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Background: HIV-1 vaccines should elicit broadly neutralizing antibodies as the gp41 “membrane-proximal external
region” targeting MAb2F5.
Results: NMR disclosed unprecedented 2F5 peptide-epitope structures. Although overall conformation was preserved in dif-
ferent adjuvants, recovered antibodies after vaccination were functionally different.
Conclusion: Membrane-inserted helical oligomers may encompass effective 2F5 peptide vaccines.
Significance: Disclosing the structures that generate 2F5-like antibodies may guide future vaccine development.

The membrane-proximal external region (MPER) of gp41
harbors the epitope recognized by the broadly neutralizing anti-
HIV 2F5 antibody, a research focus in HIV-1 vaccine develop-
ment. In this work, we analyze the structure and immunogenic
properties of MPERp, a peptide vaccine that includes the follow-
ing: (i) the complete sequence protected from proteolysis by the
2F5 paratope; (ii) downstream residues postulated to establish
weak contacts with the CDR-H3 loop of the antibody, which are
believed to be crucial for neutralization; and (iii) an aromatic
rich anchor to the membrane interface. MPERp structures
solved in dodecylphosphocholine micelles and 25% 1,1,1,3,3,3-
hexafluoro-2-propanol (v/v) confirmed folding of the complete
2F5 epitope within continuous kinked helices. Infrared spec-
troscopy (IR) measurements demonstrated the retention of

main helical conformations in immunogenic formulations based
on alum, Freund’s adjuvant, or two different types of liposomes.
Binding to membrane-inserted MPERp, IR, molecular dynamics
simulations, and characterization of the immune responses further
suggested that packed helical bundles partially inserted into the
lipid bilayer, rather than monomeric helices adsorbed to the mem-
brane interface, could encompass effective MPER peptide vaccines.
Together, our data constitute a proof-of-concept to support
MPER-based peptides in combination with liposomes as stand-
alone immunogens and suggest new approaches for structure-
aided MPER vaccine development.

The envelope (Env)8 glycoprotein subunits gp120 (surface)
and gp41 (transmembrane), which mediate receptor binding
and virus-cell fusion, respectively, are organized as trimers of
noncovalently associated heterodimers on the surface of the
HIV-1-producing cells and assembled virions (1, 2). Upon
receptor/co-receptor engagement by gp120, the gp41 ectodo-
main undergoes a series of conformational changes to deliver
the energy required for membrane merger (3–5). The func-
tional Env complex is also targeted by the broadly neutralizing
antibodies (bNAbs) known to block infection by a wide range of
HIV-1 strains (1, 4, 6). These antibodies are triggered in a
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fraction of infected individuals only upon prolonged contact
with the virus (7, 8). It has been proposed that vaccination
strategies focused on the induction of antibodies qualita-
tively similar to those bNAbs might result in the effective
prevention of infection (7, 9).

The isolation of bNAbs in the form of monoclonal antibodies
(MAbs) has revealed common structural trends useful for guid-
ing the rational design of immunogens eliciting protective anti-
bodies (9 –11). Broad neutralization is attained by antibodies
that bind to a handful of invariable but accessible regions of
gp120 and gp41. Broadly neutralizing sera raised to gp120
have been found to contain antibodies that target the recep-
tor-binding site, the glycan-V3 site, and the V1V2 loops,
whereas antibodies in broadly neutralizing sera raised to
gp41 appear to bind exclusively to the “membrane-proximal
external region” (MPER) or pre-transmembrane domain
within this subunit (7–10, 12, 13).

In contrast to the structurally complex, discontinuous
epitopes recognized by anti-gp120 bNAbs, it is hypothesized
that MPER embodies a single continuous linear epitope (14 –
18). Following this idea, it has been suggested that synthetic
peptides constrained into the neutralization-competent MPER
structures might constitute stand-alone vaccines (19, 20). One
anti-MPER bNAb that has focused much attention in this
research area is the 2F5 antibody. 2F5 was isolated in mAb form
by Katinger and co-workers (21, 22) from a panel of sera from
naturally infected asymptomatic individuals. Given the neutral-
ization breath and potency shown by the bNAb 2F5 (13, 21,
23–26), development of peptide-based vaccines targeting the
2F5 epitope has since been pursued (6, 22, 27–33).

Binding specificity of MAb2F5 was initially mapped to N-ter-
minal 662ELDKWA667 MPER residues (21, 24, 26). Based on
mass spectrometry and proteolytic protection assays, this
core epitope was later extended to span the 656NEQELLELDK-
WASLWN671 sequence (34). Comparable full epitope lengths
were subsequently suggested by competition ELISA (35) and
structural analyses (14, 36). X-ray crystallography further indi-
cated that epitope binding does not involve the hydrophobic
apex of the long complementarity-determining region
(CDR)-H3 loop, an element shown to be crucial for the neutral-
izing function of the antibody (37, 38). Given the close proxim-
ity of the epitope to the envelope surface, it has been proposed
that the 2F5 CDR-H3 loop might interact directly with viral
membrane lipids (14, 39 – 41). Alternatively, data have been
recently reported suggesting that the CDR-H3 loop apex may
establish additional contacts with MPER C-terminal residues in
helical conformation (25, 38). These two options need not be
mutually exclusive for bivalent antibodies targeting the 2F5
epitope on the surface of virions. It has been argued that
MAb2F5-like antibodies could use a heteroligation strategy (i.e.
to combine strong binding to gp41 and weak binding to viral
membrane) to increase its avidity under conditions existing in
the HIV envelope (9).

Here, we provide unprecedented results on the structure and
immunogenicity of a peptide spanning the sequence 656NEQEL-
LELDKWASLWNWFNITNWLWYIK683, which includes the
complete 2F5 epitope (underlined), the downstream region
proposed to establish weak contacts with the CDR-H3 loop of

the antibody, and an aromatic-rich block that allows its inser-
tion into the membrane interface (Fig. 1). The NMR data on
this peptide, termed MPERp, support the folding of the com-
plete HIV-1 2F5 epitope within a continuous kinked helix.

IR confirmed the preservation of the main helical conforma-
tion in adjuvants representing licensed vaccine formulations
(i.e. aluminum salt and water-in-oil emulsions) and in two dif-
ferent types of liposomes. Because it is predicted that the lipo-
somal MPERs that mimic the 2F5 epitope will be bound by the
functional neutralizing antibody, we performed assays to cor-
relate function and binding. Consistent with previous reports
(37, 38), cell infection blocking in our in-house assay was
dependent on the CDR-H3 loop. 2F5 binding to MPERp in lipo-
somes made of anionic phospholipid and lipid A was also
dependent on the CDR-H3 loop, whereas binding to the pep-
tide on the surface of lesser charged Chol-containing vesicles
did not require this element.

All tested MPERp vaccines were immunogenic. However,
significant amounts of 2F5 epitope-targeting antibodies with
the capacity of blocking cell infection were only recovered from
sera of rabbits immunized with liposomal vaccines displaying a
correlation between 2F5 antibody function and binding, i.e.
those based on the anionic phospholipid and lipid A. Insights
into the structural basis for functional antibody generation
could be gained by combining IR and molecular dynamics sim-
ulation (MDS) analyses. These data suggest that membrane-
inserted helical bundles, rather than monomers adsorbed to the
membrane interface, may embody efficient MPER vaccines.
Together, our structural and immunogenicity data conform to
the prediction that MPER may fold as a single contiguous anti-
genic determinant, competent in generating a neutralizing
response and therefore supporting the application of derived
peptides in combination with liposomes as stand-alone vac-
cines to target the 2F5 epitope.

