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Resumen

Las redes bidimensionales son arreglos periódicos de puntos en el plano. Cuando colocamos
especies atomicas en esos puntos, hablamos de redes bidimensionales electrónicas, o cristales
bidimensionales. Las redes electrónicas bidimensionales han desempeñado un papel crucial en
el desarrollo de la física de la materia condensada moderna y en el estudio de materiales con
interesantes propiedades electrónicas. El estudio de las redes electrónicas bidimensionales es
actualmente un área activa de investigación, con descubrimientos en curso en el campo de los
aislantes topológicos, el efecto Hall cuántico de espín y otros fenómenos electrónicos intrigantes.
Uno de los aspectos intrigantes de las redes electrónicas bidimensionales es su conexión con el
campo de la topología, que describimos en las siguiente lineas.

En este contexto, la topología se refiere al estudio de las propiedades que permanecen inalteradas
bajo deformaciones continuas. Las estructuras de bandas electrónicas en dos dimensiones pueden
tener carácter topológico, lo que conduce a la aparición de fenómenos intrigantes como el efecto Hall
cuántico y los aislantes topológicos. La topología de los estados electrónicos en estos materiales da
lugar a comportamientos exóticos, como estados de borde protegidos topológicamente y propiedades
de transporte electrónico robustas. Esta robustez es particularmente intrigante porque es insensible
a las perturbaciones locales, lo que hace que estos materiales sean potencialmente valiosos para
aplicaciones en computación cuántica y espintrónica.

Comenzamos con el Capítulo 1, con una breve introducción presentando el estado del arte de
los temas que tratamos en esta tesis. A continuación, pasamos al Capítulo 2, donde desarrollamos
todos los antecedentes teóricos. Este capítulo sirve para establecer la notación que hemos utilizado
a lo largo de todo el documento. Dentro de este capítulo, tratamos temas como la ecuación de
Schrödinger para una función de onda electrónica en presencia de un potencial bidimensional.
Usando esto como base, empezamos a construir los diferentes métodos que podemos usar para
aproximarnos al problema de la física de los electrones en dos dimensiones.

En primer lugar, introducimos el método de expansión en ondas planas que nos permitirá
comprender la simulación de redes bidimensionales de forma sintética. La principal motivación
es el hecho de que algunas redes electrónicas bidimensionales no existen en la naturaleza, ya que
no son químicamente estables. Por este motivo, se necesitan técnicas de simulación cuántica para
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comprender la física que subyace a las redes bidimensionales y hacer realidad estos sistemas con
experimentos en el laboratorio. Entre las numerosas plataformas de simulación cuántica disponibles
en la actualidad, cabe destacar el simulador cuántico de CO/Cu(111). Esta plataforma consiste
en manipular moléculas de CO utilizando la punta de un microscopio de barrido de efecto túnel,
creando pozos de potencial que presentan niveles de energía imitando orbitales atómicos.

Otra posible aproximación al estudio de las propiedades espectrales de las redes electrónicas es
el uso del método de enlace fuerte. Esta potente herramienta, bastante sencilla, permite reproducir
fácilmente a bajas energías la física de los electrones que se mueven de un sitio de la red a otro.
En este sentido, podemos hablar de amplitudes de salto entre los sitios de vecinos con diferentes
ordenes de cercanía. Diagonalizando el Hamiltoniano de enlace fuerte, que se escribe como la
matriz de conectividad entre los diferentes orbitales atómicos, se puede tener acceso a la dispersión
de energía de los electrones que se mueven dentro de una determinada red.

Evidentemente, este Hamiltoniano de enlace fuerte está estrechamente relacionado con las
simetrías de la red, ya que dichas simetrías rigen la conectividad de la propia red. En todo momento,
se puede establecer un modelo de enlace fuerte que proporcione ciertas predicciones sobre el
espectro de energía de cualquier red. Hablamos de predicciones porque los Hamiltonianos de enlace
fuerte actúan como modelos juguete y, ajustando los parámetros, podemos reproducir los resultados
experimentales con gran precisión. Finalmente, este ajuste puede realizarse mediante técnicas de
minimización, lo que permite reproducir los resultados del simulador cuántico con un modelo
simple de enlace fuerte. En el caso del simulador cuántico, las amplitudes están relacionadas con
las interacciones entre las estructuras que imitan los sitios de la red y los orbitales atómicos.

Al diagonalizar el Hamiltoniano de enlace fuerte, se pueden estudiar sus vectores propios, que
son la clave para el siguiente tema: la topología. La topología desempeña un papel crucial en el
campo de la simulación cuántica electrónica y los modelos de enlace fuerte. Como hemos afirmado
antes, el simulador cuántico electrónico basado en el CO/Cu(111) está profundamente conectado
con las simetrías cristalinas de la red que se simula. La conexión entre topología y simetrías
cristalinas se introdujo en el formalismo de la química cuántica topológica [1]. Esta teoría establece
una conexión directa y biyectiva entre las características topológicas de una estructura de bandas
y la distribución en el espacio real de los orbitales atómicos en términos de objetos matemáticos
llamados representaciones de banda del grupo espacial. Dado que tanto el conjunto de todos los
grupos espaciales como el número de representaciones de banda es finito, pueden calcularse todas
las configuraciones posibles. Todas estas configuraciones posibles están tabuladas en el Servidor
Cristalográfico de Bilbao.
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En este sentido, la biyección se realiza en los siguientes términos: un conjunto de orbitales
atómicos bajo la periodicidad de un determinado grupo espacial da lugar a una estructura de bandas
con determinadas propiedades de simetría (ya presentes en el Servidor Cristalográfico de Bilbao), y
viceversa. Por el contrario, si una estructura de bandas posee propiedades de simetría que no se
encuentran en el Cristalográfico de Bilbao, se debe a su carácter topológico.

La presencia de un bulk topológico está relacionada con la aparición de estados límite que
son robustos frente a la dispersión cuando el sistema se corta en una muestra de tamaño finito.
Se trata de la correspondencia entre bulk y la frontera de los aislantes topológicos, por la que los
modos de frontera son robustos frente a perturbaciones debidas a la protección topológica. Una
red bidimensional, cuando se estudia en una muestra de tamaño finito, puede mostrar dos tipos
diferentes de fronteras: bordes, cuya dimensión es 1, y esquinas, con dimensión 0. Por lo tanto, un
aislante topológico puede tener, al menos, modos de borde con protección topológica. Si el aislante
topológico muestra también modos de esquina, nos referiremos a él como un aislante topológico de
orden superior. Este orden se define en términos de la diferencia entre las dimensiones del bulk y la
dimensión del modo de borde.

Por estas razones, decidimos aplicar el formalismo de simulación cuántica a un red bidimensional
que presenta interesantes características topológicas asociadas a la presencia de modos de frontera
de orden superior localizados en las esquinas de una muestra de tamaño finito. Este es el caso de la
red kagome, una red bidimensional construida a partir de una red triangular con una base de tres
átomos. Cuando esta red está sometida a una distorsión aplicada a las integrales de solapamiento
entre orbitales, la red presenta dos fases diferentes. En el bulk, cada fase se caracteriza por el valor
de la polarización eléctrica, un invariante topológico relacionado con el desplazamiento de la carga
negativa con respecto al centro de carga positiva. Además, estas dos fases presentan el mismo
espectro; por lo tanto, no se puede distinguir entre ellas simplemente comprobando las propiedades
espectrales.

Sin embargo, las propiedades espectrales de una muestra de tamaño finito cambian entre las dos
fases. Más concretamente, una de las fases muestra estados dentro del gap energético localizados en
las esquinas de la muestra, lo que ha desconcertado a la comunidad científica, ya que se pensaba que
los modos de las esquinas eran consecuencia de un bulk topológico de orden superior.

El trabajo que se presenta en el capítulo 3 está relacionado con la caracterización de la topología
de la red de kagome tanto en el bulk como en una muestra de tamaño finito. En el bulk, caracterizamos
la red kagome en términos de invariantes topológicos y argumentos de teoría de grupos basados en
la formulación de la química cuántica topológica. Los invariantes topológicos revelan que el bulk no

iii



presenta ninguna topología robusta, por lo que concluimos que en términos de la correspondencia
bulk-frontera, los estados de esquina no están relacionados con la topología del bulk. Además,
complementamos estos resultados con los proporcionados por la aplicación de la teoría de grupos
y la química cuántica topológica. Los resultados obtenidos arrojan las mismas conclusiones: la
topología del bulk en las dos fases corresponde a dos límites atómicos diferentes conectados a través
del cierre del gap energético, cada uno con una representación de banda bien definida. Por lo tanto,
estos dos límites atómicos no están conectados adiabáticamente, por lo que corresponden a dos fases
diferentes, cada una caracterizada por un valor diferente de la polarización del bulk.

En el caso de la muestra de tamaño finito, añadimos integrales de solapamiento de mayor alcance
que preservan o rompen ciertas simetrías, y estudiamos los efectos que estos términos tienen sobre
el espectro. Observamos que estas perturbaciones desplazan los estados dentro del gap energético a
las bandas del bulk, y concluimos que las integrales de solapamiento que respetan las simetrías y la
conectividad de la red, generalizados hasta cualquier orden de vecinos más próximos, preservan
los modos de esquina en el gap energético. Por tanto, la protección de esos modos de esquina está
relacionada con las simetrías y la conectividad y no se debe a una protección topológica.

El capítulo 4 está dedicado al estudio de una red bidimensional que presenta propiedades
espectrales muy interesantes, todas ellas enraizadas en las simetrías de la red. Algunos
grupos espaciales, llamados no simórficos, contienen ciertos elementos que implican traslaciones
fraccionarias a lo largo de los vectores directos de la red. Estos elementos de simetría tienen
consecuencias muy interesantes en el espectro de la red, como pliegues en las bandas con cruces
dentro de los límites de la primera zona de Brillouin que están protegidos contra la hibridación.
Utilizando un Hamiltoniano de enlace fuerte, utilizamos integrales de solapamiento entre vecinos
más cercanos para describir el espectro de la red, denominado red en espiga, o herringbone lattice,
en inglés.

Entre las diferentes características que muestra el espectro, encontramos un par de conos de
Dirac fijados en posiciones dentro del camino de alta simetría. La investigación llevada a cabo
en este capítulo trata sobre los diferentes efectos que la ruptura de las simetrías tiene sobre las
propiedades espectrales de la red, tanto en el bulk como en geometrías en forma de cinta. La ruptura
de las simetrías se realiza, en primer lugar, cambiando las energías de los sitios de la red. En
este sentido, se preserva la conectividad de la red y, simplemente aplicando diferentes potenciales,
somos capaces de mover los conos de Dirac a través de la primera zona de Brillouin e incluso
fusionarlos formando semi-conos Dirac, donde la dispersión cambia de lineal a parabólica a medida
que rodeamos el cono, o semi-conos de Dirac desplegados, que pueden considerarse como una línea
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nodal enre dos bandas más un semi-cono de Dirac. Todos estos resultados obtenidos en el bulk
se proyectan en las geometrías en forma de cinta, donde hemos elegido los vectores de la red para
definir los bordes de las mismas.

Un enfoque diferente para la ruptura de las simetrías es una técnica de distorsión aplicada a las
integrales de solapamiento, como la que introdujimos anteriormente en el capítulo 3 en la red kagome.
Sin embargo, la distorsión aplicada a esta red es un poco diferente a la aplicada en el entramado
kagome, y está relacionada con la distinción entre orientaciones horizontales/verticales de las
integrales de solapamiento. utilizando esta distorsión, somos capaces de mover los conos fuera del
camino de alta simetría. Más concretamente, los conos describen una trayectoria cuasi-hiperbólica
dentro de la primera zona de Brillouin, y se funden en semi-conos de Dirac en las esquinas de la
misma.

Finalmente, presentamos una generalización de todas las perturbaciones aplicadas a la red,
además de una posible implementación de la red en espiga en el CO/Cu(111). Una vez caracterizados
los efectos que las distintas simetrías tienen en el espectro, encontramos que la propuesta puede
incluir una cierta dimerización al quedar los conos fuera del camino de alta simetría.

En el último capítulo presentamos el concepto de topología frágil. Como introdujimos
anteriormente, la topología no trivial del bulk de una red tiene sus consecuencias en las fronteras
del sistema. Al mismo tiempo, las propiedades de simetría de una estructura de bandas topológica
no están relacionadas con ninguna combinación de representaciones de bandas. En general, las
propiedades topológicas se denominan robustas ya que los invariantes topológicos sólo cambian
cuando se produce un proceso no adiabático en el sistema,i. e., el cierre del gap energetico. Sin
embargo, en dos dimensiones, sin acoplamiento espín-órbita y preservando la simetría de inversión
temporal, todavía podemos encontrar cierta topología que parece ser frágil bajo la adición de grados
de libertad triviales. Esta es una característica bastante interesante ya que el diagnóstico de esta
topología se realiza a través de los mismos invariantes, tanto topológicos como los basados en las
simetrías.

El modelo que presentamos se basa en la red kagome con un orbital extra que forma una
red triangular. Tras estudiar el espectro utilizando un modelo de enlace fuerte con integrales de
solapamiento tanto a primeros como a segundos vecinos, encontramos un conjunto de dos bandas
intermedias separadas del resto. A continuación, aplicando invariantes topológicos y química
cuántica topológica, verificamos que estas dos bandas son efectivamente frágiles: la topología se
rompe tras la adición de grados de libertad triviales.
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Terminamos este capítulo con una propuesta de la red en la plataforma de simulación cuántica
CO/Cu(111). En esta ocasión, mostramos varias propuestas que pueden dar lugar a una fase frágil.
Aplicando invariantes topológicos, verificamos que la propuesta sí respeta la topología frágil de la
red.

Finalmente, como conclusión, esperamos que esta tesis ayude a la comprensión de las redes
bidimensionales a través de un discurso claro y directo, a través del compendio de redes que hemos
estudiado en profundidad y trasladado a una plataforma de simulación cuántica.
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Abstract

Two-dimensional lattices are periodic arrangements of points in the Euclidean plane. When
those points are populated with atomic species, one can talk about two-dimensional atomic crystals,
where the gas of electrons is delocalized across the whole lattice. For this reason, they are usually
called two-dimensional electronic lattices, which have played a crucial role in the development of
modern condensed matter physics and in the study of novel materials. The study of two-dimensional
electronic lattices is currently an active area of research, with ongoing discoveries in the field of
topological insulators, quantum spin Hall effect, and other intriguing electronic phenomena. One
of the intriguing aspects of two-dimensional electronic lattices is their connection to the field of
topology.

In this context, topology refers to the study of properties that remain unchanged under continuous
deformations. Electronic band structures in two dimensions can be topologically classified, leading
to the emergence of intriguing phenomena such as the quantum Hall effect and topological insulators.
The topology of electronic states in these materials gives rise to exotic behaviors, such as protected
edge states and robust electronic transport properties. This robustness is particularly intriguing
because it is insensitive to local perturbations, making these materials potentially valuable for
applications in quantum computing and spintronics.

We begin this thesis with a brief introduction and state-of-the-art of the topics that we cover
in Chapter 1. Next, we move on to Chapter 2, where all the theoretical background is developed.
At the same time, this chapter serves to establish the notation we have used throughout the whole
document. Within this Chapter, we cover topics like the Schrödinger equation for an electronic
wavefunction in the presence of a two-dimensional periodic potential. Using this as a basis, we
start building the different methods we can use to approach the problem of the energy physics of
electrons in two dimensions.

In the first place, we introduce the plane-wave expansion method that will allow us to comprehend
the solution to the energy spectrum of two-dimensional electron gases under the action of periodic
potentials. in particular, we are interested in a certain kind of potentials that mimic the shape of
two-dimensional lattices. The main motivation is the fact that some two-dimensional electronic
lattices do not exist in nature since they are not chemically stable. For this reason, quantum
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simulating techniques are required to understand the physics underneath two-dimensional lattices
and to realize these systems with tabletop experiments. Among the many quantum simulation
platforms currently available, a noteworthy example is the CO/Cu(111) quantum simulator. This
platform involves manipulating CO molecules using the tip of a scanning tunneling microscope,
creating potential wells that exhibit energy levels mimicking atomic orbitals.

Another possible approach to the study of the spectral properties of electronic lattices is the
use of the tight-binding method. This powerful, rather simple tool allows one to easily reproduce
the low-energy profile of electrons hopping from one lattice site to another. In this sense, we can
talk about hopping amplitudes between nearest, next-to-nearest, etc, neighboring lattice sites. By
diagonalizing the tight-binding Hamiltonian, which is written as the connectivity matrix between
the different atomic orbitals, one can have access to the energy dispersion of the electrons moving
inside a certain lattice.

Clearly, this tight-binding Hamiltonian is closely related to the symmetries of the lattice, since
those symmetries rule the connectivity of the lattice itself. At all times, one can always establish a
tight-binding model providing certain predictions about the energy spectrum of any lattice. We talk
about predictions since the tight-binding Hamiltonians act as toy models, and by tuning the hopping
amplitudes, we can reproduce the experimental results with high accuracy. Finally, this tuning can
be done by fitting techniques, which allows the reproduction of the quantum simulated results with a
simple tight-binding model. In the case of the quantum simulator, hopping amplitudes are related
to the interactions between the engineered atomic-like structures, mimicking the lattice sites and
atomic orbitals.

By diagonalizing the tight-binding Hamiltonian, one can study its eigenvectors, which are the
key to the next topic: topology. Topology plays a crucial role in the field of quantum materials,
and in particular in electronic quantum simulation and tight-binding models. As we have claimed
before, the electronic quantum simulator based on the CO/Cu(111) is deeply connected with the
crystalline symmetries of the lattice being simulated. The connection between topology and
crystalline symmetries was introduced in the topological quantum formalism [1]. This theory
establishes both a straightforward and bĳective connection between the topological features of a
band structure and the real space distribution of the atomic orbitals in terms of mathematical objects
called band representations of the space group. Since both the set of all space groups and the number
of band representations is finite, all the possible configurations can be calculated. All these possible
configurations are tabulated in the Bilbao Crystallographic Server.

In this sense, the bĳection is done in the following terms: a set of atomic orbitals under the
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periodicity of a certain space group gives rise to a band structure with certain symmetry properties
already present in the Bilbao Crystallographic server, and vice-versa. On the contrary, if a band
structure possesses symmetry properties that cannot be found in the Bilbao Crystallographic, it is
due to its topological character.

The presence of a topological bulk is connected with the appearance of boundary states that
are robust against back-scattering when the system is cut into a finite-size sample. This is the
bulk-boundary correspondence of topological insulators, by which boundary modes are robust
against perturbations due to topological protection. A two-dimensional lattice, when cut from
the bulk, it may display two different types of boundaries: edges, whose dimension is 1, and
corners, with dimension 0. Hence, a topological insulator may have, at least, edge modes with
topological protection. If the topological insulator shows as well corner modes, we will refer to it as
a higher-order topological insulator. This order is defined in terms of the difference between the
dimensions of the bulk and the dimension of the boundary mode.

For these reasons, we decided to apply the quantum-simulation formalism to a two-dimensional
lattice that presents interesting topological features associated with the presence of higher-order
boundary modes localized in the corners of a finite-size flake. This is the case of the breathing
kagome lattice, a two-dimensional lattice built from a triangular lattice plus a set of three atoms
under a breathing distortion applied to the hopping amplitudes. The breathing distortion is controlled
through a parameter that increases and decreases the hopping amplitude between neighboring lattice
sites. When this lattice is under a breathing distortion applied to the hoppings, the lattice presents
two different phases. In the bulk, each phase is characterized by the value of the bulk polarization, a
topological invariant that is related to the displacement of the negative charge with respect to the
positive charge center. Additionally, these two phases display the same spectrum; hence, one cannot
distinguish between them just by checking the spectral properties.

However, the spectral properties of a finite-size flake do change between the two phases. More
specifically, one of the phases displays in-gap states localized in the corners of the flake, which
puzzled the scientific community since the corner modes were thought to be the consequence of a
higher-order topological order.

The work presented in Chapter 3 is related to the characterization of the topology of the breathing
kagome lattice both in the bulk and in the finite size flake. In the bulk, we characterize the
breathing kagome lattice in terms of topological invariants and group theory arguments based on the
topological quantum chemistry formulation. The topological invariants reveal that the bulk does not
present any robust topology, so we conclude that in terms of the bulk-boundary correspondence, the
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corner states are not related to the bulk topology. Additionally, we complement these results with the
ones provided by the application of group theory and topological quantum chemistry. The results
obtained yield the same conclusions: the topology of the bulk in the two phases corresponds to two
different atomic limits connected through the closing of the energy gap, each with a well-defined
band representation. Hence, these two atomic limits are not connected adiabatically, and thus they
correspond to two different phases, each characterized by a different value of the bulk polarization.

In the case of the finite-size flake, we add long-range hoppings that preserve or break certain
symmetries of the flake and study the effects on the spectrum. We observe that these perturbations
move the in-gap states into the bulk bands, and conclude that hoppings that respect the symmetries
and connectivity of the lattice, generalised up to any order of next-nearest neighbors, preserve the
corner modes in the gap. Hence, the protection of those corner modes is related to the symmetries
and connectivity and not due to topological protection.

Chapter 4 is devoted to the study of a two-dimensional lattice that presents very interesting
spectral properties, which are all rooted in the symmetries of the lattice. Some space groups, called
non-symmorphic, contain certain elements that involve fractional translations along the direct lattice
vectors. These symmetry elements have very interesting consequences in the spectrum of the lattice,
as band-foldings with crossings inside the first Brillouin zone boundaries that are protected against
hybridization. From a tight-binding perspective, we use the easiest nearest-neighbor Hamiltonian to
describe the spectrum of the lattice, called the herringbone lattice.

Among the different features the spectrum displays, we find a pair of Dirac cones pinned at
positions inside the high-symmetry path. The research carried out in this Chapter covers the different
effects that the breaking of the symmetries have on the spectral properties of the lattice, both in
the bulk and in ribbon geometries. The breaking of the symmetries is first done by tuning the
onsite energies of the lattice sites. In this sense, the connectivity of the lattice is preserved and
just by applying different onsite potentials, we are able to gap the Dirac cones, move them across
the first Brillouin zone, and even merge them into very interesting spectral features: semi-Dirac
cones, where the dispersion changes from linear to parabolic as we go around the cone, or unfolded
semi-Dirac cone, which can be thought of as a nodal line plus a semi-Dirac cone. All these bulk
results are projected into the ribbon geometries, where we have chosen the lattice vectors to define
the edges of the ribbons.

A different approach to the breaking of the symmetries is a breathing technique, as we introduced
previously in Chapter 3 in the kagome lattice. The breathing distortion applied to this lattice is a
bit different to the one applied in the kagome lattice, and it is related to the distinction between
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horizontal/vertical orientations of the hoppings. using this distortion, we are able to move the cones
out of the high-symmetry path. More precisely, the cones describe a quasi-hyperbolic trajectory
inside the first Brillouin zone, and merge into semi-Dirac cones in the corners of it.

Finally, we present a generalization of all the perturbations applied to the lattice, plus a possible
implementation of the herringbone lattice in the CO/Cu(111) platform. Once we have characterized
the effects that the different symmetries have in the spectrum, We find that the proposal may include
a certain dimerization since the cones are out of the high-symmetry path.

In the last Chapter, we present the concept of fragile topology. As we introduced previously, the
non-trivial topology of the bulk of a lattice has its consequences in the boundaries of the system.
At the same time, the symmetry properties of a topological band structure are not related to any
combination of band representations. In general, topological properties are called robust since
topological invariants only change when an adiabatic process occurs in the system,i. e., the closing
of a gap. However, in two-dimensions, without spin-orbit coupling and preserving time-reversal
symmetry we can still find certain topology that appears to be fragile under the addition of trivial
degrees of freedom. This is a quite interesting feature since the diagnosis of this topology is done
through the same invariants, both topological and symmetry-based.

The model we present is based on the kagome lattice with an extra orbital forming a triangular
lattice. After studying the spectrum using a tight-binding model with both nearest and next-to-nearest
hopping amplitudes, we find a set of two intermediate bands detached from the rest. Then, by
applying topological invariants and topological quantum chemistry, we verify that these two bands
are indeed fragile: the topology breaks down after the addition of trivial degrees of freedom.

We finish this chapter with a proposal of the lattice in the CO/Cu(111) quantum simulating
platform. This time, we show several proposals that may give rise to the fragile phase. By applying
topological invariants, we verify that the proposal does respect the fragile topology of the lattice.

Finally, in conclusion, we expect that this thesis helps the comprehension of two-dimensional
lattices through clear and direct speech, plus the compendium of lattices that we have deeply studied
and mapped into a quantum simulation platform.
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CHAPTER 1

Introduction

Quantum mechanics is the field of physics that comprehends the study of the building blocks of
matter, the subatomic particles, and their interactions. It was developed in the 20th century, and
though there is no proof of the quantum theory, it has proven to cover all experimental observations.
One of the main claims of quantum theory is the particle/wave duality of subatomic particles, known
as de Broglie’s hypothesis. The proposal is that massive particles can show wave or particle nature
depending on the experiment. This hypothesis was demonstrated three years later by Thomson by
means of diffraction techniques [2]. At the same time, Davisson reached the same conclusion after
collecting a diffraction pattern from scattered electrons using thin films [3] at Bell Labs. These two
experimental milestones confirmed de Broglie’s hypothesis.

Back in 1790, we found the first experiment that questioned the particle nature of, in this case,
light. The experiment was developed by Young and defied Newton’s conception of light as particles.
There, a beam of light is shot against a screen with a double slit. Another screen collecting the light
after crossing the double slit shows a diffraction pattern, characteristic of a wave’s nature.

It was not until the 60’s of last century that the first Young-inspired experiment with electrons
was developed [4, 5]. Several years later, a group of researchers from the University of Bologna
corroborated these findings [6]. Subsequent enhancements were achieved over a decade later in an
experiment conducted at the Hitachi lab by Tonomura et al. [7].

The wave interpretation of subatomic particles is one of the pillars of the Copenhagen
interpretation of quantum mechanics, and its mathematical background was developed by physicists
like Erwin Schrödinger, Werner Heisenberg, or Max Born. The description of the quantum state
of a quantum system is done in terms of wave functions, which are complex-valued functions of
position r and time 𝑡, among other variables. The Copenhagen interpretation of the wave function
claims that its square modulus describes the probability density of finding a particle at position r and
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time 𝑡. The evolution of the wave function is ruled by a differential equation called the Schrödinger
equation, published in 1926 [8]. The most general case is the time-dependent Schrödinger equation,
which describes the time evolution of a wave function. It involves first-order derivatives in time and
second-order derivatives in space. We can write that equation in terms of the Hamiltonian operator
as the total energy of a quantum state according to its kinetic and potential energies. Usually,
for stationary problems, one can decouple the time dependence from the spatial dependence by
separation of variables. In this case, we arrive at the time-independent Schrödinger equation. This
decoupling is often done assuming that the dependence in time is harmonic and/or if the Hamiltonian
operator is not explicitly dependent on time. In this case, the wave functions are stationary states
that are eigenstates of the Hamiltonian operator. The associated eigenvalues of the Hamiltonian are
the energies of such quantum state.

In this thesis, we study the wave behavior of electrons when they are confined in a crystal, which
is a set of atoms arranged periodically in space. Solid-state physics is a wide field of physics that
focuses on the large-scale effects (electric conductance, resistance, etc.) and how they arise from the
atomic-scale interactions. Quantum mechanics is a fundamental tool in solid-state physics since
we can describe the behavior of electrons in a crystal in terms of a time-independent Schrödinger
equation with a periodic potential term. More precisely, we study the electronic properties of two-
dimensional crystals, where electrons are confined in the 𝑥, 𝑦 plane. A well-known two-dimensional
material is graphene, a one-atom-thick layer of carbon atoms arranged in a honeycomb lattice. The
unique properties of a single graphene sheet lie on the fact that the system is a two-dimensional
crystal, which has sparked a wide range of potential applications for graphene in fields such as
electronics, materials science, energy storage, sensors, and more. All these properties are rooted
on the electronic properties of graphene, which can be described using quantum mechanics. Band
theory is built around the Schrödinger equation with a periodic potential term, in the sense that the
solution to such equation returns the relation of the energy of the electrons and their wave vectors.
This relation is usually called dispersion relation, but in the context of solid-state physics, it is called
band structure.

Band structures are the characteristic signature of the wave behavior of electrons in a periodic
media, i. e., crystals. Bands are separated by band gaps, regions in energy space that cannot
be reached by any wave vector. Band gaps are of very much interest because they allow for a
classification of materials according to the filling of the bands, in terms of the position of the
chemical potential or Fermi level. The band below the Fermi level is called the valence band, and
the one immediately above is called the conduction band. In this classification, we find insulators,
where the Fermi level lies in a band gap (the conduction band is empty), or metals, where the
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Fermi level crosses the conduction band. The case of graphene is known as semimetal, where the
gap closes at a single point. In a few words, band theory gave a simple explanation of how some
crystals are electric insulators, in contrast to electric conductors, even if, in both cases, electrons
can move through the material. Figure 1.1 represents some of the different configurations we can
find concerning the position of the Fermi level (𝐸F) and the band structure of materials. Adapted
from [9].

Figure 1.1: Distribution of the band structure in comparison with the position of the Fermi level for
different materials. Adapted from [9].

However, in 1980, Klaus von Klitzing’s discovery required a deeper classification of materials
farther from just metallic/insulating characters. It is the case of the quantum Hall effect, by which a
two-dimensional material under very strong magnetic fields and at very low temperatures shows
plateaus of transverse resistivity, instead of the expected linear behavior predicted by Drude’s theory.
Not only Drude’s theory broke down but also Landau theory about phase transitions. Here, phase
transitions are detected whenever a certain order parameter characterizing the system presents
discontinuities at the so-called critical points. At these critical points, some symmetries break
spontaneously which changes the value of the order parameter abruptly. Back to the quantum
Hall effect, these plateaus were the signature of phase transitions that Landau’s theory could not
describe, since no symmetry was breaking during the phase transition. A later work by Thouless
et al. [10] related the Hall conductivity to the derivatives of wave functions of the two-dimensional
electron gas, using a Kubo formula [11]. In that work, the macroscopic effect (Hall conductivity) is
related to the microscopic properties of electrons (quantum mechanical wave functions). Due to
the mathematical properties of the wave functions, the Hall conductivity can be written in terms of
a so-called topological invariant, an integer-valued quantity that cannot change unless a quantum
phase transition occurs. This is the birth of topological insulators, materials that present phase
transitions ruled by invariants rooted in the topology of the Hilbert space spanned by the wave
functions describing the system.
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The prediction, study, and classification of topological materials is mostly based on computational
methods to solve the Schrödinger equation. This is also the main constraint since realistic samples
of materials have a huge number of atoms, requiring tremendous computational power. This sets the
path for the search of new computational tools that allow for a simple but realistic description of
materials. For instance, density functional theory has served as one of the most powerful tools to
obtain the band structure of materials. However, density functional theory calculations are usually
slow, with low accuracy at determining band gaps, making band structures less reliable. Another
practical tool is the use of tight-binding methods to compute the band structure of materials. In
one and two dimensions, tight-binding Hamiltonians are widely used since the complexity of those
materials is lowered due to the low dimensionality of the systems. The term toy model comes in
handy since one can play and modify quite easily the properties of a tight-binding model by tuning
hopping terms, onsite energies, or spin-orbit coupling to the atomic positions in the lattice.

There is, however, a practical way to study one and two-dimensional materials, both
experimentally and theoretically, by simulating the system in a platform that is easy to manipulate.
This may give us access to all the degrees of freedom of the system, similar to a tight-binding model.
This is a bottom-up approach to the study of low-dimensional systems at the atomic scale. It is the
case of quantum simulators, a series of platforms where real materials are simulated by artificially
designed atom-like structures. The idea to simulate quantum matter can be traced back to Richard
Feynman when he gave his speech "there is plenty of room at the bottom" in 1959 and his insight to
use quantum computers to calculate the properties of materials in 1982 [12]. The key contribution
came in 1981 when Feynman published a paper titled "Simulating Physics with Computers" in
the International Journal of Theoretical Physics[13]. In this paper, he discussed the limitations
of classical computers in simulating quantum systems and proposed the idea of using a quantum
computer to simulate quantum physics more efficiently.

Among the many quantum simulation platforms currently available, we want to highlight the
CO/Cu(111) quantum simulator. In such platform, CO molecules are manipulated with the tip
of a scanning tunneling microscope to design potential wells that show energy levels that behave
as atomic orbitals. Hopping amplitudes are modeled by the interaction between these artificial
atomic-like structures, and are always of long-range nature. This platform is thoroughly studied
throughout this thesis. One of the many interesting features of this quantum-simulating platform is
the role of crystalline symmetries in band theory and in this platform in particular. The design of
the potential wells describing the artificial atoms has to be done respecting the symmetries of the
lattice to be simulated. In this sense, the results that this platform produces are straightforwardly
related to the symmetry properties of the lattice.
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As mentioned above, this thesis is focused on the study of two-dimensional systems, together with
their spectral, symmetry and topological features, and how to simulate them using the CO/Cu(111)
quantum simulating platform. Hence, the outline of this thesis is as follows:

1. In Chapter 2 we present the theoretical background for the study of two-dimensional
electronic lattices, based on the Schrödinger equation and tight-binding models. Next, we
discuss topological invariants and topological quantum chemistry, and apply those concepts
to the Su-Schrieffer-Heeger model, a one-dimensional chain that displays very interesting
topological features. We conclude by discretizing the continuum expressions for the topological
invariants to be able to compute them numerically.

2. Chapter 3 is devoted to the study of the breathing kagome lattice, a two-dimensional system
that displays boundary modes in both the edges and the corners of a finite-size triangular flake.
By means of topological invariants and topological quantum chemistry, we characterize the
different phases of this system realized in a quantum simulating platform.

3. Chapter 4 covers the study of the spectral properties of a non-symmorphic two-dimensional
lattice called the herringbone lattice. By applying different perturbations to the bulk
Hamiltonian, we are able to gap the Dirac cones characterizing the band structure, move
them within the first Brillouin zone, and eventually merge them into more exotic cone-like
structures, like semi-Dirac cones or unfolded semi-Dirac cones. Additionally, we study the
ribbon and flake geometries in terms of the edge-projected spectral function, a relevant tool to
evaluate the localization of the wave functions. Finally, a proposal for the realization of the
herringbone lattice in the CO/Cu(111) quantum simulator is presented, along with the energy
spectrum.

4. Finally, Chapter 5 is focused on the study of a very interesting type of topology known as
fragile topology. Contrary to robust topology, we are able to get rid of this kind of topology
by the addition of trivial bands. We study a tight-binding Hamiltonian plus its realization of
the CO/Cu(111) quantum simulating platform and recover the fragile character from a band
structure that is not induced from atomic orbitals.
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CHAPTER 2

Two-dimensional electronic lattices:
characterization and topology

2.1 Introduction

This chapter is devoted to the study and characterization of electrons confined in two-dimensional
lattices. Usually, this confinement is achieved by a two-dimensional potential term that is added
to the single-particle free electron Hamiltonian. This potential is periodic since it is built over a
two-dimensional lattice. The periodicity confers certain properties to the electronic wave functions
that we will cover in this chapter. A well-known example of a two-dimensional material is graphene,
a one-atom-thick layer of graphite. This material has shown to have a plethora of properties based on
the fact that it is genuinely a two-dimensional material. There are plenty of other two-dimensional
materials that can be found in nature; however, further in the text, we will consider “synthetic”
two-dimensional lattices in a platform that is called electronic quantum simulator.

In the following sections, we introduce the notation and concepts commonly used in the study
of electronic lattice physics in two dimensions. In section 2.2, we introduce the concept of
two-dimensional lattices and write the Schrödinger equation for an electron confined to hop inside
such lattices. Additionally, we present a different approach to the study of electronic lattice physics
in two dimensions by using tight-binding models. In section 2.3, we will explain the concept of
electronic quantum simulators based on the so-called muffin-tin electronic potentials, which will be
essential throughout this thesis. Section 2.4 covers the idea of bulk-boundary correspondence, a
crucial connection between non-trivial topological invariants and physically measurable quantities.
Sections 2.5 and 2.6 are devoted to the tools used to characterize the topological phases that
electronic lattices can display. Those tools are topological invariants and Topological Quantum
Chemistry [14], introduced in respective sections. In section 2.7, we apply the concepts presented

7



2.2. Electrons in two-dimensional crystals: the nearly-free electron model

in previous sections to the Su-Schrieffer-Heeger model, a one-dimensional bipartite chain that
succinctly encodes quite interesting physics. In section 2.8, we show how to compute topological
invariants over a discrete domain. Finally, in section 2.9, we introduce the projected spectral function,
a helpful concept that will allow us to study the localization of boundary modes. This chapter has
been built around the concepts of electronic band theory and adapted from several references [15,
16, 17, 18, 19, 20].

2.2 Electrons in two-dimensional crystals: the nearly-free
electron model

This thesis is focused on the study of two-dimensional lattices. From a mathematical point of
view, a lattice is an infinite discrete set of points arranged periodically in space (Bravais lattice)
plus a motif placed at each of these positions [15]. Back to the example in the introduction,
graphene consists of a motif of two carbon atoms connected by a covalent bond distributed over a
triangular lattice. The separation between the atoms is called interatomic distance or lattice constant,
represented by 𝑎0. The minimal unit of periodicity in the Bravais lattice, which includes a single
motif, is called unit cell. Any Bravais lattice is generated by a set of vectors called primitive or direct
lattice vectors. In two dimensions, two vectors, namely {a1, a2}, define any position in the lattice
as R𝑚,𝑛 = 𝑚a1 + 𝑛a2, for 𝑚, 𝑛 integers describing how many copies of the direct lattice vectors
conform the generic R𝑚,𝑛 vector. If a basis of atoms is defined by a set of 𝑁at positions inside the
unit cell: 𝜏𝑖 for 𝑖 = 1, ..., 𝑁at, the most generic atomic position inside the lattice is described by a
vector R𝑚,𝑛;𝑖 = 𝑚a1 + 𝑛a2 + 𝜏𝑖. However, from now on, the subscripts 𝑚, 𝑛, 𝑖 will be removed for
simplicity and will be made explicit when necessary.

2.2.1 The Schrödinger equation in a periodic potential

The most generic way to describe the physics of electrons in two-dimensional lattices is by
considering a potential V(r) that confines the electrons in the (𝑥, 𝑦) plane. A gas of electrons
confined in two spatial dimensions is called a two-dimensional electron gas. The single-particle
time-independent Schrödinger equation that describes the physics of a two-dimensional electron gas
confined to a potential can be written as

H𝜓(r) =
(
−ℏ2

2𝑚𝑒
∇2 + V(r)

)
𝜓(r) = E𝜓(r). (2.1)

In this equation, H is the Hamiltonian operator, 𝜓(r) is the electronic wave function, ℏ is the
reduced Planck’s constant, 𝑚𝑒 is the electron mass, ∇2 is the Laplacian operator,V(r) represents
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

the potential, which is periodic according to a certain lattice periodicity, and E is the energy of the
electron in the state described by 𝜓(r).

The solution to this eigenvalue problem is a set of energies {Eℓ} (the eigenvalues of the
Hamiltonian operator) and a set of eigenstates {𝜓ℓ (r)}, labeled by an integer ℓ. Each of the energies
has either a single eigenstate associated 𝜓ℓ (r) (non-degenerated eigenvalue) or a discrete set of 𝑔
eigenstates {𝜓𝑖

ℓ
(r)} for 𝑖 = 1, ..., 𝑔 (degenerated eigenvalue of degeneracy 𝑔).

The fact that the potential is periodic makes the Hamiltonian operator periodic as well, and this is
inherited by its eigenvalues and eigenstates. Whenever an operator is periodic, we can apply Fourier
analysis and decompose it into plane waves eiK·r for generic momentum K (or wave vector), since
plane waves form a complete set of functions. However, not all plane waves yield a fair plane-wave
expansion since these plane waves have to respect the periodicity of the direct lattice. Position and
momentum are conjugate variables so that the periodicity of the direct lattice imposes conditions
over the periodicity in momentum space. Hence, the set of all possible waves that oscillate with a
wave vector that respects the periodicity of a given Bravais lattice is another Bravais lattice, called
reciprocal lattice. The reciprocal lattice has the same dimensions as the real space one (the latter
being called the direct lattice when studied from the reciprocal lattice perspective). This condition
can be expressed as:

eiG·r = eiG·(r+R) ⇒ eiG·R = 1⇒ G · R = 2𝜋𝑝 for 𝑝 ∈ Z (2.2)

for any R in the Bravais lattice. The reciprocal lattice points are generated by a basis of vectors,
called reciprocal lattice vectors, and labeled here by {b1, b2}. In this way, the wave vectors of a
reciprocal lattice G can be expressed as a linear combination of the elements of the basis, such that
G = 𝑝b1 + 𝑞b2, for 𝑝, 𝑞 integers (same as the lattice positions in real space R𝑚,𝑛). The construction
of the basis {b1, b2} is done by considering that a wave vector G has to respect the lattice periodicity
(condition in Eq. (2.2)). Substituting the linear combination G = 𝑝b1 + 𝑞b2 in equation (2.2) and
after some algebra, we find that the reciprocal lattice vectors are related to the (direct) lattice vectors
via a𝑖 · b 𝑗 = 2𝜋𝛿𝑖, 𝑗 , where 𝛿𝑖, 𝑗 is the Kronecker delta function over the indices 𝑖, 𝑗 = 𝑥, 𝑦.

One can define the minimal unit of periodicity in the reciprocal space, called the first Brillouin
zone. The first Brillouin zone is the Wigner-Seitz unit cell constructed in reciprocal space [15]. The
whole reciprocal space can be decomposed into an infinite set of first Brillouin zones centered at
each of the reciprocal lattice vectors G. We label wave vectors inside the first Brillouin zone as k so
that a generic wave vector K can be written as K = G + k. Since, by construction, eiG·R = 1, the
physics related to a wave vector K are the same as if we consider just the wave vector k. Then, we
will just consider the momenta inside the first Brillouin zone.
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

The wave vector k labels both the eigenvalues and the eigenstates. For fixed ℓ, the eigenvalues
Eℓ and eigenvectors 𝜓ℓ (r) are functions of the momentum k. The function Eℓ (k) is called an energy
band, and the set of all bands is called band structure. We define isolated bands as energy bands
that do not present any degeneracies with the rest of the bands. Band degeneracies appear when, at
a certain (set of) k point(s), two or more bands present the same eigenvalue. Band degeneracies
can occur at single k points, like Dirac or semi-Dirac cones, or at a set of k points, like nodal
lines or totally degenerated bands, when the set of degeneracy points is the whole first Brillouin
zone. Accordingly, we define a set of degenerated bands when a set of bands presents at least one
degeneracy point. They are usually called composite groups of bands.

A generic band structure can present isolated bands, isolated composite groups of bands, or a
combination of both isolated bands and composite groups. We define the energy gap Δ𝐸 as the
energy difference between the maximum and the minimum of two consecutive sets of isolated bands
or isolated groups of bands. When the maximum and the minimum occur at the same k point, the
band gap is called direct. On the contrary, the band gap is called indirect.

