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Abstract—In this paper, a per-phase model of a dual three-
phase Permanent Magnet Synchronous Machine (PMSM) is
mathematically developed and implemented in Simscape. This
model provides accuracy and adaptability to easily represent
machine operation under a number of phenomena such as
open-phase faults, magnetic saturation, etc. Simulation results
that show the correctness of the modelling approach are finally
provided.

Index Terms—PMSM, EV, phase variables, Simscape

I. INTRODUCTION

Multi-phase machines are receiving a great attention as,
compared to three-phase systems, they provide a reduced
torque ripple, low harmonic content and an improved fault
tolerance [1]–[4]. The six-phase configuration is one of the
most studied of the multi-phase architectures. Depending on
the phase arrangement between the three-phase sets, they can
be classified into symmetrical (shifted by 0 or π/3) [5]–[7] or
asymmetrical (shifted by π/6) [8]–[10]. With the asymmetrical
configuration, the sixth harmonic torque pulsations produced
by the two three-phase sets are in anti-phase and, therefore,
they are cancelled [11]. Regarding their industrialisation,
dual three-phase permanent magnet synchronous machines
(PMSMs) have been successfully used in a variety of industry
applications [12]–[17]. Among them, the automotive sector
represents a highly demanding application, requiring operation
for a very wide speed range and high torque [15]–[17].

In [18], several topologies of multiphase converters are
discussed. Fig. 1 shows the most common arrangement of a
dual three-phase system, where two voltage source inverters
(VSI) share a common DC-link and feed two three-phase sets
with isolated neutral points. Hereinafter, the first three-phase
set will be named ABC, while the second will be named RST.

Simulation is a powerful tool for developing modern power
systems. However, in order to carry out an in-depth and
accurate analysis of the dual three-phase system in a variety
of scenarios such as sensorless control, open-phase faults, and
flux weakening operation, it is convenient to represent the
machine as realistically as possible. Decoupled models with
multiple vector spaces are commonly used to describe the
behaviour of machines [19], [20]. Thus, despite these models
allow the simulation of the normal operation of the machine, as
well as easing the control implementation, they possess some
drawbacks. For instance, machines using the decoupled model
in open-phase fault scenarios have to be particularised (i.e.
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Fig. 1: Asymmetrical dual three-phase PMSM drive system.

modify the vector transformations) depending on the phase(s)
in fault [21], [22].

In this paper, a simulation model is presented with the
machine modelled in phase variables in Matlab/Simulink and
using the Simscape library, as electrical elements can be
customised, obtaining a more comprehensive model. To do
so, the machine equations are rewritten from the parameters
provided by the decoupled model used in the control strategy.

II. MATHEMATICAL MODELLING OF DUAL THREE-PHASE
PMSMS IN PHASE VARIABLES

In a dual three-phase PMSM, the voltages across the stator
windings are defined by

vs = Ris +
dψs

dt
, (1)

where

R = RsIn,

vs =
[
vA vB vC vR vS vT

]T
,

is =
[
iA iB iC iR iS iT

]T
,

ψs =
[
ψA ψB ψC ψR ψS ψT

]T
,

(2)

and {vs, is, ψs} ∈ R6×1 are the voltage, current and stator
flux vectors, respectively. The resistance matrix R ∈ R6×6

is a diagonal matrix with its elements equal to the stator
resistance Rs.

Phase stator flux and current vectors are linked by the
stator inductance matrix Ls which, for salient-pole machines,
is a function of the electrical rotor position θe (Np times the
mechanical position θm, where Np is the number of pole-pairs
of the machine):

ψs(θe) = Ls(θe)is +ψPM (θe). (3)
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ψPM ∈ R6×1 is the magnetic flux produced by the perma-
nent magnets. The permanent magnet flux linking winding A is
assumed at maximum when θe = 0 and zero when θe = π/2,
and is defined as

ψPM (θe) = λm


cos(θe)

cos(θe − 2π/3)
cos(θe + 2π/3)
cos(θe − π/6)
cos(θe − 5π/6)
cos(θe + π/2)

 , (4)

where λm is the maximum flux linkage of a phase, only
produced by the permanent magnets, and it depends on the
magnet properties and motor structure.

