multidisciplinarity, multiscalar aspects, general complexity,
accurate diagnosis), while others have become apparent when trying to manage the ob-
tained data (computational costs, compiling and memory, organisation and classification,
limiting mathematical approaches, lack of unified theoretical framework to analyse and
compare, brain–environment interactions). Should these issues be successfully addressed,
a powerful simulation tool for simulating healthy and ill brains would be available. Thus,
the diagnosis and treatment of any condition would be at the doctor’s disposal, minimis-
ing difficult, dangerous, and costly in vivo interventions. Additionally, as neuroscience
develops as a scientific field, its findings can be incorporated into computational tools
(both hardware and software), which may in turn further ease the problem, since the brain
remains the most powerful and efficient computer known to man [35].

Scope and Methodology

The purpose of this review article is to briefly showcase the most relevant informa-
tion gathered about such health issues in relation to the brain’s structural and functional
architecture - namely injuries and disorders, see Figure 1 for disclosure. In no way is this
article to be construed as a detailed medical handbook; rather, it is a compilation of general
brain structure and its illnesses with a detailed enough context to understand the issues
they pose from a modelling perspective, with the aim of developing efficient virtual twins
for diagnosis and treatment follow-up. As such, some descriptions may suffice from an
engineering perspective but still be lacking from a doctor’s.
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Figure 1. Main aspects studied in the present article.

The employed research methodology is quite straightforward, conducted by searching
“[illness/disorder]” AND “(structural/functional) connectivity” in widely known medical
databases (e.g., PubMedCentral) and journals (Cell, The Lancet, etc.). In most cases, this
ensures that the found publications present the examined disorder from a connectomic
perspective, i.e., in relationship with the brain’s structural and functional networks. The
authors are aware that this vision does not provide the full picture, but it is enough for the
purpose of this article.

After this Introduction underscoring the relevance of brain-related illnesses and
trauma in Section 1, a brief note on the brain’s structure and function will be introduced in
Section 2. Section 3 will present a general overview of the most prominent causes of brain
damage, while Section 4 contains some modelling propositions for the connectome. Finally,
Section 5 acts as a summary of this article followed by some research suggestions.

2. Mapping the Brain: The Connectome

This section presents the brain as a collection of its physical (structure) and physiological
connections (function), accompanied by some historical context justifying the birth of connectomics
as a field of neurosience, which is the lens that every upcoming illness description will be looked at
through.

The first known reference to the brain is the Edwin Smith Surgical Papyrus (Egypt,
1700 BC), although back then, its functions were thought to be carried out by the heart
instead, as Aristotle theorised. Although there were some anatomical studies of the brain
during Roman and Baghdad Caliphate times, not much else could be conducted until the
invention of the microscope in the late 1500s AD. Some nerves (especially related to the
sensory systems, such as sight or hearing) were correctly identified, but it was not until the
second half of the 19th century that the field work by Broca, Wernicke, and many others
began to correctly associate specific areas of the brain with certain tasks (muscles of speech
and language comprehension, respectively).

It became apparent that patients who had undergone injury or surgery affecting
certain brain zones saw some of their cognitive abilities lessened or entirely missing, so
doctors began to fill in the blanks in the brain map. One of the first attempts to fully map
brain function was made by Korbinian Brodmann in 1909 [36]. By staining neurons with
Nissl’s method, he divided the primate brain into 52 areas (44 present in current human
beings and 8 remaining only in related primates) based on cytoarchitectural (cell-level
structure) criteria.

Brodmann’s map has been the primary guide for decades, and it is still used on an
educational level today, but evidence of its incompleteness is abundant and continuously
growing. For instance, it is possible to live—albeit in an altered state and with great
difficulty—with a fraction of a brain, as in severe cases of hydrocephalus (partially sub-
stituted by water) [37], lobotomies (the extraction of part of it) [38], or even anencephaly
(the absence of it altogether) [39]. These cases can be explained through the concept of
neuroplasticity: the brain’s ability to rewire its functional and structural connections to
overcome injury’s effects. This shows that the spatial distribution of functional areas is
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more flexible than charts like Brodmann’s would suggest. Neuroplasticity allows for a
certain regenerative capacity as well, although humbler in the central nervous system than
in the peripheral one (PNS) [40], which often helps patients recover motor coordination
after strokes, for example [41].

Significant progress has been made thanks to the dawn of magnetic resonance imag-
ing (MRI) in the 1970s, especially its functional variant (fMRI). Such technology allows
us to track brain activity in quasi-real time by measuring changes in blood flow [42], as-
sessing pre-surgery conditions [43], and parcelling brain functional [44] and structural
areas [45–47]—even on a city [48] or nationwide basis [49,50]. Although relationships
between specific tasks and areas in the brain do exist [51] (e.g., memory [52,53]), there are
plenty of experimental data suggesting that such a localisationist framework might not
be an optimal approach. Many individual actions require the activation of multiple areas
in the brain (like language and decision making [54]) and the coordination between them
(co-activation [55], newly studied using a plethora of techniques [56]). Therefore, each area
is not univocally nor individually responsible for a given action but rather correlated to it.

Seemingly related tasks may be performed by different areas within a brain region;
such is the case of facial recognition and evaluation [57]. Activity patterns for the same task
differ [58] and even change with age [59] or illness. Although there is a certain consensus on
a “default” network configuration in resting states [60–62], it is still subjected to individual
variations, some of which are associated to pathological conditions [63]. One must also bear
in mind that structural and functional pathways in the brain influence each other. On top
of that, most brain mappings show a correlation between tasks and activations, rather than
the causation of such patterns [64].

Thanks to the experimental work of Santiago Ramón y Cajal in the 1880s, using Camilo
Golgi’s methodology, the neuron doctrine gained recognition and could be considered
as the beginning of modern neuroscience. It conceives the brain (and the whole CNS by
extension) as a network of intertwined but independent neurons, a specific type of cell
receiving and transmitting electric signals. Generally speaking, neurons are composed
of a soma and an extension covered by myelin (axon) ending in appendices (dendrites)
responsible for communication between them (synapse). In mathematical terms, these two
main elements could be interpreted as the vertex v and edge e of a given graph G(v, e).

However, the state of the art has long rejected such a primary framework. Current
trends in neuroscience focus on the importance of neural circuitry—encompassing the
whole nervous system (NS), not just the brain—as opposed to isolated neuronal activity.
Also, there are multiple neuron types and morphologies and non-neuronal elements which
play an important role in the NS (glia, blood vessels, etc.). Zooming into the brain again,
this connectivity between neurons is both structural—physically existing links between
neurons—and functional—the links actually used during neural activity—forming the
connectome as a whole [65].

Connectomics has shifted the paradigm in psychiatric studies by allowing for the
identification of structural and functional measurable alterations in the patient’s brain
during and after illness. It relies on quantitative graph parameters such as local net-
work efficiency, clustering coefficients, and global communication path lengths to evaluate
damage [66]. MRI has been particularly useful in mapping the cortical surface and struc-
tural (diffusion, dMRI) and functional (fMRI) connectivity patterns—even in resting state
(rfMRI), although co-activations for the same task and great individual variability cannot
be ignored [67].

These two sides, structural and functional, can be mutually affected and/or change
due to injury and/or disease or even with mere biological age. Neurons themselves can be
classified along these lines: structurally as uni/bi/multipolar/anaxonic, etc., or functionally—
within a given brain region—as principal (afferent/sensory, efferent/motor)—projecting to
external regions—or interneurons—local wiring. Furthermore, such connections are subjected
to neuroplasticity: rewiring (structural [68]) and alternative paths (functional [69]) on a
life-long basis [70], especially during growth [71], age [72,73], injury [74,75], and disease [76].
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The connectome is also affected by a sort of negative functional plasticity (diaschisis), by which
an area distantly connected to another damaged area might see their functions deteriorated by
the latter [77] without any apparent linking connections. On top of that, neurons can migrate
between brain regions [78] according to their needs, especially—but not exclusively [79]—in
early growth stages [80].

Beyond the structural requirements described above, brain cells use chemical signals
(neurotransmitters) to communicate. Simplifying this concept, neurotransmitters could
be classified as excitatory (e.g., glutamate), inhibitory (e.g., GABA), and modulatory (e.g.,
dopamine). Such effects depend, at least in part, on the type of receptor where they are
acting. Classically, neurotransmission was considered as an anterograde phenomenon,
meaning that the neurotransmitter (NT) is released by the presynapse and acts at the
postsynapse. Nowadays, we know that such a process is much more complex due to the
existence of other types of transmission such as the retrograde modulation of the synapse
(e.g., endocannabinoids [81]). Additionally, brain cells respond to other type of messengers,
like hormones that allow communication with other organs in the body. In general terms,
all these chemical signals could play a key role in plasticity events, and they are susceptible
to pathological conditions. For example, Parkinson’s disease is characterised by a deficit
in dopaminergic transmission. Likewise, changes in acetylcholine could be associated
to Alzheimer’s.

Brain cartography [82] has grown to be popular in recent decades, yielding notable
examples [48,83] as a result of a coordinated effort in the sharing and management of huge
amounts of data. Such data have been traditionally obtained via physical means, namely
haemodynamics [84] (blood oxygen level-dependency, BOLD): computerised tomography
(CT), (functional) magnetic resonance imaging (f)(MRI), positron emission tomography
(PET), etc. As mentioned, these techniques are costly and subject to instrumental mishan-
dling and/or failure, hence highlighting the need for computational replicas of the brain.

3. Brain Damage

This is the main part of the article, presenting a non-extensive classification of brain-damaging
phenomena (traumatic events, illnesses, mental disorders, etc.) that could affect structural and/or
functional connectivity in any way, offering mostly qualitative explanations and quantitative
when possible.

Neural cell death takes place regularly in the brain: unneeded neurons are disposed
of in a programmed, foreseeable, and controlled way—known as apoptosis [85]. The dying
cell implodes, collapsing its cytoskeleton, liberates broken nuclear DNA, and is finally
eaten by other cells (phagocytosis). This can be a result of brain development [86,87]—well
studied and measured [88,89]—and/or due to structural neuroplasticity (axon retraction,
i.e., “pruning” [68]) due to redundancy [90]. Apoptosis can be intrinsic (mitochondrial,
BH3-Bax-APAF-1-caspase-9) or extrinsic (death receptor, caspase-8-Bid) [91]. It is a complex
process regulated by multiple internal mechanisms involving various molecules such as p75,
Bcl-2, and caspase-1 [92] and crucial in fighting cancer—which is, in short, an out-of-control
cell multiplication [93–95].