2.2.2 Boundary conditions and Bloch theorem

In this section, we study the consequences of the periodicity on the eigenstates of the Hamiltonian.
The Bloch theorem applies to any problem that presents periodicity. In the case of electronic wave
functions, the eigenstates of the Hamiltonian can be chosen to have the form of a plane wave with
wave vector k, times a periodic function with the lattice periodicity [15], i. e.,

𝜓ℓ,k(r) = eik·r𝑢ℓ,k(r). (2.3)

We will refer to 𝜓ℓ,k(r) written in this form as the Bloch wave function or Bloch eigenstate and to
𝑢ℓ,k(r) as the periodic part of the Bloch eigenstate or the cell-periodic part of the wave function.
The fact that the function 𝑢ℓ,k(r) respects the lattice periodicity is formulated as:

𝑢ℓ,k(r + R) def
= 𝑢ℓ,k(r). (2.4)

Since the electronic wave function 𝜓ℓ,k(r) is related to the probability amplitude of finding an
electron at position r, the amplitude of the electronic wave function for momentum K = G + k is the
same as the amplitude for momentum k. This leaves gauge freedom over the phase of the wave
function after the addition of a reciprocal lattice vector. The most common gauge choice is to define
the Bloch wave function to be periodic in reciprocal space (periodic gauge [16]):

𝜓ℓ,k+G(r)
def
= 𝜓ℓ,k(r). (2.5)
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

The Bloch wave function is an eigenstate of the Hamiltonian operator presented in (2.1), periodic
with the lattice periodicity. However, the cell-periodic part is an eigenstate of a different
Hamiltonian, which depends parametrically on the wave vector k. It can be obtained by applying
the Hamiltonian (2.1) to (2.3):

Hk𝑢ℓ,k(r) =
(
ℏ2

2𝑚𝑒
(−𝑖∇ + k)2 + V(r)

)
𝑢ℓ,k(r) = Eℓ,k𝑢ℓ,k(r). (2.6)

The Hamiltonian Hk is defined as Hk = e−ik·rHeik·r. In general, an operator O acting on the
Bloch wave function 𝜓ℓ,k(r) can be written as an operator Ok acting on 𝑢ℓ,k(r) by applying such
transformation:

Ok = e−ik·rOeik·r. (2.7)

Since the electronic wave function 𝜓ℓ,k(r) is defined to be periodic in reciprocal space as
presented in Eq. (2.5), the cell-periodic part 𝑢ℓ,k(r) presents a twisted boundary condition in
reciprocal space as a consequence:

𝑢ℓ,k+G(r) = e−iG·r𝑢ℓ,k(r). (2.8)

Similarly, since the cell-periodic part of the wave function 𝑢ℓ,k(r) is defined to be periodic in real
space as presented in Eq. (2.4), the electronic wave function 𝜓ℓ,k(r) presents a twisted boundary
condition in real space as a consequence:

𝜓ℓ,k(r + R) = eik·R𝜓ℓ,k(r). (2.9)

As a final remark, the wave vector k is usually called the crystal momentum. This naming comes
from the fact that k is not the eigenvalue of the momentum operator p̂ = −iℏ∇ when applied to the
Bloch wave function:

p̂𝜓ℓ,k(r) = −iℏ∇
[
eik·r𝑢ℓ,k(r)

]
= ℏk𝜓ℓ,k(r) − iℏeik·r∇𝑢ℓ,k(r). (2.10)

Since the extra term −iℏeik·r∇𝑢ℓ,k(r) is not necessarily zero, ℏk is not the momentum eigenvalue of
the electron inside the crystal. Hence, it is called crystal momentum since the extra term depends on
the crystal periodicity.

2.2.3 Born-Von Karman boundary conditions

Once we have introduced the boundary conditions that the Bloch wave function respects in
both real and reciprocal space, let’s present a new set of boundary conditions related to the fact
that the electrons are confined inside a finite macroscopic two-dimensional crystal. Practically,
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

the translational invariance of the lattice is broken at the boundaries of the crystal. This affects
the electronic wave function at the boundary because we cannot apply the boundary conditions
presented in the previous section1.

However, if the number of unit cells is large enough (usually of the order of Avogadro’s number),
the effects of the boundaries will have little impact on the properties of the electrons since they
decay exponentially into the inner part of the crystal. Contrary to the boundary, we define the bulk
of a crystal as a region of the crystal where the environment of the electron is practically periodic,
i. e., the electronic wave function behaves as if there were no trace of any boundaries. Hence, in the
bulk, the boundary conditions presented in the previous section are totally fulfilled.

Mathematically, we model a finite two-dimensional crystal as a supercell formed by a finite
amount of 𝑁1 unit cells along 𝑥 and 𝑛 − 2 along 𝑦. Now, we repeat the supercell periodically along
𝑥 and 𝑦. We impose periodic boundary conditions in the supercell geometry. This can be expressed
as:

𝜓ℓ,k(r + 𝑁1a1) = 𝜓ℓ,k(r), (2.11a)

𝜓ℓ,k(r + 𝑁2a2) = 𝜓ℓ,k(r). (2.11b)

These conditions are called Born-Von Karman boundary conditions and impose some restrictions
over the wave vectors. In the boundary between supercells, the condition presented in Eq. (2.9) for
any direction 𝑖 = 𝑥, 𝑦 yields:

𝜓ℓ,k(r + 𝑁𝑖a𝑖) = ei𝑁𝑖k·a𝑖𝜓ℓ,k(r) ⇒ ei𝑁𝑖k·a𝑖 = 1. (2.12)

The momentum k can be written as a linear combination of the reciprocal lattice vectors as
k = 𝑢1b1 + 𝑢2b2, for generic (𝑢1, 𝑢2). Hence, we define q to be the wave vectors that respect the
Born-Von Karman periodic boundary conditions:

q =
𝑣1

𝑁1
b1 +

𝑣2

𝑁2
b2, for 𝑣1, 𝑣2 integers:


𝑣1 = 0, ..., 𝑁1 − 1

𝑣2 = 0, ..., 𝑁2 − 1
. (2.13)

The Born-von Karman boundary conditions can be understood as if we glued together the boundaries
of the two-dimensional crystal since when an electron approaches the boundary of the supercell,
it enters the adjacent supercell. Since all the supercells are identical, the electron behaves as if it
re-enters the crystal but on the opposite boundary.

1The main consequence of the breaking of the periodicity is the appearance of electronic states that can decay into
the vacuum, or both into the bulk and the vacuum. These states are called Shockley states [21] or Tamm states [22], and
will be described in detail further in the text.
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

As a final remark, the Born-von Karman boundary conditions allow us to study the propagation
of electrons inside finite crystals with wave vectors that are compatible with the size of the crystal.
We now present a practical application of the Born-von Karman boundary conditions and the Bloch
theorem to compute the Bloch wave function.

2.2.4 Plane wave expansion of the Schrödinger equation

So far, we have studied how the periodicity of the potential affects the properties of the eigenstates
of the Hamiltonian. We now present a practical application of the Bloch theorem, combined with
the Born-von Karman boundary conditions, to compute the Bloch wave function starting from the
Schrödinger equation. Once we have defined the wave vectors q allowed by the Born-von Karman
periodic boundary conditions, we are able to expand the Bloch wave function into a set of plane
waves with momentum q, that is,

𝜓ℓ,q(r) =
∑︁

q
𝐶ℓqeiq·r, (2.14)

where the coefficients 𝐶ℓq are unknown and will be obtained by solving the Schrödinger equation.
Accordingly, we expand the periodic potential into plane wave components 𝑉G of the form:

V(r) =
∑︁
G
𝑉GeiG·r, (2.15a)

𝑉G =
1
𝐴UC

∫
UC

dr e−iG·rV(r), (2.15b)

where G are the reciprocal lattice vectors, UC stands for unit cell, and AUC is the area of the unit cell.

Practically, the solution to the Schrödinger equation using the plane wave expansion is obtained
by defining a set of reciprocal lattice vectors G with norm shorter than a cut-off length. This
truncation of the expansion in Eq. (2.15a) is done since waves with long wave vectors oscillate
rapidly, and thus, their contribution to the Fourier expansion can be neglected. Plugging these
two expansions into the Hamiltonian in (2.1) we transform the eigenvalue problem of a continuous
operator into a finite set of coupled linear equations. After some algebra, we arrive at the expression
that defines the coefficients 𝐶ℓq−G of the wave function at momenta q −G:(

ℏ2 |q −G|2

2𝑚𝑒
− E

)
𝐶ℓq−G +

∑︁
G′
𝑉G′−G𝐶

ℓ
q−G = 0, (2.16)

With this procedure, we can reconstruct the expression of the Bloch wave function at each q and also
find an analytic expression for the periodic part of the Bloch wave function under the plane-wave
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expansion method:

𝜓ℓ,q(r) =
∑︁
G
𝐶ℓq−Gei(q−G)·r = eiq·r

(∑︁
G
𝐶ℓq−Ge−iG·r

)
= eiq·r𝑢ℓ,q(r), (2.17)

𝑢ℓ,q(r) =
∑︁
G
𝐶ℓq−Ge−iG·r. (2.18)

As we stated before, this is an approximation due to the truncation in the summation over the
components of the potential. Chapters 3, 4, and 5 contain different examples where these formulas
have been used to reconstruct the Bloch wave function and its periodic part.

2.2.5 Tight-binding Hamiltonians

So far, we have presented the Schrödinger equation and its solution in two dimensions in terms of
a periodic potential. The plane-wave expansion allows the decomposition of the periodic potential in
Fourier components of the reciprocal lattice vectors and the electronic wave function in the momenta
allowed by the Born-von Karman periodic boundary conditions.

Now, we take a different approach to the study of periodic systems by using tight-binding
Hamiltonians1. Instead of solving the Schrödinger equation with a periodic potential term, the
main idea is to consider that the unit cell is populated by a set of 𝑛orb atomic orbitals at each of
the 𝑁at atomic positions inside the unit cell. Each of these orbitals is described by a function
𝜙R,𝑖;𝛼 (r) = 𝜙𝛼 (r − (R + 𝜏𝑖)), where R labels the unit cell, 𝑖 = 1, ..., 𝑁at labels the atomic position
𝜏𝑖, and 𝛼 = 1, ..., 𝑛orb labels the species of the orbital per atom. In total, there are 𝑁orb = 𝑁at𝑛orb

orbitals per unit cell. These orbitals are usually assumed to be tightly bound to the atomic nuclei, so
we begin by assuming that no overlap between the orbitals exist (𝑠 orbitals are the most common
choice): this is why the method is called tight-binding.

We introduce the Dirac notation to write ⟨r|𝜙R,𝑖;𝛼⟩ = 𝜙R,𝑖;𝛼 (r), where ⟨r| is the bra associated
to the coordinate representation and |𝜙R,𝑖;𝛼⟩ is the ket representing the orbital in the Hilbert space.
The orbitals are assumed to be orthonormal such that the following relation is fulfilled:

⟨𝜙R,𝑖;𝛼 |𝜙R′, 𝑗 ;𝛽⟩ = 𝛿R,R′𝛿𝑖, 𝑗𝛿𝛼,𝛽, (2.19)

where 𝛿R,R′ is the Kronecker delta function over the unit cell vectors R,R′; 𝛿𝑖, 𝑗 is the Kronecker delta
function over the atomic positions 𝜏𝑖, 𝜏𝑗 , and 𝛿𝛼,𝛽 is the Kronecker delta function over the orbitals
𝛼, 𝛽. This orthonormality relation makes the position operator block-diagonal and degenerated over

1Tight-binding Hamiltonians are closely related to the LCAO method, or linear combination of atomic orbitals
method, used in quantum chemistry to calculate molecular orbitals.
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the orbital degrees of freedom since, as we described above, there are 𝑛orb orbitals placed at the
same 𝜏𝑖 position inside the unit cell. Thus, each block corresponding to the unit cell located at R
contains 𝑁at blocks of dimension 𝑛orb. Each of the 𝑁at blocks has position operator eigenvalue
R + 𝜏𝑗 . Hence, we can write:

⟨𝜙R,𝑖;𝛼 |r|𝜙R′, 𝑗 ;𝛽⟩ = (R + 𝜏𝑖)𝛿R,R′𝛿𝑖, 𝑗𝛿𝛼,𝛽. (2.20)

Now the Schrödinger equation comes to play: the interaction between the orbitals is mediated by the
Hamiltonian operator. Its matrix elements are called hopping amplitudes, usually defined as 𝑡𝑖,𝛼; 𝑗 ,𝛽:

𝑡𝑖,𝛼; 𝑗 ,𝛽 = 𝐻𝑖,𝛼; 𝑗 ,𝛽 (R) = ⟨𝜙R′,𝑖;𝛼 |H |𝜙R′+R, 𝑗 ;𝛽⟩ = ⟨𝜙0,𝑖;𝛼 |H |𝜙R, 𝑗 ;𝛽⟩, (2.21)

where in the last step we have used the periodicity of the Hamiltonian and shifted the hopping
amplitude between two generic positions R′ and R′ +R to the unit cell labeled by R = 0. The matrix
element as written in Eq. (2.21) represents the hopping amplitude of an electron from the orbital 𝛽
at position R + 𝜏𝑗 to the 𝛼 orbital placed at atom 𝑖 inside the unit cell labeled by R = 0.

Since the positions of the atomic orbitals inside the lattice are discrete, we classify the hopping
amplitudes according to the neighborhood of each atom. We find nearest, next-to-nearest,...
interactions according to the distance between the atomic positions. We define the coordination
number as the number of nearest-neighboring atoms surrounding a certain atomic position. Usually,
the hopping interactions are assumed to be of nearest-neighbor character, since the atomic orbitals
decay exponentially with distance.

Now, we Fourier-transform the problem by constructing Bloch-like basis functions 𝜑k,𝑖;𝛼 (r) in
the form of linear combinations of the atomic orbitals:

𝜑k,𝑖;𝛼 (r) =
∑︁
R

eik·(R+𝜏𝑖)𝜙𝛼 (r − (R + 𝜏𝑖)), (2.22)

where R is summed over all the lattice vectors inside the 𝑁1 × 𝑁2 lattice. We introduce Dirac
notation to simplify the expressions:

𝜑k,𝑖;𝛼 (r) = ⟨r|𝜑k,𝑖;𝛼⟩, (2.23a)

|𝜑k,𝑖;𝛼⟩ =
∑︁
R

eik·(R+𝜏𝑖) |𝜙R,𝑖;𝛼⟩. (2.23b)

The matrix elements of the Hamiltonian introduced in (2.21) now are k dependent:

𝐻𝑖,𝛼; 𝑗 ,𝛽 (k) = ⟨𝜑k′;𝛼 |H |𝜑k;𝛽⟩ =
∑︁
R

eik·(R+𝜏𝑗−𝜏𝑖)𝐻𝑖,𝛼; 𝑗 ,𝛽 (R), (2.24)
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Finally, the Bloch eigenstates will be a linear combination of the basis functions:

|𝜓k,ℓ;𝜔⟩ =
𝑁at∑︁
𝑙

𝑛orb∑︁
𝜔

𝐶ℓ𝑙,𝜔 (k) |𝜑k,𝑙;𝜔⟩, (2.25)

where 𝐶ℓ
𝑙,𝜔

are the coefficients of the expansion. Defining 𝐶ℓ (k) as the 𝑁orb-component vector
containing the coefficients of the Bloch basis functions, we can calculate it by diagonalizing the
matrix Hamiltonian, whose elements are given by equation (2.24):

𝐻 (k)𝐶ℓ (k) = 𝐸ℓ (k)𝐶ℓ (k). (2.26)

With this formulation, we obtain both the eigenenergies 𝐸ℓ (k) of the Hamiltonian and the coefficients
of the expansion. Finally, the condition in expression (2.19) can be relaxed, allowing the orbitals
to overlap, thus being non-orthogonal. This translates into adding an overlap matrix 𝑆(k) to the
right-hand side of (2.26), and the problem transforms into a generalized eigenvalue problem.

We present now a more intuitive form to write tight-binding Hamiltonians, which is to use the
second quantization formalism or occupation number representation. It is widely used in many-body
physics, although single-particle states can also be treated within this framework. Up to now, we have
not distinguished between particles with bosonic or fermionic character since we have considered
only single-particle states. In many-body physics, the bosonic and fermionic of quasiparticles nature
is crucial for the description of a many-body state: permutations of indistinguishable fermionic
particles change sign, contrary to bosonic ones. In addition, in the case of fermionic particles,
these many-body states are formed by all possible combinations of single-particle states (Slater
determinants). The usual representation of the many-body states is known as the occupation number
representation, formed by an ordered list of the occupation numbers of each single-particle state.

All the possible many-body states form a basis of a generalized Hilbert space, known as Fock
space. Hence, it is natural to build occupation number operators that have such basis vectors as
eigenstates and the occupation number as eigenvalues. These operators are called number operators,
and their properties depend on the nature of the particle: for bosonic particles, the eigenvalues of
the number operator are the non-negative numbers, while for fermionic particles, Pauli’s principle
limits them to 0 or 1. The number operators are formed by the product of two operators, creation
and annihilation operators, that respectively increase and decrease by 1 the occupation number of a
state. We refer the reader to references [23, 24] for a complete introduction to many-body physics.

We focus now on the creation and annihilation operators since they are the main ingredients
for the second quantization formalism we adopt for the tight-binding formulation. Since we are
working with electrons, we use the general notation, where 𝑐†, 𝑐 denote the fermionic creation and
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annihilation operators, respectively1. Now, the hopping amplitudes of the tight-binding Hamiltonian
acquire a different interpretation: a matrix element as in Eq (2.21) is associated with the annihilation
process of a particle in orbital 𝛽 at position R + 𝜏𝑗 , represented by 𝑐R+𝜏𝑗 ,𝛽, and the creation process
of a particle in orbital 𝛼 at position 0 + 𝜏𝑖, represented by 𝑐†0+𝜏𝑖 ,𝛼. Finally, the total process is
represented by a number operator of the form 𝑐

†
0+𝜏𝑖 ,𝛼𝑐R+𝜏𝑗 ,𝛽. The total Hamiltonian contains a sum

over all possible processes, thus being a sum over pairs of lattice sites.

Having introduced this formalism, we show below the tight-binding Hamiltonian built over a
two-dimensional square lattice with a single 𝑠 orbital per unit cell, as shown in Figure 2.1a. The
interatomic distance coincides with the lattice periodicity, and it is labeled as 𝑎0. In a square lattice,
the coordination number is 4, so each lattice site is surrounded by 4 lattice sites. Under these
considerations, the expression of the Hamiltonian in the second quantization formalism under the
nearest-neighbor approximation is:

H = 𝑡
∑︁
R
𝑐
†
R𝑐R+a1 + 𝑐

†
R𝑐R+a2 + h.c. = 𝑡

∑︁
⟨𝑚,𝑛⟩

𝑐
†
𝑚,𝑛𝑐𝑚+1,𝑛 + 𝑐

†
𝑚,𝑛𝑐𝑚,𝑛+1 + h.c., (2.27)

where 𝑡 is the hopping amplitude, “h.c.” stands for Hermitian conjugate, and ⟨...⟩ denotes nearest
neighbors. We have again used the discrete indices 𝑚, 𝑛 to label the unit cells along the two
directions, 𝑚 for a1 and 𝑛 for a2. In order to find the energies and the eigenstates of the Hamiltonian,
we apply the Fourier transform to the creation and annihilation operators since the system is periodic
in both real and reciprocal space. If we denote the first Brillouin zone as FBZ, the Fourier transform
of the annihilation operator, 𝑐k, is defined through:

𝑐R = 𝑐𝑚,𝑛 =
1

√
𝑁1𝑁2

∑︁
k∈FBZ

eik·R𝑚,𝑛𝑐k. (2.28)

For the creation operator, we need to take the adjoint of the previous expression. Substituting (2.28)
into the Hamiltonian in (2.27), and after some algebra, we diagonalize the Hamiltonian and obtain
the energy bands or the dispersion relation of the electrons:

H(k) =
∑︁

k
𝐸 (k)𝑐†k𝑐k (2.29a)

𝐸 (k) = 𝐸 (𝑘𝑥 , 𝑘𝑦) = 2𝑡
[
cos(𝑘𝑥𝑎0) + cos(𝑘𝑦𝑎0)

]
. (2.29b)

Equation (2.29b) represents the bulk band structure of the square lattice, composed by a single
electronic band, which can be viewed as a surface in the 𝑘𝑥 , 𝑘𝑦 plane. Figure 2.1c represents this

1In Chapters 3, 4, and 5, we have replaced the letter 𝑐 with the species of the orbital or the labeling of the lattice site.
With this in mind, the number operator 𝑐†0+𝜏𝑖 ,𝛼𝑐R+𝜏 𝑗 ,𝛽 would be written as 𝛼†0+𝜏𝑖 𝛽R+𝜏 𝑗

. At all times, we use fermionic
operators, although the fermionic/bosonic character is irrelevant for us since we are working under the single-particle
picture.
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(a) (b)

(c)
(d) (e)

Figure 2.1: (a) Square lattice in real space. The pink arrows represent the direct lattice vectors, the
light-blue square represents the unit cell and the interatomic distance has been made explicit in
both real space directions. The blue arrows represent the possible hopping amplitudes under the
nearest neighbors approximation (horizontal and vertical hopping amplitudes) (b) Reciprocal space
of the square lattice, with reciprocal lattice vectors in blue and the high-symmetry path highlighted
in orange. The high-symmetry points have been labeled as well according to the criteria present
in the literature [25, 26, 27] (c) Overview of the band structure of the square lattice in the whole
first Brillouin zone. (d) Spectrum of the square lattice along the high-symmetry path. (e) Spectrum
of the square lattice ribbon when the bulk is cut along a1. We have taken 𝑁2 = 22 units in the
orthogonal direction.

band inside the first Brillouin zone. In two dimensions, the energy bands are surfaces; however,
in three-dimensional crystals, three-dimensional plots of bands are difficult to represent. Instead,
there is a way to plot the whole band structure by plotting the cut of such band structure along a
particular path in reciprocal space. This path is called high-symmetry path and it is the boundary
of a region called irreducible Brillouin zone. The corners of the irreducible Brillouin zone are
certain k points called high-symmetry points, special k points inside the first Brillouin zone that
present high-symmetry properties. Both high-symmetry points and irreducible Brillouin zone will
be introduced properly in Sec. 2.6. For the square lattice, those high-symmetry points are:

• the Γ point, placed at the origin of the first Brillouin zone. The Γ point is unique in the first
Brillouin zone, i. e., there are no copies of the Γ point inside the first Brillouin zone.

• the X point, located at half of the reciprocal lattice vectors. There are four copies of the X
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point inside the first Brillouin zone.

• the M point, located at half the sum of the reciprocal lattice vectors. As well, there are four
copies of the M point inside the first Brillouin zone.

We show in figure 2.1b the high-symmetry path of the square lattice. The region inside the
high-symmetry path is called irreducible Brillouin zone, and it is the minimal part of the first
Brillouin zone that contains all the features of the band structure1. Finally, the plot of the band
structure along the high-symmetry path is shown in figure 2.1d.

2.2.6 Cutting the bulk into different geometries: ribbons and flakes

In Eq. (2.28), we have introduced the Fourier transform definition we use throughout the text.
Due to the periodicity of the two-dimensional lattice, this Fourier transform is done along the
two real-space directions 𝑥, 𝑦. In this way, two-component wave vectors are necessary for the
construction of such Fourier transform. In other words, since both real space directions are periodic,
also the two reciprocal space directions are periodic. With this formulation, we describe the bulk-like
properties of the system, where the periodicity of the direct lattice is unperturbed by the presence of
boundaries. However, there are situations where the Fourier transform needs to be modified because
there are systems where only one of the real space directions is periodic. The physical realization
of this mathematical manipulation corresponds to cutting the bulk of the system into a finite-size
sample, also known as a ribbon.

Back to the square lattice example, taking the 𝑥 direction to be periodic, we may introduce a
one-dimensional momentum 𝑘𝑥 , or simply 𝑘 that ranges inside the interval [−𝜋/𝑎0, 𝜋/𝑎0 ). This
interval is the projection over the periodic direction of the two-dimensional first Brillouin zone
describing the bulk of the system. The Fourier transform is applied along the direction that remains
periodic after the cut (the 𝑥 direction):

𝑐R = 𝑐𝑅𝑥 ,𝑅𝑦
=

1
√
𝑁1

∑︁
𝑘𝑥

ei𝑘𝑥𝑅𝑥𝑐𝑘𝑥 ,𝑅𝑦
(2.30)

We fix the width of the ribbon to 𝑁2 unit cells so that there are 𝑁2 unit cells along the 𝑦 direction.
The Hamiltonian in momentum space is a 𝑘𝑥-dependent matrix of order 𝑁2 × 𝑁2, and the band
structure is formed by precisely 𝑁2 equally-spaced cuts of the bulk band structure in k space, all
projected over the one-dimensional Brillouin zone. Figure 2.1e presents the band structure of the
ribbon geometry with 𝑁2 = 22 unit cells cut from a square lattice. There are only 11 curves in the

1We refer the reader to Sec. 2.6 for a deeper explanation of these concepts from a group theory perspective
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plot since all of them are doubly degenerated. This is because the equally spaced cuts are symmetric,
and thus, after the projection, they lie on top of each other in pairs. In Chapter 4 we present a study
on the ribbon geometry of a more complex two-dimensional lattice.

Finally, if none of the spatial directions are periodic, no Fourier transform can be applied. The
system corresponds to a finite-size flake cut from the bulk of the system. Assuming there are 𝑁1

unit cells along a1 and 𝑁2 along a2, the Hamiltonian has matrix elements given by Eq 2.21, so it is a
square matrix of dimension 𝑁1𝑁2𝑁𝑜𝑟𝑏, and it is no longer k dependent. In Chapters 3 and 4 we
present results for flake geometries of different lattices.

2.2.7 Wannier functions

Up to now, we have studied the properties of two-dimensional crystals in reciprocal space
in terms of Bloch wave functions or the energy dispersion, both functions of the momentum k.
Nevertheless, we can also adopt a picture where the description of the crystal is done in real space, by
simply Fourier-transforming back to real space the concepts we have presented so far. Accordingly,
we define the Wannier functions as the Fourier transform of the Bloch wave functions. We use the
notation 𝑊ℓ,R(r) = ⟨r|ℓR⟩ to refer to the Wannier functions associated with the ℓ-th band, same
as the Bloch wave function. The R vector denotes the unit cell where the Wannier function is
defined. We begin by presenting the single-band definition of the Wannier functions. If we denote
the first Brillouin zone as FBZ, and we use a similar notation for the Bloch wave functions, namely
𝜓ℓ,k(r) = ⟨r|ℓk⟩, the definition of the Wannier function associated to band index ℓ reads:

|ℓR⟩ =
∑︁

k∈FBZ
e−ik·R |ℓk⟩. (2.31)

Similarly to the Bloch wave functions, the Wannier functions are not unique since there is gauge
freedom in the phase: we can multiply the Wannier functions by ei\ (k) and the physical observables
related to the transformed Wannier functions would not change. For simplicity, we have assumed
\ (k) = 0 in Eq. (2.31).

If we work with a set of 𝐽 degenerated bands instead of a single band, we need a set of 𝐽 Wannier
functions that expand the same space as the set of degenerated Bloch functions. Using 𝑟, 𝑠 as band
indices, we can write:

|𝑟R⟩ =
∑︁

k∈FBZ
eik·R𝑈𝑟,𝑠 (k) |𝑠k⟩. (2.32)

The gauge freedom present in the single-band definition also applies to the multi-band formulation:
it is encoded in the𝑈𝑟,𝑠 (k) matrix, which is usually called unitary mixing since it is a unitary matrix
that mixes the Bloch wave functions at each k point.
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2.2. Electrons in two-dimensional crystals: the nearly-free electron model

The Wannier functions are defined to be periodic in real space, as𝑊ℓ,R+R′ (𝑟) = 𝑊ℓ,R(𝑟 − R′).
This means that we can simply work with a Wannier function restricted to a single unit cell, which
is taken to be the origin R = 0. The Wannier functions expand the same subspace as the Bloch
functions from which they are built. In terms of the projection operator onto band ℓ, 𝑃ℓ, we can
write:

𝑃ℓ =
∑︁

k
|ℓk⟩⟨ℓk| =

∑︁
R
|ℓR⟩⟨ℓR|. (2.33)

Since the Bloch wave functions are extended in the reciprocal space (linear combinations of plane
waves), the Wannier functions are localized in real space. This comes directly from Heisenberg
principle and Fourier analysis, where a plane wave, defined to be extended (delocalized) in real
space, has a well-defined wave vector, thus localized in reciprocal space. Hence, we can define the
center of charge of the Wannier function associated to the ℓ-th band, r̄ℓ0, analogous to the center of
mass of an object, as the expectation value of the position operator. For a single-band formulation:

r̄ℓ0 = ⟨ℓ0|r̂|ℓ0⟩, (2.34)

while for a multi-band we have to trace over the band index. Denoting J the set of 𝐽 bands, the
Wannier center is:

r̄J0 =

𝐽∑︁
ℓ=1
⟨ℓ0|r̂|ℓ0⟩. (2.35)

Due to translational invariance, the Wannier center of a Wannier function |ℓR⟩ is defined as
r̄ℓR = r̄ℓ0 + R. Expressions (2.34) and (2.35) are clearly gauge invariant so they may be related to
any measurable quantity. In particular, the position of the Wannier center is closely related to the
topological order of the system and will be used in Secs. 2.5 and 2.6.

As we have mentioned previously, the Wannier functions are localized in real space. The
localization of a Wannier function can be defined as its quadratic spread, also called localization
functional Ω

[
𝑈𝑟,𝑠 (k)

]
:

Ω
[
𝑈𝑟,𝑠 (k)

]
=

𝐽∑︁
ℓ=1

Ωℓ =

𝐽∑︁
ℓ=1

[
⟨ℓ0|r̂2 |ℓ0⟩ − r̄2

ℓ0
]
, (2.36)

where r̂2 is the square of the norm of the position operator r̂. We have assumed a multi-band
picture, so the total quadratic spread is the sum of the individual quadratic spreads. Due to the gauge
freedom, the total quadratic spread can be minimized by finding the best unitary mixing𝑈𝑟,𝑠 (k) in a
process described in detail in [28]. When the spread reaches a minimum, the Wannier functions are
called maximally localized Wannier functions. These optimal Wannier functions are the closest to a
quantum chemistry orbital, characterized for being exponentially localized at the atomic positions1.

1This configuration is called atomic limit, and it will be described in Sec 2.6.
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2.3. Electronic quantum simulators and muffin-tin potentials

In reciprocal space, the best unitary mixing makes the Bloch wave functions as smooth as possible
as a function of k. This equivalence (maximally localized Wannier function and smooth gauge
choice for Bloch wave functions) comes from Fourier analysis and will be used throughout the text.

The existence of maximally localized Wannier functions describing a crystal is not always
guaranteed [29, 30], and it is crucial for the construction of a tight-binding model. In the following
sections, we will describe under which conditions such maximally localized Wannier functions can
be constructed.

2.3 Electronic quantum simulators and muffin-tin potentials

Tight-binding Hamiltonians are a very useful tool to study the physics of electrons under the
action of periodic potentials. A system that allows a description in terms of maximally localized
Wannier functions can be reproduced by a tight-binding model up to any order of nearest-neighboring
hoppings, since all possible Hamiltonian matrix elements (hopping amplitudes) can be built using
as a basis its associated maximally localized Wannier functions.

Tight-binding models can be built over any lattice with any basis of atoms and orbitals. However,
not all lattices, all atoms, or orbitals can combine to yield a description of a realistic two-dimensional
electron system since a particular choice of lattice may not be stable in nature. As well, a particular
choice of atoms or orbitals may not be compatible from the chemical point of view. Hence, the
associated tight-binding Hamiltonians will be just toy models that will predict the physics of the
electrons under that certain lattice structure, with no possible experiment that will support the
tight-binding results.

However, there is a way to study electrons under the action of a periodic potential but in a
platform that does not account for the number of hoppings, orbitals, or atomic species. This
platform also allows a physical realization of those lattices that do not appear in nature, as if we
were simulating a two-dimensional structure.

Let’s suppose that we have a two-dimensional electron gas and the possibility to confine it to any
potential one may desire. We could recreate the physics of graphene, for example, without having
actually in the lab a layer of carbon atoms arranged in a particular way. This is precisely the main
idea behind a set of experiments called electronic quantum simulators. This family of experiments is
based on the fact that a two-dimensional electron gas can be confined using a potential that mimics
the properties (connectivity and symmetries) of a certain lattice. Since there is freedom over the
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2.3. Electronic quantum simulators and muffin-tin potentials

design of such potential, any two-dimensional lattice could potentially be recreated.

Two-dimensional electron gases are naturally found in noble metals when they are cut in a certain
direction. For example, when a three-dimensional piece of copper is cut along the (111) direction,
the surface hosts a surface state that behaves as a two-dimensional electron gas [31]. These surface
states are known as Shockley states [21] and are due to the termination of the crystal since the
periodicity of the potential is broken at the surface. Figure 2.2a shows the projected band structure
and the surface state of the Cu(111) surface, which appears as a parabolic dispersion in a small
range of energies, and thus the electrons behave as a nearly-free two-dimensional electron gas. It
has been adapted from reference [31].

The way to confine the two-dimensional electron gas is to build barriers on top of the metallic
surface. These barriers are built by chemisorbing atoms (adatoms) or molecules to the surface,
which act as repulsive potentials or scatterers of the electronic wave function. These scatterers can
be manipulated with the tip of a scanning tunneling microscope (STM) [32, 33, 34]. The very first
experiment where the tip of a STM was used to place atoms on top of a surface was the famous IBM
experiment, run by Eigler and Schweizer in the late 80s, where the initialism of the IBM company
was reproduced on top of a Ni(110) surface using 35 xenon atoms [35]. As well, other experiments,
like quantum corrals and quantum mirages [36, 37, 38, 39] show the possibility of manipulating
with atomic precision the properties of two-dimensional electron gases.

Up to now we have considered attractive potentials between the atomic nuclei and the electron gas.
However, this electronic quantum simulating technique works as the particle-in-a-box experiment,
where the box is actually the negative picture of the lattice we want to simulate. Then, in the
framework of these electronic simulators, in order to simulate a certain lattice, one has to design the
negative picture of the lattice. Usually, the negative picture of a lattice is called the dual lattice. For
example, the dual lattice of the honeycomb lattice is the triangular lattice. Let’s study now surface
states in different media and the modeling of these potentials.

2.3.1 Surface states in metallic substrates

We first introduce the electronic quantum simulation platform where the substrate is the Cu(111)
surface, which naturally hosts a surface state. This surface state is shown in Figure 2.2a and can be
fit to a parabola, reflecting the nearly-free character of the two-dimensional electron gas:

𝐸 (𝑘) = ℏ2𝑘2

2𝑚∗𝑒
+ 𝐸0, (2.37)
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2.3. Electronic quantum simulators and muffin-tin potentials

Figure 2.2: (a) Shockley state of the Cu(111) surface in black over projected bulk band structure,
in gray. Adapted from [31]. (b) Surface band structure of the reconstructed InAs(111)𝐴 − 2 × 2.
Adapted from [40].

where 𝑘 is the crystal momentum parallel to the (111) plane, 𝐸0 = −0.45 eV is the onset energy,
and 𝑚∗𝑒 = 0.42𝑚𝑒 is the effective mass of the electron in units of the bare electron mass [36, 41, 42,
43]. This substrate was used by Crommie et al. in the design of the quantum corral [37]. In their
experiment, 48 Fe atoms confined the surface state displaying standing wave patterns, which are
precisely the solution to the problem of a particle in a two-dimensional circular box – Figure 2.3a.

Instead of iron or xenon atoms, the scatterers we have worked with are CO molecules vertically
chemisorbed into the substrate, with the carbon atom facing the surface [47, 48, 49, 50]. This
platform – Cu(111) substrate plus CO scatterers– has been used widely in the literature, where
we find experiments like molecular graphene [51], the Lieb lattice [44, 52] (see Fig. 2.3b), the
kagome lattice [45, 53] (see Fig. 2.3c) or even lattices with fractal dimensions and quasicrystals [46]
(see Fig. 2.3d). Each of the molecules is modeled by a cylinder of radius 𝑎 = 0.3 nm and height
𝑉0 = 0.9 eV placed at position r𝛼. In this way, the unit cell is populated by a set of molecules, and
the potential total inside the unit cell, 𝑉CO

UC (r) is the superposition of all the individual potentials
coming from each molecule 𝑉CO

𝛼 (r):

𝑉CO
𝛼 (r) =


𝑉0 > 0 if |r − r𝛼 | < 𝑎,

0 otherwise
. (2.38)

The full potential is the superposition of the potential created by each molecule, as in Eq (2.39):

𝑉CO
UC (r) =

∑︁
𝛼

𝑉CO
𝛼 (r). (2.39)

Once the potential is defined, one solves the Schrödinger equation as we presented in Section 2.3
using the plane-wave expansion. The coefficients 𝑉CO

G can be computed analytically using the
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(a) (b)

(c) (d)

Figure 2.3: Set of experiments built on the Cu(111) surface. (a) Quantum corral built with 48
iron atoms on top of the Cu(111) surface. The ripples are the standing wave solutions to the
particle-in-a-box problem. Adapted from [36]. (b) Local density of states of the Lieb lattice.
Adapted from [44]. (c) Local density of states of the breathing kagome lattice displaying corner
localized modes. Adapted from [45] (d) Local density of states of the Sierpinski lattice built on the
Cu(111) substrate. Adapted from [46]..

definition in Eq. (2.15b). We obtain:

𝑉CO
G =

2𝜋𝑉0𝑎

𝐴UC |G|
𝐽1( |G|𝑎), (2.40)

where 𝐴UC is the area of the unit cell, |G| is the norm of the wave vector G and 𝐽1( |G|𝑎) is the
Bessel function of the first kind of order 1, evaluated on the dimensionless parameter 𝑥 = |G|𝑎. We
refer the reader to Appendix A.1 for a detailed derivation of equation (2.40).

The process of populating the unit cell depends on the purpose of the experiment, but it should
include as least molecules as possible because they can be deadsorbed from the surface and leave
due to temperature fluctuations [54, 55, 56, 57]. In this particular platform, the molecules are stable
below 40K.

This family of experiments does not involve either atomic orbitals, species, or chemical bonds
between them. The lattice sites are potential wells, and the orbitals are the energy levels of these
artificial atoms [58], connected by hopping amplitudes, which are always long-range and modeled
by potential wells or barriers. Further in the text, we present a guide on how to place the molecules
based on symmetry arguments (see Sec. 3.6).
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Nevertheless, the Cu(111)/CO platform has a drawback: the surface state, which is in the scale
of 0.8 eV, is coupled to the bulk. Also, the coupling of the surface state with the bulk modes and the
phonon modes, together with the presence of scatterers populating the surface (the CO molecules),
results in a broadening of the signal of ≈ 80 meV [51], by which two different states may appear as a
single one (bad energy resolution). See figure 2.2a for the energy scale of this particular platform,
which is usually 𝐸0 < 𝐸 < 0.3 eV.

2.3.2 Surface states in semiconductor substrates

Another possible platform that overcomes the limitations of the metallic substrate is to use the
surface of a semiconductor. Here we present the indium-terminated InAs(111) surface, also called
InAs(111)A in the literature. Compared to the surface state of copper, the broadening reduces to 20
meV [59, 60, 61]. This surface presents a two-dimensional electron gas, presented as the yellow
parabolic band shown in Figure 2.2b (adapted from reference [40]). This surface presents a 2 × 2
Indium vacancy reconstruction, which can be populated with atoms like indium or cesium. These
atoms donate electrons to the surface state, thus bending the band structure and pulling down the
surface state to the projected band gap.

In this platform, the two-dimensional electron gas is confined using an attractive potential. The
shape of this attractive potential can be assumed to have a Gaussian profileVIn

UC(r), with a certain
depth (𝑉0) and full width at half maximum 𝑑:

log2

(VIn
𝛼 (r)
𝑉0

)
= −4|r − r𝛼 |2

𝑑2 , (2.41a)

𝑉 In
UC(r) =

∑︁
𝛼

𝑉 In
𝛼 (r), (2.41b)

𝑉 In
G =

𝜋𝑉0𝑑
2

4𝐴UC ln 2
exp

(
−𝑑

2 |G|2
16 ln 2

)
. (2.41c)

Same as in the cylindrical potential, the Schrödinger equation is expanded in plane waves. This
time we use equation (2.41c) to define the components of the Gaussian potential. In this expression,
𝐴UC is the area of the unit cell, and |G| is the norm of the wave vector G. We refer the reader to
Appendix A.2 for a detailed derivation of equation (2.41c).

2.4 Bulk-boundary correspondence

Up to now, we have described the bulk of systems, where the periodicities of the real and
reciprocal spaces are translated into the electronic wave functions. We can study finite-size systems
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that are cut from the bulk (see Sec. 2.2.6), like ribbons or finite-size flakes, thus displaying boundaries.
In two dimensions, these boundaries can be classified into edges of dimension 1, and into corners of
dimension 0. The bulk-boundary correspondence establishes a connection between the properties of
the bulk and the boundaries of the system.

The Hall effect is an example of a physical phenomenon related to bulk-boundary correspondence.
The classical Hall effect is the phenomenon by which an electrical conductor, under the action of a
magnetic field, displays a transversal resistance (Hall resistance) proportional to the value of the
applied magnetic field. However, in the 80s, von Klitzing discovered that a two-dimensional electron
gas under very high magnetic fields and very low temperatures displays plateaus of quantized Hall
resistance as a function of the applied magnetic field [62], contrary to the expected linear behavior.
A later work by Thouless et al. [10] related the Hall conductivity to the derivatives of wave functions
of the two-dimensional electron gas, using a Kubo formula [11]. The formulation is the following:
whenever the Fermi energy lies in the gap between two Landau levels, the Hall conductivity 𝜎H of a
2DEG is quantized and can be written as:

𝜎H =
i𝑒2

𝐴0ℏ

∑︁
𝐸𝛼<𝐸F

∑︁
𝐸𝛽>𝐸F

(𝜕𝑘1H)𝛼𝛽 (𝜕𝑘2H)𝛽𝛼 − (𝜕𝑘2H)𝛼𝛽 (𝜕𝑘1H)𝛽𝛼
(𝐸𝛼 − 𝐸𝛽)2

, (2.42)

where 𝑒 is the charge of the electron, ℏ is the reduced Planck’s constant, 𝐴0 is the area of the
unit cell, 𝜕𝑘𝑖 is the partial derivative with respect to the 𝑘𝑖 variable, where 𝑖 = 1, 2; 𝛼, 𝛽 are band
indices and 𝐸F is the value of the Fermi level. This formulation relates a physical observable (the
Hall conductance) to the bulk properties of the material (derivatives of the bulk Hamiltonian). An
interpretation of the quantized Hall conductance was given by Laughlin’s pumping argument [63],
by which a quantum of magnetic flux pumps a single electron, and thus the conductivity is quantized.
Those electrons are forced to move through the edges of the system since the Fermi level lies in
an energy gap where no bulk states are allowed. These conducting channels can be visualized
semiclassically by the skipping orbit picture, where the cyclotron orbits of the electrons at the edges
are broken, and the effective circulation of electrons in the edges of the sample is achieved. This is
precisely the claim of the bulk-boundary correspondence: the number of conducting edge states in a
finite-size sample of a material is related to the properties of the bulk of the system.

Topological insulators are characterized by displaying conducting boundary modes while the
bulk remains in an insulating phase. The term topological comes from the fact that the existence
of conducting boundary modes lies directly on purely mathematical concepts, namely, topological
invariants, which are defined in the bulk of the system. For instance, Eq. (2.42) can be cast in such a
way that the appearance of a purely topological concept is made explicit (the Berry curvature). This
and other concepts will be introduced in the next section.

