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Abstract: Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant non-fermentative
Gram-negative bacillus, posing a significant challenge in clinical treatment due to its numerous
intrinsic and acquired resistance mechanisms. This study aimed to evaluate the adequacy of an-
tibiotics used for the treatment of S. maltophilia infections in critically ill patients using a pharma-
cokinetic/pharmacodynamic (PK/PD) approach. The antibiotics studied included cotrimoxazole,
levofloxacin, minocycline, tigecycline, cefiderocol, and the new combination aztreonam/avibactam,
which is not yet approved. By Monte Carlo simulations, the probability of target attainment (PTA), the
PK/PD breakpoints, and the cumulative fraction of response (CFR) were estimated. PK parameters
and MIC distributions were sourced from the literature, the European Committee on Antimicrobial
Susceptibility Testing (EUCAST), and the SENTRY Antimicrobial Surveillance Program collection.
Cefiderocol 2 g q8h, minocycline 200 mg q12h, tigecycline 100 mg q12h, and aztreonam/avibactam
1500/500 mg q6h were the best options to treat empirically infections due to S. maltophilia. Cotrimoxa-
zole provided a higher probability of treatment success for the U.S. isolates than for European isolates.
For all antibiotics, discrepancies between the PK/PD breakpoints and the clinical breakpoints defined
by EUCAST (or the ECOFF) and CLSI were detected.

Keywords: Stenotrophomonas maltophilia; PK/PD; cotrimoxazole; levofloxacin; minocycline;
tigecycline; aztreonam/avibactam; cefiderocol

1. Introduction

Stenotrophomonas maltophilia is an opportunistic, multidrug-resistant non-fermentative
Gram-negative bacilli that causes a variety of clinical syndromes including hospital-
acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP) as well as blood-
stream infections (BSIs), particularly in debilitated or immunocompromised patients, with
high mortality rates [1]. S. maltophilia ranks among the most frequent pathogens isolated
from hospitalized pneumonia patients in Europe, and it is the primary Gram-negative
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pathogen resistant to carbapenems isolated from BSIs in the USA [2]. S. maltophilia is
commonly found in cystic fibrosis (CF) airways which can cause colonization and chronic
infection in patients with CF [3].

According to the latest guidelines of The Infectious Diseases Society of America
(IDSA) [4,5] for mild infections, the recommended treatment includes cotrimoxazole and
minocycline either as monotherapy, or alternatively, tigecycline, levofloxacin, or cefiderocol
as monotherapy. It is strongly advised to refrain from using ceftazidime due to its probable
ineffectiveness, and improvement is not expected when combined with avibactam with-
out aztreonam. For moderate to severe infections, at least three distinct approaches are
suggested: (1) combination therapy comprising cotrimoxazole plus minocycline; (2) initial
treatment with cotrimoxazole alone, with the subsequent addition of minocycline (pre-
ferred), tigecycline, levofloxacin, or cefiderocol if clinical improvement is delayed with
cotrimoxazole alone; and (3) cefiderocol or ceftazidime/avibactam in conjunction with
aztreonam, particularly when intolerance toward or ineffectiveness of other agents are
anticipated.

S. maltophilia is intrinsically resistant to many classes of antibiotics, including amino-
glycosides, quinolones, and beta-lactams, through the production of aminoglycoside-
modifying enzymes (AMEs), Qnr-like resistance determinants (Smqnr genes), and two
inducible beta-lactamases, L1 and L2 [6,7]. L1 metallo-beta-lactamase hydrolyse penicillins,
cephalosporins, and carbapenems, but not aztreonam, and are not inhibited by any beta-
lactamase inhibitor (BLI). L2 is a class A cephalosporinase susceptible to inhibition by
clavulanic acid and avibactam. The overexpression of efflux pumps also contributes to
resistance to tetracyclines, quinolones, cotrimoxazole (trimethoprim/sulfamethoxazole),
tigecycline, and polymyxins. S. maltophilia also acquire genes horizontally that confer
resistance to cotrimoxazole (sul and dfrA) and beta-lactams (bla) [4,8].