Brain damage comes into the picture when the unforeseen deterioration or destruction—
necrotic death—of brain cells (neurons) takes place. In this process, the cell’s mitochondria
and endoplasmic reticulum swell and break the external membrane. This is due to a plethora
of different mechanisms (necroptosis, parthanatos, ferroptosis, pyroptosis, oncosis, lysoso-
mal, autophagic, phagocytic, MitoPore—mitochondrial permeability transition) [91] affecting
neighbouring neurons though inflammatory expansion, unlike apoptosis. Some of these pro-
cesses result in ATP (adenosine triphosphate) depletion—which, in turn, produces the failure
of sodium and calcium channels through the neuron membrane. This provokes cell swelling
and degradation via proteases and phospholipases, respectively. Be it this way or by mixed
lineage kinase domain-like (MLKL: necroptosis), reactive oxygen species (iron: ferroptosis), or
inflammation (pyroptosis, lysosomal), the result is abnormal neuron necrosis [91]. As will be
explained in the following subsections, these necrotic mechanisms are linked to the advent
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of various neurodegenerative diseases [96,97] and other neurological disorders such as sleep
apnea [98,99].

3.1. Acquired Brain Injury

Any brain injury caused after birth qualifies as an acquired brain injury (ABI), thus
excluding congenital defects—which will not be covered in this review, due to their case-
dependent nature [100,101]. This damage can have an internal (e.g., tumour growth, mental
disorder) or external origin (e.g., concussion, accident). The first kind are usually—but not
exclusively—caused by injuries and known as traumatic brain injuries (TBI), whereas the
latter, non-traumatic brain injuries (NTBI), normally involve a brain illness—not necessarily
neurodegenerative. Both have in common the widespread destruction of the cortical areas
and white matter tracts and deep brain damage (thalamus, basal ganglia) [102]. Other
complications include hydrocephalus, pneumo-encephalus, ventricular enlargement, skull
fracture, unconsciousness, sores, bladder infections, pneumonia, and/or multiple organic
failure [102].

ABI’s symptoms can be physical (paralysis, headaches, seizures, insomnia, loss of con-
sciousness, aphasia—speech impediment), cognitive (memory loss, impaired information
processing, comprehension, or expression), perceptual (disorientation, lack of equilibrium,
sight/hearing/touching/smell/taste dysfunction, hyperalgesia—extreme pain sensitiv-
ity), or behavioral (irritability, aggressiveness, lethargy/apathy). Neural damage, on the
other hand, is more difficult to quantify, as most imaging techniques can only identify and
count dead neurons [103] but not neural malfunction. Nonetheless, some tools are avail-
able [104]. ABI can be primary—shear/tear of tissue, complete right after the impact—or
secondary—more complex chemical, biological, or biomechanical changes hours after the
insult, including blood barrier damage, excitotoxicity (glutamate release), mitochondrial
dysfunction, or Na+/Ca+ influx [102]. In the most severe scenarios (GCS < 8), it can lead to
prolonged coma states or even death.

3.1.1. Traumatic Brain Injury (TBI)

This category includes brain damage caused by physical trauma, i.e., accelerations,
shocks, concussions, incisions, etc., caused by a foreign (external) agent, and it is responsi-
ble for more than 1 in 3 annual injury-related deaths in Europe. Furthermore, it accounts
for 2 million yearly hospitalisations [105], affecting around 70 million people globally [106]
(around 1% of the world’s population), typically young males [107]. TBI can be classified
into mild (13–15 points), moderate (9–12 points), or severe (3–8 points) via the Glasgow
Coma Scale (GCS), composed of three areas (4 verbal points, 5 ocular, and 6 motor). De-
pending on its causes, it can be further divided into closed (unbroken skull: fast movements,
shaking) and penetrating brain injury (open head, e.g., bullets). There is evidence of comor-
bidity between several mental conditions such as major depression (MD), post-traumatic
stress disorder (PTSD), general anxiety, suicidal behaviour [108], and even sleep disorders,
back pain, high cholesterol, osteoarthritis, and diabetes [109].

Closed Head Injury The most common type of CHI is mild TBI—meaning not imme-
diately life-threatening (around 80% of all diagnoses [105])–a sub-type of closed head injury
(CHI) occurring within an intact skull that is caused by bumps to the head or any other
action causing fast skull movement (acceleration/deceleration, especially rotational [110]),
which may result in physical strain to the brain and/or chemical changes. These acceler-
ations usually involve coup contrecoup: the back-and-forth jarring of the brain against
the skull’s inner walls, shearing tissue and resulting in blood vessel rupture, bruising,
and swelling.

This kind of injury is relatively common in any physically intensive activity (sports,
military practice) or as a result of acts of violence and accidents (traffic, falls). It can cause
some of the aforementioned symptoms immediately after injury (peaking within the first
24 h), during which the brain undergoes gliosis—glial cell multiplication, forming scars [110].
Such a process hinders healing but also entails potential long-term effects [111–113] such
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as chronic traumatic encephalopathy (CTE) in the case of recurrent mild TBI, common in
sportsmen. In fact, up to 90% of athletes in the US [114] may experience memory and attention
impairments, suicidal behaviour, or even cardiovascular complications [115,116].

TBI usually produces three major effects: acute subdural haematoma—associated with
traumatic cerebrovascular injury (TCVI) in a limited number of cases (less than 2% [116])—
brain contusion, and diffuse axonal injury [117]. Contusions involve brain bruising as a
result of coup contrecoup accelerations, mostly affecting the frontal and anterior temporal
lobes [118]. These are not to be mixed with concussions, an umbrella term for closed-head,
mild TBI involving transient mental effects ranging from confusion to loss of consciousness.

Haematomas are extended contusions causing blood overflow from multiple broken
blood vessels (due to brain bruising), common in physical trauma. It can be epidural (EDH)
or subdural (SDH). The former involves a rapidly leaking broken artery between the dura
mater (third and most external layer in the meninges) and the skull. The latter takes place
when a bridging vein ruptures and slowly seeps between the arachnoid (second meningeal
layer) and the dura mater. Traumatic subarachnoid haemorrhage (SAH) can also take place
if capillaries break and flood the region under that layer. Such a blood volume (arterial
or venous) may interfere with the Monro–Kellie principle (the total intercranial volume
remains constant) [119,120], resulting in a pressure increase on the rest of intercranial
components, namely, brain tissue and cerebrospinal fluid (CSF). That could lead to cerebral
oedema (fluid accumulation), the disruption of the blood–brain barrier, and/or diffuse
axonal injury, among other undesirable effects.

Diffuse axonal injury (DAI) is the strain/tearing of axons all across the brain due to
stresses (compression, tension, shear) occurring during and after TBI in 1–15 mm stretches
within a particular distribution [102]. It is provoked by both intense strain (10–50%)
and strain rates (10–50 Hz) [117]. This phenomenon is more acute at the junction of
grey and white matters with different densities, where the axons are covered in thicker
myelin sheaths and surrounded by a drier environment. During stretching, the axon could
swell and fracture, increasing its permeability and calcium influx and thus unchaining
necrosis [118]. It can also have long-term effects such as greater chances of developing
neurodegenerative diseases like Alzheimer’s [121–124]. DAI is usually detected by MRI,
although it takes time, so CT may be preferred for fast haemorrhage identification if the
patient needs urgent treatment [125]. Despite CT being less detailed than MRI [102,126], it
can be further enriched by gradient echo (GRE) [127] or susceptibility-weighted imaging
(SWI) [128]. A major problem when modelling DAI is the fact that it is delocalised all
over the brain (hence “diffuse”) and, thus, it is difficult to predict an injury pattern in a
deterministic way given a certain traumatic origin.

Penetrating Brain Injury Penetrating brain injuries (PBI), although less common
than closed head injuries (CHI), are also fairly more lethal. They are caused by external
collisions against the skull, which is often fractured, resulting in haematoma and/or
intercranial haemorrhage, mostly fatal in the basilar area [107]. Its origins are various
(assault, murder/suicide attempts), usually involving physical violence and/or projectiles
such as bullets. Consequences can include short-term outcomes like severe trauma in
55% of cases [129] (GCS < 5 for gunshots [130]), generalised haemorrhage, CSF leaking,
intracranial infection, aneurysm (50 % lethal [131]), and often death (around 40% [129]—
up to 90% if neurological status is poor [131]). Long-term effects include post-traumatic
epilepsy and/or seizures for 1 in 2 cases [132].

PBI’s effects vary greatly according to the kinetic energy liberated by the weapon used
to inflict the damage E = mv2/2, which varies linearly with mass (the heavier the object,
the greater the damage) and quadratically with its speed (low if under 300 m/s, medium
up to 600 m/s, and high upwards). Thus, light, low-velocity objects like nails or knives
are less likely to cause severe damage. Bullets and shrapnel, on the other hand, travel
much faster and can increase their already devastating effect—direct by penetration or
indirect by shockwaves (causing cavitation)—depending on shape, angle, deformation, or
the shredding of the skull and/or projectile inside the cranium.
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The rapid evaluation of PBIs is vital to increase the chances of patient survival. Under-
going CT could determine if surgical intervention is viable, be it to heal wounds and/or
extract the projectile (except knifes at first [133]), and act ipso facto to prevent worsening
scenarios related to hypoxia, anaemia, CSF leaks, hypotension (systolic under 90 mm Hg),
or hyperpyrexia (extreme fever over 41.5 ◦C). Prophylactic anticonvulsants are used to
prevent seizures, and special attention is paid to aggravating factors: old age, severe coma
(GCS = 3), high intracranial pressure, coagulopathy, and thrombosis [134]. The progno-
sis depends greatly on the foreign object’s trajectory, being mostly reserved if it crosses
the midline, ventricles, or posterior fossa [133] or if it affects the brainstem or both lobes
and/or hemispheres [131]. Self-inflicted wounds and pre-hospital intubation and cranioto-
my/craniectomy are positively correlated with the mortality rate in PBI [129]. Importantly,
the laceration of tissue caused by projectile disintegration enhances damage.

As a result of PBI, neural tissue can be either physically deteriorated (sectioned by the
foreign object) or dead (insufficient blood flow due to leakage, hypotension, etc.). Damage
is usually more localised than in CHI but also more severe, often meaning permanent
neurological consequences and death in some cases. Non-trauma-derived infections by the
lack of prophylaxis are another common complication. This will be better explained in the
next section.

3.1.2. Non-Traumatic Brain Injury (NTBI)

This category includes any brain injury with internal origin, especially infections
(meningitis, encephalitis, etc.), poisoning (radiation, lead), lack of oxygen (aneurysm,
stroke, heart attack), or any other event increasing internal cranial pressure (e.g., tumours).
Sometimes, they can be broadly referred to as ABI, being acute (mainly anoxia/hypoxia-
induced: stroke, heart attack, drowning) or chronic (migraines). In general terms, they can
potentially spread all across the brain (diffuse injury), targeting the neuron’s structure [102].
Moreover, it can have similar effects to TBI, including coma states [135].

Infections Neurological infections, although almost eradicated in Europe and North
America, are relatively prevalent in developing countries. The most common way for
infections to come in involves the contamination of the cerebrospinal fluid (CSF) in the
central nervous system (CNS) via blood (haematogenic), contiguity to infected organs or
bones, or neural transmission [136]. Haematogenic contagion caused by pathogenic agents
(bacteria, fungi, protozoa, or parasites) in the blood stream is mainly arterial through the
junction of white and grey matters (parasitic/bacterial, some viruses). When this happens,
there are chances to expand elsewhere, although neurotropic viruses (such as herpes or
measles [137]) enter the CNS through the blood–brain barrier (BBB), transcytotic epithelial
passage, or leucocyte infestation.