EXPERIMENTAL PROCEDURES

Materials—MPERp and the 2F5 peptide epitopes used in the
immunological studies were synthesized in C-terminal carbox-
amide form by solid phase methods using Fmoc (N-(9-fluore-
nyl)methoxycarbonyl) chemistry, purified by reverse phase
HPLC, and characterized by matrix-assisted time-of-flight
(MALDI-TOF) mass spectrometry (purity �95%). Peptides were
routinely dissolved in dimethyl sulfoxide (DMSO, spectroscopy
grade), and their concentration was determined by the bicin-
choninic acid microassay (Pierce). 1-Palmitoyl-2-oleoylphos-
phatidylglycerol (POPG), 1-palmitoyl-2-oleoylphosphatidylcho-
line (POPC), phosphatidic acid (PA), Chol, and lipid A detoxified
(SalmonellaminnesotaR595)werepurchasedfromAvantiPolarLip-
ids (Birmingham, AL). Dodecylphosphocholine (DPC) was from
Anatrace (Maumee, OH). MAb2F5 was kindly donated by Diet-
mar Katinger (Polymun Scientific, Klosterneuburg, Austria).
Fab2F5-WT and Fab2F5-�CDR-H3 were produced as described
previously (38).

Recording of NMR Spectra—NMR samples were prepared by
dissolving the lyophilized peptides (�1 mg) in 0.5 ml of a H2O/
D2O (9:1 ratio by volume) solution containing 2 mM HEPES
buffer at pH 7.0 and either 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-
propanol (HFIP; D2, 98%; Cambridge Isotopes Lab) or 20 mM
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deuterated DPC (D38, 98%; Cambridge Isotopes Lab). Peptide
concentrations were �0.5 mM. pH was measured with a glass
microelectrode and not corrected for isotope effects. A metha-
nol sample was used to calibrate the temperature of the NMR
probe. Chemical shifts were referenced to internal sodium
2,2-dimethyl-2-silapentane-5-sulfonate.

The 1H NMR spectra were acquired on a Bruker Avance-600
spectrometer operating at a proton frequency of 600.13 MHz
and equipped with a cryoprobe. One-dimensional spectra were
acquired using 32 K data points, which were zero-filled to 64 K
data points before performing the Fourier transformation. Phase-
sensitive two-dimensional correlated spectroscopy (COSY), total
correlated spectroscopy (TOCSY), and nuclear Overhauser
enhancement spectroscopy (NOESY) spectra were recorded by
standard techniques using presaturation of the water signal and
the time-proportional phase incrementation mode, as reported
previously (42). NOESY mixing times were 100 or 150 ms, and
TOCSY spectra were recorded using 60 ms DIPSI2 with z filter
spin-lock sequence. Acquisition data matrices were defined by
2048 � 512 points in t2 and t1, respectively. Data were pro-
cessed using the standard TOPSPIN program (Bruker Biospin,
Karlsruhe, Germany). The two-dimensional data matrix was
multiplied by either a square-sine-bell or a sine-bell window
function with the corresponding shift optimized for every spec-
trum and zero-filled to a 2K � 1K complex matrix prior to
Fourier transformation. Baseline correction was applied in both
dimensions.

Structure Calculation—The same protocol was followed to
calculate the structures of MPERp in the presence of DPC
micelles and in 25% HFIP from distance and dihedral angle
constraints derived from NMR parameters. Distance con-
straints were obtained from the 150-ms two-dimensional
1H-1H NOESY spectra, with the cross-peaks observed in the
100-ms two-dimensional 1H-1H NOESY being essentially the
same. Dihedral angle restraints for � and � angles were derived
from 1H� chemical shifts using the program TALOS (43).
Structures were calculated using a three-step protocol. First,
the standard iterative procedure for automatic NOE assign-

ment of the program CYANA 2.1 (44) was applied. The proto-
col consists of seven cycles of combined automated NOE
assignment and structure calculation of 100 conformers per
cycle (45). The list of distance constraints resulting from the last
automatic cycle was checked by inspection of the correspond-
ing NOESY spectra, and ambiguous constraints were removed
or relaxed to generate the final list used as input for a standard
simulated annealing CYANA 2.1 calculation of 100 conform-
ers. The 20 conformers with the lowest target function values
were selected and subjected to 2000 steps of energy minimiza-
tion using the generalized Born continuum solvation model
with a nonbonded cutoff of 10 Å as implemented in the pro-
gram AMBER9 (Case DA, Darden TA, Cheatham III TE, Uni-
versity of California, San Francisco). The structural statistics
data for the final ensembles of 20 structures obtained for
MPERp are provided in Table 1. The quality of these final struc-
tures was assessed using PROCHECK/NMR (46) as imple-
mented at the Protein Structure Validation Suite server. All of
the residues were either in the most favored or allowed regions
of the Ramachandran map (Table 1). The structural ensembles
calculated for MPERp have been deposited in the PDB Data
Bank with accession codes 2M8M (HFIP) and 2M8O (DPC).
These structures were visualized and examined using the pro-
grams MOLMOL (47) and Swiss-Pdb viewer (48).

Membrane Binding Assays—Vesicle flotation experiments in
sucrose gradients were performed following the method
described by Yethon et al. (49). In brief, 100 �l of a sample
containing rhodamine-labeled liposomes (3 mM lipid concen-
tration) was adjusted to a sucrose concentration of 1.4 M in a
final volume of 300 �l, and subsequently overlaid with 400- and
300-�l layers of 0.8 and 0.5 M sucrose, respectively. The gradi-
ent was centrifuged at 436,000 � g for 3 h in a TLA 120.2 rotor
(Beckman Coulter, Brea CA). After centrifugation, four 250-�l
fractions were collected. Material adhered to tubes was col-
lected into a 5th fraction by washing with 250 �l of hot (100 °C)
1% (w/v) SDS.

Infrared Spectroscopy—Infrared spectra were recorded in a
Thermo Nicolet 5700 spectrometer equipped with a mercury-

TABLE 1
Structural statistics for the ensemble of the 20 lowest energy NMR structures of MPERp in DPC (20 mM deuterated dodecylphosphocholine, 2 mM

HEPES, pH 7.0, H2O/D2O, 9:1, v/v) and HFIP (25% deuterated 1,1,1,3,3,3-hexafluoro-2-propanol in 2 mM HEPES, pH 7.0, H2O/D2O, 9:1, v/v)
DPC HFIP

No. of distance restraints Intraresidue (i � j � 0) 154 118
Sequential (�i � j� � 1) 103 74
Medium range (1 � �i � j� � 5) 115 35
Total number 372 227
Averaged total no./residue 13.3 8.0

No. of dihedral angle constraints � angles 26 26
� angles 25 22
Total number 51 48

Average maximum violations/structure Distance (Å) 0.15 	 0.01 0.02 	 0.04
Dihedral angle (°) 3.5 	 0.1 0.1 	 0.1

Averaged structure energies CYANA target function value 0.35 	 0.01 0.01 	 0.01
AMBER energy (kcal/mol) �1187 �602
van der Waals energy (kcal/mol) �195 �182
Electrostatic energy (kcal/mol) �2247 �2235

Deviations from ideal geometry Bond length (Å) 0.014 0.015
Bond angle (°) 1.8 1.7

Pairwise root mean square deviation (Å) (residues 2–27) Backbone atoms 0.4 	 0.4 1.6 	 0.7
All heavy atoms 1.1 	 0.3 2.5 	 0.7

Ramachandran plot (%) Residues in most favored regions 99.6 98.8
Residues in additional allowed regions 0.4 1.2
Residues in generously allowed regions 0.0 0.0
Residues in disallowed regions 0.0 0.0
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cadmium-telluride detector using a Peltier-based temperature
controller (TempCon, BioTools Inc., Wauconda, IL) with cal-
cium fluoride cells (BioCell, BioTools Inc., Wauconda, IL).
MPERp-containing samples were lyophilized and subsequently
prepared at 4 mg/ml in D2O buffer (5 mM HEPES, pD 7.4, 100
mM NaCl). A 25-�l sample aliquot was deposited on a cell that
was sealed with a second cell. Reference windows without pep-
tide were prepared similarly. Typically 370 scans were collected
for each background and sample, and the spectra were obtained
with a nominal resolution of 2 cm�1. Data treatment and band
decomposition of the original amide I have been described else-
where (50).