Thus, voltage equations are expressed as:

vs = Ris +
dLs(θe)

dt
is + Ls(θe)

dis
dt

+
dψPM (θe)

dt
. (5)

A. Inductance Modelling of Dual Three-Phase PMSMs

According to [23], assuming that eddy current and hys-
teresis losses, saturation, the harmonic components in self-
inductances and mutual inductances with orders higher than
second order can be neglected, and that the induced back-
electromotive force (BEMF) is sinusoidal, the self-inductance
LPP can be expressed as:

LPP (θe) = Lsl + L̄dqa + L̄dqd cos (2θP ), (6)

where L̄dqa = (L̄d + L̄q)/2, L̄dqd = (L̄d − L̄q)/2, Lsl is
the phase leakage inductance, (Lsl + L̄d) and (Lsl + L̄q) are
the phase self-inductances when the phase winding axis are
aligned with d-axis and q-axis of the PM rotor, respectively.
The mutual inductance between phases in the same star
winding can be expressed as:

MPQ(θe) =Mdqa cos (θP − θQ)+Mdqd cos (θP + θQ), (7)

where P ∈ {A,B,C,R, S, T}, while Q stands for another
phase, i.e. P ̸= Q.

The mutual inductance between phases in different winding
sets can be expressed as:

M12(θe) =Mdq12a cos (θ1 − θ2) +Mdq12d cos (θ1 + θ2). (8)

where “1” and “2” subscript stand for a phase in the ABC
winding set and RST winding set, respectively. Mdqa and
Mdqd are the gains of DC and second harmonic components
in the mutual inductances between phases in each set. Mdq12a

and Mdq12d are the gains of DC and second harmonic com-
ponents in the mutual inductances between phases in different
winding sets.

Therefore, the whole 6× 6 stator inductance matrix Ls(θe)
consists of four 3 × 3 inductance matrices. The upper left
L1(θe) and lower right L2(θe) matrices contain the LPP (θe)
and MPQ(θe) coefficients defined by (6) and (7), and are
related to the first and the second winding set, respectively.
The upper right matrix M12(θ) and its transpose M21(θe) =
MT

12(θe) in the lower left are related to the mutual coupling

TABLE I: Harmonic decomposition using VSD model.

Sub-space Harmonics h

αβ Fund. and (12k ± 1) ⇒ k = 1, 2, 3, . . . 1, 11, 13, . . .
XY (6k ± 1) ⇒ k = 1, 3, 5, . . . 5, 7, 17, 19, . . .
o1o2 (3k) ⇒ k = 1, 3, 5, . . . 3, 9, 15, 21, . . .

between different sets defined by (8). Thus, the whole induc-
tance matrix for the stator windings can be represented as a
block matrix:

Ls(θe) =

[
L1(θe) M12(θe)

M21(θe) L2(θe)

]
, (9)

where the submatrices are given by

L1(θe) =

LAA(θe) MAB(θe) MAC(θe)
MBA(θe) LBB(θe) MBC(θe)
MCA(θe) MCB(θe) LCC(θe)

 , (10a)

L2(θe) =

LRR(θe) MRS(θe) MRT (θe)
MSR(θe) LSS(θe) MST (θe)
MTR(θe) MTS(θe) LTT (θe)

 , (10b)

M12(θe) =

MAR(θe) MAS(θe) MAT (θe)
MBR(θe) MBS(θe) MBT (θe)
MCR(θe) MCS(θe) MCT (θe)

 . (10c)

Once the dynamic model that relates voltages and currents
is defined, the electromagnetic torque (Te) produced by the
motor is need to be found. To do so, the magnetic coenergy
Wco can be expressed as [24]:

Wco =
1

2
iTs Lsis + iTs ψPM . (11)

Hence, the electromagnetic torque expression, obtained by
differentiating the magnetic coenergy with respect to the
mechanical rotor position θm, is:

Te = Np

(
1

2
iTs
dLs

dθe
is + iTs

dψPM

dθe

)
. (12)

The first term of (12) is related to the reluctance torque,
whereas the second one corresponds to the magnetic torque.
When SPMSMs are used, the former will be zero as, for non-
salient machines, Ls is constant with respect to θe.