Although the Clinical and Laboratory Standards Institute (CLSI) has established
susceptibility interpretative criteria for ticarcillin/clavulanate, ceftazidime, cefiderocol,
minocycline, levofloxacin, cotrimoxazole, and chloramphenicol [9], the European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST) has only established interpretative
criteria for cotrimoxazole [10]. The scarcity of available antimicrobial agents with clinical
breakpoints recognized, the poor correlation data between MICs and clinical outcomes,
and the lack of updated pharmacokinetic/pharmacodynamic studies make it difficult to
treat S. maltophilia infections, especially in immunocompromised and critically ill patients
when the first-line antimicrobial, cotrimoxazole, is contraindicated.

The aim of our study was to evaluate the adequacy of commonly prescribed antibiotics
for the treatment of S. maltophilia infections in critically ill patients, including cotrimoxazole
(trimethoprim/sulfamethoxazole), levofloxacin, minocycline, tigecycline, and cefiderocol,
using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The new combination,
aztreonam/avibactam, which is not yet approved, was also studied. Our goal was to
provide clinicians with additional insights to enhance antibiotic therapy and to combat
antimicrobial resistance.

2. Results

Figure 1 shows the probability of target attainment (PTA, or the probability that the
specific value of the PK/PD index reaches the values associated with the efficacy at a certain
MIC value) of all the antimicrobials included in the study and the MIC distribution of S.
maltophilia against these antibiotics. For the aztreonam/avibactam combination, since the
PTA for avibactam (%ƒT>2.5 mg/L > 50%) is 100%, the joint PTA corresponds to the PTA
for aztreonam (%f T>MIC ≥ 60%). MIC distributions of S. maltophilia for cotrimoxazole
(trimethoprim/sulfamethoxazole), levofloxacin, minocycline, tigecycline, cefiderocol, and
aztreonam/avibactam are available from European isolates (reported by EUCAST [11]);
for trimethoprim/sulfamethoxazole, minocycline, and levofloxacin, MIC values from U.S.
isolates were also available [7].
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Figure 1. Probability of target attainment (PTA) and MIC distribution of S. maltophilia against
cotrimoxazole, levofloxacin, minocycline, tigecycline, cefiderocol, and aztreonam/avibactam. For
aztreonam/avibactam, PTA corresponds to the joint PTA (target of aztreonam and target for avibac-
tam achieved simultaneously). For cotrimoxazole, the PTA refers to trimethoprim.

The most relevant differences in the susceptibility profile depending on the geographi-
cal area (Europe vs. U.S.) were observed for trimethoprim/sulfamethoxazole; while the
MIC90 of the U.S. isolates is 1 mg/L, European isolates present an MIC90 of 16 mg/L. By
comparing the PTA values and the MIC distributions, the best options to treat infections
due to S. maltophilia in Europe are cefiderocol, aztreonam/avibactam, a higher dose of
tigecycline, and a higher dose of minocycline. In the U.S., trimethoprim/sulfamethoxazole
is also a good option. The MIC distributions of U.S. isolates against tigecycline, cefiderocol,
and aztreonam/avibactam were not available, and therefore, we could not compare the
PTA with the susceptibility profile of U.S. isolates.
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The PK/PD breakpoint, that is, the highest MIC value at which there is a high probabil-
ity of target attainment (≥97.5%), can be estimated by representing the values of the PK/PD
index (f AUC24/MIC or %f T>MIC) against the MIC values. The PK/PD breakpoint can be
read directly from the intersection of the horizontal line at the PK/PD target and the lower
limit of the 95% confidence interval (2.5% percentile). Figure 2 features the relationship
between the values of the f AUC24/MIC and the MIC for cotrimoxazole (trimethoprim
component). With the three dose levels analyzed, the PK/PD breakpoint was 0.5 mg/L.
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Figure 2. Relationship between f AUC24/MIC and MIC for different dosing regimens of cotrimoxazole
(trimethoprim component). PK/PD target (horizontal line): 67.4.

