The Journal of Supercomputing (2024) 80:12021-12042
https://doi.org/10.1007/s11227-024-05896-2

®

Check for
updates

On the parallelization of multipacting simulation codes for
the design of particle accelerator components

Javier Navaridas' - Jose A. Pascual® - Julen Galarza' - Txomin Romero? -

Juan L. Muioz3 - Ibon Bustinduy?

Accepted: 4 January 2024 / Published online: 7 February 2024
© The Author(s) 2024

Abstract

Particle trajectory and collision simulation is a critical step of the design and con-
struction of novel particle accelerator components. However it requires a huge
computational effort which can slow down the design process. We started from a
sequential simulation program which is used to study an event called Multipacting.
Our work explains the physical problem that is simulated and the implications it can
have on the behavior of the components. Then we analyze the original program’s oper-
ation to find the best options for parallelization. We first developed a parallel version
of the Multipacting simulation and were able to accelerate the execution up to ~ 35 x
with 48 or 56 cores. In the best cases, parallelization efficiency was maintained up to
16 cores (~ 95%) and the speed-up plateaus at around 40-48 cores. When this first
parallelization effort was tried for multi-power simulations, we found that parallelism
was severely limited with a maximum of 20x speed-up. For this reason, we intro-
duced a new method to improve the parallelization efficiency for this second use case.

B Javier Navaridas
javier.navaridas @ehu.eus

BJ Jose A. Pascual
joseantonio.pascual @ehu.eus

Julen Galarza
jgalarza006 @ikasle.ehu.eus

Txomin Romero
txomin.romero@dipc.org

Juan L. Mufioz
jlmunoz@essbilbao.org

Ibon Bustinduy

ibustinduy @essbilbao.org

Department of Computer Architecture and Technology, University of the Basque Country
UPV/EHU, 20018 Donostia, Gipuzkoa, Spain

Donostia International Physics Center, 20018 Donostia, Gipuzkoa, Spain

3 ESS Bilbao, Edificio 207-B, 48160 Derio, Biscay, Spain

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05896-2&domain=pdf

12022 J. Navaridas et al.

This method uses a shared processor pool for all simulations of electrons (OnePool).
OnePool improved scalability by pushing the speed-up to over 32 x.

Keywords Multicore systems - Multipactor effect - Parallel programming - Particle
simulation

1 Introduction

This paper presents the improvement and optimization of a finite differences particle
simulation program used by ESS Bilbao to design and manufacture some essential
components of, among other particle accelerator technology projects, the European
Spallation Source project [1] (hereafter ESS). ESS Bilbao is a strategic center of
international reference in Neutronic Technologies that provides knowledge and added
value through in-kind contributions to the European Spallation Source, a singular
scientific infrastructure that uses nuclear spallation, a process in which neutrons are
liberated from heavy elements by impacting them with high energy protons. This
source of neutrons is critical for many domains of research spanning the realms of
physics, chemistry, geology, biology and medicine. See Fig. 1 for a diagram of the
installation. The ESS is being built in the Swedish city of Lund through an exceptional
international effort and will support research on a wide range of topics. In addition
to this, our partners also work on the construction of their own particle accelerator
[2], which will facilitate regional research and development in high energy physics.
In order to accelerate protons to near light speeds, these particle accelerators are made
up of a wide range of components [3—6] to deal with progressively higher energy
particles. In addition, the design includes many electronics for monitoring, control
and diagnostics of the beams [7]. Figure 2 shows a diagram with the different sections
of the accelerator hardware.

An important step when designing and building these components is to simulate
the behavior of the particles inside them to ensure they behave as expected and that
no pathological effects will occur in the accelerator component. In this work, we have
worked with one of the programs used for these simulations, which is mainly used to
analyze a crucial physical process called Multipacting.

The Multipactor effect [8] or, simply, Multipacting, is an avalanche discharge of
electrons generated by the synchronization between the intense alternating electric
field used to accelerate the particles and the emission of secondary electrons (secondary
electron yield or, simply, SEY) on surfaces exposed to electrons accelerated by this field
in vacuum conditions. It begins when an electron that is inside one of the mentioned
components collides with one of the surfaces of the component and as, a consequence
of the collision, it gets absorbed by the surface, but the energy of the impact rips out
other electron(s) from the surface. These electrons, in turn, can collide and pull out
even more electrons. If this event is repeated, a cloud of electrons can be created,
forming what is called multipacting or multipactor effect. Analyzing the conditions
under which this avalanche of electrons is most likely to form in each component
can be of utter importance because during regular operation it is essential to prevent it
from happening. Otherwise, it could influence the particles in the accelerator, which in

@ Springer



On the parallelization of multipacting simulation codes... 12023

EBERS [OKI(
£

DBEVWA;//'

Sopin
8 =

Fig. 1 Structure of the European spallation source. Left the ESS site layout, showing accelerator buildings
(dark blue), target (violet), instrument halls (light blue), offices and labs (green) and auxiliary buildings
(red and yellow). Right the positions of the first 15 neutron instruments: diffractometers for hard-matter
structure determination (DREAM, HEIMDAL and MAGIC), macromolecular crystallography (NMX) and
engineering studies (BEER); small-angle scattering instruments for the study of large-scale structures (LOKI
and SKADI); reflectometers for the study of surfaces and interfaces (ESTIA and FREIA); spectrometers
for the study of atomic and molecular dynamics (BIFROST, C-SPEC, MIRACLES, T-REX and VESPA);
and a neutron imaging station (ODIN). Credit: European Spallation Source

</ 35221MHz C———— > <<— 70442MHz C— > 2017 March
<€ 25m > € 46m > <€ 40m D<€ 389m D€ 559m > € 767m —> < 1789m >

Source HEBT & Contingency Target

75 KeV 3.6 MeV 90 MeV 216 MeV 571 MeV 2000 MeV/

Fig. 2 Schematic of the different sections of the ESS accelerator. Regular components: Microwave Dis-
charge Ion Source (MDIS), Low Energy Beam Transport (LEBT), Radio-Frequency Quadrupole (RFQ),
Medium Energy Beam Transport (MEBT), Drift Tube Linac (DTL), High Energy Beam Transport (HEBT)
and Rotating Target Wheel (Target). Superconducting components: Superconducting Spoke Resonator
(Spokes), Elliptical Superconducting Radio-frequency Linear Accelerator (Medium-$ and High-$)

turn affects the experiments that are being conducted, or even worse, it could damage
equipment. However, on some occasions it might be desirable to produce the avalanche
on purpose under controlled conditions, as it can be used for maintenance work such
as, for instance, fine-polishing the surface of a component.

