
Citation: Bosenbecker, M.W.; Silva,

E.V.; Paganotto, G.F.d.R.; Zanon,

T.T.M.; Langone, F.; Rodrigues, M.B.B.;

Marini, J.; Labidi, J.; Missio, A.L.; de

Oliveira, A.D. Effect of Different

Compatibilizers on the Properties of

Green Low-Density Polyethylene

Composites Reinforced with Bambusa

Vulgaris Bamboo Fibers. Polymers

2024, 16, 1760. https://doi.org/

10.3390/polym16131760

Academic Editors: Junfeng Guan,

Lielie Li and Chaopeng Xie

Received: 28 May 2024

Revised: 14 June 2024

Accepted: 19 June 2024

Published: 21 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Effect of Different Compatibilizers on the Properties of Green
Low-Density Polyethylene Composites Reinforced with
Bambusa Vulgaris Bamboo Fibers
Mariane W. Bosenbecker 1, Eduarda Vieira Silva 1, Gian Francesco dos Reis Paganotto 1,
Tiago Thomaz Migliati Zanon 2 , Fernanda Langone 1, Marlon Bender Bueno Rodrigues 1 , Juliano Marini 2 ,
Jalel Labidi 3,* , André Luiz Missio 1,* and Amanda Dantas de Oliveira 1

1 Technological Development Center—CDTec, Postgraduate Program in Materials Science and
Engineering—PPGCEM/UFPEL, Federal University of Pelotas—UFPel, Pelotas 96010-610, RS, Brazil;
marianebosenbecker@hotmail.com (M.W.B.); ferlangone@gmail.com (F.L.);
marlonbueno50@gmail.com (M.B.B.R.); adoliveira@ufpel.edu.br (A.D.d.O.)

2 Department of Materials Engineering—DEMa, Federal University of São Carlos—UFSCar,
São Carlos 13565-905, SP, Brazil; tiago.zanon12@gmail.com (T.T.M.Z.); juliano.marini@ufscar.br (J.M.)

3 Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU,
Plaza Europa, 1, 20018 Donostia-San Sebastián, Guipuzcoa, Spain

* Correspondence: jalel.labidi@ehu.eus (J.L.); andre.missio@ufpel.edu.br (A.L.M.)

Abstract: Low-density green polyethylene (LDGPE) composites reinforced with 5 wt% of bamboo
fiber and 3 wt% of a compatibilizing agent (polyethylene grafted with maleic anhydride and tannin)
were processed through extrusion and injection molding. Bamboo fiber, Bambusa Vulgaris, was
characterized using Fourier-transform infrared spectroscopy (FTIR). The molded specimens were
analyzed for their thermal, mechanical, and morphological properties. The estimated concentration
was chosen to provide the best mechanical strength to the material studied. FTIR analysis of the
fibers revealed the presence of groups characteristic of bamboo fiber and tannin. Differential scanning
calorimetry revealed that both compatibilizing agents increased the matrix’s degree of crystallinity.
However, scanning electron microscopy (SEM) showed that, despite the presence of compatibilizing
agents, there was no significant improvement in adhesion between the bamboo fibers and LDGPE.

Keywords: bioeconomy; maleic anhydride; tannin; sustainable composites; natural fibers

1. Introduction

The demand for more sustainable alternatives in the manufacture of materials has
increased in recent decades, aiming to reduce the negative impacts on the environment and
overcome the scarcity of non-renewable resources [1]. Several studies are being carried
out with the aim of finding solutions to reduce the use of raw fossil materials and reuse
of agroindustry residues, such as the development of biobased polymers and the use of
lignocellulosic materials to produce composite materials.

