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Abstract: This present work develops a nonlinear SIRS fractional-order model with a system of four
equations in the Caputo sense. This study examines the impact of positive and negative attitudes
towards vaccination, as well as the role of government actions, social behavior and public reaction on
the spread of infectious diseases. The local stability of the equilibrium points is analyzed. Sensitivity
analysis is conducted to calculate and discuss the sensitivity index of various parameters. It has been
established that the illness would spread across this system when the basic reproduction number
is larger than 1, the system becomes infection-free when the reproduction number lies below its
threshold value of 1. Numerical figures depict the effects of positive and negative attitudes towards
vaccination to make the system disease-free sooner. A comprehensive study regarding various values
of the order of fractional derivatives together with integer-order derivatives has been discussed in the
numerical section to obtain some useful insights into the intricate dynamics of the proposed system.
The Pontryagin principle is used in the formulation and subsequent discussion of an optimum
control issue. The study also reveals the significant role of government actions in controlling the
epidemic. A numerical analysis has been conducted to compare the system’s behavior under optimal
control and without optimal control, aiming to discern their differences. The policies implemented
by the government are regarded as the most adequate control strategy, and it is determined that the
execution of control mechanisms considerably diminishes the ailment burden.

Keywords: fractional-order SIRS model; basic reproduction number; asymptotic stability; optimal
control

MSC: 34A08; 92D30

1. Introduction

Fractional calculus can be seen as an extension of traditional calculus, where frac-
tional orders are used instead of integer orders [1,2]. Extensive research has revealed a
noteworthy relationship between integer-order models and fractional-order models. It has
been observed that integer-order models can be regarded as specific instances or special
cases of fractional-order models. As the fractional-order approaches one, the solutions of
the fractional-order system are expected to converge toward the solutions obtained from
the corresponding integer-order system [3]. As a result, there are numerous domains in
which fractional-order systems offer more suitable descriptions than their integer-order
counterparts. Specifically, phenomena characterized by ‘memory and influenced by heredi-
tary properties’ present challenges for accurate representation using integer-order systems
alone. In such cases, fractional-order systems prove to be more effective in capturing the
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intricate dynamics and characteristics of these phenomena [2,4,5]. It has been observed that
fractional-order systems provide a better fit for real-life data related to such phenomena.
The application of fractional-order modeling has demonstrated clear benefits in the field of
disease studies, owing to the generalized nature of the fractional derivative compared to
the integer-order derivative. Furthermore, while the integer derivative is local in nature,
the fractional derivative is global, making it particularly useful for modeling epidemic
problems. Moreover, the introduction of fractional-order systems introduces an addi-
tional parameter that significantly improves the numerical simulations. In contemporary
times, researchers have paid substantial attention to epidemiological modeling utilizing
fractional-order derivatives rather than integer-order derivatives [6–12].

Memory plays a crucial role in the context of epidemics within human society. When-
ever a contagious disease spreads, individuals’ knowledge and past experiences of that
particular disease influence their response [13]. If people have encountered the disease
before, they take precautionary measures, such as vaccination if available. Such actions can
help to limit the spread of the disease. However, it is important to note that mere knowl-
edge about a disease does not always guarantee protection from the disease. Consequently,
people are motivated to explore new approaches to disease control. The impact of past
experiences with an infectious disease significantly affects the current situation compared
to having no memory of it. The long-term influence of memory is expected to decline
more slowly over time than through exponential decay, displaying a behavior similar to a
power-law damping function.

People may hesitate to take vaccines for new infectious diseases for various reasons,
and these concerns can be influenced by a combination of individual, cultural, social, and
systemic factors. Here, are some common reasons for vaccine hesitancy: Some individuals
may worry about the safety of a new vaccine. They may be concerned about potential
side effects, long-term effects, or the speed at which the vaccine was developed. Trust in
healthcare authorities, government agencies, and pharmaceutical companies can play a
significant role. People may be hesitant to accept a new vaccine if there is a lack of trust due
to perceived conflicts of interest, misinformation, or previous negative experiences. Cultural
and religious beliefs can influence people’s attitudes toward vaccines. Some individuals
may have concerns that conflict with their cultural or religious values. If individuals
perceive the risk of contracting the disease as low or believe it is not severe, they may be
less motivated to be vaccinated. This is especially true if the disease has a low mortality rate
or they think they are not in a high-risk group. On the other hand, vaccines are designed
to prevent or reduce the severity of infectious diseases. Individuals may choose to be
vaccinated to protect themselves and others from illness. Vaccination contributes to herd
immunity, which helps protect vulnerable populations and those who cannot be vaccinated,
such as individuals with certain medical conditions or allergies. Individuals who trust
scientific and medical authorities may be more likely to be vaccinated. Confidence in the
safety and efficacy of vaccines is crucial in decision-making. Some countries or regions
may require certain vaccinations for entry. Individuals may choose to be vaccinated to
comply with travel regulations. Vaccination may be needed for specific jobs or enrollment
in educational institutions, influencing individuals to be vaccinated. Thus, two groups of
people continuously appear: some support vaccination and some are against vaccination.
However, they may be in different ratios. Vaccines, one of the most remarkable findings in
the field of science, have played a crucial role in preserving numerous lives. The rise of
anti-vaccine groups is causing people to reject vaccines, which in turn increases the risk
of infectious diseases spreading among both the individuals who refuse vaccines and the
wider community [14–16]. The rejection of vaccines by people from diverse backgrounds
can lead to a decrease in pre-existing immunity, which further complicates the situation [17].
Therefore, it is essential to study both positive and negative attitudes toward vaccination
from both scientific and practical perspectives. Previous studies have mainly focused on
individual differences as the cause of anti-vaccine attitudes. Some researchers argue that
moral purity concerns and orthodox religiousness contribute to negative attitudes [18],
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while others suggest that anti-vaccine beliefs are related to individualistic or hierarchical
worldviews and conspiratorial thinking [19].

The government has a crucial responsibility in ensuring the protection of public health
and welfare via the prevention of epidemics. It is very important to implement proactive
measures and strategies to mitigate the transmission of infectious illnesses. In order to do
this, governments must create resilient disease monitoring systems to track the incidence
and spread of infectious illnesses. Timely identification allows for prompt actions, contain-
ment, and avoidance of epidemics. During an epidemic, it is necessary to give the public
with precise, up-to-date information that emphasizes the possible hazards, preventative
measures, and essential steps to take. During periods of epidemics, governments may
be required to enforce quarantine and isolation measures in order to control the spread
of diseases and halt future transmission [20–22]. In general, the government’s proactive
engagement in epidemic prevention is one of its major concerns as it guarantees the well-
being and security of its population and contributes to worldwide public health endeavors.
Consequently, the traditional SIRS model may be improved by including two essential
factors: the influence of government action and public response. Governmental involve-
ment includes the implementation of quarantine measures, travel restrictions, and mass
vaccination programs by authorities in order to effectively manage the spread of diseases.
Public response, in this context, is to the reactions and actions of people and groups in
response to the epidemic. This includes the adoption of preventative measures, seeking
medical assistance, and adhering to official regulations. By integrating these aspects into
the model, researchers may obtain a more comprehensive understanding of how social
dynamics and human behavior influence the spread of diseases. This improved model has
the potential to provide more precise predictions and provide a deeper understanding of
the efficacy of different intervention tactics.

The concept of an optimal control problem within a fractional-order system was first
investigated by Agarwal [23]. Kheiri and Jafari [24] conducted significant research on
fractional-order optimal control for HIV/AIDS in 2018. Basir et al. [25] proposed and
conducted numerical analysis on the FOCP (fractional optimal control problem) applied
to an enzyme kinetic model. Tugba [26] recently investigated the FOCP on a pathogen
model under the influence of environmental stressors. Kada et al. [27] implement two
control policies, signifying the management of COVID-19-infected patients, involving their
isolation in hospitals and designated facilities for quarantine, coupled with the utilization
of masks to safeguard vulnerable body areas. Their findings reveal that adopting the
comprehensive strategy encompassing all control variables recommended by the World
Health Organization (WHO) yields outstanding outcomes, mirroring the success observed
in Morocco. Khajji et al. [28] have proposed four control strategies to develop a multi-region
discrete mathematical model. This model captures the dynamics of novel coronavirus
transmission, encompassing interactions between humans and animals within a single
region or across various regions. In [29], Kumar et al. have formulated an optimal control
problem pertaining to the dynamics of the Stuxnet virus. They investigate the application
of fractional derivatives in computer science, employing a modified version of the Caputo-
type fractional derivative. Hussain et al. [30] have investigated an optimal control problem
focusing on the pine wilt disease. The model is constructed through the parameterization
of infected pine trees in Korea over the span of 2010–2019.