27



2.5. Topological Invariants

Finally, the quantized Hall effect is an example of a certain bulk-boundary correspondence that
can be called of first order, in the sense that the difference between the dimensions of the bulk (2)
and the edges (1) is 1. The difference between the dimension of the bulk and the dimension of the
boundary is called the co-dimension of the boundary mode. Nevertheless, more exotic topological
phases display what are called higher-order boundary modes, displaying conducting modes with
co-dimension greater than one. In two dimensions, the only possible allowed higher-order topological
modes are corner modes, which do not propagate. In three dimensions, first-order topological modes
are surface states, while higher-order topological modes include hinge modes, which propagate
along the hinges of the crystal, and corner modes, which are again non-conducting.

2.5 Topological Invariants

Topology is the field of mathematics that studies what transformations can be applied to a system
that leave certain properties invariant. We say that such system is robust under those transformations.
Two different systems can be topologically equivalent if they share topological properties. A typical
example of this topological equivalence is represented with the mug and doughnut: these two objects
are topologically identical since both share the same number of holes (formally called genus). One
can continuously deform a doughnut into a mug and vice versa without changing the genus (closing
or opening holes in the system).

Band theory allows a description in terms of topological invariants as well. More precisely, each
band (or group of degenerated bands) can be characterized by topological invariants, which take
integer values due to the internal symmetries of the system: time-reversal symmetry, chiral symmetry,
or particle-hole symmetry. The full classification of materials according to these symmetries in
any dimension was introduced in the ten-fold way by Altland and Zirnbauer [64, 65, 66], which
was then generalized to systems with topological phases protected by crystalline symmetries, called
topological crystalline insulators [67, 68, 69, 70].

In this thesis, we have used topological invariants based on the Berry connection, such as the
Berry curvature, Berry phase and Chern numbers, the Wilson loop operator and its spectrum, to
comprehend the topological properties.

2.5.1 Berry connection, Berry curvature and Chern number

The Berry connection is a mathematical object that represents the local potential associated with
the non-trivial geometry of the Hilbert space spanned by the eigenvectors of a certain Hamiltonian.
To define the Berry connection, the Hamiltonian has to be a function of a set of parametersH({𝛼𝑖})
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that vary periodically, i. e., after a certain period 𝑇 ,H({𝛼𝑖} + 𝑇) = H({𝛼𝑖}). In two-dimensional
crystalline systems, we use the coordinates k = (𝑘𝑥 , 𝑘𝑦) since the Hamiltonian is a function of k.

The parameter space is the first Brillouin zone since as we showed in Sec. 2.2.1, we can work
with just the values of the crystal momentum that are restricted to the first Brillouin zone due to the
periodicity of the reciprocal lattice. The first Brillouin zone can be mapped to the surface of a torus,
a closed orientable surface with the shape of a doughnut represented by T2. This is because both
(𝑘𝑥 , 𝑘𝑦) are periodic in reciprocal space. In coordinates, we write (𝑘𝑥 + 2𝜋, 𝑘𝑦 + 2𝜋) = (𝑘𝑥 , 𝑘𝑦)
(we have assumed that the lattice constant 𝑎0 is unity). We can visualize this mapping from the first
Brillouin zone to the torus by taking the sides of the first Brillouin zone and gluing together the line
𝑘𝑦 = 0 with the line 𝑘𝑦 = 2𝜋. This yields a cylinder along the 𝑘𝑥 axis. If we now bend this cylinder
and glue together its edges (lines described by 𝑘𝑥 = 0 and 𝑘𝑥 = 2𝜋), we arrive at the torus. This
process is described step by step in figure 2.4.

In order to detect the non-trivial geometry of the Hilbert space, we perform the (adiabatic)
parallel transport of an eigenstate around a loop in the parameter space. A loop is defined as a path
where the start and finish points correspond to the same locus. Figure 2.4a shows an example of
a possible closed loop, labeled as 𝛾3. After a single turn along the loop, the eigenvectors of the
Hamiltonian undergo a geometric transformation, which is reflected on a complex phase that the
eigenvectors acquire after following such path [71]. This concept is called holonomy1 and will be
used further in the text. For now, we focus on the phase: it is called the Berry phase and comes
from the integral of the so-called Berry connection. For a two-dimensional crystal, the single-band
Berry connection can be written as:

Aℓ (k) = i⟨𝑢ℓ (k) |∇k |𝑢ℓ (k)⟩, (2.43)

where ℓ is the band index, Aℓ (k) is the Berry connection, |𝑢ℓ (k)⟩ is the periodic part of the Bloch
wave function associated to the 𝑟-th band, ∇k is the gradient operator in the parameter space. The
Berry connection is a gauge-dependent quantity: after changing |𝑢′

ℓ
(k)⟩ → ei𝛽(k) |𝑢ℓ (k)⟩, where

𝛽(k) is periodic and depends smoothly on k, the single-band Berry connection transforms under
A′
ℓ
(k) = Aℓ (k) + ∇k𝛽(k).

If we are working with a set of degenerated bands, running from band indices 𝑟 through 𝑠, the
multi-band Berry connection, or non-Abelian Berry connection is defined as:

A𝑟,𝑠 (k) = i⟨𝑢𝑟 (k) |∇k |𝑢𝑠 (k)⟩. (2.44)
1More specifically, the Berry phase is related to the concept of anholonomy, which is the impossibility to return to

the same state after parallel-transporting such state along a closed path.
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(a)

(b)

(c)

Figure 2.4: Mapping between the two-dimensional first Brillouin zone to the torus surface by gluing
together the edges. (a) Two-dimensional Brillouin zone with its corners labeled by the values of the
coordinates of the crystal momentum. The curves 𝛾1 and 𝛾2 represent non-contractible loops, while
𝛾3 represents a contractible one. (b) The resulting cylinder after gluing together the green edges.
The purple and blue dots represent the coordinates of the crystal momentum that have the same
value: 𝑘𝑦 = 𝑘𝑦 + 2𝜋. (c) Torus resulting from gluing the edges of the cylinder (in red). The blue dot
with purple edge represents all the corners of the two-dimensional first Brillouin zone, all mapped
to the same point in the torus’ surface. Coordinates have been suppressed for the sake of clarity.

In the multi-band definition, the gauge is performed via a unitary mixing of the wave
functions, represented with a unitary matrix 𝑈 (k). The change in the Berry connection is
A′𝑟,𝑠 (k) = A𝑟,𝑠 (k) +𝑈†(k)∇k𝑈 (k).

Conversely, the integral of the Berry connection over a closed loop is gauge invariant modulo 2𝜋.
For this reason, the Berry phase is a physical quantity that can be measured. It can also be called the
Zak phase in the context of band theory (often when referring to one-dimensional systems). It is
computed as the integral of the Berry connection over a closed loop in reciprocal space:

𝜙 =

∮
𝛾

Tr A𝑟,𝑠 (k) · dk mod 2𝜋, (2.45)

where 𝜙 is the Berry phase associated to the set of bands spanned by indices 𝑟, 𝑠. The trace over the
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band indices is taken since the bands are degenerate. For a single-band definition, one takes 𝑟 = 𝑠.

One may be tempted to apply Stokes’ theorem to Eq. (2.45). If so, one arrives at the definition
of the Berry curvature 𝛀𝑟,𝑠 (k), a gauge invariant quantity:

𝛀𝑟,𝑠 (k) = ∇k × A𝑟,𝑠 (k), (2.46a)

𝜙 =

∮
𝛾

Tr A𝑟,𝑠 (k) · dk = Tr
∬

𝑆

∇k × A𝑟,𝑠 (k) · dS =

∬
𝑆

Tr 𝛀𝑟,𝑠 (k) · dS (2.46b)

The Berry phase can be defined as well as the flux of Berry curvature 𝛀𝑟,𝑠 (k) across the surface
enclosed by the closed-loop 𝛾. In other words, the Berry curvature is the surface density of the
Berry phase. Again, for the single-band case, one takes 𝑟 = 𝑠.

Since the Berry curvature is fully gauge-invariant, there is no modulo 2𝜋 in the definition of the
Berry phase, unlike in Eq. (2.45). This is because integrating the Berry curvature inside the loop
forces to choose a smooth gauge everywhere, so that there is no ambiguity in the definition of the
Berry phase. Contrarily, if we compute the wave function only along the path, the Berry phase is
defined modulo 2𝜋.

Let’s discuss more formally the use of Stoke’s theorem in equation (2.46b). As previously
mentioned, the parameter space (the two-dimensional first Brillouin zone) is topologically equivalent
to a torus, a closed orientable surface. According to Stokes’ theorem, the net flow of any continuous
vector field integrated over such a surface must be zero. This leads to the assertion that the total
Berry phase must be zero for any two-dimensional lattice: if we divide the torus into two halves
along the toroidal plane, the flow across the upper half must balance the flow across the lower half,
with opposite sign, resulting in a vanishing total flow. However, this statement is not always true
since it only holds if the eigenstates are defined smoothly across the entire torus. Conversely, if
the eigenstates are multivalued functions of the crystal momentum, it is possible for the difference
between the flows across the two halves of the torus to be nonzero.

In the following, we present a proof of the non-zero valued integral of the Berry curvature. We
start from the abovementioned situation: the torus is divided into two halves through the toroidal
plane, R1 being the lower half, and R2 being the upper one. We define the Berry connections of the
lower and upper halves to beA1(k) andA2(k), respectively. Each of the halves has two boundaries,
the inner one (smaller circle) and the outer one (bigger circle), called respectively 𝜕RI and 𝜕RO, so
that the total boundary is the formal sum 𝜕R𝑖 = 𝜕RI

𝑖
⊕ 𝜕RO

𝑖
, where we have used ⊕ to denote the

formal sum. We have depicted this situation in Figure 2.5, where we have shown the two halves of
the torus and the boundaries introduced above. The inner boundaries have been colored in blue to
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Figure 2.5: Torus divided into two halves with the labeling of the boundaries and the gauge
connecting the eigenstates in the outer boundary.

reflect the fact that the eigenvectors are smooth across these two boundaries, while the outer ones
have been colored differently to reflect the opposite. We can assume that the gauge choice makes
the eigenvectors smooth across the inner boundary so that we only have to study the outer boundary.
At the outer boundary, we can relate the eigenvectors by a transformation b (k) such that:

|𝜓(𝜕RO
1 )⟩ = eib (k) |𝜓(𝜕RO

2 )⟩. (2.47)

This transformation eib (k) is represented in Figure 2.5 as the difference in color between the
eigenvectors in the upper half (colored in orange) and the ones in the lower half (colored in pink).

We compute the integral of the Berry curvature by splitting it into two terms since the Berry
connection in one half can be related to the Berry connection in the other half via the transformation
in the boundary:

A2(k) = A1(k) + ∇kb (k). (2.48)

Hence, we can write:∫
Ω(k) · dS =

∫
A1(k) · dk +

∫
A2(k) · dk

=

∫
A1(k) · dk +

∫
(A1(k) + ∇kb (k)) · dk

=

∫
∇kb (k) · dk = 2𝜋𝐶, (2.49)
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where 𝐶 is an integer, and we have used the fact that, without loss of generality, the Berry connection
A1(k) can be taken to be zero, so that A2(k) = ∇kb (k). The final result is the winding number of
the gauge choice connecting the two halves, which is restricted to integer values since it is a periodic
function. This is the Chern theorem, and this integer is called the Chern number, a topological
invariant associated with the manifold of eigenstates. The definition of the Chern number is:

𝐶 =
1

2𝜋

∫
FBZ

Ω(k) · dS ∈ Z, (2.50)

where FBZ stands for the first Brillouin zone. In certain cases, 𝐶 ≠ 0, and thus the wave functions
are not smooth functions of the crystal momentum, so there exists a function b (k) as in Eq. (2.47),
that glues together the wave functions at the boundary, to make them smooth across the whole first
Brillouin zone. When the Chern number of a band or a set of bands is different from zero, such
set of bands is said to be topological. The main requirement for the Chern number to be different
from zero is that time reversal symmetry (T ) is broken, for instance, using a magnetic field. The
behavior of the Berry curvature under time reversal imposes TΩ(k) = −Ω(−k). If time reversal is
conserved TΩ(k) = Ω(k) = −Ω(−k), and thus the Chern number is zero, as it is the integral of an
odd function inside its domain of definition. Contrarily, if inversion symmetry (I) is present in the
system, the Berry curvature transforms as IΩ(k) = Ω(−k). Thus if both T and I are present, the
integral of the Berry curvature is zero, but because the Berry curvature is identically zero in all k
points, since Ω(−k) = −Ω(−k).

As a final comment, we have seen how the quantization of the Chern number implies that
there is no global gauge that makes the Bloch wave functions to behave smoothly inside the first
Brillouin zone. This is quite remarkable since in Sec. 2.2.7 we mentioned that a smooth gauge
choice (unitary mixing of the Bloch wave functions) is necessary to build maximally localized
Wannier functions. Thus, if the Chern number is different from zero, no smooth gauge can be found,
and thus no maximally localized Wannier functions can be constructed. In other words, a non-zero
Chern number conforms an obstruction to the construction of a globally smooth gauge for the
Bloch wave functions, and thus, it is also an obstruction to the maximal localization of the Wannier
functions corresponding to the considered set of bands. This does not mean that the construction of
Wannier functions is not allowed, just that the localization will be poor and not exponential as in the
maximally localized case [72].

2.5.2 Wilson loop operator and its spectrum

Another topological marker related to the Berry connection and the Wannier center is the Wilson
loop operator and its spectrum. Formally, the multi-band or non-Abelian Wilson loop operator is

33



2.5. Topological Invariants

defined as:

�̂�
𝑟,𝑠

k+G←k = P exp
(
−i

∫ k+G

k
A𝑟,𝑠 (k) · dk

)
, (2.51)

where �̂�𝑟,𝑠

k+G←k is the Wilson loop operator,A𝑟,𝑠 (k) is the non-Abelian Berry connection, integrated
from k to k + G. The Wilson loop operator is defined as the path-ordered (P) integral of the
Berry connection across a line of the first Brillouin zone. Due to its non-Abelian character, the
path-ordered operator ensures the ordering of the integration from k to k +G. For a single-band
definition, we take 𝑟 = 𝑠.

We recall now the short discussion at the beginning of section 2.5.1 about the adiabatic transport
of eigenstates in parameter space: the Wilson loop operator is closely related to the parallel transport
theorem [71]. In a curved space, when a vector is parallel-transported along a closed loop, the
ending vector presents a rotation with respect to the starting vector. In terms of wave functions, after
the transport along the loop, the final state acquires a phase related to the curvature of the space.
This concept is called holonomy (or anholonomy), and the Wilson loop operator describes precisely
the holonomy of the Berry connection as the Berry phase associated to the path. More precisely, the
eigenvalues of the Wilson loop operator are the phases acquired by each of the bands included in the
calculation of Eq.(2.51) (general non-Abelian case).

In the torus, there are two different non-contractible paths. They form a basis that generates all
possible non-contractible paths. The elements of this basis have been presented in Figure 2.5 as the
paths 𝛾1 (green) and 𝛾2 (red). Formally, they can be described as the set of points that fulfill:

𝛾1 = {k1(𝑡) = k0 + b1𝑡, 𝑡 ∈ [0, 1]} , (2.52a)

𝛾2 = {k2(𝑡) = k0 + b2𝑡, 𝑡 ∈ [0, 1]} , (2.52b)

where k0 = (𝑘0
𝑥 , 𝑘

0
𝑦) is the origin of the path, which can be taken as a free parameter in the following

way: since 𝛾1 is a horizontal path, it can be placed at any 𝑘𝑦, so that k0 = (0, 𝑘0
𝑦). At the same time,

𝛾2 can be placed at any 𝑘𝑥 so that k0 = (𝑘0
𝑥 , 0). Hence, we define the spectrum of the Wilson loop

operator, not as its set of eigenvalues1 but as the behavior of its eigenvalues as a function of the
“free” parameter k0.

We compute the Wilson spectrum taking the 𝛾2 path as an example and placing 𝑁 copies of this
path 𝛾𝑖2 at k0 = (𝑘𝑥,𝑖, 0), with 𝑘𝑥,𝑖 = 2𝜋𝑖/𝑁 for 𝑖 = 0, 𝑁 − 12. Since the eigenvalues of the Wilson
loop operator are the Berry phases associated to the path, we integrate the Berry connection along

1This is the usual definition of the spectrum of an operator.
2The index 𝑖 runs from 0 to 𝑁 − 1 since due to periodicity 𝑘𝑥,𝑁 is the same as 𝑘𝑥,0.
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each 𝛾𝑖2 and associate the resulting phase 𝜙𝑖 with the index 𝑖. Taking the continuum limit 𝑁 →∞,
each 𝛾𝑖2 is a d𝑘𝑥 apart, so the discrete set of all Berry phases {𝜙𝑖} becomes a continuous function of
the 𝑘𝑥 variable, called the Wilson loop spectrum Φ(𝑘𝑥):

Φ(𝑘𝑥) =
∫ 2𝜋

0
A(𝑘𝑥 , 𝑘𝑦)d𝑘𝑦, (2.53)

The same procedure can be done for the Berry phase calculated along 𝛾1, thus obtaining Φ(𝑘𝑦) as
the Wilson loop spectrum. The relation between the two functions depends on the symmetries of
the system [73].

For an interpretation of the Wilson loop operator, we start from one dimension, where the
Wilson loop, the Berry phase, and the Zak phase share the definition. All these concepts represent
the geometric phase that a certain state acquires after crossing the one-dimensional first Brillouin
zone. This phase has also a meaning related to the Wannier functions: it can be shown that the
Berry phase 𝜙 divided by 2𝜋 corresponds to the position of the Wannier center 𝑟J associated with
the set of Bloch functions considered J :

𝑟J =
𝜙

2𝜋
𝑎0, (2.54)

where 𝑎0 is the lattice constant. This result is used in the modern theory of polarization in solids,
introduced in [74, 75]. The way to generalize this result to higher dimensions is to realize that along
the lines of the first Brillouin zone, we should obtain a quantity related to the position of the Wannier
center. More precisely, we can always relate the eigenvalues of the Wilson loop operator with the
eigenvalues of the projected position operator into the occupied set of bands. The eigenvalues
of the projected position operator are precisely the coordinates of the Wannier center along the
coordinate of the operator. For example, in two dimensions, we know that even if the operators 𝑥 and
�̂� commute, their projections onto the occupied bands, 𝑃𝑥𝑃 and 𝑃�̂�𝑃 with 𝑃 =

∑
ℓ∈occ |𝜓ℓ,k⟩⟨𝜓ℓ,k |,

do not commute, so one cannot obtain simultaneously the 𝑥, 𝑦 coordinates of the Wannier center.
We refer the reader to references [69, 76] for a more pedagogical understanding of this concept.

We now relate the Wilson loop spectrum to the Chern number in the following way:

𝐶 =
1

2𝜋

∬ (
𝜕𝑘𝑥A𝑦 (𝑘𝑥 , 𝑘𝑦) − 𝜕𝑘𝑦A𝑥 (𝑘𝑥 , 𝑘𝑦)

)
d𝑘𝑥d𝑘𝑦

=
1

2𝜋

∫ 2𝜋

0
𝜕𝑘𝑥

(∫ 2𝜋

0
A𝑦 (𝑘𝑥 , 𝑘𝑦)d𝑘𝑦

)
d𝑘𝑥

=
1

2𝜋

∫ 2𝜋

0
𝜕𝑘𝑥Φ(𝑘𝑥)d𝑘𝑥 =

1
2𝜋
(Φ(2𝜋) −Φ(0)) ∈ N, (2.55)

35



2.5. Topological Invariants

which is precisely the integral of the Wilson loop spectrum, as introduced in Eq. (2.53). The Chern
number is the net number of windings of the Wilson loop spectrum, i. e., the number of times that
the Wilson loop spectrum wraps around the torus.

(a)

(b) (c) 4

Figure 2.6: (a) Wrapping of the Wilson loop spectrum in the first Brillouin zone along the free
parameter 𝑘𝑥 . In purple, the Wilson loop spectrum from k = Γ to k + G = Γ + b1 showing two
windings, so the Chern number corresponds to 𝐶 = 2. (b) Representation of the Wilson loop
spectrum in (a) but with the modulo 2𝜋 definition of the Berry phase. The two windings present in
(a) transform into the discontinuity of the Wilson loop spectrum. The blue lines correspond to the
periodicity of the Wilson loop spectrum. By gluing together the blue lines in panel (b) according
to the red/green arrow, we obtain panel (a) from panel (b). (c) Computation of the Wilson loop
spectrum without the modulo-2𝜋 step. We can obtain te Chern number as we claimed in the text:
Φ(k +G) −Φ(k) = Φ(Γ + b1) −Φ(Γ) = Φ(2𝜋) −Φ(0) = 4𝜋 − 0 = 4𝜋 = 2𝜋𝐶, so 𝐶 = 2. So, by
removing the modulo-2𝜋 step, the Berry phase has to range from 0 to 2𝜋𝐶, in order to compute the
Chern number as the difference between the Wilson loop spectrum at the limits of the path.

This calculation has to be done carefully: to relate the number of windings of the Wilson loop
spectrum to the difference of its values at 𝑘𝑥 = 2𝜋 and at 𝑘𝑥 = 0, the definition of the Berry phase
has to be done without the modulo-2𝜋 step. This is because the modulo-2𝜋 step constrains the Berry
phase to lie within the [0, 2𝜋) interval. Without the modulo step, the Berry phase will range from
0 to 2𝜋𝐶 and thus Φ(𝑘𝑥 = 2𝜋) −Φ(𝑘𝑥 = 0) = 2𝜋𝐶. In other words, the number of times that the
Wilson loop spectrum winds along the free coordinate determines the absolute value of the Chern
number, while the sign of the slope determines its sign. Finally, as we have connected the Chern
number to the winding of the Wilson loop spectrum, we can claim that a Wilson loop spectrum that
winds represents a non-zero Chern number. Thus, a Wilson loop spectrum that winds represents the
same obstruction we described previously in Sec. 2.5.1, by which neither a smooth gauge can be
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found for the Bloch wave functions nor a maximally localized Wannier function can be built for the
chosen set of bands.

2.6 Topological quantum chemistry

Topological quantum chemistry is a formalism that allows to predict and classify band structures
according to their topological character, based exclusively on group theory and symmetry arguments.
It was introduced in reference [14] and has allowed for an exhaustive classification of materials
according to their topological character, without and with magnetic character [77, 78]. By
determining the symmetry properties of the wave functions at the high-symmetry points of the first
Brillouin zone, one is able to tell whether a band structure is topological or not. Let’s begin by
presenting the building blocks of this theory, starting from group theory concepts.

2.6.1 Group theory

All two-dimensional lattices belong to the 17 different two-dimensional space groups, called
plane or wallpaper groups, and labeled as G. The elements of these groups are combinations of
isometries plus translations, and are denoted by Seitz symbols as 𝑔 = {𝑅 |t}, where 𝑅 is the isometry
or linear part, and t is the translational part in the form of t = R𝑚,𝑛 (see Sec. 2.2). Hence, a generic
space group element is represented by a Seitz symbol and is usually written as 𝑔 = {𝑅 |𝑚𝑛}. These
elements act in all the real space elements that we have defined so far (unit cell, lattice vectors, wave
functions, periodic potential, Hamiltonian), and thus impose certain constraints that these elements
must preserve.

The set of isometries of a certain space group is formed by elements of the space group that
have the zero vector as the translational part, represented by Seitz symbols of the form {𝑅 |0}. This
set forms a group and is isomorphic to a point group, labeled as 𝐺. In two dimensions, there are 11
point groups, which can be classified into:

• symmorphic, if after applying all its elements to a point inside the unit cell, it remains in the
same position or in an equivalent one. Since the lattice is translational invariant, the starting
point and the resulting one are equivalent;

• non-symmorphic, where at least one element has a translational part by a fraction of a lattice
vector (elements of the form {𝑅 |𝑚𝑛} where 𝑚, 𝑛 are fractional numbers). In this way, the
transformed point does not fall into a lattice point so the whole lattice has translated a fraction
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of a lattice vector. We find glide symmetries, where the linear part is a mirror, and screw
symmetries, where the linear part is any rotation.

Chapter 3 is focused on a lattice whose space group is symmorphic, while Chapter 4 is dedicated
to a lattice belonging to a non-symmorphic space group.

Certain points inside the unit cell inherit the symmetry properties of the point group of the lattice.
These are called Wyckoff positions, denoted by w. Each of them has a point group associated, called
the site-symmetry group (or stabilizer group) labeled as 𝐺w and composed by all the operations
from the point group of the lattice 𝐺 that leave such position invariant:

𝐺w = {𝑔 ∈ 𝐺 |𝑔w = w}. (2.56)

The elements of the site-symmetry group 𝐺w can contain translations proportional to the lattice
vectors (elements of the form {𝑅 |𝑚𝑛} with 𝑚, 𝑛 ≠ 0). Any site-symmetry group is a subgroup of
the point group of the lattice 𝐺w ⊆ 𝐺. The Wyckoff positions can be decomposed into two subsets:

• Maximal Wyckoff positions (wM) are those Wyckoff positions whose site-symmetry group
𝐺wM is a maximal subgroup of the point group of the lattice, i. e., whose site-symmetry group
is not a subgroup of any other site-symmetry group [79]. We can write 𝐺wM ⊆ 𝐺.

• The rest of the Wyckoff positions are called non-maximal since their site-symmetry groups
are a subgroup of another Wyckoff positions’ site-symmetry group. If we label non-maximal
Wyckoff positions as wm and its site-symmetry group as 𝐺wm , we can write 𝐺wm ⊂ 𝐺wM ⊆ 𝐺.

The Wyckoff positions are represented with a number related to how many of them are inside the
unit cell, and a letter that allows one to distinguish between different Wyckoff positions. The set of
Wyckoff positions of the same species defines the concept of orbit: the orbit of a Wyckoff position is
the set of positions inside the unit cell generated by the elements of the point group that are not
inside the site-symmetry group of the Wyckoff position. The elements that generate the orbit of a
Wyckoff position are called coset representatives of the site-symmetry group of the Wyckoff position.
Let’s apply these group theory concepts to a two-dimensional lattice populated by atomic orbitals.

2.6.2 From atomic orbitals to band structures

Atoms in a lattice are usually placed at the maximal Wyckoff positions. This reduces the
symmetry of the atomic orbitals from 𝑂 (3) to the point group of the lattice, so we cannot talk about
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(isolated) atomic orbitals anymore. We introduce the concept of crystal orbital in the same way as
molecular orbital is introduced in chemistry [80]: the hybridization of the atomic orbitals from the
individual atoms, placed at the lattice sites, form an orbital called crystal orbital, which is periodic
with the lattice periodicity. However, in Sec. 2.2.7 we introduced the concept of maximally localized
Wannier function as a real-space valued function that represents the localization of the charge in
the lattice and is periodic with the lattice periodicity. We can thus form a linear combination of
maximally localized Wannier functions to describe such crystal orbital, which transforms according
to the symmetries of the lattice. This set of maximally localized Wannier functions has associated a
certain band structure in reciprocal space. Since the Wannier functions respect the symmetry of the
space group, the band structure inherits the symmetry properties of the space group. This is where
topological quantum chemistry comes into play: by choosing a lattice and populating different
Wyckoff positions with different crystal orbitals, we arrive at different band structures, each with its
symmetry properties inherited from the space group.

This process (called induction) induces a representation of the space group, called band
representation, a concept introduced by Zak [81, 82, 83, 84]. A band representation is a mathematical
object that dictates the symmetry properties of the wave functions in real and reciprocal space.

More formally, the induction process happens in the following way: some crystal orbital, placed
at a certain maximal Wyckoff position w1, has certain symmetry properties, ruled by the elements
of its site-symmetry group 𝐺w. The action of each of the symmetry elements of the point group
is represented by a square matrix. The set of matrices for all the symmetry elements of the point
group form a representation of the point group. This representation, which we call 𝜌, dictates the
properties of the symmetry elements of the site-symmetry group. Since the crystal orbital respects
the symmetry of the site-symmetry group, and the site-symmetry group is a subgroup of the full
space group, 𝐺w ⊆ G, the representation 𝜌 from the site-symmetry group is induced into the full
space group. This is called band representation of the full space group 𝜌G and is represented by:

𝜌G = (𝜌 ↑ G)w, (2.57)

where 𝜌G is the induced band representation, and ↑ represents the induction process.

Representations are objects that can be reduced into simpler elements, called irreducible
representations. Accordingly, band representations can be decomposed into simpler elements, called
elementary band representations. In order to find the symmetry properties in reciprocal space, it is
necessary to decompose the band representation into elementary band representations. Then, it can

1We have removed the subindex M since we do not work with non-maximal Wyckoff positions, so at all times a
Wyckoff position denoted by w will be maximal.
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be Fourier transformed into reciprocal space, so that one can determine the symmetry properties of
the wave functions at certain k points. These are called high-symmetry points, analogous to the
Wyckoff positions in real space since they inherit the symmetry properties of the reciprocal lattice.
Each high-symmetry point Λ 𝑗 has a point group associated, called little group, denoted as 𝐺Λ 𝑗

(analogous to the site-symmetry group of the Wyckoff positions 𝐺w).

The symmetry properties of the wave functions at each high-symmetry point are determined by
a process called subduction (↓), by which the band representation (𝜌 ↑ G)q is decomposed into
a linear combination of irreducible representations

{
𝜎k
𝑖

}
of the little group 𝐺Λ 𝑗

of each of the
high-symmetry points:

(𝜌 ↑ G)w ↓ 𝐺Λ 𝑗
≈

⊕
𝑖

𝑚𝑖𝜎
Λ 𝑗

𝑖
, (2.58)

where 𝑚𝑖 is the multiplicity of the irreducible representations in the decomposition. This subduction
process must be done for each of the high-symmetry points inside the irreducible Brillouin zone. In
this way, the irreducible representation assignment determines how the wave functions associated
with each band transform under the action of the symmetry elements at each high-symmetry point.

We want to point out that the subduction process (↓) is not restricted to reciprocal space. Actually,
when we place atomic orbitals in Wyckoff positions with a certain site-symmetry group, we are
subducing the representation from the 𝑂 (3) point group, which is called the vector representation or
𝑉 , to the set of irreducible representations of the site symmetry group: 𝑉 ↓ 𝐺w. In general, the
subduction process happens when a representation is restricted or decomposed into irreducible
representations of a different group. After the subduction process, the irreducible character of a
representation can change: an irreducible representation of a group can become reducible when it is
expressed into irreducible representations of one of its subgroups.

2.6.3 From band structures to crystal orbitals

Up to now, we have determined the symmetry properties of a band structure from real space,
where the symmetry of the crystal orbital determines the symmetry properties of the band structure
in reciprocal space. However, this process can be reversed: if one is able to characterize the
symmetry properties in reciprocal space, by determining the irreducible representations at each
high-symmetry point, this uniquely defines the band representation in real space. As we presented
previously, the band representation is characterized by the symmetry of the crystal orbital, described
by a certain representation of the site-symmetry group, 𝜌, and the Wyckoff position where such
band representation is induced, w.
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This leads to a criterion to characterize the symmetry properties of a band structure based on
the location of the Wyckoff position. This is because the Wyckoff position associated with a band
representation represents the location of the Wannier center of the maximally localized Wannier
function (crystal orbital):

• We define a trivial atomic limit as a situation where the band structure corresponds to a band
representation induced from an occupied Wyckoff position, that is, when there is an atom
with a set of orbitals located in such Wyckoff position.

• On the contrary, we define an obstructed atomic limit as a band structure corresponding to
a band representation that is induced from an unoccupied Wyckoff position: the Wyckoff
position is empty and no atom or orbitals are located in such Wyckoff position.

These two limits correspond to (topologically) different phases that accept, by definition, a set of
maximally localized Wannier functions, so they do not present robust topology. These two atomic
limits are not adiabatically connected: by studying the behavior of the symmetry eigenvalues, one can
detect band inversions, which are the typical signature of phase transitions between trivial/obstructed
atomic limits. This criterion applies only to non-topological materials.

2.6.4 Topological classification: topological quantum chemistry

At the beginning of this section, we claimed that topological quantum chemistry allows for
a topological classification of materials according to their symmetry properties. So far, we have
described the symmetry properties of band representations induced from occupied/unoccupied
Wyckoff positions which accept a representation in terms of maximally localized Wannier functions.

As we described previously, elementary band representations form a basis of all possible band
representations, so any band representation is expected to be decomposed into a linear combination
of elementary band representations with positive integer coefficients. Those coefficients are called
multiplicities, in the same sense as in Eq (2.58).

However, this is not always the case: topological band structures (whose topology can be
diagnosed using symmetry indicators) do not allow a decomposition of their band representation
into a linear combination of elementary band representations with positive integer coefficients. Each
elementary band representation represents a set of bands that are connected inside the first Brillouin
zone [85, 86]. However, it was proven that elementary band representations can be disconnected [14],
and thus whenever an elementary band representation is said to be disconnected, at least one of
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the disconnected set of bands has to present non-trivial topological features, again, diagnosable via
symmetry indicators.

As we introduced in Sec. 2.2.7, robust topological bands do not accept a description in terms
of maximally localized Wannier functions. In terms of elementary band representations, the
impossibility of assigning a well-defined band representation to the topological bands is the key to
the poor localization of the Wannier function. Thus, no center can be assigned to them.

As a final remark, the “direct” way (induction of a band representation, subduction into little
groups at high-symmetry points) allows to study the topology of a band structure induced from
real space. On the contrary, the “inverse” way allows to characterize band structures that do not
necessarily come from electronic orbitals in real space, as in photonic systems or quantum simulators.
Chapter 3 is devoted to the characterization of a system in the absence of atomic species or orbitals
(electronic quantum simulator).

2.7 Su-Schrieffer-Heeger (SSH) model

This section is devoted to the application of the concepts introduced in the previous sections to
a very simple model, called the SSH model due to the authors who used it to describe solitons in
polyacetylene [87]. A sketch of such polymer is shown in Figure 2.7(a). This model encodes a very
simple description of the basic concepts of topology, as described in Secs. 2.5, 2.6 and 2.4. We
begin by presenting the tight-binding Hamiltonian used in the study of the model. We cover as well
the symmetries of the chain, and then we present the two different topological phases of the system
according to the quantization of the Berry phase (in this case called Zak phase). Finally, we apply
topological quantum chemistry to characterize these two phases fully.

2.7.1 Hamiltonian and symmetries

We start by presenting the tight-binding Hamiltonian with nearest neighbor hoppings. The unit
cell is populated by two orbitals, A and B. These orbitals are placed at 𝑥 = ±a0/4 respectively,
where 𝑎0 is the lattice constant, taken to be unity. There is an intra-cell hopping, called 𝑡,
and an intercell hopping, called 𝑡′. We can write the matrix elements of the Hamiltonian as
𝑡𝑚,𝑛 = ⟨𝑚A|H |𝑛B⟩ = 𝑡𝛿𝑚,𝑛+ 𝑡′𝛿𝑚+1,𝑛, for ⟨𝑚A|, |𝑛B⟩ being the Dirac notation for orbitals at species
A or B, 𝑚, 𝑛 indexing the unit cells, and 𝛿𝑚,𝑛 being the Kronecker 𝛿 function over the cell indices. If
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(a)

(b)

(c)

(d)

Figure 2.7: (a) Configuration of a polyacetylene molecule displaying the unit cell. Adapted
from [87]. (b) Trivial phase of the SSH model containing disconnected dimers. (c) Phase
displaying the boundary modes lying on the disconnected orbitals in the boundaries. Both have been
adapted from [20]. (d) Phase diagram of the SSH model under a dimerization technique such that
𝑡𝑚,𝑛 = ⟨𝑚A|H |𝑛B⟩ = 𝑡𝛿𝑚,𝑛 + 𝑡′𝛿𝑚+1,𝑛 = 𝑡0(1 + 𝛿)𝛿𝑚,𝑛 + 𝑡0(1 − 𝛿)𝛿𝑚+1,𝑛, where 𝛿 ∈ (−1, 1) is the
dimerization parameter. When 𝛿 = ±1 the SSH chain reaches the two limiting cases of disconnected
dimers. At 𝛿 < 0 two zero energy states appear and localize at the boundaries of the chain–light
blue region.

we Fourier transform the Hamiltonian in the basis A, B, we obtain:

H(𝑘) =
(

0 𝑞(𝑘)
𝑞†(𝑘) 0

)
= 𝜎+𝑞(𝑘) + 𝜎−𝑞†(𝑘), (2.59)

𝑞(𝑘) = 𝑡 + 𝑡′e−i𝑘 , (2.60)

where 𝜎± is an even/odd combination of the 𝑥, 𝑦 Pauli matrices, and 𝑘 is the one-dimensional wave
vector. The Hamiltonian has been written in such a form that makes explicit the sublattice symmetry
or chiral symmetry, which makes the Hamiltonian off-diagonal. This can be generalized for any
even number of atoms in the unit cell, as it will be shown in Chapter 4. The chiral symmetry can be
expressed as:

Γ−1H1Γ = H2, (2.61)

H1 + H2 = 0, (2.62)

where Γ is thus the chiral operator in a diagonal form. We findH2 = −H1, and as Tr(H1 +H2) = 0,
the two possible eigenvalues verify 𝐸2 = −𝐸1 = 𝐸 , and thus a single Hamiltonian can be considered
as Γ−1HΓ = −H . The operator Γ does not commute withH , but its square does, and so, for a 2× 2
chiral-symmetric matrix, the shape of Γ is the Pauli matrix 𝜎𝑧. The spectrum of a chiral-symmetric
Hamiltonian is always energy-symmetric, since for an eigenvector |𝜙⟩ with eigenenergy 𝐸 , there is
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always a chiral-symmetric one Γ|𝜙⟩ with eigenenergy −𝐸 . In this sense, whenever the energy is
different from zero, the eigenvectors 𝜙 and Γ|𝜙⟩ are orthogonal:

⟨𝜙 |Γ|𝜙⟩ =
(
𝜙∗1 𝜙∗2

)
𝜎𝑧

(
𝜙1

𝜙2

)
= |𝜙1 |2 − |𝜙2 |2 = 0 ⇒ |𝜙1 |2 = |𝜙2 |2. (2.63)

This last expression means that the wave function will have the same weight in both sublattices
whenever 𝐸 ≠ 0. However, if the energy is zero, H|𝜙⟩ = 0 implies that HΓ|𝜙⟩ = 0 and thus
H = ΓH . Therefore, the eigenvectors ofH can be taken to be the same as the ones from Γ:

|𝛾1⟩ =
(
1
0

)
|𝛾2⟩ =

(
0
1

)
, (2.64)

and thus the wave function will have only weight in just one of the sublattices.

With this explanation in mind, the spectrum of the SSH chain is computed diagonalizing the
Hamiltonian in (2.59). The result is two energy-symmetric bands that gap when 𝑡 ≠ 𝑡′. Indeed,
taking a0 = 1, the spectrum reads

𝐸±(𝑘) = ±
√︁
𝑡2 + (𝑡′)2 + 2𝑡𝑡′ cos(𝑘). (2.65)

The subindex ± corresponds to the lower and upper bands and will also be used to distinguish
between the eigenstates associated to the respective band. The spectrum closes at 𝑘 = ±𝜋 when
𝑡 = 𝑡′, and is gapped at any other case. The width of the gap is Δ𝑔 = 2|𝑡 − 𝑡′|. Let’s now apply the
concepts of topology and group theory to this system in the gapped phases.

2.7.2 Topological analysis of the phases of the SSH model

The topology of a system is encoded in the eigenvectors of the Hamiltonian. Therefore, we
diagonalize and solve for the eigenvectors of expression (2.59). We obtain:

|𝜓⟩±(𝑘) =
1
√

2

(
𝐸±(𝑘)
𝑡 + 𝑡′ei𝑘 1

)T
. (2.66)

We now compute the Zak phase (Berry phase along the one-dimensional first Brillouin zone) for the
two limiting cases where 𝑡′ = 0, 𝑡 = 𝑡0 (phase I), and for the case 𝑡 = 0 𝑡′ = 𝑡0 (phase II). In both
cases, the bulk spectra of the two phases are identical, displaying a gap of Δ𝑔 = 2|𝑡0 |.

In phase I, 𝑡′ = 0, the SSH chain is decomposed into an infinite set of dimers A−B. The
eigenvectors can be written as

|𝜓⟩±(𝑡′ = 0, 𝑘) = 1
√

2

(
±1 1

)T
, (2.67)
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and thus the Berry connection is 0, as the eigenvectors do not depend on 𝑘 . Therefore, the Zak phase
is zero and the associated Wannier center is zero as well, meaning that the maximally localized
Wannier function is located in the center of the unit cell, coinciding with one of the centers of
inversion of the system.

In phase II, where 𝑡 = 0, the SSH chain is decomposed again into an infinite set of dimers, but
this time the dimers are B−A. The eigenvectors can be written as

|𝜓⟩±(𝑡 = 0, 𝑘) = 1
√

2

(
±e−i𝑘 1

)T
. (2.68)

Now, the Berry connection for the lower band is:

A−(𝑘) =
1
2
. (2.69)

Therefore, the Zak phase is:

𝜙 =

∫
A−(𝑘)d𝑘 =

∫ 2𝜋

0

1
2

d𝑘 = 𝜋, (2.70)

and the associated Wannier center is thus 𝑟− = 𝑎0/2, which means that the maximally localized
Wannier function is located at the border of the unit cell. This position is the other center of inversion
of the system.

These two bulk topologies have different consequences in the boundaries of a finite-size system,
as specified in Sec. 2.4. If we take a finite size sample of 𝑁 unit cells and study the two limiting
cases, we observe the following: phase II presents boundary modes localized in the sublattice
defining the end of the chain, i. e., A on the left and B on the right of the chain. These two modes
are both at zero energy because they correspond to orbitals disconnected from the rest of the dimers
since the dimers are formed between adjacent unit cells.

According to the bulk-boundary correspondence presented in Sec. 2.4, we can call phase I
topologically trivial, since there is no signature of non-trivial topological bulk at the boundaries
of the system. On the contrary, we call phase II topologically non-trivial since there is indeed a
boundary signature of a non-trivial topological bulk. However, since we are in one dimension, no
robust topology can be encoded in these systems. Another way to understand the actual “lack” of
robust topology in the system is to make a shift of the unit cell in real space. In this way, the physics
of the phases would be exchanged and so the topological markers. Since topology must not depend
on the choice of unit cell, we conclude that no topology is encoded in the SSH chain, just a non-zero
bulk polarization resulting in the appearance of two boundary modes.
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(a) (b)

Figure 2.8: (a) 𝑁1 × 𝑁2 discretization of a square first Brillouin zone. (b) Infinitesimal plaquette
pinned at 𝑘𝑖, 𝑗 reflecting the Berry phase 𝜙 acquired after a loop pinned at 𝑘𝑖, 𝑗 .

2.7.3 Symmetry analysis of the phases of the SSH model

When we computed the Berry connections and Zak phases of the two distinct phases of the
SSH model, we obtained quantized values, due to inversion symmetry since it maps 𝑘 to −𝑘 . By
taking a topological quantum chemistry perspective of the problem, we compare the obtained
Wannier centers with the maximal Wyckoff positions and the atomic positions. The center of the
unit cell corresponds to the 1𝑎 maximal Wyckoff position, while the edges correspond to the 1𝑏
maximal Wyckoff position. The atomic positions are located at the 2𝑐 Wyckoff positions, which are
non-maximal, so no band representation can be induced from them. This sheds light on the actual
configuration of the system: since none of the maximal Wyckoff positions are occupied, strictly
speaking, both phases are different obstructed atomic limits, one with zero bulk polarization (phase
I) and the other with non-zero bulk polarization (phase II).