Polymer composites can achieve great properties with low density, replacing several
conventional materials. They are formed via a matrix and a dispersed phase, present
in smaller quantities to enhance their characteristics [2], and widely used for structural
purposes in the automotive, civil construction, bioengineering, and aerospace areas [3]. In
this context, green polyethylene, a semi-crystalline polyolefin material developed from
ethanol extracted from sugar cane, stands out having the advantage of reducing CO2
emissions in the atmosphere since its precursor is a renewable raw material, and it can
be recycled at the end of its consumption cycle [4,5]. In addition to the environmental
advantages that this new line of polymers offers, it has similar performance in terms of
properties, processability, and applications to petroleum-based polyethylene [6,7].
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Natural fibers have been widely used in composite materials as reinforcement because
they have a low cost, are a renewable natural resource, have no toxicity, have good mechan-
ical properties, and are biodegradable and recyclable [8,9]. Fibers can be obtained from jute,
sisal, coconut, bamboo, etc. [10], and among them, the use of bamboo from the Bambuseae
genus must be highlighted as an alternative in replacing structural materials such as steel
and concrete [11], presenting good mechanical properties, lightness, versatility, and a low
cost, while being applied in various sustainable composites [12,13].

However, there is a crucial parameter for polymer composites reinforced with natural
fibers that must be taken into consideration: interfacial adhesion, which is responsible for
the load transfer from the matrix to the fibers [14,15]. Since the polymer matrix generally
has hydrophobic characteristics, while the fibers have hydrophilicity, it is necessary to use a
coupling agent (compatibilizer) to achieve the chemical mediation between the matrix and
the reinforcement improving the adhesion without impairing the mechanical properties of
the composite [16,17]. Polymers grafted with maleic anhydride, such as polyethylene (PE-g-
MA) and polypropylene (PP-g-MA), are the most widely used compatibilizing agents since
these copolymers promote good interface adhesion, resulting in satisfactory properties
for the composite when compared to those that are non-compatibilized [18,19]. However,
besides being manufactured from petrochemical resources, they have a high energy cost
during production and a high price compared to natural raw materials. Therefore, re-
searchers investigate natural coupling agents from lignocellulosic sources for composites,
such as lignin and tannin, in order to replace synthetic compatibilizers [20–22].

Tannins are water-soluble phenolic compounds found naturally in various parts of
plants such as fruits, wood, leaves, bark, and herbs [23]. This compound has antioxidant
characteristics and is traditionally used in the leather tanning process and also as flocculants,
adhesives, and coatings [24]. Chemically, tannins can be classified as hydrolyzable and
condensed, having different applications. Condensed tannins have oligo/polyphenol
units containing polar and non-polar parts in their composition, which resembles synthetic
compatibilizers, where the apolar aromatic groups have an affinity with the polymer matrix,
while the hydroxyl groups interact with the lignocellulosic fibers, anchoring the matrix to
the reinforcement agents [25].

In view of the promising properties of tannin for applications as a coupling agent in
the production of sustainable composites, this work aims to analyze the compatibilizing
effect of polyethylene grafted with maleic anhydride (PE-g-MA) and tannin in bamboo
fiber-reinforced, low-density green polyethylene composites.

2. Materials and Methods
2.1. Materials

The polymer matrix was a low-density green polyethylene (LDGPE), commercially
known as SLD4004 resin (I’m greenTM), supplied by Petroquímica Braskem (Triunfo, Brazil),
with a melt flow index of 0.2 g·min−1 (190 ◦C· 2.16 kg−1) and a density of 0.923 g·cm−3.
The bamboo was collected from a bamboo grove in March 2022. It was then cut, dried in
an oven at 50 ◦C, and subsequently ground in a knife mill, and then a 32-mesh sieve was
used to control the granulometry of the resulting fibers (BF). Polyethylene-graft-maleic
anhydride (PE-g-MA) and tannin (TA) were used as compatibilizing agents. The PE-g-MA
was donated by the company Cristal Master (Joinville, Brazil) and has about 1 to 3% of
maleic anhydride content, whereas the tannin was supplied by Tanac (Montenegro, Brazil).