Nevertheless, if we want our experiments to be as reliable as possible, we need to
simulate very large numbers of electrons and also perform numerous repetitions. For
this reason, the execution time of a program of these characteristics that simulates the
path of each one of the electrons in series can be very high. In this paper, we discuss
the steps taken to parallelize the execution of the original program, so it can take
advantage of the computing resources offered by the ATLAS supercomputer! at the
Donostia International Physics Center. The ultimate objective is, of course, reducing
the time-to-solution of this type of simulation to, in turn, streamline the design cycle
of new components. Our aim is, therefore, to achieve the best possible speed-up to
both reduce execution time and enable the execution of simulations with much larger
amounts of electrons, more complex shapes and/or more refined meshes.

! More information available at: http://dipc.ehu.es/cc/computing_resources/systems/atlas-edr/.

@ Springer


http://dipc.ehu.es/cc/computing_resources/systems/atlas-edr/

12024 J. Navaridas et al.

To test our developments, we used the description of different components that are
part of the design work of different components of the ESS. In total, we used three
different meshes with varying complexity, from 20K to 900K polygons. In particular,
this work discusses two approaches that were employed to carry out the parallelization.
The original code employed by ESS was written as a Python wrapper for the FEniCSx
library [9], a popular open-source computing platform for solving partial differen-
tial equations.”> FEniCSx provides support for parallel execution through MPI. This
parallelization capability is particularly optimized for solving the electromagnetism
differential equations by the finite element method. However, in our simulator, the
electric field distribution is computed once at the beginning of the simulation and, then,
it is used as a background for tracking the electrons, which requires very fine-grain
calculations from the library and would not benefit from parallelizing. Thus, using the
MPI capabilities of the FEniCSx library can not be used in our advantage for speeding
up simulations. Indeed, most of the heavy lifting of the computation is done outside
the library and therefore a different approach is required. Employing parallelism at the
electron level was found to be more adequate and, therefore, is the level of granularity
we use in our parallel code. Since no communication between electrons is needed for
the kind of simulations we are carrying out, a feature-rich communication-oriented
programming model such as MPI was, indeed, considered unnecessary. For this rea-
son, when we started developing the parallel versions of the multipacting simulation,
we decided to rely on Python’s Multiprocessing library [10], a lighter library with
sufficient parallelization features for our needs.

Our first implementation, multiprocessing, simply runs all the electrons of each
generation in parallel. This was found to provide more than adequate efficiency and
speed-up for running single multipacting configurations; over 35x speed-up for 40
cores in the best case, and averages of around 30x for two of the three meshes.
However, for longer simulations that explore a range of power values, the achieved
speed-up was relatively limited; plateauing at around 15 — 20 x. The reason for this is
that the naive parallelization approach was not able to keep all the available processors
busy. In consequence, we decided to further develop the code and introduced another
algorithm for these cases, where the processing resources are shared in a more bal-
anced way. We finally introduced the OnePool algorithm, which uses the same pool
of processors for running the electrons of all generations and all powers at the same
time. OnePool demonstrated a much better scalability by pushing the speed-up to over
35x and obtaining the highest speed-ups in most experiments.

2 Background

In this section, we first describe the Multipactor effect which the original code sim-
ulates. The description also includes a justification of why its occurrence can be
problematic in an actual installation. Furthermore, we outline the operation of the
simulator, providing the pseudocode for its three main operation modes.

2 https://fenicsproject.org/.

@ Springer


https://fenicsproject.org/

On the parallelization of multipacting simulation codes... 12025

Initial electron Electron avalanche

Impacts generate secondary electrons

Fig.3 Diagram of the multipacting effect. The gray boxes represent the surfaces of the RF component. The
black circles represent electrons, with the dotted lines showing their trajectories. The yellow star shapes
represent collisions that produce secondary electrons

2.1 Multipactor effect

The multipactor effect [11], or simply multipacting, is the phenomenon of resonant
secondary emission multiplication in radio-frequency (RF) amplifier vacuum tubes
and waveguides. It occurs when one or more electrons within the RF components
of the particle accelerator generate an electron avalanche caused by the emission of
so-called secondary electrons.

The collision of an electron with a surface can release one or several of these sec-
ondary electrons into the vacuum, depending on the energy and angle of the collision.
These secondary electrons are then accelerated by the RF field and if they also collide
with any surface they can release even more secondary electrons. Due to the multi-
plicative effect of each collision, the number of emitted secondary electrons can grow
exponentially and may lead to operational problems of the RF system such as dam-
aging the RF components or distorting the RF signal which, in turn, can skew or even
completely invalidate the experimental results.

In the context of particle acceleration, where huge energy levels are employed,
this effect can be catastrophic. Multipacting can manifest itself in the form of heat
generated by the impacts of the electrons. In the most serious cases this heat can be
sufficient to melt internal components, or to perforate vacuum walls, which will end
up in disastrous consequences. Another way in which it can manifest itself is by failure
of ceramic or glass windows at unexpectedly low power levels, due to the extreme
charge or heat produced by the electron cloud.