2.8 Sampling over a discretized two-dimensional Brillouin zone

So far we have introduced the topological invariants in the continuum, using the SSH model as
an example. This is because we have been able to obtain analytic expressions for the eigenvectors
and the topological invariants. However, in two or more dimensions, this is not always possible. In
this section we present the discretized version of the topological invariants introduced in Sec. 2.5.
We begin by discretizing the two-dimensional first Brillouin zone into a (𝑁1 × 𝑁2) grid1. The first
Brillouin zone is now a set of points in the form:

k𝑖, 𝑗 =
𝑖

𝑁1
b1 +

𝑗

𝑁2
b2, for 𝑖 = 0, ..., 𝑁1 − 1, 𝑗 = 0, ..., 𝑁2 − 1. (2.71)

1Usually 𝑁1 = 𝑁2 = 𝑁 but we keep a different notation to distinguish them.
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The Bloch wave function is periodic in the first Brillouin zone (periodic gauge). However, all the
topological quantities depend on the cell-periodic part of the Bloch wave function, and thus we need
to overcome the fact that the gauge is chosen to be twisted, not periodic. This can be achieved by
defining the cell-periodic part along the lines {𝑁1, 𝑗} and {𝑖, 𝑁2} as the cell-periodic part computed
along {0, 𝑗} and {𝑖, 0} times a phase factor in the form exp(−ib1,2 · r̂). This phase is an operator
since it is a function of the operator r̂, so when it acts on the cell-periodic part of the Bloch wave
function, it returns the exponential of the positions in the real space unit cell of the crystal orbitals.
In this way, we can account for the gauge choice of the cell periodic part and include it in the
calculations. This procedure needs to be done since the diagonalization routines include random
phases, which need to be balanced to get rid of them [16, 88].

The most important element of the discretized versions of the topological invariants is the overlap
elements between wave functions at adjacent k points of the first Brillouin zone. We can define
them according to [88, 89]. For a single band, we have the Abelian𝑈 (1) link variable:

𝑈 (k𝑖, k 𝑗 ) =
⟨𝑢(k𝑖) |𝑢(k 𝑗 )⟩
|⟨𝑢(k𝑖) |𝑢(k 𝑗 )⟩|

. (2.72)

For a 𝐽 multi-band description of the overlap (non-Abelian definition), we perform all the possible
combinations of the overlaps between all the degenerated bands. In this way, we build a𝑈 (𝐽) link
variable in the shape of a square matrix, and take the determinant (back to𝑈 (1) link variables):

S (𝐽) (k𝑖, k 𝑗 ) =
©«
⟨𝑢1(k𝑖) |𝑢1(k 𝑗 )⟩ . . . ⟨𝑢1(k𝑖) |𝑢𝐽 (k 𝑗 )⟩

...
. . .

...

⟨𝑢𝑁 (k𝑖) |𝑢1(k 𝑗 )⟩ . . . ⟨𝑢𝐽 (k𝑖) |𝑢𝑁 (k 𝑗 )⟩

ª®®®¬ , (2.73a)

𝑈 (𝐽) (k𝑖, k 𝑗 ) =
det S (𝐽) (k𝑖, k 𝑗 )
|det S (𝐽) (k𝑖, k 𝑗 ) |

. (2.73b)

Let’s now write down the expressions for the Berry phase along a closed loop. This closed loop
is represented as a small plaquette formed by a set of k points, as presented in Figure 2.8b. This
plaquette is pinned at k𝑖, 𝑗 placed in the lower left corner. The naming of the rest of the corners is
done counter-clockwise □ =

{
k𝑖, 𝑗 , k𝑖+1, 𝑗 , k𝑖+1, 𝑗+1, k𝑖, 𝑗+1

}
= {k0, k1, k2, k3}. The total Berry phase

after completing the loop is:

𝜙(k0) = Im ln [𝑈 (k0, k3)𝑈 (k3, k2)𝑈 (k2, k1)𝑈 (k1, k0)] , (2.74a)

𝜙(𝐽) (k0) = Im ln
[
𝑈 (𝑁) (k0, k3)𝑈 (𝑁) (k3, k2)𝑈 (𝑁) (k2, k1)𝑈 (𝑁) (k1, k0)

]
, (2.74b)

for single-band and multi-band calculations respectively, The order of the k points is crucial since
it determines the criterion for the sign. Also, in Eq. (2.74b) due to the non-Abelian origin of the
𝑈 (𝐽) (k𝑖, k 𝑗 ) link variable, the order of the matrices actually matter.
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For the definition of the Berry curvature, we compute the Berry phase for all the plaquettes
inside the first Brillouin zone and divide it by the area of each plaquette. Finally, the Chern number
is just the integral of the Berry curvature inside the first Brillouin zone, or the sum of all the Berry
phases associated with each plaquette. This definition is a consequence of the Ambrose-Singer
theorem [90] by which the holonomy of a connection is related to the curvature of the connection.
In other words, the Berry phase along the plaquette represents an infinitesimal Wilson loop, which
is precisely the holonomy of the Berry connection. We refer the reader to Sec. 2.5 for more details.

However, we can write an analytic expression of the Berry curvature: we can use the
expression (2.42) introduced in Sec. 2.4. The derivatives of the Hamiltonian can be related
to the velocity operator ℏv𝑟,𝑠 (k) = ⟨𝑟k|∇kHk |𝑠k⟩. Averaging over the whole first Brillouin zone,
we obtain:

𝜎
𝛼𝛽

H =
1

𝑁1𝑁2

∑︁
k
𝜎
𝛼𝛽

H (k), (2.75a)

𝜎
𝛼𝛽

H (k) =
𝑒2ℏ

𝐴0
Ω(k), (2.75b)

Ω(k) = i
∑︁
𝑟,𝑠

𝑣𝛼𝑠,𝑟 (k)𝑣
𝛽
𝑟,𝑠 (k)

(𝐸𝑟 (k) − 𝐸𝑠 (k))2
, (2.75c)

where 𝜎𝛼𝛽H is the total Hall conductance, 𝜎𝛼𝛽H (k) is the k resolved Hall conductance and Ω(k) is the
k resolved exact Berry curvature. This is because the definition of the Berry curvature through the
Ambrose-Singer theorem, by which the Berry curvature is built by computing the Berry phase for
small plaquettes that tile the whole first Brillouin zone, is just the leading term in a series expansion,
where the terms of the order O(𝛿𝑘3) have been neglected.

For the Wilson loop and its spectrum, we decompose it into the product of Wilson lines in the
first Brillouin zone. Then, the Wilson loop along a straight line across the first Brillouin zone is just
a generalization of Eqs. (2.74a) and (2.74b) where now the starting and end points are related by a
reciprocal lattice vector. Assuming that the lines are located at 𝑘2, 𝑗 = 2𝜋 𝑗/𝑁2, for 𝑗 = 0, ..., 𝑁2,
and extend along b1 with 𝑁1 points, we have:

�̂�(𝑘1+2𝜋,𝑘2)←(𝑘1,𝑘2) (𝑘2, 𝑗 ) = �̂�b1 (𝑘2, 𝑗 ) =

=

𝑁1∏
𝑖=0
𝑈 ({𝑘 𝑖+11 , 𝑘2, 𝑗 }, {𝑘 𝑖1, 𝑘2, 𝑗 })

=

𝑁1∏
𝑖=0
⟨𝑢(𝑘 𝑖+11 , 𝑘2, 𝑗 ) |𝑢(𝑘 𝑖1, 𝑘2, 𝑗 )⟩
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= ⟨𝑢𝑛 (𝑘1 + 2𝜋, 𝑘2, 𝑗 ) |
𝑁𝑘−1∏
𝑖=1

𝑃(𝑘 𝑖1, 𝑘2, 𝑗 ) |𝑢𝑛 (𝑘1, 𝑘2, 𝑗 )⟩. (2.76)

Since the operator is unitary, we work with the phase associated with it, or Im ln �̂�b1 (𝑘2).
Expression (2.76) is a way to recast the Wilson loop operator as a product of infinitesimally separated
one-particle projection operators, which is a reminder that the Wilson loop is related to the transport
of an eigenstate of the Hamiltonian through multiple projections. The expression of each operator is
thus 𝑃(𝑘1, 𝑘2) = |𝑢(𝑘1, 𝑘2)⟩⟨𝑢(𝑘1, 𝑘2) |. Since we are dealing with just one band, the Wilson loop
spectrum is just a curve for all the set of 𝑘2, 𝑗 which may or may not wind due to the topology of the
system (see Fig. 2.9a and 2.9b).

For a non-Abelian expression, we need to compute as well the eigenvalues of the resulting matrix
𝑊
(𝐽)
b1
(𝑘2):

�̂�
(𝐽)
(𝑘1+2𝜋,𝑘2)←(𝑘1,𝑘2) (𝑘2, 𝑗 ) = �̂� (𝐽)b1

(𝑘2, 𝑗 ) =

= P
(
𝑁1−1∏
𝑖=0
S (𝐽) ({𝑘 𝑖+11 , 𝑘2, 𝑗 }, {𝑘 𝑖1, 𝑘2, 𝑗 })

)
, (2.77)

where we have recovered the path ordering operator due to the non-Abelian origin of the variables.
Finally, once the operator is built, we compute its eigenvalues, which must not be mistaken as the
Wilson loop spectrum, since the spectrum is defined as the variation of the Wilson operator along
a path in reciprocal space. Hence, for a set of 𝐽 bands, we have a set of 𝐽 curves reflecting the
Wilson loop of the total set of bands, not the individual ones. In figure 2.9c we present the Wilson
loop spectrum of a set of 3 bands1. In all of these calculations, the cell-periodic part of the Bloch
wave function has to be corrected with the extra phase factor in order to cancel the random phases
introduced by the diagonalization routines.

We now recall the discussion about trivial/obstructed atomic limits presented in Sec. 2.6. Since
the band representation is well-defined, its Wyckoff position is identified. Hence, it is possible to
associate a Wilson loop spectrum with the coordinates of the Wyckoff position. This is possible
since the Wilson loop spectrum does not wind and thus no Wannier center shifts from one unit
cell to the adjacent one. Certain crystals (namely 𝐶𝑛-symmetric crystals) present a non-zero bulk
polarization, which suggests that the centers of positive and negative charge are not in the same
position. This is the same as saying that the electrons are displaced from where the atomic nuclei
are. Since atomic nuclei are located at the maximal Wyckoff positions, whenever a 𝐶𝑛-symmetric
crystal presents a non-zero bulk polarization, it corresponds to an obstructed atomic limit (necessary

1This is the typical Wilson loop spectrum of an obstructed atomic limit [88].
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(a) (b) (c)

Figure 2.9: Examples of Wilson loop spectra. In all the cases, the arrow represents the direction
along the Zak phase is computed. The orthogonal direction represents the direction of the spectrum.
(a) Wilson loop spectrum of a single band, belonging to a system with broken time-reversal symmetry.
As it presents a winding of 1, the corresponding Chern number is𝐶 = +1, where we have established
the sign criterion according to the sign of the derivative of the Wilson loop spectrum. (b) Wilson
loop spectrum of a single band belonging to a system that is symmetric under time-reversal symmetry.
This Wilson loop spectrum is mappable to a constant value of zero, so we can associate a Wannier
center that lies in the origin of the system of coordinates chosen. (c) Wilson loop spectrum of three
bands presenting no winding.

but not sufficient). More precisely, the bulk polarization of those systems is related to the symmetry
of the crystal, since the value of the polarization will be a Z𝑛-quantized quantity [73, 91, 92, 93].

In general, after computing the Wilson loop spectrum for a system in an atomic limit, we can
estimate the value of the bulk polarization as the averaged Wilson loop spectrum [94]:

𝑝 =
1

2𝜋𝑁𝑘

𝑁𝑘∑︁
𝑗=1

𝑁occ∑︁
𝑚=1

a𝑚1,2(𝑘
𝑗

2,1) mod 1. (2.78)

We have expressed the eigenvalue problem of the (non-Abelian) Wilson loop as

𝑊b1 (𝑘2) |a 𝑗1 (𝑘1, 𝑘2)⟩ = eia 𝑗1 (𝑘2) |a 𝑗1 (𝑘1, 𝑘2)⟩, (2.79)

where a 𝑗1 (𝑘2) is the component of the Wannier center of the 𝑗-th Wannier function along the a1

direction. We refer the reader to Chapter 3 for an example of the application of this last formulation.

2.9 Projected spectral function

A very useful tool in band theory is the spectral function 𝐴(𝐸, k). It provides information about
the probability that an electron of momentum k has energy 𝐸 . In a many-body problem, it can be
seen as an indication of how well the excitation created by adding a particle can be described within
the free non-interacting particle picture. It can be seen as a distribution since, experimentally, such
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probability is not always one due to the principle of uncertainty. In the following lines, we describe
how to obtain the spectral function from the Green’s function for free electrons. We refer the reader
to Refs. [23, 24] for a more pedagogical introduction to this topic.

The spectral function is related to the imaginary part of the Green’s function that describes
the system. For a given Hamiltonian H , we define the Green’s function or resolvent operator as
𝐺 (𝑧) = (𝑧 −H)−1, where 𝑧 = 𝐸 + 𝑖[ and [→ 0+. The spectral function is then:

𝐴(𝐸, k) ∝ Im Tr𝐺 (𝑧) = Im
∑︁
ℓ

⟨𝜓ℓ,k |𝐺 (𝑧) |𝜓ℓ,k⟩ = Im
∑︁
ℓ

1
𝐸 − 𝐸ℓ,k + 𝑖[

, (2.80)

where 𝐸ℓ,k is the eigenvalue associated to the state |𝜓ℓ,k⟩. Practically, the [ parameter is related to
the finite lifetime of the excitation, but for our purposes will be treated as a parameter to control the
resolution of the plot.

We will work further in the text with the so-called projected spectral function. In this case,
the spectral function is projected over a region of the system. This is interesting when the system
presents more than one region, as we can find in ribbons and flakes, where we can identify bulk and
different species of boundaries. The projection is done by adding a projection operator P𝑅 in the
numerator of Eq. (2.80) (the subscript 𝑅 denotes the region of the projection). This operator will be
formed by the composition of projection operators that project into the individual orbitals present at
the desired region.

The spectral function is presented in an energy vs. momentum plot. However, if the Hamiltonian
depends on a set of parameters, the momentum can be replaced by any other of these parameters.
With this in mind, we can study the spectral function of a certain Hamiltonian at fixed k points. The
most general expression for the projected spectral function 𝐴𝑅 (𝐸,

{
𝛼 𝑗

}
) is thus:

𝐴𝑅 (𝐸,
{
𝛼 𝑗

}
) = Im

∑︁
𝑖

⟨𝜓𝑖 (
{
𝛼 𝑗

}
) |P𝑅 |𝜓𝑖 (

{
𝛼 𝑗

}
)⟩

𝜔 − 𝐸𝑖 (
{
𝛼 𝑗

}
) + i[

, (2.81)

where
{
𝛼 𝑗

}
is a set of parameters. The matrix element in the numerator represents the projection of

the spectral function over the region 𝑅. We refer the reader to chapter 4 for an application of the
spectral function to a specific lattice where we compute the localization of states in the edges of a
ribbon. As well, we present there different projection operators to distinguish between the edges of
the region (in the cases this distinction is possible).
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CHAPTER 3

Corner modes of the breathing kagome
lattice: origin and robustness

This chapter is devoted to the study of a lattice belonging to a symmorphic space group, namely
the kagome lattice, belonging to the 𝑝6𝑚𝑚 wallpaper group. The work presented here is published
in Ref. [53]. This chapter is organized as follows: in section 3.1, we introduce the kagome lattice,
a well-known two-dimensional lattice that displays many interesting features. In section 3.2, we
present the tight-binding model we used to describe the pristine and breathing kagome lattice
kagome lattice, where we introduce a certain perturbation that breaks some of the symmetries of
the lattice. Next, we study the bulk spectrum of both the pristine and breathing kagome lattice.
Additionally, we study the finite-size spectrum of the breathing which displays gapped boundary
modes localized in the edges and, most importantly, in the corners. In section 3.3, we describe
the spatial symmetries of the breathing kagome lattice, and how to study them starting from the
breaking of the symmetries of the pristine kagome lattice. In section 3.4, we present the discussion
about the properties of the corner modes in terms of the generalized chiral symmetry. Additionally,
we present a study on different hopping terms that can be added to the Hamiltonian that do and do
not perturb the corner modes. In section 3.5, we present the breathing kagome lattice implemented
on a nearly-free electron gas platform, using a muffin tin potential to describe the lattice, as it was
introduced in section 2.3. Finally, in section 3.6 we present the discussion, conclusions and outlook
of this chapter.

3.1 Introduction

The kagome lattice, named after the bamboo-basket woven pattern shown in Fig. 3.1(a) [95] has
attracted a lot of interest due to the variety of phases that it can describe, ranging from frustrated
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antiferromagnets to spin liquids [96, 97, 98, 99] or nematic superconductors [100]. Due to its
simplicity, it has also been realized in several experimental setups, like optical lattices [101, 102, 103],
mechanical, electrical, and acoustic metamaterials [104, 105, 106] and even colloidal crystals [107,
108]. Another interesting platform where the kagome lattice has also taken an important role is in
the field of photonic crystals [109, 110, 111, 112], where light propagation without backscattering
even with disorder has been achieved in bosonic systems [113, 114].

The kagome lattice is also known because it is able to host higher-order topological boundary
modes [115, 116] that are localized in the corners of a finite size sample–see Sec. 2.4 and figure 3.1(b).
In the case of photonic crystals, these robust corner modes behave as stationary cavity modes. The
robustness against perturbations was claimed to be due to higher-order topological protection [45,
105, 117, 118].

(a) (b)

(c) (d)

Figure 3.1: Kagome and breathing kagome lattices. (a) Bamboo-basket woven pattern adapted
from [95]. The orbitals are placed in the corners of the triangular crossings. (b) Boundary states
of a two-dimensional higher-order topological insulator. Adapted from [116]. Panels (c) and (d)
present the two distinct phases that the breathing kagome lattice displays, studied in this chapter.
Panel (c) represents the trivial phase while (d) shows the non-trivial phase, with the corner states
highlighted. Both panels have been adapted from [45].

In this chapter, we have investigated the corner modes of the electronic breathing kagome
lattice [117], which is a kagome lattice with alternating intra- and inter-cell hopping amplitudes, in
contrast with the canonical kagome lattice, where all the hoppings have the same value. As we
mentioned previously, the key feature of the breathing kagome lattice is that by tuning the breathing
parameter, we are able to describe a phase that exhibits corner localized zero-energy states when it
is built over a finite-size sample. We will call this phase topologically non-trivial in contrast with
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3.2. The breathing kagome model: bulk and boundaries

the topologically trivial phase, where no corner modes appear. It could also be called topological in
the same way as the SSH model is called so; however, we will show later in the chapter that the
non-triviality of the phase does not correspond to any topology encoded in the system, exactly as in
the case of the SSH model. See section 2.7 for the details of the SSH model.

A recent experimental realization of the kagome lattice is within the framework of artificially
designed electronic lattices [45]. This technique has its origin in the manipulation of adatoms on
metallic surfaces [39]. The main idea behind these experiments is to confine the surface state of a
metal, which behaves as a two-dimensional electron gas, using a user-defined potential that patterns
the lattice. The theoretical framework used in this work is known as the muffin-tin technique,
presented in section 2.3.

3.2 The breathing kagome model: bulk and boundaries

The breathing kagome lattice is a two-dimensional lattice with alternating strong and weak
hoppings in a kagome pattern [95, 117]. In Fig. 3.2(a), we present the unit cell and the choice of
lattice vectors. The unit cell contains three lattice sites, labeled A, B, and C, respectively. The shape
of the unit cell is considered to be a rhombus centered in the 1b Wyckoff position. In the simplest
tight-binding formulation, where we consider only nearest-neighbor hopping terms, the Hamiltonian
reads:

H = −
∑︁
⟨𝑚,𝑛⟩
(Y𝑎𝑎†𝑚,𝑚𝑎𝑚,𝑚 + Y𝑏𝑏†𝑚,𝑚𝑏𝑚,𝑚 + Y𝑐𝑐†𝑚,𝑚𝑐𝑚,𝑚)+

+ 𝑡𝑎
(
𝑎†𝑚,𝑛𝑏𝑚,𝑛 + 𝑎†𝑚,𝑛𝑐𝑚,𝑛 + 𝑏†𝑚,𝑛𝑐𝑚,𝑛

)
+ (3.1)

+ 𝑡𝑏
(
𝑎†𝑚,𝑛 (𝑏𝑚−1,𝑛+1 + 𝑐𝑚,𝑛−1) + 𝑏†𝑚,𝑛𝑐𝑚,𝑛−1

)
+ h.c.,

where 𝑚, 𝑛 index the unit cell, the notation ⟨𝑚, 𝑛⟩ means nearest-neighbors, and h.c. stands for
hermitian conjugate. The first line corresponds to the onsite energies, the second to the intracell
hoppings, associated with 𝑡𝑎, and the last line corresponds to the intercell hoppings, associated by
𝑡𝑏. If we Fourier transform the previous Hamiltonian by choosing the basis Ψ = {𝑎k, 𝑏k, 𝑐k}T, we
obtain the k dependent Hamiltonian ℎ(k) that reads

ℎ(k) = −
©«

Y𝑎 𝑡𝑎 + 𝑡𝑏eik·a3 𝑡𝑎 + 𝑡𝑏e−ik·a2

𝑡𝑎 + 𝑡𝑏e−ik·a3 Y𝑏 𝑡𝑎 + 𝑡𝑏e−ik·a1

𝑡𝑎 + 𝑡𝑏eik·a2 𝑡𝑎 + 𝑡𝑏eik·a1 Y𝑐

ª®®®¬ , (3.2)

where k the crystal momentum and a1,2 = (±1
2 ,
√

3
2 ) the lattice vectors. The vector a3 = a2 − a1 =
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3.2. The breathing kagome model: bulk and boundaries

Figure 3.2: The breathing kagome model (bulk). (a) Lattice model with three sublattice sites A, B,
and C, and hopping parameters 𝑡𝑎 and 𝑡𝑏. The black triangles represent the 1𝑎 Wyckoff position, the
blue triangles represent the 1𝑏 Wyckoff position and the empty triangles represent the 1𝑐 Wyckoff
position. The lattice sites fall on the 3𝑑 Wyckoff positions, represented with green circles. The
purple-shaded rhombus is the choice of unit cell. (b) Band structure of the kagome model for the
breathing (solid lines) and non-breathing (dashed lines) phases. Notice that the non-breathing phase
is gapless at the K and K′ points. The corresponding values of 𝑡𝑎 = 0.38𝑡𝑏 and 𝑡𝑏 = 0.075 eV are
obtained from Ref. [45] by fitting the bands calculated within the tight-binding approach with the
ones derived using the muffin-tin method. This corresponds to 𝛿 ≈ −0.45 and 𝑡0 ≈ 52 meV.

(−1, 0) has been added to simplify the expression of the Hamiltonian in momentum space. We
show in Fig. 3.2(b) the band structure for a periodic lattice both in the breathing phase (𝑡𝑎 ≠ 𝑡𝑏)
(solid lines) and in the canonical or pristine phase (𝑡𝑎 = 𝑡𝑏) (dashed lines). As we can see, the
breathing kagome lattice displays a gap that closes at K, K′ points when the hoppings are the same
(canonical kagome lattice). This will be explained using group theory arguments in Sec. 3.3. Both
the canonical and breathing phases display a flat band at 𝐸flat = 𝑡𝑎 + 𝑡𝑏. By changing the values
of the hoppings we can shift the position in energy of this flat band. Additionally, it can acquire a
certain dispersion with the addition of next-to-nearest neighbor hoppings.

We will now apply the breathing dimerization technique to the canonical/pristine kagome lattice.
Figure 3.3 presents the energy bands of a finite-size lattice obtained using the following breathing
parametrization of the hopping amplitudes: 𝑡𝑎,𝑏 = (1 ± 𝛿)𝑡0 with 𝑡0 < 0. The parameter 𝛿 is the
called the breathing factor: it allows us to study the different phases of the breathing kagome lattice
by changing its sign. This dimerization technique has been used before in the SSH model back
in Section 2.7 in order to obtain the boundary modes in the chain. In the limiting case where
𝛿 = −1, the breathing kagome lattice is decomposed into isolated sets of atoms1: single atoms
in the corners of the flake, dimers along the edges, and trimers in the bulk-like part of the flake.

1In the case of the SSH we obtained single atoms in the boundaries of the chain and dimers in the bulk-like part of
the chain. We refer the reader to section 2.7 for a simpler version of the effects of this dimerization technique applied to
the SSH model.
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Particularly, for this calculation, we have chosen a size of 630 lattice sites, or 20 unit cells along
the side of the triangle. After diagonalizing the Hamiltonian built over the finite-size sample, we
show in Figures 3.3(c) to 3.3(e) the spatial localization of selected states for 𝛿 = −0.5, revealing the
existence of bulk–Fig.3.3(c), edge–Fig.3.3(d)– and corner modes–Fig.3.3(d). We have assigned a
different color for each lattice site: red for lattice site A, green for lattice site B and blue for lattice
site C. For the case of the corner modes, we notice that the wave function has non-zero weight in
only one sublattice (A, B, or C), precisely the sublattice species located on the lattice site at the
corner. More precisely, the flake ends in an A-site in the upper corner, and so the corner mode has
non-zero weight in the A sublattice. The same happens on the left corner with the B-species and on
the right one with the C-species. This fact will be used further in the text to fathom whether a zero
energy mode is truly a corner mode or not in terms of localization. In this sense, if the mode has
non-zero weight in a different sublattice, it will not be considered a proper corner mode, even if the
localization decays exponentially towards the bulk-like part of the flake.

Figure 3.3(b) is a zoom-in over the energy scale to reveal that the corner modes are truly pinned
to zero energy, with no bending in the spectrum. For 𝛿 = −1, the fully disconnected case is recovered
(strict dimerization), and the corner modes remain at zero energy, also for a wide range of values
of the dimerization parameter, and, eventually, they hybridize with the bulk modes. Hence the
breathing kagome has two distinct phases, one featuring zero-energy corner-localized modes and
edge modes (non-trivial with 𝛿 < 0) and one where such modes are absent (trivial with 𝛿 > 0),
separated by a gapless one (canonical with 𝛿 = 0).

In appendix B we present a possible interpretation of the (breathing) kagome lattice as a set of
stacked SSH chains with varying lengths coupled to each other through an extra lattice site.

3.3 Spatial symmetries of the kagome/breathing kagome lattice

We now discuss the symmetry properties of the model. The canonical kagome lattice (𝛿 = 0)
belongs to the space group 𝑝6𝑚𝑚 (#183 in the ITA [119]). The point group associated to this space
group is 𝐶6𝑣 , characterized by a six-fold rotational symmetry 𝐶6 that closes the gap at the K and K′

points in the first Brillouin zone–see dashed lines in Fig. 3.2(b).

After introducing the breathing distortion, the symmetry is reduced, and hence the space group
of the breathing kagome lattice is a subgroup of 𝑝6𝑚𝑚, i. e., space group 𝑝3𝑚1 (#156 in the
ITA [119]). As mentioned, this space group is a subgroup of 𝑝6𝑚𝑚 and has a three-fold rotation
operation. Now, 𝐶6 is not a symmetry anymore, and the point group is reduced from 𝐶6𝑣 to 𝐶3𝑣: the
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Figure 3.3: The breathing kagome model (finite size flake) (a) Spectrum of a finite-size lattice and
(b) zoom-in for low-energy scale. For 𝛿 < 0, three-fold degenerated energy eigenvalues can be
found pinned at zero. These zero energy modes have been highlighted in light blue. Panels (c), (d),
(e) show the exponential decay of the wave function for 𝛿 = −0.5 in the bulk, edge, and corner,
respectively. The size of the dots is set for convenience proportional to |𝜓 |0.2.

two-dimensional irreducible representation that protected the degeneracies at the K and K′ points,
now splits into two one-dimensional ones (see table 3.1) and thus the gap opens at the K and K′

points–see solid lines in Fig. 3.2(b).

The group/subgroup relation between 𝑝6𝑚𝑚 and 𝑝3𝑚1 also affects the naming of the Wyckoff
positions [25, 26, 27]. For this case, the 2𝑏 Wyckoff position from 𝑝6𝑚𝑚 splits into two non-
equivalent Wyckoff positions of 𝑝3𝑚1, i. e., 1𝑏 and 1𝑐, both with site-symmetry group 𝐶3𝑣. This
distinction will be crucial for studying the character of the bands, which will be discussed in Sec. 3.5
where we apply the concepts introduced in Sec. 2.6 to the lattice. Additionally, the 3𝑐 Wyckoff
position is now called 3𝑑 since its site-symmetry group reduces from 𝐶2𝑣 to 𝐶𝑚. This last case
reflects how a maximal Wyckoff position now becomes a non-maximal one since 𝐶𝑚 ⊂ 𝐶3𝑣, 𝐶2𝑣.
Figure 3.2(a) shows the Wyckoff positions of 𝑝3𝑚𝑚 distributed in space. We have used symbols
with the same symmetry as the point group of the Wyckoff position. In the case of the 3𝑑 Wyckoff
position, we have used a circle for simplicity due to the reduced symmetry of this Wyckoff position.

58



3.4. The generalized chiral symmetry and its consequences

3.4 The generalized chiral symmetry and its consequences

A possible explanation for the pinning of the corner modes to zero energy is based on the concept
of generalized chiral symmetry. It follows the same line of reasoning as the chiral symmetry in the
SSH model [20, 120, 87], as introduced in Sec. 2.7. Here, we repeat how to generalize the chiral
symmetry for a unit cell containing three sites, in line with Ref. [105].

3.4.1 Generalized chiral symmetry

First of all, it should be noted that chiral symmetry, also known as sublattice symmetry, is not a
symmetry operation: instead of commuting with the Hamiltonian, the chiral symmetry operator
anti-commutes with it. Nevertheless, in this chapter, we will refer to this operation as chiral
symmetry for consistency with existing literature. To introduce the generalized chiral symmetry
for the case of the kagome lattice, we use the Bloch Hamiltonian (3.2) and define H1 = Ĥ . The
kagome lattice is not bipartite; it has an odd number of lattice sites in the unit cell, unlike the one-
and two-dimensional SSH models, which show an even number of lattice sites. The generalized
chiral symmetry is defined as some operator Γ3 that satisfies

Γ−1
3 H1Γ3 = H2, (3.3a)

Γ−1
3 H2Γ3 = H3, (3.3b)

H1 + H2 + H3 = 0. (3.3c)

When combining the last equation with the previous two, it follows that Γ−1
3 H3Γ3 = H1. Following

this reasoning, the generalized chiral symmetry introduced in Eqs. (3.3) is completely analogous
to the chiral symmetry of the SSH model [20] (see Sec. 2.7). However, in this case [H1, Γ

3
3] = 0,

which implies Γ3
3 = I3 and the eigenvalues are given by 1, exp[±2𝜋i/3]. Therefore, up to a unitary

transformation, we can write

Γ3 =

©«
1 0 0
0 e2𝜋i/3 0
0 0 e−2𝜋i/3

ª®®®¬ . (3.4)

Furthermore, we now have three eigenvalues to consider (H1,H2, andH3 each have the same set of
eigenvalues 𝜖1, 𝜖2 and 𝜖3, since the Hamiltonians differ by a unitary transformation). By taking the
trace of Eq. (3.3c), we find

Tr[H1 + H2 + H3] = 3Tr[H1] = 0, (3.5)

where we used the first two lines of Eqs. (3.3) and the fact that the trace is cyclic. This means that
the sum of the three eigenvalues vanishes, 𝜖1 + 𝜖2 + 𝜖3 = 0.
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Now, the same reasoning could apply to the eigenstates. However, there is one crucial difference.
If H1 |𝜓⟩ = 𝜖1 |𝜓⟩, with |𝜓⟩ being an eigenstate, the wave functions Γ3 |𝜓⟩ and Γ2

3 |𝜓⟩ are not
necessarily also eigenstates ofH1. In the SSH chain, this relationship is guaranteed by the relation
𝐻1 = −𝐻2. This does not hold for the generalized chiral symmetry, since

H1Γ3 |𝜓⟩ = Γ3H2 |𝜓⟩, (3.6)

and since |𝜓⟩ is not per se an eigenstate of H2, it is not proven that Γ3 |𝜓⟩ is an eigenstate of H1.
Therefore, the generalized chiral symmetry does not work in the same way as the chiral symmetry,
and there is no guarantee that a zero-energy mode will remain pinned to zero.

3.4.2 Perturbating the corner modes

In the last part of this section, we study the influence of perturbations on the electronic structure
of a finite-size triangular flake, similar to what was done in Ref. [121]. Since boundary modes
appear in boundaries that respect the symmetries of the lattice, we use a triangular flake, which
preserves the 𝐶3𝑣 point group of the lattice.

We begin with Fig. 3.4, where all the perturbations that have been added break different sets of
symmetries. In Fig. 3.4(a) we add random onsite energies to all lattice sites of the flake, all of them
ranging between 0 and 0.2𝑡0. After finding similar results for several different disorder realizations,
we only show a single possible realization of random onsite energies. This perturbation breaks all
possible spatial symmetries while preserving the connectivity of the kagome lattice. This means
that the generalized chiral symmetry is preserved in terms of connectivity, but spatial symmetries
are no longer mapping the lattice to itself. We observe that the corner modes are neither pinned
to zero energy nor degenerate; each one departs from zero at a different energy. If we look at the
localization of the eigenstate around the corner, we see that the wave function has non-zero weight
in the three sublattices and that each circle has a different diameter as a consequence of the breaking
of the symmetries. This may not be distinguished easily in the plot, but was confirmed numerically.
As mentioned previously, we don’t consider this mode to be truly localized at the corner.

Figures 3.4(b) to 3.4(f) show other types of perturbations: we introduce new hopping terms that
change the connectivity of the lattice while preserving both 𝐶3𝑣 and/or generalized chiral symmetry.
The intensity of those hopping terms has been selected to the same value of the maximum random
onsite energy (0.2𝑡0) used in Fig. 3.4(a).

In Fig. 3.4(b), we show a perturbation that couples sites of the same sublattices up to the nearest
neighboring cells (not neighboring lattice sites), thus breaking generalized chiral symmetry. As
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Figure 3.4: Set of perturbations that have been studied to detect the protection mechanisms of the
corner modes. Each panel displays the close-up of the spectrum plus the localization in real space
of the wave function, thus, a visualization of the local density of states. (a) random disorder in all
lattice sites, (b) perturbation breaking generalized chiral symmetry, thus connecting lattice sites
of the same species, (c) perturbation connecting second-order nearest neighbors, (d) perturbation
connecting third-order nearest neighbors, (e) long-range local perturbation with different sign, (f)
long-range local perturbation with same sign, (g) influence of the size on the average energy, in
absolute value, of the corner modes on each of the perturbations.
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Figure 3.5: Set of perturbations that have been studied to detect the protection mechanisms of the
corner modes. Each panel displays the close-up of the spectrum plus the localization in real space
of the wave function, thus, a visualization of the local density of states. From (a) to (f) the order of
the neighboring unit cell increases from 0 to 5. Panel (g) displays the influence of the size on the
average energy, in absolute value, of the corner modes on each of the perturbations. The scale is
logarithmic since the dependence is exponential.
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soon as we depart from the fully dimerized case (𝛿 = −1), the corner modes are no longer pinned at
zero energy, but they are still degenerate since the flake remains 𝐶3𝑣 symmetric. Again, the wave
function has nonzero weight in all three sublattices, but this time the size of the circles is related by
a mirror symmetry that crosses the flake vertically.

Figures 3.4(c) to 3.4(e) show different choices of long-range hopping terms in increasing order of
neighbor coupling, which preserves both generalized chiral symmetry and𝐶3𝑣 symmetries. However,
the wave function shows nonzero weight in the three sublattices due to the different connectivity of
the lattice.

The cases in Figs. 3.4(e) and 3.4(f) correspond to the perturbations introduced in Ref. [121],
which are used as immunity checks for the robustness of the corner modes. These are long-range
hopping amplitudes 𝑠1 and 𝑠2 applied locally at the corners. We have studied two different
configurations: in Fig. 3.4(f) the spectrum is generated using 𝑠1 = −𝑠2, with |𝑠1 | = |𝑠2 | = 0.2𝑡0,
while the spectrum in Fig. 3.4(e) is generated using the same sign for the perturbations. The
perturbation shown in Fig. 3.4(f) leads to degenerate modes, which are, however, no longer pinned
to zero energy (not even in the fully dimerized case). When using the same sign for the perturbation,
the modes are degenerate and located at zero energy in the fully dimerized case, but move away as
𝛿 increases. In both cases, the wave function is delocalized over all three sublattices. These last
perturbations respect the generalized chiral symmetry and the 𝐶3𝑣 symmetry of the flake but are
applied only locally to the corners.

Finally, we present in Fig. 3.4(g) the evolution of the energy of the corner modes of the different
perturbations with increasing size of the flake. We plot the average of the three closest-to-zero
eigenvalues versus the number of unit cells along the edge of the flake. None of them show an
exponential behavior with the size. Some of the perturbations pin the corner modes to values
different from zero, but no dependence on size is detected. The light blue curve in Fig. 3.4(g) shows
the evolution of the energies of the flake with random onsite energies. To perform this calculation,
we generated 20 configurations for each size, and then, we took the average of the energies of the
corner modes. We see a 1/𝑁 evolution of the eigenvalues, where 𝑁 is the total number of unit
cells. This precise evolution suggests that for small sizes, the corner modes are not pinned to zero
due to poor localization. In the thermodynamic limit, where 𝑁 →∞, the long tails of the modes
will eventually remain isolated, even if the intercell hopping is not zero, and thus the corner modes
approach the onsite energies of the corner, as if they were properly isolated.

We present now in Fig. 3.5 a total different type of perturbation that respects spatial symmetries,
connectivity, and generalized chiral symmetry. This perturbation is presented in six different orders
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of neighboring unit cells. The first case is the pristine breathing kagome lattice. The rest of the
cases are a generalization of this connectivity, closing an ABC loop. It is remarkable how the three
closer-to-zero eigenvalues remain pinned to zero for the whole range of values of 𝛿 considered and
show an exponential localization in just the sublattice conforming to the corner. Also, the averaged
value of them decays to zero exponentially with size–shown in Fig. 3.5(g)–, which proves that the
hoppings considered pin the modes to zero energy.

In addition to these results, we refer to the supplementary material of Ref. [45] for a similar
study of the perturbation of the corner modes. In the field of photonic crystals, we refer to Ref. [118]
for a similar analysis of the robustness of corner modes in a photonic breathing honeycomb lattice.
In addition, in the field of plasmonics, we refer to Ref. [122] for a realization of the breathing
kagome lattice in such framework, as well as for a study of the robustness of corner modes. We
refer to Ref. [123] and the supplementary material of Ref. [124] for a complementary study of the
robustness of the corner modes in waveguide arrays. Finally, other geometries may also host robust
corner modes, as is the case of Ref. [125, 126, 127, 128]. In these geometries, chiral symmetry, in
addition to spatial symmetries, yields further protection of the corner modes.

3.5 The muffin-tin method applied to the breathing kagome
lattice

In this final section, we will analyze the breathing kagome lattice (Ref. [45]) within the framework
of the nearly-free two-dimensional electron gas confined to a muffin-tin potential. As presented in
Sec. 2.3, the muffin-tin technique describes a specific class of experiments, where a two-dimensional
electron gas hosted on the surface of a noble metal is patterned by molecules or atoms arranged in a
precise and periodic fashion [33, 45, 129, 34]. Specifically, in the experimental setup of Ref. [45],
the two-dimensional electron gas is the surface state hosted by the (111) surface of Cu, and it was
decorated with a set of CO molecules adsorbed at certain positions, using the tip of a scanning
tunneling microscope [129]. The muffin-tin method does not involve atomic orbitals or species, nor
chemical bonds between them. The lattice sites are built with artificial interacting quantum dots
(also known as artificial atoms [58]) connected by hopping amplitudes, which are always long-range
and modeled by potential wells or barriers. It is possible to work with 𝑠-like or 𝑝-like orbitals, which
allow us to study more complex interactions [129, 52]. Practically, this is achieved by changing the
size of the potential wells, which brings the energy levels up or down. This property suggests that
the muffin-tin method always considers all the possible hopping terms between all the lattice sites,
namely those respecting generalized chiral symmetry and those that do not. Therefore, only the
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3.5. The muffin-tin method applied to the breathing kagome lattice

spatial symmetry properties of the potential will affect the behavior of the two-dimensional electron
gas.

3.5.1 Muffin-tin potentials for canonical and breathing kagome lattices: a
guide

To study the breathing kagome lattice, we have considered three different configurations of CO
molecules, accounting for the canonical gapless phase and the two breathing ones. Each molecule is
modeled by a cylinder of radius 𝑎 = 0.3 nm and height 𝑉0 = 0.9 eV [45] placed at position r𝑛:

𝑉𝑛 (r) =

𝑉0 > 0 if |r − r𝑛 | < 𝑎,

0 otherwise.

The full landscape is the superposition of the potential of each molecule. The design of the potential
well is done by placing CO molecules forming the negative image of the lattice (a muffin-tin). Once
the potential well defining the unit cell is built, the full lattice is constructed by translating it along
the direct lattice vectors a1,2 = a0/2(±1,

√
3), where a0/2 = 6

√
3 aCu

0 and aCu
0 = 0.265 nm is the

interatomic distance of the substrate.

Let’s now define the steps followed to realize the kagome lattice within the muffin-tin technique,
both for the canonical and the breathing phases, using CO molecules on top of the Cu (111) surface.

3.5.2 Canonical phase

We begin by studying the geometry of the kagome lattice in terms of Wyckoff positions. In the
canonical form, the kagome lattice is a triangular lattice belonging to the 𝑝6𝑚𝑚 plane space group.
Such space group has the following maximal Wyckoff positions: 1𝑎, 2𝑏, 3𝑐. In the case of the
kagome lattice, the lattice sites are the 3𝑐 Wyckoff position, so artificial atoms must be constructed
around these positions, leaving the remaining ones unoccupied. To realize the muffin-tin potential,
we place CO molecules to block the wave function from localizing in the unoccupied Wyckoff
positions. Thus, we have placed six CO molecules forming a hexagon around the 1𝑎 Wyckoff
position and a single molecule on the 2𝑏 Wyckoff position, thus leaving the 3𝑐 Wyckoff position
free. In this way, the two-dimensional electron gas will be confined to the lattice formed by the
3𝑐 Wyckoff positions, reproducing the canonical kagome lattice. We have built three interacting
artificial atoms located at the 3𝑐 maximal Wyckoff positions. The connection between these artificial
atoms is the same within the unit cell and between them, reflecting the fact that in the tight-binding
model the intra- and intercell hopping must be the same to build the canonical/pristine kagome
lattice. The left panel of Fig. 3.6 represents this process step by step, in panels from (a) to (f). To be
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consistent with the text, we have represented Wyckoff positions with elements with the same point
group symmetry as the site-symmetry group of each maximal Wyckoff position.

