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Abstract: Learning the dynamics of power prices in a given market is important for a number of
players (e.g., producers, consumers, and policy makers) at both macro- and microeconomic levels.
This paper analyzes the recent behavior of spot prices in eight Western European countries. The
sample period coincides with the COVID-19 pandemic for the most part: it starts in April 2020 and
runs until May 2023; it includes the start of the Russia–Ukraine war. We introduce a new model
for the hourly spot price of electricity. The deterministic component includes yearly, weekly, and
daily seasonalities; the stochastic component accounts for volatility, mean reversion, and discrete
jumps. We estimate the model with publicly available hourly data. Regarding the development of
the internal market for electricity, we find that core mainland power markets now move closer in
step with one another than before, but the integration process of the Iberian Peninsula seems to have
kicked into reverse. As for the dynamics of power prices, in the last part of the sample period the
speed of reversion falls everywhere, and price volatility increases noticeably; the expected number of
jumps per hour decreases, but their average size turns to positive and they become more volatile.

Keywords: spot power price; COVID-19 pandemic; seasonality; mean reversion; volatility; discrete
jumps

1. Introduction

It has been a long time since the adoption of the Single European Act (28 February
1986) [1], which aimed to add new momentum to European integration and to complete
the ‘internal market’ by 1 January 1993. As far as the power sector is concerned, there have
been several milestones along the way [2–5].

A number of researchers have assessed the extent to which the goal of completing ‘an
area with no internal borders and in which there is free movement’ of electricity in particular
has been accomplished. The assessment draws on the notion of market integration via
price convergence; see for instance [6–8], among others. These two concepts are not to be
confused. According to [9], the level of market integration at a particular time shows the
(static) degree to which the single European market is attained. Instead, price convergence
is the (dynamic) measure for the development of prices toward a single European price.

Other researchers look at power prices from a different perspective. They focus on the
peculiar dynamics of electricity prices in day-ahead wholesale markets. Understanding
price dynamics is necessary for the proper valuation and risk management of both real
assets and financial contracts on electricity; see [10–13], to name a few. Ref. [14] provide a
taxonomy of electricity price models applied to these purposes. As pointed out, the proposal
of a particular model responds to the user’s objectives, e.g., practical use, good price
representation (of the main features of prices), price consistency (no arbitrage opportunities),
or identifiability (liable to estimation from data).

No doubt, the impact of the COVID-19 pandemic has rippled way beyond global health
concerns. Thus, a number of papers have addressed its impact on power systems, most
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of them from a physical or technical perspective, e.g., power demand and supply [15–17].
They usually adopt a top-down viewpoint (i.e., policy makers and system operators) and
use metrics related to security of supply, system operation, frequency deviations, and the
like. The Russia–Ukraine war has further compounded the global scenario. Ref. [18] adopts
an economic perspective; in particular, the authors assess the ability of purchase power
agreements to protect energy consumers from energy price spikes.

Arguably, the aftermath of the pandemic and the war may well run deeper than price
levels. Specifically, have these events altered the inner dynamics of spot power prices? If so,
is there any common pattern in the impact(s) across countries? From another perspective,
have these events brought the internal market a bit closer or rather the opposite? Ref. [19]
examines how the market anomalies caused by these events have affected European
electricity markets. Following a novel approach, the authors convert time series into
networks and then compare their degree distributions using the overlap coefficient. This
transformation allows them to expand the set of properties analyzed simultaneously.

