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ABSTRACT
The multicomponent equiatomic CrMnFeCoNi alloy was proposed by B. Cantor almost 20 years ago and was the first in the family of the so-
called multiprincipal or high-entropy alloys (HEAs). Various mechanical properties of the Cantor alloy and its derivatives, such as corrosion
behavior, oxidation resistance, irradiation response, diffusion bonding, and weldability, have been studied these past years. Unfortunately,
data on their thermo-physical properties are scarce and the information about infrared emissivity is completely absent. Having reliable
infrared emissivity data at working conditions is very important for non-contact temperature measurements and for modeling heat trans-
fer by radiation during manufacturing. In this work, a Cantor alloy, as a typical example of HEAs, was manufactured with levitation melting
in vacuum. The alloy contains mainly one phase with face-centered cubic lattice and small amount of oxide precipitates. The angle-dependent
spectral directional emissivity was measured between 200 and 700 ○C. Reproducible data were obtained upon several thermal cycles. The total
directional emissivity is almost constant from 10○ to 50○, and it increases up until it reaches a maximum around 70○. Integrating these data,
total hemispherical emissivity was determined, and it was observed that this property remains almost constant at 0.28 in a wide temperature
range, showing a minor increase with increasing temperature. Spectral directional emissivity measurements allow detecting incipient oxida-
tion processes. These data show the necessity of measuring emissivity at working temperatures to achieve a precise quantification of radiative
heat transfer.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0206928

I. INTRODUCTION

High entropy alloys (HEAs) build a class of metallic materi-
als characterized by the presence of multiple principal elements in
roughly equal or near-equal atomic proportions. These alloys are
known for their unique properties stemming from their complex,

multicomponent composition. Multicomponent alloys with five and
more components without principal one (called also HEAs) were
first proposed by Cantor et al.1 and Yeh et al.2 It was astonishing
that the alloys consisting of so many elements can build the uni-
form face-centered cubic (fcc) solid solution. Since its discovery,
the five-component equiatomic CrMnFeCoNi alloy is called Cantor
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alloy and is one of the most-studied HEAs. From the very begin-
ning, the unique mechanical properties of HEAs were expected, and,
therefore, they are the most investigated for Cantor alloy and its
derivatives. The tensile properties,3–11 nanoindentation,12–15 fatigue
properties,16–20 hardness,14,21–24 compressive strength,21,25–27 high
strain rate and spall behavior (shock response),28 ballistic impact,29

fracture mechanisms,5,30 creep,31 torsion at high strains and tem-
peratures,32 wear,33 mechanisms of plastic deformation,34–36 strain
hardening,37 and thermal expansion38 were studied in detail. Mean-
while, the corrosion behavior,3,39–41 oxidation resistance,15,42–44 irra-
diation response,45 diffusion bonding,46 and weldability47 were also
studied in the past. Much less attention was devoted to other phys-
ical properties of Cantor alloys, such as magnetic properties,48–53

thermoelectric performance,54 photoemission,55 and ability to build
supercapacitors.56 Together with the ideal equiatomic CrMnFeCoNi
alloy, many Cantor-based alloys with Al,3,44,57–59 Zr,60 Ti,61,62 Si,61

Fe,63,64 Nb,22 Ni,65 Cu,44 nitrogen,5,9,21,66,67 and carbon10,22,43 addi-
tions were proposed and investigated looking forward to improving
particular properties.