3.5.3 Breathing phase

When we introduce the breathing distortion in the kagome lattice, we break the 𝐶6 symmetry,
so the space group is reduced from 𝑝6𝑚𝑚 to 𝑝3𝑚1, one of its subgroups. This group/subgroup
relation splits the 2𝑏 Wyckoff position into two Wyckoff positions, namely 1𝑏 and 1𝑐, which are
now non-equivalent. Additionally, the symmetry of the 3𝑐 Wyckoff position, now called 3𝑑, reduces
from 𝐶2𝑣 to 𝐶𝑚. The 1𝑏 Wyckoff position is surrounded by three 3𝑑 Wyckoff positions, so if we
place a single molecule in the 1𝑏, and three molecules in the 1𝑐, we make the effective intercell
hopping amplitude smaller than the intracell one, since the wider potential well formed inside the
unit cell displays more energy levels. The intercell hopping is modeled by a potential well that is
very narrow, thus displaying less energy levels and making the hopping amplitude smaller. This
situation corresponds to the trivial phase of the breathing kagome lattice, which does not show
corner modes.

The non-trivial case can be achieved by inverting the feature at the 1𝑏 and 1𝑐 Wyckoff positions.
Now the 3𝑑 Wyckoff positions have a smaller effective intracell hopping amplitude compared to the
intercell one, so the corners would host zero energy modes since they are weakly connected to the
rest of the lattice. Again, we have confined the two-dimensional electron gas to a lattice formed by
the 3𝑑 Wyckoff positions, thus reproducing the breathing kagome lattice.

The right panel of Fig. 3.6 represents this process step by step, in panels from (a) to (i). To be
consistent with the text, we have represented Wyckoff positions with elements with the same point
group symmetry as the site-symmetry group of the Wyckoff position. We have used circles in the 3d
case. Panels (d), (f), and (h) correspond to the trivial phase while (e), (g), and (i) correspond to the
non-trivial phase. Panels (a), (b), and (c) are common to the two situations.

Once the potentials are built, we show in Figs. 3.7(a), 3.7(c) and 3.7(e) the choice of unit cells
that we have used to build the corresponding potential that reproduces the canonical kagome lattice,
and the two breathing phases, respectively. Many other choices can be realized, either by changing
the molecule set-up or choosing different lattice vectors or different origins. We use configurations
symmetric with respect to the mirror plane 𝑚1̄1 centered either at the 1𝑏 or at the lower 2𝑏 Wyckoff
positions, depending on whether we work with 𝑝3𝑚1 or 𝑝6𝑚𝑚, respectively. Such geometric locus
represents the center of mass of the three lattice sites inside the choice of unit cell, as well as the
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R
b

b

L

Figure 3.6: Steps for realizing the muffin-tin potential for the kagome lattice in the canonical and
breathing phases using CO molecules. On the left we show the process for building the potential
well for the canonical kagome lattice: (a) define the 1𝑎 Wyckoff position in the substrate. (b)
Accommodate 6 molecules around it to block such Wyckoff position. (c) Locate the 2𝑏 Wyckoff
position and (d) block it with a single CO molecule. (e) The remaining Wyckoff positions are
the 3𝑐 ones. Finally, (f) displays the rhomboidal choice of unit cell and the effective hopping in
red. On the right we start again by (a) locating the 1𝑎 Wyckoff position and accommodating six
molecules around it. Next, we identify where the 1𝑏, 1𝑐 Wyckoff positions are (c). Depending on
the trivial/non-trivial breathing phase we want to explore, we place one or three molecules in the
1𝑏 and three or one in the 1𝑐, reflected in panels (d) and (e), respectively. The remaining Wyckoff
positions are 3d, as it is shown in panels (f) and (g). Finally, panels (h) and (i) show the unit cell and
the strong/weak effective hoppings built in the lattice.
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center of “positive" charge 1, since it represents the center of mass and charge of the atomic nuclei
in an actual kagome lattice.

We solve the Schrödinger equation by expanding the potential in Fourier components in reciprocal
space [15] (see Sec. 2.3). By obtaining the coefficients of such expansion, we can reconstruct the
band structure and the Bloch wave functions for the three different configurations. In Figs. 3.7(g),
3.7(h), and 3.7(i), we show the band structures along the high-symmetry path. In the bulk,
the two set-ups of molecules are related by a 𝑚11 mirror passing through the upper lattice site
(geometric transformation). This explains why the eigenvalues of the two phases are the same. We
nevertheless expect the eigenstates to behave differently, so we will distinguish these two phases
via topological and symmetry markers, such as Wilson loops, bulk polarization, and Topological
Quantum Chemistry.

3.5.4 Topology and symmetries of the muffin-tin potentials

Let’s study now the Wilson loop operator and its spectrum applied to the breathing kagome
lattice. As we introduced in the previous chapter, this method is widely used in the literature to
distinguish topological phases [17, 88, 76]. The spectrum of the Wilson operator allows to determine
the topological character of a band structure, depending on its behavior.

We recall the expressions for the Wilson loop operator for both single and degenerated bands since
we are interested in describing the Wilson spectrum of both the canonical (with three degenerated
bands) and the breathing phases (with single+degenerated bands):

𝑊
𝑚,𝑛

(𝑘1+2𝜋,𝑘2)←(𝑘1,𝑘2) = P exp
{
−i

∫
ℓ

A𝑚,𝑛 · dℓ
}
, (3.7)

where 𝑚, 𝑛 are the band indices, the symbol P represents path ordering operation and ℓ is the path
between points (𝑘1, 𝑘2) and (𝑘1 + 2𝜋, 𝑘2). For the single band case, we just take 𝑚 = 𝑛. We work
with the discrete version of Eq. (3.7) by discretizing the reciprocal space along the two reciprocal
space directions [88]. See Sec. 2.8 for a detailed formulation of discrete expressions of topological
invariants.

Since the Wilson loop along b1 is a function of 𝑘2, we can evaluate the Wilson loop for all the
steps in the discretization along 𝑘2. This is called Wilson spectrum, and it is related to the shifting
of the Wannier center along the a2 direction. Due to 𝑚1̄1 symmetry, the Wilson spectrum along b1

is the same as along b2, and so will be the Wannier center [17]. The position of the Wannier center
1This will be useful when we talk about bulk polarization in terms of relative displacement of the charge centers.
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(h) (i)

(2)1 (2)1

(j)

(2)

(k)

(2)1 1

(g)

(2)1

(l)

(m) (n)

→→Trivial (no corner modes) p3m1 (Breathing) Non-trivial (corner modes)p6mm (Canonical)→Trivial (no corner modes)

2b 3c1a

Computed Wannier Center
Orbit of Wannier CenterCO

Substrate Strong/Weak hoppingLattice site
Unit at the corner

(b) (d)(a) (e)(c)

1b 1c 3d1a

Figure 3.7: Summary of the results obtained for the muffin-tin calculation of the canonical/breathing
kagome lattice. The overall legend affects the three cases, while each column has its legend for the
Wyckoff positions, which are called differently due to the group/subgroup relation. Potential wells
defining the unit cells for the non-breathing (a) and breathing phases (c,e). The Wyckoff positions
have been represented with an element with the same symmetries as in the point group associated
with each Wyckoff position: hexagon, 𝐶6𝑣, triangle, 𝐶3𝑣, and ellipse, 𝐶2𝑣. In the case of the 3𝑑
Wyckoff position, we have used a circle for simplicity due to the reduced symmetry of this Wyckoff
position (the point group associated is 𝐶𝑚, which includes just mirror and identity). Upper corner of
a finite size sample of kagome lattice; non-breathing (b) and breathing phases (d,f). Panels (g) to
(i) show the corresponding band structures plus the irreducible representation assignment at each
high-symmetry point. Finally, panels (j) to (n) show the Wilson spectra obtained for the first three
bands of each configuration.
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is equivalent to the value of the bulk polarization since the Wannier center represents the center of
the negative electronic cloud. For 𝐶𝑛-symmetric insulators, the bulk polarization is a Z𝑛-quantized
topological invariant [73, 91, 92, 93], where 𝑛 is the order of the rotation that characterizes the space
group. In our case, we expect to find a Z3 index for the breathing phases due to the 𝐶3𝑣 symmetry of
the lattice. In the case of the canonical kagome lattice, the bulk polarization is always zero.

To compute the position of the Wannier center or, equivalently, the bulk polarization, we connect
the bulk polarization to the value of the averaged Wilson loop spectrum, as in Sec. 2.8:

𝑝 =
1

2𝜋𝑁𝑘

𝑁𝑘∑︁
𝑗=1

𝑁occ∑︁
𝑚=1

a𝑚1,2(𝑘
𝑗

2,1), mod 1, (3.8)

that is, the average of the (non-Abelian) Wilson spectrum along the reciprocal lattice vectors [94].

We have characterized the first three bands of the canonical and breathing kagome lattice in
the electronic quantum simulator, using the Abelian/non-Abelian Wilson loop, since the rest of the
bands are very high in energy. We obtained different values for 𝑝 for the three different phases.
Figures 3.7(j to 3.7(n) show the Wilson spectra obtained for the three different phases. In the case
of the canonical kagome lattice, we obtain a value of 𝑝 = 1/6, which places the Wannier center at
position r̄𝑛 = (a1 + a2)/6. Given the basis of lattice vectors, we can state that the Wannier center is
located at the 3𝑐 Wyckoff position, precisely where the lattice sites are placed. Since inside the unit
cell there are three equivalent 3𝑐 Wyckoff positions, there are three Wannier centers located at the
orbit1 of the 3𝑐 Wyckoff position. Since the average position of the Wannier center lies at the origin
of the unit cell, there is no displacement in the charge, and the polarization is thus zero (even if the
computed value is above zero).

For the breathing sets of molecules, we obtained 𝑝 = 0 for the trivial phase and 𝑝 = 1/3 for the
non-trivial phase. These two values allow us to locate the Wannier center at the 1𝑏 Wyckoff position
for the trivial phase and at the 1𝑐 Wyckoff position for the non-trivial phase. This result is expected
because in the trivial phase, the intra-cell hopping is stronger than the inter-cell, and thus the surface
state concentrates more around the 1𝑏 Wyckoff position. This results in a Wannier center placed at
the origin, thus coinciding with the center of positive charge (at the 1𝑏 Wyckoff position). Similarly,
in the non-trivial phase, the surface state concentrates more around the 1𝑐 Wyckoff position, yielding
a negative charge center out of the center of positive charge at the 1𝑏 Wyckoff position. In the case
of the composite group, we obtain exactly the same Wannier center as the isolated band, for each of
the breathing phases. The filled star in Fig. 3.7(a), 3.7(c), and 3.7(e) represents the Wannier centers

1See Sec. 2.6 for a definition of the orbit of a Wyckoff position.
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of the first three bands obtained via the Wilson spectrum. In Fig. 3.7(a), the empty stars are the
Wannier centers generated by the orbit of the 3𝑐 Wyckoff position.

The results that we have obtained are general since we have performed the Wilson spectrum
calculation using wave functions coming from the plane wave expansion of a potential, not from a
tight-binding Hamiltonian. In this way, our Wilson spectra account for all possible hopping terms
between lattice sites, and their behavior depends only on the symmetry properties of the lattice.

3.5.5 Topological Quantum Chemistry interpretation
Real space

𝑝6𝑚𝑚 (#183) 𝑝3𝑚1 (#156)
MWP (𝑞) 𝐺𝑞 irreducible representations MWP (𝑞) 𝐺𝑞 irreducible representations

3𝑐 𝐶2𝑣
𝐴1, 𝐴2, 1𝑏, 1𝑐 𝐶3𝑣 𝐴1, 𝐴2, 𝐸
𝐵1, 𝐵2

Reciprocal space
𝑝6𝑚𝑚 (#183) 𝑝3𝑚1(#156)

𝑘 point 𝐺k irreducible representations 𝑘 point 𝐺k irreducible representations

Γ 𝐶6𝑣

𝐴1, 𝐴2,

Γ 𝐶3𝑣 𝐴1, 𝐴2, 𝐸𝐵1, 𝐵2
𝐸1, 𝐸2

𝐾, 𝐾′ 𝐶3𝑣 𝐴1, 𝐴2, 𝐸 𝐾, 𝐾′ 𝐶3 𝐴,1𝐸,2𝐸

𝑀 𝐶2𝑣
𝐴1, 𝐴2,

𝑀 𝐶𝑠 𝐴′, 𝐴′′
𝐵1, 𝐵2

Table 3.1: Symmetry properties of the maximal Wyckoff positions (MWP) and 𝑘 points involved in
the quantum simulator approach of the canonical/breathing kagome lattice. Symbols 𝐺𝑞 and 𝐺k
correspond to the point groups of the Wyckoff positions and 𝑘 vectors, respectively.

To conclude, we will use a different approach to study the topological features of a system, which
is based on the symmetry eigenvalues of the Bloch wave functions at high-symmetry points in the
reciprocal space. Topological Quantum Chemistry [1] is a powerful theory, that allows to classify
and diagnose topological phases of matter based solely on group theory arguments. We refer the
reader to Sec. 2.6 for a full explanation of the concepts that we will use in this section.

Even if the Wilson loop spectrum already has revealed where the Wannier center lies in each
of the phases of the kagome lattice, let’s take the following approach: by studying the symmetry
properties of the wave functions in reciprocal space, let’s try to determine the Wannier center and see

71



3.5. The muffin-tin method applied to the breathing kagome lattice

if it coincides with the Wilson loop prediction. This is the usual procedure that allows to characterize
a system that is not built out of atomic species or orbitals. We refer the reader to Sec 2.6.3.

Starting from the canonical kagome lattice, the irreducible representation assignment shown in
Fig. 3.7(g) is compatible with the three-dimensional band representation (𝐴1 ↑ 𝐺)3𝑐, induced from
the 3𝑐Wyckoff position. This band representation is three-dimensional and thus 3 bands are touching
in total. Topological Quantum Chemistry reveals that the canonical kagome lattice corresponds to a
truly trivial atomic limit because the Wannier center lies at an occupied maximal Wyckoff position
(lattice sites). The band structure shows features that correspond to a 𝐶6𝑣-symmetric lattice, i. e., the
gap closes at K and K′ points. This can be understood from symmetry arguments: the little group
of the K, K′ points in 𝑝6𝑚𝑚 is 𝐶3𝑣, which shows two one-dimensional irreducible representations
(𝐴1, 𝐴2) and a single two-dimensional irreducible representation (𝐸) (see Table 3.1).

After breaking the 𝐶6 symmetry by introducing the breathing distortion, the symmetry of
the space group is reduced to 𝑝3𝑚1. In reciprocal space, the little group of the K, K′ points
reduces from 𝐶3𝑣 to 𝐶3. Since 𝐶3 does not have two-dimensional irreducible representations, the
two-dimensional irreducible representation from 𝐶3𝑣 decomposes into irreducible representations of
the new little group, which translates into a gap opening of the Dirac cones at the K and K′ points.
This decomposition can be studied from compatibility relations in the respective k points after a
symmetry reduction, revealing the pure symmetry origin of this splitting.

On the one hand, figure 3.7(h) corresponds to the band structure of the trivial breathing phase
with zero bulk polarization. The irreducible representation assignment of the lowest band is
compatible with the band representation (𝐴1 ↑ 𝐺)1𝑏, which is one-dimensional. The upper two
bands are compatible with the band representation (𝐸 ↑ 𝐺)1𝑏, which is two-dimensional. Both
representations come from the 1𝑏 Wyckoff position, which is maximal, and coincides with the result
obtained via the Wilson spectrum approach since we have chosen the origin to lie in the 1b Wyckoff
position. Due to the fact that at this maximal Wyckoff position there is a CO molecule, thus it is an
unoccupied maximal Wyckoff position1, and the trivial phase of the breathing kagome lattice is in
an obstructed atomic limit [1].

On the other hand, figure 3.7(i) shows the band structure and irreducible representation assignment
for the non-trivial phase with non-zero bulk polarization and corner states. The band representations
in this case are (𝐴1 ↑ 𝐺)1𝑐 for the lowest band and (𝐸 ↑ 𝐺)1𝑐 for the upper group of bands. As in
the previous case, the Wannier center lies in an unoccupied maximal Wyckoff position, and so, the

1The actual kagome lattice does not show any feature in the 2𝑏/1𝑏/1𝑐 maximal Wyckoff positions, neither in the
canonical nor breathing phases.
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non-trivial phase corresponds to a different obstructed atomic limit, connected by a gap closing to
the one presented in the paragraph above.

If we go back to Sec. 2.7, we conclude that we have found a similar set-up to the SSH model:
the trivial phase shows a Wannier center in the middle of the unit cell (the origin), which would
correspond to a Wilson loop spectrum average equal to zero. In contrast, the non-trivial phase
shows a Wannier center (in this case near) the edge of the unit cell, which corresponds to a Wilson
loop spectrum average of 1/3. In terms of atomic limits, the two phases are obstructed atomic limits
separated by a gap closing, and thus cannot be connected adiabatically. One of them is trivial, in
the sense that it displays zero bulk polarization and no corner modes, whereas the other phase is
non-trivial in the sense that it displays a non-zero bulk polarization and corner modes, exactly the
same as in the SSH. Both phases present a band inversion of the symmetry eigenvalues at the K, K′

points.

3.5.6 Wave functions for trivial/non-trivial set-ups

Once we have solved the Schrödinger equation, we can reconstruct the Bloch wave function and
plot it in real space. We are showing in Fig. 3.8 the modulo squared of the wave functions for the
first two bands at K, K′ points, where the band inversion occurs. The left and right panels show the
band structures and irreducible representation assignments of the trivial and non-trivial phases of
the breathing kagome lattice in the muffin-tin set-up. The middle panel shows the plot of the wave
function inside the unit cell for the first two bands right at the point where the band inversion occurs.
We can see that the wave functions transforming as the 2𝐸 irreducible representation looks like a
triangle pointing up, while the wave functions transforming as the 1𝐸 irreducible representation
resembles a triangle pointing down plus a translation of (a1 + a2)/3.

Figure 3.8: Wave functions for the first and second bands of the trivial (left) and non-trivial (right)
configurations of the muffin-tin set-up.
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3.6 Discussion and Conclusion

In this chapter, we have studied the different phases of the breathing kagome lattice. We start by
tuning a dimerization parameter that we have introduced between the intra- and inter-cell hopping
terms in a tight-binding Hamiltonian. When this parameter is set to zero, we recover the traditional
kagome lattice, which has a gapless spectrum. When the dimerization parameter changes sign, a
band inversion occurs at the K and K′ points and the two breathing phases are distinct while showing
the same spectral properties.

A finite-size flake of the non-trivial phase has bulk, edge, and corner localized modes. These
edge modes appear in the bulk gap. However, to realize a true higher-order topological insulator,
the bulk gap should host only corner modes. Hence, the breathing kagome lattice does not encode
higher-order topology. To study the origin, symmetries, and properties protecting such corner modes,
we have introduced several perturbations to the non-trivial phase of a finite-size triangular-shaped
flake using a tight-binding formalism. We have chosen this geometry to ensure that the sample
respects the 𝐶3𝑣 symmetry group of the lattice. We have shown that the corner modes are trivial
and that three ingredients are needed to pin the modes to zero energy and to localize a corner state
at one sublattice. First of all, the symmetries imposed by the space group should be respected.
Breaking spatial symmetries would lead to, for example, non-degenerate corner modes, as we saw by
introducing random onsite energies in the flake while respecting the kagome pattern–see Fig. 3.4(a).
Second, we cannot connect sites belonging to the same sublattice, i. e., this is the same as preserving
generalized chiral symmetry, which strongly affects how the modes move away from zero, as we
saw in Fig. 3.4(b). Finally, the connectivity between lattice sites of different species must be done in
a consecutive way, constructing a closed triangle of vertices ABC (see Fig. 3.5). Importantly, if and
only if these conditions are fulfilled, the corner modes are truly localized in the corner sublattice,
tightly pinned to zero. We have also confirmed that these rules can be extended up to the second,
third, etc., nearest neighbors while increasing accordingly the size of the flakes. Otherwise, the
corner modes would move away from zero due to overlap.

Finally, we have performed a study of the kagome lattice based on a muffin-tin calculation. In
this picture, with no concept of individual hopping terms, all possible overlaps between all the
lattice sites are included in the calculation. By solving the Schrödinger equation, we obtained the
Bloch wave functions, which inherit all the symmetry properties from the periodic potential. After
applying a Wilson spectrum characterization and symmetry markers, we have been able to identify
the band representation to which each phase corresponds (canonical, trivial, and non-trivial). We
found that the two breathing phases correspond to two different obstructed atomic limits, connected
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through a gap closing. Hence, these two phases are not adiabatically connected. This gap closing
reveals a band inversion between the two phases. It also accounts for the recovery of a six-fold
rotation, characteristic of the canonical kagome lattice. This setup corresponds to a trivial atomic
limit in which, up to a point group operation, the Wannier centers lie exactly at the lattice sites.

These results may shed light on the protection of the corner modes of two-dimensional lattices, as
well as on understanding what a higher-order topological insulator is and what is not. Within a more
general framework than a tight-binding Hamiltonian, we have demonstrated the trivial/non-trivial
distinction between the two phases of the breathing kagome lattice, as well as the source of the
existence and protection of the corner modes. Since the muffin-tin technique accounts for all the
possible hopping terms between all lattice sites, we believe that both the existence and protection of
corner modes are a consequence of the symmetry properties of the non-trivial phase hosting the
corner modes. In addition, the Wilson spectrum characterization of all the phases of the kagome
lattice is determined exclusively by the symmetries of the lattice. However, the appearance of edge
modes in the bulk gap of the finite-size system suggests that this protection does not have any
topological character while being robust to some extent. We conclude that the corner modes of the
breathing kagome lattice have some robustness but are not topological.

Robust protection of corner modes may have potential applications for lasing techniques [123,
124, 130]. These references are based on a kagome pattern, so we believe that the corner modes that
they propose do not possess any topological protection while being robust by the symmetry of the
lattice.
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CHAPTER 4

Tunable Dirac points in a two-dimensional
non-symmorphic wallpaper group lattice

This chapter is devoted to a deep and descriptive study of the electronic properties of the
herringbone lattice in different geometries. The study is based on different distortions that are
applied to the lattice, in terms of symmetry-breaking onsite energies and breathing hopping
amplitudes, which will allow us to comprehend how the non-symmorphic symmetries affect the
spectral properties of the lattice. From the results presented in this chapter, only the bulk results are
published under reference [131]. The Chapter is organized in the following way: Section 4.1 is a
short introduction to the herringbone lattice, and a state of the art about the two-dimensional lattices
displaying non-symmorphic symmetries, which characterize the present lattice. In Section 4.2 we
present the herringbone lattice and the tight-binding Hamiltonian we will use to describe the bulk
of the lattice. As well, we present the ribbon and flake geometries of the lattice and compare the
different spectra concerning the different geometries. We will use the projected spectral function
introduced in Section 2.9 to study the localization of the states in the ribbon configurations. In
Section 4.3 we present a study on the symmetries of the herringbone lattice and how to write the
symmetry operators we are interested in: the glide symmetries. Along this line, we present in
Section 4.4 different strategies for breaking the glide symmetries based on the addition of mass-terms
to the Hamiltonian (onsite energies). Once the individual effects of the different onsite energies
are presented, we combine them in Section 4.5. Additionally, we show in section 4.6 another
possible procedure for breaking the symmetries based on a dimerization technique. We sum up
all the different effects in section 4.7. Finally, section 4.8 presents a possible realization of this
two-dimensional lattice in the CO/Cu(111) electronic quantum simulator platform.
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4.1. Introduction

4.1 Introduction

Since the isolation of single-layer graphene, there has been a growing interest in analyzing
two-dimensional lattices with low-energy physics described by a Dirac-like Hamiltonian [132, 133],
but also beyond graphene [134, 135]. The quest for systems hosting Dirac-like features is not only
within condensed matter but extended to cold-atoms [136] and electronic quantum simulators [32,
137]. Most of these systems have a crystal structure that belongs to a symmorphic space group [18].
However, there has been an increasing research interest in Dirac-like physics in non-symmorphic
crystalline systems [18, 139, 140, 141, 142, 143, 144, 145, 68, 138]. A peculiar property of Dirac
cones is that they can merge into a so-called semi-Dirac cone [133, 146, 147, 148, 149]. These points
in energy space are distinguished by an energy dispersion that is linear in one direction and parabolic
in the perpendicular. They are particularly interesting for their topological [150] and anisotropic
transport properties [151, 152]. Semi-Dirac physics are also realizable in three-dimensional crystals
such as SrNbO3 [153], where at specific points in reciprocal space, the energy dispersion is linear in
a two-dimensional plane and quadratic along an additional axis, thus showing massless/massive
electron behaviors.

As introduced in Sec. 2.6 non-symmorphic space groups contain at least a fractional lattice
translation combined with either a mirror reflection (glide plane) or a rotation (screw axis). In
reciprocal space, this results in band-foldings with crossings inside the first Brillouin zone boundaries
that are protected against hybridization [154, 68, 155, 156, 157, 158].

We begin this chapter by presenting the tight-binding model used to study the spectral properties
of the herringbone lattice. We will present as well the different distortions and perturbations that we
studied, for bulk, ribbon, and flake geometries.

4.2 The herringbone lattice model

The herringbone lattice is a two-dimensional lattice containing four sites in its unit cell, all
of them with coordination number 3 as shown in Fig. 4.1(a). The primitive lattice vectors are
a1 = (1, 1) 𝑎0 and a2 = (−2, 2) 𝑎0, where 𝑎0 is the interatomic distance. It is noticeable how
|a2 | = 2|a1 |. To keep the notation used in Chapter 2, we label each unit cell by (𝑚, 𝑛) = 𝑚a1 + 𝑛a2.
The herringbone lattice can be regarded as a square lattice with an enlarged unit cell, including four
lattice sites, but each atom is missing a link. We thus name the four sites in the unit cell according
to the link in the opposite direction to the one that is missing. On the one hand, 𝑟𝑚𝑛 and 𝑙𝑚𝑛 miss a
link along the horizontal direction, 𝑟 on its left, but it’s connected to its right and 𝑙 on its left. On
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4.2. The herringbone lattice model

the other hand, 𝑢𝑚𝑛 and 𝑑𝑚𝑛 present a missing link along the vertical direction, with a missing link
downwards and upwards, respectively.

(a)

(b)

4

3

2

(c)

Figure 4.1: (a) Unit cell of the herringbone lattice with the naming of the lattice sites (𝑟, 𝑑, 𝑢, 𝑙),
direct lattice vectors a1 and a2, and the two sets of glides: the dashed blue lines correspond to G1𝛼
while the red ones to G2𝛼. The red and blue diamonds represent the 2𝑎 and 2𝑏 maximal Wyckoff
positions, respectively. The central red 2a Wyckoff position represents the center of inversion.
Additionally, the Su-Schieffer-Heeger-like chains have been highlighted by two different densities of
the dashing. (b) First Brillouin zone, reciprocal lattice vectors b1 and b2, high-symmetry points and
high-symmetry path, plus the position of the Dirac cones appearing in the irreducible Brillouin zone.
(c) Spectrum of the herringbone lattice across the high-symmetry path shown in green in panel (b).

4.2.1 Bulk Hamiltonian

We now write the tight-binding Hamiltonian in the nearest-neighbor approximation. For
simplicity, we assume that there is a single 𝑠-like orbital at each lattice site. As introduced in
Section 2.2, we use fermionic operators, but the naming of the operators corresponds to the labeling of
the lattice sites to simplify the notation: in unit cell 𝑚, 𝑛, we find the operators 𝑟𝑚,𝑛, 𝑑𝑚,𝑛, 𝑢𝑚,𝑛, 𝑙𝑚,𝑛.
The tight-binding Hamiltonian, including onsite energies and hopping amplitudes, then reads:

Ĥ =
∑︁
⟨𝑚𝑛⟩

(
Y𝑟𝑟
†
𝑚𝑚𝑟𝑚𝑚 + Y𝑑𝑑†𝑚𝑚𝑑𝑚𝑚 + Y𝑢𝑢†𝑚𝑚𝑢𝑚𝑚 + Y𝑙 𝑙†𝑚𝑚𝑙𝑚𝑚

)
+

+ 𝑡0(𝑟†𝑚,𝑛𝑢𝑚,𝑛 + 𝑑†𝑚,𝑛𝑙𝑚,𝑛 + 𝑢†𝑚,𝑛𝑑𝑚+1,𝑛 + 𝑑†𝑚,𝑛𝑙𝑚−1,𝑛 + 𝑟†𝑚,𝑛𝑙𝑚,𝑛+1) + h.c., (4.1)

where Y𝛼 represents the onsite energy of species 𝛼, 𝛼′ = 𝑟, 𝑑, 𝑢, 𝑙. We assume that the hopping
amplitude between nearest-neighboring sites is the same for all orientations and species, and it is
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4.2. The herringbone lattice model

fixed to 𝑡0. The symbol ⟨𝑚𝑛⟩ indicates nearest-neighbor unit cells. The first line represents the
onsite energies, which will be used to break the symmetries of the herringbone lattice selectively.
The second line represents the hopping terms, which can be classified into intra-cell, where we only
find horizontal terms, and inter-cell hoppings, where we find horizontal and vertical terms.

At first, we neglect the onsite energies and introduce 𝑘𝑖 = k · a𝑖. Now, we Fourier transform the
Hamiltonian using the basis Ψk = (𝑟k, 𝑑k, 𝑢k, 𝑙k)T. We can write Ĥ =

∑
k Ψ̂
†
k(ℎ) (k)Ψ̂k, where

ℎ(k) =
(

0 𝑞(k)
𝑞(k)† 0

)
= 𝜏+ ⊗ 𝑞(k) + 𝜏− ⊗ 𝑞†(k), (4.2a)

𝑞(k) = 𝑡0

(
1 + e−i𝑘1 ei𝑘2

e−i𝑘1 1 + e−i𝑘1

)
= 𝜎0(1 + ei𝑘1) + 𝜎+ei𝑘2 + 𝜎−e−i𝑘1 . (4.2b)

On the one hand, in Eq. (4.2a), the matrices 𝜏± are symmetric/anti-symmetric linear combinations
of the 𝑥, 𝑦 Pauli matrices. These matrices differentiate between 𝑟 ↔ 𝑢 and 𝑑 ↔ 𝑙 sites. On the
other hand, in Eq. (4.2b), the matrices 𝜎± are also symmetric/anti-symmetric linear combinations of
the 𝑥, 𝑦 Pauli matrices, but this time, these matrices differentiate between sites 𝑟 ↔ 𝑑 and 𝑢 ↔ 𝑙. In
analogy with Sec. 2.7, the Hamiltonian has been written with a choice of basis that makes explicit the
chirality of the model, this time, with 4 lattice sites per unit cell. The chiral operator is C = 𝜏𝑧 ⊗ 𝜎0.
This operator hints at an interpretation of the herringbone lattice as two coupled SSH chains, each
with its chiral symmetry [159, 160], as in the kagome lattice model1. The SSH chains are formed by
pairs of sets 𝑠1 = {𝑟, 𝑢} and 𝑠2 = {𝑑, 𝑙}, respectively. In terms of Pauli matrices, the 𝜏𝑖 matrices
represent intra-chain degrees of freedom while 𝜎𝑖 matrices act on the {𝑠1, 𝑠2}, and so represent
the inter-chain degrees of freedom. Finally, the chains are thus connected along the horizontal
direction via 𝑢, 𝑑 atoms and along the vertical direction via 𝑟, 𝑙 atoms. The chains are presented in
Fig. 4.1(a) as the black dotted line (𝑠1 chain) and the black dashed line (𝑠2 chain). We will address
this discussion further in the text when breaking the various symmetries.

The energy spectrum associated to Eq. (4.2a) reads:

E𝛼,𝛽 (k) = 𝛼𝑡0

√︄
3+2 cos 𝑘1+4𝛽 cos

(
𝑘1

2

)
cos

(
𝑘2

2

)
(4.3)

with 𝛼, 𝛽 = ±. It presents a total of four energy-symmetric bands, with several features that can
be seen in Fig. 4.1(c). To begin with, it displays Dirac cones between bands 2 and 3 located at
K± = ±b1/32. These cones are characterized by a ±𝜋 Berry phase. Additionally, we observe flat

1We refer the reader to Appendix B for the interpretation of the kagome lattice as coupled SSH chains. This
interpretation also applies to the bulk of the system, but the method in the Appendix B is applied in a finite-size flake.

2These points are marked inside the first Brillouin zone in Fig. 4.1(b), and fall in the high-symmetry path [68]

80



4.2. The herringbone lattice model
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Figure 4.2: (a) Sketch of the a1 ribbon in real space. The dots represent the translational invariance
of the system along the a1 direction. The edges of the ribbon are formed by different species of
lattice sites, which have been made explicit. (b) Band structure of the a1 ribbon geometry. (c)
Edge-projected spectral function applied to the spectrum of the a1 ribbon geometry. Panels (d) and
(e) represent the localization of the states at zero energy and at 𝑘 = 𝜋. (f) Sketch of the a2 ribbon in
real space. The dots represent the translational invariance of the system along the a2 direction. The
edges of the ribbon are formed by different species of lattice sites, which have been made explicit.
(b) Band structure of the a2 ribbon geometry. (c) Edge-projected spectral function applied to the
spectrum of the a2 ribbon geometry. Panels (d) and (e) represent the localization of the states at
zero energy and at 𝑘 = 𝜋. (k) Sketch of the flake cut from the bulk displaying a corner-like state
located at zero energy. (l) Spectrum of the real space Hamiltonian written for a flake geometry. The
inset shows in orange the eigenvalue of the state represented in panel (k). Finally, the edge-projected
spectral functions have been calculated using a 𝛿 = 0.04 (see Sec. 2.9).

nodal lines along SXS lines and dispersive ones along SYS, both between bands 1&2 and 3&4.
All these features are rooted in the symmetries of the herringbone lattice, which are presented in
Sec. 4.3.
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4.2. The herringbone lattice model

4.2.2 Ribbon and flake geometries

As introduced in Sec. 2.2, a two-dimensional lattice can be cut to realize finite-size systems,
namely ribbons and flakes. For the case of the herringbone lattice, we have chosen the directions
along the primitive lattice vectors to cut the lattice and build two different species of ribbons. We
present now the spectra corresponding to each of them.

On the one hand, the ribbon along a1 is built by assuming that the system is periodic along a1, so
that the ribbon unit cell is composed of a set of 𝑁2 lattice unit cells along the a2 direction. In this way,
we perform Fourier transform to the operators only along the a1 direction. Figure 4.2(d) presents the
spectrum of the ribbon along a1, which is completely identical to the spectrum of a graphene zig-zag
ribbon [161, 162, 163]. The spectral function projected over the edges–Figure 4.2(e)– reveals
that the two states appearing around zero energy are localized over the edges, which is shown in
panel 4.2(f).

On the other hand, the process for building ribbons along the a2 direction is the opposite: we
consider 𝑁1 lattice unit cells along the a1 direction and perform the Fourier transform along the a2

direction. Figure 4.2g presents the spectrum of the ribbon, which is similar to the graphene armchair
ribbon [161]. However, in this case, we have not found a condition for the metallic character of the
ribbon according to its size, so the gap at 𝑘 = 0 closes only in the thermodynamic limit. The spectral
function projected over the edges–Figure 4.2(h)– reveals that the two states appearing around zero
energy are localized over the edges, which is shown in panel 4.2(i).

In order to apply the projected spectral function to the ribbon spectrum, we have defined the
projection operator in the following way: we compute the weight of the wave function in the lattice
unit cells located at the edges of the ribbon unit cell and sum their contributions. This choice is
based on the fact that due to inversion symmetry, the bulk states of the ribbon are evenly distributed
across the ribbon unit cell. On the contrary, the edge states present non-zero weight in only one
of the edges, as it can be seen in panels 4.2(f) and 4.2(i). If, instead, we compute the difference
between the contributions, we would obtain a zero contribution from the bulk bands, so they would
not be distinguishable from the background. In this case, the contribution from the edge states
would not change since one of the edges is always zero. In the following sections, we introduce a
different criterion, which is associated with a different color scale since it will help us distinguish
between states localized on different edges.

Finally, we diagonalize the real-space Hamiltonian written over a square-shaped flake, with
𝑁1 = 2𝑁2 = 20 unit cells along each primitive lattice vector, to achieve a square flake. The spectrum
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4.3. Symmetries of the herringbone lattice

is shown in Figure 4.2(b), where no gap opens. However, we find several states at zero energy. In
panel 4.2(c) we present a sketch of the flake plus the localization of the state #400, which is localized
towards the corners. The spatial distribution of those corners is related by inversion symmetry,
present in the flake.

4.3 Symmetries of the herringbone lattice

The herringbone lattice belongs to the 𝑝𝑔𝑔 wallpaper group [164]. This plane space group
is non-symmorphic, meaning that some symmetry operators do not leave any point of the space
invariant since they include fractional translations along direct lattice vectors (see Section 2.6).
These symmetries are called glide symmetries and the herringbone lattice presents a total of four
different glide operations, which can be classified into two different sets. Since each set acts on
different sites, we label each glide with two indices, G𝑖𝛼, where 𝑖 corresponds to the index of the
lattice vector involved in the fractional translation, and 𝛼 = {A,B} depending on whether the 𝑟
lattice site is closest to the mirror plane (A) or not (B). We want to point out that, in Section 2.6,
the symbol G represented a space group. However, in this chapter, we use the same symbol G to
represent a glide symmetry, and we add the subindices to distinguish between them. Using the
same notation introduced in Sec. 2.6, we represent symmetry operations belonging to space groups
with Seitz symbols [165]. In this case, these glide operators can be written as G1𝛼 =

{
𝑚01 | 120

}
and

G2𝛼 =
{
𝑚10 |01

2
}
. The glide operators have been represented in Fig. 4.1(a) with blue and red lines,

representing both the direction along which the half translation is performed and the mirror.

The unit cell of the herringbone lattice contains four maximal Wyckoff positions grouped in two
non-equivalent sets: 2𝑎, 2𝑏. These have been displayed in Figure 4.1(a) as red and blue rhombi.
It is remarkable that none of the glide planes goes through any of the maximal Wyckoff positions.
Also, none of the lattice sites falls in maximal Wyckoff positions. However, the set of glides {G2𝛼}
do go through the lattice sites, while {G1𝛼} do not. This affects how lattice sites transform under
these symmetries: when applying the set of glides {G1𝛼}, no matter which symmetry operation is
performed first (mirror or half translation), the transformed lattice site falls on empty space, whereas
for {G2𝛼}, the half translation already maps 𝑟 into 𝑑, and 𝑢 into 𝑙, while the mirror operation will
map the lattice site to another one from an adjacent unit cell. These properties affect how the
spectrum behaves after breaking {G2𝛼} 𝑣𝑠. {G1𝛼}, as we will see further in the text.

We study now the action of the four glide operators G𝑖𝛼 over the spinor Ψ(r) =
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4.4. Breaking symmetries with onsite potentials

(𝜓𝑟 (r), 𝜓𝑑 (r), 𝜓𝑢 (r), 𝜓𝑙 (r))T in real space. We obtain:

G1𝐴Ψ(r) =
©«

𝜓𝑢 (r)
𝜓𝑙 (r + a2)
𝜓𝑟 (r + a1)

𝜓𝑑 (r + a1 + a2)

ª®®®®®¬
, G1𝐵Ψ(r) =

©«
𝜓𝑢 (r − a2)
𝜓𝑙 (r)

𝜓𝑟 (r + a1 − a2)
𝜓𝑑 (r + a1)

ª®®®®®¬
, (4.4a)

G2𝐴Ψ(r) =
©«

𝜓𝑑 (r + a2)
𝜓𝑟 (r)

𝜓𝑙 (r + a2 − a1)
𝜓𝑢 (r − a1)

ª®®®®®¬
, G2𝐵Ψ(r) =

©«
𝜓𝑑 (r + a1 + a2)
𝜓𝑟 (r + a1)
𝜓𝑙 (r + a2)
𝜓𝑢 (r)

ª®®®®®¬
. (4.4b)

If we Fourier transform these equations, we obtain the action of the glides in reciprocal space.
Defining the S𝑖 matrix as

S𝑖 =
(
1 0
0 ei𝑘𝑖

)
, (4.5)

we now can write a closed expression for each of the reciprocal space operators:

G1𝐴 (k) = (S1𝜎𝑥) ⊗ S2, (4.6a)

G1𝐵 (k) = e−i𝑘2G1𝐴 (k), (4.6b)

G2𝐴 (k) = S†1 ⊗ (𝜎𝑥S2), (4.6c)

G2𝐵 (k) = (𝜎𝑥S1𝜎𝑥) ⊗ (𝜎𝑥S2). (4.6d)

The Kronecker product operator has been made explicit since the usual matrix product is also used in
the expressions above. With these expressions, we will understand the band structure features shown
in the spectrum in Fig.4.1(c) and how the breaking of them leads to the different features we will
see in the following sections. On the one hand, along the lines SXS, 𝑘1 = 𝜋, and the Hamiltonian
commutes with G2𝛼 (k). Since along this line this operator has two sets of degenerated eigenvalues,
so does the Hamiltonian, and we see the degeneracies along these lines. On the other hand, along
the lines SYS, 𝑘2 = 𝜋, and the Hamiltonian commutes with G1𝛼 (k). Again, the symmetry operator
has two sets of two degenerated eigenvalues, and so does the Hamiltonian.

4.4 Breaking symmetries with onsite potentials

We now study the effects of breaking the symmetries in the pristine herringbone lattice spectrum.
We will add onsite energies to the Hamiltonian in Eq (4.2a). These onsite energies are represented
by diagonal matrices written in terms of a single parameter 𝛿𝑖 that will represent the onsite energy
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4.4. Breaking symmetries with onsite potentials

of each site. Finally, diagonalizing the Hamiltonian, we can study the spectrum in terms of this
perturbation parameter 𝛿𝑖.

We cover three onsite energy choices that show how to gap the cones, move them within the
first Brillouin zone, and eventually merge them into a semi-Dirac cone. We will present bulk and
ribbon geometries together for the three different perturbations. Next, the flake results will be shown
together for the three different onsite energy choices.

Finally, we use the three onsite energies as building blocks for creating new onsite energy
combinations. By mixing the individual perturbations, we will cover deeper effects in the bulk of
the herringbone lattice and represent them in phase diagrams according to the presence of Dirac
cones, semi-Dirac cones, or gapped phases.

Figure 4.3: From left to right, different choices for the onsite energy perturbations that will be
covered in the following sections. In the left panel, the onsite energies are not respecting the
constraints of the {G1𝛼} glide symmetries, presented as the red lines, since 𝑟, 𝑑 are not mapped into
𝑢, 𝑙. We have presented in green the set of glides {G2𝛼} that are respected, since 𝑟, 𝑑 are mapped
into each other, as well as 𝑢, 𝑙. This choice is studied in section 4.4.1. The middle panel shows the
configuration for the breaking of the {G2𝛼} set of glides, presented as the red lines, since 𝑟, 𝑢 are
not mapped into 𝑑, 𝑙. We have presented in green the set of glides {G1𝛼} that are respected, since
𝑟, 𝑢 are mapped into each other, as well as 𝑑, 𝑙. This choice is studied in section 4.4.2 Finally, the
right panel shows the configuration where both glides are broken at the same time, both represented
as red lines. This choice does respect inversion symmetry, though, and its consequences will be
studied in section 4.4.3.