2.2. Processing of the Composites
2.2.1. Extrusion Compounding

After the raw materials were dried, the composite with 5 wt% of BF (according
to the parametrization of other works, the addition of bamboo fiber as a reinforcement
of up to 5 wt% improves the mechanical properties by up to 13% [26]) and 3 wt% of
compatibilizer (according to the parametrization of other works [27]) were produced using
a single-screw extruder (Eco Soluções, Viçosa, Brazil) with L/D of 20. The equipment has
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four heating/temperature control zones, from the hopper to the die, and the following
temperature profile was set: 140 ◦C (zone 1), 145 ◦C (zone 2), 150 ◦C (zone 3), and 190 ◦C
(die). The pure polymer (with no filler) was also processed under the same conditions for
comparison purposes. Table 1 shows the mass compositions of the studied composites.

Table 1. Mass compositions of the studied composites.

Sample Content (wt%)

LDGPE 100
LDGPE/5%BF 95/5

LDGPE/5%BF/3%PE-g-MA 92/5/3
LDGPE/5%BF/3%TA 92/5/3

2.2.2. Injection Molding

After the samples’ extrusion compounding, they were granulated and dried. Then,
they were submitted to the injection molding process in a mini bench injector, model
AXINJET, AX Plásticos Máquinas Técnicas (Diadema, Brazil). The specimens were made to
be used in the mechanical tests for tensile strength and Izod impact strength, according to
ASTM D-638 [28] and ASTM D-256 [29], respectively.

2.3. Characterization of the Composites
2.3.1. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) analyses were performed to investigate the
influence of the reinforcing filler and compatibilizers on the thermal properties (melting
temperature (Tm) and crystallization temperature (Tc)) and degree of crystallinity (Xc) of
the composites. Equipment from TA Instruments (New Castle, DE, USA), model Q-2000,
was used, with nitrogen as a carrier gas, at a constant flow of 50 mL·min−1. The samples
were initially heated from 30 to 200 ◦C at a heating rate of 10 ◦C·min−1, remaining at this
temperature for 3 min to eliminate the thermal history of the samples. After, they were
cooled at 10 ◦C·min−1, from 200 to 30 ◦C for the determination of Tc and again heated
up to 200 ◦C at a rate of 10 ◦C·min−1. The degree of crystallinity (Xc) of the samples was
determined using Equation (1) [30].

Xc =
∆Hm

∆H0
m(1 − W)

∗ 100% (1)

where Xc is the degree of crystallinity (%), ∆Hm (J·g−1) is the melting enthalpy of the sample,
∆H0

m (J·g−1) represents the theoretical melting enthalpy of a 100% crystalline LDGPE, that
is, 293 J·g−1, and W corresponds to the weight fraction of fiber in the formulation [31].

2.3.2. Uniaxial Tensile Test

Tensile tests were performed according to ASTM D-638 [28] in an Instron Universal
Testing System, model 5568, with a load cell of 5 kN and strain rate of 10 mm·min−1. At
least five specimens were tested per sample.

2.3.3. Izod Impact Strength Test

Izod impact strength tests were performed using Ceast equipment, model RESIL 25
(Instron, São José dos Pinhais, Brazil), according to ASTM D-256. The injection-molded
specimens were notched in a Ceast notching machine to a depth of 2.54 ± 0.1 mm. At
least eight specimens were tested per sample, at room temperature. In this work, a 5.5 J
hammer was used, and none of the specimens suffered total fracture, only partial, which
was classified as an NB (non-break).
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2.3.4. Scanning Electron Microscopy (SEM)

SEM (Jeol, Tokyo, Japan, model JSM-6610LV) was used to evaluate the matrix-
reinforcement adhesion under the use of different coupling agents. Micrographs of the
fractured Izod impact strength specimens were obtained. A thin gold layer was deposited
onto the material with a metallizer (Bal-Tec, Los Angeles, CA, USA, Mult Coating Sys-
tem MED020).

3. Results
3.1. Characterization of the Composites
3.1.1. Differential Scanning Calorimetry (DSC)

DSC analysis was used to determine possible crystallinity changes to the matrix after
the addition of reinforcement and compatibilizers. DSC thermograms of the cooling and
second heating are illustrated in Figure 1, using samples obtained after the extrusion process.
The values corresponding to the crystallization temperature (Tc), crystallization enthalpy
(∆Hc), melting temperature (Tm), and melting enthalpy (∆Hm) are given in Table 2.
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Figure 1. DSC thermograms for the (a) cooling and (b) second heating of the samples studied.