However, less attention was devoted to radiative properties, i.e.,
infrared emissivity, of Cantor alloys and generally of HEAs. A lack of
reliable data on that issue in the literature is manifest. Spectral direc-
tional emissivity studies are the most versatile tool to investigate
these properties. Compared to other methods, direct radiomet-
ric techniques are more sensible because they collect the spectral
information that can vary with the surface conditions, temperature,
emission angles, etc. Such studies have been previously performed
for metallic alloys designed for aeronautics,68,69 fusion reactors,70 or
machine tooling.71 In general, knowledge on infrared emissivity is of
utmost importance in alloys and intermetallics for a several reasons.
First, spectral directional emissivity values are needed to measure
temperatures via non-destructive testing (NDT) techniques, such
as pyrometry or thermography, as good non-contact temperature
measurements via pyrometers and/or thermographic cameras need
precise emissivity values at certain wavelengths or wavelength range.
In addition, angle-dependent measurements are often necessary, as
measuring devices cannot always point at a sample at normal or
near-normal angles. Such measurements are widely performed dur-
ing casting or laser metal deposition (LMD) to monitor/control the
synthesis processes.72 Moreover, total hemispherical emissivity, a
parameter that can be determined by integrating spectral directional
emissivity data, is needed to model metal deposition heat transfer of
additive manufacturing processes.73 Furthermore, total hemispher-
ical emissivity is used to account for heat radiation losses and is
needed to understand heat transfer mechanisms in hydrogen storage
technologies.74 Finally, the spectral emissivity measurements have
proven to be an effective method to study surface oxidation kinet-
ics in situ.75 According to this background, consistent and accurate
emissivity measurements are of great importance for the scientific
community from several points of view.

In this work, a Cantor alloy, as a typical example of HEAs,
was manufactured and its radiative properties were explored sys-
tematically: the synthetized sample was exposed to several thermal
treatments, while its spectral directional emissivity was measured
in situ. Those annealing-like thermal treatments were performed in
the range of typical working temperatures, from room temperature
up to 900 ○C. After each cycle, the microstructure and composition
of the sample was studied. Finally, the data obtained through those

spectral directional experiments were integrated to obtain the total
directional and total hemispherical emissivity values. Thus, the novel
characterization presented in this work can serve to develop and
implement scientific and industrial solutions based in these alloys.

II. EXPERIMENTAL PROCEDURE
A. Sample preparation

The high-entropy alloy CrMnFeCoNi, consisting of 19.37 wt. %
Cr, 18.92 wt. % Mn, 19.51 wt. % Fe, 20.77 wt. % Co, and 21.16 wt. %
Ni, was prepared by the levitation melting of pure metals in vacuum.
Pure metals have been used, such as chromium (99.99 wt. %), man-
ganese (99.99 wt. %), iron (99.99 wt. %), cobalt (99.98 wt. %), and
nickel (99.98 wt. %), to produce the alloy. Then, the material was
cast into a cylindrical ingot with a diameter of 20 mm (Fig. 1). The
ingot was cut into 2 mm thick disks using spark erosion Electroero-
sive Wire Machine with NPC System (Model: DK7735, China). The
surface-hardened layer was removed using the grinding paper with
the roughness of 68 μm. Then, the sample was mechanically polished
with a diamond paste of particle size down to 1 μm and, finally, with
an alumina suspension of 0.05 μm particle size.

B. Infrared emissivity measurements
The directional spectral emissivity of a surface is the ther-

mophysical property that quantifies its capacity to emit thermal
radiation at a temperature T, a wavelength λ, and an emission direc-
tion defined by the polar and azimuthal angles θ and φ. Formally, it
is defined as

ε(T, λ, θ,φ) =
Lsurface(T, λ, θ,φ)

Lblackbody(T, λ)
, (1)

where Lsurface and Lblackbody are, respectively, the radiance emitted by
the studied surface and the spectral radiance emitted using a perfect
emitter that follows the Planck radiation law: a blackbody.

FIG. 1. The as-cast sample of CrMnFeCoNi alloy.
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For the cases in which the surface does not have any depen-
dence with the azimuthal angle, the spectral emissivity can be inte-
grated over the spectral axis in order to obtain the total directional
emissivity,

εT(T, θ) = ∫
∞

0 εT(T, λ, θ)Lblackbody(T, λ)dλ

∫

∞
0 Lblackbody(T, λ)dλ

. (2)

Finally, total hemispherical emissivities can also be calculated
by integrating over the entire solid angle,

εH(T) = ∫
π/2

0
εT(T, θ) sin (2θ)dθ. (3)

At temperatures between room temperature and 1000 ○C, most
of the radiation emitted by a surface is found in the mid-infrared
range, i.e., more than 95% of the radiation is enclosed in this range.
Thus, performing infrared emissivity measurements at working
temperatures for various emission angles allows estimating correctly
the total hemispherical emissivity of a surface.