Figure 3 shows an illustration of the effect. The diagram starts with a single electron
which can be part of the experimentation or, more commonly, might be arogue electron
which has been torn off from the surface by the strong RF field. Upon collision with
the lower surface, this initial electron strips off two secondary electrons. In turn, when
these impact with the upper surface, four secondary electrons are emitted. In this
example, each new collision doubles the total number of electrons, growing up to 8,
16 and 32, respectively, for the next collisions depicted. It is easy to see that the number
of electrons grows exponentially and, thus, that it can run out of proportion very rapidly
with a relatively small number of RF cycles. For simplicity, the diagram assumes that
each collision produces two secondary electrons. In practice, this figure can be as high
as six secondary electrons and, indeed, is not constant. In fact, the number of emitted
electrons depends on many factors such as the energy of the incident electron, the

@ Springer



12026 J. Navaridas et al.

angle of impact, the frequency and power of the magnetic field, the temperature, the
material the component is made of and the smoothness of the surface [12, 13]. Note
also that, in the figure, all depicted electrons follow a similar trajectory, from the left
of the image to the right. This is done for illustrative purposes and for the sake of
legibility, but it is not necessarily the case in real RF components. Indeed, because the
secondary electrons move in resonance with the oscillating electric field, they tend to
stay within a confined space, generating a dense cloud of electrons.? This confinement
exacerbates the effects the surge in the number of electrons can have on the results of
the experiment and on the integrity of the components because the heat and charge
anomalies discussed above are concentrated in small, localized points.

2.2 Numerical method

For the numerical calculation of the multipacting effect several steps are taken. First,
the electromagnetic field inside the calculations domain is computed by electromag-
netic Finite Element Method (COMSOL Multiphysics commercial code or ELCANO
open source FEniCSx library based) code. Field magnitude is scaled to a certain value
of reference (for example, a total power of 1 W). The simulation 3D tetrahedral mesh
and the corresponding values of electric vector field in the mesh nodes are exported
to files that are given as input to the multipacting calculation software.

In the multipacting calculation itself, the movement of free electrons are tracked.
As a first step the electric field magnitude is scaled to the corresponding input power.
Then, the initial N electrons are randomly initiated in any external boundary element
of the computation domain. These elements represent a random point in the metallic
surface that enclosed the radio-frequency device under consideration. The electrons are
assumed to be emitted from the surface with a certain kinetic energy and perpendicular
to the surface.

The electrons then are tracked in the interpolated electric field inside the compu-
tational domain. The vector field value at any point is interpolated from the finite
element mesh. The tracking is done using the Boris algorithm [14-16]. This is a de-
facto algorithm for relativistic particles in electric and magnetic fields. The method is
not implicit. For each time step Af, half of the electric impulse is added to electron
velocity to obtain a partial velocity increase; then the action of the magnetic field is
considered as a rotation in velocity vector, and finally the remaining half of electric
action is added. This method is very stable for long calculations, and it keeps accuracy
for arbitrary large number of time steps.

When one of the tracked electrons hits the cavity walls (this is detected by checking
if the electron is outside of the computational domain mesh), the nearest boundary
entity is computed as hitting point. The energy and direction of the impact is collected
and passed to the secondary electron routine, that will determine how many, and with
which energies, the secondary electrons are extracted from the surface. The algorithm
used for this is based on the one described in [17]. This algorithm has a physical
component, where the cavity metallic material (usually Copper or Niobium) and its

3 See, for instance, Fig. 6, where electrons (green paths) stay within a small sector of the coaxial component
in a single plane, bouncing off the inner and outer surfaces.

@ Springer



On the parallelization of multipacting simulation codes... 12027

500
|

count
300
|

0 100
!

] T T T T 1
4 6 8 10

o
N

Execution time per electron (sec.)

Fig.4 Histogram of the execution time required to simulate the trajectory of a single electron in the simplest
mesh (coaxial)

roughness are taken into consideration as parameters to compute a secondary electron
yield figure of merit that is then fed into a probabilistic function that is based on the
Poisson distribution that will determine the number of new electrons, their direction
and initial energy. These electrons enter the simulation as new elements to be tracked.
In the occurrence of multipacting effect situation, the ratio of new electrons is always
increasing, resulting in an exponentially growing avalanche of electrons.

2.3 Execution modes

The multipacting simulator has three modes of operation. The first one simulates the
trajectory of a single electron. The second one simulates whether multipacting will
occur by placing an electron under a given configuration (power and frequency), simu-
lating its trajectory, generating secondary electrons upon collision and then simulating
these new electrons, iterating for a number of generations. The third one carries out
the multipacting simulation of many configurations (a given frequency and a range of
powers).

2.3.1 Single electron trajectory

This mode simulates the trajectory of a single electron using a finite-difference method.
The process iterates over the position, velocity and acceleration of a single electron
based on the force exerted by the electric field generated by the RF field. The process is
interrupted when the electron collides with a surface or if it survives without collision
for a predefined time limit, Max. cycles, measured in periods of the RF frequency,
at which point it is assumed that a stationary trajectory has been reached. Listing 1
presents the pseudocode for this function.

This process can not be parallelized efficiently for two reasons. Firstly, the com-
putation of a single time step is very lightweight, so it would not benefit from being
executed in parallel. Secondly, there exist dependencies between consecutive time
steps of the simulation, so there is no parallelism available in this plane either. There-

@ Springer



12028 J. Navaridas et al.

Listing 1 Pseudocode of single_electron_trajectory.
input: Electron, Power, Af, Max.cycles, Mesh

1

2 output: Electron

3 begin

4 while not collision(Electron) and T < Max.cycles
5 Force = calculate_force(Electron, Power, Mesh)

6 Electron = update_acc_vel_pos (Electron, Force, At)
7 T =T + At

8 end

9 end

fore, the simulation of a single electron is considered the basic building block for
parallelization in the methods we developed.