Table 2. Thermal parameters obtained from the DSC analysis.

Samples Tc (◦C) ∆Hc (J·g−1) Tm (◦C) ∆Hm (J·g−1) Xc (%)

LDGPE 97.7 63.4 111.9 69.4 23.7
LDGPE/5%BF 97.3 61.0 112.1 63.6 22.8

LDGPE/5%BF/3%PE-g-MA 96.8 59.3 112.5 63.4 22.7
LDGPE/5%BF/3%TA 97.6 62.9 111.7 62.8 22.5

As shown in Table 2, the addition of bamboo fiber and the compatibilizing agents
resulted in small changes in Tm and Tc when compared to LDGPE and a slight increase in
Tm of the LDGPE/5%BF and LDGPE/5%BF/PE-g-MA composites when compared to the
pure polymer. Furthermore, for Tc, a slight reduction was noted, in which it was considered
that the addition of compatibilizers inhibited the growth of LDGPE crystals, which had the
effect of forming small and imperfect crystals [21].

It is important to note that the only composite that had a Tm lower than that of pure
LDGPE was the one with the addition of TA, following trends already portrayed in the
literature. In the work developed by Kim et al. [32], the Tm and Tc of polyvinyl alcohol
and hydrothermally treated tannic acid (HTA) composite films decreased as the HTA
content increased, related to the increasing disruption in the PVA molecular chains caused



Polymers 2024, 16, 1760 5 of 13

by its hydrogen bonding with the HTA. Similar results were found by Liao et al. [33],
who observed a decrease in Tm in PP and cross–linked tannin (TH) composites before UV
accelerated weathering, as the TH content became higher.

When referring to ∆Hm, a significant decrease in the enthalpy of the composites was
observed when compared to the polymeric matrix alone. In general, LDGPE molecular
chains can crystallize on their own through an effect known as self-nucleation or via the
introduction of a nucleant, an effect known as heterogeneous nucleation [34]. Additionally,
the ∆Hc also showed a decrease for the LDGPE/5%BF composite compared to the poly-
meric matrix, and when added, the compatibilizing agents induced different behaviors
in enthalpy values in relation to the LDGPE/5%BF composite: while the use of PE-g-MA
was responsible for decreasing the enthalpy of crystallization, the TA caused an increase in
this value.

In addition, the composites exhibited a progressive decrease in Xc when compared
with the LDGPE. When comparing the values of crystallinity of the compatibilized and
without compatibilizer composites, it can be seen that the incorporation of maleic anhydride
and tannin presented decreases in the crystallinity of the materials, attributed to the
enhanced adhesion between the LDGPE matrix and the BFs, which disturbs the mobility of
polyethylene chains.

3.1.2. Uniaxial Tensile Tests

From the literature, it is known that bamboo fibers present good reinforcement poten-
tial for polymeric composites since their unidirectional arrangement provides high stiffness,
although their mechanical properties depend on variables such as the type of bamboo and
environmental conditions during its growth [35].

Regarding the elastic modulus (Figure 2a), it can be observed that the composites
presented a differentiated behavior when compared to pure LDGPE; it was proven that the
bamboo fiber provided a considerable increase in the modulus (~40%). However, similar
results were found for the compatibilized composites (LDGPE/5%BF/3%PE-g-MA and
LDGPE/5%BF/3%TA) when compared to the uncompatibilized sample (LDGPE/5%BF).
This behavior may be an indication that the presence of compatibilizing agents did not
improve the interfacial adhesion and/or dispersion state of the bamboo fiber through the
LDGPE matrix [36].
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Figure 2. Elastic modulus (a) and tensile strength at rupture (b) of the LDGPE composites. Values
followed by at least one letter in common indicate non-significant distinctions at a 95% confidence
(p < 0.05) level according to Fisher’s LSD test.
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For thermoplastic composites, the elastic modulus is generally improved by incorpo-
rating a reinforcement because the filler restricts the mobility of the polymer chains and also
has a higher stiffness compared to the matrix, contributing to an increase in the stiffness of
the composite [22]. It is also believed that the ability of a composite interface to transfer
elastic deformation depends on the interfacial stiffness and static adhesion strength [37]. A
similar trend was demonstrated in the work of Daramola et al. [38], where an increase in
the elastic modulus of high-density polyethylene (HDPE)/bamboo fiber composites was
noted when compared to the polymer matrix.