To our knowledge, no other paper explicitly addresses the above questions. Yet, our
approach is quite different. Following previous research, we introduce a model for the
hourly ‘spot’ price of electricity that encompasses four characteristics simultaneously:
volatility, seasonality, mean reversion, and jumps. It comprises a deterministic component
along with a stochastic component. The former accounts for seasonalities with different
time frames. The latter combines mean reversion and discrete jumps. Next, we estimate our
model, drawing on publicly available hourly data from eight Western European countries:
Belgium, France, Germany, Italy, The Netherlands, Portugal, Spain, and the UK. The time
horizon stretches from April 2020 through to May 2023, i.e., practically the whole COVID-19
pandemic and the outbreak of war. We are interested in the differential impact of these
events across space and time. To this end, we analyze and then compare the behavior of
the above markets before them and during them. See Scheme 1 below.
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Drawing on our data, we identify two sub-periods: April 2020–May 2021 and June
2021–May 2023 (end of the pandemic according to the WHO [20]); the first one covers the
initial lockdowns and subsequent recovery toward the ‘new normal’, while the second
one corresponds to the energy (price) crisis. Thus, Tables 4 and 5 show the deterministic
estimates in the normal period and the crisis period, respectively; similarly, Tables 7 and 8
show the stochastic estimates in these periods. Relative to the first period, in the second
one prices in the mainland markets show greater co-movement, whereas Iberian prices
deviate from them. In addition, the speed of reversion falls everywhere, and price volatility
increases noticeably; the expected number of jumps per hour decreases, but their average
size turns to positive and they become more volatile.
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The structure of the paper is as follows. Section 2 proposes the theoretical model for
the spot price. Section 3 introduces two data sets; they include both hourly prices and
monthly average prices, with each data set serving a different purpose. Section 4 provides
numerical estimates of all the underlying parameters. The first ones correspond to the
deterministic part in the two sub-periods. Next, the stochastic part is derived (as a residual,
by subtracting the deterministic series from the price series). It is subsequently broken
down into two series (corresponding to the mean-reverting process and the discrete-jumps
process). Each series is used to estimate the parameters in the corresponding process in the
two sub-periods. Section 5 discusses the main results, and Section 6 concludes.

2. Methodology (Stochastic Model for the Electricity Price)

Ref. [10] proposes a model for the natural logarithm of the day-ahead hourly price.
Ref. [21] uses the logarithm of weekday medians (i.e., medians of 120 hourly observations).
Logarithmic transformation has some advantages. Thus, log prices potentially mitigate
the heteroscedastic properties of prices by minimizing the effects of high volatility and
the outlier effects [22]. Nonetheless, a drawback is the inability to account for negative
power prices, which some wholesale power markets allow (e.g., the Central Western Europe
(CWE) market and the Irish Single Electricity Market (SEM)) and can be observed ever more
frequently. Ref. [11] uses average daily prices (consequently, they only consider weekly and
monthly seasonalities). Unlike these papers, we propose a model for the (absolute) spot
price in levels and use hourly data. Absolute prices lead to straightforward interpretations,
for instance when it comes to jumps’ frequency and size. They allow for positive and
negative values. In addition, hourly prices in particular allow analyze daily seasonality.

Specifically, we propose a process, P, for the (absolute) spot price in the physical world,
which comprises a deterministic part, D, and a stochastic part, S:

Pi
t = Di(t) + Si

t (1)

with i ={Belgium, France, Germany, Italy, The Netherlands, Portugal, Spain, UK}. Time t
appears in two different formats: as an argument, Z(t) denotes a deterministic function of
time; instead, as a subscript, Zt stands for the value of a stochastic process at time t. Time
(t) is measured in years on an hourly basis. For instance, the first hour in April 2020 is
t = (1/366/24); this is the first hour for which there are data from every country. Similarly
to previous papers, this model includes the main features in wholesale power markets:
seasonality, mean reversion, volatility, and jumps.

By assumption, the mathematical expectation of the stochastic part Si is zero. Ref. [23]
put it in a different way: “Based on the rather deterministic demand for electricity (which
in turn is due to highly seasonal temperature patterns influencing the demand to a large
extent), we assume that deviations from a deterministic seasonal function are temporary”.
Therefore, when it comes to forecasting mean or expected values, only Di is relevant (for
point values, instead, both parts–deterministic and stochastic–play a role):

Di(t) = βi
1 + βi

2t + βi
3D0(t)t2 + YC

i
(t) + WCi(t) + DCi(t) (2)

Thus, the model for Di includes an intercept, βi
1, and a time trend, βi

2t + βi
3D0(t)t

2

(where D0(t) = 0 in the normal period and D0(t) = 1 in the crisis period); we set both a
linear and a quadratic time trend because, as displayed later on in Figures 1 and 2, there is
a first period when prices are more or less stable, which is then followed by another one
with an inverse U-shape. The model also includes the following:

(a) A yearly cycle, YCi(t): it encompasses different seasonal components (annual,
semi-annual, quarterly, semi-quarterly, monthly, . . .), as many as determined by statisti-
cal significance:

YCi(t) =
5

∑
j=1

[βi
2+2j sin(2jπt) + βi

3+2j cos(2jπt)] (3)
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Equation (3) represents the yearly cycle with up to five sine and cosine components.
In principle, there are 10 beta coefficients, numbered from β4 to β13. If a specific coefficient
turns out to be statistically non-significant (at standard confidence levels) in the estima-
tion process, then it will be dropped (alternative model specifications and elimination
procedures are available, e.g., [24]).