B. Model represented in dq-reference frame

To ease the control of the six-dimensional machine system,
according to the vector space decomposition (VSD) theory
[25], the machine can be decomposed into three orthogonal
sub-spaces, i.e. αβ,XY and o1o2. By applying the transforma-
tion matrix T6, harmonics are mapped to different sub-planes,
as shown in Table I.[

Fα Fβ FX FY Fo1 Fo2

]T
=

= T6.
[
FA FB FC FR FS FT

]T
,

(13)

T6 = 1
3


1 cos (4θs) cos (8θs) cos (θs) cos (5θs) cos (9θs)
0 sin (4θs) sin (8θs) sin (θs) sin (5θs) sin (9θs)
1 cos (8θs) cos (4θs) cos (5θs) cos (θs) cos (9θs)
0 sin (8θs) sin (4θs) sin (5θs) sin (θs) sin (9θs)
1 1 1 0 0 0
0 0 0 1 1 1

 ,



where θs = π/6.
By applying the standard Park transformation, the variables

in αβ sub-plane can be converted to the synchronous dq-frame
for a dual three-phase system.[

Fd

Fq

]
=

[
cos θ sin θ
− sin θ cos θ

]
︸ ︷︷ ︸

Tdq

[
Fα

Fβ

]
. (14)

In addition, according to [26], the variables in the XY sub-
plane can be converted to a new frame designated as xy-frame
by applying the following transformation[

Fx

Fy

]
=

[
− cos θ sin θ
sin θ cos θ

]
︸ ︷︷ ︸

Txy

[
FX

FY

]
, (15)

where F is V, I or ψ, which correspond to voltage, current and
flux, respectively. Then, the harmonics in the XY sub-plane
are converted into (6k)th harmonics in the xy-frame.

It is worth noting that the third sub-plane o1o2 cannot be
exploited (i.e., open circuit) as the neutral points of the each
three-phase set are isolated and are not connected between
them. Hence, Io1 = Io2 = 0.

Thus, the resulting rotating transformation Trot is defined as

Trot =

Tdq 02 02

02 Txy 02

02 02 I2

T6, (16)

and the inductance matrix Ldqxy , which does not consider the
zero-sequence subspace o1o2, can be obtained from (9) as

Ldqxy = TrotLs(θe)T
−1
rot =


Ld 0 0 0
0 Lq 0 0
0 0 Lx 0
0 0 0 Ly

 , (17)

where

Ld = Lsl + 3L̄d, Lx = Lsl, (18a)
Lq = Lsl + 3L̄q, Ly = Lsl. (18b)

Therefore, the voltage equations in the dq-frame and xy-
frame can be expressed as[

Vd
Vq

]
=

[
Rs + Lds 0

0 Rs + Lqs

] [
Id
Iq

]
+ ωe

[
−LqIq

LdId + λm

]
,[

Vx
Vy

]
=

[
Rs + Lxs 0

0 Rs + Lys

] [
Ix
Iy

]
+ ωe

[
−LyIy
LxIx

]
,

(19)

Finally, the electromagnetic torque in the dq-frame is de-
fined as

Te = 3Np(λm + (Ld − Lq)Id)Iq. (20)

III. MACHINE MODEL IMPLEMENTATION OF THE PHASE
VARIABLE MODEL IN SIMSCAPE

Using Simscape, it is possible to describe, in detail, the
equivalent electrical circuit of the machine by coding each of
the electrical elements. Owing to this, physical phenomena
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Fig. 2: Equivalent electrical circuit for each three-phase set
(s1, s2, s3) = {(A,B,C), (R,S, T )} implemented using the
Simscape library.

related to inductances, magnetic saturation, etc., can be in-
corporated into the model, enhancing the performance of the
model.