Figure 3 shows the relationship between the PK/PD index of levofloxacin (fAUC24/MIC)
and the MIC. According to these results, and considering the target (f AUC24/MIC ≥ 62),
the PK/PD breakpoint is 0.5 mg/L for 500 mg q12h and 0.25 mg/L for 500 mg q24h and
750 mg q24h.

In Figure 4, the relationship between the PK/PD index of minocycline (f AUC24/MIC)
and the MIC is featured. Considering the target (f AUC24/MIC ≥ 8.75), the PK/PD break-
point is 0.5 mg/L and 1 mg/L for 100 mg q12h and 200 mg q12h, respectively.

Figure 5 shows the relationship between the PK/PD index of tigecycline (f AUC24/MIC),
and the MIC is featured. Considering the target (f AUC24/MIC ≥ 0.9), the PK/PD break-
point is 0.5 mg/L and 1 mg/L for 50 mg q12h and 100 mg q12h, respectively.

The relationship between the PK/PD index of cefiderocol (%f T>MIC) and the MIC is
featured in Figure 6. Considering the target (%f T>MIC ≥ 75%), the PK/PD breakpoint for
the dosing regimen of 2 g q8h is 4 mg/L.
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Figure 7 presents the relationship between the PK/PD index of aztreonam (%fT>MIC)
and the MIC. Considering the target (%fT>MIC ≥ 60% for aztreonam), the PK/PD breakpoint
for the dosing regimen of 1500 mg q6h is 2 mg/L.
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Table 1 summarizes the PK/PD breakpoints calculated and the breakpoints published
by CLSI [9] and EUCAST [10,11].

By Monte Carlo simulations, we also estimated the cumulative fraction of response
(CFR), defined as the expected population PTA for a specific drug dose and a specific
population of microorganisms. The CFR is considered the expected probability of success
of a dosing regimen against bacteria when a specific value of MIC is not available, and
thus, the population distribution of MICs is used. Table 2 shows the CFR values for all
antimicrobials included in the study calculated from the corresponding MIC distribution of
S. maltophilia isolates.

Considering the EUCAST MIC distribution, cotrimoxazole did not provide CFR values
>90% at any of the dose levels analyzed. However, for the U.S. isolates, CFR ≥ 90% was
obtained with all of the doses. For levofloxacin, regardless of the dose level and the
precedence of the isolates, CFR was always <60%. Regarding minocycline, only the high
dose provided CFR > 90%, regardless of the precedence of the isolates. Tigecycline only
provided CFR > 90% at the high dose (100 mg q12h) for the EUCAST isolates. With
cefiderocol and aztreonam/avibactam, CFR was 99% and 95%, respectively.
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Table 1. Comparison of the pharmacokinetic/pharmacodynamic (PK/PD), European Committee
on Antimicrobial Susceptibility Testing (EUCAST), and Clinical and Laboratory Standards Institute
(CLSI) breakpoints (mg/L) for S. maltophilia.

Antibiotic
PK/PD

Breakpoint
Clinical Breakpoint ECOFFs a

CLSI EUCAST

Cotrimoxazole
(trimethoprim/sulfamethoxazole)

≤2 b ≤4 b,c 2240/1200 mg q6h 0.5
320/1600 mg q8h 0.5
320/1600 mg q6h 0.5

Levofloxacin

≤2 n.d. 4
500 mg q24h 0.25
500 mg q12h 0.5
750 mg q24h 0.25

Minocycline
≤4 n.d. 1100 mg q12h 0.5

200 mg q12h 1

Tigecycline
n.d. n.d. 450 mg q12h 0.5

100 mg q12h 1

Cefiderocol ≤1 n.d. 0.1252 g q8h 4

Aztreonam/avibactam
n.d. n.d. 8 d

1500/500 mg q6h 2
a: Epidemiological cut-off values according to EUCAST; b: trimethoprim component; c: susceptible, increased
exposure: d: tentative ECOFF (TECOFF). n.d.: not defined.

Table 2. CFR values of all antimicrobials included in the study for EUCAST and U.S. isolates.