(b) A weekly cycle, WCi(t), according to the day of the week:

WCi(t) = βi
14D1(t) + βi

15D2(t) + βi
16D3(t) + βi

17D4(t) + βi
18D5(t) + βi

19D6(t) (4)

In Equation (4), there are six dummy variables. D1(t) equals 1 if it is Monday, and
zero otherwise. D2(t) = 1 on Tuesdays, and zero otherwise, and so on through to the sixth
dummy variable. On the seventh day, Sunday, the six dummies are zero.

(c) A daily cycle, DCi(t), based on the particular hours, with their own seasonalities:

DCi(t) =
5

∑
j=1

[βi
18+2j sin(2jπτ)/24 + βi

19+2j cos(2jπτ)/24] (5)

Equation (5) represents the daily cycle in hours. The index τ indicates the hour: τ = 1,
2, . . ., 24. There are 10 beta coefficients, from β20 to β29.

Summing up, there are 29 beta parameters in the deterministic part Di(t): the constant,
2 time trends, 10 betas in the yearly cycle, 6 in the weekly one, and 10 in the daily one. As
mentioned above, if any of them are not statistically significant, they will be suppressed, in
which case the model is re-estimated again with fewer parameters.

On the other hand, the stochastic part, Si
t, follows a continuous mean-reverting process

with discrete jumps:

dSi
t =

(
αi − κiSi

t

)
dt + σidWi

t + Ji
(

µi
j, σi

j

)
dqi

j (6)

Specifically, Equation (6) comprises three terms on the right hand. The first two of
them constitute a so-called Ornstein–Uhlenbeck (OU) process; the third one is a Poisson
process. Now, proceeding step by step in Equation (6), the first term is a function of Si

t,
while the other two are stochastic. Leaving the latter aside for a moment, the equation
can be rewritten as dSi

t =
(
αi − κiSi

t
)
dt = κi( αi

κi − Si
t)dt. Thus, the stochastic part of the

electricity price in each country tends toward αi/κi in the long term, with a reversion speed
κi. If Si

t falls below its long-run quilibrium level the parenthesis will be positive, which
induces an increase in its value (dSi

t > 0); conversely, if Si
t rises above αi/κi the parenthesis

will be negative, pushing Si
t downwards (dSi

t < 0). In sum, when Si
t departs from its

long-term equilibrium (due to the impact of stochastic shocks, namely OU and jumps),
the first term tends to restore the equilibrium (always subject to shocks). In addition, the
higher the speed of reversion κi, the sooner Si

t approaches its equlibrium value. Now, the
second term generates a continuous random behaviour (without jumps): the volatility of
the mean-reverting process is σi; dWi

t is the increment of a standard Wiener process. The
third term accounts for jumps in the electricity price with intensity λi (the mean rate of
event occurrence); thus, if the time unit is an hour then λi jumps are expected per hour.
The jump size is normally distributed with mean µi

j and volatility σi
j . Here, dqi

j is a Poisson

process such that dqi
j = 1 with probability λidt, and dqi

j = 0 with probability 1 − λidt. We

assume that dWi
t and dqi

j are independent.

Note that the earlier assumption E(S i ) = 0 implies that, in terms of average or
expected values, the mean-reverting component and the discrete-jump component offset
each other: if any one of them has a positive expected value then the other must have a
negative one.
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3. Data

There are different definitions or notions of convergence. For example, in [25] price
convergence means the reduction in international price level dispersion over time. Ac-
cording to [26], convergence is defined by convention as the percentage of hours during
which absolute price differences are below 0.1 EUR/MWh. Ref. [7] distinguishes between
partial convergence (prices in two markets approximate each other) and full convergence
(law of one price holds). There are also definitions tailored to the particular economet-
ric/theoretical model at hand, among them [7,9,22]. The empirical approaches include
correlation analysis, regression analysis, cointegration analysis, Kalman filter analysis,
principal components analysis, etc. Ref. [27] provides a list of them.