4.4.1 Breaking of {G1𝛼}

We start by fixing opposite onsite energies Y𝛼 = ±𝛿1𝑡0 at lattice sites 𝑟 and 𝑢, 𝑑 and 𝑙. This can
be written as (Y𝑟 , Y𝑑 , Y𝑢, Y𝑙) = 𝛿1(1, 1,−1,−1)𝑡0. The spatial representation of this choice is present
in the left panel of Fig. 4.3. In a diagonal matrix form, we can write:

M1(𝛿1) = 𝛿1 (𝜏𝑧 ⊗ 𝜎0) 𝑡0 (4.7)
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(a) (b)

(c)

(d) (e)

Figure 4.4: (a) Bulk spectrum for the pristine herringbone lattice (dashed red line) and withM1(0.5)
onsite potential (solid blue line); (b), (c) Berry curvature of the lower set of bands revealing a
valley distribution of the charge around the gapped Dirac points. (d), (e) Energy spectrum of the
herringbone lattice withM1(𝛿1) for |𝛿1 | = 0.5, but colored according to the phase of the symmetry
eigenvalue of the G2𝐴 (k) operator, revealing a band inversion when the gap closes and reopens.

whereM1(𝛿1) denotes the {G1𝛼}-breaking mass term that is added to the Hamiltonian in Eq. 4.2a as
a function of the perturbation parameter 𝛿1. In terms of SSH chains, this configuration differentiates
between lattice sites inside each chain, thus respecting interchain symmetry and breaking inversion
symmetry.

Bulk spectral properties We start by discussing the bulk spectral properties for different values
of 𝛿1, present in Fig. 4.4. Panel 4.4(a) shows the spectrum of both the pristine herringbone
lattice–setting 𝛿1 = 0, as shown in Fig. 4.1(c)– and for |𝛿1 | = 0.5. For any |𝛿1 | > 0 the band
structure splits into two gapped composite sets of two bands. The rest of the spectral features (flat
and degenerate lines) are shifted in energy, preserving the degeneracies.

The energy spectrum is symmetric with respect to 𝛿1 = 0, in the sense that the spectra for ±𝛿1

are identical. However, the eigenfunctions behave differently after a change in sign of 𝛿1: the Berry
curvature shows a valley distribution with opposite signs at the K± points. When the gap closes and
reopens, the distribution inverts, as shown in panels 4.4(b) and 4.4(c). The Berry curvature displays
a dipolar-like distribution with a fixed length 𝐿Ω = 2|K± |. Given {G1𝛼

} involves the mirror 𝑚01 in
real space, the same mirror in reciprocal space is conserved, and the dipolar distribution is oriented
along b1.

Finally, we study the breaking of {G1𝛼} from the symmetry eigenvalues of {G2𝛼} before and
after the closing of the gap. We observe that the eigenvalues of bands 2 and 3 invert before and after
the closing of the gap, which reflects a band inversion. This is shown in Figs. 4.4(d) and 4.4(e).

Ribbon spectral properties Now we discuss the results in the ribbon geometry. As we introduced
in Sec. 2.2.6, the spectrum of ribbon geometries corresponds to the projection of the bulk spectrum
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Figure 4.5: (a) Spectral properties of the a1 ribbon. (a.1) Spectrum of the ribbon, (a.2) and (a.5)
edge projected spectral functions for opposite values of the onsite potential. The projection reveals a
different localization of the edge states. The color of the plot is related to the localization of the wave
function (blue for localization on the right and fuchsia for localization on the left). Panels (a.3) and
(a.4) reveal the localization of the states marked in panels (a.2) and (a.5). Panels (a.6) and (a.8) show
the spectrum of the ribbon versus the 𝛿1 parameter (𝛿1-spectrum), at 𝑘 = 0 and 𝑘 = 𝜋 respectively.
Panels (a.7) and (a.9) show the edge-projected spectral function associated with each 𝛿1-spectra. (b)
Spectral properties of the a2 ribbon. Panels (b.1) to (b.9) correspond to the same information as
the panels from (a.1) to (a.9) but related to the a2 ribbon geometry. Respectively: (b.1) spectrum
of the a2 ribbon with |𝛿1 | = 0.5, (b.2) edge-projected spectral function for 𝛿1 = −0.5, (b.3), (b.4)
localization of states across the ribbon, (b.5) edge-projected spectral function for 𝛿1 = 0.5, (b.6)
𝛿1-spectrum for 𝑘 = 0, (b.7) edge-projected spectral function applied to the 𝛿1-spectrum for 𝑘 = 0,
(b.8) 𝛿1-spectrum for 𝑘 = 𝜋, (b.9) edge-projected spectral function applied to the 𝛿1-spectrum for
𝑘 = 𝜋.

over the periodic direction in the two-dimensional first Brillouin zone. Hence, in the ribbon
geometry, we then observe the same gapping of the band structure for 𝛿1 ≠ 0 that we see in the bulk.
Panels 4.5(a.1) and 4.5(b.1) show the spectrum of ribbons along a1 and a2 (respectively). We have
shown only the spectrum for 𝑘 ∈ [0, 𝜋] since both the spectrum and the (edge-projected) spectral
function are symmetric with respect to 𝑘 = 0.

Panels 4.5(a.2), 4.5(a.5), 4.5(b.2), 4.5(b.5), show the edge-projected spectral function applied to
the two ribbon configurations, with 𝛿 = ±0.5. The localization of the edge states of the ribbons
occurs on opposite edges after the closing of the gap. This localization can be seen in panels 4.5(a.3)
and 4.5(a.4) for the a1 ribbon and in panels 4.5(b.3) and 4.5(b.3) for the a2 ribbon. Panels 4.5(a.6)
and 4.5(a.8) show the spectrum of the a1 ribbon but plotting the eigenvalues computed respectively
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4.4. Breaking symmetries with onsite potentials

at 𝑘 = 0 and 𝑘 = 𝜋 versus the perturbation parameter 𝛿1. Similarly, panels 4.5(b.6), and 4.5(b.8)
show the 𝛿1-spectrum of the a2 ribbon geometry under the same conditions. In these plots, we
confirm that the spectrum is symmetric with respect to the 𝛿1 perturbation parameter. Finally,
panels 4.5(a.7), 4.5(a.9), 4.5(b.7), 4.5(b.9) show the projected spectral function applied to the
𝛿1-spectrum, and reveal that the localization inverts after the change in sing of 𝛿1. As we mentioned
in Sec. 4.2.2, to distinguish between localization on different edges, we can redefine the projection
operator present in the edge-projected spectral function. Since we have broken inversion symmetry,
the bulk states are not evenly distributed, and thus, they present different localizations across the
ribbon. For this reason, we computed the weight of the wave function on the lattice unit cell located
at the two edges of the ribbon unit cell. Next, we take the difference between the two values, so
if the total is positive, the associated wave function is located on one edge, and if it is negative, it
is located on the opposite edge. The color scale now includes negative values (in light blue) to
distinguish the differences in localization.

4.4.2 Breaking of {G2𝛼}

Next, we fix opposite onsite energies Y𝛼 = ±𝛿2𝑡0 at lattice sites 𝑟 and 𝑑, 𝑢 and 𝑙. This assignation
can be written as (Y𝑟 , Y𝑑 , Y𝑢, Y𝑙) = 𝛿2(1,−1, 1,−1)𝑡0. The spatial representation of this choice is
present in the middle panel of Fig. 4.3. In a diagonal matrix form, we can write:

M2(𝛿2) = 𝛿2 (𝜎0 ⊗ 𝜎𝑧) 𝑡0, (4.8)

whereM2(𝛿2) denotes the {G2𝛼}-breaking mass term that is added to the Hamiltonian in Eq. 4.2a as
a function of the perturbation parameter 𝛿2. In terms of SSH chains, we are differentiating between
chains by placing the same onsite energy in lattice sites related by the intra-chain chiral symmetry.
Same as before, we are breaking both the {G2𝛼} set of glides and inversion symmetry.

Bulk spectral properties We start by discussing the results in the bulk, presented in Figure 4.6.
For 𝛿2 = 0, the pristine herringbone lattice is recovered–red line in Figure 4.6(a). The spectrum
is also symmetric with respect to the change in sign of 𝛿2. However, contrary to the previous
section, the band structure remains gapless within the interval |𝛿2 | ≤

√
3 (degeneracy interval). As

soon as 𝛿2 ≠ 0 the Dirac cones move away from K± towards Γ. We can find their position kD
2 (𝛿2)

as a function of 𝛿2 by solving 𝐸3 [𝛿2, kD
2 (𝛿2)] = 0, where 𝐸3 is the third band, corresponding to

(𝛼, 𝛽) = (+,−) in Eq. (4.3)1. It yields:

kD
2 (𝛿2) =

1
𝑎0

arccos
(
1
2

√︃
1 + 𝛿2

2

)
u1, (4.9)

1The same expression is obtained if instead we work with band 2, corresponding to (𝛼, 𝛽) = (−, +) in Eq. (4.3) since
the spectrum is energy-symmetric. We refer the reader to Sec. 4.7 for a study on the energy symmetry of the spectrum.
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(c)

(b)(a)
(d)

0
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0.5

0.5

0.5

Figure 4.6: (a) Bulk spectrum for the pristine herringbone lattice and with the M2(𝛿2) onsite
potential. The values of 𝛿2 are explicitly shown and reveal the movement of the Dirac cones.
Only the Dirac cone at K+ has been plotted since it falls in the choice of high-symmetry path;
(b), (c) Overview of the semi-Dirac point appearing at Γ when the two cones merge, displaying
the parabolic/linear behavior respectively; (d) Energy spectrum of the herringbone lattice with
M2(
√

3/2), but colored according to the phase of the symmetry eigenvalue of the G1𝐴 (k) operator,
revealing that at the crossings, the eigenvalues are different, allowing a real crossing and not an
anti-crossing of the bands.

where kD
2 (𝛿2) represents the (𝑘𝑥 , 𝑘𝑦) components of the position of the Dirac cones as a function of

the 𝛿2 parameter, 𝑎0 is the interatomic distance, taken to be unity but made explicit in the equation,
and u1 = b1/|b1 | represents the unitary vector along the direction of the first reciprocal lattice vector
b1. The motion of the Dirac cones is captured in Figure 4.6(a). Since the spectrum is symmetric
with respect to 𝛿2, we start from the pristine herringbone lattice and increase 𝛿2. As mentioned
before, the cones move symmetrically towards each other along the b1 direction until |𝛿2 | =

√
3. At

this value, the two Dirac cones have shifted away from K± (at 𝛿2 = 0) and have merged at Γ into a
semi-Dirac cone. Figures 4.6(b) and 4.6(c) show the semi-Dirac cone at Γ with the parabolic/linear
behavior explicitly displayed. For |𝛿2 | >

√
3, the semi-Dirac cone is gapped, and the band structure

again splits into two composite sets of two bands. The flat degeneracy present at SXS remains
untouched, but the dispersive degeneracy at SYS is broken.

The breaking of these glides can also be studied from the symmetry eigenvalues of {G1𝛼} for
different values of 𝛿2. We observe that the eigenvalues of bands 2 and 3 remain different for all
values of 𝛿2, so the crossing is still protected by the first set of glides. We have presented bands 2 and
3 colored according to the phase of the eigenvalue of the {G1𝛼} symmetry eigenvalue in Fig. 4.6(d).

Ribbon spectral properties We present now the results on the ribbons. As we discussed previously,
the band structure of ribbons is the projection of the bulk one. We present the ribbon spectrum for
|𝛿2 | =

√
3, precisely at the appearance of the semi-Dirac cone in the bulk. As expected, we obtain

the two different slopes of the semi-Dirac cone along the two different orientations of the ribbons.
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Figure 4.7: (a) a1 ribbon spectral properties withM2(𝛿2); (a.1) Spectrum of the ribbon at the
semi-Dirac point, (a.2) and (a.5) edge-projected spectral functions for opposite values of the onsite
potential. The projection reveals a different localization of the edge states. The color of the plot is
related to the localization of the wave function (blue for localization on the right and fuchsia for
localization on the left). Panels (a.2) and (a.4) reveal the localization of the states marked in panels
(a.2) and (a.5). Panels (a.6) and (a.8) show the 𝛿2-spectrum at 𝑘 = 0 and 𝑘 = 𝜋 respectively. Panels
(a.7) and (a.9) show the edge-projected spectral function associated with each of the 𝛿2-spectra. At
𝑘 = 0 the gap closes for 𝛿2, right where the semi-Dirac cone forms. Panels (b.1) to (b.9) correspond
to the same information as the panels from (a.1) to (a.9) but related to the a2 ribbon geometry.
Respectively: (b.1) spectrum of the a2 ribbon with |𝛿2 | =

√
3, (b.2) edge-projected spectral function

for 𝛿2 = −
√

3, (b.3), (b.4) localization of states across the ribbon, (b.5) edge-projected spectral
function for 𝛿2 =

√
3, (b.6) 𝛿2-spectrum for 𝑘 = 0, (b.7) edge-projected spectral function applied

to the 𝛿2-spectrum for 𝑘 = 0, (b.8) 𝛿2-spectrum for 𝑘 = 𝜋, (b.9) edge-projected spectral function
applied to the 𝛿2-spectrum for 𝑘 = 𝜋.

The ribbon along a1 displays the parabolic behavior, corresponding to the projection present in
Figure 4.6(b). In the ribbon spectrum, along the parabolic bands, there are two of them that are
detached from the rest. These bands correspond to two states tightly localized in just one atom at the
edge, as shown in panels 4.7(a.3) and 4.7(a.4). Again, the localization changes after closing the gap.
The 𝛿2-spectrum for 𝑘 = 0 is shown in panel 4.7(a.6) where we see how the gap closes at 𝛿2 = ±

√
3.

The behavior of the closing and reopening of the gap at 𝑘 = 0 is linear with 𝛿2. Panel 4.7(a.8)
is equivalent to panel 4.7(a.6) but for 𝑘 = 𝜋. The linearity of the closing and reopening of the
gap is also clear in this plot. Panels 4.7(a.7) and 4.7(a.9) represent the projected spectral function
applied to the 𝛿2-spectrum, revealing again the opposite localization with respect to the sign of
𝛿2. On the contrary, the ribbons along a2 display the almost linear behavior, corresponding to the
projection present in Figure 4.6(c). The linearity is achieved around a neighborhood of 𝑘 = 0,
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4.4. Breaking symmetries with onsite potentials

and it is lost as we approach 𝑘 = 𝜋. Again, the are two bands detached from the rest. The states
corresponding to these two bands are still localized in the edge of the ribbon, but not as tightly
as in the case of a1 ribbons, as shown in panels 4.7(b.3) and 4.7(b.4). Again, the localization
changes after closing the gap, reflected in the inversion of the color scale between panels 4.7(b.2)
and 4.7(b.5). The 𝛿2-spectrum for 𝑘 = 0 is shown in panel 4.7(c.6), where at 𝛿2 = ±

√
3 we see how

the gap closes. This time, the gap at 𝑘 = 0 remains closed for the interval of degeneracy |𝛿2 | <
√

3.
Panel 4.7(b.8) represents the 𝛿2-spectrum for 𝑘 = 𝜋. It is noticeable how the bulk bands remain
fixed at 𝐸 = ±1 and only the detached state crosses the gap linearly at 𝑘 = 𝜋. Finally, panels 4.7(b.7)
and 4.7(b.9) represent the edge-projected spectral function applied to the 𝛿2-spectrum, revealing
again the opposite localization with respect to the sign of 𝛿2.

We have used the same projection operator for the projected spectral function as in the previous
section, since inversion symmetry is also broken by the addition of theM2(𝛿2) mass term.

4.4.3 Breaking of {G1𝛼} + {G2𝛼}

Now, we present the last strategy to perturbing the lattice by assigning onsite energies to the
lattice sites. We have related 𝑟, 𝑑 and 𝑢, 𝑙 in Sec. 4.4.1, and 𝑟, 𝑢 and 𝑑, 𝑙 in Sec. 4.4.2. This time, we
relate 𝑟, 𝑙 and 𝑑, 𝑢 by placing (Y𝑟 , Y𝑑 , Y𝑢, Y𝑙) = 𝛿I(1,−1,−1, 1)𝑡0. The spatial representation of this
choice is present in the right panel of Fig. 4.3. With this parameterization, we are simultaneously
breaking both glides while respecting inversion symmetry. We will refer to this mass term as the
inversion symmetric term, which can be written as a diagonal matrix:

MI(𝛿I) = 𝛿I (𝜏𝑧 ⊗ 𝜎𝑧) 𝑡0, (4.10)

whereMI(𝛿I) denotes the {G1𝛼} + {G2𝛼}-breaking inversion-symmetric mass term that is added
to the Hamiltonian in Eq. (4.2a) as a function of the perturbation parameter 𝛿I. In terms of SSH
chains, we are breaking both the intra- and inter-chain chiral symmetry operators.

Bulk spectral properties We begin with the bulk results in Fig. 4.8(a). With this setup, the gap at
zero energy closes within the interval |𝛿I | ≤ 1. Outside of it, the four bands become isolated. For
|𝛿I | = ±1, bands 2 and 3 are degenerated at zero energy along SXS, forming a nodal line showing
two different regimes: along the path XΓX, the dispersion is locally parabolic around the X point. At
the same time, it is locally linear around the S points along SYS, parallel to XΓX. This is represented
in Fig. 4.8(b). These two energy dispersions (parabolic and linear behavior) have been presented
before as a semi-Dirac cone. However, those two behaviors appear simultaneously at the same k
point and along two orthogonal directions. This time, the two dispersions occur at different k points
and along parallel lines in the first Brillouin zone. We call this feature unfolded semi-Dirac cone as

91



4.4. Breaking symmetries with onsite potentials
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Figure 4.8: (a) Bulk spectrum for the fully symmetric case and the one with theMI(𝛿I) onsite
potential. The values of 𝛿I are explicitly shown. The arrows reveal the parabolic/linear behavior of
the band structure at different k points; (b) overview of the unfolded semi-Dirac point appearing
at X when the two cones merge; (c) energy spectrum of the Herringbone lattice withMI(1), but
colored according to the phase of the symmetry eigenvalue of the inversion operator, revealing that
at the crossings, the eigenvalues are different (±1 for all k points).

if a semi-Dirac cone was unfolded along SXS, thus forming the nodal line along that path (imposed
by the non-symmorphic symmetries) but still preserving the linear and parabolic behaviors.

The bulk spectrum is symmetric under the change of sign of 𝛿I so, shifting 𝛿I from negative to
positive, bands 2 and 3 become degenerated at 𝛿I = −1 in a nodal line along SXS. Increasing 𝛿I,
the parabolic part of the unfolded semi-Dirac point (at the X point) splits into two Dirac cones that
move towards K± points, reaching them at 𝛿I = 0, recovering the pristine herringbone lattice. For
positive 𝛿I, the behavior is the opposite, Dirac cones from K± move towards X and merge with the
ones from the adjacent first Brillouin zones into unfolded semi-Dirac cones at X and 𝛿I = 1. Finally,
for 𝛿I > 1, the band structure is formed by four isolated bands.

We obtain the analytical position of the Dirac cones by solving 𝐸3 [𝛿I, kD
I (𝛿I)] = 0, where 𝐸3 is

the third band, corresponding to (𝛼, 𝛽) = (+,−) in Eq. (4.3)1. It yields:

kD
I (𝛿I) =

1
2𝑎0

arccos

(
−

1 + 𝛿2
I

2

)
u1 (4.11)

where kD
I (𝛿I) represents the (𝑘𝑥 , 𝑘𝑦) components of the position of the Dirac cones as a function of

the 𝛿I parameter, 𝑎0 is the interatomic distance, taken to be unity but made explicit, and u1 = b1/|b1 |
represents the unitary vector along the direction of the first reciprocal lattice vector b1. Figure 4.16
displays the trajectory of the Dirac cones for increasing 𝛿I.

1The same expression is obtained if instead, we work with band 2, corresponding to (𝛼, 𝛽) = (−, +) in Eq. (4.3)
since the spectrum is energy-symmetric. We refer the reader to Sec. 4.7 for a study on the energy symmetry of the
spectrum.
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Ribbon spectral properties Now we discuss the ribbon geometry results, present in Fig. 4.9. We
want to point out that with respect to figures 4.5 and 4.7, the color scale of the projected spectral
function has changed: now, the projector of the spectral function is the same that the one we used for
the pristine herringbone lattice, back in Sec. 4.2.2. This is because theMI(𝛿I) mass term preserves
inversion symmetry, and thus, in order to obtain a non-zero contribution from the bulk states into
the projected spectral function, we need to add up the contributions from the lattice unit cells in
the boundaries of the ribbon unit cell. Still, the edge states are located on just one edge and so, we
cannot distinguish the edges in the edge-projected spectral function.

We begin with the spectral properties of the a1 ribbon. Panel (a.1) shows the spectrum of the a1

ribbon for 𝛿I = ±1, right where the unfolded semi-Dirac appears in the bulk. The band structure of
the ribbon along a1 reveals the parabolic and linear behaviors of the unfolded semi-Dirac cone at the
same time. In this ribbon, the path SXS projects onto a single point (𝑘 = 𝜋), so both the parabolic
behavior along XΓX and the linear behavior along SYS are projected along the one-dimensional
Brillouin zone. In this way, the bands around zero energy display the parabolic behavior, while
the bands closer to the lower and upper gaps display the linear behavior. The spectrum for 𝛿I = −1
presents two degenerated bands at 𝑘 = 0 in the lower gap detached from the bulk ones, represented
in gray. For positive 𝛿I = 1 these bands merge into the bulk ones, and another two degenerated
bands detach from the bulk ones and move inside the upper gap. We have represented these last two
bands (for 𝛿I = 1) in red in panel 4.9(a.1). The rest of the features of the spectrum remain the same
between these two situations. Panels 4.9(a.3) and 4.9(a.4) represent the localization of these two
degenerated states. In panels 4.9(a.2) and 4.9(a.5) we show the edge-projected spectral function
respectively for 𝛿I = ±1, displaying the two in-gap states. In panel 4.9(b.8), where we show the
𝛿I-spectrum at 𝑘 = 𝜋, we clearly see how the in-gap states we introduced in panel 4.9(a.1) shift from
negative to positive energy. These two in-gap states can also be detected in panel 4.9(b.7), where we
plot the 𝛿I-spectrum but at 𝑘 = 0. At opposite values of 𝛿I, they appear in different gaps, so now the
ribbon spectrum is not symmetric under the change of sign of 𝛿I.

We see a similar behavior along the a2 direction: the energy spectrum is not symmetric with
respect to the change of sing of 𝛿I. There is an in-gap state at positive energy in the upper gap for
negative 𝛿I, detached from the bulk bands around 𝑘 = 0. For positive 𝛿I the in-gap state in the upper
gap merges with the bulk bands, and a new in-gap state appears in the lowest gap. The spectrum for
both 𝛿I = ±1 are represented 4.9(b.1). The red band appears only for 𝛿I = 1 while its homologous
in the upper gap only appears for 𝛿I = −1. Panels 4.9(b.3) and 4.9(b.4) show the localization of
these states in the two opposite sides of the ribbon unit cell. The unfolded semi-Dirac cone is also
present in the band structure of this ribbon. As a reminder, now the one-dimensional first Brillouin
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zone is the projection of the SYS path over the S points and the XΓX path over the X points. If
one checks the density of bands in the panel 4.9(b.1), near 𝑘 = 0 the bands are closer to each other,
corresponding to a parabolic distribution that has been projected over the plane, while near 𝑘 = 𝜋,
the bands are more spaced, which is related to the linear behavior around these 𝑘 points. Again, in
this ribbon, the two-dimensional first Brillouin zone is projected onto the SXS path, so the 𝑘 = 0
corresponds to the X point, where the behavior of the bands is parabolic. In contrast, the 𝑘 = 𝜋

point corresponds to the S point, where the behavior is linear.

Finally, in panels 4.9(b.6) and 4.9(b.8) we present the 𝛿I-spectrum respectively at 𝑘 = 0 and
𝑘 = 𝜋, and their edge-projected spectral functions in panels 4.9(b.7) and 4.9(b.9).

1 1I I 1I

I I I I

0

(e) (f)(d) (g)

I I I I

(a)      ribbon spectral properties (b)      ribbon spectral properties
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Figure 4.9: (b) a1 ribbon results with MI(𝛿I); (b.1) Spectrum of the ribbon at the unfolded
semi-Dirac point, (b.2) and (b.4) edge projected spectral functions for opposite values of the onsite
potential. The projection reveals a different localization of the edge states. Panels (b.3) and (b.5)
reveal the localization of the states marked in panels (b.2) and (b.4). Panels (b.6) and (b.8) show
the 𝛿I-spectrum at 𝑘 = 0 and 𝑘 = 𝜋 respectively. Panels (b.7) and (b.9) show the edge-projected
spectral function associated with each of the 𝛿I-spectra. At 𝑘 = 𝜋 the gap closes for 𝛿I, right where
the unfolded semi-Dirac cone forms. Panels (c.1) to (c.9) correspond to the same information as the
panels from (b.1) to (b.9) but related to the a2 ribbon geometry. Respectively: (b.1) spectrum of
the a2 ribbon with |𝛿I |1, (b.2) edge-projected spectral function for 𝛿I = −1, (b.3), (b.4) localization
of states across the ribbon, (b.5) edge-projected spectral function for 𝛿I = 1, (b.6) 𝛿I-spectrum for
𝑘 = 0, (b.7) edge-projected spectral function applied to the 𝛿I-spectrum for 𝑘 = 0, (b.8) 𝛿I-spectrum
for 𝑘 = 𝜋, (b.9) edge-projected spectral function applied to the 𝛿I-spectrum for 𝑘 = 𝜋.
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4.5 Combining onsite potentials

Once we have introduced the main perturbations applied to the onsite energies, now we combine
them and study the changes in the bulk spectrum. In this way, we study the bulk Hamiltonian
with onsite energies controlled by the mass terms we have introduced in the previous sections:
the combinationM1(𝛿1) +M2(𝛿2) is present in Sec. 4.5.1; the combinationM1(𝛿1) +MI(𝛿I) is
present in Sec. 4.5.2, and finally, the combinationM2(𝛿2) +MI(𝛿I) is present in Sec. 4.5.3.

4.5.1 CombiningM1(𝛿1) +M2(𝛿2)

We begin by adding to the bulk Hamiltonian in Eq. (4.2a) the total mass termM1,2(𝛿1, 𝛿2) =
M1(𝛿1) +M2(𝛿2). The main effect of each term is, respectively, to gap the band structure, and to
control the position of the Dirac cones to merge them into a semi-Dirac cone. The combination of
the two is thus to gap both the Dirac cones anywhere and the semi-Dirac cone. We have presented
the action of the combined onsite potentials in a phase diagram shown in Figure 4.10(c). We have
represented 𝛿1 on the vertical axis, where the gap closes only for 𝛿1 = 0 at the K± points. On
the horizontal axis, we have represented 𝛿2, where there is no gap until we leave the interval of
degeneracy (|𝛿2 | ≤

√
3). Outside of the interval of degeneracy, the gap cannot be closed. Finally, the

phase diagram is colored depending on the position of the gap according to the values of 𝛿1 and 𝛿2.

Additionally, we have also plotted the band structure for several values of 𝛿1 and 𝛿2, which are
explicitly shown in the phase diagram. The values for panel 4.10(a) correspond to the bullets in the
phase diagram while for panel 4.10(b), the values correspond to the squares in the phase diagram.
We have included the plot of the bands at 𝛿1 = 0, which is already present in Figure 4.6(a), as a
guide to the eye. At 𝛿1 = 0 we find the phase diagram of justM2(𝛿2), which is an interval (thick
black line), and for 𝛿2 = 0 we find the phase diagram of justM1(𝛿1), which is just the critical point
(red triangle).

With this total mass-term, one can shrink the dipolar distribution of the Berry curvature–
Fig. 4.10(g). Moreover, we can visualize the Berry curvature of a gapped semi-Dirac cone–
Figs. 4.10(f) and 4.10(h). Some final remarks about combiningM1(𝛿1) +M2(𝛿2) are:

• A change in the sign of 𝛿1 always produces a band inversion. Figures 4.10(e) to 4.10(i) only
display the Berry curvature for negative 𝛿1, since the ones for positive 𝛿1 differ in an overall
sign.

• The gap cannot be closed by usingM1(𝛿1) when 𝛿2 falls outside the interval of degeneracy,
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4.5. Combining onsite potentials

which means the gap at the Γ point between the solid blue lines in Fig. 4.10(b) cannot be
closed, while the one between the purple ones can.

• The flat degeneracies along SXS remain flat but are completely lifted by a nonzero value of
𝛿1, so these two degeneracies are protected by both glides at the same time.

(a) (b)

(c)

max.

min.1/2

Gap at Gap at 

Gapless (moving 
Dirac cones)

(d)

(e) (f) (g) (h) (i)

(j)

Figure 4.10: (a) Energy spectrum for the herringbone lattice with theM2(𝛿2) onsite potential. This
panel has been added as a guide to understand panel (b). Panel (b) displays the energy spectrum
for the herringbone lattice with the combinationM1(𝛿1) +M2(𝛿2) of onsite potentials. Panel (c)
represents the phase diagram of the herringbone lattice under the aforementioned onsite potential
combination. The symbols correspond to the values of the parameters used to plot the band structures
in panels (a) and (b). Panels (d) to (j) Berry curvature profiles for the different combinations of
parameters.
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4.5.2 CombiningM1(𝛿1) +MI(𝛿I)

We now add to the bulk Hamiltonian in Eq. (4.2a) the total mass term M1,I(𝛿1, 𝛿I) =

M1(𝛿1) + MI(𝛿I). The main effect of the MI(𝛿I) onsite potential is to control the position
of the Dirac cones and merge them into an unfolded semi-Dirac cone. Hence, the addition of
the gapping termM1(𝛿1) will gap both the cones, at any position, and the unfolded semi-Dirac
cone. We have presented the action of the combined onsite potentials in a phase diagram shown in
Figure 4.11(d). On the vertical axis, we represent 𝛿1, where the gap closes only for 𝛿1 = 0 at the
K± points. On the horizontal axis, we have represented 𝛿I, where there is no gap until we leave
the interval of degeneracy (|𝛿I | ≤ 1). Finally, outside of the interval of degeneracy, the gap cannot
be closed. Same as before, the phase diagram is colored depending on the position of the gap
according to the value of 𝛿1, 𝛿I. We begin by fixing 𝛿1 = 0, where we recover the individual effects
of theMI(𝛿I) perturbation. This case is shown in panel 4.11(a) as a guide to the eye, although it is
already present in Figure 4.8(a). If now we let 𝛿1 ≠ 0, we gap the Dirac cones at positions given by
expression (4.11), as shown in Fig. 4.11(b) in color magenta.

We discuss now different features we can achieve apart from the gapping of the band
structure. First, we refer the reader to panel 4.11(c), where we observe the appearance of
degenerate flat bands along SXS. These can be found by setting 𝛿1 = ±

√︃
𝛿2

I − 1 so that

M1,I(𝛿I) =MI(𝛿I) +M1(±
√︃
𝛿2

I − 1) for any 𝛿I > 1.. The lines 𝛿1 = ±
√︃
𝛿2

I − 1 are represented in
the phase diagram separating the light pink and light blue regions.

Next, there are two lines of the phase diagram along which the gapped Dirac cones merge
totally into the band. In this case, the energy at the position of the Dirac cone, obtained from
expression (4.11) since 𝛿1 does not change the position of the cones, reaches the same value of
the energy along the SXS path. We look for the relation between (𝛿1, 𝛿I) that makes the energy at
kD

I (𝛿I) equal to the energy along SXS. We obtain:

𝛿1(𝛿I) = ±

√︃
9 − 10𝛿2

I + 𝛿
4
I

4𝛿I
. (4.12)

This relation is represented with the dark blue lines in Figure 4.11(d) separating the green and pink
regions. The three colored regions represent different gapped phases. As in the previous case, for
𝛿1 = 0, we recover the phase diagram ofMI(𝛿I), which is an interval. Setting 𝛿I = 0 we recover the
phase diagram ofM1(𝛿1).

We now study the Berry curvature for the different combinations of parameters. We begin by
the vertical line 𝛿I = −2: we observe a change in the sign of the Berry curvature. Remarkably,
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Figure 4.11: (a) Energy spectrum for the herringbone lattice with theMI(𝛿I) onsite potential. This
panel has been added as a guide to understand panel (b). Panel (b) displays the energy spectrum for
the herringbone lattice with the combinationM1(𝛿1) +MI(𝛿I) of onsite potentials. The values of
the parameters are shown on the panel (d). Panel (c) represents the relation between the parameters
such that always yields an unfolded semi-Dirac point, which stretches with the intensity of the
onsite potential. The more pink the color of the line, the more stretched the parabolic behavior,
thus tending to a linear behavior. Panel (d) represents the phase diagram of the herringbone lattice
under the aforementioned onsite potential combination. The symbols correspond to the values of the
parameters used to plot the band structures in panels (a) and (b). Clearly, for panel (a), 𝛿1 is zero.
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this change of sign happens without a gap closing since we are outside the degeneracy interval.
This is because at 𝛿1 = 0, the term MI(𝛿I) preserves inversion symmetry. Since, additionally,
time-reversal symmetry is preserved, the Berry curvature is identically zero for all 𝛿I values, bands,
and k points. This was claimed back theoretically in Section 2.5, and here, we find a practical
example. Figure 4.11(g) shows the Berry curvature under these considerations, where the Berry
curvature is around 10−16 (it has been rescaled to match the color bar). Inside the interval of
degeneracy ofMI(𝛿I) and with the gap opened with the non-zero 𝛿1 value, we observe a dipolar
distribution of the Berry curvature that now has stretched with respect to the case with theM1(𝛿1)
perturbation–shown in Figs. 4.4(b) and 4.4(c). Now the length is given by 𝐿Ω = 2|kD

I (𝛿I) |, since 𝛿1

does not affect the position of the (gapped) Dirac cones. Again, the Berry curvature changes under
the closing of the gap, so the plots of the Berry curvature for 𝛿1 > 0 differ in a minus sign from the
ones we are displaying, computed for 𝛿1 > 0 –Figures 4.11(e), and Figures 4.11(g) to 4.11(i).

4.5.3 CombiningM2(𝛿2) +MI(𝛿I)

Finally, we add together the two terms that can change the position of the Dirac cones:
M2,I(𝛿2, I) = M2(𝛿2) + MI(𝛿I). We have computed a phase diagram of the system under these
potentials, shown in Fig. 4.12. As mentioned previously, the effect ofM2(𝛿2) is to move the Dirac
cones and merge them at Γ into a semi-Dirac cone, while the effect ofMI(𝛿I) is to move the Dirac
cones and merge them into unfolded semi-Dirac cones at the X points. Panel 4.12(a) shows the
band structure for different values of (𝛿2, 𝛿I), plus the spectrum of the pristine herringbone lattice
as a guide to the eye. Figure 4.12(b) shows the phase diagram of this combination of mass terms.
Again, by making 𝛿I = 0 we recover the properties ofM2(𝛿2), while by making 𝛿2 = 0 we recover
the properties ofMI(𝛿I). We thus expand the phase diagram in the following way. The vertical
axis is delimited by the point where the gap closes at Γ forming a semi-Dirac cone, so we solve
𝐸3 [𝛿2, 𝛿I, Γ] = 0 to obtain the relation between 𝛿2, 𝛿I that preserves the semi-Dirac cone at Γ. We
obtain:

𝛿2(𝛿I) = ±
√︃

3 + 𝛿2
I . (4.13)

This is represented with the purple line in the phase diagram in Figure 4.12(b), and defines
the boundary of gapless/gapped phases in the vertical axis. Fixing 𝛿I = 0 in expression (4.13) we
recover the interval of degeneracy ofM2(𝛿2), |𝛿2 | ≤

√
3. When 𝛿I ≠ 0, the four bands split, and the

semi-Dirac at Γ is formed only by the two intermediate bands. This new1 semi-Dirac cone can be
1We call it "new” since the previous one was formed also between bands 2 and 3, but they were degenerated also

with bands 1 and 4, forming two sets touching in a semi-Dirac cone.
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Figure 4.12: (a) Energy spectrum for the herringbone lattice with the combinationM2(𝛿2) +MI(𝛿I)
of onsite potentials. The values of the parameters are shown on the panel (b). Panel (b) represents
the phase diagram of the herringbone lattice under the aforementioned onsite potential combination.
The symbols correspond to the values of the parameters used to plot the band structures in panel (a).

gapped by adding aM1(𝛿1). However, the bands would not be energy-symmetric anymore. More
about this in Sec. 4.7.

Regarding the horizontal axis, we expand it by taking into account the interval of degeneracy
of MI(𝛿I), |𝛿I | ≤ 1. Hence, for (𝛿2, 𝛿I) = (0,±1), the gap closes along SXS in an unfolded
semi-Dirac cone. We solve 𝐸3 [𝛿2, 𝛿I, 𝑋] = 0 to obtain the relation between 𝛿2, 𝛿I that preserves the
unfolded-Dirac cone along SXS. This is an extension of the unfolded semi-Dirac cone for non-zero
𝛿2. We obtain:

𝛿2(𝛿I) = ±
√︃
𝛿2

I − 1. (4.14)

This is represented with the fuchsia line in the phase diagram in Figure 4.12(b), and defines the
boundary of gapless/gapped phases in the horizontal axis. Finally, the gap at zero energy closes in a
pair of Dirac-cones for generic 𝛿2, 𝛿I inside the region R defined by the two limiting curves given by
expressions (4.13) and (4.14):

R =
{
(𝛿2, 𝛿I) : 𝛿2

2 − 𝛿
2
I < |3| ∪ 𝛿

2
I − 𝛿

2
2 < 1

}
(4.15)

The Dirac cones inside this region appear at generic positions that can be computed similarly as we
did in sections 4.4.2 and 4.4.3. We solve 𝐸3

[
𝛿2, 𝛿I, kD

2,I

]
= 0 and obtain

kD
I,2(𝛿I, 𝛿2) =

1
2𝑎0

arccos

(
𝛿2

2 − 𝛿
2
I − 1

2

)
u1, (4.16)
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+ M1(𝛿1) M2(𝛿2) MI(𝛿I)

M1(𝛿1) Gap at K±
• gapped SDC
•Shrunken
BC dist.

• gapped UnSDC
•Stretched BC dist.

•Robust flat
degeneracy

M2(𝛿2)
•SDC

•Cones at
kD

2 (𝛿2)

• new SD +UnSD
•Cones inside
R at kD

I+2(𝛿I)

MI(𝛿I)
•UnSDC

•Cones at kD
I (𝛿I)

Table 4.1: Summary of the main features of the combination of mass terms. Only the upper triangle
has been filled so as not to overload the table. Adding onlyM1(𝛿1) to the Hamiltonian, the bands
are gapped at K±. Adding onlyM2(𝛿2) to the Hamiltonian, a semi-Dirac cone (SDC) appears
and can be split into Dirac cones that move according to kD

2 (𝛿2). Adding only MI(𝛿I) to the
Hamiltonian an unfolded semi-Dirac cone (UnSDC) appears and can be split into Dirac cones that
move along kD

I (𝛿I). CombiningM1(𝛿1) +M2(𝛿2) the SDC gaps and the Berry curvature (BC) is
shrunken. CombiningM1(𝛿1) +MI(𝛿I), the UnSDC gaps, the BC is stretched and there is a robust
flat degeneracy between the bands. CombiningM2(𝛿2) +MI(𝛿I) a new SD point is found that can
be split into Dirac cones that move across the FBZ. Additionally, there is a region of parameters
where the band structure shows Dirac cones.

where kD
I,2(𝛿I, 𝛿2) represents the (𝑘𝑥 , 𝑘𝑦) components of the position of the Dirac cones as a function

of the 𝛿I, 𝛿2 parameters, 𝑎0 is the interatomic distance, taken to be unity but made explicit, and
u1 = b1/|b1 | represents the unitary vector along the direction of the first reciprocal lattice vector b1.
We obtain a general expression that encodes equations 4.9 and 4.111 In this expression, by fixing
𝛿2 = ±|𝛿I | the Dirac cones always locate at K±.

With this, we complete the final phase diagram and our study of the onsite energies and their
effects on the bulk spectrum. In the Appendix D.2 we present a low-energy theory [166] for all the
cases studied so far. In table 4.1 we present a summary of the features we have studied so far in this
lattice. Only the upper half of the table has been filled for the sake of clarity.

4.6 Dimerization technique

We present a completely different strategy for moving the Dirac cones inside the first Brillouin
zone. It is based on differentiating between the horizontal and vertical hopping amplitudes in a

1We refer the reader to Appendix E for the full discussion about the equality between the particular cases of the
expression 4.16 and equations 4.9 and 4.11, since they are written different but are analytically the same.
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breathing form 𝑡ℎ/𝑣 = 𝑡0(1 ± 𝛿D) [160, 167]. We used the breathing dimerization in the SSH chain
in Section 2.7 and in the breathing kagome model in Chapter 3. Figure 4.13(a) shows the real-space
interpretation of this choice of breathing distortion. This particular choice of breathing respects
inversion symmetry. However, there are several other choices of breathing distortions that also
preserve some of the glides or a combination of them. The usual breathing distortion accounts for
differentiating between intra- and inter-cell hoppings. In our case, we have differentiated between
horizontal and vertical hopping amplitudes in order to break both glides while preserving inversion
symmetry. In order to implement this particular breathing distortion, we add to Eq. (4.2b) the
matrix:

𝑞B(k) = 𝑡0𝛿D

(
1 − e−i𝑘1 −ei𝑘2

e−i𝑘1 1 − e−i𝑘1

)
= (1 − e−i𝑘1)𝜎0 − ei𝑘2𝜎+ + e−i𝑘1𝜎−, (4.17)

where 𝛿D is the dimerization parameter in units of the hopping amplitude 𝑡0 and 𝜎± are a
symmetric/antisymmetric linear combinations of the Pauli matrices.

Bulk spectral properties We begin by studying the effects of the dimerization on the bulk
spectrum. After diagonalizing the Hamiltonian, we find that the interval of degeneracy is the interval
|𝛿D | < 1/

√
5. For 𝛿D = −1/

√
5, we find semi-Dirac cones appearing at the S2,4 points, which are

related by inversion symmetry in reciprocal space. Upon increasing 𝛿D, these semi-Dirac cones
split into Dirac cones that move out from the S points towards the K±, for 𝛿D = 0, where the
pristine herringbone lattice is recovered. By increasing 𝛿D, the cones keep moving continuously
until they reach S1,3, also related by inversion symmetry. At these points, the Dirac cones merge
into semi-Dirac cones with the Dirac cones coming from the neighboring first Brillouin zones. The
trajectory of the cones is quasi-hyperbolic and also respects inversion symmetry. Figure 4.13(b)
shows the spectrum along the high-symmetry path for 𝛿D = (2

√
5)−1, which shows a "gapped” band

structure. However, this is not true since, for all values inside the interval of degeneracy, there is a
pair of two Dirac cones inside the first Brillouin zone, but outside the high-symmetry path of the
pristine herringbone lattice. Figure 4.13(c) shows the two Dirac cones outside of the high-symmetry
path for 𝛿D = (2

√
5)−1.

If we add any of the onsite potentials we have studied so far, the overall effect is to gap the cones
at positions along the quasi-hyperbolic curve. This translates into an arbitrary orientation and length
of the Berry curvature dipolar distribution as shown in Fig. 4.13(d). We show the trajectory of the
Dirac cones as a function of 𝛿D in Fig. 4.16.

Ribbon spectral properties We study the spectral properties of the ribbon geometries, starting
from the a1 ribbon. We study the spectrum in the limits of the degeneracy interval, present in
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min.

max.