Venous infections are rare, but they can produce notable effects such as schistosomiasis
(trematode worms) and (micro)thrombophlebitis (blood clot-induced vein swelling). Tran-
sosteal infections originating in adjacent frontal (face, e.g., sinusitis) or temporal areas (such
as otitis affecting the petrous bone) can generate intracerebral abscesses or pericerebral
collections (extra-/sub-dural empyema). Neural propagation, although unusual, is a vector
for viruses (herpes simplex, varicella, rabies) and bacteria (listeria). Lastly, infection can
also occur in direct contact with the cranium or vertebrae after a PBI or surgery (such
as nosocomial meningitis). However, about 1 in 5 brain infection cases have unknown
origin [136].

Most common infections imply inflammation (meningitis—meninges; encephalitis—
brain parenchyma) or other alterations in intercranial pressure such as abscesses (intrac-
erebral pus accumulation), which of course implies shear and compressive stresses on
axons. Some of them (pyogenic or tubercular abscesses, Aspergillosis, Whipple disease,
etc.) can complicate diagnosis by mimicking space-occupying lesions (SOL, i.e., tumours),
losing valuable and timely treatment opportunities [138]. In the case of sepsis, damage
(inflammation, BBB disruption, hypoperfusion) can have long-term effects (cognitive im-
pairment) [139].
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Immunosuppressed patients are particularly vulnerable, having a worse prognosis.
Sexually transmitted diseases (STDs) such as HIV or syphilis can have deep neurological im-
pact, most commonly meningitis, but also more severe like progressive multifocal leukoen-
cephalopathy (PML). Some other prominent infections targeting the CNS are those related
to helminthic worms, provoking angiostrongyliasis, gnathostomiasis, (neuro)cystercosis, or
schistosomiasis, among others [140]. The source of infection could be multimodal. For ex-
ample, many different parasites can infect human brains, causing eosinophilia (abnormally
high concentration of eosinophils in blood [141]). Moreover, infections affecting other
organs can reach the brain, like the case of tuberculosis, whose expansion causes 6% of all
meningitis [142]. Finally, domestic animals can also be carriers of viral infections causing
encephalitis (rabies by dogs, toxoplasmosis by cats).

Autoimmune diseases Autoimmune diseases are associated with myelin loss and
haemorrhage, the latter coming from within [143] or outside the brain (such as lupus
erythematosus [144]), and can cause very similar effects to those of infection (meningitis,
encephalitis, epilepsy, vasculitis) [145]. Like infections, they often result in brain damage
via anoxia, stress, or chemically-induced necrosis [143].

Toxic/Metabolic Toxic and metabolic conditions are intertwined, as they share a
pathophysiological description, although a slight nuance can be construed: toxicity can
come from internal (metabolic dysfunction) or external agents (toxic substances the patient
has been exposed to). Some examples of metabolism-related toxicity targeting the brain
are high-pressure oxygen [146], hyperammonemia (excess of ammonia due to urea cycle
malfunction or general disorders, especially damaging to developing brains) [147], and
several conditions (hepatic failure, hypoglycemia) [148]. In the absence of a clearer nosolog-
ical classification, both pathogens have fallen under the umbrella term of toxic metabolic
encelopathy (TME) [149].

Neurotoxins causing TME can be classified into metallic compounds (e.g., lead, mer-
cury, arsenic) [150], non-metallic inorganic (sulphur, bromine), industrial (e.g., carbon
monoxide, aliphatic hydrocarbons [151], cyanide), nerve agents including gases (e.g., sarin),
and liquids (e.g., Novichok). These toxins can target the soma (especially heavy metals)
and axons (degeneration by industrial chemicals). They produce a separation or loss of
myelin sheets, resulting in the abnormal transmission of nerve impulses). Furthermore,
they could target specific cell types like astrocytes (abnormal ionisation in membrane
activation, processing of toxins).

On the other hand, drugs (e.g., alcohol, cocaine, methamphetamine) and naturally
occurring biological agents (mushrooms—A. Muscaria, A. Phalloides; animals—snakes,
spiders, scorpions; microorganisms—botulism [152], tetanus, diphtheria) [153] have a great
negative impact on neurotransmission (e.g., serotonine/dopamine depletion) [154]. Drugs
can also alter blood flow in the brain. In particular, cocaine and heroin are linked to hypoxia
and ischaemia [155]. Thus, the consequences of exposure to neurotoxins vary greatly
but often include cerebrovascular accidents (infarct, hypoxia/ischaemia, haemorrhage,
vasogenic cerebral oedema), infection, (astro)glial abnormalities, diffuse neural necrosis,
and dementia in the long term [149,156,157].

Radiation poisoning, either accidental or planned (e.g., radiotherapy as a treatment
for tumours) involves exposure to ionizing agents, and so it can have dreadful effects
in brain tissue through four main mechanisms: vascular damage, astrocyte extinction,
cytokine alterations and stem cell death (mainly in the hippocampus [158], cerebellum and
cortex) [159]. Acute symptoms include oedema, vascular hyalinisation, myelin depletion,
inflammation, ischaemia, necrosis, dementia [158,160] and even tumour progression—a
common adverse effect in oncological radiotherapy [161,162] that is dose-dependent [163]
and not so easy to identify [164].

Vascular Although they can occur after trauma (TCVI [116,165]), cerebrovascular
injuries can also originate from inside the skull via the defective oxygenation (hypoxi-
a/anoxia) of blood vessels within brain tissue, leading to necrosis: a stroke, the second
leading death cause worldwide [2,166]. The incidence of stroke, also known as cere-
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brovascular accident/insult (CVA/CVI) or apoplexy, is steadily increasing, especially for
populations over 75 years old. It can be ischaemic (brain infarction due to insufficient blood
supply via vessel occlusion) or haemorrhagic (intracranial blood spilling via vessels or
aneurysm rupture).

The former are by far the most common—around 85% of all cases [166,167]—and
they are sometimes anticipated by transient ischaemic attacks (TIA) [167], falling into
several aetiological categories: large-artery atherosclerosis, cardiogenic embolism, small
vessel occlusive disease, and determined or undetermined cause. Haemorrhagic stroke
can be further classified into intracerebral (ICH, within brain) and subarachnoid (SAH,
between inner and outer meninges), as previously mentioned. Its symptoms include
high blood pressure, incoherent speech, and motor impairment. Risk factors can be fixed
age, genetics (race, family history), sex, modifiable hypertension (causing haemorrhagic
strokes), diabetes, nutrition (diet, obesity), alcohol, sedentary lifestyle, or cardiac conditions,
among others [166,167].

The brain’s function is rapidly disturbed during strokes [168], either by tissue loss
(necrosis) or abnormal patterns in the interhemispheric connectivity [169]. Paradoxically,
these changes play also an important role in recovery [170–172] by promoting small-
worldness in neural networks, i.e., high nodal clustering (many local hubs—specialisation)
and short inter-nodal path lengths (faster neurotransmission efficiency, integration) to
alleviate necrosis and functionally rewire the remaining neurons [173]. Studying the brain’s
angiome (blood vessel network) can provide meaningful information when facing stroke
detection and therapeutics, since its mappings are easier and more developed than those of
the connectome [168], which it directly affects.

Cancer Tumours, also known as neoplasms, are lumps of abnormally growing cells.
They can be benign (non-cancerous, slowly growing, and unlikely to spread) or malig-
nant (cancerous, rapid growth, and prone to propagate). Brain tumours originate mainly
in intercranial tissue or the meninges (meningiomas), although they mostly [174] come
from different adjacent organs (metastasis); such is the case of melanoma (skin cancer),
prostate/breast cancer, lung cancer, or Hodgkin’s lymphoma (lymphatic system cancer).
Although rare amongst cancers (2% of total [4]), brain tumours have a great potential to be
lethal (around 10% 10-year survival rate [4]) or produce long-term sequelae. Risk factors
include ionizing radiation, immunosuppression (infection, allergy), chemicals (N-nitroso
compounds are mutagenic and trespass the BBB), and head trauma.

Symptoms are very general (e.g., headache), although the apparition and evolution
cognitive impairment (e.g., aphasia) and seizures are usually more telling [175]. The diag-
nosis is made through gadolinium-contrasted MRI. This tracer is commonly used when
the BBB is already broken by a malignant neoplasm. Interestingly, alternatives like fluo-
rodeoxyglucose (FDG) and labeled aminoacids might be able to detect low-grade gliomas
in time before they develop into glioblastomas [176].

The existence of more than 100 types of brain tumours makes their classification dif-
ficult, having undergone recent restructuring to include molecular biology information,
e.g., mutations related to proteins IDH, B-raf, or MGMT, in their traditionally histologic cri-
teria [177]. If they originate within the CNS, they are called primary brain tumours, the most
common being gliomas (75% of diagnoses [178]) originating in glial cells or supportive
tissue in a circumscribed or diffuse manner: astrocytomas on astrocytes (anaplastic—grade
III; glioblastoma multiforme—grade IV), ependymomas (ventricles, spinal cord), oligoden-
drogliomas (CNS, myelin production), or brain stem gliomas. Some of them can be localised
(astrocytomas), while others are diffuse and can easily metastasise (glioblastoma multi-
forme) [175]. Other brain tumours without glial origin are medulloblastomas (developing
nerve cells), meningiomas (meninges), schwannomas (Schwann cells), craniopharyngiomas
(pituitary, near hypothalamus), and germ cell (gametes) tumours.

Their effects on the connectome are multiple: mechanical (pressure by tumour growth
on the remaining healthy brain tissue plus sometimes oedema, damaging it), chemical (pro-
tein mutation which deteriorates synapses), vascular (thromboembolism), and necrosis—
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with subsequent functional impairment depending on the area. As mentioned above,
neurotoxicity is both a common origin and byproduct of some tumour treatments (radio-
therapy, chemotherapy), identified as a possible trigger for glioblastoma [179].

3.2. Neurological Disorders

Diseases are a common origin for brain damage that is not injury-related but rather
a result of a prolonged condition, developing over a mid-/long-term basis. They are
presented in a separate group to differentiate them from incidental, acute insult (previous
section). They include pathologies like epilepsy and dementia, neurodegenerative illnesses,
and psychiatric/motor disorders.

3.2.1. Epilepsy

Epilepsy is a chronic, non-contagious neurological disorder causing recurrent (at
least two episodes within 24 h) uncontrollable, unprovoked seizures, thus excluding those
induced by traumatic brain injury, electrolyte disequilibrium, or concomitant diseases. It
affects 1% of the world population [180], and its onset can be focal, generalised—affecting
both hemispheres, motor or non-motor—or unknown. Aetiologically, it can be genetic
(mutation affects the management of voltage-dependent sodium channels [181]), structural
(network abnormalities), infectious, metabolic (biochemical changes), immune (induced
inflammation), or unknown. Although it is rarely lethal, epilepsy can have long-lasting
neurological effects [182].