2.3.2 Single electron multipacting

This execution mode simulates the multipacting effect, starting with a single electron.
The trajectory of the electron is simulated and upon collision, the electron is absorbed
by the surface and, based on several physical characteristics,* a number of secondary
electrons is generated following a probability distribution [12]. These new electrons are
queued into the next generation data structure, from which their characteristics will be
extracted later to be simulated, possibly producing electrons for the next generation.
The simulation continues until there are no more electrons to simulate or until a
predefined number of generations is finalized. The number of generations should
be large enough so that the multipacting effect can be clearly distinguished. The
pseudocode for this function is shown in Listing 2.

Listing 2 Pseudocode of single_electron_multipacting.
I input: Electron, Generations,

2 output: Electrons

3 begin

4 electron_list [0] = {Electron}

5 for g in [0, Generations)

6 while not empty (Electron_list([g]
7 Electrons [g]++

8

e = first_element (Electron_list[g])
9 ¢ = single_electron_trajectory (e, ...)
10 generate_sec_electrons (Electron_list[g+1], ¢)
11 end
12 end
13 end

It is clear that there exists dependencies from one generation to the next. However,
all electrons within a given generation can be executed in parallel and the number
of electrons per generation grows rapidly when the multipacting effect occurs, which
simplifies extracting parallelism out of the execution. However, efficient parallelization

4 Such as the power level, the energy of the electron and the secondary electron yield of the surface it has
collided with.

@ Springer



On the parallelization of multipacting simulation codes... 12029

is challenging because, as illustrated in Fig. 4, the time needed to simulate each electron
varies significantly depending on the initial conditions, so load balancing issues place
a definite constraint on the efficiency of parallelization.

2.3.3 Power range

This mode iterates the simulation of the multipacting process across a range of dif-
ferent starting conditions (power level applied to the component). Listing 3 shows the
pseudocode for the Power Range simulation.

Listing 3 Pseudocode of power_range.
input: Power_range,

1

2 output: Electrons

3 begin

4 for p in Power_range

5 Electrons[p] = single_electron_multipacting(p, ...)
6 end

7 end

Since the simulation of each power level can be performed independently, this
execution method is very well suited for parallelization but, again, load balancing
problems can appear. The unbalance in this execution mode is not only because of the
differences in the time needed to simulate each electron (as above) but also because
different power levels can show very different behavior with respect to the appearance
of multipacting and its magnitude. For this reason, as we will see, parallelizing only
within each power level is not very efficient in the general case.

3 Parallelization methods

As discussed above, the main objective of this work is to achieve a substantial accel-
eration of the particle simulation code in order to expedite the pre-fabrication testing
of the components being designed. In addition, this acceleration will enable for larger
simulations to be carried out without exceeding the runtime limits imposed by the
supercomputer’s scheduling policies. This section describes the parallel methods that
we developed and that will be evaluated later on in this paper.

3.1 Multiprocessing

We started by developing a first parallel version for the multipacting simulation. The
parallelization is based on the Python Concurrent.Futures library [10] which is used
to create different execution threads or processes in the program.

This library provides a high-level interface to be able to execute programs
asynchronously and simultaneously. In it, there are two different modules: Thread-
PoolExecutor and ProcessPoolExecutor. The difference between these two modules

@ Springer



12030 J. Navaridas et al.

is that in the first of them, ThreadPoolExecutor, the execution can be divided into dif-
ferent threads of execution, while in the second, ProcessPoolExecutor, the execution
is divided into different processes.

The definition of the terms threads and processes may vary depending on the con-
text, but in the case of the python interpreter the main difference is that threads run
within the same python process and, thus, cannot run in parallel at the same time
due to the GIL 3 (Global Interpreter Lock) of python, which does not allow different
threads of a same process to be executed in parallel to avoid atomicity and coherence
problems. In contrast, processes are created independently and do not share memory
space. Thus each process has its own GIL and many process can be run in parallel
without consistency issues.

When using either module, the options are the same. There is an abstract class
called “Executor” that provides a series of methods to execute calls asynchronously.
These methods are as follows:

e map: This method is used to schedule the execution of a function in parallel
with different input parameters and returning at the end a Future type object that
represents the results of said function. For example, the different parameters with
which you want to execute the function are included in a list and the list is passed
as a parameter, so that said function is executed with all the parameters in the list
simultaneously. The maximum number of different processes/threads that can be
created at the same time can be modified with the max_workers variable.

e submit: This method has the same function as map, but is used to schedule func-
tions manually; typically one at a time. That is, instead of using the map method
once with a list of parameters, you must use the submit method once for each of
the parameter sets.

o shutdown Tells the executor to kill all executables when the ones currently running
finish.

Finally, the library also includes the aforementioned Future type object, which is
a class that is used to obtain information about the executions of the function. You
can know whether any of the executions have failed and whether the function returns
something, in which case, the results are stored in lists arranged in the same order as
the parameter sets so to unequivocally know which results corresponds to each input
parameter set.

In particular, our code relies on the Executor class and the ProcessPoolExecutor
module. These allow creating independent processes which we leverage to simulate
all the electrons of each generation so that they can be run in parallel. The library
itself is in charge of dealing with the scheduling of the generated processes. Listing 4
shows the pseudocode for the first parallel implementation, which we codenamed
Multiprocessing. This implementation can be used to run both the single electron
multipacting mode and the Power Range mode. In the latter, it simply runs sequentially
the parallel execution of each power in the predefined range.

5 https://realpython.com/python-gil/.