Cell Entry Assays—For the in-house cell entry assays (38),
HIV-1 pseudoviruses were produced by transfection of human
kidney HEK293T cells with the full-length Env clone JRCSF
(kindly provided by Jamie K. Scott and Naveed Gulzar, Simon
Fraser University, British Columbia, Canada) using calcium
phosphate. Cells were co-transfected with vectors pWXLP-
GFP and pCMV8.91, encoding, respectively, a green fluores-
cent protein and an Env-deficient HIV-1 genome (provided by
Patricia Villace, Consejo Superior de Investigaciones Científi-
cas, Madrid, Spain). After 24 h, the medium was replaced with
OptiMEM-Glutamax II (Invitrogen) without serum. Two days
after transfection, the pseudovirus particles were harvested,
passed through 0.45-�m pore sterile filters (Millex� HV, Milli-
pore NV, Brussels, Belgium), and finally concentrated by ultra-
centrifugation in a sucrose gradient. HIV entry was determined
using TZM-bl target cells (AIDS Research and Reference Rea-
gent Program, Division of AIDS, NIAID, National Institutes of
Health, contributed by J. Kappes). Antibody samples were set
up in duplicate in 96-well plates and incubated for 1 h at 37 °C
with a 10 –15% tissue culture infectious dose of pseudovirus.
After antibody-pseudovirus co-incubation, 10,000 target cells
were added in the presence of 15 �g/ml DEAE-dextran (Sigma).
Infection levels after 72 h were inferred from the number of
GFP-positive cells as determined by flow cytometry using a
FACSCalibur flow cytometer (BD Biosciences).

Molecular Dynamics Simulations—Atomic coordinates of
the MPER peptide were taken from the NMR structure calcu-
lated in DPC micelles (first model). Only gp41 residues 656 to
683 were included in the model, with sequence NEQELLELD-
KWASLWNWFNITNWLWYIK. Default protonation states
were used for all the ionizable residues. N and C termini were
amidated and acetylated, respectively.

A pre-equilibrated bilayer containing a mixture of POPC/1-
palmitoyl-2-oleoyl phosphatidic acid/Chol in ratios 2:1.5:0.2
and pure POPG in a one-component bilayer were used. The
systems were solvated by �37,000 water molecules. Sodium
and chloride ions were added to neutralize the systems up to a
final experimental concentration of 150 mM. Four MPER pep-
tides were randomly placed in the solution at the start of the
simulations. The total production runs were 235 ns for each
simulation. MD trajectories were simulated with the version 2.9
of NAMD (51), using the CHARMM27 force field with CMAP
corrections for the peptides (52), the CHARMM36 force field
for lipids (53), the TIP3P model for water molecules (54), and
the model of Cournia et al. (55) for cholesterol. Standard
parameters for ions in the CHARMM27 force field were

adopted. Simulations were performed in the NpT ensemble.
Pressure was kept at 1 atm by the Nose-Hoover Langevin piston
method (56, 57) with a damping time constant of 100 ps and a
period of 200 ps. Temperature was kept at 300 K by coupling to
a Langevin thermostat, with a damping coefficient of 5 ps�1

(57). Electrostatic interactions were treated by the Particle
Mesh Ewald algorithm, with grid spacing below 1 Å (58). van
der Waals interactions were truncated at 12 Å and smoothed at
10 Å. Hydrogen atoms were restrained by the SETTLE algo-
rithm (59), which allowed a 2-fs time step.

Rabbit Immunization and Antibody Purification—For immuni-
zation in Freund’s adjuvant or alum, MPERp was dissolved in 0.5
ml of PBS and mixed with an equal volume of 1.3% (w/v) alu-
minum hydroxide (Alhydrogel, Superfos Biosector, Denmark)
or Freund’s adjuvant (Sigma). Liposome-based formulations
were prepared following the methods described by Dreesman et
al. (60) and Maeso et al. (61) and included lipid A as adjuvant
(62). MPERp in DMSO was added at a final peptide-to-lipid
ratio of 1:50 (mol/mol) to a stirring solution of freeze-thaw
POPC/Chol/PA/lipid A (2.0:1.5:0.2:0.01 molar ratio) or POPG/
lipid A (3.7:0.01 molar ratio) vesicles dispersed in PBS. After
incubation for 30 min, the samples were lyophilized. New Zea-
land White rabbits were inoculated intradermally at multiple
sites on day 0 with 1 ml of sample reconstituted in pure water,
which contained 0.5 mg of peptide. For subsequent boosting
injections, 1 ml of the reconstituted liposome formulation con-
taining 0.3 mg of peptide was used on day 15 (0.3 mg peptide),
and 0.2 mg of liposomal peptide was injected on days 30, 45, and
60. The 2F5 epitope-specific antibodies were recovered from
sera through affinity purification. To that end, the 2F5ep-Cys
(NEQELLELDKWASLWN-C) peptide was immobilized onto a
beaded agarose support using a Sulfolink immobilization kit for
peptides (Thermo Scientific, Rockford, IL) and following the
manufacturer’s instructions. The remaining nonspecific bind-
ing sites in columns were blocked adding L-cysteine�HCl at 50
mM. Every analyzed serum was loaded on the columns after
diluting and filtering it to remove the particulate material. They
were allowed to flow through the columns five times thus allow-
ing the binding of all the antibodies present in the serum that
recognize specifically the immobilized peptide. After washing
the columns with at least 10 bed volumes of 500 mM NaCl con-
taining buffer to dispose of nonspecifically bound antibodies
and serum proteins, the specific antibodies were eluted using
100 mM glycine buffer at pH 2.5. The fraction that is not recov-
ered using acidic pH was eluted using freshly made 100 mM

triethylamine buffer at pH 11.5.

RESULTS

Designation of the MPER Peptide Containing the Complete
2F5 Epitope—The diagram displayed in Fig. 1A designates
MPER as the membrane-proximal sequence that connects
the gp41 globular ectodomain (FP-NHR-loop-CHR) with the
membrane-spanning domain (TMD). Position for the core
epitope recognized by the 2F5 bNAb is also displayed. The
organization of this region within the pre-fusion gp41 struc-
ture recognized by this antibody is presently unknown.
Nonetheless, MPER is postulated to embody a single neutral-
ization-competent structure (19, 20).
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Fine definition of the 2F5 epitope suggests the involvement
in antibody recognition of a helical stretch that follows the core
epitope residues (34, 36, 63). It has been argued that the
MAb2F5’s CDR-H3 loop establishes contact with residues
located further downstream within a continuous helix (25, 38).
Because the CDR-H3 loop is absolutely required for the 2F5
neutralizing activity (see below and Ref. 37), it is inferred that
those residues constrained into a relevant conformation might
be required for peptide vaccines to elicit broadly neutralizing
2F5-like antibodies. The reported three-dimensional NMR
structures of MPER peptides are either disconnected from the
MPER C-terminal residues (e.g. PDB codes 1LCX or 1MZI in
Fig. 1B) or depleted from the N-terminal 2F5 epitope residues
(e.g. PDB codes 1JAV or 2PV6 in Fig. 1B). Thus, we first
attempted the NMR structure resolution of a synthetic peptide
vaccine (MPERp, Fig. 1B), which included both a complete
2F5 epitope sequence and the C-terminal residues putatively
engaged in secondary interactions with the CDR-H3 of
MAb2F5 (25, 38).