The HAIRL emissometer was used to measure the spectral
infrared emissivity of the sample. The emissometer was built from
original designs,76 and it consists of a Fourier-transform infrared
spectrometer (FTIR), a vacuum sample chamber, a reference black-
body (Isotech Pegasus 970 R®), and an optical entrance box placed
in a T-form geometrical configuration. The spectrometer is a Bruker
Vertex 80v model. Its optical system consists of conventional KBr
optics, a Ge/KBr beam splitter, and a DLaTGS detector. Thus, emis-
sivity experiments can be performed in a maximum range of 1.43–25
μm. As explained in Gonzalez de Arrieta et al.,77 two type K ther-
mocouples are welded near the measuring spot in order to measure
the emissivity of metallic samples. Those thermocouples are used
to control the temperature of the sample and to calculate its spec-
tral emissivity. Consequently, the temperatures measured during the
emissivity experiments also allow us to register the thermal history
of the sample in a reliable manner.

C. Microstructural characterization techniques
Jeol JSM 6400/7000F scanning electron microscopes equipped

with Oxford Instruments LINK ISIS energy dispersive x-ray spec-
trometers (EDS) were employed for the microstructure characteri-
zation and elemental analysis. X-ray diffraction (XRD) patterns were
collected with the aid of the XPert-Pro diffractometer (manufac-
tured by L Malvern PANalytical, Spectris Plc, Malvern, UK) using
Cu Kα radiation in Bragg–Brentano geometry with an angular step
size of 0.02○ in order to perform structural-phase analysis of the
samples. PowderCell 2.4 program (PowderCell for Windows, ver-
sion 2.4. 03/08/2000, Werner Kraus, and Gert Nolze, BAM, Berlin,
Germany) was utilized for phase analysis and calculation of lattice
parameters. Texture evaluation of the sample was measured using
a Bruker D8 Discover diffractometer (Bruker, Billerica, MA, USA)
equipped with a Cr Twist tube, a V filter (λ = 2.2910 Å), a PolyCapTM

(1 μm single crystal cylinders) system for parallel beam generation
(divergence of 0.25○), and a 1D LynxEye detector (active length in
2θ 2.6○). The sample was mounted on an Eulerian Cradle with an
automatically controlled X–Y–Z stage. Data were collected for the

three most intense peaks reflections, using a fixed mode and time
per orientation of 5 s. The data collection in thinned mode with 5○

of δ was measured for full circle 0–360 incr. 5○ in phi (φ) and 0–70
incr. 5○ in psi (ψ) range, giving 2079 total orientations.

D. Stages along the whole investigation
In this subsection, all steps experienced by the sample along the

whole investigation will be briefly described to provide the readers
with the complete experimental history. First, the microstructure of
the as-received sample was analyzed before starting the emissivity
measurements. Afterward, the sample was attached to the sample
holder of the emissometer and inserted into the vacuum chamber.
The chamber was evacuated at room temperature. Once the vacuum
level was below 4 × 10−4 mbar, the spectral directional emissivity
measurements were performed from 100 to 400 ○C every 100 ○C,
and at each temperature, the emission angle was changed from 10○

to 80○ using 10○ steps. During those emissivity measurements, the
sample was heated with a heating rate of about 100 ○C per hour,
and the sample was maintained at each temperature setpoint for
about another hour to recollect the infrared radiation for the set of
selected emission angles. The thermal history of those measurements
is shown in Fig. 2.

Subsequently, after that first annealing-like treatment applied
to acquire emissivity data up to 400 ○C, the sample was cooled down
to room temperature and again a microstructural characterization
was performed. This first in situ thermal treatment was applied with
the purpose of homogenizing the sample and carefully checking if
there was a potential precipitation of secondary phases, and at the
same time recording information on the emissivity.

Having observed no evidences of oxidation after the first set of
measurements, a second emissivity experiment was performed every
100 ○C from 100 ○C up to a higher temperature of 700 ○C for the
same set of emission angles. After cooling down the sample, it was
possible for naked eyes to observe a very slight surface oxidation,
which could also be deduced by looking at the emissivity spectra
and was confirmed by microstructural characterization. Afterward,
the sample was polished again with an alumina suspension of 0.05
μm particle size in order to remove the thin oxide layer formed
during the emissivity experiment. Then, the sample was measured
again following the procedure explained before but in this run with
a maximum temperature of 900 ○C.