In this study, we have formulated an epidemic model, specifically an SIRS-type
model, using fractional differential equations. While there are various formalisms to define
fractional-order differential equations, such as Riemann–Liouville and Grunwald–Letnikov,
we have chosen to employ the Caputo definition. This choice is motivated by its similarity
to the initial conditions used in integer-order differential equations. Consequently, we have
developed a mathematical model that incorporates a system of fractional-order differential
equations and conducted a comprehensive analysis of the dynamics of this model. The
work is organized as follows: Some preliminaries about fractional order derivatives have
been studied in Section 2. In Section 3, an epidemic model has been formulated. The
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existence and uniqueness of the solution for the considered model are analyzed in Section 4.
In Section 5, the equilibrium points are derived, and the local stability analysis of the
model around the disease-free and endemic steady state is discussed. Sensitivity analysis
of the parameters has been discussed in Section 6. The next, Section 7 deals with the
optimal control of the effectiveness of governmental intervention. Numerical simulations
are performed in Section 8. The work ends with a concise conclusion in Section 9. Section 10
highlights certain probable future possibilities.

2. Preliminaries

Definition 1 ([2]). Let g : Cm[t0, ∞) −→ R be a functional. The Caputo fractional derivative of
the function g of order ν can be defined as follows:

C
t0

Dν
t g(t) =

1
Γ(m − ν)

∫ t

t0

g(m)(ζ)

(t − ζ)ν−m+1 dζ

where Cm[t0, ∞) is a space of m times continuously differentiable functions on [t0, ∞) and Γ(·) is
the Gamma function, m − 1 < ν < m, m ∈ Z+ and t > t0. In particular, for 0 < ν < 1, the
definition becomes

C
t0

Dν
t g(t) =

1
Γ(1 − ν)

∫ t

t0

g′(ζ)
(t − ζ)ν

dζ.

Definition 2 ([1]). The Mittag–Leffler function of one and two parameters for any complex number
z is denoted and defined, respectively, by

Eν(z) =
∞

∑
p=0

zp

νp + 1
and Eν1,ν2(z) =

∞

∑
p=0

zp

ν1 p + ν2
.

Lemma 1 ([31]). Let y(t) be a continuous functions on [t0, ∞) satisfying

C
t0

Dν
t y(t) ≤ −λy(t) + µ,

y(t0) = yt0

with 0 < ν < 1, (λ, µ) ∈ R2, λ ̸= 0 and t0 ≥ 0 is the initial time. Then,

y(t) ≤
(

yt0 −
µ

λ

)
Eν[−λ(t − t0)

ν] +
µ

λ
.

Theorem 1 ([2]). The following autonomous system:

C
t0

Dν
t y(t) = By, yt0 = y(t0) > 0 (1)

with 0 < ν < 1, x ∈ R and B ∈ Rn×n is asymptotically stable if and only if | arg(λ)| > νπ
2 is

satisfied for all eigenvalues of matrix B. Also, this system is stable if and only if | arg(λ)| ≥ νπ
2 is

satisfied for all eigenvalues of matrix B with those critical eigenvalues satisfying | arg(λ)| = νπ
2

having geometric multiplicity of one. The geometric multiplicity (r) of an eigenvalue of the matrix B
is the dimension of the subspaces of vectors u for which Bu = λu.

Proposition 1 ([32]). Let us consider a polynomial equation:

P(t) = tn + a1tn−1 + a2tn−2 + ... + an = 0. (2)

The condition for which all the roots of (2) satisfy

| arg(t)| > νπ

2
(3)
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are as follows:

1. for n = 1, the condition for (3) is a1 > 0,
2. for n = 2, the conditions for (3) are either Routh–Hurwitz conditions or a1 < 0, 4a2 > a2

1,∣∣∣∣ arctan
(√

4a2−a2
1

a1

)∣∣∣∣ > νπ
2 ,

3. for n = 3, if the discriminant, D(P) of P(t) is positive, then Routh–Hurwitz conditions
are the necessary and sufficient conditions for (3), that is, a1 > 0, a3 > 0, a1a2 > a3 if
D(P) > 0,

4. if D(P) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, ν < 2
3 , then (3) is satisfied. Also if D(P) < 0, a1 < 0,

a2 < 0, ν > 2
3 , then all the roots of P(t) = 0 satisfy (3),

5. if D(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 then (3) is satisfied for all ν ∈ [0, 1),
6. for general n, an > 0, is necessary condition for (3).

Lemma 2. Let Θ : R → R be a fractional continuously differentiable function of the order
ν ∈ (0, 1). Then the following result holds for any time t > t0 and ϕ ∈ R

C
t0

Dν
t

{
Θ(t)− ϕ

(
1 + ln

Θ(t)
ϕ

)}
≤
(

1 − ϕ

Θ(t)

)
C
t0

Dν
t Θ(t).

3. Mathematical Model

The work deals with a compartmental SIRS model, where two different susceptible
states are considered based on their attitudes toward vaccination. The total population is
divided into four sub-classes, named as, pro-vaccine susceptible population (F(t)), anti-
vaccine susceptible population (A(t)), infected class (I(t)) and recovered class (R(t)), and
the way of disease propagation is depicted in Figure 1. The mode of transmission follows
mass action law in this model and β̃ presents the infection propagation rate from susceptible
to infected class. In the midst of an epidemic, various social platforms serve as vital
channels for disseminating critical information about disease symptoms, recommended
precautions, and available treatments. These platforms include diverse media outlets such
as television, radio, and educational campaigns. Individuals are actively encouraged to
adopt appropriate protective measures to safeguard their well-being, while governments
implement a range of restrictions and limitations based on the severity of the situation.
In this context, the societal component α represents the measure of the effectiveness of
the governmental intervention, while the parameters b and k indicate the effectiveness of
social behavioral dynamics and public reaction, respectively. It is worth noting that these
parameters are bounded within the range of 0 to 1, denoted as 0 ≤ α < 1, 0 ≤ b < 1.
Consequently, individuals from both susceptible classes together move to the infected class
when they come into contact with infectious individuals and the combined rate of infection
is β̃ν(1 − α)(1 − b)k(F(t) + A(t))I(t) (see, for instance [22,33–35]). The recruitment rate is
denoted by Λ̃ν, which determines the rate at which new individuals enter the population. A
portion p of this recruitment remains in F class and another portion in A class. Additionally,
ṽν is the rate at which pro-vaccine individuals move to the recovered compartment due
to vaccination. Furthermore, it is assumed that the natural mortality rate d̃ν incorporates
each compartment within the system. Additionally, the disease-related mortality rate m̃ν

is specifically considered in the infected class. As part of the model, individuals who
are infected with the disease gain immunity at a rate ξ̃ν. This immunity can result from
either natural recovery or clinical treatment, enabling it to transmit to the recovered class.
However, it is important to consider the assumption of temporary recovery, as an outcome
a portion of the individuals in the recovered class becomes susceptible again over time.
This transmission from the recovered class to the susceptible class occurs at a rate ρ̃ν: (i) the
probability of progressing to the pro-vaccine susceptible class is q, (ii) the probability of
progressing to the anti-vaccine susceptible class is (1 − q), 0 ≤ q ≤ 1. So, the following
epidemic model is developed in Caputo formalism:
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C
0 Dν

t F(t) = pΛ̃ν − β̃ν(1 − α)(1 − b)k F(t)I(t)− ṽνF(t) + γ̃ν A(t)− η̃νF(t) + qρ̃νR(t)− d̃νF(t)

C
0 Dν

t A(t) = (1 − p)Λ̃ν − β̃ν(1 − α)(1 − b)k A(t)I(t)− γ̃ν A(t) + η̃νF(t) + (1 − q)ρ̃νR(t)− d̃ν A(t)

C
0 Dν

t I(t) = β̃ν(1 − α)(1 − b)k(F(t) + A(t))I(t)− ξ̃ν I(t)− (d̃ν + m̃ν)I(t)

C
0 Dν

t R(t) = ṽνF(t) + ξ̃ν I(t)− (ρ̃ν + d̃ν)R(t)

(4)

All parameters containing ν as power are denoted as Λ̃ν = Λ, β̃ν = β, ṽν = v,
γ̃ν = γ, η̃ν = η, ρ̃ν = ρ, d̃ν = d, ξ̃ν = ξ, m̃ν = m for sake of simplicity. Therefore,
system (4) becomes:

C
0 Dν

t F(t) = pΛ − β(1 − α)(1 − b)kF(t)I(t)− vF(t) + γA(t)− ηF(t) + qρR(t)− dF(t)
C
0 Dν

t A(t) = (1 − p)Λ − β(1 − α)(1 − b)k A(t)I(t)− γA(t) + ηF(t) + (1 − q)ρR(t)− dA(t)
C
0 Dν

t I(t) = β(1 − α)(1 − b)k(F(t) + A(t))I(t)− ξ I(t)− (d + m)I(t)
C
0 Dν

t R(t) = vF(t) + ξ I(t)− (ρ + d)R(t)

(5)

The models (5) is associated to positive initial conditions F(0) > 0, A(0) > 0, I(0) > 0
and R(0) > 0. The descriptions of the model parameters and variables are presented in
Table 1.