NMR Solution Structure of MPERp—The 1H NMR signals of
MPERp in the presence of DPC micelles and in 25% HFIP at pH
7.0 and 25 °C were assigned by standard sequential assignment
methods (64, 65). These chemical shifts have been deposited at
BioMagResBank with accession codes BMRB-19263 (DPC) and
BMRB-19262 (HFIP). In this peptide, under both conditions,
most 1H chemical shifts (supplemental Tables S1 and S2) devi-
ated significantly from random coil values (66). In particular,
most H� protons showed large negative ��H� values (Fig. 2A).
This is a clear indication that MPERp adopted helical structures
under both conditions, because according to the well estab-
lished empirical relationship between the ��H� and the � and

 as in previous page 3 dihedral angles, positive and negative
��H� values are characteristic of �-strands and �-helices,
respectively. Additional and stronger evidence for the adoption

FIGURE 1. Design of MPER-derived peptide vaccine. A, scheme describing
the HIV-1 gp41 organization and the sequence of the MPER peptide vaccine
used in this study (HIV-1 Env residues 656 – 683, numbering and sequence
derived from the prototypic HXBc2 isolate). The gp41 ectodomain regions
designated in the top diagram include the following abbreviations: FP, fusion
peptide; NHR and CHR, N- and C-terminal helical regions, respectively; Cyt,
cytosolic domain. The MPER sequence below highlights the five Trp residues
in green and the core epitope residues recognized by 2F5 antibody under-
lined. The line on top spans the extended 2F5 epitope as defined by pro-
teomic analyses (34). Blue asterisks denote residues implied in secondary
binding by CDR-H3 loop (25) and the box an aromatic rich anchor to the
membrane interface. B, structures adopted by MPER-derived peptides. PDB
accession numbers indicated in the panel designate structures in solution
(1LCX and 1MZI) or in contact with DPC micelles (1JAV and 2PV6). Lateral side
chains of Trp residues are depicted in green to align the structures with the
MPER amino acid sequence.

FIGURE 2. NMR parameters for MPERp. A, bar graphics showing the ��H�

(��H� � �H�
observed � �H�

RC, ppm) values as a function of sequence in 20 mM

DPC (black bars) or 25% HFIP (gray bars) at pH 7.0 and 25 °C. Dashed lines
indicate the random coil (RC) ranges. Random coil values for C�H protons
were taken from Wishart et al. (66). The N- and C-terminal residues are
excluded because of charged end effects. B and C, NOE summaries for the
peptide in 20 mM DPC and 25% HFIP. The intensities of the sequential NOEs,
classified as strong, medium, and weak, are indicated by the thickness of the
lines.
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of helical structures in both media came from the set of
observed NOEs, because NOE cross-peaks are only observed
for pairs of spatially closed protons (approximately at a distance
less than 5 Å). The nonsequential NOEs presented by the pep-
tide were those characteristic of helices, i.e. d�N(i � 2), d�N(i � 3),
d�N(i � 4), and d��(i � 3) (Fig. 2, B and C). Some of these medium
range NOEs can be observed in the NOESY spectral regions
shown in Fig. 3.

Structure calculations were further performed to visualize
the features of the structure adopted by MPERp in the presence
of DPC or when dissolved in 25% HFIP (see under “Experimen-
tal Procedures”). In contrast to the structures displayed in Fig.
1B, the structures resolved for MPERp disclosed continuous and
well defined helical structures in both media (Fig. 4A). Although
uninterrupted, in both cases the complete set of models showed
changes in the direction of the helix axis at certain points. In HFIP,
the helix was bent at position 665KW666 forming an angle of �40°
(Fig. 4A, top). More conspicuous changes could be observed in
the presence of DPC (Fig. 4A, bottom). In all calculated DPC
structures, the N-terminal residues 661LEL663 formed a short
310-helix, and the following main �-helix bent forming an
angle of �30° at the 673FNI675 tripeptide.

IR Structure of MPERp in Classical Adjuvants—High resolu-
tion NMR spectroscopy supports the folding of the 2F5 epitope
within a continuous MPER helical structure. To determine
whether this structure was preserved in vaccine formulations,
we measured MPERp conformations in different adjuvants by
IR spectroscopy. The reference spectra obtained under the
NMR conditions (Fig. 4A, left panels) showed the absorption
of the amide-I centered at �1650 cm�1, consistent with the
�-helix conformation adopted by MPERp in HFIP and DPC
mixtures (50). Band decomposition disclosed in both cases an
additional low frequency band centered at �1630 cm�1, corre-
sponding to the solvent-exposed �-helix fraction (67–69). In con-
junction, both bands accounted for � 85% of the total absorption

(red-dotted band components). The analysis also revealed less sig-
nificant contributions by bands in the 1680- to 1660-cm�1 region,
indicative of additional fractions of �-turn/310-helix plus less
defined coil structures (Table 2).

Subsequently, we assessed the conformational changes
undergone by MPERp in vaccines formulated with aluminum
hydroxide (alum) and water-in-oil dispersions (incomplete
Freund’s adjuvant), which provided two viscous media relevant
for the adjuvants currently used in vaccination protocols (70).
Consistent with preservation of the main �-helical conforma-
tion in these adjuvants, the IR amide-I band maximum was
located at �1650 cm�1 in both cases (Fig. 4B). However, as
compared with DPC or HFIP samples, the peptide dispersed in
alum displayed an additional band component centered at 1620
cm�1, indicative of significant denaturation-aggregation evolv-
ing in these samples (Table 3). In the inverted micelle medium
provided by Freund’s adjuvant, the band was broader than in
DPC or HFIP, and its decomposition revealed that �-turn, 310-
helix, and less ordered conformers absorbing in the 1680 –1660
cm�1 region were comparatively more abundant than in the
NMR references (Table 3).

FIGURE 3. Selected NOESY spectral regions of MPERp in DPC or HFIP con-
ditions (left and right panels, respectively). The depicted regions show
intraresidue �-� and nonsequential �-� (i, i�3) NOES. The nonsequential
NOEs are boxed.

FIGURE 4. Structures adopted by MPERp in 25% HFIP or DPC 20 mM and
classical vaccine adjuvants. A, calculated NMR structures and correspond-
ing IR spectra. Lateral side chains of Trp residues are depicted in green and
aligned with the amino acid sequence as in the caption for Fig. 1. Both struc-
tures are continuous helices. Additional structural signatures common to all
calculated models are highlighted (see text). The corresponding IR spectra
displayed on the left disclose in red the absorption band components arising
from the helical conformation (Table 2). B, IR absorption in the amide I region
by MPERp in D2O-based buffer mixed with solutions of alum and Freund’s
adjuvant (FA) following the procedure used for preparing vaccines. In all pan-
els the IR spectra were decomposed into different band components (numer-
ical values are disclosed in Table 3). Red dotted lines correspond to �-helix
components.
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2F5 Binding to Liposomal Vaccines—In addition to the stand-
ard adjuvants, MPERp was combined with liposomes to com-
pose synthetic vaccines. It has been suggested that interactions
with the membrane interface on the surface of liposomes may
select for the MPER conformations that are relevant for the
induction of specific antibodies (62), whereas polyreactivity
with membrane lipids could increase the binding avidity of
those antibodies (9). For this study, we selected two different
lipid compositions. In one formulation MPERp was adminis-
tered together with POPC/Chol/PA (2:1.5:0.2 mol/mol) lipo-
somes, and in a second formulation the peptide was combined
with vesicles made of the anionic phospholipid POPG. It is
assumed that peptide structures relevant for the 2F5 epitope
will be bound by the functional 2F5 antibody but not by their
inactive mutants. Thus, to discriminate functional versus non-
functional binding, we used CDR-H3 mutant Fabs that bind
peptide epitopes in solution but are not neutralizing (Fig. 5).