In this paper, the dual three-phase PMSM model in Sim-
scape is carried out following the voltage equations for each
three-phase set defined in (5). In Fig. 2, the electrical circuit
for phase voltages is depicted, where each three-phase set is
shown with its corresponding isolated neutral point. Thus, the
main purpose is to rewrite the voltage terms in (5) in function
of variables provided by the VSD model.

With respect to the voltage term dψPM (θe)/dt in (5)
associated with the BEMF, it can be redefined as follows

vPMs
(θe, ωe) = ωe

dψPM (θe)
dθe

= −ωeλm


sin(θe)

sin(θe − 2π/3)
sin(θe + 2π/3)
sin(θe − π/6)
sin(θe − 5π/6)
sin(θe + π/2)

 . (21)

From (21), it is concluded that vPMs
is function of the

electrical motor speed and position.
As for the voltage terms dLs(θe)

dt is+Ls(θe)
dis
dt in (5), related

to the inductance matrix defined in (9), these terms can be
rewritten using Ldqxy from the VSD model. Thus, (9) can be
expressed in terms of Ldqxy as

Ls(θe) = T−1
rot LdqxyTrot, (22)

and, the time derivative of (9) is:

dLs(θe)

dt
= ωe

dLs(θe)

dθe
= ωe

d(T−1
rot LdqxyTrot)

dθe
=

= ωe

(
dT−1

rot

dθe
LdqxyTrot +T−1

rot Ldqxy
dTrot

dθe

)
.

(23)
Therefore, voltage equations for the Simscape integration

can be expressed as

vs = Ris + vLs(θe, ωe) + vPMs(θe, ωe), (24)
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Fig. 3: FOC structure for dual three-phase machines following the VSD representation.

where s = {A,B,C,R, S, T} and,

vLs
(θe, ωe) =

dLs(θe)

dt
is + Ls(θe)

dis
dt

=

= ωe

(
dT−1

rot

dθe
LdqxyTrot +T−1

rot Ldqxy
dTrot

dθe

)
is

+ (T−1
rot LdqxyTrot)

dis
dt
.

(25)
On the other hand, the electromagnetic torque can be

rewritten by replacing (22) into (12) as

Te = Np

(
1

2
iTs
d(T−1

rot LdqxyTrot)

dθe
is + iTs

dψPM (θe)

dθe

)
. (26)

Finally, regarding magnetic saturation, this phenomenon
can be simply taken into account in this Simscape model
by inserting Look-Up Tables (LUTs) for the inductances
(Ld,Lq ,Lsl) and permanent magnet flux (λm) in terms of the
currents in dq-frame, and for the stator resistance Rs in terms
of the temperature.

A. Description of the implemented Field oriented control

Once modelled the PMSM in phase variables, Fig. 3 shows
how the machine is controlled with a Field Oriented Control
(FOC) approach by using the VSD model developed in Section
II-B.

With respect to the control strategy, for a given reference
torque, a reference current pair in the dq-frame (I∗d , I

∗
q ) is

generated. Furthermore, in healthy situation, currents in the
no-torque frame (i.e. xy) (I∗x , I

∗
y ) are usually set to 0 for

machines with sinusoidally distributed windings and, as the
neutral points of the two three-phase sets are isolated and
are not connected in this application, currents in the o1o2
sub-space are zero. In addition, a PWM with 3rd harmonic
injection, which pulses are sent to the two three-phase VSIs,
is used.

Up to nominal speed, the current references I∗d and I∗q are
generated to be referred to the Maximum Torque per Ampere
(MTPA) curve, which guarantees minimum copper losses [27].
To extend the operating speed range of this EV drive, for

TABLE II: Parameters of the dual three-phase IPMSM drive.