Table 1. Descriptions of system parameters from a biological perspective.

Parameters/Variables Biological Meaning of the Variables and Parameter

F(t) For-vaccination susceptible compartment

A(t) Against-vaccination susceptible compartment

I(t) Infected compartment

R(t) Recovered compartment

p Portion of the recruitment goes in F(t) class

(1 − p) Portion of the recruitment goes in A(t) class

Λ̃ The recruitment rate

β̃ Coefficient of rate of propagation of infection for susceptible classes

α The effectiveness of governmental intervention

b The effectiveness of social behavioral dynamics

k Strength of public reaction

ṽ Immunization rate of for-vaccination compartment

γ̃ Migration rate from against-vaccination to for-vaccination compartment through awareness

η̃ Migration rate from for-vaccination to against-vaccination compartment through receiving false information about vaccines

q Portion of the recovered goes in F(t) class

(1 − q) Portion of the recovered goes in A(t) class

ρ̃ Rate of chance of reinfection

d̃ Natural death rate

ξ̃ Recovery rate of infected class

m̃ Disease related mortality rate

Note (Description of incidence rate β(1 − α)(1 − b)k(F(t) + A(t))I(t)): Here, in this ex-
pression β is the rate at which an infected person can transmit the infection to the individual
of susceptible classes F and A, respectively. Therefore, the incidence rate between the sus-
ceptible classes and the infected class appeared as β(F(t) + A(t))I(t). Now, if we assume
that government implements some regulations to prevent disease propagation, then this
transmission rate will depend on the strength of governmental intervention (α), effective-
ness of sociological behavioral dynamics (b) and strength of public reaction (k). Now, the
growing intensity of governmental action (α) will diminish disease transmission and this
effect can be incorporated by multiplying a factor (1 − α) by the disease transmission rate.
Thus, the individuals will now leave the susceptible class F and A at rate (1 − α)βF(t)I(t)
and (1 − α)βA(t)I(t), respectively. If the people are motivated by the measures of govern-
ment action to prevent transmission of disease, the effectiveness of sociological behavioral
dynamics (d) and strength of public reaction (k) will increase and ultimately reduce the
spreading of the ailment.

In the proposed system, it is assumed that 0 ≤ α ≤ 1, 0 ≤ b ≤ 1. Now, the scenarios
α = 0 and b = 0 signify that there is an absence of governmental intervention and a lack
of social behavioral dynamics, respectively. As these sociological parameters approach
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the value 1, the factor (1 − α)(1 − b) reduces. The dynamics of social behavior and the
reactions of the public are intricately linked to each other. Now, taking the parameter
public reaction (k) as an exponent applied to (1 − b) accelerates the reduction in the
term (1 − b)k. Consequently, the overall factor (1 − α)(1 − b)k becomes a notably smaller
quantity. Thus, when we multiply this factor with the transmission rate β(F(t) + A(t))I(t),
the rate at which individuals (from the susceptible classes) move to the infected class can
be expressed as β(1 − α)(1 − b)k(F(t) + A(t))I(t). Considering the transmission rate as
β(1 − α)(1 − b)k(F(t) + A(t))I(t) signifies that as the amplitude of α, b and k rises, the
infection rate from susceptible to infected class falls, which is more realistic.

F A

I

R

pΛ

d

(1 − p)Λ

d

(d + m)

η

γ

β(1−
α)(1−

b) k
FI β(

1−
α)
(1
−

b)
k AI

ξ

d

v
qρ (1 − q)ρ

Figure 1. Schematic representation of system (5).

4. Existence and Uniqueness

To establish the existence and uniqueness of the solution for the model (5), the follow-
ing lemma is required.

Lemma 3 ([36]). Consider the system:

C
t0

Dν
t y(t) = f (t, y), t0 > 0 (6)

with initial condition y(t0) = yt0 , where ν ∈ (0, 1], f : [t0, ∞)× T −→ Rn, T ∈ Rn, if f (t, y)
satisfies the local Lipschitz condition with respect to y, then there exists a unique solution of (6) on
[t0, ∞)× T .

To study the existence and uniqueness of the solution of system (5), consider the region
T × [0, T] where

T =
{
(F(t), A(t), I(t), R(t)) ∈ R4 : max {|F(t)|, |A(t)|, |I(t)|, |R(t)|} ≤ M

}
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and T < ∞. Let us denote X = (F(t), A(t), I(t), R(t)) and X =
(

F(t), A(t), I(t), R(t)
)
.

Consider a mapping
L(X) = (L1(X), L2(X), L3(X), L4(X))

where

L1(X) = pΛ − β(1 − α)(1 − b)kF(t)I(t)− vF(t) + γA(t)− ηF(t) + qρR(t)− dF(t)

L2(X) = (1 − p)Λ − β(1 − α)(1 − b)k A(t)I(t)− γA(t) + ηF(t) + (1 − q)ρR(t)− dA(t)

L3(X) = β(1 − α)(1 − b)k(F(t) + A(t))I(t)− ξ I(t)− (d + m)I(t)

L4(X) = vF(t) + ξ I(t)− ρR(t)− dR(t)

Now,

∥L(X)− L(X)∥ = |L1(X)− L1(X)|+ |L2(X)− L2(X)|+ |L3(X)− L3(X)|+ |L4(X)− L4(X)|
= | − β(1 − α)(1 − b)k(FI − FI

)
− v(F − F) + γ(A − A)

−η(F(t)− F) + qρ(R − R)− d(F − F)|+ | − β(1 − α)(1 − b)k(
AI − AI

)
− (γ + d)(A − A) + η(F − F)

+(1 − q)ρ(R(t)− R(t))|+ |β(1 − α)(1 − b)k{(F + A)I −
(

F

+A
)

I} − (ξ + d + m)(I − I)|+ |v(F − F) + ξ(I − I)

−(ξ + d)(R − R)|
≤ β(1 − α)(1 − b)k|FI − FI|+ (v + η + d)|F − F|+ γ|A − A|+ qρ|R − R|

+β(1 − α)(1 − b)k|AI − AI|+ (γ + d)|A − A|+ η|F − F|+ (1 − q)ρ|R − R|
+β(1 − α)(1 − b)k|(F + A)I − (F + A)I|+ (ξ + d + m)|I − I|+ v|F − F|
+ξ|I − I|+ (ρ + d)|R − R|

≤
(

2Mβ(1 − α)(1 − b)k + 2v + 2η + d
)
|F − F|+

(
2Mβ(1 − α)(1 − b)k + 2γ

+d)|A − A|+
(

4Mβ(1 − α)(1 − b)k + 2ξ + d + m
)
|I − I|+ (ρ + ξ + d)|R − R|

Let

E = max
{[

2Mβ(1 − α)(1 − b)k + 2v + 2η + d
]
,
[
2Mβ(1 − α)(1 − b)k + 2γ + d

]
,[

4Mβ(1 − α)(1 − b)k + 2ξ + d + m
]
, (ρ + ξ + d)

}
∴ ∥L(X)− L(X)∥ ≤ E∥X − X∥

Thus, L(X) satisfies the Lipschitz’s condition with respect to X, it follows from
Lemma 3 that there exists a unique solution X(t) of the system (5) with initial condition
X(0) = (F0, A0, I0, R0).

This result holds true within the domain T , indicating that we can obtain the same out-
come in the context of the population dynamics model, specifically in 0 ≤ F(t), A(t), I(t),
R(t) < δ which is a subset of R4 [37]. Next, our aim is to prove the following Lemma 4.

Lemma 4. All the solutions of system (5) which start in R4
+ and satisfy 0 ≤ F(t), A(t), I(t),

R(t) < δ, t ∈ [0, ∞) are embedded in the region Θ, where

Θ =

{
(F, A, I, R) ∈ R4

+ : F + A + I + R <
Λ
d
+ ε, ε > 0

}
.
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Proof. Let Ω(t) = F(t) + A(t) + I(t) + R(t). Taking the fractional derivative of order ν,
we obtain

C
0 Dν

t Ω = C
0 Dν

t (F(t) + A(t) + I(t) + R(t))
= Λ − d(F(t) + A(t) + I(t) + R(t))− mI(t)

≤ Λ − dΩ(t)

Using the Lemma 1, we have

Ω(t) ≤
(

Ω(0)− Λ
d

)
Eν[−dtν] +

Λ
d

Due to the positiveness of the Mittag–Leffler function Eν and taking the limit t → ∞,
we obtain from the above inequality:

lim sup
t−→∞

Ω(t) ≤ Λ
d
+ ε

for some positive real number ε. Therefore, all the solutions of the system (5) are embedded
in the region:

Θ =

{
(F, A, I, R) ∈ R4

+ : F + A + I + R <
Λ
d
+ ε, ε > 0

}
.