The LDGPE/5%BF and LDGPE/5%BF/3%TA composites showed a slight improve-
ment in tensile strength (Figure 2b). However, for the LDGPE/5%BF/3%PE-g-MA compos-
ite, no increase was observed. Meanwhile, as previously discussed, the elastic modulus
increased for all composites reinforced with BF, which was related to higher stiffness by
other authors [39]. The increase in tensile strength at breaking suggests a small addi-
tional degree of interfacial compatibility between the filler and matrix [40], with similar
results being found in the work conducted by Salmah et al. [41]. Generally, compatibilized
composites with higher crystallinities compared to non-compatibilized composites may
result in the improvement of their mechanical properties [42]. In this work, although the
crystallinity of the composites was not increased, the tensile strength of the LDGPE/5%BF
and LDGPE/5%BF/3%TA composites proved to be the highest found among all the com-
positions tested (both in the same statistical homogeneous group), elucidating a possible
ability of TA to prevent tearing or the breakdown of BF and possibly improving the transfer
of mechanical stress between the polymeric matrix and the reinforcing agents.

The addition of tannin could potentially increase the plasticity of the LDGPE/5%FB/
3%PE-g-MA composite, suggesting that the tannin could be uniformly dispersed in the
polymeric matrix and possibly form stable hydrogen-bonding interactions with the bam-
boo fiber [43], while its non-polar parts (such as aromatic rings) could interact with the
LDGPE [44]. In these scenarios, it is important to highlight that the dispersion of compati-
bilizers, especially TA, was not investigated in the present research. Furthermore, some
studies suggest the ability of compatibilizers to cleave the polymer chain length, causing a
decrease in the mechanical performance of the matrix itself [45,46]. Considering this, the
low gains obtained in the tensile strength values of compatibilized composites may be due
to a weakened matrix.

Based on the values found in Figure 3, it was observed that the composites exhibited
a progressive decrease in the strain at break when compared to the LDGPE, having as a
consequence the weak matrix-reinforcement interaction [47], which was unexpected since
the strain in the rupture of the reinforced composite and the PE-g-MA- and TA-containing
composites was statistically the same. In contrast, the LDGPE/5%BF/3% PE-g-MA and
LDBPE/5%BF/3%TA composites showed a slight improvement over LDGPE/5%BF due
to the use of compatibilizing agents, which are responsible for providing better interfacial
adhesion.

3.1.3. Izod-Type Impact Strength Test

The impact strength test is used to measure a material’s toughness, i.e., its ability to
absorb energy during impact. The value generated through this analysis is an important
measure in the selection of materials for engineering applications. The results of this test
can be seen in Figure 4 and Table 3.

The composites showed higher impact energy than the LDGPE. The sample LDGPE/
5%BF showed a mean increase of 18% compared to the polymer matrix. The introduction
of bamboo fibers promoted an improvement in the impact strength of the composites
compared to the matrix; i.e., the energy required to break the samples was higher, proving
that the fibers act as reinforcement in the composites [48]. In this work, the composites
presented the “fiber bridging” mechanism, in which not all components were fractured
during the impact. This happens because part of the load applied to the matrix is transferred
to the fibers, which deform, increasing the impact strength of the composite [48]. Similar
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observations were made by Candido et al. [49], where the authors prepared polyester
composites reinforced with sugarcane bagasse.
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Table 3. Impact strength test values.