Finally, after the third run of measurements, the sample was
polished again analogously and its spectral directional emissivity

FIG. 2. Temperature profile acquired during the first set of emissivity
measurements.
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FIG. 3. XRD pattern of the CrMnFeCoNi HEA sample at room temperature.

was measured from 200 ○C up to 800 ○C every 100 ○C, obtaining
reproducible data for each temperature. Measurements acquired at
100 ○C were skipped because the signal to noise ratio was too low
in most of the spectral range. To avoid redundancy, emissivity data
corresponding only to the last set of emissivity measurements will

be presented in this contribution, because all important conclu-
sions concerning the radiative behavior of the Cantor HEA can be
addressed from them. In other words, thermal cycling was applied to
confirm the microstructural stability of the HEA, while at the same
time checking that the emissivity does not change upon cycling.

FIG. 4. Texture analysis: pole figure and preferential crystallographic orientation [100].
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III. RESULTS AND DISCUSSION
A. Starting microstructural characterization before
infrared emissivity measurements

Before investigating the emissivity of the Cantor HEA, the
microstructure of the as-received sample was analyzed. Figure 3
shows the XRD pattern of the CrMnFeCoNi HEA sample mea-
sured at room temperature in the as-received state. All peaks belong
to the same fcc phase with a lattice parameter a = 0.3596 nm.
The distribution of peak intensities reveals a significant texture.
The texture of the sample has been studied following the evolu-
tion of the three most intense peaks corresponding to the (200),
(311), and (420) reflection at 50, 90, and 147○ in 2θ, for differ-
ent sample inclinations (see Fig. 4). The texture analysis confirms
that ∼50% of the volume corresponds to crystals with an orientation
close to the [100] direction. In addition, the SEM backscattered elec-
tron (BSE) images (Fig. 5) reveal an acicular microstructure of the
fcc main phase, in which the presence of two different precipitate
phases can be observed. On the one hand, globular shape precipi-
tates (bright particles) were observed in a small amount, and on the
other hand, coherent or semi-coherent precipitates (dark particles)
appear in the neighborhood (see Fig. 5). In addition, a dendritic-like
structure with perpendicular branches can be identified at higher
magnifications.

In order to complete the characterization, the composition of
the precipitates and the acicular microstructure have been studied
via EDS (Fig. 6). The globular bright precipitates have a remarkable
Hf content (heavy element) and also a significant O content. Very
probably, these precipitates are Hf oxides coming from the oxidation
of Hf impurities during the melting of the alloy. In the case of the
coherent dark precipitates, the EDS maps (Fig. 6) indicate a slightly
higher Mn content in comparison with the other metals, which seem
to indicate that they are Mn-rich oxides. Ti is present in these Mn
rich precipitates, which contrasts with the rest of the regions where
it is not observed.

B. Microstructural characterization after the first run
of infrared emissivity measurements up to 400 ○C

After the first set of emissivity measurements up to 400 ○C,
no oxidation is observed and the Hf-rich globular bright oxides

and the coherent dark precipitates exhibit a similar size as those
observed in the as-received state (Fig. 7). In addition, a similar acic-
ular microstructure is present. However, the perpendicular branches
of the dendritic-like microstructure are not observed. Texture anal-
ysis (Fig. 8) reveals that ∼10% of the volume corresponds to crystals
with an orientation close to the [100] direction, which indicates
that the sample undergoes a texture evolution during the annealing-
like treatment applied in the emissivity experiment performed up
to 400 ○C. The absence of the dendritic like structure suggests that
the evolution of the texture is related to the disappearance of this
structure.

C. Microstructural characterization after the second
run of infrared emissivity measurements up to 700 ○C

After the measurements up to 700 ○C, a minor oxidation is
observed on the surface of the HEA sample (Fig. 9), although the
measurements were done under vacuum. This slight oxidation takes
place in the whole surface, but it is significantly more remarkable
at the grain boundaries, which are decorated with oxide particles. It
is well-known that grain boundaries are preferable nucleation sites
due to their higher energy in comparison with the bulk (also higher
diffusivities). Finally, the oxide layer was removed and the sample
was polished before the next set of emissivity measurements. At this
stage, the microstructure was checked and the obtained backscat-
tered electron image (Fig. 10) revealed a distribution of the Hf-rich
bright oxides and Mn-rich dark precipitates similar to that observed
in the sample emissivity experiment performed up to 400 ○C. There-
fore, it can be said that the microstructure of the bulk remains
without significant changes.