5. Equilibrium Points and Stability Analysis

Definition 3 ([36]). A constant y∗ is an equilibrium point of the Caputo fractional dynamic
system (6), if and only if f (t, y∗) = 0.

Therefore, the equilibrium points of the system (5) can be obtained by solving the
following equations:

pΛ − β(1 − α)(1 − b)kF(t)I(t)− vF(t) + γA(t)− ηF(t) + qρR(t)− dF(t) = 0,

(1 − p)Λ − β(1 − α)(1 − b)k A(t)I(t)− γA(t) + ηF(t) + (1 − q)ρR(t)− dA(t) = 0,

β(1 − α)(1 − b)k(F(t) + A(t))I(t)− ξ I(t)− (d + m)I(t) = 0,

vF(t) + ξ I(t)− (ρ + d)R(t) = 0. (7)

Solving these equations, we have the following equilibrium points, namely

• Disease free equilibrium point (DFE), E f (F1, A1, 0, R1):

Here, F1 = Λ(ρ+d)(pd+γ)
d[(v+ρ+d)(d+γ)+(ρ+d)η+(1−q)ρv] , A1 = Λ[(v+ρ+d)(1−p)d+(ρ+d)η+(1−q)ρv]

d[(v+ρ+d)(d+γ)+(ρ+d)η+(1−q)ρv] ,

R1 = Λ(pd+γ)v
d[(v+ρ+d)(d+γ)+(ρ+d)η+(1−q)ρv] .

The basic reproduction number (R0) represents the number of newly infected peo-
ple from a single infected individual in a susceptible environment. The procedure
developed by van den Driessche and Watmough is usually used to obtain R0 [38]. Let,

z ≡ (I, R). Then we have:
dz
dt

= Φ(z)− Ψ(z), where

Φ(z) =

(
β(1 − α)(1 − b)k(F + A)I

0

)
and Ψ(z) =

(
(ξ + d + m)I

−vF − ξ I + (ρ + d)R

)
.

Here, Φ(z) and Ψ(z) contain the compartment with the new infection term and the
rest of the terms, respectively. Then, at E f (F1, A1, 0, R1), we have
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Φ̂ = (DΦ(z))E f
=

(
β(1 − α)(1 − b)k(F1 + A1) 0

0 0

)

and Ψ̂ = (DΨ(z))E f
=

(
(ξ + d + m) 0

−ξ (ρ + d)

)
.

Now, R0 is the spectral radius of the next generation matrix Φ̂Ψ̂−1 and is denoted by:

R0 =
β(1 − α)(1 − b)k(F1 + A1)

(ξ + d + m)

=
Λβ(1 − α)(1 − b)k

d(ξ + d + m)

[
(ρ + d)(d + γ + η) + (1 − p)vd + (1 − q)ρv
(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv

]
. (8)

Remark 1. It is important to note that the basic reproduction number R0 appears to be
independent of ν, the order of the fractional derivative. However, it indirectly depends on ν
because many of the parameters involved in the expression of R0 are functions of ν.

• Interior equilibrium point, E∗(F∗, A∗, I∗, R∗):

F∗ = (ρ+d)[Λk1−k2d+k1(ξ−k2)I∗ ]−ξdk1 I∗
vk1d , A∗ = vk2d−(ρ+d)[Λk1−k2d+k1(ξ−k2)I∗ ]+ξdk1 I∗

vk1d ,

R∗ = Λk1−k2d+k1(ξ−k2)I∗
dk1

and I∗ is the positive root of the given equation:

a0x2 + a1x + a2 = 0 (9)
a0 = k2

1[(d + m)(ρ + d) + ξd],

a1 = k1[2d(ρ + d) + d(v + η + γ)k2 + (d + m)((1 − q)v + γ + η)− dξρ − k1Λ(ρ + d)],

a2 = dk2[(ρ + d)(γ + η + d) + (d + γ)v + (1 − q)ρv](1 − R0),

k2 = (ξ + m + d),

k1 = β(1 − α)(1 − b)k ,

provided vk2d > (ρ + d)[Λk1 − k2d + k1(ξ − k2)I∗] > ξdk1 I∗. Table 2 provides an
overview of possible positive roots of the Equation (9).

Table 2. Number of possible positive roots of Equation (9).

Reproduction Number Sign of Coefficients of (9) Number of Positive Roots

R0 < 1
a0 > 0 a1 > 0 a2 > 0 0

a0 > 0 a1 < 0 a2 > 0
2 (if a2

1 − 4a0a2 ≥ 0)
0 (if a2

1 − 4a0a2 < 0)

R0 = 1
a0 > 0 a1 > 0 a2 = 0 0

a0 > 0 a1 < 0 a2 = 0 1

R0 > 1
a0 > 0 a1 > 0 a2 < 0 1

a0 > 0 a1 < 0 a2 < 0 1

Local Stability Analysis

Theorem 2. The disease-free equilibrium point E f (F1, A1, 0, R1) is locally asymptotically stable if
R0 < 1.

Proof. The Jacobian matrix corresponding to the disease-free equilibrium point E f (F1, A1, 0,
R1) is given by
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J1(F1, A1, 0, R1) =


−(v + η + d) γ −β(1 − α)(1 − b)kF1 qρ

η −(γ + d) −β(1 − α)(1 − b)k A1 (1 − q)ρ

0 0 β(1 − α)(1 − b)k(F1 + A1)− (ξ + d + m) 0

v 0 ξ −(ρ + d)

,

The characteristic equation of J1(F1, A1, 0, R1) is

(d + λ)
{

λ − β(1 − α)(1 − b)k(F1 + A1) + (ξ + d + m)
}{

λ2 + (2d + v + γ + η + ρ)λ

+d2 + dv + dγ + vγ + dη + dρ + (1 − q)vρ + γρ + ηρ
}
= 0

Therefore, all the eigenvalues are given by λ1 = −d, λ2 = β(1 − α)(1 − b)k(F1 + A1)
−(ξ + d + m) and

λ3,4 =
−(2d + v + γ + η + ρ)±

√
(2d + v + γ + η + ρ)2 − 4{(d + γ)(d + ρ + v) + η(d + ρ) + (1 − q)ρv}

2
.

Now, if (2d + v + γ + η + ρ)2 − 4{(d + γ)(d + ρ + v) + η(d + ρ) + (1 − q)ρv} ≥ 0,
eigenvalues λi, i = 3, 4 are real and negative but if (2d + v + γ + η + ρ)2 − 4{(d + γ)
(d + ρ + v) + η(d + ρ) + (1− q)ρv} < 0, λi, i = 3, 4 are complex and lie in the left-half com-
plex plane (stable region as depicted in Figure 2), i.e, in all possible cases | arg λ3,4| > νπ

2 ,
ν ∈ (0, 1) [39]. Again, if β(1 − α)(1 − b)k(F1 + A1)− (ξ + d + m) < 0, i.e., R0 < 1, then
λ2 < 0. Thus, |arg(λi)| > νπ

2 , for i = 1, 2, 3, 4 if R0 < 1. Hence, by Proposition 1, the disease
free equilibrium point, E f (F1, A1, 0, R1) is locally asymptotically stable if R0 < 1.

stable

stable

unstable

stable

stable

y

x

unstable

Figure 2. Stability region of fractional-order system.



Mathematics 2024, 12, 2232 12 of 28

Lemma 5 ([39]). Let D(P) be the discriminant of the characteristic polynomial P(λ) = λ4

+p1λ3 + p2λ2 + p3λ + p4 of the Jacobian matrix corresponding to an equilibrium point, where
D(P) is given by

D(P) =



1 p1 p2 p3 p4 0 0
0 1 p1 p2 p3 p4 0
0 0 1 p1 p2 p3 p4
4 3p1 2p2 p3 0 0 0
0 0 4 3p1 2p2 p3 0
0 0 0 4 3p1 2p2 p3

.

Then, the following propositions hold:

1. If ∆1, ∆2, ∆3 and ∆4 are Routh–Hurwitz determinants

∆1 = p1, ∆2 =

∣∣∣∣ p1 1
p3 p2

∣∣∣∣, ∆3 =

∣∣∣∣∣∣
p1 1 0
p3 p2 p1
0 p4 p3

∣∣∣∣∣∣, ∆4 =

∣∣∣∣∣∣∣∣
p1 1 0 0
p3 p2 p1 1
0 p4 p3 p2
0 0 0 p4

∣∣∣∣∣∣∣∣,
then for ν = 1, the necessary and sufficient conditions for the interior equilibrium point E∗ to
be locally asymptotically stable are

∆1 > 0, ∆2 > 0, ∆3 > 0 and p4 > 0

.2. If D(P) > 0, p1 > 0, p2 < 0 and ν > 2
3 , then E∗ is unstable.