Its incidence depends on age (prominent during childhood—75% of diagnoses [183]—
and adolescence), gender (more common in males), the availability of medical devices
(compromising in developing countries [180]), socioeconomic status (the lower the income,
the higher the chances) [184], and developmental conditions (autism is correlated). Its
symptoms vary greatly with the originating cortex area: visual phenomena such as blinking,
vision loss, and hallucinations (occipital lobe); clonic/tonic motor responses (precentral
gyrus, frontal lobe); sensory, e.g., numbness (postcentral gyrus), etc. [183]. They may be
preceded by a warning or omen, known as “aura”.

Epileptogenesis involves an imbalance between excitative and inhibitive neuronal
pathways as a result of uneven activation potentials creating a synchronised wave of
excessive neuron firings [180,181]. The malfunction of enzymes (ATPase) and/or glia
regulating the extracellular ion concentration (e.g., potassium overload) may produce
neuron depolarisation and action potential discharge, leading to seizures, which raise
potassium levels even further.

This creates a cascade effect (epilepsy), which also strengthens dendritic echoes, en-
abling further activation [185]. GABAergic synaptic transmission may lead to depolarisa-
tion if its controlling ions (e.g., chloride) are altered. Aberrant neural network synchronisa-
tion requires not only the aforementioned excessive discharge but also triggering events
such as paroxysmal depolarisation shifts (PDS) of cortical pyramidal cells or neuroplasticity
itself—for instance, axon collateral sprouting [181]. Although anti-epileptic drugs are
effective in 2 out of 3 cases [186], insight into the connectivity implications of epilepsy [187]
is greatly needed for more effective treatment strategies. Synchronisation may be limited to
the lamellar axis, according to some studies [188].

3.2.2. Neurodevelopmental Disorders and Disabilities

This subsection covers diverse non-degenerative neurological disorders with early
onset (childhood, even premature) impairing intellectual tasks on a daily basis. They affect
a small but appreciable percentage of the world population (1–5%), usually more males
than females (ratio of 2:1 to 4:1) [189–191].

A subject with the (Gilles de la) Tourette syndrome (GTS) undergoes diverse motor
and phonic tics—involuntary and uncontrollable by definition. It usually appears by
the age of 10 in 0.5–1% of children, and its symptoms lessen over time. Remarkably,
the patient’s quality of life can be greatly compromised when combined with social isolation
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or concomitant neuropsychiatric disorders (ADHD, OCD, anxiety, or depression) [191].
GTS has a multifactorial origin, where genetics play an important role (around 77%)—
involving the SLITRK1 family of proteins—although environmental and immune factors
work together with neurochemical changes (dopamine, GABA, glutamate, serotonin).

GTS alters a wide range of brain circuits, including emotion-related limbic structures
(hippocampus, amygdala, and prefrontal cortex to ventral striatum) and regions involved
in goal-directed behaviours (ventral medial prefrontal cortex to caudate nucleus) [191].
More precisely, it concerns structural connectivity alterations (basal ganglia) and functional
abnormalities (frontal and cingulate regions) [192]. However, having these perturbations
as markers for diagnosis [193] can prove deceiving, as symptoms and networks evolve
significantly with age. Treatment usually implies behavioural therapy combined with phar-
macology only if tics produce pain or injury [191]. The alleviation of symptoms—namely,
tics—is positively correlated with certain connectivity patterns in limbic or associative
networks, thalamus, caudate, and cerebellum, for instance [194].

Attention-deficit/hyperactivity disorder (ADHD)—once known as hyperkinetic dis-
order (HKD) [190,195]—is a cognitive disorder characterised by the developmental impair-
ment of executive functions (EFs) due to a pervasive lack of attention, hyperactivity, and
impulsivity. In particular, ADHD subjects suffer from a deteriorated working memory,
inhibitory control, reward processing, and/or planning. It affects around 5% of chil-
dren [190,196], with a typical onset before 7 years of age and perhaps from birth [197], and
2.5% of adults [196] worldwide. Symptoms persist after puberty in up to two-thirds of
diagnosed children [197,198], although they tend to lessen over time [196].

Despite not being considered a learning disability in and of itself, it can coincide with
dyslexia or dysgraphia and neuropsychiatric disorders (mainly behavioural [197], but also
anxiety, depression, bipolar/personality disorder [199], etc.) which can greatly compromise
an accurate diagnosis and an effective treatment. Its aetiology is manifold, involving
genetics (twin comorbidity, premature birth [197]), environmental factors (exposition to
lead, early adversity [200]), and physiology (brain connectomics). Cognitive, motor, and
affective impairments in ADHD have a measurable [201,202] origin in both structural
(overall 4–5% less white matter and reduced grey matter cortical thickness [202]) and
functional connectivity (decreased between the dorsal anterior cingular cortex and the
default mode network [203], with spurious activity in the DMN [202]). Functionality
can be improved via medication [201], although its effects are difficult to quantify due
to individual differences and reproducibility issues [204]. Pharmacological treatment
involving dopamine agonist stimulants—e.g., methylphenidate and atomoxetine—have a
60% success rate in adults [198]. Engagement in psychotherapy (behavioural, counselling)
improves the prognosis in the long term.

Learning disabilities (LD) encompass several deviations in standard neural develop-
ment affecting 1 in 20 [189] children and adolescents in regards to areas such as language
expression (verbal and non-verbal), reading (dyslexia), writing (dysgraphia), mathematics
(dyscalculia), or movement coordination (dyspraxia). By definition, they are not provoked
by mental retardation, emotional disturbance, or cultural differences, although they may
present comorbidity with other disorders such as ADHD and social impairment [205]. Its ae-
tiology has not been fully deciphered, but it involves a genetic component (X-chromosome
syndromes). LDs affect the brain structurally—the abnormal symmetry of planum tem-
porale [189]—and functionally—the right hemisphere and parietal and occipital areas are
more active than the left hemisphere and frontal regions [206–208], confirmed by DTI and
fMRI [209].

Dyslexia is arguably the most common learning disability and thus the most studied.
Regarding the connectome’s structure, it has been associated with greater anisotropy in
white matter (at a thalamic level) that is scalable by age [210] and lower modularity in
reading and resting-state networks and in between them [211]. Aberrant functional brain
connectivity (e.g., in visual areas [207,212]) is characteristic of dyslexia, worsening reading
performance. Neurostimulation has been suggested as a treatment strategy [208]. In
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general terms, LDs result from functional abnormalities rather than structural ones; such is
the case for coordination disorders [213] and mathematical [214], spatial, and nonverbal
impairment [215].

Intellectual disability (ID) entails a significantly deficient intelligence, i.e., intellectual
quotient (IQ) under 70 (100 being the average), which manifests as daily life difficulties in
communication, logical processing, socialisation, and self-care. It is present in 1 to 3% of the
world’s population, with 85% of cases being mild (50–70 IQ) [216]. Early developmental
delays in language and/or motor functions are relatively prominent among children
and they do not imply disability per se, unless they grow stronger over time. Multiple
apparently unrelated genetic syndromes (e.g., Klinefelter’s, Fragile X, Prader–Willi, or
Down syndromes) are associated with ID, so a differential diagnosis requires further
testing. Those conditions comprise a range of concomitant symptoms with no defined
treatment nor univocal aetiology, albeit with deep biological causes in the most severe
incidences [216].

Down syndrome (DS) is perhaps the most known type of intellectual disability [217].
It frequently implies cardiovascular disease—congenital in half of all cases and the leading
cause of patient mortality, worsened by related pulmonary, endocrine, and metabolic dis-
eases [218]. Adding to that list are issues like dementia (up to 80% by age 65), sleep disorders
(65%), dysphagia (55%), visual issues (57%), hypothyroidism (50%), leukaemia [219], and
many others [220]. The study of DS not only improves the quality of life for patients but also
sheds light on the genetic component of associated illnesses such Alzheimer’s [219,221] or
congenital heart disease [222]. Its origin lies in genetics: a third abnormal copy—partial
or complete—of chromosome 21 (pair 21 trisomy) is present in the patient’s genome [220],
mostly explaining both its aforementioned side effects and variability in the clinical picture.

Multiple studies have tried to link the symptoms and evolution of DS to alterations in
brain network configuration. An appreciable brain matter loss is found in post-mortem
examinations, and structural changes are detectable even before birth (e.g., excessively large
ventricles) [217] or via MRI (changes in white matter like the corpus callosum) [221]. Func-
tional connectivity is diminished and less efficient than healthy controls in adulthood [217]
but seemingly higher during youth—although this is disparate [223], which means that
long reaction time and low accuracy are observed. In graph theory terms, functional brain
networks in DS patients show a shorter average path length and increased global efficiency.
However, disrupted connectivity in the supplementary motor cortex, frontopolar, and
pre-motor areas pose a great disadvantage in contrast [224].

3.2.3. Neurodegenerative Diseases

Neurodegenerative diseases are becoming increasingly common worldwide, especially
in developed countries where life expectancy is higher and thus dementia is more likely
to appear [225]. They imply a progressive and inevitable deterioration in the nervous
system (both central and peripheral [226]). Such damage causes neurological dysfunction,
ranging from memory loss, e.g., Alzheimer’s, to motor impairment, e.g., sclerosis and
Parkinson’s. They can be classified according to aetiology into amyloidoses (Alzheimer’s,
Creutzfeldt–Jakob’s), tauopathies (Pick’s disease, CTE), alpha-synucleinopathies (e.g., Lewy
bodies), and TDP-43 proteinopathies (e.g., sclerosis) [227]. Although very diverse in nature,
they all share some common features. First, instead of a static neuronal loss—typical for
metabolic/toxic NTBI—necrosis progressively affects certain cells due to their vulnerability
and spreads according to the brain’s neural pathways [227]. Second, they are related to a
chronic immune malfunction causing general inflammation [228].

Dementia Dementia is the gradual loss of mental capabilities such as thinking and
judgement. It affects around fifty million people globally—mainly over 65 years old [229]—
presenting behavioural changes and/or deficits in communication, orientation, and mem-
ory. While cell deterioration is part of the normal ageing process, dementia implies abnor-
mally high neural necrosis. The only attainable treatment consists of the slowing of decay,
which will ultimately make the patient dependent on others to varying degrees. Some risk
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factors are depression, sedentary lifestyle, diabetes, TBI, or alcohol [230]. The most common
dementia-associated illnesses are Alzheimer’s and Lewy’s bodies, although their origins can
also be vascular (strokes), STD-related, or traumatic (CTE). Dementia is not to be mistaken
for delirium, which is sudden, transitory, and mainly distorts attention mechanisms.