In our case, we keep the analysis simple and consider two different data sets. The first
one includes three countries: France, Portugal and Spain. For each of them we have average
monthly prices from January 2015 to May 2023 (i.e., 101 average prices for each country). A
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new inter-connector between Baixas (France) and Santa Llogaia (Spain) started operating
in October 2015; its 2000 MW transmission capacity was ramped up progressively (Ref. [28]
considers that on 1 January 2016 it was fully available). As a matter of fact, prices in Spain
and Portugal are identical in many hours owing to the integration of both markets. Indeed,
there is a joint Iberian power market operator, OMIE, for both Portugal and Spain.

The second set accounts for all the eight countries: the former three plus Belgium,
Germany, Italy, The Netherlands, and the UK. It comprises hourly prices from April 2020 to
May 2023 (i.e., 27,000 prices for each country). Thus, the two data sets overlap from April
2020 through to May 2023.

3.1. Monthly Overview

Monthly prices provide a first glimpse of the two sub-periods. Figure 1 shows their
time path in France and Spain. Until early 2021, they fluctuate around a more or less stable
level but then prices increase steeply.

Our first aim is to break down the time horizon into two parts: the normal period
and the crisis period. Both hourly and daily electricity prices usually show high volatility.
At this point, we stick to monthly prices; they are less volatile than hourly prices, which
in turn makes it easier to reliably identify a structural break. The separation criterion
draws on 24-month moving windows. We compute the price average and volatility for
each month (starting from January 2017). Considering a standard normal distribution,
the value that leaves 99.5% of the cumulative probability to its left (or, alternatively, 0.5%
to the right) is 2.57583. We set the start of the crisis period when the monthly price is
greater than the average plus 2.57583 times the volatility over 7 successive months; this
happens in June 2021 (for both France and Spain). This result is in line with reports from
the Spanish transmission system operator (TSO). According to Red Eléctrica de España [29]:
“The average daily electricity market price in 2021 has been 111.93 €/MWh, the highest in
history. . . more than triple that of last year (itself very low due to the pandemic). . . with
prices already above 90 €/MWh since the end of May”.

The above result for France and Spain is assumed to apply to the eight countries. Thus,
we split the spot price series into a normal period (running from April 2020 through to May
2021) and a crisis period (June 2021 to May 2023). Note that the normal period includes the
initial months of the COVID-19 pandemic.

Figure 2 displays power prices in the eight countries over the whole sample period.
Monthly prices are highest in Italy and France. They are lowest in Spain and Portugal; the
latter are hard to identify because they are the same as the former very frequently.

3.2. Hourly Overview

Now, Table 1 shows the summary statistics of hourly prices in both sub-periods. Aver-
age levels and volatilities increase significantly from the first one to the second. The upward
jumps are comparatively weaker in the Iberian Peninsula than in the other countries. Thus,
percentage changes in Portugal and Spain fall short of 300%, but they surpass 400% and
even 500% elsewhere.

Regarding skewness, the UK leads the sample in both the normal period (17.10) and
the crisis period (3.81); second comes Portugal in the former (0.61) and France in the latter
(2.08). Germany is the only place with negative skewness (−0.23, normal period). Positive
skewness suggests that the probability mass is relatively more concentrated on the left of
the distribution and the tail turns up on the right. This phenomenon is reinforced during
the crisis period: skewness increases everywhere (except in the UK); the lowest rate is a
non-negligible 31% (in Portugal).

When it comes to kurtosis, again the UK stands apart in the normal period (519.38);
Germany (3.13) comes second, far behind. Italy is the only country with negative kurtosis
(−0.24, normal period). As before, in the crisis period this statistic increases everywhere
(except in the UK), with all the values above 3.0; this suggests that the probability distribu-
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tion generates more outliers and/or more extreme outliers than the normal distribution.
Kurtosis is minimum in Italy (3.68) and maximum in The Netherlands (25.12).

Table 1. Hourly electricity prices (EUR/MWh), April 2020–May 2023: summary statistics.

Country
Normal Period (10,224 h) Crisis Period (16,776 h) % Change

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Spain 40.8 20 150 72.5 267.6% 262.5%
France 41.1 21.1 210 137 410.9% 549.3%
Portugal 40.8 20 150 72 267.6% 260.0%
UK 53.0 43.7 204 128 284.9% 192.9%
Italy 47.5 19.2 237 128 398.9% 566.7%
Germany 38.6 21.5 182 127 371.5% 490.7%
Belgium 39.8 21.7 192 124 382.4% 471.4%
The Netherlands 39.8 19.8 189 121 374.9% 511.1%