Samples Impact Resistance (J/m)

LDGPE 408.4 ± 64.7
LDGPE/5%BF 482.1 ± 58.2

LDGPE/5%BF/3% PE-g-MA 394.7 ± 54.4
LDGPE/5%BF/3%TA 393.1 ± 47.6
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However, when the compatibilizing agents were added, no significant improvements
were observed. This could be explained due to the increased compatibility of the composite
after the addition of the PE-g-MA and TA, causing the increased brittleness of the material,
which contributes to the composite fracture mode changed from “fiber extraction” to “fiber
breakage” [50], in addition to fiber agglomeration [38].

The decrease in impact strength or reduced variation in strength upon the addition
of compatibilizer may also be due to the induction of micro-spaces between the fiber
and the LDGPE, which generate numerous micro-cracks when impact occurs, enabling
crack propagation [13]. It has been noted that PE-g-MA acted as an “anticompatibilizer”
in polypropylene composites and that it may have contributed to the pull-out of the
reinforcement, as the compatibilizer used was incompatible with the matrix [51]. In the
work developed by Yang et al. [21], it was found that, as reinforcement was added, the
mechanical properties of the polypropylene/cellulose fiber composites suffered a decrease.
This could be explained because the filler used could not be homogeneously dispersed
with the tannin. Previous records in the literature report that the molecular weight of the
grafted polymer chain, as well as the spacing of the MA units resulting from the grafting,
could induce the aforementioned behavior [52–54].

3.1.4. Scanning Electron Microscopy (SEM)

The morphology of composites is closely related to their properties and particularly
to their mechanical strength. As such, changes in the structure of composites can explain
the trends that are obtained from their mechanical parameters. Figure 5 shows the SEM
micrographs obtained from the fracture surface of the samples after performing the Izod
impact strength tests.
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As shown in Figure 5a, the fracture surface of LDGPE is comparatively smooth with
crack propagation marks [55]. The unstable propagation of cracks is not a consequence of
the lack of reinforcement; rather, the lack of reinforcement to control crack growth results
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in the type of cracks observed. Cracks propagate unstably under external loading, and the
main consequence is a lack of reinforcement to control their growth. Although the crack
progresses rapidly through the material, there may be a stretching mechanism. This is
because this property is directly related to the stress supported and the deformation before
rupture [56].

The addition of bamboo fiber in the matrix promotes a significant increase in impact
strength, with values of 482.14 J/m. This improvement is fundamentally associated with
the ability of the fibers to transfer loads longitudinally, and it can be justified by fracture
toughness theory. When the LDGPE/5%BF composite is subjected to impact conditions,
several micro-cracks are generated. Consequently, the fibers along these micro-cracks
unfold, thus finishing their growth. It was also observed that the presence of short fibers
significantly improved the properties related to impact strength [30].

As shown in Figure 5a, the LDGPE has a loose and flaky structure with the presence
of microvoids, showing ductile failure at multiple points, which may be related to the fact
that its surface is not fully impermeable to moisture and its mechanical integrity is limited
in the absence of reinforcement [38].

For the LDGPE/5%BF composite in Figure 5b, several fibers can be described as
clustered together, which contributes to a gradual increase in the number of holes and
voids, suggesting a ductile fracture. The fibers appear to have separated from the polymer
matrix during deformation, which is a clear indication of poor interfacial adhesion [42].
However, the fibers of this material break apart when the composites are broken. This
phenomenon occurs due to the good mechanical properties of bamboo fiber, for which more
energy is required to break the composites, which results in a higher impact strength [57].

In the work of Daramola et al. [38], it was observed that HDPE composites reinforced
with concentrations above 4%-by-weight bamboo fiber exhibited fiber displacement and
pullout. The congestion observed for the composites reinforced with 10% by weight means
that more load is absorbed via the fibers. The poor adhesion observed for this composite
also provides a free path for moisture ingress. The results of Daramola et al. [38] corroborate
our findings and reinforce the importance of fiber concentration as a determining factor
in failure due to displacement and fiber pullout in HDPE composites. Roumeli et al. [42]
found that all HDPE composites reinforced with hemp fibers separated from the polymer
matrix during deformation, with a clear indication of lower interfacial adhesion, in addition
to voids between the fibers and HDPE.