Alzheimer’s Disease (AD) is the most prominent type of dementia (half of all cases [231]),
affecting around 5% of the European population [232]—a significant fraction, due to their
advanced life expectancy. Amyloid-β plaques and neurofibrillary tangles (NFTs) are gen-
erated by the accumulation of amyloid β-peptides and hyperphosphorylated τ-proteins
(and/or demyelinisation [233,234]), causing inflammation and the degeneration of brain
tissue. This becomes apparent via excessive necrosis and brain volume changes. For exam-
ple, the gyri shrink, while the sulci grow, with an overall volume loss of up to 50% [97]. AD
can also be the result of mutation (genes APP, PS1, PS2), though very rarely (less than 1 in
20 cases).

AD patients showcase deterioration in memory and thinking processes, together with
emotional lability. This is likely produced by diffuse neuronal loss, synaptic degeneration
(correlated with NFT distribution), and reactive gliosis (abnormal astrocyte growth) [97],
altering the complex cellular micro-environment in the brain [235]. It starts as a localised
neural loss in brain areas such as the locus ceruleus but eventually becomes diffuse, reaching
other regions like the amygdala, the hippocampus, or the frontal cortex. As cells die all
over the brain, neural pathways between tend to stretch, while local clustering remains
in the unaffected areas, yielding an efficiency loss as “small-world” characteristics fade
away due to sparsity [236] and selective hub vulnerability [237]. Nevertheless, such values
depend on user-defined constraints (sample size, brain area, measurements) [238].

The disease’s progress can be tracked via synaptic activity, namely the post-synaptic
density protein PSD-95 [239–241] and other biomarkers [242]. Enhancing neuroplastic-
ity [76], using some immunotherapeutic drugs [242], and boosting the endogenous cannabi-
noid system (ECBS) in the brain [81,243] can help slow down the advancement of AD,
especially in its prodromal (i.e., early) stages. A precocious diagnosis [242] and realistic
computational approaches [237] can prove important in treatment.

Dementia with Lewy bodies (DLB) is the result of the accumulation of α-synuclein
protein in the brain, creating deposits (Lewy bodies) which disturb the brain’s chemical
balance. Although not as common as AD, it represents a sizeable share of cases (around
5–7.5% of all dementias [244]). It is one of the two diseases caused by Lewy bodies, the other
being Parkinson’s (PD), discussed in the next section.

Movement disorders Under a relatively new and phenomenological medical cate-
gory [245], this section includes the most common neurodegenerative diseases affecting
motor abilities (e.g., walking, standing) as a result of a disruption or dysfunction to coordi-
nation between the CNS and muscles. According to the movement’s disruptive expression,
they can be further subdivided into hyperkinesias (excessive), dyskinesias (unnatural)—
jerky or not— hypokinesias (decreased reach), bradykinesias (slowness), akinesias (ab-
sence), and abnormal involuntary movements [245]. Although this subsection focuses on
prolonged disorders prominent in advanced ages (over 65 years), transitory movement
disorders, such as tremors, dystonia, or tics, are not uncommon in younger patients and
can result in early Parkinson’s misdiagnosis [246].

Parkinson’s Disease (PD) produces hypokinesia and bradykinesia, among other
non-motor symptoms, stemming from Lewy’s bodies (α-synuclein deposits), presenting
high comorbidity with LBD. Importantly, such confusion greatly hampers an accurate
(and timely) diagnosis [244], which already requires very high-fidelity MRI [247]. These
deposits provoke the localised necrosis of dopaminergic neurons in the substantia nigra
pars compacta, with the consequential dopamine underflow to the striatum [248]. About
10–15% of all cases are genetic, and they can originate from prion diseases and perhaps
metabolic iron accumulation [249] as well.

PD could be considered as an axonopathy characterised by synaptic dysfunction
and reduced structural (e.g., white matter) [250,251] and functional connectivity, partic-
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ularly in the basal ganglia [252]. Some studies suggest that this impaired connectivity is
present in prodromal symptoms of PD, like rapid eye movement sleep behaviour disorder
(iRBD) [251]. Variability among patients undergoing different stages, treatments, and sever-
ities of disease can prove problematic when comparing to healthy individuals [253], despite
some praiseworthy attempts [254]. Treatment usually involves L-DOPA (levodopa or l-3,4-
dihydroxyphenylalanine), which crosses the BBB to increase dopamine concentrations in
the brain.

Lastly, one must not mistake PD for ataxia, which is an acute lack of coordination
in different muscles affecting gait, speech, and eye movement. These effects come as a
result of nervous damage, mainly cerebellar and reversible in some cases [255]. Spinocere-
bellar ataxias (SCA) are a group of mostly genetic [256], autosomal dominantly inherited
neurogenerative disorders, encompassing tens of types with different prognoses and treat-
ments [257].

Huntington’s Disease (HD) is a rare, genetic (autosomal dominant) disorder affecting
the CNS—especially striatal areas—and showing symptoms like chorea (involuntary, fast,
and abrupt muscle movements) and psychiatric degeneration, including dementia. It can
manifest itself at any point in the patient’s life, with no noticeable clinical indications until
then [258], although most diagnoses happen between 30 and 50 years of age, inevitably
leaving to full dependency and death (most commonly by pneumonia or suicide) [259]. HD
is caused by a cytosine–adenine–guanine (CAG) trinucleotide repeat (more than 36 times) in
the huntingtin (HTT) gene on chromosome 4p, frequently treated with dopamine receptor
blockers [259].

In terms of structural connectomics, HD provokes impaired capacity for inter-nodal
information processing, characterised by a decrease in nodal betweenness centrality (i.e.,
reduced relative importance of certain nodes within the network) and the clustering co-
efficient [260]. This can spread throughout the brain as the mutant protein propagates,
which explains white and grey matter deterioration—predictable via graph theory [261].
HD also disrupts functional connectivity in subcortical and default mode networks (brain
regions active during passive, non-externally stimulated tasks, e.g., remembering). In some
brain areas (e.g., putamen), functional connections are further impeded as the CAG repeat
length increases, whereas the contrary is true for other regions (calcarine to middle frontal
gyri) [262].

Prion diseases (PrD), also known as transmissible spongiform encephalopathies (TSE)
are rare neurodegenerative, deadly illnesses caused by misfolded proteins (prions) PrPC

mutating irreversibly into PrPSc. Such misfolding causes neuronal necrosis, vacuolation,
and the abnormal activation of microglia and astrocytes [263]. This can take place in
humans and other animals (including cattle like sheep and cows), spreading through
all organs but especially prominent in the CNS. Their incubation process is long (up to
decades), during which those proteins accumulate and create microscopic holes in the
brain, transforming its tissue into a sponge (hence, the name).

PrD can be sporadic, spontaneous, and unpredictable (e.g., Creutzfeld–Jakob disease
(CJD)), and it can be familial (genetically transmitted, e.g., fatal insomnia) or acquired
(through the introduction of contaminated tissue into the patient, e.g., kuru). CJD is the
most common prion disease, affecting one in a million yearly (85% sporadic, 10–15%
familial [264]), manifesting in young adulthood if acquired (vCJD) and senescence if
sporadic (sCJD) [265]. Although uncommon and heterogeneous in aetiology and diagnosis,
the study of prion diseases can potentially shed light on the role of protein misfolding in
more widespread neurodegenerative diseases such as Parkinson’s and Alzheimer’s [266].
Moreover, its transmission along connected structural pathways can be modelled as graph
diffusion [267].

Multiple sclerosis (MS) can be considered a neurodegenerative disease [268,269] in
its latest stages, after initial autoimmune inflammation in the CNS [228,270,271]. “Sclerosis”
means “abnormal hardening of body tissue”. Its ultimate aetiology is unclear. It involves
multiple genes increasing susceptibility along with some environmental (ultraviolet B
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exposure), pathological (Epstein–Barr virus) [271], and genetic factors (highest incidence
among European and North American populations [269,270]). It is usually diagnosed
in early adulthood via MRI revealing several white matter scars/plaques and chronic
CNS inflammation. MS can be intermittent (relapsing–remitting, 85% of cases) or chronic,
with chances of drug-induced remission (secondary progressive MS) or not (primary
progressive or progressive relapsing MS) [270].

MS affects mainly optic nerves, the brainstem, and the spinal cord [271], provoking
demyelination and neuronal loss through axon deterioration [270]. Although remission
can happen within hours or days, it is never complete because the neuronal reserve is
progressively depleted—hence the neurodegenerative nature of the illness, despite partial
remyelination [271]. Primary progressive MS entails ataxia and progressive cognitive and
visual failure [271]. Lesions appear as the illness advances, affecting the connectome’s struc-
ture and function through the abnormal activation of frontal regions or hippocampus for
memory tasks and upsetting the default mode network (DMN) in resting states. However,
its direct links to cognitive impairment have proven difficult to clarify [272,273].

Functional connectivity remains a benchmark for studies about MS nonetheless,
with special attention to network efficiency indicators [274,275], e.g., on working memory,
subjected to patient heterogeneity [276]. Most observations have something in common: al-
tered connectivity in deep grey matter areas, lower brain modularity, hemispheric skewness,
and task-independency [277]. Treatment strategies have rapidly improved in a palliative
sense but continuously fail to remedy continuous neurodegeneration [278].

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a rare (1
in 100,000 [279]) neurodegenerative disease targeting mainly motor neurons in the brain
(upper, in the frontal lobe), the spinal cord (lower), and the brainstem. It is incurable, and
patients usually perish 2 to 5 years after diagnosis (usually after 60 years of age [279]) due
to the malfunction of the diaphragm (breath) and/or swallowing muscles (nutrition). Al-
though it starts focally, ALS often spreads to other body parts. It aetiology can be autosomal
inheritance (10%) by a hexanucleotide repeat expansion of gene C9orf72 (between one-third
and one-half of familial cases, although there are at least other 25 genes involved [280]) or
sporadic (unclear). Half of all patients experience extra-motor conditions like behavioural
changes (apathy, irritation), language impairment, or executive dysfunction, and 1 in 10
show signs of frontotemporal dementia [281].

As ALS unfolds, the assortative networks (between similar nodes) typical for a healthy
connectome [282] are dismantled, resulting in a loss of network efficiency. This translates
into a functional impairment, predictably with more intensity within the motor cortex [283].
Overall, patients show a decreased functional connectivity in the cortex (right orbitofrontal,
left interior frontal) and the corpus callosum [284], as well as an enhancement in the right
angular, parietal cortex and the frontoparietal networks [285]. All these changes could be
interpreted as compensatory mechanisms—surrogates for lost or damaged brain regions.

3.3. Psychiatric Disorders

This category includes non-neurodegenerative disorders affecting mental health, com-
monly referred as mental disorders, usually treated by psychiatrists. They can be defined
as clinically significant disturbances in an individual’s cognition, behaviour, or emotional
processes affecting their normal mental function and listed in the Diagnostic and Statistical
Manual of Mental Disorders (DSM). They are projected to be one of the biggest health
concerns of this century, and they usually develop from infancy and early adulthood (by
mid-20s) [286], with diagnoses peaking around 15 years of age (adolescence) [287].