Country
Normal period (10,224 h) Crisis period (16,776 h) % Change

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

Spain 0.60 0.41 0.78 8.05 31.1% 1847.7%
France 0.31 1.26 2.08 6.97 571.8% 452.6%
Portugal 0.61 0.44 0.80 5.92 31.0% 1237.9%
UK 17.10 519.38 3.81 6.15 −77.7% −98.8%
Italy 0.26 −0.24 1.35 3.68 412.9% −1622.0%
Germany −0.23 3.13 1.42 6.40 −724.7% 104.3%
Belgium 0.00 2.68 1.25 10.61 62,656.9% 296.6%
The Netherlands 0.41 2.14 1.33 25.12 226.6% 1073.4%

Tables 2 and 3 show the correlation coefficients between national hourly prices over
both sub-periods; in a sense, the correlation coefficient provides a (static) measure of the
level of market integration. Some markets show high correlations, among them those
pertaining to the CWE electricity market. It is possible to distinguish two blocks. The first
one comprises Portugal and Spain, where the correlation is almost perfect (99.8%) over
both time horizons. In the other block, the correlations are not so extreme. Up to May 2021,
they are higher than 75% between continental countries (France, Italy, Germany, Belgium,
and The Netherlands), with the UK lagging behind (around 50%).

Table 2. Pearson correlation between hourly prices in normal period (April 2020–May 2021).

Country Spain France Portugal UK Italy Germany Belgium The Netherlands

Spain 1.000
France 0.743 1.000
Portugal 0.998 0.738 1.000
UK 0.465 0.526 0.463 1.000
Italy 0.749 0.858 0.745 0.532 1.000
Germany 0.623 0.892 0.618 0.474 0.776 1.000
Belgium 0.679 0.930 0.675 0.536 0.807 0.927 1.000
The Netherlands 0.639 0.896 0.634 0.518 0.816 0.91 0.939 1.000

Table 3. Pearson correlation between hourly prices in energy crisis period (June 2021–May 2023).

Country Spain France Portugal UK Italy Germany Belgium The Netherlands

Spain 1.000
France 0.454 1.000
Portugal 0.998 0.454 1.000
UK 0.437 0.755 0.439 1.000
Italy 0.404 0.925 0.406 0.737 1.000
Germany 0.380 0.889 0.380 0.751 0.869 1.000
Belgium 0.443 0.912 0.443 0.782 0.882 0.954 1.000
The Netherlands 0.445 0.896 0.444 0.778 0.880 0.953 0.972 1.000
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Nonetheless, from June 2021 onwards correlations get stronger (Table 3): above 85%
between continental countries, and higher than 70% for the UK. Thus, the energy crisis
has contributed to further integrating these power markets. Instead, the evidence for the
Iberian Peninsula is the opposite: hourly prices have de-coupled from those beyond the
Pyrenees, as shown by correlations falling from over 60% in the normal period to under
40% in the crisis period.

4. Numerical Estimates of National Price Processes

Regarding empirical analyses, Ref. [10] considers three European wholesale power
markets: the APX (The Netherlands), EEX (Germany), and PPX (France). The same number
of European markets applies to [11]: Amsterdam Power Exchange (APX, The Netherlands),
NordPool (Scandinavia) and Spain. In [21], the number grows to six: APX (The Netherlands),
EEX (Germany), EXAA (Austria), NordPool (Scandinavia), Omel (Spain), and Powernext
(France). The authors of [22] use data from seven markets: European Energy Exchange
(EEX, Germany), Belgian Power Exchange (BELPEX, Belgium), Energy Exchange Austria
(EXAA, Austria), Amsterdam Power Exchange (APX, The Netherlands), Nord Pool Power
Exchange (ELSPOT, Scandinavia), Single Electricity Market (SEM, Northern Ireland and
Republic of Ireland), and APX Power UK (former UKPX, Great Britain). We estimate our
model drawing on hourly data from eight Western European countries.

4.1. Deterministic Parts

Tables 4 and 5 display the estimation results during the ‘normal’ and ‘crisis’ periods,
respectively. Full details for each country in each period appear in Supplementary Materials.
We run an OLS linear regression analysis with heteroskedasticity-consistent (HAC) robust
standard errors.

Table 4. Deterministic parameters in the normal period (April 2020–May 2021).