@ Springer


https://realpython.com/python-gil/

On the parallelization of multipacting simulation codes... 12031

Listing 4 Pseudocode of Multiprocessing implementation.
input: Generations, Power_range, Cpus

1

2 output: Electron_list

3 begin

4 for p in Power_range

5 Electron_list[p]l[0] = generate_initial_electrons (p)

6 for g in [0, Generations)

7 electron_list[pllg+1] = ProcessPoolExecutor (
single_electron_trajectory (Electron_list[p]l[g]l), workers=
Cpus)

8 end

9 end

10 end

3.2 OnePool

This is an improved parallel implementation that we introduced in order to deal with the
unbalancing inherent to the large differences among power levels in the Power Range
simulations. OnePool creates a single ProcessPoolExecutor capable of simulating,
within a generation, electrons from all the different power levels in parallel. Listing 5
shows the pseudocode for OnePool. OnePool tries to exploit the most parallelism by
keeping the execution lanes as busy as possible with processes to run by allowing to
simulate in parallel electrons from all sources, independently of the pace at which
each electron progresses.

Listing 5 Pseudocode of OnePool implementation.
input: Generations, Power_range, Cpus

1

2 output: Electron_list

3 begin

4 for p in Power_range

5 Electron_list = generate_initial_electrons (p)

6 end

7 for ¢ in [0, Generations)

8 new_electrons = ProcessPoolExecutor (single_electron_trajectory
(Electron_1list) ,workers=Cpus)

9 Electron_list = new_electrons

10 end

11 end

3.3 Discussion

To illustrate how the two methods distribute the execution of electrons across the
available processors, we show Fig. 5. In the example, there are 3 different power levels
to simulate (represented in Blue, Green and Red) and each of them is simulated for
4 generations, represented by increasingly lighter colors. Time evolves from the top
down, and electrons from consecutive generations cannot be executed in parallel. Time
slots of different lengths are depicted because, as explained above, the time to simulate
each electron varies greatly so, the utilization of resources is uneven and the scheduling

@ Springer



12032 J. Navaridas et al.

Multiprocessing OnePool

Gy

|

G| /1

Fig.5 Example of electron scheduling in the Power Range execution with 10 processing threads. Different
colors represent different power levels, and different shades of the color represent different generations.
Time flows downwards

of each electron is done on demand as resources get available. The disparity in electron
times produces significant internal fragmentation when cores need to wait until the
slowest of a generation is consumed. In the example, the simulation of electrons is
distributed between 10 cores, whose execution lanes are delimited by the gray dotted
lines.

We can see that, with multiprocessing, the few first generations do not generate many
electrons, so most of the processing resources are left idle. However, as multipacting
produces an exponential growth in the number of electrons, in a few more generations,
the execution resources would be saturated most of the time. This effect is not shown
in full here for the sake of simplicity, but the fourth generation of all power levels
is already saturating processing lanes. OnePool is capable of keeping most of the
cores simulating electrons most of the time, since it can schedule electrons from any
available power, so it can keep processors busy for a larger proportion of time and
from much earlier; from the third generation in the example. Note that in the example,
electrons from the different power levels are consumed in order for the sake of clarity,
but in real simulations, electrons will be added to the execution queues as soon as they
are generated. After that, the library will decide in runtime in which order they are
sent to execution and, therefore, they will be naturally interleaved.

@ Springer



On the parallelization of multipacting simulation codes... 12033

Table 1 Details of the meshes

used for evaluation Component Mesh complexity
Coaxial 3885 nodes 19,425 faces
Pikachu 500k 100,553 nodes 502,765 faces
Pikachu 900k 177,897 nodes 889,485 faces

Fig.6 Depiction of the Coaxial mesh, showing an instance of multipacting from two different angles. Grey
lines represent the wire-frame of the component. The thicker green lines represent electron trajectories

4 Performance evaluation

In this section, we describe the experimental set-up used to carry out the evaluation.
We start describing the experimental platform and the details of the three meshes
used for the evaluation, following with the description of the simulation parameters
employed to perform the two types of experiments: Single Electron Multipacting and
Power Range.

4.1 Experimental set-up

Our experiments were run on 3 different platforms: a development laptop with 4 cores,
a production server with 20 cores and the ATLAS supercomputer which has hundreds
of servers featuring dual-socket Intel Xeon Platinum 8280 processors with 56 cores
and 192 GB of RAM. Results were consistent across all platforms so, for the sake of
brevity, only results from the supercomputer are included in the paper as they allow
for the largest scale of simulations and because it is the production system where the
simulations will be run. ATLAS uses a CentOS Linux 7 operating system and the
Slurm scheduler to distribute the work among the compute nodes.

We considered three different meshes in our evaluation, whose characteristics are
gathered in Table 1. The first mesh, Coaxial, is a relatively simple model and was
used as the baseline to check functionality and scalability. Figure 6 shows the coaxial
mesh from two angles. The other two, Pikachu500k and Pikachu900k, are high detail

@ Springer



12034 J. Navaridas et al.

x10*

Fig.7 The Pikachu component: solid render of the model (left), and electric field generated at a given RF
frequency (right)

models of a component that was being designed for the ESS accelerator and whose
simulations are much more compute intensive and have, in fact, motivated the work
carried out in this paper. Figure 7 shows renders of the Pikachu model.

In particular, we carried out two sets of experiments: First, we executed the multi-
pacting experiments for each of the meshes explained before to ascertain the level of
scalability we can obtain with this mode. Afterward, we executed the Power Range
experiments for each of the meshes and, since the original parallel method did not
obtain the expected performance results, we explored why this was the case and,
indeed, proposed a new, improved version which we also evaluated. In all cases, we
repeated each experiment 8 times (limited by the long runtime of the sequential exper-
iments) and report the average speed-up and the standard deviation.

The code was instrumented so that in all execution modes, each random seed pro-
duces deterministic sets of electrons regardless of the number of cores used for the
execution. This ensures a fair comparison of speed-up results. Table 2 and Table 3
show the parameters of all the simulations performed. All these parameters have typi-
cal values, except for the number of generations, which was reduced to accommodate
ATLAS wall-time clock limit when running the sequential code.