Antibiotic
CFR (%)

EUCAST Isolates U.S.Isolates

Cotrimoxazole
(trimethoprim/sulfamethoxazole)

240/1200 mg q6h 66 90
320/1600 mg q8h 66 90
320/1600 mg q6h 73 91

Levofloxacin
500 mg q24h 30 28
500 mg q12h 55 57
750 mg q24h 44 44

Minocycline
100 mg q12h 74 84
200 mg q12h 92 94

Tigecycline
50 mg q12h 76 *
100 mg q12h 91 *

Cefiderocol
2 g q8h 99 *

Aztreonam/avibactam
1500/500 mg q6h 95 *

*: no MIC distribution was available, and therefore, CFR was not estimated.
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3. Discussion

Currently, the management of S. maltophilia infections remains a challenge due, among
other factors, to (1) the significant number of intrinsic and acquired resistance mechanisms
it presents, (2) the occasional difficulty in distinguishing colonization from a true infection,
(3) the common polymicrobial presentation (specially in immunocompromised patients),
(4) the absence of a standard of care to assess the effectiveness of therapeutic alternatives,
and (5) the challenge in determining the sensitivity profile [4]. In this regard, adequate ther-
apy is essential for survival. In a recent meta-analysis, patients with bacteremia treated with
inappropriate antimicrobial therapy had higher mortality [12]. Apart from the selection of
the most appropriate antibiotic, the success of therapy depends on optimizing the dosing
regimen. The integration of pharmacokinetic/pharmacodynamic (PKPD) analysis and
Monte Carlo simulation (MCS) has made them important tools for optimizing antimicrobial
therapy. They enable the selection of the optimal antibiotic and dosing regimen taking into
account the microorganism and the patient, increasing the chance of therapy success and
reducing side effects and the emergence of resistant strains [13–15].

In this work, we have identified minocycline 200 mg q12h, tigecycline 100 mg q12h,
cefiderocol 2 g q8h, and aztreonam/avibactam 1500/500 mg q6h as the best options to
treat infections due to S. maltophilia considering the susceptibility of European isolates.
For U.S. strains, cotrimoxazole at any dose level and minocycline 200 mg q12h are also
good options; the lack of availability of U.S. isolate susceptibility profiles to tigecycline,
cefiderocol, and aztreonam/avibactam prevented us from demonstrating the usefulness
of these antibiotics. To the knowledge of the authors, this is a more complete study that
evaluates, through PK/PD and Monte Carlo simulations, if the antimicrobials used for
the treatment of infections due to S. maltophilia are adequate considering the susceptibility
profile of this microorganism.

The highest MIC value at which a high probability of target attainment (PTA ≥ 90%) is
obtained can be used to estimate PK/PD breakpoints; however, a much more restrictive
PK/PD breakpoint can be obtained from a graphical representation of the PK/PD index
as a function of the MIC (EUCAST approach) [16]. PK/PD breakpoints may be especially
useful when no clinical breakpoint nor epidemiological cut-off values (ECOFFs) are de-
fined, as is the case of S. maltophilia. Contrary to clinical breakpoints, different PK/PD
breakpoints can be obtained with different dosages of the same drug, since they are dose
regimen-dependent and species-independent [17]. Regarding cotrimoxazole, we detected
discrepancies between the PK/PD breakpoint (0.5 mg/L) and the clinical breakpoint de-
fined by EUCAST (susceptible, increased exposure up to 4 mg/L) and CLSI (susceptible up
to 2 mg/L) (Table 1). According to the PK/PD breakpoint, cotrimoxazole should not be
recommended to treat an infection due to isolates with MICs higher than 0.5 mg/L since
drug exposure is insufficient. These results agree with Lasko et al. [18], who demonstrated
that cotrimoxazole in monotherapy even at a high dose displays limited activity against
cotrimoxazole-susceptible S. maltophilia strains. In fact, several authors have pointed out the
necessity of redefining the breakpoints of cotrimoxazole for S. maltophilia [8,19,20]. Apart
from cotrimoxazole, we detected discrepancies between the breakpoints for the rest of the
antibiotics. Only with tigecycline and cefiderocol, the PK/PD breakpoints were higher than
the ECOFF and the clinical breakpoint by CLSI, respectively; that is, antibiotic exposure
is sufficient to treat infections due to isolates with MIC values considered resistant. The
PK/PD breakpoints of tigecycline obtained in our study are in agreement with a systematic
review, which pointed out that for an MIC < 0.5 mg/L, standard dosing of 50 mg q12h with
a loading dose of 100 mg can be used, but if the MIC is ≥0.5–1 mg/L, a loading dose of
200 mg and 100 mg q12h is recommended [21]. Discrepancies in the PK/PD and clinical
breakpoints have been already detected for other antibiotics [7,22]. In a previous study, the
breakpoints of minocycline against Acinetobacter baumanii have been questioned since a
modern PK/PD evaluation was not carried out for tetracyclines [23].