Fig. 5A compares the capacity for inhibiting viral entry of
the MAb2F5 and two derived Fabs, Fab2F5-WT and Fab2F5-
�CDR-H3, with the latter representing a mutant with the
CDR-H3 loop deleted (38). MAb2F5 and Fab2F5-WT inhibited
pseudovirus cell infection in our assay (Fig. 5A, black and blue
symbols, respectively), whereas Fab2F5-�CDR-H3 had no
effect (red symbols). To determine a functional correlation with
epitope binding, we next compared the capacity of these anti-
bodies to bind the liposomal vaccines (Fig. 5, B–E). Experi-
ments were set up for obtaining pure vesicles floating on the top
fractions of sucrose gradients (Fig. 5B). These assays indicated
quantitative MPERp incorporation into the POPC/Chol/PA
and POPG liposomes (Fig. 5C). Results displayed in Fig. 5D
further demonstrated that MAb2F5 could effectively bind to
the membrane-inserted peptide epitopes in both types of lipo-

somes. Thus, according to this sole criterion, both types of vesicles
containing peptide might encompass effective 2F5 immunogens.
However, the comparison of the Fabs revealed different patterns
(Fig. 5D). The functional Fab2F5-WT reproduced the binding pat-
tern of the mAb (Fig. 5D, top). In contrast, the nonfunctional
Fab2F5-�CDR-H3 could bind effectively to POPC/Chol/PA-
MPERp liposomes but not to POPG-MPERp liposomes (Fig. 5D,
bottom).

Thus, cell entry inhibition and binding to POPG-MPERp lipo-
somes were both dependent on the CDR-H3 loop. Together, these
results allowed establishing a correlation between function and
binding to POPG-bound MPERp, which was not found for the
POPC/Chol/PA-MPERp liposomes. Accordingly, we inferred that
when used as immunogens POPG-MPERp vaccines would be
more selective than POPC/Chol/PA-MPERp vaccines in activat-
ing 2F5-like B-cell receptors.

MPERp Structure in Liposomal Vaccines—To gain insights
into the membrane-associated structures at the origin of the
function-binding correlation, we carried out a combined infra-
red spectroscopy-molecular dynamics simulation study (Fig. 6).
Samples of MPERp in contact with POPC/Chol/PA liposomes
closely reproduced the IR absorption spectrum measured in the
Freund samples (Fig. 6A, left). This finding is consistent with
the comparable structures adopted by membrane-binding pep-
tides at interfaces of reverse micelles and membranes (71). In
sharp contrast, the amide-I band measured in the POPG-
MPERp samples was narrower, suggestive of higher conforma-
tional order, and corresponded almost exclusively to �-helical
conformers (Fig. 6B, left). In these samples, the maximum shift
of the low frequency �-helix band and its increase in intensity
were consistent with the existence of packing interactions
between solvated helices (67, 68).

Further insights into the membrane-associated structures
causing these spectral differences were obtained from the
dynamics of the MPERp DPC structure simulated in the pres-
ence of POPC/Chol/PA and POPG lipid bilayers (Fig. 6, right
panels). MPERp was observed to associate as a single monomer
with the POPC/Chol/PA membrane (Fig. 6A, right). In the
course of the simulation, this peptide monomer was observed
to contact first with the membrane surface through the hydro-
phobic C-terminal side, and the amphipathic N terminus was
inserted later. At the end of the simulation (235 ns), the peptide
adopted a continuous helix, whose main axis was parallel to the
lipid bilayer plane. In this state, the membrane interface-em-
bedded side chains made contact preferentially with the polar
headgroups of POPC, but not with Chol or PA. In addition, 2F5

TABLE 2
Band position, assignment, and % area of the components obtained
after curve-fitting of IR spectra displayed in Fig. 4A

HFIP DPC
Band positiona Areab Band positiona Areab

% %
1675 11 1678/1665 14

(�-Turns/310-helix) (�-Turns/310-helix)
1652 66 1650 66

(�-helix-buried) (�-Helix-buried)
1632 20 1630 19

(�-helix-solvated) (�-Helix-solvated)
1615 2 1611 1

(aggregation) (aggregation)
a Wave numbers in cm�1. The conformation assigned for each position is indi-

cated below (50, 68).
b The values have been rounded off to the nearest integer.

TABLE 3
Band position, assignment, and % area of the components obtained after curve-fitting of IR spectra displayed in Figs. 4B and 6, A and B

Alum Freund’s adjuvant POPC/Chol/PA POPG
Band positiona Area (%)b Band positiona Area (%)b Band positiona Area (%)b Band positiona Area (%)b

1680/1669 11 1678/1665 26 1685/1671 26 1665 3
(�-Turns/310-helix) (�-Turns/310-helix) (�-Turns/310-helix) (310-Helix)

1653 45 1651 52 1652 46 1654 52
(�-Helix-buried) (�-Helix-buried) (�-Helix-buried) (�-Helix-buried)

1635 19 1631 17 1637 13 1639 39
(�-Helix-solvated) (�-Helix-solvated) (�-Helix-solvated) (�-Helix-solvated)

1620/1693 25 1617 5 1615/1627/1686 15 1628 5
(Aggregation) (Aggregation) (Aggregation) (Aggregation)

a Wave numbers are in cm�1. The conformation assigned for each position is indicated below (50, 68).
b The values have been rounded off to the nearest integer.
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epitope key residues Lys-665 and Trp-666 (Fig. 6A, red side
chains), as well as residues establishing putative contacts with
the CDR-H3 loop (i.e. Leu-669, Trp-672, and Phe-673) (blue
side chains) were involved in these lipid interactions and there-
fore not accessible from the water solution.

In contrast, the four peptides, randomly placed in solution at
the beginning of the simulation, were found assembled into a
bundle at 194 ns. This bundle of peptides was associated with
the POPG bilayer (Fig. 6B, right) from 194 ns until the end of the
simulation (235 ns). The MPERp bundle inserted through the

aromatic rich C-terminal hydrophobic tip of one of the constitu-
ent monomers (Fig. 6B, residues in green) during the simulation. In
the course of the simulation, distinct MPERp ensembles retaining
overall helical conformation were observed several times to stick in
the membrane by the action of a monomer; however, insertion of
single peptides was not observed. Moreover, the more polar N
terminus of the membrane-inserted monomer never contacted
the negatively charged membrane surface. In the membrane-in-
serted state, residues involved in MAb2F5 recognition (Lys-665,
Trp-666, Leu-669, Trp-672, and Phe-673 (see below and Refs. 25,

FIGURE 5. Correlation between 2F5 antibody function and binding to liposomal vaccines. A, cell entry inhibition assay. Left, pseudoviruses were preincu-
bated with MAb2F5 or the recombinant 2F5 Fab constructs, and single cell entry events were monitored by FACS after incubation with TZM-bl target cells.
Fab2F5 WT inhibited cell entry (blue), albeit with lower potency than the bi-functional mAb (black). In contrast Fab2F5 �CDR-H3 was almost completely unable
to inhibit the process (red). Right, displays specificity controls for the HIV-1 Env-mediated cell entry. bNAbs (2F5 and 4E10) and T-20 were applied at 2 and 50
�g/ml, respectively. Means 	 S.D. of six measurements in three independent experiments are displayed. B–E, vesicle flotation experiments in sucrose
gradients. Rhodamine-labeled liposomes were collected in the 1st and 2nd fractions (i.e. floating fractions) (B). C, MPERp (30 �M) was incubated in solution in
absence (top) or presence of liposomes (peptide-to-lipid ratio of 1:100, bottom panels) for 15 min before centrifugation. The presence of the peptide in the
different fractions was probed with MAb2F5 in Western blot. Virtually all input peptide co-floated with liposomes indicating quantitative partitioning into
membranes. D, MAb2F5 (15 �g ml�1) was incubated for 15 min with MPERp-containing or empty liposomes before centrifugation (top and bottom panels,
respectively). Consistent with antibody binding to membrane-inserted MPERp, MAb2F5 was recovered from the floating fractions upon incubation with
peptide-containing liposomes. Similarly, Fab2F5 WT co-floated with both types of MPERp-containing liposomes (E, top panels). In contrast, in the case of
POPG-MPERp vesicles, Fab2F5 �CDR-H3 was predominantly recovered from pellets (E, bottom panels).