3. If D(P) < 0, p1 > 0, p2 > 0, p3 > 0, p4 > 0 and ν < 1
3 , then E∗ is locally asymptotically

stable. Also, if D(P) < 0, p1 < 0, p2 > 0, p3 < 0, p4 > 0, then E∗ is unstable.
4. If D(P) < 0, p1 > 0, p2 > 0, p3 > 0, p4 > 0 and p2 = p1 p4

p3
+ p3

p1
, then the equilibrium

point E∗ is locally asymptotically stable, for all ν ∈ (0, 1).
5. p4 > 0 is the necessary condition for the equilibrium point E∗ to be locally asymptotically stable.

Theorem 3. The coexistence equilibrium point E∗(F∗, A∗, I∗, R∗) is locally asymptotically stable

1. for ν ∈ (0, 1
3 ), if D(P) < 0,

2. for ν ∈ (0, 1), if D(P) < 0 and p2 = p1 p4
p3

+ p3
p1

,
3. for ν = 1, if ∆1 > 0, ∆2 > 0, ∆3 > 0 and p4 > 0.

Proof. The Jacobian matrix corresponding to the disease-free equilibrium point, E∗(F∗, A∗,
I∗, R∗) is given by

J1(F∗, A∗, I∗, R∗) =


−(d + v + η + k1 I∗) γ −k1F∗ qρ

η −(γ + d + k1 I∗) −k1 A∗ (1 − q)ρ

k1 I∗ k1 I∗ 0 0

v 0 ξ −(ρ + d)

.

The characteristic equation of J(E∗) is

λ4 + p1λ3 + p2λ2 + p3λ + p4 = 0,
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where

p1 = 3d + v + γ + η + ρ + 2k1 I∗,

p2 = 3d2 + vγ + ρ((1 − q)v + γ + η) + 2d(v + γ + η + ρ) + k1 I∗
{

4d + v + γ + η + 2ρ + k1 I∗

+(ξ + m + d)
}

,

p3 = d2(d + v + γ + η + ρ) + d((1 − q)v + γ + η) + dvγ + k1 I∗[d(2d + v + γ + η) + ρ(2d

+(1 − q)v + γ + η) + k1 I∗(d + ρ) + (2d + γ + η + k1 I∗)(ξ + m + d) + ρ(m + d)],

p4 = k1 I∗[d(m + d + ξ)(d + γ + η + k1 I∗) + ρ(m + d)(d + (1 − q)v + γ + η + k1 I∗) + k1vdA∗].

From the above expressions, it is clear that pi > 0, for i = 1, 2, 3, 4. Therefore, using
Lemma 5, we have, E∗ is locally asymptotically stable for

1. ν < 1
3 , if D(P) < 0.

2. all ν ∈ (0, 1), if D(P) < 0 and p2 = p1 p4
p3

+ p3
p1

.

3. ν = 1, if ∆1 > 0, ∆2 > 0, ∆3 > 0 and p4 > 0.

Remark 2. In this model, the underlying assumption is that the recovery from infection is not
enduring. The immunity acquired by individuals who have recovered may gradually diminish,
eventually causing them to transition back into a susceptible state after a certain period of time has
elapsed. Therefore, the infection-free steady state or endemic state may not exhibit global stability
under any specific parametric condition. Consequently, our analysis focuses solely on the local
stability of the equilibrium points in this context.

In Figure 3, we have illustrated the population sizes at a steady state for changing
the reproduction number. It becomes evident that when the reproduction number (R0) is
below 1, there are no infected individuals; however, once it surpasses the threshold 1, the
entire population is present. Consequently, the system remains disease-free when R0 is less
than 1, but it becomes endemic when R0 exceeds 1.
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Figure 3. Changes of population dynamics with respect to reproduction number (R0). Here,
(a) represents R0 Vs F(t) graph showing that the sizes of for-vaccination susceptible are decreasing as
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R0 crosses 1, (b) represents R0 Vs A(t) graph showing that the size of against-vaccination susceptible
decreases as R0 crosses 1, (c) represents R0 Vs I(t) graph showing that the size of infected population
increases as R0 crosses 1 and (d) represents R0 Vs R(t) graph showing that the size of recovered
population increases as R0 crosses 1.

6. Sensitivity Analysis

The basic reproduction number R0 depends on the parameters of the model. Conse-
quently, conducting an analysis to examine the implications of these system parameters on
disease propagation is significantly important. The basic reproduction number for (5) is

R0 =
β(1 − α)(1 − b)k(F1 + A1)

(ξ + d + m)

=
Λβ(1 − α)(1 − b)k

d(ξ + d + m)

[
(ρ + d)(d + γ + η) + (1 − p)vd + (1 − q)ρv
(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv

]
.

where F1 = Λ(ρ+d)(pd+γ)
d[(v+ρ+d)(d+γ)+(ρ+d)η+(1−q)ρv] , A1 = Λ[(v+ρ+d)(1−p)d+(ρ+d)η+(1−q)ρv]

d[(v+ρ+d)(d+γ)+(ρ+d)η+(1−q)ρv] . Hence
we have as follows:

∂R0

∂β
=
(1 − α)(1 − b)k(F1 + A1)

(ξ + d + m)
> 0,

∂R0

∂α
= − β(1 − b)k(F1 + A1)

(ξ + d + m)
< 0

∂R0

∂b
=− kβ(1 − α)(1 − b)k−1(F1 + A1)

(ξ + d + m)
< 0,

∂R0

∂k
=

β(1 − α)(1 − b)k(F1 + A1) ln(1 − b)
(ξ + d + m)

< 0

∂R0

∂ξ
=− β(1 − α)(1 − b)k(F1 + A1)

(ξ + d + m)2 < 0

∂R0

∂v
=− Λβ(1 − α)(1 − b)k

d(ξ + d + m)

(ρ + d)(d + γ + η)(ρd + γ)

[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2
< 0

∂R0

∂γ
=− Λβ(1 − α)(1 − b)k

d(ξ + d + m)

[{(1 − p)d + η}(ρ + d) + (1 − p)vd + (1 − q)ρv]

[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2
< 0

∂R0

∂η
=

Λβ(1 − α)(1 − b)k

d(ξ + d + m)

v(ρ + d)(pd + γ)

[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2
> 0

The normalized forward sensitivity indices for the system parameters are provided
as follows:

Υβ =

 ∂R0
R0
∂β
β

 =

[
β

R0

∂R0

∂β

]
= 1, Υα =

[ ∂R0
R0
∂α
α

]
=

[
α

R0

∂R0

∂α

]
= −

(
α

1 − α

)
,

Υb =

[ ∂R0
R0
∂b
b

]
=

[
b

R0

∂R0

∂b

]
= −k

(
b

1 − b

)
, Υk =

[ ∂R0
R0
∂k
k

]
=

[
k

R0

∂R0

∂k

]
= k ln(1 − b),

Υξ =

 ∂R0
R0
∂ξ
ξ

 =

[
ξ

R0

∂R0

∂ξ

]
= − ξ

ξ + d + m
,

Υv =

[ ∂R0
R0
∂v
v

]
=

[
v

R0

∂R0

∂v

]
= − Λv(ρ + d)(d + γ + η)(ρd + γ)

d[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2(F1 + A1)
,

Υγ =

 ∂R0
R0
∂γ
γ

 =

[
γ

R0

∂R0

∂γ

]
= − Λγ[{(1 − p)d + η}(ρ + d) + (1 − p)vd + (1 − q)ρv]

d[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2(F1 + A1)
,

Υη =

 ∂R0
R0
∂η
η

 =

[
η

R0

∂R0

∂η

]
=

Ληv(ρ + d)(pd + γ)

d[(ρ + d)(d + γ + η) + v(d + γ) + (1 − q)ρv]2(F1 + A1)
.
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The analysis reveals a significant finding that the coefficient of disease transmission
rate (β) exhibits a direct proportional relationship with R0. This observation is particularly
relevant, as it implies that a higher contact rate increases the likelihood of individuals
becoming infected. Consequently, such circumstances contribute to the establishment of an
endemic system characterized by a high prevalence of the disease. However, it is worth
noting that effective governmental actions play a crucial role in mitigating the epidemic
situation. By imposing strict control measures and interventions, the spread of the disease
can be controlled over time. When individuals choose to adopt changes in their social
behavior to protect themselves from infection, it serves as an important factor in curbing
the spread of disease over time. By implementing preventive measures and adhering to
necessary precautions, such as practicing good hygiene, maintaining physical distancing,
and wearing masks, the rate of disease propagation can be effectively reduced. Similarly, if
individuals respond promptly to the necessary precautionary measures during periods of
high disease prevalence, the accelerated rate of transmission can be diminished. It is worth
noting that a higher recovery rate plays a vital role in reducing the number of infected indi-
viduals within a system. As a larger portion of the infected population recovers, whether
through the development of natural immunity or through effective pharmaceutical thera-
pies, the overall infection fatality rate is controlled and diminished over time. Additionally,
the vaccination rate (v) demonstrates an inverse relationship with R0. This relationship
provides biological significance since a higher vaccination rate reduces the chances of
individuals becoming infected. By providing vaccines to susceptible individuals and those
in asymptomatic stages, the likelihood of disease transmission is significantly reduced. The
sensitivity index analysis reveals that an increase in awareness levels is associated with a
decrease in the population of infected individuals. This can be attributed to the fact that
higher awareness levels result in a greater number of individuals being pro-vaccine. As a
result, there is an increase in the number of vaccinated individuals, leading to a decrease in
the population of infected individuals. This promotes vaccination as an effective strategy
in reducing the spread of infectious diseases and protecting public health.