For empirical therapy, the susceptibility profile of the microorganism responsible for
the infection in a certain geographical area is crucial. In this regard, a great difference in
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the susceptibility of S. maltophilia to cotrimoxazole between Europe and the U.S. exists,
and therefore, the dose level needed may be different. According to our study, while in
the U.S., a high level of treatment success is achieved with any of the three dose regimens
studied (CFR ≥ 90%), in Europe, even with the highest dose evaluated, the probability of
treatment success is much lower (CFR < 75%). In spite of our results, and despite the fact
that a recent meta-analysis has shown that the resistance rate of S. maltophilia has increased
in recent years [24], cotrimoxazole remains the first choice for treatment, with the dosing
recommendation ranging from 10 to 15 mg/kg/day of trimethoprim q8h and a maximum
daily dose of trimethoprim of 960 mg [1,8].

According to IDSA guidelines [4], minocycline and tigecycline are considered for the
treatment of S. maltophilia infections. Although minocycline is preferred over tigecycline
due to more favorable in vitro data, defined CLSI breakpoints, the availability of an oral
formulation, and improved tolerability, our PK/PD study has revealed that both antibi-
otics at the highest dose (200 mg q12h of minocycline and 100 mg q12h of tigecycline)
provide a high probability of treatment success (CFR > 90%) regardless of the geographical
area, Europe or the U.S. It is noteworthy that tetracycline derivatives exhibit rapid tissue
distribution after administration, leading to low concentrations in urine and serum [25].
Consequently, these derivatives are not advised as treatments of urinary tract infections
(UTIs) due to S. maltophilia and are only recommended in combination therapy for the
management of S. maltophilia bloodstream infections [4].

The role of quinolones in the treatment of S. maltophilia infections is controversial.
While they may serve as an alternative in mild infections, their use in moderate to severe
infections is only advised in combination therapy, with monotherapy de-escalation not
recommended. This recommendation is based on suboptimal results in in vitro studies [26],
low susceptibility in surveillance studies [27], the well-known resistance mechanisms
(Smqnr genes), the increasing development of resistance during treatment [24], adverse
effects [28], and the lack of high-quality clinical studies supporting their use [29]. Our
study has confirmed that levofloxacin is not a good alternative for the empirical treatment
of infections due to S. maltophilia, neither in Europe nor in the U.S., at least in monotherapy.
Only if the MIC is known and up to 0.5 mg/L, levofloxacin at a dose of 500 mg q12h could
be an option; if the MIC is ≤0.25 mg/L, 500 mg or 750 mg q24 could also be useful. A
previous PK/PD study also suggested than levofloxacin monotherapy may not achieve
appropriate PK/PD target attainment for S. maltophilia infections [30]. Additionally, in a
neutropenic murine tight infection model, levofloxacin 750 mg q24h provided probabilities
of target attainment for a 1 − log10 CFU (colony-forming unit) reduction of 95.8%, 72.2%,
and 26% at MICs of 0.5, 1, and 2 mg/L, respectively [31]. As with cotrimoxazole, it has
been suggested that the CLSI breakpoint of levofloxacin (2 mg/L) should be redefined.
In spite of the less favorable results obtained with levofloxacin, its usefulness for the
treatment of S. maltophilia infections is controversial due to the lack of robust evidence
supporting the superiority of one therapy over others. In this regard, in a recent meta-
analysis, significant differences in the mortality of patients with S. maltophilia bacteremia
among trimethoprim/sulfamethoxazole, fluoroquinolones, and minocycline were not
found [12].