Structure Immunogenicity of the Complete 2F5 Epitope

6572 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 10 • MARCH 7, 2014

 at U
N

IV
E

R
SID

A
D

 D
E

L
 PA

IS V
A

SC
O

/E
H

U
 on Septem

ber 29, 2014
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


36, 63) were all exposed to the solution. Nonetheless, the overall
shape of the peptide ensemble restricted their accessibility from
solvent in some of the monomers.

Immunogenicity of MPERp in the Different Adjuvants—To
determine the immunogenicity of the structures described
above, the MPERp-based alum, Freund’s adjuvant, and lipo-
some formulations were next compared in their capacity for
activating B-cell responses (Fig. 7). Antigen-specific IgGs could
be recovered upon immunization of rabbits with MPERp dis-
persed in alum or Freund’s adjuvants (Fig. 7A, left and left-
center panels). The midpoint titers in these samples were on the
order of 103. The responses triggered by the peptide-liposome
formulations were weaker by comparison, showing midpoint
titers in the order of 102 (Fig. 7A, right-center and right panels).
Nonetheless, antibodies raised against the 2F5 epitope could be
recovered from all sera through binding affinity (Fig. 7B). Sup-
porting the same range of affinity, incubation in solution of the
purified antibodies with 2F5 peptide epitope inhibited with
comparable potencies their binding to MPERp deposited on
plates (IC50 values in the order of 10 �M in all cases). In contrast,
the experiments displayed in Fig. 7C indicated that the 2F5-
targeting antibodies raised by the different formulations were
qualitatively different. Those experiments revealed that the

only detectable inhibition of HIV entry occurred with the
POPG/lipid A-MPERp formulation (Fig. 7C, right-hand panel).
Of note, blocking VSV-GP-mediated cell infection was not
observed in these experiments, which underscores the specific-
ity of the recovered antibodies.

The inhibitory activity of these antibodies was nonetheless
�50 –100 times lower than that displayed by the MAb2F5 in
the cell entry assays (Fig. 5A). Thus, to establish the significance
of this activity, we extended our studies on the immunogenicity
of the POPG/lipid A-MPERp formulation (Fig. 8). Fig. 8A com-
pares midpoint titers and cell entry inhibition by the 2F5-spe-
cific antibodies isolated from the sera of four different rabbits.
These two values did not correlate, thereby suggesting that
even if the immunogenicity levels were different, antibodies
were functional in the cell entry assay after isolation in affinity
columns. Two groups of sera, R2/R3 and R1/R4, were estab-
lished as a function of the inhibitory strength of the isolated
antibodies (Fig. 8B). For the two groups, the inhibition levels of
HIV-Env-mediated cell entry were significantly higher than
those in the VSV-GP controls. Thus, according to our data in
Figs. 7 and 8, we may conclude that antibody samples recovered
from POPG sera bore an inhibitory activity of cell entry that was
not found in the samples recovered from alum, Freund’s adju-
vant, or POPC/Chol/PA sera.

DISCUSSION

It has been hypothesized that the membrane-proximal
sequence connecting the gp41 subunit’s ectodomain with the
transmembrane anchor, termed the MPER domain, includes a
continuous epitope. This implies that peptides recreating its native
structure might in principle compose stand-alone HIV vaccines (6,
13, 19, 20, 72, 73). Although intensively studied, data supporting
the structural MPER connectivity within a synthetic peptide vac-
cine were lacking. Here, we considered the incorporation within a
single peptide of the sequence 656NEQELLELDKWASLWN671

spanning the full epitope recognized by the MAb2F5 as defined by
proteomic analyses, competition ELISA, and crystallography (14,
34–36), plus the following 672WFNITNWLWYIK683 Trp-rich
stretch that precedes the TMD (Fig. 1) (74). Our NMR data
revealed the structuring of the resulting MPERp synthetic surro-
gate as a continuous helical structure (Figs. 2–4A). Structures of
shorter or even longer peptides show spots of partial structuring as
310-and �-helix (33, 35, 73, 75–77), but none of them display con-
tinuous helical structures for the sequence spanning the full 2F5
epitope plus the downstream aromatic rich sequence preceding
the TMD anchor (Fig. 1). This suggests that inclusion of the com-
plete sequence covered by the 2F5 paratope (34) might be required
for the long range interactions sustaining MPER folding as a con-
tinuous helix.

Although continuously helical, MPERp NMR structures
solved in HFIP and DPC showed features implying a certain
degree of conformational flexibility. The kink adopted by the
675FNI677 residues at the C terminus of the DPC structure was
consistent with the 673FN674 hinge described previously for a
shorter peptide (73). By comparison, the hinge of the shorter
peptide induced a more abrupt change in backbone main direc-
tion and adopted a looser conformation (PDB code 2PV6, Fig.

FIGURE 6. Combined IR and molecular dynamics simulations of MPERp
interacting with POPC/Chol/PA (A) or POPG (B) lipid bilayers. Left pan-
els, IR absorption in the amide I region by MPERp in D2O-based buffer
mixed with solutions of POPC/Chol/PA (2:1.5:0.2 mol/mol) liposomes or
POPG liposomes, following the procedure used for preparing vaccines. In
both panels, the IR spectra were decomposed into different band compo-
nents (numerical values are disclosed in Table 3). Red dotted lines corre-
spond to �-helix components. Right panels, snapshots of MPERp were
taken at times 215 and 233 ns (top and bottom, respectively). Side views of
the peptides display in space-filling representation residues Lys-665/Trp-
666 in red and Leu-669/Trp-672/Phe-673 in blue. Phospholipids are shown
in stick representation. Residues depicted in green have at least one atom
within �3 Å from the phospholipid molecules.
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1B). Thus, the finding that these residues may also exist as part
of an elongated �-helix (HFIP structure, Fig. 4A) or form a kink
while retaining conformational features of an �-helix (DPC
structure, Fig. 4A), underscores the structural metastability
proposed for this joint sequence (73).

Unprecedented structures were additionally observed at the
MPERp N-terminal stretch. The HFIP structure displayed a
kink involving the 665KW666 residues, while the DPC structure
displayed a 310-helix for the 661LEL663 residues, which also
resulted in a change of the backbone direction (Fig. 4A). The
presence of these structures would be consistent with the flex-
ibility found in the case of shorter peptides (35). Moreover, they
would be consistent with the type I �-turn adopted by the
664DKW666 core epitope sequence in Fab2F5-peptide com-
plexes (14, 36, 78). In contrast, our NMR structures did not
display the extended conformation found in the crystal
structures of those complexes for the preceding N-terminal
residues 656NEQELLEL663 (14, 36). In both NMR structures

FIGURE 7. Immunogenicity of MPERp formulated with different adjuvants. A, midpoint IgG titers in sera from rabbits immunized with MPERp in the
different adjuvants. Sera were titrated in ELISA using 1.4 �M MPERp. Experimental values were adjusted to sigmoid dose-response curves, and midpoint titers
were determined as EC50 values (i.e. the dilutions giving 50% response between minimum and maximum). Values displayed in panels correspond to 1/dilu-
tion � 103 	 S.E. B, affinity for the 2F5 epitope of rabbit IgG purified from sera with 2F5ep-Cys (NEQELLELDKWASLWN-C) peptide immobilized onto a beaded
agarose support. Competitive ELISAs were performed using plates coated with MPERp (1.4 �M). Prior to adding to the plates, 0.1 �g/ml of 2F5-specific IgG was
preincubated for 30 min with serial dilutions of soluble 2F5ep (NEQELLELDKWASLWN) peptide. Percentages of binding inhibition were adjusted to saturation
curves, which were subsequently used to infer the IC50 values 	S.E. displayed in the panels. C, inhibition of cell entry. In these assays HIV-Env pseudoviruses
were preincubated with increasing amounts of purified antibodies, and infection of TZM-bl target cells was subsequently monitored by flow cytometry as in
Fig. 5A. Plotted inhibition percentage values are means of four experimental determinations. The red columns correspond to the level of neutralization exerted
on VSV-G-pseudotyped viruses used as negative control.