Parameters Spain France Portugal UK Italy Germany Belgium The Netherlands

β1 3.19 4.00 3.56 14.00 11.40 5.20 5.17 9.74
β2 47.49 44.02 47.39 55.37 46.81 36.29 41.43 36.94
β3 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

β4 −5.25 −4.85 −5.24 n.s. −2.86 −3.18 −4.93 −3.07
β5 −6.72 n.s. −6.63 3.78 −0.87 n.s. n.s. 1.18
β6 −3.34 2.72 −3.40 n.s. 0.88 2.22 1.71 1.17
β7 4.40 2.46 4.52 4.01 0.87 1.85 2.33 1.92
β8 n.s. n.s. n.s. 3.68 −1.06 n.s. 1.20 0.90
β9 5.65 3.37 5.73 7.15 2.34 2.29 3.09 2.28
β10 1.59 n.s. 1.66 2.90 n.s. n.s. n.s. n.s.
β11 4.32 2.69 4.37 3.01 1.00 n.s. 1.90 0.95
β12 4.25 n.s. 4.34 2.52 n.s. n.s. n.s. n.s.
β13 n.s. −3.67 n.s. n.s. −2.51 −3.42 −3.12 −2.75

β14 10.96 13.85 10.53 5.54 10.03 13.91 11.75 9.90
β15 13.00 16.62 12.66 7.94 11.89 17.01 15.30 12.19
β16 13.44 17.54 13.07 12.43 12.80 17.27 16.38 12.30
β17 14.15 16.63 13.82 9.49 12.30 17.34 15.11 12.77
β18 11.57 14.15 11.23 8.45 11.28 16.22 13.45 11.02
β19 4.45 6.29 4.27 2.77 4.75 7.71 6.02 4.71

β20 −2.76 −4.11 −2.80 −12.44 −4.71 −3.58 −3.78 −3.84
β21 0.54 −1.05 0.55 n.s. −0.50 n.s. 0.76 n.s.
β22 −5.83 −7.84 −5.69 −9.87 −7.50 −8.69 −8.71 −8.40
β23 1.24 −0.66 1.25 n.s. −1.01 −1.53 n.s. −1.18
β24 −0.49 1.53 −0.50 3.30 1.51 1.72 1.97 2.05
β25 −0.67 −0.55 −0.70 −6.42 −0.20 −0.78 −0.72 −0.62
β26 1.00 2.03 0.94 5.52 1.40 1.71 1.84 1.72
β27 −0.66 0.35 −0.63 −0.70 −1.00 −0.48 −0.39 −0.57
β28 n.s. −0.69 n.s. n.s. n.s. −0.58 −0.45 −0.58
β29 n.s. 0.26 n.s. 3.69 n.s. 0.16 0.63 0.38

n.s. = not significant at the 10% level.
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Table 5. Deterministic parameters in the energy crisis period (June 2021–May 2023).

Parameters Spain France Portugal UK Italy Germany Belgium The Netherlands

β1 −347.52 −1229.5 −345.44 −660.4 −1214.4 −949.4 −953.53 −933.10
β2 550.37 1328.36 549.31 828.20 1342.57 1017.06 1047.56 1035.03
β3 −143.14 −297.21 −142.77 −190.7 −297.86 −223.53 −232.80 −231.27

β4 −23.82 26.72 −23.35 n.s. 35.33 31.75 17.80 19.40
β5 23.13 −43.88 23.25 −35.71 −51.82 −46.54 −42.30 −39.47
β6 n.s. −34.12 n.s. −39.40 −37.03 −27.27 −27.01 −28.28
β7 19.94 −12.49 20.16 0.00 −13.68 −12.98 −11.65 −8.67
β8 −4.78 n.s. −4.61 19.83 10.00 14.14 9.86 13.35
β9 2.99 36.62 3.22 33.83 33.55 30.33 30.10 28.73
β10 −13.28 −33.51 −13.10 −37.46 −26.06 −33.79 −34.53 −32.41
β11 −3.84 7.56 −3.88 7.03 8.69 n.s. n.s. n.s.
β12 n.s. 24.09 n.s. 14.41 12.31 15.15 20.55 15.73
β13 −11.69 −8.76 −11.72 −6.78 −9.24 −8.88 −8.49 −7.44

β14 23.08 52.75 21.77 28.26 33.10 53.14 47.12 42.84
β15 24.94 66.76 23.51 33.61 42.06 70.89 57.76 51.98
β16 22.91 65.03 21.31 25.32 41.22 66.41 53.62 47.87
β17 24.76 63.19 23.54 30.67 44.69 60.15 53.13 47.78
β18 21.38 56.24 19.92 27.88 41.69 49.00 45.95 42.52
β19 9.43 22.08 8.07 n.s. 15.55 17.72 14.23 13.25