In a previous study, cefiderocol and aztreonam/avibactam have been identified as
two of the most promising options of treatment for extensively drug-resistant (XDR) S. mal-
tophilia infections with resistance to the preferred first-line antimicrobials [21]. Our results
are in line with this statement. The susceptibility profile of S. maltophilia to cefiderocol, a
new, recently approved catechol-conjugated cephalosporin, is very favorable, with global
susceptibility higher than 95% [8,32]. Our PK/PD study has confirmed its usefulness for
the treatment of infections due to S. maltophilia isolates with MICs up to 4 mg/L, and also
for empirical treatment, with a probability of success around 100%. These results are in
agreement with a recent meta-analysis, which has shown that cefiderocol and minocycline
can be considered the preferred treatment alternatives for S. maltophilia infections due to
low resistance rates, although regional differences in resistance rates to other antibiotics
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should be considered [33]. Although cefiderocol has shown clinical and microbiological
success in some studies [34,35], further research to confirm its efficacy and safety in the real
world, that is, in everyday use, is needed.

The combination of aztreonam/avibactam, currently in phase III clinical trials but not
yet approved, has shown a global susceptibility rate against S. maltophilia of around 98%,
including isolates not susceptible to cotrimoxazole [36]. This new beta-lactam/beta-lactam
inhibitor combination is an alternative to the use of aztreonam plus ceftazidime/avibactam,
which has demonstrated treatment success in complex pancreatic focus [37], bacteremia [38],
and pneumonia [39] caused by S. maltophilia. While ceftazidime is a substrate of L1 beta-
lactamase, it cannot hydrolyze aztreonam, and although L2 hydrolyzes aztreonam, it
is inhibited by avibactam. In this way, aztreonam successfully reaches the penicillin-
binding proteins (PBPs) of S. maltophilia, likely PBP3 [8]. The efficacy and safety of aztre-
onam/avibactam is being studied, with positive results reported in the interim analysis
of two phase III clinical trials [40–42]. PK/PD analysis, at the approved doses for the
aztreonam/avibactam combination (1.5/0.5 g q6h), has shown an optimal coverage for
infections due to isolates with MICs up to 2 mg/L, and when used empirically, a high
probability of treatment success is expected (CFR of 95%). These results confirm that aztre-
onam/avibactam may represent a valuable alternative for the treatment of S. maltophilia
infections, addressing a major unmet medical need.

Our study presents several limitations. First, we have evaluated the usefulness of the
antimicrobials by PK/PD considering its administration as monotherapy, although clinical
guides recommend combination therapy in some situations, mainly to treat moderate
to severe infections. Nevertheless, in spite of the fact that in vitro PK/PD studies have
revealed that monotherapy is hardly bactericidal against S. maltophilia even with susceptible
strains, combination therapy does not seem to significantly increase the antibacterial
activity [20]. In a systematic review about novel therapies for the treatment of S. maltophilia
infections, Gibb et al. advise against the routine use of antimicrobial combinations for
pneumonia, catheter-associated bacteremia, urinary tract infection, or bacteremia [21]. In
the case of abdominal perforation with an undrained abscess, two active agents may be
used, and in the case of endocarditis, although there is not enough evidence, combination
therapy has been used historically; therefore, dose recommendations based in our results
may be not applicable in abdominal perforation and endocarditis. A recent systematic
review and meta-analysis to compare the effects of monotherapy and combination therapy
on the mortality of patients with S. maltophilia infections [43] concluded that combination
therapy may have a role in the treatment of severe or complex cases of S. maltophilia;
however, monotherapy resulted in having more favorable outcomes in terms of mortality
in patients with hospital-acquired S. maltophilia pneumonia. Due to the low number of
studies involved in the meta-analysis (only four), the authors suggest a longitudinal study
to further explore this association. The second limitation is that we have the PK/PD
analysis to critically ill patients, and the results may not be representative of other patient
populations. In spite of these limitations, PK/PD analysis and Monte Carlo simulations are
very useful tools to estimate susceptibility breakpoints, mainly when clinical breakpoints
are not defined, and to predict the success of antimicrobial agents when used empirically
considering the susceptibility profile in a certain geographical area.