D. Microstructural characterization after the third run
of infrared emissivity measurements up to 900 ○C

In this case, as expected from the observed emissivity spectra,
there is a significantly stronger oxidation in the entire surface in
comparison with the slight oxidation observed after the emissivity
experiment performed up to 700 ○C. Figure 11 shows the appearance
of the surface of the Cantor HEA after the third run of emissivity
measurements acquired up to 900 ○C. The grain boundaries con-
tinue leading the oxide formation, but the oxidation in the bulk of
the grains is clearly stronger.

FIG. 5. BSE images of the studied HEA sample at different magnifications. (a) Overall microstructure of the fcc main phase of the HEA. (b) Globular shape precipitates (bright
particles) and coherent or semi-coherent precipitates (dark particles) were observed in a small amount.
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FIG. 6. Compositional EDS maps of a region of the sample with the two kinds of precipitates.
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FIG. 7. BSE image of the HEA sample after emissivity measurements acquired up
to 400 ○C.

E. Infrared emissivity measurements
Several emissivity measurements were performed with the

same sample. No significant difference between the spectral emis-
sivity measurements was obtained at the same temperature in
each experiment. Consequently, as mentioned above, only the data

obtained for the last experiment are reported and used to estimate
the total directional and total hemispherical emissivities. The exact
methodology used to compute the value and the uncertainties of the
integrated emissivities is explained in detail in Ref. 77.

For temperatures between 200 and 600 ○C, the spectral emissiv-
ity values correspond to those of a metallic sample, as it is shown in
the left column of Fig. 12. The spectral emissivity decreases mono-
tonically with increasing wavelength. Its total directional emissivity
remains constant for small emission angles and then increases at
higher angles until it reaches a maximum around 70○. This behavior
is coherent with the electromagnetic theory.78

For the experiments performed at 700 and 800 ○C (see Fig. 13),
an absorption band corresponding to a superficial oxide layer
formed during the experiment can be seen first in the spectral emis-
sivity recorded with a viewing angle of 50○ at 700 ○C and then
between 40○ and 80○ at 800 ○C. The measurements done at the lat-
ter temperature also show an increase in the emissivity at short
wavelengths, also evidencing an incipient unavoidable oxidation for
the vacuum level of the used setup. Taking that into account, it
can be said that the spectra obtained at these high temperatures do
not correspond entirely to the radiative behavior of the alloy, but
that there is a contribution of a semitransparent thin oxide layer.
Consequently, the emissivity measurements performed at higher
temperatures will show the apparent emittance. Due to this reason,
emissivity data acquired at 900 ○C are not included, as the study

FIG. 8. Texture analysis: pole figure and preferential crystallographic orientation [100] after emissivity measurements acquired up to 400 ○C.
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FIG. 9. Secondary and backscattered electron images at different magnifications of the surface of the Cantor HEA after emissivity measurements acquired up to 700 ○C.

of the oxidation kinetics of the alloy is out of the scope of this
work.

Considering all the collected emissivity spectra, we can state
that the spectral emissivity of the studied alloy increases slightly
with increasing temperature in the range from 200 to 600 ○C, as it is
shown in Fig. 14 (for the sake of simplicity, only data corresponding
to three temperatures are shown). Moreover, for wavelengths longer
than 5 μm, the differences of the spectral emissivities obtained at
the near-normal emission angle are almost negligible up to 600 ○C.
The near-normal spectral emissivity measured at 800 ○C shows a

FIG. 10. Backscattered electron images of the bulk of the Cantor HEA after
emissivity measurements acquired up to 700 ○C and ulterior polishing.

considerable increase for all recorded wavelengths. The measure-
ments done at an emission angle of 50○ show a small absorption
peak at 15 μm, which is not noticeable for smaller angles. The oxide
layer formed during the experiments also significantly affects the
total hemispherical emissivity, as it is shown in Fig. 15. At tempera-
tures below 700 ○C, the total hemispherical emissivity shows a slight
increase with increasing temperature, and this tendency changes
abruptly when surpassing that threshold.