For the first set of experiments, we selected only random seeds that generated
multipacting, because in the cases where multipacting does not happen, the execution
is nearly instantaneous and there is no need for parallelization. Moreover, such results
would skew the obtained results. For the second set, where each power level may or
may not generate multipacting, we did not do any filtering and simply executed using
consecutive random seeds. This is done because in this case, there were no trivial
executions. Furthermore, we were looking for the typical range of behaviors so that
we can obtain average values from varied simulations. In other words, the objective was
to evaluate the Power Range simulations under realistic conditions. However, some
(sequential) simulations were exceedingly long and were aborted by the scheduler
because they reached the run-time limit of the supercomputer.

@ Springer



On the parallelization of multipacting simulation codes... 12035

Table2 Simulation parameters employed for the single electron multipacting execution mode experiments

Parameter Value

Generations 10

Power level 4.0 MW

RF frequency 704.4 MHz

Max. cycles 500

Random seeds Coaxial: 24, 28, 44, 45, 128, 150, 152, 167

Pikachu 500k: 6, 13, 15, 37,70, 152, 161, 197
Pikachu 900k: 4, 8, 15, 37, 53,77, 119, 137

Table 3 Simulation parameters

employed for the Power Range Parameter Value
execution mode experiments Generations 3
Power levels All: 0.2,0.4,0.6,0.8, 1.0 MW
RF frequency 704.4 MHz
Max. cycles 500
Random seeds All: 1,2,3,5,6,7, 10, 13

4.2 Multipacting experiments

We start by analyzing the performance improvement achieved for the multipacting
operation mode. This first set of results, which is depicted in Fig.8, represents the
speed-up obtained as the number of cores is increased. In the figure, the average
speed-up achieved using the Coaxial mesh is shown. From the results, it is clear that
our implementation scales well from 2 to 32 cores, obtaining in all cases an almost
perfect efficiency. However, as the number of cores goes beyond that, the speed-up
grows slower, reaching a maximum value of 34 x when using 56 cores. Similar results
are obtained for the Pikachu 500k mesh with very good efficiency up to 32 cores and
achieving a maximum speed-up of 32 x using 40 cores. However, in this case, as we
increase the number of cores to 48 and 56 cores, we observe diminishing performance
as the speed-ups decrease with the number of cores.

Regarding the much more complex Pikachu 900k mesh, the speed-up that we are
able to achieve is lower than with the other meshes. In this case, good efficiency
is maintained until 24 cores. Afterwards, the performance keeps increasing until 40
cores, where over a 30x speed-up is achieved, but efficiency decreases subsequently,
staying below 30x. Adding more cores does not seem to result in any substantial
difference in terms of speed-up.

For all three meshes, we found that the variability of the results is relatively small.
We can also observe that the more complex the mesh, the higher the variability, which
is reasonable since the unbalance in terms of execution time for each electron is
expected to grow with mesh complexity. At any rate, achieving speed-ups of around
30x with 3240 cores with all the meshes is more than adequate for our purposes, as

@ Springer



12036 J. Navaridas et al.

Multipacting - Coaxial

1 2 4 8 16 24 32 40 48 56
Multipacting - Pikachu 500k

40

351
30 A
25 A
20 A
159

Speed-up

10 4

T T
1 2 4 8 16 24 32 40 48 56

Multipacting - Pikachu 900k
40

35 A
30 A
25 A
20 A
159
10 4
5

T
1 2 4 8 16 24 32 40 48 56

Number of cores

Fig.8 Speed-up of the Multiprocessing method when simulating Multipacting using the three meshes under
consideration. The solid lines represent the average speed-up. The shaded area around them represents the
standard deviation

it allows experiments that previously required hours to be run in a matter of minutes.
Moreover, it enabled executing, in a few hours, very long experiments that would have
taken many days to be executed and, hence, exceeded the wall-time limit imposed by
the supercomputing center’s policies.

4.3 Power range experiments

We move now to analyze the results obtained for the Power Range experiments. These
experiments have been carried-out using the Multiprocessing and OnePool paralleliza-
tion methods for each of the three meshes.

Let us start analyzing the results obtained with the Multiprocessing method, which
are depicted in Fig.9. In this case, this method clearly achieves much worse results
than with Multipacting, with maximum speed-ups of around 20 for the three meshes

@ Springer



On the parallelization of multipacting simulation codes... 12037

MultiProcessing - Coaxial
40

35 A
30 A
25 A
20 A
159
10 4

1 2 4 8 16 24 32 40 48 56
MultiProcessing - Pikachu 500k

Speed-up

T T T
1 2 4 8 16 24 32 40 48 56

MultiProcessing - Pikachu 900k
40

35 A
30 A
25 A
20 A
159
10 4
5

T
1 2 4 8 16 24 32 40 48 56
Number of cores

Fig. 9 Speed-up of the Multiprocessing method when executing power range simulations with the three
meshes under consideration. The solid lines represent the average speed-up. The shaded area around them
represents the standard deviation

and adequate scalability maintained only up to 8 cores. With the Coaxial mesh, the
performance increases very slowly until it reaches 40 cores. With Pikachu 500k there
is no performance gain above 32 cores and, indeed, performance diminishes slowly
after that. With Pikachu 900k, the performance with 32, 40 and 48 cores is the same,
with a slight improve for 56 cores. Although speed-ups of around 20 x could be enough
for our purposes, it is clear that this method does not scale well with the number of
cores for this execution mode. In this case, our analysis found load balancing issues
which reduce the efficiency of the parallelization.