FIGURE 8. Recovered responses after vaccination with the POPG/lipid
A-MPERp formulation. A, midpoint IgG titers (negative log EC50 dilution val-
ues) and inhibition of cell entry by 2F5-specific antibodies in the sera of four
different rabbits (R1–R4). Antibodies purified with 2F5ep-Cys were used at
100 �g/ml in the latter assay. B, levels of inhibition of cell entry mediated by
HIV-1-Env or VSV-GP controls. Rabbits were classified in two groups accord-
ing to significant differences in the levels of inhibition (R1/R4 versus R2/R3).
Significant inhibition of Env-HIV-1 versus VSV-GP was nonetheless observed
for both groups (**, p � 0.005; *, p � 0.05). MAb2F5 (2 �g/ml) was included as
positive control. Means 	 S.D. of six determinations are shown.
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reported here, these residues rather adopted a helical con-
formation (Fig. 4A).

Even though one should be cautious in interpreting a pep-
tide’s conformational states and extrapolating back to the
native functional protein, the potential relevance of the helical
conformation adopted by MPERp N-terminal residues is
emphasized by the structure of an antigenically near-native Env
construct termed “SOSIP” gp140 (79). Although truncated at
position 664, the recently solved crystal structure at 4.7 Å pro-

vides insights into the gp41 ectodomain organization in the
context of cleaved, stabilized HIV-1 Env trimers (80). The
SOSIP structure supports the location of the 656NEQELLEL663

residues into a solvent-exposed helix within the native Env
structure.

One crystallographic structure of the 2F5 Fab complexed
with peptide further displayed the turn sequence 664DKW666

followed by residues 667ASLW670 adopting a canonical �-helix
conformation (36), which is also present in our NMR structures

FIGURE 9. 2F5 epitope organization in MPERp and putative mechanism of antibody recognition. A, 2F5 epitope in HFIP and DPC structures. Core epitope
residues ELDKWA are shown in red, and downstream residues putatively implied in secondary interactions with CDR-H3 loop are depicted in blue. Trp-666 and
Leu-669/Trp-672/Phe-673 are displayed on the same side of the helix. B, comparison of 2F5 epitope structure in Fab� complex (PDB code 3D0L) and MPERp. The
chain portion spanning residues Leu-661–Trp-670 is shown in gray in the three structures, with projecting side chains of Asp-664 (left) or Lys-665 (right) and
Trp-666 in red. Side chain of Leu-669 is displayed in blue to establish the relative position of the downstream helix. The comparison suggests that the 310-helix
observed in DPC might include an intermediate of the conformational change required for positioning Asp-664 side chain into the 2F5 paratope. Lys-665
accommodation into the paratope would not require by comparison major conformational changes of the peptide backbone. C, fitting of the MPERp helix into
Fab�-bound peptide. The Fab paratope structure (PDB code 3D0L) is displayed in ribbon representation. The base of the flexible loop of the heavy chain (not
solved in the crystal) is marked by the yellow side chains of residues Pro-98 and Arg-100B. The MPER residues Trp-666 and Leu-669 in the bound peptide are
displayed in red and blue, respectively. In the right panel, the helix turn of MPERp (DPC structure) containing Leu-669 (displayed in blue) has been fitted into the
Fab-bound structure. The dotted lines mark the estimated position of the loop relative to the MPERp helix.
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(Fig. 4A, see also Fig. 9C). Thus, in combination, the structural
evidence suggests that the native structure recognized by the
2F5 antibody might consist of a continuous helical structure
interrupted by a flexible kink at positions 664 – 666 that redi-
rects the gp41 backbone at the pre-transmembrane region.

Implications for 2F5 Epitope Recognition Mechanism—The
MPERp NMR structures solved in this work recreate kinked
helical motifs (Fig. 9A), which, in combination with previously
reported structures (Fig. 9B), sustain proposals that this region
has evolved to sample alternative conformations after activa-
tion of the fusion cascade (25). Within this context, a putative
mechanism for 2F5 epitope recognition is presented in Fig. 9B.
The figure displays the orientations adopted by the 664DKW666

residues in MPERp structures and the Fab-bound peptide. The
Trp-666 and Leu-669 side chains are oriented in parallel in the
three structures, while the negative charge of Asp-664 side-
chain projects from the main axis in different directions (Fig.
9B, left). By contrast, the alkyl-� stacking between Lys-665 and
Trp-666 side chains found in contact with Fab could be fairly
reproduced by the structure solved in the DPC structure (Fig.
9B, right). In the HFIP structure, further rotation of the Lys-665
side chain would allow its insertion into the Fab binding pocket,
without requiring major changes of the peptide backbone con-
formation. Thus, the NMR structures suggest that binding to a
helical MPER peptide might first involve contacting Lys-665,
Trp-666, and Leu-669 residues and then require induction by
the antibody of a conformational transition in the C� chain for
inserting Asp-664 into the binding pocket. Comparison of the
three structures further suggests that the short 310-helix found
in the DPC structure may encompass an intermediate between
the fully helical and the extended conformations observed in
HFIP- and Fab-bound structures, respectively.

The NMR structures described in this work may in addition
provide insights into secondary interactions of the 2F5 anti-
body with MPER residues C-terminal to the core epitope (Fig.
9C). Screening of phage-displayed peptide libraries with the
MAb2F5 identified Leu-669 as an almost invariant residue at
the C terminus of the core epitope (63). Further competition
ELISA demonstrated that the CDR-H3 loop increased binding
affinity when C-terminal 672WFNITNWLWYIK683 residues
were added to the full 656NEQELLELDKWASLWN681 epitope
sequence (38). This finding raised the possibility that the neu-
tralization dependence on the loop apex was caused by weaker
secondary binding to C-terminal MPER residues (38).

Recently reported compelling mutagenesis of the CDR-H3
loop by Güenaga and Wyatt (25) supports that idea. A signifi-
cant correlation was found between neutralization potency of
CDR-H3 mutants and affinity to an MPER peptide spanning res-
idues 657EQELLELDKWASLWNWFNITNWLWYIK683. This
correlation was lost in the case of the 659ELLELDKWASL669

sequence structurally constrained into a protein scaffold (30).
Moreover, L669A, W670A, N671A, W672A, and F673A substi-
tutions, in residues immediately C-terminal to the core epitope,
resulted in an affinity decrease. It was further proposed that
weak contacts involving � stacking interactions among aro-
matic residues present in the antibody CDR-H3 loop and the
MPER peptide sequence might be responsible for this effect
(25). According to these authors, this mode of recognition

would in addition enable 2F5 epitope binding when MPER
organizes as a helical bundle.

The MPERp structures solved in this work, displaying the
relative positions of the 2F5 core epitope and the downstream
residues encompassing this secondary antibody-binding site,
substantiate such a hypothesis (Fig. 9C). Fitting of the MPERp
DPC helix 667ASLW670 stretch into the corresponding Fab-
bound structure (36) disclosed the Leu-669 side chain at the
base of the CDR-H3 loop in remarkably similar orientation and
aligned the MPER helix axis with the parts of the loops visible in
the crystal structure. Thus, the model that emerges from com-
bining both structures supports the possibility that the tip of the
CDR-H3 loop may establish contacts with Trp-672 and Phe-
673 residues on the MPER helix (25, 38).