An early treatment could very much determine the future evolution of the illness
and the patient’s life quality in subsequent years. Whereas neurodevelopmental disorders
(mental disability, e.g., Down syndrome) and anxiety are diagnosed in early infancy (around
5 years), obsessive–compulsive and eating disorders bloom during adolescence (around 15
years). They can bring long-lasting by-products like addiction/substance abuse emerging
in the early 20s [287]. Unlike neurological disorders such as the ones listed in the previous
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section, these have been traditionally diagnosed solely through behavioural changes,
although they can be tracked by perturbations in structural and functional connectivity in
the brain have been associated with schizophrenia, major depression, bipolar disorder, and
autism, among others [288].

Schizophrenia is a chronic mental disorder affecting 1% of the population and grow-
ing in incidence in developed countries [289], whose characteristic symptoms include
hallucinations, paranoia, and social handicap [290]. It may occasionally recede (via therapy
and drugs) or become incapacitating. This illness involves a neurochemical imbalance by
which the normal course of neurotransmitters (e.g., dopamine) is altered, mainly along four
pathways: nigrostriatal (from substantia nigra to striatum), mesolimbic (ventral tegmental
area to limbic structures), mesocortical (ventral tegmental area to cortex), and tuberoin-
fundibular (hypothalamus to pituitary gland) [291].

Its aetiology is diverse, from obstetric problems to genetic factors and environmental
triggers (social isolation, trauma). During the illness, the connectome undergoes important
changes, including left frontal lobe hyperactivity and [292] network randomisation as
clustering decays due to neural path over-shortening [293]. Moreover, there is a distortion
of the characteristic “small-world” properties (numerous and balanced local clusters) in
healthy brains [294] and altered hierarchies in functional connectivity [295].

Major depressive disorder (MDD) is a persistent (at least 2 weeks) and debilitating
sensation of sadness or melancholy associated with anhedonia, lack of sleep, and cognitive
impairment [296]. It affects 1 in 6 people across their lifetimes [297]. It is the second most
devastating burden in terms of disability-adjusted life years (DALY). This includes years
lived with disability (DLY) and years of life lost to premature mortality (YLL), mainly due
to suicide (50% of them are depression-induced). MDD presents comorbidity with diabetes,
heart diseases, and strokes. It implies a large genetic component (about 35% [296,297])—
although it is not single-handedly attributed to any specific gene—which often comes
with an array of depression-reinforcing behavioural traits (conflict avoidance, pessimism,
anxiousness) [296].

In MDD, there is a decrease in functional connectivity among fronto-amygdalar [298],
somatomotor [299,300], executive control, and default mode networks in resting state [301].
The latter has been linked to social dysfunction [302], being potentially recoverable by
electro-convulsive therapy (ECT) [303] and medication [304] and used as a relapse predic-
tor [305]. That being said, such alterations have a potential for reversal [306].

Bipolar disorder (BD) combines depressive and manic episodes characterised by
sensations of grandiosity, good mood, and overconfidence [307], on top of chronic mood
swing cycles that may become crippling. According to the severity of these manic events,
BD can be type I (acute, severe, followed by delusions and hallucinations in 75% of cases),
type II (less severe, hypomania), or a cyclothimic disorder (recurring depressive and hypo-
manic states for over 2 years) [308]. It affects 1 in 100 people worldwide and lists among
the leading causes of disability for young patients, yielding cognitive and behavioural
impairment which may induce cardiopathies [309] and/or lead to suicide during the worst
episodes [310]. Connectivity issues are similar to those of MDD, adding an important
decoupling between functional and structural pathways that is strongly correlated with
suicide attempts [311,312].

Autism spectrum disorder (ASD), formerly known as pervasive developmental disor-
der (PDD) [313,314] or “childhood schizophrenia”, [315] involves a combination of social
communication issues and recurring behaviours, commonly with an early onset (around
3 years of age) and followed by sensory anomalies and sometimes intellectual disability.
It concerns about 1 in 100 people [316] worldwide, although its prevalence is higher in
wealthier countries [314,317]. It is mainly hereditary, with a plethora of associated genes
and proteins [318], some of them locally inhibiting neural connectivity [319,320], and
its presents high comorbidity with other neurological (ADHD, epilepsy) and psychiatric
disorders (depression, anxiety) [314].
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In contrast to most disorders disclosed in this article, it has been found—through
fcMRI, MEG, and EEG—that ASD showcases an excessive functional connectivity (hy-
perconnectivity) on a network and state basis. This depends on age, although some
life-long effects exist, e.g., parietal and frontal hyperactivity (linked to repetitive behaviour
in early development) and long-distance hypoactivity [321], depending on the analysed
frequency [319]. Nonetheless, this hyperactivity is not necessarily reflected on a structural
basis; rather, the inverse is true: brain overgrowth during development gives adults with
autism a delayed long-distance connectivity (less efficient). Despite the general tendencies,
individual variability [322] and symptom severity [323] play a crucial role in connectivity
measurements. In spite of the proof of increased network efficiency markers such as be-
tweenness centrality [324,325], there is contradictory evidence in regards to ASD-induced
frontal hyperactivity [326].

Asperger’s syndrome (AS) is a chronic neurodevelopmental disorder related to the
autism spectrum [327], presenting similar symptoms and connectivity disturbances to
those of broad “autism”, except for a greater intelligence on average and general absence
of dysphasia (impaired propositional language) [328]. On the contrary, patients tend to de-
velop quite a structured form of language—albeit delivered in an uncommon fashion [327].
Differential diagnosis from social phobia and schizoid personality can prove difficult [329].
There is no apparent structural difference between control brains and AS patients but,
functionally speaking, they have higher global efficiency (greater transfer speed) and lower
network segregation (transitivity) and resilience (assortativity) [330].

Obsessive–compulsive disorder (OCD) is a mental health condition described by
repetitive, ritualistic behaviours (checking, washing, counting) to such an extent that
patients feel anxiety and fear if they do not undertake them. Intrusive and unpleasant
thoughts are characteristic as well. It may be genetically inherited, appearing in early
adulthood (22–36 years), and is often misdiagnosed [331]. It is not fully curable, but exist-
ing treatments include serotonin re-uptake inhibitors and cognitive/behavioural therapy
or even surgery [332]. Treatment can ease symptoms, greatly improving daily life func-
tionality [331]. The incidence of OCD is high among close relatives like twins, especially
monozygotic twins (up to 87%) [331]. It is frequently associated with other mood or
movement disorders and cortical lesions, even as a result of pregnancy or infection (strep-
tococci) [332]. Its severity can be measured via the Yale–Brown scale.

Structurally speaking, the aforementioned cortical lesions may result in a decreased
brain volume, greater grey matter density, or abnormally high-degree connectivity (local
in orbitofrontal cortex and putamen, distant in the subthalamic nucleus) [333]. Func-
tional activity is enhanced in corticostriatal networks [334] but impaired in the temporal
lobe [332,334], lateral prefrontal cortex, and ventral striatum [334]. Additionally, functional
disconnectivity patterns have been observed between some brain regions (striatum–cortex,
striatum–thalamus, fronto-limbic-anterior cingulate cortex) [335].

Anxiety disorders are the most common psychiatric subtype, involving a persistent
sensation of fear and/or worrying in the absence of a clear triggering risk or danger, affect-
ing around 1 in 15 people globally [336]. Anxiety can be treated through a combination of
pharmacological (selective serotonin and serotonin–norepinephrine reuptake inhibitors,
benzodiazepine [337]) and psychological therapy. There are multiple diagnosis scales
available [338] for the evaluation of its severity, with Hamilton’s being the most widely
used. It has been linked to structural alterations in the cingulo-opercular network and
their connections with the ventral, visual, and default networks in children [339]. Func-
tional deviations are also present: high dynamic entropy (right angular cortex, middle
occipital gyrus), decreased resting state functional connectivity (right angular cortex, right
inferior occipital gyrus) [340], and distortion in executive, affective, and default mode
networks [341].
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4. Modelling Approaches

This section presents some of the most common approaches in brain modelling as a response to
the previously discussed pathological effects in the brain, pondering their advantages and drawbacks
and introducing some common and novel tools.

As has been discussed, obtaining an accurate model of the brain’s pathologies is
a challenging endeavour due to its inherent complexity. Among other variables, we
need to take into account individual variation, evolution over time, and induced damage.
Accordingly, any model striving for a precise portrayal of its functioning must be flexible,
cohesive, and complete. Connectomics aims to build a structured method to study the
brain as a combination of all its internal neural (and glial) networks. Attempting to
reproduce the connectome’s structure and function requires a data-rich model that is
imperatively multiscalar in space (from synaptic level to the whole brain) and time (from
signal processing to complex reasoning and memory).

For the brain, the microscale concerns cell-level phenomena (synapses, membrane
polarisation, neurotransmitter releases, etc.), the mesoscale involves neural networks within
brain regions and their interactions, and the macroscale implies brain structure and activity
as a whole and in synergy with its conditioning environment—yielding so-called whole-
brain models (WBM) [342,343]. However, measures obtained by common methods (CT
scans, DTI, (f)MRI) are often too broad to cover the meso- and micro-scales. Studies about
synaptic processes are (relatively) easily obtainable, but they are globally meaningless
when devoid of the network context they partake in.

Of course, the large amount of neurons (O(1011)) [344] and synapses (O(1015)) [345] in
the human brain makes it computationally unfeasible to transpose or extrapolate individual
neuronal function directly onto the macroscale; so, some compromise must be found.
Regarding time scales, neuron spiking takes milliseconds. Thus, fast computing is pivotal
for any real-time simulation attempts. On top of that, nonlinear transient events occur in
biological neural networks [346].

In general terms, there are two traditional ways to tackle multiscale modelling that
can be applied to the brain: (1) bottom-up (“direct problem”—from cause to effect, growing
in complexity when directly relating local phenomena to global responses); or (2) top-
down (“inverse problem”—tracing causes from effects, inverse local inference out of global
observations). The latter is the most common, since most measurement techniques (MRI,
DTI, CT, etc.) have the whole brain (global scale) as the target, yielding virtual brain
models [347]. Such traditional methods, based on the magnetism of the ferrous content in
blood’s haemoglobin through the brain’s vascular network [348], do provide snapshots of
the brain’s structure and function. There is no doubt that they helped understand the brain
better, most importantly in a non-invasive way (no dangerous surgical processes needed).
Alas, they do not constitute models by themselves, since they do not allow clinicians to
experiment; rather, clinicians can only annotate observed data.

There is a tendency to associate causes with the microscale and effects with the
macroscale. Although true in some scenarios, this is not always the case, and assuming so
may impoverish models. The modeller must consider macrophenomena with an impact on
the microscale as well, such as neurogenesis during brain development. Both direct and
inverse methodologies require a great amount of data and a deep understanding of the
brain’s functions both ways, which is still in the works. Fortunately, there is a huge amount
of available data, although representativity remains an issue. The challenge remains in the
limited extent of many of these analyses and the interpretation and generalisation of their
results to an archetypal “human brain”. Although network hubs seem to be quite consistent
and homogeneous in healthy individuals [349], this is not the case for patients [350,351].
Besides, such generalisations do not provide the whole dynamical picture of functional
connectivity [352,353].