7. Optimal Control

In classical and fractional calculus, the Pontryagin optimal control principle is an
extremely important technique [40,41]. For fractional calculus, the approach is identical
to that used to resolve the classical integer-order optimal control problem. Certain con-
trol issues have been explored previously by employing the Pontryagin principle in the
context of fractional-order systems [42,43]. The primary difference lies in the fact that
in a fractional-order optimal control problem, the adjoint equations are expressed using
the Right-Riemann–Liouville derivative (RL

t Dν
Tf

) of order ν while the co-state equations
are formulated as Caputo differential equations. System (5) is reintroduced through the
implementation of specific control measures aimed at mitigating the burden of the disease.

The total cost incurred as a result of disease burden and governmental measures is

given by the integral form:
∫ Tf

0
[
w1 I(t) + w2α2]dt. Here, w1 I(t) represents the cost asso-

ciated with the loss of manpower due to infectivity, including productivity loss resulting
from illness. Additionally, the term w2α2 signifies the cost attributed to the effectiveness
of governmental intervention, encompassing expenses related to diagnosis, medication,
hospitalization, counseling, awareness programs, and similar initiatives. It is important to
note that the non-linearity term of the control policy α(t) is considered up to the second
order due to its practical relevance [44,45].

Our primary focus in the following is to determine the optimal level of effectiveness
for governmental intervention, aiming to minimize costs through the implementation of
control. Based on our previous discussion, we have derived the acceptable range for the
control variable α as:

Ξ = {α(t) | α(t) ∈ [0, 1], t ∈ [0, Tf ]},
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where Tf denotes the final time limit for implementing the control policy. It is assumed
that the control function α(t) is measurable.

The main objective is to minimize the given cost function J(α), which represents
the expenses associated with infectivity, counseling and awareness programs within the
time interval [0, Tf ]. To achieve this, we seek to find the optimal control α0, which can be
expressed as follows:

J0(α0) = J(min {α ∈ Ξ}) (10)

Here,

J(α) =
∫ Tf

0

[
w1 I(t) + w2α2

]
dt

(where w1 and w2 represent the costs associated with the loss of manpower due to infectivity
and the implementation of the control strategy for the effectiveness of governmental
intervention, respectively. It is important to note that w1 and w2 are non-zero),

subject to

C
0 Dν

t F(t) = pΛ − β(1 − α(t))(1 − b)kF(t)I(t)− vF(t) + γA(t)− ηF(t) + qρR(t)− dF(t), F(0) > 0
C
0 Dν

t A(t) = (1 − p)Λ − β(1 − α(t))(1 − b)k A(t)I(t)− γA(t) + ηF(t) + (1 − q)ρR(t)− dA(t), A(0) > 0
C
0 Dν

t I(t) = β(1 − α(t))(1 − b)k(F(t) + A(t))I(t)− ξ I(t)− (d + m)I(t), I(0) > 0
C
0 Dν

t R(t) = vF(t) + ξ I(t)− (ρ + d)R(t), R(0) > 0

(11)

In the following theorem, we will establish the existence of optimal control α0.

Theorem 4. Let the control function α ∈ Ξ be measurable on [0, Tf ] with value of each of α(t) lies
in [0, 1]. Then, there exist adjoint variables λ1, λ2, λ3, λ4 and optimal control J0 minimizing the
objective function J(α) of (11) satisfying

RL
t Dν

Tf
λ1 = (λ1 − λ3)β(1 − α(t))(1 − b)k I∗ + λ1(v + η + d)− λ2η − λ4v

RL
t Dν

Tf
λ2 = −λ1γ + (λ2 − λ3)β(1 − α(t))(1 − b)k I∗ + λ2(γ + d)

RL
t Dν

Tf
λ3 = −w1 + {(λ1 − λ3)F∗ + (λ2 − λ3)A∗}β(1 − α(t))(1 − b)k + λ3(ξ + d + m)− λ4ξ

RL
t Dν

Tf
λ4 = −λ1qρ − λ2(1 − q)ρ + λ4(ρ + d)

with conditions of transversality λi(Tf ) = 0 (i = 1, 2, 3, 4) and

α0 = min{max{α, 0}, 1}
α = β(1−b)k I∗

2w2
[(λ3 − λ1)F∗ + (λ3 − λ2)A∗]

(12)

where F∗, A∗, I∗, R∗ are the corresponding optimal state solutions of (5) associated with
control variable α.

Proof. Let us construct the Hamiltonian as

H = w1 I(t) + w2α2(t) + λ1
{

pΛ − β(1 − α(t))(1 − b)kF(t)I(t)− vF(t) + γA(t)− ηF(t) + qρR(t)
−dF(t)

}
+ λ2

{
(1 − p)Λ − β(1 − α(t))(1 − b)k A(t)I(t)− γA(t) + ηF(t) + (1 − q)ρR(t)− dA(t)

}
+λ3

{
β(1 − α(t))(1 − b)k(F(t) + A(t))I(t)− ξ I(t)− (d + m)I(t)

}
+ λ4

{
vF(t) + ξ I(t)

−(ρ + d)R(t)
} (13)

with (λ1, λ2, λ3, λ4) being the associated adjoint variables with λi(Tf ) = 0 (i = 1, 2, 3, 4),
which satisfy the following canonical equations:
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RL
t Dν

Tf
λ1 = − ∂H

∂F = (λ1 − λ3)β(1 − α(t))(1 − b)k I∗ + λ1(v + η + d)− λ2η − λ4v
RL
t Dν

Tf
λ2 = − ∂H

∂A = −λ1γ + (λ2 − λ3)β(1 − α(t))(1 − b)k I∗ + λ2(γ + d)
RL
t Dν

Tf
λ3 = − ∂H

∂I = −w1 + {(λ1 − λ3)F∗ + (λ2 − λ3)A∗}β(1 − α(t))(1 − b)k + λ3(ξ + d + m)− λ4ξ
RL
t Dν

Tf
λ4 = − ∂H

∂R = −λ1qρ − λ2(1 − q)ρ + λ4(ρ + d)

(14)

Thus, the problem of finding the optimal control α0 that minimizes the cost function J
under the constraint (11) is converted to minimizing the Hamiltonian with respect to the
control variable. By applying the Pontryagin principle, we obtain the optimal condition:

∂H
∂α

= 2w2α + λ1β(1 − b)kF∗ I∗ + λ2β(1 − b)k A∗ I∗ − λ3β(1 − b)k(F∗ + A∗)I∗ = 0.

Solving this equation, we obtain the control variable α in terms of the state and adjoint
variables as

α =
β(1 − b)k I∗

2w2
[(λ3 − λ1)F∗ + (λ3 − λ2)A∗].

For the optimal control α0, which requires considering the constrains on the control
and the sign of ∂H

∂α , we have

α0 =


0, if ∂H

∂ff < 0

α, if ∂H
∂ff = 0

1, if ∂H
∂ff > 0.

and α0 = min{max{α, 0}, 1} where α = β(1−b)k I∗
2w2

[(λ3 − λ1)F∗ + (λ3 − λ2)A∗].
The optimal state can be found by substituting α0 into the system (11).

8. Numerical Simulation

In order to tackle the intricate nature of analytical problems, the application of numer-
ical analysis becomes imperative. To facilitate this process, we employed MATLAB R2021a
for conducting numerical simulations. These simulations allowed us to visually represent
certain theoretical findings discussed earlier in this work. Specifically, we utilized MATLAB
along with the Predictor-corrector PECE method, developed by Roberto Garrappa [46], to
solve fractional differential equations. The parametric values used for these simulations
can be found in the accompanying Table 3.

We have incorporated iterative schemes, namely Euler’s forward and backward meth-
ods, to address fractional-order optimal control problems. The procedure can be summa-
rized as follows. The optimality system involves a two-point boundary value problem
that encompasses a collection of fractional-order differential equations. The state system,
denoted as (11), represents an initial value problem, while the adjoint system, referred to
as (14), corresponds to a boundary value problem. To solve the state system, we have em-
ployed the forward iteration method, while the backward iteration method was employed
to solve the costate system.