Implications for Immunogen Design—Overall our structural
data support 2F5 docking to the surface of a kinked MPERp
helix exposing the invariable residues Trp-666, Leu-669, Trp-
672, and Phe-673, and the putative involvement of the CDR-H3
loop in the process. In previous studies, it was hypothesized that
inclusion of residues responsible for the secondary binding
process would be required to elicit 2F5-like neutralizing
responses (25, 36, 38). To test the immunogenicity of an MPER
helix containing all elements involved in epitope recognition by
the bNAb2F5, we carried out immunization studies using
MPERp as a vaccine. To establish a potential structure-immu-
nogenicity relationship, we monitored conformational changes
in the vaccine formulations. IR allows performing reliable
measurements (i.e. resolution or sensitivity are unaffected) in
turbid suspensions such as aggregated membranes and particulate
emulsions. Therefore, IR was the technique of choice for confirm-
ing the preservation of MPERp helical structures in the viscous
media provided by the aluminum salts, “Freund’s” water-in-oil
emulsion, and membrane adjuvants (Figs. 4B and 6).

Even though MPERp dispersed in alum and Freund’s adju-
vant triggered effective MPER-targeting immunoresponses, the
antibodies isolated from these sera were not functional in the
cell entry inhibition assays (Fig. 7). It has been reported that
interactions of protein antigens with the highly charged alumi-
num salts may destabilize their structures (81). Consistent with
this finding, MPERp in contact with alum underwent signifi-
cant aggregation, as denoted by the IR absorption at 1620 cm�1

(Fig. 4B, left). We speculate that MPERp unfolding/aggregation
in the highly polar alum medium might result in the presenta-
tion of neutralization-irrelevant 2F5 epitope structures to the
B-cell receptor. In contrast, IR demonstrated the absence of
significant MPERp aggregation in Freund’s reverse micelles
(Fig. 4B, right, and Table 3).

It has been argued that the water molecules confined at the
interfacial region of the water-in-oil reverse micelles are non-
bulk-like, resulting in a low dielectric environment at the water-
oil interface, reminiscent of that found at the membrane-water
interface (82). Thus, amphipathic peptides in contact with
reverse micelles may attain helical structures compatible with
those adopted when adsorbed to membrane surfaces. In partic-
ular, this has been demonstrated using IR for the antimicrobial
peptide mastoparan X (71). Our results suggest that this is also
the case for MPERp in Freund’s adjuvant and POPC/Chol/PA
vesicles (Table 3). We infer that hydrophobic contacts estab-
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lished by MPERp with the oil-water interface may result in lim-
ited exposure of the 2F5 epitope key residues to B-cell recep-
tors, in a way comparable with that in contact with the surface
of POPC/Chol/PA vesicles (see below).

Given its proximity to the envelope surface and the unusual
concentration of aromatic residues, it has been proposed that
structuring coupled to membrane partitioning may play a cru-
cial role in determining the structure and orientation of MPER
epitopes, which in turn will have an impact on immunogenicity
(19, 62, 72, 83). Thus, we studied in parallel the MPERp struc-
ture and immunogenicity in two different liposomal formula-
tions (Figs. 5 and 6). 2F5 binding to the POPG-based vaccine
was CDR-H3 dependent, whereas the loop was not required for
binding to the POPC/Chol/PA-based vaccine (Fig. 5). Thus,
only binding to the former correlated with the antibody-neu-
tralizing function. Sustaining different modes of antibody rec-
ognition, membrane-bound MPERp helical structures also dif-
fered substantially in these vaccines (Fig. 6). The features of the
MPERp IR spectrum in POPC/Chol/PA liposomes (Fig. 6A and
Table 3) resembled the flexibility and solvation degree charac-
teristic of amphipathic helices in contact with membrane sur-
faces (84). Accordingly, the simulations in the POPC/Chol/PA
system disclosed a membrane-bound interfacial helix (Fig. 6A).
In this structure, 2F5 key epitope residues were engaged in
dynamic interactions with membranes and remained mostly
inaccessible for binding from solution. Similarly to Freund’s,
the 2F5-targeting antibodies isolated from the POPC/Chol/PA
sera were not functional in cell entry assays (Fig. 7).

We surmise that the conformational flexibility of the interfa-
cial MPERp monomers put forward by the IR and MDS studies,
may sustain binding to the membrane-bound MPER epitope by
MAb2F5, even in the absence of the CDR-H3 loop (Fig. 5E).
Thus, the lack of functional antibodies in sera of rabbits immu-
nized with MPERp in Freund’s adjuvant and POPC/Chol/PA
liposomes (Fig. 7) would be consistent with the activation of B-cell
receptors that recognize alternative faces/residues within mono-
meric, interfacial MPER helices.

Contrasting these observations, the structure adopted by
MPERp in the POPG liposomes was devoid of the more flexible
conformers and denoted the existence of tightly packed, buried,
and solvated helices (Fig. 6B and Table 3). MDS further revealed
the possibility that a protruding bundle could insert into the
lipid bilayer through the C terminus of a peptide monomer and
expose to solvent 2F5 key residues from adhered helices (Fig.
6B). When used as immunogens, these POPG-bound MPERp
structures gave rise to antibodies with a significant capacity of
blocking cell infection (Figs. 7 and 8).

We speculate that the efficacy shown by the POPG-MPERp
formulation as compared with the other tested vaccines may
result from a different pattern of epitope exposure to solvent.
Based on the electrostatic repulsion between N-terminal MPERp
Glu carboxylates and the acidic phospholipid headgroups, we
already anticipated exposure of 2F5 epitope to solvent in this for-
mulation (61). In agreement with our expectations, the N terminus
of MPERp never contacted the membrane interface in the MDS
(Fig. 6B). The liposomal formulation may hypothetically contrib-
ute to immunogenicity in other ways. Following recent proposals
(25), it is possible that helical bundles protruding from the

membrane surface are required to recapitulate antibodies with
the capacity for binding 2F5 epitope residues, even if buried
within helix-helix contacts. The fact that the 2F5 CDR-H3 was
required for binding to POPG-inserted MPERp argues in favor
of this possibility (Fig. 5). Alternatively, as also happens in the
case detected by MDS, membrane insertion through one mon-
omer might stabilize the out-of-register MPERp helix assembly
making possible full exposure of 2F5 epitope residues to solvent
in the outermost monomer. The “flagpole”-like MPER struc-
tures repeated on the surface of negatively charged membranes,
might additionally embody multivalent antigens for the effi-
cient activation of B-cell receptors. Finally, these vesicles might
provide a suitable environment for generating antibodies capa-
ble of binding heterotypically to peptide and lipid (9, 31).

Although significant (Fig. 8), the inhibitory activity of these
antibodies was weak, particularly when compared with that of
MAb2F5 (Fig. 5A). We note that the former arise from a poly-
clonal response and that samples containing these antibodies
are devoid of the purity level of the isolated mAb. In combina-
tion, those two factors are likely to contribute to the reduction
of the specific activity of the samples tested here. We also note
that to qualify the 2F5-targeting antibodies recovered from the
POPG sera as neutralizing antibodies, the neutralization breadth
and potency should be evaluated using referenced assays and
diverse viral strains and isolates (85). In this regard, an additional
study, involving larger numbers of animals and comparing differ-
ent immunization strategies, is currently under way with the aim
to provide evidence for neutralization according to standard
methods (86).

In conclusion, results in this work suggest that structural
fixation through hydrophobic interactions with the membrane
interface may constrain the efficacy of liposomal vaccines tar-
geting the 2F5 epitope. However, they present the possibility
that membrane-inserted MPER bundles may embody efficient
2F5-targeting immunogens. Thus, we infer that MPER flag-
poles optimized for membrane insertion and/or epitope-expo-
sure functions might exemplify a new paradigm for future
design of effective liposomal vaccines targeting the 2F5 epitope.
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