4. Materials and Methods

This simulation study was based on literature data only, and therefore, no ethics
approval was required.

4.1. Pharmacokinetic Parameters, PK/PD Targets, and Susceptibility Data

The PK parameters of trimethoprim, levofloxacin, minocycline, tigecycline, cefiderocol,
aztreonam, and avibactam in critically ill patients, as well as the PK/PD targets (PD
endpoints), were obtained from the literature. The PK parameters and the PK/PD targets
are presented in Table 3.



Antibiotics 2024, 13, 553 12 of 16

Table 3. Pharmacokinetic parameters and PK/PD targets of the antimicrobial agents used for Monte
Carlo simulations. Data are expressed as mean ± standard deviation.

Antibiotic Dosing Regimen CL (L/h) Fu V (L) PK/PD Target References

Cotrimoxazole
(trimethoprim/
sulfamethoxazole) a

240/1200 mg q6h
320/1600 mg q6h
320/1600 mg q8h

1.88 ± 0.44 b 0.5 ± 0.017 f AUC24/MIC ≥ 67.4 [18,44,45]

Levofloxacin
500 mg q12h
500 mgq24h
750 mgq24h

8.66 ± 3.85 0.71 f AUC24/MIC ≥ 62 [30,46,47]

Minocycline 100 mg q12h
200 mgq12h 4.70 ± 2.14 0.28 f AUC24/MIC ≥ 8.75 [30,48]

Tigecycline 50 mg q12h
100 mg q12h 22.10 ± 3.82 0.2 f AUC24/MIC ≥ 0.9 [30,49]

Cefiderocol 2 g q8h, 3 h infusion 4.04 ± 1.52 0.44 ± 0.04
V1: 7.78 ± 4.43
V2: 5.77 ± 1.94

V3: 0.798
%f T>MIC > 75% [50,51]

Aztreonam/
avibactam

1500/500 mg q6h
3 h infusion

9.60 ± 5.00
11.09 ± 6.78

0.72
0.92

27.20 ± 20.80
50.81 ± 14.32

%f T>MIC > 60%
%ƒT>2.5 mg/L > 50% [52–54]

a: pharmacokinetic parameters and PK/PD index refer to trimethoprim. b: mL/min/Kg (70 Kg body weight was
considered). CL: total body clearance; Fu: unbound fraction; f AUC24: area under the unbound concentration–time
curve over a period of 24 h; %f T>MIC: percentage of time of the dosing interval in which the unbound serum
antibiotic concentration remains above the minimum inhibitory concentration (MIC); V: distribution volume.

The PK/PD target of cotrimoxazole (f AUC24/MIC ≥ 67.4) refers to the trimethoprim
component; however, it was estimated in an in vitro model with trimethoprim and sul-
famethoxazole in combination and not separately, and therefore, the activity of the two
components is considered [18].

The MIC distributions of trimethoprim/sulfamethoxazole (13 distributions, 2511 ob-
servations), levofloxacin (10 distributions, 1979 observations), minocycline (8 distributions,
432 observations), tigecycline (5 distributions, 289 observations), cefiderocol (5 distributions,
338 observations), and aztreonam/avibactam (4 distributions and 805 observations) against
S. maltophilia were obtained from EUCAST [11]. Additionally, the MIC profile of cotrimoxa-
zole, levofloxacin, and minocycline was also obtained from the study by Pfaller et al. [7],
who included 1522 S. maltophilia isolates from the SENTRY Antimicrobial Surveillance
Program collection, representing 35 U.S. medical centers from 2014 to 2021.