Parameter Value Parameter Value

Number of pole pairs Np 19 Stator resistance Rs 61.43 [mΩ]
d-axis inductance Ld 1.00 [mH] q-axis inductance Lq 1.35 [mH]

Leakage inductance Lsl 0.9 [mH] PM flux linkage λm 0.038 [Wb]
DC bus nominal voltage Vdc 400 [V] Maximum torque Tmax 54 [N.m]
Maximum mech. speed ωm 5000 [rpm] Switching frequency fsw 25 [kHz]

Simulation step Ts 1 [µs]

speeds beyond the nominal one, a set-point generator block
considering Flux Weakening (FW) region is included.

IV. SIMULATION RESULTS

As stated before, a detailed model of an asymmetrical dual
three-phase IPMSM drive, whose most relevant parameters
are listed in Table II, has been implemented in the Mat-
lab/Simulink environment using the Simscape library together
with its control.

In Fig. 4, the spatial distribution of the self-inductance LAA

and mutual inductances in phase A are shown. These values
are quite similar to those obtained in prototypes found in
the literature [28]. In this application, mutual inductances are
much smaller than the self-inductance; however, depending on
the cross-coupling between each phase and each three-phase
set, these can be significant.

The first simulation test consists in referring the system to
an MTPA point with a mechanical speed equal to 200 [rpm]
and a reference torque equal to 22 [N.m] in order to analyse
its response. In this operating point, without loss of generality,
the phase A enters in fault at 3.2 [ms]. Thus, the currents of
the first three-phase set (ABC) are shown, before and after
the fault, in Fig. 5. This proves that the model is capable of
modifying its response easily in the presence of a fault without
particularising the vector transformations.

On the other hand, in order to prove the performance of
the model and its control, the system has been tested under
close-to-real driving conditions. In particular, the torque and
speed profiles have been calculated for a given EV which is
circulating under the New European Driving Cycle (NEDC).

As aforementioned, a flux weakening control is included in
the current set-point generation block to test the response of
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Fig. 4: Self-inductance and mutual inductances in phase A.
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Fig. 5: Phase currents tested under fault in phase A.

the motor model at high speeds. Thus, the presented simu-
lations only focus on the extra-urban driving profile interval
of the NEDC as here, the motor enters in flux weakening
region. As shown in Fig. 6, the flux weakening control works
correctly as the voltage utilisation is limited to the voltage
constraint (dashed line in Fig. 6a) and the dq-currents are also
limited to the maximum current curve (dashed line in Fig. 6b),
even when the motor speed increases beyond nominal values.
With these results, it is demonstrated that the motor model
is well-integrated with the control board and it can provide
proper measurements such as phase currents, rotor position,
and rotor speed.

Finally, regarding the torque provided by the machine, it is
calculated by means of (26) which considers the whole 6x6
inductance matrix (9). Thus, in Fig. 7, it is shown that the
interior PMSM is correctly represented as not only its torque
follows the reference properly throughout the driving cycle but
also it is similar to the torque in dq-frame calculated by (20).
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V. CONCLUSIONS

In this work, a Simscape representation for dual three-phase
PMSMs is modelled in phase variables. Using this model, a
better understanding of the performance in each phase can be
analysed depending on the case study.

Furthermore, owing to the use of Simscape library, the



adaptability of the proposed motor model is the main ad-
vantage using this approach, open-phase faults, neutral point
configurations and magnetic saturation can be easily taken
into account. Thus, a more comprehensive model is obtained.
However, it should be borne in mind that, the more complexity
is added to the motor model, the more computational burden
it will have.

The model can be used to represent for PMSM both
with interior and with surface-mounted permanent magnets.
It should be noted that calculations are greatly reduced when
a SPMSM is used as the inductance matrix does not vary with
respect to the electrical position.

Finally, despite this motor model is tested using a FOC,
any control strategy can be applied over the model such as
Direct Torque Control, Model Predictive Control or Combined
Control.
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