The failure characteristics shown on the fracture surface of the composites in Figure 5c,d
comprise microcracks in the matrix, fiber breakage, and detachment. The micrographs
show that the fibers, although pulled out of the matrix (pull-out phenomenon), did not
break along with the fracture surface [55]. The pull-out occurrence happened less intensely
for the LDGPE/5%BF/3% PE-g-MA composite, in which part of the fibrils of the reinforce-
ment was coated with a polymer. However, for the LDGPE/5%BF/3%TA composite, this
phenomenon was more pronounced. This may be closely associated with the structure of
this composite consisting of individual microfibrils, which are characterized by forming an
irregular fiber surface, and a slight increase in the fiber/matrix interaction area [58]. There
was also poor adhesion between fibers and a decrease in impact strength for compatibilized
composites and only a slight increase in strength for the LDGPE/5%BF composite [55].
In the study by Anggono et al. [59], it was observed that sugarcane bagasse-reinforced
polypropylene composite compatibilized with maleic anhydride showed the displace-
ment and separation of one fiber of the polypropylene, while the fracture of some fibers
also occurred.

The LDGPE/5%BF and LDGPE/5%BF/3%TA composites present similar failure char-
acteristics, such as microcracks in the matrix, breakage, and the detachment of fibers
(Figure 5c,d). However, in-depth analysis reveals differences in the intensity and distri-
bution of these failure mechanisms between materials. In the LDGPE/5%BF composite,
fiber detachment is the dominant mechanism, observed in the separation of fibers from the
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matrix without their fracture [55]. This characteristic can be attributed to good compatibility
between the matrix and the fibers, providing an efficient stress transfer [58].

In contrast, the LDGPE/5%BF/3%TA composite presents a more intense pullout of
fibers, evidenced by the partial removal of the fibers from the matrix, accompanying fracture
in some cases [55]. This difference is due to the structure of the fibers in this composite,
formed via individual microfibrils that generate an irregular surface and increase the area
of interaction with the matrix. Furthermore, poor adhesion between the fibers and the
matrix, evidenced by a decrease in impact resistance [60], contributes to more pronounced
fiber pullout.

Similar studies using polypropylene composites compatibilized with maleic anhydride
also demonstrated the displacement and separation of fibers, with the fracture of some
of them [59]. Liao et al. [37], in their research, used tannin and lignin as compatibilizers
in polypropylene composites and, through results obtained via SEM, observed the poor
adhesion of the reinforcement/matrix. In addition, cross-linked tannin particles of irregular
shapes were found, confirming the formation of thermosetting tannin particles. Agüero
et al. [61], on the other hand, reported that the presence of a significant gap in PLA–flax fiber
composites was related to low toughness, and this gap did not allow a good load transfer
from the matrix to the fiber. Another factor that may have contributed to the decrease in
the related properties is the shear action in single-screw extruders being relatively weaker
than in twin-screw extruders, causing less fiber pull-out from the main bundles [62].

4. Conclusions

Natural plant-based fibers have a great advantage over traditional synthetic fibers due
to their lightweight, non-abrasive, non-toxic, and biodegradable nature. The composites
prepared with 3% PE-g-MA or TA did not act as nucleation agents since the crystallinity of
the composites did not increase. Mechanical analysis revealed a progressive decrease in the
strain at rupture, with the LDGPE/5%BF composite exhibiting the highest impact energy.
In tensile strength tests, the LDGPE/5%BF composite showed an improved elastic modulus
compared to LDGPE alone, while the LDGPE/5%BF/3%TA composite demonstrated the
best tensile strength among all tested compositions. This suggests the potential of TA as
a compatibilizing agent in composites. Although the crystallinity of the composites was
not enhanced, the LDGPE/5%BF/3%TA composite exhibited the highest tensile strength,
indicating TA’s possible role in preventing tearing or the breakdown of BF and enhancing
the transfer of mechanical stress between the polymeric matrix and the reinforcing agents.
Future work can make valuable contributions to this topic through the development and
study of composites blended exclusively with TA, helping uncover the impacts of this
natural agent in LDGPE matrices.
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