4.2. Pharmacokinetic/Pharmacodynamic Analysis and Monte Carlo Simulation

A 10,000-subject Monte Carlo simulation was conducted for each antibiotic using
Oracle® Crystal Ball Fusion Edition v.11.1.2.3.500 (Oracle USA Inc., Redwood City, CA,
USA). The PK/PD index and the magnitude or value of the PK/PD index associated with
the success of therapy for every antibiotic are listed in Table 3, as well the dosing regimens
studied. For trimethoprim, levofloxacin, minocycline, and tigecycline, f AUC24/MIC is
the PK/PD index that best predicts efficacy, and it was estimated by non-compartmental
analysis using the following equation [22]:

f AUC24/MIC = D × Fu/CL

where D is the daily dose, Fu is the unbound fraction, and CL is the total clearance.
For cefiderocol and aztreonam, the proportion of time that the unbound serum con-

centration remains above the MIC in a steady state (%f T>MIC) is the PK/PD index related
to efficacy, and it was calculated considering a one-compartmental pharmacokinetic model
with the following equations [22]:

t1 =
MIC − f Cmin,ss

f Cmax,ss − f Cmin,ss
·tinf
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t2 =

(
f Cmax,ss

MIC

)
· Vss

CLt

f %T>MIC = [(t2 + tinf)− t1]·
100
τ

where f Cmin,ss and f Cmax,ss are the minimum and the maximum serum concentration of
the unbound drug (mg/L) in the steady state, respectively, tinf is the infusion length, and
t1 and t2 are the times at which the antibiotic concentration reaches the MIC during the
infusion phase and in the elimination phase, respectively.

In the case of avibactam, the proportion of the dosing interval for which the free drug
concentration is >2.5 mg/mL was calculated.

For simulations, a log-normal distribution was assumed for pharmacokinetic parame-
ters, according to statistical criteria. The unbound fraction was included as a fixed value if
interindividual variability was not available [55].

For each MIC value, the simulation resulted in a probability distribution, accounting
for the variability in the pharmacokinetic parameters. The mean value and the 95% confi-
dence interval (represented as percentiles) of either %f T>MIC or f AUC24/MIC were then
extracted. The highest MIC values at which the PK/PD index reaches the value related to
treatment success, that is, the PK/PD breakpoints, were estimated from the lower limit of
the 95% CI (2.5% percentile), as EUCAST has established [16].

We estimated the PTA or probability that a PK/PD index reaches the target value,
that is, the value associated with efficacy [56]. PTA ≥ 90% was associated with a high
probability of treatment success, but if 80% ≤ PTA < 90%, only a moderate probability of
treatment success was considered [22].

The cumulative fraction of response, or CFR, that is, the probability of success of
an empirical treatment, was estimated from the PTA at every MIC level and the MIC
distribution of the bacterial population. For CFR calculation, the following equation was
used [56]:

CFR(%) =
n

∑
i=1

PTAi·Fi

where PTAi is the PTA at each MIC value (i), and Fi is the percentage of the microorganisms
in the population with this MIC value. As with PTA, for CFR ≥ 90%, we considered a high
probability of treatment success, but it was only moderate if 80% ≤ CFR < 90% [22].

Joint PTA, defined as the simultaneous attainment of PTA, was calculated for aztre-
onam/avibactam [57]. We first determined if the PTA of avibactam was achieved, and if the
threshold was met, we then estimated the joint PTA as the PTA calculated for aztreonam.

5. Conclusions

From a PK/PD perspective, the best options to treat empirically S. maltophilia infec-
tions are cefiderocol, aztreonam/avibactam, and minocycline and tigecycline at the highest
doses. While for European isolates, cotrimoxazole provided a low probability of treatment
success, this antimicrobial agent may be useful considering the susceptibility of U.S. isolates.
For all antibiotics, discrepancies between the PK/PD breakpoints and the clinical break-
points defined by EUCAST (or the ECOFF) and CLSI were detected. With cotrimoxazole,
levofloxacin, minocycline, and aztreonam/avibactam, isolates were considered susceptible
based on CLSI and EUCAST breakpoints, and the PK/PD analysis predicted insufficient
exposure. Only with tigecycline and cefiderocol were the PK/PD breakpoints higher than
the ECOFF and the clinical breakpoint by CLSI, respectively; that is, antibiotic exposure is
sufficient to treat infections due to isolates considered resistant.
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