Finally, spectral emissivity data are compared to data from the
literature. Although no emissivity data for HEAs are available, it is

FIG. 11. Backscattered electron image of the surface of HEA sample after
emissivity measurements acquired up to 900 ○C.
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FIG. 12. Left: spectral directional emissivity acquired at temperatures between 200 and 600 ○C. Right: total directional emissivity and its expanded uncertainty (k = 2) as a
function of emission angle at the corresponding temperatures.
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FIG. 13. Left: spectral directional emissivity acquired at temperatures between 200 and 600 ○C. Right: total directional emissivity and its expanded uncertainty (k = 2) as a
function of emission angle at the corresponding temperatures.

of interest to qualitatively compare the data of emissivity measure-
ments for other metallic materials. In Fig. 16, near-normal emissivity
data at 500 ○C are compared to two sets of data from alloys used
in the aerospace industry: first, data at 527 ○C from an Inconel 718
(nickel-based) alloy are plotted in orange.68 In addition, analogous
data published for a Ti–6Al–4V alloy at 441 ○C are shown in green.79

Data corresponding to pure Ni at 493 ○C are also provided in this
figure as a reference of a pure metal.77 First of all, it is worth men-
tioning that the emissivity values acquired for the Cantor HEA are
in the order of magnitude observed for metallic materials. However,
although for short wavelengths (λ < 7 μm), the typical mono-
tonic decrease with increasing wavelengths is observed, for longer

FIG. 14. Spectral directional emissivity for two emission angles at three temperatures before the oxidation started (T = 200, 400, and 600 ○C) and at two temperatures after
a thin oxide layer began to grow on the surface (T = 700 and 800 ○C).
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FIG. 15. Total hemispherical emissivity from T = 200 ○C to T = 800 ○C with their
expanded uncertainties (k = 2). The measurements corresponding to the alloy are
shaded in blue, and the measurements corresponding to the alloy with the thin
oxide layer are shaded in orange.

wavelengths, the emissivity of the studied Cantor HEA remains quite
constant (in contrast to the parallel tendency observed for the other
three metallic materials). In particular, for wavelengths beyond 15
μm, it can be said that the emissivity level is relatively high. A reason-
able explanation for such a behavior can be provided if we consider
the large electron scattering occurring in highly disordered alloys
due the compositional disorder as the one present in HEA. Such
reasoning was already reported to explain high resistivity values in
HEA thin films80 and in Ni-based multicomponent alloys.81 Assum-
ing the classical approximation, a direct relation (Hagen–Rubens
relation) between resistivity and emissivity can be accepted, so the
mentioned large electron scattering can justify the relatively high
emissivity observed in a broad wavelength range. Further stud-
ies, such as coupled resistivity and emissivity measurements, are

FIG. 16. Near-normal spectral directional emissivity with its expanded uncertainty
(k = 2) at 500 ○C compared to other data reported in the literature.

required to confirm if the validity of this explanation is fully cor-
rect, but at least it can be said that the high-entropy level of this type
of alloys has a significant influence on the emissivity.

IV. CONCLUSIONS
The high-entropy alloy CrMnFeCoNi, consisting of 19.37 wt. %

Cr, 18.92 wt. % Mn, 19.51 wt. % Fe, 20.77 wt. % Co, and 21.16 wt. %
Ni, was prepared by the levitation melting of pure metals in vacuum.
The microstructure of the alloy is composed mainly of a face-
centered cubic (fcc) phase with a lattice parameter a = 0.3596 nm.
The angle-dependent spectral directional emissivity was measured
between 200 and 700 ○C. Reproducible data were obtained upon
several thermal cycles. The total directional emissivity is almost con-
stant from 10○ to 50○, and it increases up until it reaches a maximum
around 70○. Integrating these data, the total hemispherical emissiv-
ity was determined, and it was observed that this property remains
almost constant at 0.28 in a wide temperature range, showing a
minor increase with increasing temperature. Spectral directional
emissivity measurements allow us to detect incipient oxidation pro-
cesses. These data show the necessity of measuring emissivity at
working temperatures to achieve a precise quantification of radiative
heat transfer.
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