For this reason, we proceed to investigate these results in more detail. First, we can
observe that the variability for all 3 meshes is very high, which makes interpreting the
obtained results more difficult. Delving deeper into this issue, we realized the reason
for this variability is that, with this method, the results depend greatly on the input
parameters. With some random seeds, lots of electrons are created in most of the power

@ Springer



12038 J. Navaridas et al.

Coaxial
50

—e— High
40 1 -®- Low -

30 A

20 A

10 - OO0 _ g

e

1 2 4 8 16 24 32 40 48 56
Pikachu 500k

Speed-up

1 2 4 8 16 24 32 40 48 56

50

40 1 -#- Low -

30 A

20
-l _ g

10 M-

1 2 4 8 16 24 32 40 48 56
Number of cores

Fig. 10 Variation of speed-up using the multiprocessing method with the three meshes under consideration
when high and low numbers of electrons are simulated

levels, so the parallelization is rather efficient, akin to those of the previous subsection.
In other cases, the number of electrons in several of the power levels is more limited
and scalability is relatively poor. Figure 10 illustrates this by showing the scalability
results for each of the three meshes when the number of electrons in all power levels
is high (solid) or low (dashed). We can see the great difference in terms of scalability
between these two types of runs. The best cases produce numerous electrons in all
power levels, so the achieved scalability is in line with the results we observed for
Multipacting. In contrast, none of the power levels of the worst cases produce many
electrons, so the execution pool was not saturated as often as required to allow for high
parallelism. This justified the need for a parallel method that provides more reliable
and consistent acceleration, which motivated the introduction of the OnePool method

Let us focus now on the results of that method. Figure 11 shows the results obtained
using each of the three meshes. We can observe that the behavior of this parallelization
method is much more beneficial than with the Multiprocessing method. Now, the

@ Springer



On the parallelization of multipacting simulation codes... 12039

OnePool - Coaxial

1 2 4 8 16 24 32 40 48 56
OnePool - Pikachu 500k

40

351
30 A
25 A
20 A

Speed-up

159
10 4

T
1 2 4 8 16 24 32 40 48 56

OnePool - Pikachu 900k
40

35 A
30 A
25 A
20 A
159
10 4

5

T
1 2 4 8 16 24 32 40 48 56
Number of cores

Fig. 11 Speed-up of the OnePool method when executing power range simulations with the three meshes
under consideration. The solid lines represent the average speed-up. The shaded area around them represents
the standard deviation

speed-up grows steadily until 24 cores where speed-ups of over 20x are achieved,
regardless of the mesh. After that number of cores, the speed-up keeps growing up to
56 cores, where all meshes reach a maximum of nearly 30x These results represent
an increase in computing throughput of between ~ 20% and ~ 50% with respect
to the original Multiprocessing method. In addition, it is also worth noticing that the
variability of this method is smaller than with Multiprocessing, but still larger than
with the multipacting experiments.

5 Conclusions and future work

This paper has discussed the parallelization of a particle simulation program used by
ESS Bilbao to design and construct some essential components of the European Spal-

@ Springer



12040 J. Navaridas et al.

lation Source. The program is mainly utilized to analyze an effect called multipacting
which happens when an electron that is inside one of the components collides with
the surface of the component itself and, as a consequence, an avalanche of electrons
occurs. The simulation of such effect can be very time-consuming and, for that rea-
son, the parallelization of that code is of critical importance. We were able to not only
reduce the execution time, but also to enable simulations with much larger amounts
of electrons. The parallelization of the code has been performed at the electron level
and follows two different approaches. Our first approach, Multiprocessing, consists
of simulating the electrons within each generation on different processes. OnePool
extends this approach for the Power Range execution mode and tries to achieve the
maximum parallelization, by dynamically distributing electrons from different power
levels and generations.

Our experimental results suggest a successful parallelization of the code with
speed-ups in the range 30x - 35x when using 32-56 cores. The baseline parallel
implementation works very well for accelerating single Multipacting simulation, and
we were able to accelerate the execution of dense multipacting scenarios up to ~ 35x
with 48 or 56 cores. However, for the Power Range simulations, where the incidence
of multipacting and its electron density is more limited, its performance was signifi-
cantly lower, up to around 20 x. For this reason, we developed the improved OnePool
method which was able to increase substantially the parallelization efficiency for this
second use case, pushing the speed-up to around 30x. In the best cases, paralleliza-
tion efficiency was maintained up to 32 cores (~ 95%) and the speed-up plateaus at
around 40 to 48 cores with speed-ups of above 30x. While scalability did not seem
to extend beyond that number of cores, the obtained acceleration is adequate since
it translates hours into minutes and days into hours, hugely accelerating the design
process. Moreover, the parallelization has enabled the simulation of components that
before were hitting the CPU time quotas of our supercomputing provider.

As future work, we will try to accelerate the simulation of other processes of
interest for the design of particle accelerator components, including the behavior of
the plasma [18, 19] that may be generated within the components or to support the
interaction among electrons or other particles [20]. These processes are more complex
than Multipacting and may require the use of more flexible parallel libraries such as
MPI for Python [21] or Parallel Python.°

Another route to improve the performance that we will look into is porting the
code to a more efficient programming language, such as C or C++. These languages
are compiled and run at hardware speed, whereas Python is interpreted and, a priori,
it is believed to be substantially slower. However, given that this in itself is a large
software engineering project, going for a parallel version of the available Python
code was decided to be a more appropriate plan because it was expected to obtain
considerable acceleration much earlier. Another alternative that we may explore in
the future is porting the code to Julia [22], an HPC, high-level programming language
closer in nature to python than to C.

Acknowledgements This work is supported by the Basque Government (through projects KK-2023/00012,
KK-2023/00090 and Consolidated Groups grant IT1504-22). Dr. Javier Navaridas is supported by a Ramén

6 https://www.parallelpython.com/.