(c)(b)
(d)

(a)

Figure 4.13: (a) Real-space interpretation of the horizontal/vertical dimerization applied to the
hoppings. The lattice sites have been represented with empty circles to denote that no onsite energy
is added to the system. (b) Spectrum of the herringbone lattice along the high-symmetry path for
both the pristine case (dashed red line) and the dimerized one (solid blue line). A gap seems to open;
however, panel (c) shows the full spectrum, displaying the Dirac cones outside the high-symmetry
path. (d) Berry curvature of the dimerized herringbone lattice after adding the 𝑀1(𝛿1) potential to
the hopping dimerization.

Figures 4.14(a.1) and 4.14(a.3). We observe that at the negative limit, 𝛿D = −1/
√

5, four in-gap
states appear totally detached from the bulk-like bands, two degenerated ones in the gap at positive
energy and another two degenerated ones in the gap at negative energy. Actually, these states are
present for 𝛿D < 0, and disappear when 𝛿D > 0. The localization of such states can be seen in the
edge projected spectral function in panels 4.14(a.2), and it is plotted explicitly along the ribbon
unit cell in panels 4.14(a.5) and 4.14(a.6). The 𝛿D-spectrum for the a1 ribbon geometry is present
in panels 4.14(a.7), for 𝑘 = 0, and 4.14(a.9), for 𝑘 = 𝜋. Both plots reveal that the spectrum is
not symmetric with respect to the change in sign of the 𝛿D parameter. Finally, the edge-projected
spectral function is applied to the 𝛿D-spectrum, revealing the localization of all states for the whole
range of 𝛿D values. These are shown in panels 4.14(a.8) and 4.14(a.10) respectively for 𝑘 = 0 and
𝑘 = 𝜋. If we cut the ribbon now along the a2 direction, we find that for negative 𝛿D, there are two
nearly flat bands around zero energy–Figure 4.14(b.1), that result from the isolation of atoms in the
edges of the ribbon, due to the negative sign of 𝛿D. These bands are present for all 𝛿D < 0, and
disappear when 𝛿D > 0. The localization of such edge states can be seen in panels 4.14(b.5). For
positive 𝛿D, the flat bands merge with the bulk ones, and edge states at non-zero energy appear, as
we can see in the detached bands around 𝑘 = 0 in panel 4.14(b.3). The localization of these states
in shown in panel 4.14(b.6) (both show the same distribution). The 𝛿D-spectrum reveals that the
energy spectrum is not symmetric with respect to the change in sign of the 𝛿D parameter. Finally,
the edge-projected spectral function is applied to the 𝛿D-spectrum, revealing the localization of
all states for the whole range of 𝛿D values. These are shown in panels 4.14(b.8) and 4.14(b.10)
respectively for 𝑘 = 0 and 𝑘 = 𝜋.
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(a.1) (b.1)(a.2) (a.3)
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Figure 4.14: (b) a1 ribbon results. (b.1) and (b.2) show the spectra of the ribbon at closing of the gap,
(b.4) and (b.6) show the edge projected spectral functions for opposite values of the onsite potential.
The projection reveals a different localization of the edge states. Panels (b.2) and (b.3) reveal the
localization of the states marked in panel (b.1). Panels (b.7) and (b.9) show the 𝛿D-spectrum at
𝑘 = 0 and 𝑘 = 𝜋 respectively. Panels (b.8) and (b.10) show the edge-projected spectral function
associated with each of the 𝛿F-spectra. Panels (c.1) to (c.10) correspond to the same information
as the panels from (b.1) to (b.10) but related to the a2 ribbon geometry. The two states shown in
panel (c.5) show the same localization, so only one is shown. Respectively: (b.1) spectrum of the
a2 ribbon with |𝛿I |1, (b.2) edge-projected spectral function for 𝛿I = −1, (b.3), (b.4) localization
of states across the ribbon, (b.5) edge-projected spectral function for 𝛿I = 1, (b.6) 𝛿I-spectrum for
𝑘 = 0, (b.7) edge-projected spectral function applied to the 𝛿I-spectrum for 𝑘 = 0, (b.8) 𝛿I-spectrum
for 𝑘 = 𝜋, (b.9) edge-projected spectral function applied to the 𝛿I-spectrum for 𝑘 = 𝜋.

Flake spectral properties Finally, in Fig. 4.15 we present the results for the dimerization technique
applied to a finite-size square flake of the herringbone lattice. The size of this flake is set to be
𝑁1 = 2𝑁2 = 10 unit cells. Panel 4.15(a) represents the 𝛿D-spectrum of the flake. The rest of
the panels present the localization of the first state of each group of bands: we distinguish bulk
state–panel 4.15(b), two different species of edge states-panels 4.15(c) and 4.15(d), and corner
modes–panel 4.15(e). We notice how the corner modes are widely spread along the system, more
precisely, extended along the edges than into the bulk.
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(a)

(c)

(d)
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Figure 4.15: (a) 𝛿D-spectrum of a herringbone lattice flake under the dimerization technique. The
red line represents the value of 𝛿D chosen to plot the states. Along the line, the state with the
lowest energy is represented. We have skipped a block of states that are also bulk and have already
presented in panel (b). Panels (b) to (e) present the different localization of the chosen states, ordered
by bulk, two species of edge, and corners respectively.

4.7 Final remarks on the perturbations

So far, we have presented the breaking of the symmetries of the lattices by means of applying
onsite potentials to the lattice sites, and by differentiating between horizontal and vertical hoppings.
We achieved the gaping of the band structure, movement of the Dirac cones and merging of them into
semi-Dirac cones at high-symmetry points. Also, we have found the unfolding of the semi-Dirac
cone into a nodal line plus a semi-Dirac cone. Finally, by mixing onsite potentials, we have gapped
out all these features and made Dirac cones cross the whole first Brillouin zone.

All these combinations of onsite potentials and/or hopping dimerization leave the spectrum
energy symmetric with respect to zero energy. This is true since for a four-band model, there exists
an invariant that as long as it remains equal to zero, the band structure is energy symmetric. This
invariant is called third Casimir invariant [168] and can be expressed as:

C3 = Tr(ℎ(k)3), (4.18)

where Tr stands for the trace operator, i.e., the sum of the diagonal elements of a matrix. For all the
cases of the onsite potentials shown so far, the Casimir invariant is zero. However, if one computes
the Casimir invariant for the combination of all three onsite potentials, we obtain:

C3(𝛿1, 𝛿2, 𝛿I) = Tr(ℎ(𝛿1, 𝛿2, 𝛿I, k)3) = 24𝛿1𝛿2𝛿I, (4.19)

which is different from zero for generic values of the parameters (𝛿1, 𝛿2, 𝛿I) and thus energy
symmetry is not recovered. In Table 4.2, we summarize the combinations of all perturbations that
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Perturbation Spectrum character Casimir invariant
M1 +M2 +MI C3 = 24𝛿1𝛿2𝛿I No energy symmetry

𝑞B(k) 0 Energy symmetry
𝑞B(k) +M1 0 Energy symmetry
𝑞B(k) +M2 0 Energy symmetry
𝑞B(k) +MI C3 = −24𝛿D𝛿I No energy symmetry

𝑞B(k) +M1 +M2 0 Energy symmetry
𝑞B(k) +M1 +MI C3 = −24𝛿D𝛿I No energy symmetry
𝑞B(k) +M2 +MI C3 = −24𝛿D𝛿I No energy symmetry

𝑞B(k) +M1 +M2 +MI C3 = −24(𝛿D − 𝛿1𝛿2)𝛿I No energy symmetry

Table 4.2: Table summarizing the possible combinations of onsite potentials and dimerization
techniques that break energy symmetry in the bulk herringbone lattice.

respect or break the energy symmetry, with the corresponding Casimir invariant associated. Finally,
we present figure 4.16 which shows the possible positions of the Dirac cones, controlled by the
different perturbations that we have covered so far in this chapter.

FBZ1

4

X

Figure 4.16: Representation of all trajectories of the Dirac cones as they move across the first
Brillouin zone as a function of the different perturbations (only showing positive values of 𝑘𝑥 , 𝑘𝑦).

4.8 Quantum simulator proposal

We propose here a realization of the herringbone lattice within the synthetic platform known
as the artificial electron lattice [33]. We use the two-dimensional electron gas hosted on the (111)
surface state of Cu, confined to a potential well designed with a set of CO molecules, which are
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placed with atomic precision at certain positions with the help of the tip of a scanning tunneling
microscope [32, 44, 45, 46, 53, 58, 129, 137]. We refer the reader to Sec. 2.3 for a full theoretical
framework on this systems. Symmetry plays a crucial role: if the space groups of the substrate and
the simulated lattice have common generators (one space group is a subgroup of the other), then the
electronic structure of the lattice is well recovered. However, if this condition is not met, describing
accurately a lattice with this technique is more difficult. In our case, we expect something similar for
our proposal. The space group of the Cu(111) substrate is 𝑝6𝑚𝑚, while for the herringbone lattice
it is 𝑝𝑔𝑔. In order to overcome this issue, we look for a unit cell choice that respects the orientation
of lattice vectors. We present the design of the muffin-tin potential that reproduces the herringbone
lattice in Fig. 4.17(a). Figure 4.17(b) shows the 8 lower bands obtained for the unit cell potential.
Only the lowest four bands come from the inner electronic levels of the artificial electronic lattice,
and so they represent the bands closer to our spectrum. Figure 4.17(c) shows bands 2&3 inside
the FBZ, and we can see how two Dirac cones appear at opposite 𝑘 points. From the discussion in
the previous sections, we can already see that the proposed unit cell will shows some dimerization
plus some onsite energies that will return to the position of the Dirac cones. To fit these bands to a
tight-binding Hamiltonian, next-nearest neighbors may be included, and even longer range hoppings,
since the nearly-free electron method does not involve atomic orbitals or species, nor chemical bonds
between them. The lattice sites are built with artificial interacting artificial atoms [58] connected by
hopping amplitudes which are always long-range and modeled by potential wells or barriers.

4.9 Conclusions

In conclusion, we have presented the spectral properties of a 2D non-symmorphic lattice. In the
bulk, we have shown that the system is characterized by two Dirac cones along a high-symmetry
line that can either gap or move within the FBZ. We also can merge these Dirac cones into a
semi-Dirac cone or, in a special case, into an unfolded semi-Dirac cone that respects the nodal line
degeneracy imposed by a glide symmetry. The moving and the merging of the Dirac cones has been
experimentally observed in black phosphorous [169, 170]: a 2D layered material characterized by
non-symmorphic symmetries.

In the ribbon and flake geometries, we have observed the appearance of boundary modes whose
localization is controlled by the perturbation parameter, both with the onsite potentials and with the
dimerization technique. The projected spectral function allows us to study the localization of the
states in the energy spectrum, but more interestingly, in the 𝛿D-spectrum, which has allowed us to
see the changes in the localization of the states.
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Figure 4.17: (a) Proposal for the unit cell of the Herringbone lattice in the nearly-free electron
simulator. (b) Energy spectrum along a high-symmetry path for the Herringbone lattice according
to the proposal. (c) Bands 2&3 of the proposal, underlining the presence of the Dirac cones outside
a high-symmetry path.

Finally, a proposal for realizing the system in a quantum simulator is presented. The low energy
band structure resembles the bulk one, presented in Figure 4.13(b), so we can guess that the fitting
of the band structure will show dimerization. Many other parameters can also be fit, like longer
range hoppings and overlap between the wavefunctions.
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CHAPTER 5

Fragile topology in electronic quantum
simulator

This chapter is devoted to the study of a topological phase dubbed “fragile” [171]. We present
in Section 5.1 an introduction to robust or stable topology, in contrast to the fragile one, and we
characterize both of them in terms of topological invariants and symmetry arguments, pointing
out the differences and similarities between those two approaches. In Section 5.2, we introduce a
particular case of a two-dimensional electronic lattice, which we call triangular Lieb lattice, that
displays a fragile topological flat band structure and study it by adding nearest-neighbors hoppings to
the tight-binding Hamiltonian. Next, in Section 5.3, we present the symmetries of the lattice and write
explicitly the representations of the symmetry operators in real and reciprocal space. Additionally,
we characterize the irreducible representations at each high-symmetry point in reciprocal space
to assign a band representation to each set of bands. We describe in Section 5.4 the diagnosis of
the fragile topology by means of both group theory and topological quantum chemistry [1] and
topological invariants, more precisely, the Wilson loop operator and its spectrum. In Section 5.5,
we study the breakdown of the bulk-boundary correspondence in fragile topological phases and
present the results for the triangular Lieb lattice as it is cut into a finite-size flake that respects the
symmetries of the lattice. Finally, in Section 5.6, we present a possible quantum simulation of the
triangular Lieb lattice in the CO/Cu(111) platform and present different arrangements of molecules
that may give rise to a fragile band structure. In this case, the diagnosis is done just by checking the
Wilson loop spectrum operator of each configuration.

5.1 Robust versus fragile topology

Topology is related to the properties of a system that are robust against small perturbations. As
mentioned in Chapter 2, the topology of a system can be diagnosed using both topological invariants
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and group theory. The underlying idea is that a topologically trivial system can always be mapped
to an atomic limit with exponentially localized Wannier functions that respect the symmetries of the
lattice. On the contrary, a topologically non-trivial system will never have a set of exponentially
localized Wannier functions that respect all the symmetries of the lattice since the topological
character is an obstruction to the definition of a smooth gauge in the reciprocal space.

However, it exists a third case where we can trivialize a set of a priori topological bands by adding
trivial degrees of freedom to it. This is the case of fragile topology, where the usual bulk-boundary
correspondence breaks down even if the system is indeed topological.

Let’s cover the differences between robust and fragile topology in terms of the tools we have used
previously for the diagnosis of the topological character of bands: topological invariants (mainly the
Wilson loop operator and its spectrum) and topological quantum chemistry.

5.1.1 Topological invariants of the fragile phase

We introduced in Sec. 2.5 several tools for diagnosing the topology of a system. We can state
that the main one is the Wilson loop operator and its spectrum since other topological invariants,
like the Chern number, can be obtained from the spectrum of this operator. Nevertheless, there
are other topological invariants that have not been introduced yet in this work, as the Z2 invariant,
which can also be diagnosed via the Wilson loop spectrum. Such invariant is related to systems
with spin-orbit coupling that show topological boundary modes when time-reversal symmetry is
present. For instance, a layer of graphene with spin-orbit coupling acts as a quantum spin Hall
system that displays robust and spin-polarized boundary states, protected by inversion and time
reversal symmetry [172]. This topological invariant can be detected via inversion eigenvalues or by
a characteristic Wilson loop spectrum. Such Wilson loop spectrum shows two windings in opposite
directions with a crossing in the middle point of the Wilson loop spectrum (usually the M point in
reciprocal space). In other words, it is as if each band had an independent Chern number of ±1, but
since they are degenerated, the total Chern number is zero, which is imposed by the conservation of
time-reversal symmetry. In terms of propagating edge states (bulk-boundary correspondence), there
are two states that counterpropagate, reflecting the difference in sign of the Chern numbers.

Back to fragile topology, the Wilson loop spectrum of the fragile bands is identical to the one
from the Z2 topology: two opposite lines in the spectrum that cross in the middle. However, here
is where the fragility of the topology comes into play: when we add a trivial band to the Wilson
loop spectrum (trivial+fragile bands), the total Wilson loop spectrum does not show any winding
anymore. In other words, the enlarged set of bands behaves as a trivial one with no winding in the
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(b)

(a)

Figure 5.1: Two possible scenarios for the diagnosis of an electronic phase showing two windings
in its Wilson loop spectrum. By adding a trivial band to these two scenarios we can distinguish
between robust topology–panel (a), or fragile topology–panel(b).

Wilson loop spectrum. Hence, the topology is thus broken, and so it is called fragile, contrary to the
robust topology, where the addition of trivial bands does not alter the topological behavior of the
first set of bands. If one studies the Wilson loop spectrum of the fragile phase with the trivial band
added, it resembles the Wilson loop spectrum of an obstructed atomic limit, displaying flat lines
outside the origin due to the displacement of the charge.

In figure 5.1, we sketch what would happen if we add a trivial band (green Wilson loop spectra
showing no winding) to a Wilson loop spectrum that is being diagnosed (red panels). The first
case–panel 5.1(a)– shows the effect of adding a trivial band to a set of bands with Z2 topology: the
trivial band does not alter the crossing of the topological bands, and thus the topology is robust. On
the contrary, the total Wilson loop of the panel 5.1(b) is trivialized after adding the trivial band, thus
revealing the fragility of the topology.

The fact that a non-trivial winding of a Wilson loop spectrum can reveal the topology of an
isolated set of two bands was introduced in Ref. [173]. These Wilson loop spectra are computed
along straight lines in the first Brillouin zone. However, in some cases (as spinful systems), these
Wilson loop spectra fail to detect the topology [174, 175]. Fragile topology is intimately related to
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topological crystalline insulators, where the spatial symmetries protect the topology of the bands.
Actually, the crossings in the Wilson loop spectra are protected by a combination of 𝐶2 symmetry
and time-reversal symmetry. If these symmetries are broken, then the Wilson loop spectra along
straight lines may not reveal the fragile topology as we have shown so far. Hence, a more exotic
Wilson loop needs to be introduced in relation to the symmetries of the crystal. We refer the reader
to references [174, 175] for the use of these Wilson loops.

Finally, another consequence of the fragile topology is that the set of fragile bands does not admit
a representation in terms of maximally localized Wannier functions that respect all the symmetries
from the system because even if the Chern number is zero, the Wilson loop spectrum displays
windings. However, after the addition of trivial degrees of freedom, this whole set of bands can be
described in terms of exponentially localized Wannier functions. On the contrary, robust topological
phases are characterized by non-trivial topological invariants that are robust, hence presenting a
Wannier obstruction that is stable against adding trivial degrees of freedom.

5.1.2 Topological quantum chemistry of fragile topology

As we introduced in Sec. 2.6, a system is said to be topological if its band representation cannot be
decomposed into a linear combination of elementary band representations with positive coefficients
(multiplicities). In the fragile topology, the band representation associated is decomposable into
elementary band representations, but at least one of the coefficients has to be necessarily negative.
This is a formal definition in order to match the irreducible representations present at the k points [171,
176]. In general, the diagnosis of topology is done by relating band representations to several atomic
limits using an addition operation. A possible example can be:

𝐸𝐵𝑅 = (𝐴1 ↑ 𝐺)1𝑎 ⊕ (𝐴2 ↑ 𝐺)2𝑏, (5.1)

where we are “adding” the atomic limit formed by a crystal orbital with 𝐴1 symmetry placed at
Wyckoff position 1𝑎, with the one formed by a crystal orbital with 𝐴2 symmetry placed at Wyckoff
position 2𝑏. This is why the addition of atomic limits gives rise to a trivial band structure since
the band representation 𝐸𝐵𝑅 is decomposed into a formal sum of elementary band representations
with positive multiplicities. In this line, we can formally define the band representation (𝐴2 ↑ 𝐺)2𝑏
as the subtraction of 𝐸𝐵𝑅 ⊖ (𝐴1 ↑ 𝐺)1𝑎. Generally, this is the simplest band representation for a
fragile phase. Actually, all fragile phases in two-dimensional lattices with time-reversal symmetry
and without spin-orbit coupling are formed by two bands [177].

The addition of a trivial band discussed in the previous section can be studied as well in the
topological quantum chemistry formalism. Given that the fragile bands do not admit a representation
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in terms of maximally localized Wannier functions, once a trivial atomic limit is added to the set
of fragile bands, the topology is broken and the whole band representation admits a description in
terms of maximally localized Wannier functions. In general, a fragile phase is usually written as the
formal difference between an obstructed atomic limit and a trivial atomic limit [177], and thus, the
addition of the trivial atomic limit results in the obstructed atomic limit. That is the reason behind
the Wilson loop spectrum we showed in Figure 5.1b.

5.2 Tight-binding model realizing a fragile phase

We present the tight-binding model we have studied in order to realize a fragile phase. The model
has been adapted from Ref. [178]. It is a tight-binding model based on the kagome pattern, already
shown in Chapter 3, but with an extra 𝑠 orbital in 1𝑎 Wyckoff position, as shown in Fig. 5.2(a). The
lattice vectors this time have been chosen as a1 = 𝑎0(1, 0) and a2 = 𝑎0/2(1,

√
3), where 𝑎0 is the

interatomic distance which is taken to be unity. The unit cell is formed by lattice sites A, B, C, and
D, located at positions (0, 0), a1/2, a2/2, (a1 + a2)/2, respectively. The lattice sites have the same
coordination number, and within the nearest-neighbor approximation, the connectivity of the lattice
sites has been chosen to be different: lattice site A has 6 connected neighboring lattice sites, while
B, C, are connected to only two lattice sites being both of A nature. Indeed, sites B, C, and D are
also nearest-neighbors in terms of distance between them, but we will consider such kind of hopping
to be of next-to-nearest neighbor nature.

Throughout this chapter we will refer to this model as the triangular Lieb lattice [44], since the
distribution of lattice sites reminds of that of such lattice but in a triangular fashion.

The nearest-neighbor Hamiltonian Ĥ0 can be written as:

Ĥ0 = −𝑡0
∑︁
𝑚𝑛

𝑎†𝑚,𝑛
(
𝑏𝑚,𝑛 + 𝑏𝑚−1,𝑛 + 𝑐𝑚,𝑛 + 𝑐𝑚,𝑛−1 + 𝑑𝑚,𝑛 + 𝑑𝑚−1,𝑛−1

)
+ h.c. (5.2)

In reciprocal space using the basis Ψ = (𝑎k, 𝑏k, 𝑐k, 𝑑k)T, the Bloch Hamiltonian matrix ℎ0(k) takes
the form:

ℎ0(𝑘) = −2𝑡0

©«

0 cos 𝑘𝑥
2 cos 1

4

(
𝑘𝑥 −
√

3𝑘𝑦
)

cos 1
4

(
𝑘𝑥 +
√

3𝑘𝑦
)

cos 𝑘𝑥
2 0 0 0

cos 1
4

(
𝑘𝑥 −
√

3𝑘𝑦
)

0 0 0

cos 1
4

(
𝑘𝑥 +
√

3𝑘𝑦
)

0 0 0

ª®®®®®®®¬
. (5.3)
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Figure 5.2: (a) Unit cell, lattice sites, direct lattice vectors and hoppings of the triangular Lieb
lattice displaying a fragile phase. The lattice site A is located at the 1a Wyckoff position and is
colored in black, while the sites B, C, and D are located at the 3c Wyckoff positions, each colored
respectively in red, blue, and green. The black dots represent the 2b Wyckoff positions, which
are unoccupied. The solid black line represents the nearest-neighbor hopping, the dotted black
one, the next-nearest-neighbor hoppings, and the dashed red line the next order in nearest-neighbor
hoppings. It has been only displayed in the A lattice site for the sake of clarity, but it has been
applied in all lattice sites. (b) First Brillouin zone, reciprocal lattice vectors, high-symmetry points,
and high-symmetry path of the triangular Lieb lattice. (c) Spectrum of the triangular Lieb lattice
with 𝑡0 = 1, 𝑡1 = 0.5, and 𝑡2 = 0.1, in units of 𝑡0.

The spectrum of this Hamiltonian is characterized by four bands: two flat bands at zero energy,
plus two energy symmetric bands at finite energy. We can add a small perturbation 𝑡1 according to
Ĥ1, which conforms the next-to-nearest neighbor hopping we introduced at the beginning of this
section:

Ĥ1 = −𝑡1
∑︁
𝑚𝑛

𝑏†𝑚,𝑛 (𝑐𝑚+1,𝑛 + 𝑐𝑚,𝑛−1 + 𝑑𝑚,𝑛 + 𝑑𝑚,𝑛−1) + 𝑐†𝑚,𝑛 (𝑑𝑚,𝑛 + 𝑑𝑚−1,𝑛) + h.c. (5.4)

If we Fourier transform Ĥ1 using the same basis as before, we obtain:

ℎ1(𝑘) = −2𝑡1

©«

0 0 0 0
0 0 cos 1

4

(
𝑘𝑥 +
√

3𝑘𝑦
)

cos 1
4

(
𝑘𝑥 −
√

3𝑘𝑦
)

0 cos 1
4

(
𝑘𝑥 +
√

3𝑘𝑦
)

0 cos 𝑘𝑋
2

0 cos 1
4

(
𝑘𝑥 −
√

3𝑘𝑦
)

cos 𝑘𝑋
2 0

ª®®®®®®®¬
. (5.5)

Finally, we add the next order in nearest-neighbor hopping as it is shown in Figure 5.2. We
compute the Hamiltonian with this hopping term applied in all lattice sites; however in the picture
we have shown only the hoppings regarding the lattice sites of species A, for the sake of clarity. The
HamiltonianH2 reads:

Ĥ2 = −𝑡2
∑︁
𝑚𝑛

𝑎†𝑚,𝑛 (𝑏𝑚,𝑛+1 + 𝑐𝑚+1,𝑛 + 𝑑𝑚−1,𝑛) + 𝑏†𝑚,𝑛 (𝑐𝑚,𝑛 + 𝑑𝑚+1,𝑛) + 𝑐†𝑚,𝑛𝑑𝑚,𝑛+1 + h.c. (5.6)
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If we Fourier transform Ĥ2 using the same basis as before, we obtain:

ℎ2(𝑘) = −2𝑡2

©«
0 𝑎 𝑏 𝑐

𝑎 0 𝑐 𝑏

𝑏 𝑐 0 𝑎

𝑐 𝑏 𝑎 0

ª®®®®®¬
, (5.7)

where 𝑎 = cos
√

3𝑘𝑦
2 , 𝑏 = cos 1

4

(
3𝑘𝑥 +

√
3𝑘𝑦

)
, and 𝑐 = cos 1

4

(
3𝑘𝑥 −

√
3𝑘𝑦

)
are real valued functions

of the crystal momentum. We write the total Hamiltonian as Ĥ = Ĥ0 + Ĥ1 + Ĥ2. The spectrum of
this Hamiltonian is presented in Fig. 5.2(c), where we have taken 𝑡0 = 1, 𝑡1 = 0.5 and 𝑡2 = 0.1, in
units of 𝑡0. The effect of theH1 Hamiltonian is to curve the two flat bands, and as long as 𝑡1 < 𝑡0,
the gaps will not close, so the two middle bands will remain detached from the other two. For
𝑡0 = 𝑡1, we recover the spectrum of a triangular lattice with an enlarged unit cell containing four
equivalent atoms. Hence, the spectrum shows degeneracies coming from the band folding caused by
the enlargement of the unit cell. Finally, the effect of theH2 Hamiltonian is to lower the energy of
the intermediate bands at the M point, as well as increase the curvature of the lowest band.

5.3 Symmetries of the triangular Lieb lattice

We study now the symmetries of the triangular Lieb lattice. The triangular Lieb lattice belongs
to the 𝑝6𝑚𝑚 space group, which has three sets of maximal Wyckoff positions. According to the
distribution of the lattice sites, we can state that the lattice site A is located at the 1𝑎 maximal
Wyckoff position. The rest of lattice sites are located at the 3𝑐 maximal Wyckoff positions, thus
leaving the 2𝑏 maximal Wyckoff positions empty. In Fig. 5.2(a) we have presented the 2b maximal
Wyckoff positions as black dots, but there are no orbitals placed there.

In order to study the symmetries of the lattice, we write the representation of the generators of
the space group, which in this case are the operations 𝐶3, 𝐶2, and 𝑚11, where the notation for the
mirror stands for the direction that is inverted, thus the direction a1 + a2. The representation for the
symmetry operators is done in the orbital space, the same as in the Hamiltonians we have shown so
far. Taking the basis (A,B,C,D), we can write:

𝜌(𝐶3) =
©«
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

ª®®®®®¬
, 𝜌(𝐶2) =

©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®®®¬
, 𝜌(𝑚11) =

©«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®®®¬
(5.8)

Once we have presented the representations for the generators in real space, we are able to characterize
the irreducible representations in reciprocal space. We follow the usual procedure, as described in
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Ref. [79]. The action in reciprocal space of the previously introduced operators can be obtained as:

𝜌k(𝐶3) =
©«
1 0 0 0
0 0 0 e−

i
2 (𝑘𝑥+

√
3𝑘𝑦)

0 1 0 0
0 0 e

i
2 (𝑘𝑥−

√
3𝑘𝑦) 0

ª®®®®®¬
, (5.9a)

𝜌k(𝐶2) =
©«
1 0 0 0
0 ei𝑘𝑥 0 0
0 0 e−

i
2 (−𝑘𝑥+

√
3𝑘𝑦) 0

0 0 0 e−
i
2 (𝑘𝑥+

√
3𝑘𝑦)

ª®®®®®¬
, (5.9b)

𝜌k(𝑚11) =
©«
1 0 0 0
0 0 e

i
2 (𝑘𝑥−

√
3𝑘𝑦) 0

0 ei𝑘𝑥 0 0
0 0 0 e−

i
2 (𝑘𝑥+

√
3𝑘𝑦)

ª®®®®®¬
. (5.9c)

Then, by evaluating the symmetry eigenvalues of these operators at each high-symmetry point for
each band, we can extract what is the associated irreducible representation. The results are tabulated
in table 5.1.

Γ K M
Band 1 𝐴1 𝐴1 𝐴1

Bands 2&3 𝐸2 𝐸 𝐵2 ⊕ 𝐵1
Band 4 𝐴1 𝐴1 𝐴1

Table 5.1: Table summarizing the irreducible representations obtained in the tight-binding model of
the triangular Lieb lattice.

In order to determine the band representation from each irreducible representation assignment,
we consult the Bilbao Crystallographic server and compare our irreducible representation assignment
with the tabulated band representations. The first and fourth bands correspond to the (𝐴1 ↑ 𝐺)1𝑎
elementary band representation. This result is very much expected since the 𝑠 orbital, due to its
spherical character, transforms trivially under all symmetry operations of the point group, and so
does the 𝐴1 irreducible representation. This band representation is one-dimensional, related to the
fact that the first and fourth bands are single and isolated.

However, we cannot assign a band representation to the irreducible representation assignment
we find for the second and third bands, which suggests that they may be topological.
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5.4 Fragile topology diagnosis in the triangular Lieb lattice

We study now how the fragile topology is encoded in the triangular Lieb lattice. We begin by
studying the irreducible representation assignment and the possible band representations present in
the Bilbao Crystallographic server. We find that the band representation (𝐴1 ↑ 𝐺)3𝑐 contains the
irreducible representations we have found plus the irreducible representation assignment of the band
representation (𝐴1 ↑ 𝐺)1𝑎. Hence, we can formally subtract the two band representations to retain
only the irreducible representations that we are interested in. As a consequence, we claim that the
band representation of the middle bands is (𝐴1 ↑ 𝐺)3𝑐 ⊖ (𝐴1 ↑ 𝐺)1𝑎. In table 5.2, we show the
irreducible representations associated with each of the elementary band representations presented
so far. The formal subtraction we have found for the band representation is done by removing the
irreducible representations at each k point.

Γ K M
(𝐴1 ↑ 𝐺)1𝑎 𝐴1 𝐴1 𝐴1
(𝐴1 ↑ 𝐺)3𝑐 𝐴1 ⊕ 𝐸2 𝐴1 ⊕ 𝐸 𝐴1 ⊕ 𝐵2 ⊕ 𝐵1

Table 5.2: Table summarizing the irreducible representations associated to the elementary band
representations found in the Bilbao Crystallographic Server.

With this, we have successfully concluded the symmetry diagnosis of fragile topology.

Now, we apply the Wilson loop operator to the band structure. Figure 5.3 shows respectively
the Wilson loop spectra of bands 1 or 4, 2 and 3, and 1, 2, and 3 altogether in panels (a), (b), and
(c)1. The first and fourth bands are topologically trivial, and we see how the associated Wannier
center (or the k-averaged Wilson loop spectrum) is 0, coinciding with the origin of the unit cell,
exactly where the 1𝑎 Wyckoff position is placed. The panel 5.3(b) represents the two windings we
expected from the fragile topology that the intermediate set of bands displays. We cannot compute
a Wannier associated with this Wilson loop due to the winding; hence, no maximally localized
Wannier function can be computed. Finally, panel 5.3(c) represents the breaking of the fragile
topology after adding to the calculation of the Wilson loop spectrum the trivial band shown in
panel 5.3(a). The result does not change if we add either the first band or the fourth one since both
of them are trivial and correspond to the same elementary band representation.

1This is a realistic example of figure 5.1(b)
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Figure 5.3: Wilson loop spectrum of (a) the first or fourth band, (b) the second and third bands,
which are degenerated and thus have to be computed together, and (c) the second and third bands
plus the first or the fourth bands. We see how the topological character is lost after the addition of a
trivial band, thus revealing the fragility of the topological character of bands 2 & 3.

5.5 The breakdown of bulk-boundary correspondence: filling
anomaly of the fragile phase

Fragile topology is deeply connected to the crystalline symmetries of the lattice. Topological
insulators whose ground state is protected by crystalline symmetries and cannot be connected to
any atomic limit are called topological crystalline insulators. However, as we claimed before, the
addition of trivial degrees of freedom makes the fragile phase adiabatically deformable to an atomic
limit, so the ground state is not topological anymore, even in the presence of crystalline symmetries.

As we commented at the beginning of this chapter, whenever a system with fragile topology
is cut into a finite-size sample, the bulk boundary correspondence breaks down, and no boundary
modes can be related to the fragile bulk topology. This is because the boundary energy spectrum is
unchanged after the addition of trivial bands that lie beneath the energy gap. However, crystalline
symmetries play an interesting role here since fragile topological phases in two dimensions, with
rotational symmetries or inversion symmetry, may display fractional charges in the corners of a
finite-size sample whenever the shape of the flake respects the symmetries of the lattice, both
rotational and/or inversion symmetries [179, 180, 181]. The origin of corner charges in fragile
topological insulators has been attributed to the filling anomaly, an obstruction to fulfill the electron
filling for charge neutrality when the crystalline symmetries are preserved [73]. This implies that if
the point group is characterized by rotations of 2𝜋/𝑛, the system displays 𝑛 degenerate in-gap states
that, at charge neutrality, are only partially occupied.

We present in the following lines the results of the triangular Lieb lattice inspired by Ref. [182].
In that work, the authors study the bulk, ribbon, and flake geometries of a single layer of graphene
with a set of adatoms forming a supercell. There, by comparing the spectra of the flake, ribbon,
and bulk geometries, they are able to find 𝐶6-symmetric in-gap states that result from the fragile
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topology of the lattice and present filling anomaly due to the crystalline symmetries of the sample.
In our case, the lattice also presents 𝐶6 symmetry, so we expect to find similar physics in our system.

Using the tight-binding model we presented in Section 5.2, we write it into a a1-ribbon geometry
and into an exact hexagonal flake. For the case of the hexagonal flake, we fix the lower edge of the
hexagon to 10 unit cells. It is formed by orbitals of A-B type, so to ensure the symmetry of the flake,
we remove the extra orbitals so that the six corners of the hexagon are formed by A orbitals. Since
the orbitals B, C, and D are placed at equivalent Wyckoff positions, we can ignore the fact that the
edges are formed by combinations of either A-B, A-C, or A-D orbitals. The total number of atomic
orbitals is 1027, after removing the extra ones.

We present the results in Figure 5.4. In the first place, we present in panel 5.4(a) the results for
the bulk, ribbon and flake geometries with only nearest-neighbour interaction, that is, 𝑡0 = 1, 𝑡1 = 0,
and 𝑡2 = 0. The left subfigure shows the bulk spectrum with the gaps shaded in yellow. The middle
subfigure presents the spectrum of the ribbon geometry with both the position of the bulk gap (again
in yellow) and the position of the ribbon gap in green. On the right margin of each of the subfigures,
we present the spectrum of the flake geometry under the same conditions. We observe that there
is a set of in-gap states in each of the gaps that do not correspond to either the bulk bands or the
ribbon bands. According to Ref. [182], we study the spatial distribution of those states to check if
they are boundary states localized in the corners. Surprisingly, this is not the case, as the states are
delocalized in the whole flake. We present in the left subfigure the states associated with eigenvalues
#271 and #757 since they correspond to the highest and lowest eigenvalues that belong to the in-gap
states.

Panels 5.4(b) and 5.4(c) correspond to the same results as panel 5.4(a) but where we have
included first the 𝑡1 and then the 𝑡2 hoppings, respectively. In neither of the cases we find in-gap
states related to the fragile topology of the bulk.

A more precise search reveals that there are indeed 𝐶6-symmetric states in the flake geometry
for the different hopping parameterswe have considered. Figure 5.5 is inspired by Ref. [182], where
we study the spatial distribution of the lowest eigenstate that presents 𝐶6-symmetric properties. We
notice how the index of the lowest eigenstate changes when we add hoppings. As in figure 5.4, each
panel corresponds to the addition of a longer-range hopping. On the left subfigure of each panel we
present the spatial distribution of the eigenstate, and on the right subfigure, we plot the square of the
absolute value (Local Density of States) of the eigenstate along the red and blue lines crossing the
flake. The blue line runs through one edge of the flake, while the red one runs from the center of
the flake towards the corner. Due to the 𝐶6 symmetry, the plots do not change regardless of the
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Figure 5.4: Bulk, ribbon and flake results on the detection of 𝐶6-symmetric in-gap states, product of
the broken bulk-boundary correspondence of the fragile topology. Each panel presents the bulk and
ribbon results compared to the flake spectrum. The width of the bulk and ribbon gap have been
highlighted in yellow and light green respectively, to keep track of the in-gap states that are not
associated to either bulk nor ribbon states. Additionally, the spatial distribution of the in-gap states
is shown, revealing that they are not connected to the fragile topology of the bulk, that remains
unperturbed in the three cases.

orientation of the red and blue lines.

5.6 Electronic quantum simulation of the fragile phase

In this section, we present the results obtained for the quantum simulation of the triangular Lieb
lattice based on the CO/Cu(111) platform. As we presented in section 2.3, the electronic quantum
simulator based on muffin-tin potentials is a good platform to reproduce almost any two-dimensional
electronic lattice and study experimentally those features that can be predicted using a tight-binding
model.

We show the different muffin-tin potentials we have designed to study the triangular Lieb lattice.
The procedure for building those potentials is the same as we introduced in the guide present in
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Figure 5.5: Spatial distribution across the flake and along certain paths of the lowest state that
preserves the 𝐶6 symmetry of the lattice. The order of the eigenvalue is shown since it is different
for each case. Only in the first plot, the eigenvalue of the associated eigenstate is zero, while for the
rest, the associated eigenvalues depart from zero. Additionally, the states have been plotted along
two lines that cross the flake. For the sake of clarity, the plot of the local density of states has been
colored according to the color of the path.

section 3.5.1. We begin by blocking the empty Wyckoff positions and leaving the occupied ones
free. This general procedure ensures that artificial atoms will be created around the occupied lattice
sites. For the particular case of the triangular Lieb lattice, we need to block the 2𝑏 Wyckoff position
and reduce, at the same time, the connectivity of the 3𝑐 Wyckoff positions, right where lattice sites
𝐵,𝐶, 𝐷 lie. As we mentioned in Section 2.3, the main restriction for building the potentials is that
the number of molecules must be as small as possible to ensure the stability of the experiment. We
will also discriminate between different choices of unit cells depending on the resolution of the band
gaps. In the tight-binding model, we have a certain freedom in the width of the band gap since
we can manipulate the hopping parameters arbitrarily. However, in the muffin-tin experiment, the
hopping amplitudes are controlled by the width and shape of the potential wells, which depend
on how they are built. Hence, all possible arrays of molecules may correspond to different sets of
hopping parameters corresponding all to the same tight-binding model. At the same time, since
the number of molecules also changes the size of the unit cell, the real space parameters of each
choice are different, and so are the reciprocal spaces of each configuration. Hence, to reproduce the
muffin-tin results, we must properly define the lattice vectors and sites, together with the hopping
parameters.

Figure 5.6 shows the different arrangements of molecules we have studied in order to realize
the triangular Lieb lattice in the CO/Cu(111) quantum simulator. In order to block the 2𝑏 Wyckoff
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position, we place sets of molecules in this position. They are positioned in a triangular shape
since the 2𝑏 Wyckoff position is surrounded by 3 Wyckoff positions (the 3𝑐 ones). In this way, by
placing a triangular set of molecules at the 2𝑏 Wyckoff position, we block such Wyckoff position
and reduce the connectivity of the 3𝑐 Wyckoff positions. In panel 5.6(a), we present the first set of
molecules in the left subfigure. This is the set with the minimal amount of molecules that display a
spectrum–middle subfigure– that is similar to the one obtained with the tight-binding model. The
right subfigure shows the corresponding Wilson loop spectra of bands 1, 2 & 3, and 1&2& 3 from
bottom to top. We can appreciate how bands 2&3 are not fragile since there is no winding. This is
quite interesting since this choice may suggest that the fragile phase may vanish for a certain set of
parameters.

We continue with panels 5.6(b) and 5.6(c), where we show other possible configurations with
more molecules. For the two situations, we observe that the energy gap between bands 2&3 and 4 is
very small at Γ. This is not favorable for our purposes since bands 2&3 have to be well separated
from the rest. Nevertheless, the windings of the Wilson loop spectra seem to yield a fragile phase.

Finally, in panel 5.6(d), we show the last configuration where we recover an energy spectrum
that resembles quite closely the tight-binding result. The main difference is on the path KΓ, where
the crossing between bands 2&3 seems to have displaced from the tight-binding spectrum. The
distribution of the gaps is quite clear, so the sets of bands are well isolated from the rest. The Wilson
loop spectra of this configuration are strikingly close to the ones obtained with the tight-binding
model, revealing a clear winding with the crossing at the M point. Finally, the addition of the
first band transforms the fragile Wilson loop spectrum into the usual Wilson loop spectrum of an
obstructed atomic limit, right as we claimed at the beginning of this Chapter.

5.7 Conclusions and outlook

In this Chapter, we have presented the research we have done around the fragile phase of a
two-dimensional electronic lattice called the triangular Lieb lattice. First, we obtain the energy
spectrum from a tight-binding perspective using different orders of nearest-neighbor hoppings. From
the four bands that form the spectrum, the second and third ones are isolated from the rest, so we are
able to characterize them using topological invariants and topological quantum chemistry. From
both perspectives, this set of two bands realizes a fragile topological phase characterized, first, by a
winding of the Wilson loop spectrum that breaks down after the addition of a trivial band below the
gap and second, by the formal subtraction of elementary band representations of the space group.
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Figure 5.6: Posible configurations of CO molecules that realize the triangular Lieb lattice in the
CO/Cu(111) quantum simulator. Each panel shows the array of molecules on the left panel, the
spectrum in the middle and the Wilson loop operator spectrum of bands 1, 2 & 3, and 1&2& 3 from
bottom to top.

The triangular Lieb lattice belongs to a space group with six-fold rotations. These crystalline
symmetries are responsible for the appearance of electronic states that respect the symmetry of
the lattice when it is cut into finite-size samples, like ribbons and flakes. Inspired by Ref. [182],
we build both ribbon and hexagonal flake geometries and study conjointly their spectra. We find
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extra in-gap states that do not belong to the bulk or the ribbon spectra but are unrelated to the
six-fold symmetry operator. One possible solution may be to study a flake that preserves the six-fold
rotation but breaks any other symmetry in the lattice, like mirror symmetries. At the same time, the
addition of longer-range hoppings may help open an energy gap since, by inspection, we have found
electronic states that respect the six-fold symmetry operator that do not lie in the energy gap [183].

Finally, we study the triangular Lieb lattice in the CO/Cu(111) quantum simulator and present
several arrangements of molecules that may give rise to a fragile phase. We characterize them using
the Wilson loop operator since it is the most direct way to diagnose fragile topology. We do find
fragile configurations with a reasonably low number of molecules that resemble quite closely the
tight-binding spectrum.