Another fact that must be dealt with, as is the case with many other complex systems
to be modelled, is surjection: if the model were given by a function y = f(x), there would
be many input possibilities xi yielding the same global observation y. This phenomenon is
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also known as neurodegeneracy, a direct consequence of brain redundancy and the nature
of graph networks themselves—where many paths could join two different nodes through
very different sets of edges [347].

While data in vivo have grown in quality and availability, high-fidelity brain mock-ups
could prove quite convenient for a more accurate, non-invasive (in silico) diagnosis and
treatment. Prognosis and differential diagnosis remain two complicated questions that still
rely mostly on statistical data, which could be biased and/or incomplete, as previously
discussed. Models must be sensitive to structural–functional decoupling [311,354] as well,
a neurological reality resulting from the brain’s evolutionary adaptability to disturbances
(injuries, disorders).

In spite of the advantages of connectomics, the researcher must not reduce a field as
complex as neuroscience to a mere topological study; hence, it is a dire necessity to incorpo-
rate the biological [355] and chemical considerations behind the modelled phenomena to
enrich connectomics through different scales [356]. Furthermore, modelling the brain as an
isolated organ is a mistake. Brain function is constantly influenced not only by external
stimuli but also by internal factors (e.g., peripheral hormones or metabolic signals), both of
them playing crucial roles in pathological states. Thus, a modern connectomics that could
change current brain paradigms is necessary.

After this collection of challenges and difficulties (among many others) faced by brain
modelling, a short presentation of different proposals follows, each one from their own
perspective and thus concerning different types of data, tools and objectives.

4.1. Electrophysiological/Haemodynamical

Electrophysiology studies the electrical behaviour of biological tissue in an almost
non-invasive manner (no need for surgery in humans). Modelling the connectome as an
electric circuit seems self-evident, considering that neurons act as membranes (electrically
excitable cells). Electrophysiology is the medical discipline responsible for the analysis
of such electric signals, typically through electroencephalography (EEG), and it yielded
some of the first attempts at brain modelling, mainly describing synapses [357] and their
nonlinear effects [358]. It can provide useful information about many of the mentioned
types of brain pathology, e.g., intellectual disability [359].

Electrophysiology provides an advantage over other techniques since electrical excita-
tion can be induced artificially, allowing for measures in vitro and in vivo. Neuromorphic
hardware (“neuroinformatics”) is the basis of artificial intelligence—albeit with notable
simplifications from the real brain’s circuits. Further explanations can be found in [360,361]
and Section 4.3. This is directly related to electrical brain stimulation (EBS), which can alter
neural activation thresholds and be measured in diverse ways (evoked potentials) [362].
EBS is used in therapy (e.g., treatment for movement disorders like Parkinson’s [363]) and
surgery—tests after tumour extraction, for instance [364]—though parameters must be
carefully chosen to avoid further damage [365]. EBS provides direct information regard-
ing functional connectivity across different scales and using varying methodologies [366],
although structural connectivity can also be inferred from functional observations or the
lack thereof.

Electrophysiological and haemodynamical mappings are intertwined and often com-
plementary. The available imaging techniques rely either on electrical excitation (EEG,
MEG, TMS, NIRS) or tracking iron contained in blood’s haemoglobin (haemodynamics:
fMRI, CT, PET, SPECT) [84]. Therefore, the electromagnetic theoretic framework links both
phenomena (Maxwell’s laws, etc.). Whereas the former showcases an electrical neuronal
circuit—membrane activity, i.e., synapses—the latter provides the vascular structure feed-
ing the brain, them being, of course, correlated to each other. Haemodynamic measures
are especially useful to detect angiomas (abnormally overgrown blood vessels), which are
themselves benign but perhaps surround a malignant tumour.

Task-driven models focus on the activation patterns observed via fMRI, EEG, or a
combination of both [367], while subjects perform a given activity under a controlled
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environment, usually obtained via electrophysiology. They yield partial observations that,
superposed on top of one another, form a global—yet not fully integrated—functional
connectivity chart. Nevertheless, as with any physical testing, these techniques have
some accuracy and representativity issues, stemming both from the design of experiments
(small, skewed samples) and the instrumentation-induced uncertainty. Signal analysis
tools (e.g., spectral techniques [368] and Fourier’s transform [369,370]) are used to extract
useful information out of EEGs. Some authors even argue that the brain could perform a
simplified Fourier analysis on its own [371,372].

Several authors note that profound changes must take place in the field to address
challenges like performing methodological comparisons and obtaining neurophysiolog-
ically meaningful conclusions. This is a call for a unified terminology and biophysical
cognitive models that are able to capture multiscalar interactions within the brain [373].
Although novel methodologies like Neuropixels probes [374] allow for an ever-increasing
brain region coverage and accuracy, any measurement relying on physical media will
always entail some margin of error.

4.2. Biomechanical

Despite being protected by the thick, hard skull around it, brain tissue is a very soft
material that is 30 times less shear-resistant than silicone gel [375]; i.e., it is compliant [376],
with feeble and nonlinear mechanic properties such as loading rate dependency [377,378].
It is also fragile, heterogeneous [379], biphasic (80% water), and scarce in practice (medical
availability) [380]. As already mentioned, brain damage does not require skull breakage
(that only occurs in penetrating brain injury, which is a small subset of all eventualities).
Accelerations, swift turns, external impacts, and diverse conditions (infections, toxicity,
cancer, etc.) can wreck havoc within the brain, both structurally and functionally—the
latter most frequently being a consequence of the former. All these events may influence
the brain’s mechanical properties and neural connectivity (structurally and functionally),
yielding valuable information for diagnosis and treatment monitoring.

Biomechanical models try to explain the brain from a mechanical point of view—
kinematics, dynamics, etc.—within biologically plausible parameters, since brain tissue
is subjected to phenomena unseen in inert materials (namely, physiological functions:
birth, growth, death) or affected by them in a different way than inorganic materials
(biochemistry). While most of these effects (especially biological processes) outgrow the
mechanical perspective in itself, they do have an influence over (bio)mechanical properties;
thus, they must be taken into consideration, which is not straight-forward in the slightest.
Brain growth, for instance, has been characterised as a morphological process during
development [381] and through micro-structural modelling as a soft tissue [382,383], which
is not limited to pure kinematics.

On top of biological considerations, the brain possesses some mechanical properties
which make it more complicated to model than many bulk materials. For instance, stiff-
ness varies in time and space: it increases globally with age, especially during cortical
folding formation (modelled as mechanistic growth [381,384]). Some brain regions are
more robust than others [385], being positively correlated with collagen [386] and myelin
content [387], with the latter being also used as a marker for disease [388]. Deformations
are usually not homogeneous either [389], except in unconfined compression tests, whose
validation require an estimation of the friction coefficient, which is again variable with the
loading rate [390]. Besides, measurements themselves are quite complicated to perform:
they are costly and conditioned by conservation [391], preparation [392], and the testing
environment [393]. Uniaxial testing is quite difficult due to extreme softness; hence, shear
testing is more feasible and more common [375,377]. Thus, conceiving brain tissue as a
homogeneous, linear, and/or isotropic material, although convenient for simplicity, could
never produce any high-fidelity model.

Interestingly, despite all this variability, two fundamental biomechanical principles
hold true when modelling soft biological tissue: tensional homeostasis and turnover [394].
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The first concept can be derived from the explained Monro–Kellie principle [119]. It
states that soft tissues (brain, arteries, etc.) have a preferred “homeostatic” loading state
and trigger biological responses (segregation of certain biomolecules by the cell) to keep the
state consistent. This explains why, across several ages and species, intracranial pressure
remains constant at around 2–4 N/m per lamellar unit [394], yielding a Cauchy stress of 150
to 300 kPa, only altered as a result of an unforeseen (TBI) or planned physical intervention
(surgery) [120,376] or disease [395]. The second pillar does not apply to inert bulk materials,
just to living organisms. Cells forming soft tissues, including the brain, grow, reproduce,
interact with their environment (neural migration [78–80]), and die, which creates a mass
variation known as “turnover”. This phenomenon, as with many others in the brain, is
multiscalar in time (minutes to months) and space (cellular or extracellular). Turnover can
be balanced (homeostatic, healthy individual) or skewed (adaptative or pathologic), either
positively (fibrosis) or negatively (atrophy) [394].

The attempts to explain growth and remodelling in biological soft tissues in terms of
mass–stress interactions yielded the so-called constrained mixture models [396,397]. From
a purely mechanical perspective, brain tissue exhibits nonlinear mechanical responses—its
stress–strain curve is approximately exponential. Additionally, considering the aforemen-
tioned strain rate dependency (and thus, time dependency), viscoelastic models [398,399]
or a combination [400] are preferred over solely hyperelastic ones [117,401]. These kinds of
models can be useful when evaluating the consequences of physical brain trauma—brain
injury, that is—and setting the mechanical limits to avoid , as well as providing a model for
damage evaluation and treatment follow-up. However, different methodologies, datasets
(sample size, patient age [402], species, and environmental factors (namely, humidity [403]
and temperature [391,393])), and theoretical frameworks yield varying mechanical results,
even spreading across orders of magnitude.

Full mechanical studies of the human brain [378,404,405] are complex and costly,
and they frequently fail to consider the influence of the angiome [386] (dependence on
haemodynamical models) in mechanical (e.g., stiffness induced by anoxic necrosis) and
organisational aspects (network connectivity). Isochoric and (quasi-)incompressible me-
chanical models (e.g., Hencky’s) pose a plausible approximation [406]. Such approaches
provide clues for diagnosis and/or treatment that cannot be easily obtained via medical
imaging, e.g., diffuse axonal injury [117,379]. Biophysical models, especially those allowing
for brain activity tracking, can greatly enhance diagnoses of neurodegenerative illnesses as
well [226,407]. The mechanical testing of brain tissue remains a complicated feat by itself
and is further hindered by the scarcity of brain tissue, although non-invasive techniques
such as ultrasounds—namely, shear waves [408,409]—pose an interesting option to perform
in vivo mechanical measurements.

4.3. Mathematical

These models try to depict the brain through mathematical tools, i.e., calculus, algebra,
statistics, information theory (IT), etc. This task proves challenging considering its already
explained multiscalarity (space- and time-wise), complex biochemical processes, and the
difficulty that its testing entails. Thus, obtaining purely analytical expressions for such
complex biochemical phenomena is extremely challenging—if possible at all. Mathematical
models attempting to convey this complexity often lack these considerations, or limit them-
selves to mere statistics, which is very common in medicine in general and neuroscience in
particular. Unfortunately, statistics yields very different (and even contradicting) results
depending on the used sample(s), which can contain an unwanted bias induced by its size,
variance, and/or data collection techniques.