@ Springer


https://www.parallelpython.com/

On the parallelization of multipacting simulation codes... 12041

y Cajal fellowship (Grant RYC2018-024829-I) funded by MCIN/AEI/ 10.13039/501100011033 and, as
appropriate, by “ESF Investing in your future” or by “European Union NextGenerationEU/PRTR”. Julen
Galarza had an apprenticeship funded by Donostia International Physics Center (DIPC) when this work
was carried out.

Author Contributions All authors contributed to the study conception and design. The original multipacting
code was developed by JLM and IB. The parallel version of the simulator was developed by JG with input
from JLM and supervised by JN and JAP. Design and analysis of the experiments was done by JN, JAP and
JG. JG performed the experiments and was in charge of data curation. TR provided the computing resources
to carry out the experiments. JN and JAP wrote the first draft of the manuscript and all authors commented
and approved the final version.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Garoby R et al (2017) The European spallation source design. Phys Scr 93(1):014001. https://doi.org/
10.1088/1402-4896/aa9bft
2. Pérez M et al (2020) ARGITU compact accelerator neutron source: a unique infrastructure fostering
R&D ecosystem in Euskadi. Neutron News 31(2—4):19-25. https://doi.org/10.1080/10448632.2020.
1819140
3. Celona L et al (2018) High intensity proton source and LEBT for the European spallation source. AIP
Conf Proc 2011(1):020019. https://doi.org/10.1063/1.5053261
4. Ferndndez-Cafioto D et al (2021) Magnetic analysis and cross-talk fields for the ESS MEBT quadrupole
magnet. Nucl Instrum Methods Phys Res Sect A 1014:165723. https://doi.org/10.1016/j.nima.2021.
165723
5. Mereu P et al (2019) Design details of the European spallation source drift tube Linac. In: Linear
Accelerator Conference (LINAC’18), Beijing, China, 16-21 September 2018, pp. 190-192
6. LiHetal (2019) Characterization of a § = 0.5 double spoke cavity with a fixed power coupler. Nuclear
Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 927:63-69. https://doi.org/10.
1016/j.nima.2019.02.003
7. Shea TJ et al (2018) Overview and status of diagnostics for the ESS project. In: Proceedings of the
6th International Beam Instrumentation Conference, IBIC 2017, pp. 8—15. https://doi.org/10.18429/
JACoW-IBIC2017-MO2AB2
8. Vaughan JRM (1988) Multipactor. IEEE Trans Electron Devices 35(7):1172-1180. https://doi.org/10.
1109/16.3387
9. Alnas M et al (2015) The Fenics project version 1.5. Archive of Numerical Software 3(100)
10. Palach J (2014) Parallel programming with python. Packt Pub. Ltd, Birmingham
11. Vaughan JRM (1988) Multipactor. IEEE Trans Electron Devices 35(7):1172-1180
12. Lin Y, Joy DC (2005) A new examination of secondary electron yield data. Surf Interface Anal
37(11):895-900

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1402-4896/aa9bff
https://doi.org/10.1088/1402-4896/aa9bff
https://doi.org/10.1080/10448632.2020.1819140
https://doi.org/10.1080/10448632.2020.1819140
https://doi.org/10.1063/1.5053261
https://doi.org/10.1016/j.nima.2021.165723
https://doi.org/10.1016/j.nima.2021.165723
https://doi.org/10.1016/j.nima.2019.02.003
https://doi.org/10.1016/j.nima.2019.02.003
https://doi.org/10.18429/JACoW-IBIC2017-MO2AB2
https://doi.org/10.18429/JACoW-IBIC2017-MO2AB2
https://doi.org/10.1109/16.3387
https://doi.org/10.1109/16.3387

12042 J. Navaridas et al.

13.

14.

15.

16.
17.

18.
19.
20.

21.
22.

Balcon N et al (2012) Secondary electron emission on space materials: evaluation of the total secondary
electron yield from surface potential measurements. IEEE Trans Plasma Sci 40(2):282-290. https://
doi.org/10.1109/TPS.2011.2172636

Boris JP et al (1970) Relativistic plasma simulation-optimization of a hybrid code. In: Proceedings of
the Fourth Conference on Numerical Simulation of Plasmas, pp. 3-67

Qin H, Zhang S, Xiao J, LiuJ, Sun Y, Tang WM (2013) Why is Boris algorithm so good? Phys Plasmas
20(8)

Zenitani S, Umeda T (2018) On the Boris solver in particle-in-cell simulation. Phys Plasmas 25(11)
Furman M, Pivi M (2002) Probabilistic model for the simulation of secondary electron emission. Phys
Rev Spec Top Accel Beams 5(12):124404

Yu K et al (2017) Simulation of beam-induced plasma in gas-filled rf cavities. Phys Rev Accel Beams
20:032002. https://doi.org/10.1103/PhysRevAccelBeams.20.032002

Litos M et al (2014) High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.
Nature 515(7525):92-95

Wiedemann H (2015) Particle accelerator physics. Springer, New York

Dalcin L et al (2005) MPI for python. J Parallel Distrib Comput 65(9):1108-1115

Bezanson J et al (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59(1):65-98.
https://doi.org/10.1137/141000671

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1109/TPS.2011.2172636
https://doi.org/10.1109/TPS.2011.2172636
https://doi.org/10.1103/PhysRevAccelBeams.20.032002
https://doi.org/10.1137/141000671

	On the parallelization of multipacting simulation codes for the design of particle accelerator components
	Abstract
	1 Introduction
	2 Background
	2.1 Multipactor effect
	2.2 Numerical method
	2.3 Execution modes
	2.3.1 Single electron trajectory
	2.3.2 Single electron multipacting
	2.3.3 Power range


	3 Parallelization methods
	3.1 Multiprocessing
	3.2 OnePool
	3.3 Discussion

	4 Performance evaluation
	4.1 Experimental set-up
	4.2 Multipacting experiments
	4.3 Power range experiments

	5 Conclusions and future work
	Acknowledgements
	References