State system (11) is solved employing the iterative scheme below:



Mathematics 2024, 12, 2232 18 of 28

F(i) =
[
pΛ − β(1 − α)(1 − b)kF(i − 1)I(i − 1)− vF(i − 1) + γA(i − 1)− ηF(i − 1) + qρR(i − 1)

− dF(i − 1)
]
hν −

i

∑
j=1

c(j)F(i − j)

A(i) =
[
(1 − p)Λ − β(1 − α)(1 − b)k A(i − 1)I(i − 1)− γA(i − 1) + ηF(i) + (1 − q)ρR(i − 1)

− dA(i − 1)
]
hν −

i

∑
j=1

c(j)A(i − j)

I(i) =
[
β(1 − α)(1 − b)k(F(i) + A(i))I(i − 1)− ξ I(i − 1)− (d + m)I(i − 1)

]
hν

−
i

∑
j=1

c(j)I(i − j)

R(i) =
[
vF(i) + ξ I(i)− (ρ + d)R(i − 1)

]
hν −

i

∑
j=1

c(j)R(i − j) (15)

where, c(0) = 1 and c(j) =
(

1 − 1+ν
j

)
c(j − 1) and hν is the time step length. In each of the

aforementioned systems of equations, the last term accounts for the memory component.
Moving on to the adjoint system (14), a backward iteration method is implemented, impos-
ing the terminal conditions λi(Tf ) = 0 (i = 1, 2, 3, 4). The optimal control is updated by
the scheme below:

α0 = min{max{α, 0}, 1}, where α =
β(1 − b)k

2w2
[(λ3(i)− λ1(i))F(i) + (λ3(i)− λ2(i))A(i)]I(i).

Table 3. Value of parameters considered for numerical simulation.

Parameters p Λ̃(Λ) β̃(β) α b k ṽ(v) γ̃(γ) η̃(η) q ρ̃(ρ) d̃(d) ξ̃(ξ) m̃(m)

Values 0.60 15(11.4415) 0.15(0.1813) 0.05 0.40 2 0.07(0.2030) 0.04(0.0552) 0.03(0.0426) 0.07 0.08(0.1030) 0.50(0.0675) 0.20(0.2349) 0.20(0.2349)
Source Estimated [34] Estimated Estimated [34] [34] Estimated Estimated Estimated Estimated Estimated [34] [34] [34]

We have implemented an algorithm in MATLAB based on the aforementioned method-
ology. By fitting test data related to memory phenomena from various fields, we have
observed that the fractional order can be interpreted as an index of memory. A higher
value of the order parameter ν implies a slower rate of forgetting, and the dynamics of
epidemic transmission heavily rely on the memory of previous stages [47]. The value of the
order of fractional derivative (ν) is required to be close to 1. Theoretically, we can explore
fractional-order systems for values of ν ranging from 0 to 1. It is advisable to choose a
value of ν close to 1 from the left. In certain cases, intriguing results are obtained when
reducing the order of the derivative. However, for very small values of ν, the MATLAB
code becomes erroneous. Hence, it is essential to carefully select the order value. In our
specific context, we have chosen the value of 0.9 (although it can be any value between 0.9
and 0.99) for conducting numerical simulations.

In this section, we have portrayed variation of R0 with respect to β, α, b, k, ξ, v, γ and η.
Figures 4 and 5, depict the analysis of sensitivity of various system parameters, along with
their corresponding sensitivity indices. This analysis was conducted using the parameter
values provided in Table 3. An increase in the transmission rate (β) signifies higher
chances of infection propagation within the system, resulting in the proliferation of disease.
Conversely, an increase in each of governmental intervention (α), social interaction (b), and
public reaction (k) yields a decrease in the basic reproduction number. This suggests that
measures such as increased intervention by governing bodies, reduced social interactions,
and favorable public responses contribute to mitigating the spread of disease, ultimately
reducing the overall reproductive capacity of illness within the population. Furthermore,
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the prevalence of the illness can be partially controlled by two factors: improved medical
care leading to a higher recovery rate among individuals and an increased vaccination
rate. As more people recover from the sickness due to enhanced medical care and a
greater number of individuals receive vaccinations, the overall impact of the illness can
be mitigated. These parameters have inverse relationships with the basic reproduction
number R0. This indicates that by improving social behavior, enhancing public response,
providing better treatment (ξ) to infected individuals, and increasing the rate of vaccination
(v) among the individuals of the population, the epidemic situation can be controlled
more effectively. In addition, it is shown how R0 depends on the role of negative and
positive attitudes towards vaccination. Also, it is seen that no transcritical bifurcation
occurs with respect to γ and η. The sensitivity indices for the parametric values of Table 3
are calculated as follows: Υβ = 1, Υα = −0.0723448, Υb = −1.4566, Υk = −1.0766,
Υξ = −0.233584, Υv = −0.0201667, Υγ = −0.0490857 and Υη = 0.00135574, which are
shown in Figure 5.

From earlier discussion, it is obtained that when R0 < 1, DFE exists and is locally
asymptotically stable. Again when R0 > 1, there is an endemic equilibrium (EE) point
that is stable. Based on our analysis, it is deduced that the equilibrium points undergo a
stability exchange as they cross the critical threshold value R0 = 1. According to [48], it
can be said that the model (5) experiences a transcritical bifurcation at R0 = 1. To provide
a visual representation of these bifurcations, Figure 6 illustrates transcritical bifurcations
associated with β, α, b, k and ξ which describes that when the parameter level passes their
corresponding threshold value, transcritical bifurcation occurs.
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Figure 4. Profile of basic reproduction number with the changes of β, α, b, k, ξ, v, γ and η in system (5).
Here, (a,h) represent that R0 increases as β, η increase. (b–g) represent that R0 decreases as
α, b, k, ξ, v, γ increase. Here, the black dashed lines presents the level of R0 = 1.
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Figure 5. Sensitivity index of β, α, b, k, ξ, v, γ and η of system (5).

Figure 7a,b represent the variation in the time series of state variable R(t) when γ
and η vary and other parameters are fixed as in Table 3. It is seen that the number of
recovered individuals increases with the raised level of γ. This indicates that quicker
eradication of ailment is possible if more individuals are convinced to be vaccinated at an
earlier stage of the pandemic crisis. On a similar note, when the value of η grows, there
is a corresponding decline in the number of recovered persons. In contrast, as shown in
Figure 7c, DFE becomes stable when the vaccination rate (v) crosses its corresponding
bifurcation threshold value vt = 0.468. Moreover, a stable branch of endemic state is
present only when the parameter lies below the critical point.
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Figure 6. Occurrence of transcritical bifurcation for model (5) considering β, α, b, k and ξ as bifurcation
parameter. (a,b) represent the bifurcation diagrams with respect to β, from the figures we see that
at βt = 0.1483 transcritical bifurcation occurs between disease-free equilibrium (E f ) and endemic
equilibrium point (E∗). The bifurcation diagrams of α, b and k with respect to I(t) in (c–e) show that
the transcritical bifurcations occur at αt = 0.2570, bt = 0.4567 and kt = 2.3887, respectively. (f) is the
bifurcation diagram of ξ with respect to R(t), here transcritical bifurcation occurs at ξt = 0.4581. In
all the sub-figures solid curve indicates stable branch and dashed curve implies unstable branch of
the steady states.
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Figure 7. Impact of γ, η and v on system (5). Here, (a) represents that level of recovered class
increases when γ increases. Here, (b) represents that level of recovered class decreases when η

increases. (c) represents the bifurcation diagram with respect to v, from the figure we see that
at vt = 0.468 transcritical bifurcation occurs between disease-free equilibrium (E f ) and endemic
equilibrium point (E∗).

Next, using parametric values enlisted in Table 3, it is observed that R0 = 1.2197 > 1
and so the condition for existence of endemic equilibrium is established. Hence, the
system is locally asymptotically stable around (9.0842, 7.1496, 2.0993, 2.0675) as depicted
in Figure 8. From this state, if we increase the value of b as b = 0.45 and k as k = 2.5,
then Figure 9 provides an illustration of the convergence of trajectory of model (5) to-
wards DFE with R0 = 0.7601 < 1. The remaining model parameters can be found
in Table 3, the figure portrays that trajectory starting from (1, 1.5, 0.2, 0.1) converge to
E f (10.9748, 8.7759, 0, 1.5669). This observation suggests that when the value of R0 is greater
than 1, the infection has effectively spread throughout the system, as evidenced by the
convergence of the trajectory towards a non-zero equilibrium point. Figure 10a,b represent
the variation of level of infected persons I(t) when α and b vary for three different values of
ν = 0.9, 0.95, 1. In Figure 10a, ν = 0.9 gives the transcritical bifurcation at αt = 0.2211. If we
take ν = 0.95, then transcritical bifurcation occurs at αt1 = 0.3204. Lastly, for ν = 1 stability
exchange exhibits at αt2 = 0.4066 and endemic equilibrium disappears after exceeding the
threshold αt2 = 0.4066. These signify that if we consider fractional differential equations
then the stability exchange achieves for lesser value of α. A similar conclusion can be drawn
for the model parameter b, which is depicted in Figure 10b.
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Figure 8. Time series of system (5) corresponds to Table 3 when E∗ = (9.0842, 7.1496, 2.0993, 2.0675)
and R0 = 1.2197 > 1.
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Figure 9. Time series of system (5) corresponds to Table 3 when E f = (10.9748, 8.7759, 0, 1.5669) and
R0 = 0.7601 < 1.