Important assumptions about the model’s work variables are made to tackle this
inherent brain variability, the most bold being homoscedasticity, i.e., the homogeneity of
variance, and normality, i.e., following the normal distribution. Along with nonlinearity and
outlier interpretation, these are the foremost problems in traditional statistical approaches,
ending in false positives (Type I errors) and broader accuracy concerns [410]. If the modeller
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wishes to produce robust models, any statistical method exclusively based on mean and/or
variances must be ruled out by default. More practical, data-driven interpretations—
thus, free of theoretical assumptions and problematic generalisations—have emerged
to solve these problems, such as statistical learning, which is focused on data-inferred
interpretations, i.e., building theory on a purely empirical basis [411].

In the past, the brain’s adaptive and beneficial variability in neuronal morphology
[412–415] has perhaps been addressed with limited statistical tools and frequently from a
static perspective [416]. Stochastic/heuristic approaches are available for this purpose, such
as Boolean networks [417]—wherein Boolean logic junctions act as stochastic surrogates for
brain activation dynamics—and, most commonly, agent-based models [418,419]. The latter
provide a more flexible framework, where an agent (e.g., a migrating neuron) interacts
with its environment, reaching equilibrium points (homeostasis) within complex dynamic
settings. Since it allows for quick decision making [420], this technique has been used
to simulate different biological aspects: neural community interactions [361,421,422] and
pathological contagion [423] and evolution (tumour-induced angiogenesis [424], glioblas-
toma multiforme [425]).

Importantly, model variables, whether qualitative or quantitative, are abstract concepts—
often expressed through mathematical language, but ultimately chosen by the modeller,
and, thus, subject to their bias. This is true for many types of models, but especially math-
ematical ones. Some proposals provide parameter-free statistical testing to alleviate such
subjectivity [426]. Neuroscience often deals with many user-defined input and output vari-
ables, with many of them not even considered in the first place or difficult to measure. This
greatly hinders analytical models, so some order reduction techniques may be needed to avoid
the so-called “curse of dimensionality”: too few variables may yield an easy-to-implement
but too simplistic model, whereas too many produce complex, costly models that may not
even offer accurate results. There are two groups of tools to tackle this inconvenience: model
order reduction and machine learning.

First, model order reduction (MOR) [427] is the procedure by which a model gets
“compressed” into a lower, more manageable resolution that still conserves its more defin-
ing features, conveying its underlying behaviour. These techniques are mainly algebraic,
redefining the full system into a reduced version represented by their greatest eigenvalues
(principal component analysis) [428] or user-defined modes (proper orthogonal/gener-
alised decomposition) [429–431]—which involves taking lower resolution snapshots repre-
senting the evolution of the system—or locally overcoming nonlinearities (locally linear
embedding) [432]. A more detailed overview on MOR can be found in [433].

Second, machine learning (ML) is the process allowing a programmed machine (i.e.,
a computer) to obtain results (outputs) when given certain data observations (inputs).
Neural networks in particular have proven to be a way to circumvent the issue for now,
since they capture the brain’s typical nonlinearities without the need for an analytical
expression. ML models can forecast nonlinear outcomes even if the system—i.e., its fun-
damental variables—are not known [434]. Emulating neural efficiency in diverse tasks,
namely, learning, has been a question since the dawn of information theory, crystallising
in the McCulloch–Pitts neuron model. Their “perceptron” [435], organised in layers (in-
put variables, hidden dense—i.e., fully connected—layers, and output targets), aims at a
stochastic, biologically inspired regression, like that of least squares. This allows for the
reproduction of some brain features like metastability and other related phenomena (e.g.,
Sherrington–Adrian observations [436]). The Dartmouth Workshop in 1956 [437], ignited
by the perceptron and Turing’s notions on ML [438], can be cited as the official birth of
artificial intelligence as such.

Although very useful for multiple applications, experts soon pointed out important
discrepancies between actual biological neural networks and their intended artificial mock-
ups—namely regarding backpropagation—in the way that errors are corrected from the
outputs to the inputs to yield an accurate prediction [360], which constitutes the basis of
regression in ML. There are several fundamental differences between artificial (ANNs) and
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biological neural networks (BNNs), such as the backpropagation procedure (layered vs.
nonlayered), neural plasticity (functional vs. structural and functional), and metastability
(occasional byproduct vs. biological requirement); see Section 2.5 in [361] for a more detailed
explanation. A simple multilayer perceptron (MLP)—a generalisation of McCulloch–Pitt’s
neuron with multiple intermediate layers—will not be enough to mimic the brain.

The biggest issue that biological models face—especially in the brain—is, simplifica-
tions and generalisations aside, computing power. As previously said, the number of neu-
rons in a typical adult brain is in the hundreds of billions, while synaptic processes ascend
to the thousands of trillions. These scales are unmanageable even by the best-performing
computers available today, considering the best existing microprocessors contain around
1012 transistors and hundreds of km of wire, whereas the human brain processes around
1014 synapses through 3·105 km of neural pathways (longer than the Earth–Moon dis-
tance) [439]. The advent of quantum computing may provide a feasible solution, given its
similarities with the biological brain’s functioning [440,441]. Neuromorphic computing,
also known as neuroinformatics, takes inspiration from the human brain’s neural architec-
ture to produce hardware and software [442] inspired by the brain’s efficiency [443], using
qu-bits which aim to replicate superposing signals (metastability) [444].

In the meantime, ML techniques are already being used to model brain activity. Con-
volutional neural networks (CNNs) tackle datasets upon which convolution (the averaging
of neighbouring values through the scalar product of a kernel and the inputs) can be
performed, i.e., matrices, proving especially effective when dealing with recognition, de-
tection, and/or segmentation tasks. Most importantly, this allows for the analysis of
medical imaging such as MRI [445,446], e.g., finding unnoticed patterns which could help
identifying [447,448] and classifying [449] prodromal brain tumours or Alzheimer’s [450].

Spiking neural networks (SNNs) [451–453] seem to capture the brain’s behaviour in
a more biologically plausible manner, aiming at real-time functional connectivity [454].
Their performance improves if they are enhanced by synaptic plasticity functions, namely
spike-timing-dependent (STDP) [455–457] instead of the regular gradient descent. They
allow for the inclusion of structural plasticity as well [455]. SNNs can be combined with
quantum neuromorphic architectures [458,459] to enhance their versatility and information
processing power.

Graph (neural) networks are also pertinent because of their ability to capture the
network’s topology—that is, structural connectivity [460]—and include it into the informa-
tion flow, with the backbone of graph theory behind it [238,312,461–463]. Some examples
have already been cited, providing promising results [28,31,32]. GNNs can be further
empowered by considering the fractal nature of dendrites, again a result of evolutionary
structural and functional adaptability [464].

There are many other machine learning and manifold learning techniques, which
interested readers can find in [465].

4.4. Application to a Model of the Boolean Logic Behaviour of Neuronal
Self-Organised Communities

This subsection is intended to point out the modelling implications of the diseases
summarised in this review in a cognitive agent-based model [361]. This model is an
extension of an ABM model [424,425] of brain cells where the modelled neurons can
interact, migrate, connect, and perform plastic remodelling. The details of the model
are in Irastorza-Valera et al. [361] (see Figure 2 for a visual diagram of the presented
model), and it is a novel treatment of the McCulloch–Pitts neuron as a living cell capable of
interacting with its surrounding community. That implies that the neuron may be affected
by environmental mechanical abnormalities (brain damage) through a disconnection or
reduction in neuronal connections. As well, the neuronal connections may be weakened or
diminished through neurological disorders, and the connections and tendency to associate
with each other may explain the psychiatric disorders.
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Figure 2. The preliminary results show that it is feasible to create an agent-based model to reproduce
the communitarian behaviour of neurons, which are capable of modulating a signal (A,D,E) through
plastic remodelling and the inhibition of the cells. The neurons propagate the signal from the
stimulation at the blue square (D) to the signal received in the pink square at the bottom. In (D),
different propagation stages are shown. The digital twin of a neuron is shown in (F), with the
inputs and outputs. All illustrations are made with a drawing of the brain (B) found in Gray´s
Anatomy [466] and a drawing of the neurons (C) by Ramón y Cajal.

This is a framework to implement and study different diseases in silico, as well as
potential treatments.

5. Conclusions and Future Research Lines

This closing section mainly contains some concluding remarks, a short summary of the article’s
content and some suggestions for research opportunities to be explored in subsequent works.

This review article highlighted the need for accurate brain modelling for monitoring
pathologies and described common challenges in brain mapping and how they might be
faced. First, the motivations for such a need are explained: brain-associated illnesses take
a huge social and economical toll globally—which is projected to grow in the following
decades—and the current tools to face them have proven insufficient. A short overview on
the state of the art in brain mapping follows, explaining how current tools are limited and
how new emerging theoretical (connectomics) and methodological frameworks (e.g., data
science) can help answer the field’s many open questions. The main section consists of a
carefully written list of brain pathologies accompanied by succinct medical descriptions,
focusing on identifiable causes and consequences related to brain connectivity. After that,
several existing modelling tools and approaches through different lenses (medical, engi-
neering, mathematics) are presented, with consideration of how they can contribute to ease
the aforementioned issues.

As explained throughout this article, brain modelling requires very diverse insights
from varied areas of knowledge, ranging from the most obvious ones (neuroscience, chem-
istry, biology) to some others whose implications are less evident (mathematics, physics,
information theory, mechanics). Such an interdisciplinary approach is rather challenging
and demands collaboration between experts in all involved fields of knowledge, which
are many and far apart. Nevertheless, each attempt—humble as it may be—strives a bit
closer towards a global solution. Fruitful synergies can be fostered between physicians
(neurosurgeons and neuroscientists, yielding haemodynamical observations), engineers
(biomechanical models), and mathematicians and data scientists (mathematical tools).

All these scientists must push to extend such models to include all central and pe-
ripheral nervous systems, considering the role of glia, myelin, the angiome, and other
biochemical actors. As for the brain itself, special attention must be paid to the cortex
(most synapses within 20% of the brain’s volume) and cerebellum (80% of all neurons
contained in 10% volume), whilst not forgetting interconnected subcortical regions [67].
The interaction with the environment (external stimuli, community) and internal factors
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(peripheral organs) must be taken into account as well. Nowadays, the development
of new technologies used in neuroscience, both in animal and human models, allow us
to track specific brain functions from genetics to behaviour, thus multiplying modelling
possibilities but also making it more challenging. From the neuroscience perspective, it is
essential to consider all variables considered above in order to obtain a clear model of the
pathophysiology of the brain.

An ideal objective would be the customised modelling and diagnosis of each neurolog-
ical patient (individual, real-time brain mapping). An emphasis on preventive monitoring
and more accurate diagnoses is ubiquitous in engineering in general, materialised by so-
called digital/hybrid twins [467]: totally data-driven and/or physics-enhanced mock-ups
of dynamical systems able to provide real-time and accurate responses, including self-
corrections [468]. This is an ambitious and complex objective, which may take time to fully
develop. For the time being, the improvement of existing methodologies through these
modern tools and the completeness of the theoretical neuroscientific framework—perhaps
with these very tools—constitutes a reachable and valued mission for patients.
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