We believe that by the addition of longer-range hoppings or by changing the shape of the
finite-size flake, the proposed tight-binding model may keep the fragility of the topological phase
while allowing a more easy detection of the six-fold in-gap states. At the same time, different orbital
species can be included both in the tight-binding model and engineered into the muffin-tin potentials,
in order to increase the complexity of the model and have access to more parameters.
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APPENDIX A

Coefficients for the Fourier transform of
muffin-tin potentials

In Sec. 2.3 two different potentials were introduced to model the repulsive/attractive nature of
the features placed on top of the surfaces in the quantum simulator platforms. Here we present the
detailed analytic derivation of the coefficients of the Fourier transform of the potentials.

A.1 Repulsive potential of CO molecules

We begin by taking Eq. 2.15b and applying it to Eq. 2.38:

𝑉CO
G =

𝑉0

𝐴UC

∫
r<𝑎

e−iG·r𝑑r (A.1)

=
𝑉0

𝐴UC

∫ 𝑎

0

∫ 2𝜋

0
e−i|G|𝑟 cos \d\𝑟d𝑟 (A.2)

The integral over the \ angle is the definition of Bessel function of the first kind and order zero
(Bessel’s first integral):

𝑉CO
G =

2𝜋𝑉0

𝐴UC

∫ 𝑎

0
𝐽0( |G|𝑟)𝑟d𝑟 (A.3)

=
2𝜋𝑉0𝑎

𝐴UC |G|
𝐽1( |G|𝑎) (A.4)

A.2 Attractive potential of In adatoms (Gaussian)

We begin by rearranging Eq. 2.41a into an exponential expression and applying Eq. 2.15b to it.
Renaming 𝑑 =FWHM:

𝑉
In,G
G =

𝑉0

𝐴UC

∫
exp

(
−4 ln 2

( 𝑟
𝑑

)2
)

exp (−iG · r) 𝑑r (A.5)
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=
𝑉0

𝐴UC

∫ ∞

0
𝑟 exp

(
−4 ln 2

( 𝑟
𝑑

)2
) ∫ 2𝜋

0
exp (−i|G|𝑟 cos \) 𝑑\𝑑𝑟 (A.6)

=
2𝜋𝑉0

𝐴UC

∫ ∞

0
𝑟 exp

(
−4 ln 2

( 𝑟
𝑑

)2
)
𝐽0( |G|𝑟)d𝑟 (A.7)

In this last expression, we change the variables to:

𝐾 =
2
√

ln 2
𝑑

, 𝑡 = 2
√

ln 2
𝑟

𝑑
= 𝐾𝑟, 𝑟 =

𝑡

𝐾
, d𝑟 =

d𝑡
𝐾
, 𝑟d𝑑𝑟 =

1
𝐾2 𝑡d𝑡 (A.8)

Hence,

𝑉
In,G
G =

2𝜋𝑉0

𝐴UC𝐾2

∫ ∞

0
𝑡 exp

(
−𝑡2

)
𝐽0

(
|G|
𝐾
𝑡

)
d𝑡 (A.9)

Integrating by parts we have:
𝑢 = 𝐽0

(
|G|
𝐾
𝑡

)
⇒ d𝑢 = − |G|

𝐾
𝐽1

(
|G|
𝐾
𝑡

)
d𝑡

d𝑣 = 𝑡 exp
(
−𝑡2

)
d𝑡 ⇒ 𝑣 = −1

2 exp(−𝑡2)
(A.10)

𝑉
In,G
G =

2𝜋𝑉0

𝐴UC𝐾2

[(
−1

2
exp(−𝑡2))𝐽0

(
|G|
𝐾
𝑡

) ����∞
0
−

∫ ∞

0

1
2

exp(−𝑡2) |G|
𝐾
𝐽1

(
|G|
𝐾
𝑡

)
d𝑡

)]
(A.11)

The first term of the right-hand side is -1/2 and the second term can be rearranged using the following
property:

𝛼𝐽1(𝛼𝑡) =
∫ 𝛼

0
𝑎𝑡𝐽0(𝑎𝑡)d𝑎. (A.12)

Hence, by defining 𝛼 = |G|/𝐾:

𝑉
In,G
G =

2𝜋𝑉0

𝐴UC𝐾2

(
1
2
− 1

2

∫ ∞

0
exp(−𝑡2)𝛼𝐽1 (𝛼𝑡) d𝑡

)
(A.13)

=
2𝜋𝑉0

𝐴UC𝐾2

(
1
2
− 1

2

∫ ∞

0
exp(−𝑡2)

∫ 𝛼

0
𝑎𝐽0(𝑎𝑡)d𝑎d𝑡

)
(A.14)

=
2𝜋𝑉0

𝐴UC𝐾2

(
1
2
− 1

2

∫ 𝛼

0
𝑎

[∫ ∞

0
𝑡 exp(−𝑡2)𝐽0(𝑎𝑡)d𝑡

]
d𝑎

)
(A.15)

In A.9 we can define 𝑓 (𝛼) as:

𝑓 (𝛼) =
∫ ∞

0
𝑡 exp

(
−𝑡2

)
𝐽0 (𝛼𝑡) d𝑡 ⇒ 𝑉

In,G
G =

2𝜋𝑉0

𝐴UC𝐾2 𝑓

(
|G|
𝐾

)
(A.16)

We can see how the expression in square brackets in A.15 is precisely the definition of 𝑓 (𝑎). Hence
we can write an integral equation for 𝑓 (𝑎):

𝑓 (𝛼) = 1
2
− 1

2

∫ 𝛼

0
𝑎 𝑓 (𝑎)d𝑎, for 𝑓 (0) = 1

2
(A.17)
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Solving for 𝑓 (𝛼) we obtain:

𝑓 (𝛼) = −1
2

exp
(
−𝛼

2

4

)
(A.18)

Substituting back the constants we obtain:

𝑉
In,G
G =

2𝜋𝑉0

𝐴UC𝐾2

(
1
2

exp

(
−1

4

(
|G|
𝐾

)2
))

=
𝜋𝑉0𝑑

2

4𝐴UC ln 2
exp

(
−𝑑

2 |G|2
16 ln 2

)
(A.19)
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APPENDIX B

Interpretation of the kagome lattice as
stacked SSH chains

A possible interpretation of the (breathing) kagome lattice in terms of SSH chains is given in
Figure B.1. Each unit cell is decomposed as an SSH unit cell plus an extra orbital, which acts
as an intermediate between the SSH chains. The breathing distortion is precisely the breathing
of the SSH chain, plus a breathing interaction with such extra orbital. This distortion can be
also applied in the bulk, where the Hamiltonian present in Eq. (3.2) can be decomposed into
ℎ(k) = ℎSSH(k) ⊕ ℎcoupling(k). Clearly, this interpretation is done in two dimensions, even though
the SSH model is done in one dimension.

N=1

N=2

N=3

N=4

N=5

N=6

Figure B.1: SSH interpretation of a finite size flake of the breathing kagome lattice. The chains are
formed by the green and blue atoms, while the red one acts as an intermediate between chains.

133





APPENDIX C

Destructive interference interpretation of the
corner modes

A different way to interpret the zero modes in the breathing kagome lattice is by considering
them as due to destructive interference [184, 185, 186]. To illustrate this approach, we will follow
Ref. [184]: we start by considering the case of a one-dimensional (1D) bipartite lattice with two
sites in the unit cell, A and B, such as the SSH chain. When considering a Hamiltonian in which the
A-sites only couple to one B site, it is possible to find a wave function that completely localizes on
the A sublattice due to destructive interference.

In this perspective, the non-trivial phase of the SSH model can be understood in terms of
destructive interference. To describe the zero-energy modes of the breathing kagome lattice within
this approach, we will start by analysing destructive interference in a SSH-like model. In fact, the
model of destructive interference admits an analytical solution if the chain starts and ends with the
same type of lattice site, e.g. A [186, 187].

In order to find the zero-energy wave function that interferes destructively on the B sublattice,
we use the ansatz:

|𝜓⟩ = 𝑁𝑖
𝑀∑︁
𝑚

𝑟𝑚𝑖 𝑐
†
A𝑖 ,𝑚
|0⟩, (C.1)

where 𝑟 is a complex number describing the wave function decay, 𝑁𝑖 a normalization constant, 𝑀
the total number of unit cells, and 𝑐†A𝑖 ,𝑚

creates an electron on an A-site of cell 𝑖.

If the A sites only couple to the B sites and vice versa, the Hamiltonian for this 1D lattice with
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open boundaries reads

H1D =

©«

𝑒A 𝑡A,B 0 0 0
𝑡
†
A,B 𝑒B 𝑡B,A 0 0
0 𝑡

†
B,A 𝑒A · · · 0

0 0
...

. . . 𝑡B,A

0 0 0 𝑡
†
B,A 𝑒A

ª®®®®®®®®¬
, (C.2)

where 𝑒A,(B) is the on-site energy for the A (B) lattice site and, 𝑡A,B and 𝑡B,A are the intra- and
inter-hopping terms between the lattice sites. We can rewrite Eq. (C.1) as

|𝜓⟩ =
(
1, 0, 𝑟, 0, 𝑟2, 0, 𝑟3, . . .

)T
, (C.3)

localized only on the A sites, where we have omitted the normalization factor. The action of
Hamiltonian (C.2) on this wave function is

H1D |𝜓⟩ = (C.4)(
𝑒A, 𝑡

†
A,B + 𝑟𝑡B,A, 𝑟𝑒A, 𝑟 (𝑡†A,B + 𝑟𝑡B,A), . . . , 𝑒A𝑟

𝑀
)T
.

From this equation, it is clear that if 𝑡†A,B + 𝑟𝑡B,A = 0, the wave function (C.3) is an eigenstate of H1D

with eigenvalues 𝑒A. It has the property that the weight on the B sites is 0 and there is a decaying
wave function with energy 𝑒A only on the A sites. We find 𝑟 = | − 𝑡†A,B/𝑡B,A |, and this mode is
localized on the left of the chain if 𝑟 < 1, and on the right if 𝑟 > 1. In the case of the SSH model,
𝑒A = 𝑒B = 0, 𝑡A,B = 𝑡𝑎 and 𝑡B,A = 𝑡𝑏. We find 𝑟 = | − 𝑡𝑎/𝑡𝑏 |, leading to the well-known localization
of the zero mode on one side of the lattice [186]; this is true if the unbroken cell is on the right edge,
the condition is reversed if the unbroken cell is on the opposite edge. A sketch of this wave function
is given in Fig. C.1(a). This feature seems to indicate that once the lattice with open boundaries is
“long enough", these exact solutions of the wave function can be used to describe the zero modes of
the SSH (even though in the SSH model the sites at the beginning and end of the chain are different).
Note that these zero modes are now only present when 𝑡𝑎 < 𝑡𝑏 (the non-trivial phase) because we can
then map the zero mode of the SSH model to the one at the end of the chain discussed above. This
cannot be done in the trivial phase, where the eigenstate is not starting at the end of the chain [186].
In this perspective, one does not need to invoke chiral symmetry and also when the onsite energy of
a site is increased to 𝐸 = 𝜖 [20], there will still be these exponentially decaying modes at energy 𝜖 .

We now follow the analysis in terms of destructive interference to the breathing kagome
model [185]; the two-dimensional nature of the wave function leads to two indices 𝑚 and 𝑚′ in
Eq. (C.1). The wave function is therefore

|𝜓⟩ = 𝑁𝑖
𝑀∑︁
𝑚

𝑀 ′∑︁
𝑚′
𝑟𝑚𝑖 𝑟

′𝑚′
𝑖 𝑐

†
A𝑖 ,𝑚,𝑚

′ |0⟩. (C.5)
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The Hamiltonian for the breathing kagome lattice can be expressed as parallel 1D chains coupled
to each other via the intermediate site C, Fig. C.1(b). The Hamiltonian for this breathing kagome
rhombus reads

𝐻𝑀,𝑀 ′ =

©«

H1D tAB,C 0 0 0
t†AB,C eC tC,AB 0 0

0 t†C,AB H1D · · · 0

0 0
...

. . . tC,AB

0 0 0 t†C,AB H1D

ª®®®®®®®®¬
, (C.6)

where H1D is the same as for Eq. (C.2) with 𝑡A,B = 𝑡𝑎 and 𝑡B,A = 𝑡𝑏, eC is the matrix of the onsite
energy of the site C, and tAB,C and tC,AB are the rectangular matrices containing the hopping
elements connecting the 1D-chains to the C sites. These are given by

tAB,C =

©«

𝑡𝑎 0 0 0
𝑡𝑎 0 0 0
0 𝑡𝑎 0 0
0 𝑡𝑎 · · · 0

0
...

. . . 0
0 0 0 𝑡𝑎

ª®®®®®®®®®®¬
, (C.7a)

and

t†C,AB =

©«

𝑡𝑏 0 0 0
0 𝑡𝑏 0
0 𝑡𝑏 0 0

0
...

. . . 0
0 0 0 𝑡𝑏

0 0 0 𝑡𝑏

ª®®®®®®®®®®¬
. (C.7b)

In this way, the coupling between A and B or C is alternating 𝑡𝑎 and 𝑡𝑏. Using the same analysis as
before, we observe that 𝑡𝑎 + 𝑟𝑡𝑏 = 0 and 𝑡𝑎 + 𝑟′𝑡𝑏 = 0 for these exact wave functions, leading to

|𝜓⟩ = 𝑁𝑖
𝑀∑︁
𝑚

𝑀 ′∑︁
𝑚′

(
−𝑡𝑎
𝑡𝑏

)𝑚 (
−𝑡𝑎
𝑡𝑏

)𝑚′
𝑐
†
A𝑖 ,𝑚,𝑚

′ |0⟩. (C.8)

The real amplitude of such a wave function is shown in Fig. C.1(b). The rhombus-shaped flake,
adopted from Ref. [106], allows to have the same sublattice in each corner, in order to follow the
same approach as in the SSH model explained previously. The three lower panels of Fig. C.1(b)
show the amplitude of the wave function along three different directions inside the flake. Along
𝑚 and 𝑚′ the weight of the wave function in the sublattice different from the one in the corner is
always zero. The case of 𝑚 = 𝑚′ is a consequence of the geometry, since we only find sublattice
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(b)

(a)

BBA BA B B AAA

A B
C

m

m'

m=m'
t bt a

m=m'

m'

m

Figure C.1: Destructive interference models. (a) In the case of the 1D chain, the probability is
finite only in the A sublattice site and decays as (−𝑡𝑎/𝑡𝑏)2𝑛, where 𝑛 is the unit-cell index. (b) The
breathing kagome rhombus. Due to destructive interference, there is a wave function that has zero
amplitude on the B and C sublattices and a finite amplitude on the A, where the probability decays
as (−𝑡𝑎/𝑡𝑏) (2𝑚

′) along 𝑚 (and analogously along 𝑚′), whereas it decays as (−𝑡𝑎/𝑡𝑏)2(𝑚+𝑚
′) along

𝑚 + 𝑚′. In all the panels, we have set 𝑡2 = 2𝑡1.

138



sites of the same kind as in the corner. Within this setup, we can generalize the hopping parameters
connecting the sites by making them different. However, this will only add to the complexity of
the model without changing the physics. The key point is that we can always find a solution for a
decaying wave function with coefficients determined analytically.

ta
tb

zero mode preserving
zero mode lifting

C

BA

C

BA

Figure C.2: Set of hopping terms that lift (a) or preserve (b) the corner modes pinned to zero energy.
Although they are only shown on the lower-left corner of the flake, these hopping terms can be
established between any 𝑚 and 𝑚′ layers.

A more interesting approach is to determine which additional hopping terms preserve the corner
mode at zero energy. We consider all the hopping parameters indicated in Fig. C.2 (see appendix
for the explicit expression of the Hamiltonian for a lattice containing 21 sites). For simplicity, we
show in Fig. C.2 only the hopping terms between the first three unit cells in the bottom left corner of
the flake, but they extend to all the lattice. It turns out from the analysis on this lattice (in which
we placed an A site in each of the corners of this breathing kagome rhombus [185]) that only the
hopping terms indicated in green preserve the energy of the corner modes, whereas the hopping
terms in red change the energy of the corner modes (i.e., there is no consistent solution when we
include the red hopping terms). To summarize: all hopping terms between the sites B and C preserve
the corner mode energy and additionally one can connect A and B and A and C in the direction
𝑚 and 𝑚′, respectively (in the same way as in the SSH chain). However, one cannot connect an
A site with another site (A, B or C) when these sites are in different chains: 𝑚 and 𝑚′ are both
different. This analysis is fully consistent with the numerical analysis for a lattice containing 630
sites presented in Figs. 3.4 and. 3.5. Note that in order to have zero modes in the triangle (with a
different sublattice in each corner), we can only have the next-nearest neighbor hopping terms along
𝑚 (connecting A to B) or 𝑚′ (connecting A to C); all other perturbations will remove the zero mode
since they connect the sublattice of the corner mode with a different site and hence the destructive
interference is gone. We note in passing that the destructive interference method has been recently
extended to the case of lattice systems characterized by a non-Hermitian Hamiltonian [188].

139



Now we show an explicit calculation for a similar kagome lattice as shown in Fig. C.2 in the
previous appendix, consisting of 21 sites to keep the equation concise.

A solution for the equation 𝐻𝜓 = 𝑒A𝜓 is found if 𝑡𝑚′BA = 𝑡𝑚𝑚
′

BA = 𝑡𝑚𝑚
′′

BA = 𝑡𝑚
′

AB = 𝑡𝑚CA = 𝑡𝑚AC = 𝑡𝑚AA =

𝑡𝑚
′

AA = 𝑡𝑚𝑚
′

AA = 𝑡𝑚𝑚
′

AB = 𝑡𝑚𝑚
′′

AB = 𝑡𝑚𝑚
′

AC = 𝑡𝑚𝑚
′′

AC = 𝑡𝑚𝑚
′

CA = 𝑡𝑚𝑚
′′

CA = 0. These hopping values are indicated
by in green in Fig. C.2. In the following, we decompose the 21 × 21 Hamiltonian matrix 𝐻 into a
set of 9 𝑀 matrices of dimension 7 × 7:©«

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀32

𝑀13 𝑀32 𝑀33

ª®®®¬𝜓 = 𝜒, (C.9)

where each matrix is defined as:

𝑀11 =

©«

𝑒A −𝑡AB −𝑡𝑚AA −𝑡𝑚AB 0 −𝑡AC −𝑡𝑚AC
−𝑡AB 𝑒B −𝑡BA −𝑡𝑚BB −𝑡𝑚BA −𝑡BC −𝑡𝑚BC
−𝑡𝑚AA −𝑡BA 𝑒A −𝑡AB −𝑡𝑚AA −𝑡𝑚CA −𝑡AC

−𝑡𝑚AB −𝑡𝑚BB −𝑡AB 𝑒B −𝑡BA −𝑡𝑚CB −𝑡BC

0 −𝑡𝑚BA −𝑡𝑚AA −𝑡BA 𝑒A 0 −𝑡𝑚CA
−𝑡AC −𝑡BC −𝑡𝑚CA −𝑡𝑚CB 0 𝑒𝐶 −𝑡CC

−𝑡𝑚AC −𝑡𝑚BC −𝑡AC −𝑡BC −𝑡𝑚CA −𝑡CC 𝑒C

ª®®®®®®®®®®®®®¬
, (C.10a)

𝑀12 =

©«

0 −𝑡𝑚′AA −𝑡𝑚′AB 0 0 0 −𝑡𝑚′AC
0 −𝑡𝑚′BA −𝑡𝑚′BB −𝑡𝑚𝑚′′BA 0 0 −𝑡𝑚′BC
−𝑡𝑚AC −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′AB −𝑡𝑚′AA −𝑡𝑚′AB 0 −𝑡𝑚𝑚′AC
−𝑡𝑚BC −𝑡𝑚𝑚′BA −𝑡𝑚𝑚′BB −𝑡𝑚′BA −𝑡𝑚′BB −𝑡𝑚𝑚′′BA −𝑡𝑚𝑚′BC
−𝑡AC 0 −𝑡𝑚𝑚′′AB −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′AB −𝑡𝑚′AA 0

0 −𝑡CA −𝑡𝑚′CB −𝑡𝑚𝑚′′CA 0 0 −𝑡𝑚′CC
−𝑡CC −𝑡𝑚𝑚′CA −𝑡CB −𝑡CA −𝑡𝑚𝑚′CB −𝑡𝑚𝑚′′CA −𝑡𝑚𝑚′CC

ª®®®®®®®®®®®®®¬
, (C.10b)

𝑀13 =

©«

0 0 0 0 0 0 0
0 0 0 0 0 0 0
−𝑡𝑚′AC 0 0 0 0 0 0
−𝑡𝑚′BC 0 0 0 0 0 0
−𝑡𝑚𝑚′AC −𝑡𝑚′AC 0 0 0 0 0

0 0 −𝑡𝑚′CA 0 0 0 0
−𝑡𝑚′CC 0 −𝑡𝑚𝑚′′AC −𝑡𝑚𝑚 (3)CB −𝑡𝑚′CA 0 0

ª®®®®®®®®®®®®®¬
, (C.10c)
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𝑀21 =

©«

0 0 −𝑡𝑚AC −𝑡𝑚BC −𝑡AC 0 −𝑡CC

−𝑡𝑚′AA −𝑡𝑚′BA −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′BA 0 −𝑡CA −𝑡𝑚𝑚′CA
−𝑡𝑚′AB −𝑡𝑚′BB −𝑡𝑚𝑚′AB −𝑡𝑚𝑚′BB −𝑡𝑚𝑚′′AB −𝑡𝑚′CB −𝑡CB

0 −𝑡𝑚𝑚′′BA −𝑡𝑚′AA −𝑡𝑚′BA −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′′CA −𝑡CA

0 0 −𝑡𝑚′AB −𝑡𝑚′BB −𝑡𝑚𝑚′AB 0 −𝑡𝑚𝑚′CB
0 0 0 −𝑡𝑚𝑚′′BA −𝑡𝑚′AA 0 −𝑡𝑚𝑚′′CA
−𝑡𝑚′AC −𝑡𝑚′BC −𝑡𝑚𝑚′AC −𝑡𝑚𝑚′BC 0 −𝑡𝑚′CC −𝑡𝑚𝑚′CC

ª®®®®®®®®®®®®®¬
, (C.10d)

𝑀22 =

©«

𝑒C 0 −𝑡𝑚𝑚′′CB −𝑡𝑚𝑚′CA −𝑡CB −𝑡CA 0
0 𝑒A −𝑡AB −𝑡𝑚AA −𝑡𝑚AB 0 −𝑡AC

−𝑡𝑚𝑚′′CB −𝑡AB 𝑒B −𝑡BA −𝑡𝑚BB −𝑡𝑚BA −𝑡BC

−𝑡𝑚𝑚′CA −𝑡𝑚AA −𝑡BA 𝑒A −𝑡AB −𝑡𝑚AA −𝑡𝑚CA
−𝑡CB −𝑡𝑚AB −𝑡𝑚BB −𝑡AB 𝑒B −𝑡BA −𝑡𝑚CB
−𝑡CA 0 −𝑡𝑚BA −𝑡𝑚AA −𝑡BA 𝑒A 0

0 −𝑡AC −𝑡BC −𝑡𝑚CA −𝑡𝑚CB 0 𝑒C

ª®®®®®®®®®®®®®¬
, (C.10e)

𝑀23 =

©«

−𝑡𝑚𝑚′CC −𝑡𝑚′CC 0 −𝑡𝑚𝑚′′BC −𝑡𝑚𝑚′′AC −𝑡𝑚𝑚 (3)CB −𝑡𝑚′CA
−𝑡𝑚AC 0 −𝑡𝑚′AA −𝑡𝑚′AB 0 0 0
−𝑡𝑚BC 0 −𝑡𝑚′BA −𝑡𝑚′BB −𝑡𝑚𝑚′′BA 0 0
−𝑡AC −𝑡𝑚AC −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′AB −𝑡𝑚′AA −𝑡𝑚′AB 0
−𝑡𝑚BC −𝑡𝑚𝑚′BA −𝑡𝑚𝑚′BB −𝑡𝑚′BA −𝑡𝑚′BB −𝑡𝑚𝑚′′BA 0
−𝑡𝑚CA −𝑡AC 0 −𝑡𝑚𝑚′′AB −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′AB −𝑡𝑚′AA
−𝑡CC 0 −𝑡CA −𝑡𝑚′CB −𝑡𝑚𝑚′′CA 0 0

ª®®®®®®®®®®®®®¬
, (C.10f)

and

𝑀31 =

©«

0 0 −𝑡𝑚′AC −𝑡𝑚′BC −𝑡𝑚𝑚′AC 0 −𝑡𝑚′CC
0 0 0 0 −𝑡𝑚′AC 0 0
0 0 0 0 0 −𝑡𝑚′CA −𝑡𝑚𝑚′′AC
0 0 0 0 0 0 −𝑡𝑚𝑚 (3)CB
0 0 0 0 0 0 −𝑡𝑚′CA
0 0 0 0 0 0 0
0 0 0 0 0 0 0

ª®®®®®®®®®®®®®¬
, (C.10g)
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𝑀32 =

©«

−𝑡𝑚𝑚′CC −𝑡𝑚AC −𝑡𝑚BC −𝑡AC −𝑡BC −𝑡𝑚CA −𝑡CC

−𝑡𝑚′CC 0 0 −𝑡𝑚AC −𝑡𝑚BC −𝑡AC 0
0 −𝑡𝑚′AA −𝑡𝑚′BA −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′BA 0 −𝑡CA

−𝑡𝑚𝑚′′BC −𝑡𝑚′AB −𝑡𝑚′BB −𝑡𝑚𝑚′AB −𝑡𝑚𝑚′BB −𝑡𝑚𝑚′′AB −𝑡𝑚′CB
0 −𝑡𝑚𝑚′′BA −𝑡𝑚′AA −𝑡𝑚′BA −𝑡𝑚𝑚′AA −𝑡𝑚𝑚′′CA 0

−𝑡𝑚𝑚 (3)CB 0 0 −𝑡𝑚′AB −𝑡𝑚′BB −𝑡𝑚𝑚′AB 0
−𝑡𝑚′CA 0 0 0 −𝑡𝑚𝑚′′BA −𝑡𝑚′AA 0

ª®®®®®®®®®®®®®¬
, (C.10h)

𝑀33 =

©«

𝑒C −𝑡CC −𝑡𝑚𝑚′CA −𝑡CB −𝑡CA −𝑡𝑚𝑚′CB −𝑡𝑚𝑚′′CA
−𝑡CC 𝑒C 0 −𝑡𝑚𝑚′′CB −𝑡𝑚𝑚′CA −𝑡CB −𝑡CA

−𝑡𝑚𝑚′CA 0 𝑒A −𝑡AB −𝑡𝑚AA −𝑡𝑚AB 0
−𝑡CB −𝑡𝑚𝑚′′CB −𝑡AB 𝑒B −𝑡BA −𝑡𝑚BB −𝑡𝑚BA
−𝑡CA −𝑡𝑚𝑚′CA −𝑡𝑚AA −𝑡BA 𝑒A −𝑡AB −𝑡𝑚AA
−𝑡𝑚𝑚′CB −𝑡CB −𝑡𝑚AB −𝑡𝑚BB −𝑡AB 𝑒B −𝑡BA

−𝑡𝑚𝑚′′CA −𝑡CA 0 −𝑡𝑚BA −𝑡𝑚AA −𝑡BA 𝑒A

ª®®®®®®®®®®®®®¬
. (C.10i)

The vector ansatz for the localized state 𝜓 reads

𝜓 = (1 0 𝑟1 0 𝑟2 0 0 0 𝑟3 0 𝑟4 0 𝑟5 0 0 0 𝑟6 0 𝑟7 0 𝑟8)T ,
(C.11)

and finally, the action of the system Hamiltonian of the ansatz vector is given by 𝜒 = (𝜒1 𝜒2 𝜒3)T:

𝜒1 =

©«

𝑒A − 𝑟3𝑡
𝑚′

AA − 𝑟1𝑡
𝑚
AA

−𝑡AB − 𝑟3𝑡
𝑚′

BA − 𝑟2𝑡
𝑚
BA − 𝑟4𝑡

𝑚𝑚′′

BA − 𝑟1𝑡BA

𝑟1𝑒A − 𝑟4𝑡
𝑚′

AA − 𝑟2𝑡
𝑚
AA − 𝑡

𝑚
AA − 𝑟3𝑡

𝑚𝑚′

AA
−𝑡𝑚AB − 𝑟1𝑡AB − 𝑟4𝑡

𝑚′

BA − 𝑟5𝑡
𝑚𝑚′′

BA − 𝑟3𝑡
𝑚𝑚′

BA − 𝑟2𝑡BA

𝑟2𝑒A − 𝑟5𝑡
𝑚′

AA − 𝑟1𝑡
𝑚
AA − 𝑟4𝑡

𝑚𝑚′

AA
−𝑡AC − 𝑟6𝑡

𝑚′

CA − 𝑟1𝑡
𝑚
CA − 𝑟4𝑡

𝑚𝑚′′

CA − 𝑟3𝑡CA

−𝑡𝑚AC − 𝑟6𝑡
𝑚𝑚′′

AC − 𝑟1𝑡AC − 𝑟7𝑡
𝑚′

CA − 𝑟3𝑡
𝑚𝑚′

CA − 𝑟2𝑡
𝑚
CA − 𝑟5𝑡

𝑚𝑚′′

CA − 𝑟4𝑡CA

ª®®®®®®®®®®®®®¬
, (C.12a)

𝜒2 =

©«

−𝑟1𝑡
𝑚
AC − 𝑟7𝑡

𝑚𝑚′′

AC − 𝑟2𝑡AC − 𝑟8𝑡
𝑚′

CA − 𝑟4𝑡
𝑚𝑚′

CA − 𝑟5𝑡CA

𝑟3𝑒A − 𝑟6𝑡
𝑚′

AA − 𝑡
𝑚′

AA − 𝑟4𝑡
𝑚
AA − 𝑟1𝑡

𝑚𝑚′

AA
−𝑡𝑚′AB − 𝑟2𝑡

𝑚𝑚′′

AB − 𝑟1𝑡
𝑚𝑚′

AB − 𝑟3𝑡AB − 𝑟6𝑡
𝑚′

BA − 𝑟5𝑡
𝑚
BA − 𝑟7𝑡

𝑚𝑚′′

BA − 𝑟4𝑡BA

𝑟4𝑒A − 𝑟1𝑡
𝑚′

AA − 𝑟7𝑡
𝑚′

AA − 𝑟3𝑡
𝑚
AA − 𝑟5𝑡

𝑚
AA − 𝑟2𝑡

𝑚𝑚′

AA − 𝑟6𝑡
𝑚𝑚′

AA
−𝑟1𝑡

𝑚′

AB − 𝑟3𝑡
𝑚
AB − 𝑟2𝑡

𝑚𝑚′

AB − 𝑟4𝑡AB − 𝑟7𝑡
𝑚′

BA − 𝑟8𝑡
𝑚𝑚′′

BA − 𝑟6𝑡
𝑚𝑚′

BA − 𝑟5𝑡BA

𝑟5𝑒A − 𝑟2𝑡
𝑚′

AA − 𝑟8𝑡
𝑚′

AA − 𝑟4𝑡
𝑚
AA − 𝑟7𝑡

𝑚𝑚′

AA
−𝑡𝑚′AC − 𝑟1𝑡

𝑚𝑚′

AC − 𝑟3𝑡AC − 𝑟4𝑡
𝑚
CA − 𝑟7𝑡

𝑚𝑚′′

CA − 𝑟6𝑡CA

ª®®®®®®®®®®®®®¬
, (C.12b)
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𝜒3 =

©«

−𝑟1𝑡
𝑚′

AC − 𝑟3𝑡
𝑚
AC − 𝑟2𝑡

𝑚𝑚′

AC − 𝑟4𝑡AC − 𝑟6𝑡
𝑚𝑚′

CA − 𝑟5𝑡
𝑚
CA − 𝑟8𝑡

𝑚𝑚′′

CA − 𝑟7𝑡CA

−𝑟2𝑡
𝑚′

AC − 𝑟4𝑡
𝑚
AC − 𝑟5𝑡AC − 𝑟7𝑡

𝑚𝑚′

CA − 𝑟8𝑡CA

𝑟6𝑒A − 𝑟3𝑡
𝑚′

AA − 𝑟7𝑡
𝑚
AA − 𝑟4𝑡

𝑚𝑚′

AA
−𝑟3𝑡

𝑚′

AB − 𝑟5𝑡
𝑚𝑚′′

AB − 𝑟4𝑡
𝑚𝑚′

AB − 𝑟6𝑡AB − 𝑟8𝑡
𝑚
BA − 𝑟7𝑡BA

𝑟7𝑒A − 𝑟4𝑡
𝑚′

AA − 𝑟6𝑡
𝑚
AA − 𝑟8𝑡

𝑚
AA − 𝑟5𝑡

𝑚𝑚′

AA
−𝑟4𝑡

𝑚′

AB − 𝑟6𝑡
𝑚
AB − 𝑟5𝑡

𝑚𝑚′

AB − 𝑟7𝑡AB − 𝑟8𝑡BA

𝑟8𝑒A − 𝑟5𝑡
𝑚′

AA − 𝑟7𝑡
𝑚
AA

ª®®®®®®®®®®®®®¬
. (C.12c)
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APPENDIX D

Low-energy description of the system
Hamiltonian in the various phases

In the following, we illustrate a general method that we have combined with the Taylor expansion
to obtain the low-energy expression for the system Hamiltonian in the various phases presented in
the main text.

D.1 Decimation

We consider the energy eigenvalue equation, and consider separate blocks in the 4×4 Hamiltonian
corresponding to low-energy _ =

(
𝜓A1 , 𝜓B2

)T and dimer Δ =
(
𝜓A2 , 𝜓B1

)T components:(
ℎ_ 𝑢

𝑢† ℎΔ

) (
_

Δ

)
= 𝐸

(
_

Δ

)
, (D.1)

The second-row of (D.1) allows the dimer components to be expressed in terms of he low-energy
ones:

Δ = (𝐸 − ℎΔ)−1 𝑢†_ , (D.2)

Substituting this into the first-row of (D.1) gives an effective eigenvalue equation that is written
solely for the low-energy components:[

ℎ_ + 𝑢 (𝐸 − ℎΔ)−1 𝑢†
]
_ =𝐸_ ,[

ℎ_ − 𝑢ℎ−1
Δ 𝑢
†] _ ≈𝐸S_ ,
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where S = 1 + 𝑢ℎ−2
Δ
𝑢†. The second equation is accurate up to linear terms in 𝐸 . Finally, we perform

a transformation Φ = S1/2_: [
ℎ_ − 𝑢ℎ−1

Δ 𝑢
†] S−1/2Φ ≈𝐸S1/2Φ ,

S−1/2 [
ℎ_ − 𝑢ℎ−1

Δ 𝑢
†] S−1/2Φ ≈𝐸Φ . (D.3)

This transformation ensures that the normalisation of Φ is consistent with that of the original states:

Φ†Φ = _†S_ =_†
(
1 + 𝑢ℎ−2

Δ 𝑢
†
)
_ ,

≈_†_ + Δ†Δ ,

where we used Eq. (D.2) for small 𝐸 : 𝜒 ≈ −ℎ−1
𝜒 𝑢
†_. Thus, the effective Hamiltonian for low-energy

components is given by Eq. (D.3):

𝐻 (eff) ≈S−1/2 [
ℎ_ − 𝑢ℎ−1

𝜒 𝑢
†] S−1/2 , (D.4a)

S =1 + 𝑢ℎ−2
𝜒 𝑢
† . (D.4b)

D.2 Low-energy Hamiltonians

We obtain a low-energy description of the Hamiltonian in Eq. (4.2a) by performing first a Taylor
expansion around the Dirac cones k = K+ + q of all the entries of the matrix. We identify the
orbitals contributing to the low-energy features by checking which hopping term destroys the Dirac
cones when removed. At this point, we rearrange the Hamiltonian in a low- and high-energy sector
ℎ_ and ℎΔ, and perform a decimation as introduced in [166]. For this lattice, we have chosen the
orbitals placed at lattice sites 𝑟, 𝑙 to be the low-energy sector and 𝑢, 𝑑 to be the high-energy one.
Figure D.1(a) shows the spectrum of the low-/high-energy sectors, which is the same if the choice
of orbitals is reversed. After these two processes, the low-energy Hamiltonian H̃ for the fully
symmetric case reads:

H̃0 = 𝑣Fh · 𝜎, (D.5)

= 𝑣F

[√
3(3𝑝𝑥 − 𝑝𝑦)𝜎𝑥 − (𝑝𝑥 − 5𝑝𝑦)𝜎𝑦

]
.

where we have introduced the Fermi velocity defined as ℏ𝑣F = 𝑡0𝑎0/4, 𝑝𝛼 = −iℏ𝜕𝛼 is the momentum
operator in the direction 𝛼, and 𝜎 are the Pauli matrices. This decimated Hamiltonian reproduces the
low-energy physics of the herringbone lattice properly since we recover Dirac cones in the low-energy
regime. The corresponding spectrum is shown in Fig. D.1(b). The low-energy description of the
herringbone with {G1𝛼} broken corresponds to the following Hamiltonian:
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Figure D.1: (a) Low-energy and dimer bands after setting 𝑟, 𝑙 as low-energy and 𝑢, 𝑑 as dimer.
Low-energy Hamiltonians for (b) fully symmetric case expanded at K+, (c) in the presence of
M1(𝛿1) at K+, (d) in the presence ofM2(

√
3) at Γ, (e) in the presence ofM2(𝛿2) for generic 𝑘

point away from K+ determined by the choice of 𝛿2, (f) in the presence ofM1(𝛿1) +M2(
√

3), at
Γ, (g) in the presence ofM1(𝛿1) + M2(𝛿2), at generic 𝑘 point away from K+ given by the set of
parameters, (h) in the presence ofMI(𝛿I) at generic 𝑘 point given by the set of parameters. This
last case is very sensitive to the choice of parameters since it is not able to reproduce properly the
flat band. (i) Band structure after adding all three perturbations. Bands are split in energy since the
Casimir invariant of this choice is different from zero. See Sec.4.7.
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H̃1 = 𝑣Fh · 𝜎 (D.6)

= 𝑣F
[
𝑓 (p, 𝛿1)𝜎𝑥 + 𝑔(p, 𝛿1)𝜎𝑦

]
+ 𝑡0𝛿1𝜎𝑧

where 𝑓 (p, 𝛿1) and 𝑔(p, 𝛿1) are complex functions of their variables which, at 𝛿1 = 0, yield the
expressions in (D.5). For finite 𝛿1, the mass term proportional to 𝜎𝑧 is finite, thus gaps open at K±

points. The corresponding spectrum is shown in Fig. D.1(c).

When breaking the glide {G2𝛼}, we obtain a low-energy expansion around Γ that recovers the
semi-Dirac cone. It reads:

H̃2 = 𝑣Fh · 𝜎 = −
𝑝𝑥 𝑝𝑦

𝑚
𝜎𝑥 + 𝑣F(𝑝𝑥 − 𝑝𝑦)𝜎𝑦, (D.7a)

𝐸 (q) = ±1
2

√︃
16𝑞2

𝑦 − 32𝑞𝑥𝑞𝑦 + 𝑞2
𝑥 (16 + 9𝑞2

𝑦). (D.7b)

where we have introduced an effective mass defined as 𝑚 = 𝑡0/(12𝑣2
F). From Eq. (D.7b) for small 𝑞,

we find that, by fixing 𝑞𝑥 = 𝑞𝑦 (i.e. ΓX direction), we obtain 𝐸 ∼ 𝑞2 behavior while, for 𝑞𝑥 = −𝑞𝑦
(i.e. ΓY direction), we obtain 𝐸 ∼ |𝑞 |. At any other 𝛿2, the series expansion of the decimated
Hamiltonian has to be done around the 𝑘 point given by Eq. (4.9) in the main text to recover the
Dirac cones.

Since the Hamiltonian in (D.7a) is written only in terms of two Pauli matrices [150], we can
gap the semi-Dirac cone by adding a constant term proportional to 𝜎𝑧, which breaks the first set of
glides. In the total Hamiltonian, this corresponds to an additional mass term given by the one in the
main text, i.e.,M1(𝛿1).

Figures. D.1(d) and (e) show the corresponding spectrum for semi-Dirac dispersion and Dirac
cones at positions given by Eq. (4.9), respectively. Figures. D.1(f) and (g) show the previous two
situations, plus theM1(𝛿1) term, where the spectrum is gapped.

Finally, the Hamiltonian for the last choice of onsite energies displays a similar expression as in
Eq. (D.6). The corresponding spectrum is shown in Fig. D.1(h). This spectrum is very sensitive to
the choice of parameters. We have chosen a situation where the Dirac cone is very close to the fully
symmetric case, but, unlike Fig. D.1(b), the bands are not symmetric in energy.
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APPENDIX E

Analytical expressions for the position of the
Dirac cones

This Appendix is devoted to the study of the analytical expressions for the position of the Dirac
cones obtained in expressions (4.9) and (4.11), and how (4.16) captures both of them but with
different expressions. We begin by studying the particular cases of expression 4.16, which reads:

kD
I,2(𝛿I, 𝛿2) =

1
2𝑎0

arccos

(
𝛿2

2 − 𝛿
2
I − 1

2

)
u1, (E.1)

where kD
I,2(𝛿I, 𝛿2) represents the (𝑘𝑥 , 𝑘𝑦) components of the position of the Dirac cones as a function

of the 𝛿I, 𝛿2 parameters, 𝑎0 is the interatomic distance, taken to be unity but made explicit, and
u1 = b1/|b1 | represents the unitary vector along the direction of the first reciprocal lattice vector b1.

If now we let 𝛿2 = 0, we recover the expression:

kD
I,2(𝛿I, 0) =

1
2𝑎0

arccos

(
−𝛿2

I − 1
2

)
u1, (E.2)

which is equal to equation (4.11). On the other hand, if we take 𝛿I = 0 we obtain the expression:

kD
I,2(0, 𝛿2) =

1
2𝑎0

arccos

(
𝛿2

2 − 1
2

)
u1, (E.3)

which is quite different from the expression (4.9), given by:

kD
2 (𝛿2) =

1
𝑎0

arccos
(
1
2

√︃
1 + 𝛿2

2

)
u1, (E.4)

which is quite different from expression (E.3). In the following, we find the equivalence between the
two expressions. We begin by solving for 𝛿2

2 in both equations. From Eq. (E.3) we write:

𝑥 = |kD
I,2(0, 𝛿2) | =

1
2𝑎0

arccos

(
𝛿2

2 − 1
2

)
, (E.5a)
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𝛿2
2 = 2 cos(2𝑥) + 1. (E.5b)

Similarly, for Eq. (E.4) we write

𝑦 = |kD
2 (𝛿2) | =

1
𝑎0

arccos
(
1
2

√︃
1 + 𝛿2

2

)
, (E.6a)

𝛿2
2 = 4 cos2 𝑦 − 1. (E.6b)

Now, if we equal equations (E.5b) to (E.6b), we find the relation of the cosine of the double angle
between 2𝑥 and 𝑦, which reveals that 𝑥 = 𝑦:

cos(2𝑥) = 2 cos 𝑦 − 1. (E.7)

Hence, expression (4.16) gives the position of the Dirac cones for a generic pair of values of 𝛿2, 𝛿I,
and captures the particular cases when one of them is taken to 0.
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