Figure 10. Variation of state variable I(t) when α and b vary for different values of ν = 0.9, 0.95, 1.
(a) shows that when ν = 0.9, the transcritical bifurcation occurs at αt = 0.2211, when ν = 0.95, the
transcritical bifurcation occurs at αt = 0.3204 and when ν = 1, the transcritical bifurcation occurs
at αt = 0.4066. (b) shows that when ν = 0.9, the transcritical bifurcation occurs at bt = 0.4567,
when ν = 0.95, the transcritical bifurcation occurs at bt = 0.4925 and when ν = 1, the transcritical
bifurcation occurs at bt = 0.5258. By considering fractional differential equations, the stability
exchange achieves for lesser values of α and b.

In the proposed system (11), we have incorporated a control strategy called “govern-
mental action” (α) to investigate its effectiveness in reducing the level of infection. The
control interventions implemented in the model are assumed to be time-dependent. By uti-
lizing a forward-backward iterative scheme, we have conducted numerical simulations to
assess the impact of these control strategies on the overall behavior of the system. Through
these simulations, we were able to observe and analyze the effects of control interventions
on the dynamics and outcomes of the system [49]. Table 3 provides a comprehensive
list of the parametric values, accompanied by the positive weight constants w1 = 10,
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w2 = 15. Furthermore, it is assumed that the control techniques under consideration will
be consistently applied over a duration of two months, i.e., Tf = 70 days.

Figure 11 provides a visualization of the dynamics of the model (11) when time-
dependent control strategies are not considered. In this scenario, the population is (9.1163,
7.1741, 2.0368, 2.0422) at Tf = 70. Let us now explore a scenario where governmental
intervention varies over time. In Figure 12, we can observe the population profiles under
the conditions of α = α0. When Tf = 70, the population is (10.9470, 8.7481, 0, 1.5586). It
is noteworthy that as a result of the implementation of governmental measures aimed
at minimizing disease transmission, an increasing number of individuals are becoming
cautious of infection. Consequently, the size of susceptible individuals in the population
is observed to rise in this particular situation. This observation highlights the impact of
governmental interventions on influencing the dynamics of susceptible populations and
the overall spread of infection.
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Figure 11. Diagrams of the population in absence of optimal control.

The effectiveness of implemented control measures is often assessed based on their
cost-effectiveness. In Figure 13, we can visualize the impact of time-dependent control
measures α(t) on the cost design analysis (J0). In the absence of control measures, the cost
incurred is primarily attributed to the impact of the diseased population on production loss.
Without the implementation of effective control measures, there is a significant increase in
the economic burden. Figure 14a provides an insightful depiction of the evolution of control
intervention α over time. From this visualization, it is observed that α rises and achieves
its highest value α = 1, at t < 15, then remains constant. Figure 14b depicts the profile of
infected individuals, represented by I(t). As the level of governmental control strategies
intensifies, we observe a corresponding decrease in the size of infected individuals over
time. Figure 15 has illustrated how the simultaneous interaction of social behavior (b),
public reaction (k), immunization rate (v) and migration rates between for-vaccination and
against-vaccination classes (γ, η) as well as the level of governmental control interventions
have an influence on the level of infected and recovered compartments.
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Figure 12. Diagrams of the population in presence of optimal control α0.
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Figure 15. Influence of b, k, v, γ, η as well as the level of control interventions to the amount of infected
and recovered compartments. Here, (a,b) represent amount of infected people decreases as b and k
are increased. Again (c,d) represent amount of recovered people increases as v and γ are increased.
And (e) shows that recovered people decreases as η increases.

9. Conclusions

Epidemiological investigations possess remarkable qualities that enable a compre-
hensive understanding of the intricate dynamics within an epidemic system and identify
various epidemiological factors that contribute to the complexity of the system. Over an
extended period, researchers have dedicated significant efforts to study epidemic models of
the SIRS type. However, more recently, the primary point of research in this field has shifted
towards the exploration and evaluation of potential strategies for controlling and mitigating
the impact of epidemics. The framework incorporates crucial factors such as governmental
action, social behavior dynamics, and public response. Notably, the model accounts for two
distinct susceptible states, characterized by individuals’ positive and negative attitudes
towards vaccination. By considering these multifaceted elements, the study aims to provide
a deeper understanding of disease transmission dynamics. Furthermore, we develop a
fractional-order SIRS epidemic model that incorporates governmental interventions as a
control mechanism.

Throughout the analysis of the model, we have observed the following insights:

1. Our findings demonstrate the better performance of the fractional-order model com-
pared to the traditional integer-order model constructed using ordinary differential
equations One limitation of integer-order systems is their inability to consider the
historical information of the system, which is crucial in the context of disease trans-
mission. When a disease spreads, the susceptible population relies on their past
experiences and memory, to protect themselves from infection. In contrast, a dy-
namical system incorporating fractional-order derivatives encompasses not only the
current state but also retains information about its previous states. Consequently,
fractional-order systems provide a more comprehensive understanding of the under-
lying system dynamics compared to integer-order systems, as they take into account
both present and past interactions and behaviors. In this study, a comprehensive in-
vestigation is conducted using a nonlinear SIRS compartmental framework to analyze
the intricate dynamics of infectious diseases. The numerical section offers an in-depth
analysis of various fractional and integer-order derivatives to gain insights into the
complex dynamics of the proposed system. Figure 10a,b illustrate the variation in
the level of infected individuals (I(t)) as α and b change for three different values
of ν = 0.9, 0.95, 1. In Figure 10a, when ν = 0.9, a transcritical bifurcation occurs at
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αt = 0.2211. For ν = 0.95, this bifurcation happens at αt1 = 0.3204. When ν = 1,
stability exchange is seen at αt2 = 0.4066, and the endemic equilibrium disappears
after surpassing αt2 = 0.4066. These results indicate that using fractional differential
equations results in stability exchange at a lower α value. A similar observation is
made for the model parameter b, as shown in Figure 10b.

2. Moreover, we have derived the explicit expression for the basic reproduction num-
ber, denoted as R0. Additionally, our analysis reveals the existence of two feasible
equilibriums within the system: the DFE and the EE. Notably, the disease-free state ex-
periences a transcritical bifurcation when the basic reproduction number, represented
by R0, reaches unity (R0 = 1). This critical point signifies a significant transition in the
system’s behavior, where the disease-free state interacts with the endemic state, lead-
ing to fundamental changes in the dynamics of the system. Again, our observations
indicate that both equilibria, namely DFE and EE, exhibit local asymptotic stability.
This crucial property implies that the DFE serves as a threshold for the complete
eradication of the disease, ensuring its elimination from the system. On the other
hand, the local asymptotic stability of the EE signifies that the disease will persist
within the system under specific parametric conditions. In the case of EE, complete
eradication of the disease is not possible within the system.

3. Recognizing this challenge, we propose an associated optimal control problem to
investigate the influence of governmental regulations on the dynamics of the system.
The numerical simulations conducted in this study provide compelling evidence that
the implementation of a control policy leads to a significant reduction in the size of
infected individuals. This outcome implies that the adoption of control measures
not only decreases the prevalence of the disease but also alleviates the economic
burden associated with the epidemic. The findings highlight the effectiveness of the
time-dependent control intervention in mitigating the spread of infection within a
system during an epidemic outbreak. This control strategy proves to be instrumental
in curbing infectivity, ultimately yielding positive outcomes in disease management
and the overall well-being of the affected population.

10. Future Research Scope

In future research, there is potential for further extending our model by incorporating
additional compartments such as a quarantine compartment or an exposed compartment.
Moreover, considering media awareness as a control measure could be explored to enhance
the effectiveness of disease management strategies. Additionally, the deterministic system
can be modified to a stochastic system, accounting for the influence of white noise, in
order to examine the dynamic behavior of the stochastic model. It is worth noting that the
pandemic situation is influenced by numerous factors, including economic and financial
aspects. Therefore, in our future endeavors, we aim to incorporate and investigate these
important factors to gain a more comprehensive understanding of their role in controlling
and managing the spread of infectious diseases.
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