β20 −3.88 −18.65 −4.23 −34.23 −19.44 −16.60 −16.60 −15.72
β21 10.43 −7.05 10.02 −4.39 −2.40 n.s. 3.17 5.57
β22 −21.12 −31.69 −20.78 −32.99 −27.81 −31.65 −33.13 −33.77
β23 1.22 −6.27 1.30 n.s. −12.71 −17.75 −14.71 −16.91
β24 −1.49 5.85 −1.46 13.95 7.18 7.73 8.41 9.71
β25 −1.51 n.s. −1.48 −11.19 n.s. n.s. n.s. 1.72
β26 4.25 8.65 4.12 11.09 6.96 6.97 7.42 6.10
β27 −3.68 n.s. −3.56 −2.34 −1.98 0.89 n.s. n.s.
β28 n.s. −2.12 n.s. −1.49 n.s. −2.37 −1.93 −1.93
β29 n.s. n.s. n.s. 5.69 0.79 n.s. 0.66 n.s.

n.s. = not significant at the 10% level.

Table 4. The regression intercept (β1), which is statistically significant everywhere,
varies markedly across markets. It is highest in the UK (14.00 EUR/MWh) and Italy (11.40),
while the lowest values correspond to Portugal (3.56) and Spain (3.19). The linear time trend
(β2) is positive everywhere and shows less dispersion. Again, the UK (55.37 EUR/MWh
over a year) stands out, followed by Spain (47.49) and Portugal (47.39). The minimum
value corresponds to Germany (36.29). As for the quadratic time trend, β3 is not statistically
significant anywhere at the 10% level in this period (which is not surprising in view of the
left part in Figures 1 and 2).

Regarding the yearly cycle (β4 through β13), some coincidences arise. For ex-
ample, there is at least one non-significant parameter in every country (though it
is never the same for every one). Yet, some groupings show up. For instance, β8
is non-significant in France–Germany–Spain–Portugal. Instead, β10 and β12 are
non-significant in Belgium–France–Germany–Italy–The Netherlands. There are also
parameters that are significant in every market and even show the same sign, e.g., β7 and
β9, both positive. Conversely, β4 is consistently negative (except in the UK, where it is
not significant).

Unlike the former, the weekly cycle (β14 through β19) is statistically significant every
day in all of the markets. Across space, the lowest estimates correspond to the UK, and the
highest ones to Germany and France. Across time, the estimates are highest on Wednesdays
and Thursdays, and lowest on Saturdays.

When it comes to the daily cycle (β20 through β29), France is the only country where
all of the estimates are statistically significant (at the 10% level). Similarly to the yearly
cycle, some parameters are significant in every market and even show the same sign, either
negative (β20, β22, and β25) or positive ( β26). On the other hand, a few groups turn up. For
instance, both β28 and β29 are non-significant in Portugal–Spain–Italy.

Table 5. In the energy crisis period, some results change dramatically. Thus,
the numerical estimates of the regression intercept (β1) bear no resemblance to the
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earlier ones. They turn negative and quite sizeable: around (−1200) in UK–Italy,
and (−350) in Portugal–Spain. The linear time trend (β2) remains positive but jumps
above 1000 in Belgium–France–Germany–Italy–The Netherlands, while reaching 500
in Portugal–Spain. The quadratic time trend, β3, which was not significant anywhere
in the normal period, now becomes statistically significant and shows a negative sign,
with Belgium–France–Germany–Italy–The Netherlands at one end (between −223.53
and −297.86) and Portugal–Spain at the other (around −143).

The estimates of the yearly cycle are very different too (relative to the normal period).
The number of non-significant estimates drops from 23 before to 9 now. Some estimates
switch from negative to positive or the other way round. The absolute values increase
noticeably, sometimes by a factor of 10 or more. Still, other findings remain, e.g., β9 is
significant and positive in all of the markets. Conversely, now β10 is significant everywhere
and negative (no longer positive).

Concerning the weekly cycle (β14 through β19), the main difference is the size of the
estimates, which increases across both space and time, sometimes by a factor of five or
more. Again, the highest values correspond to Germany and France. The lowest ones arise
in Portugal and Spain (not the UK). Across time, now the estimates are highest mostly on
Tuesdays; again, the lowest are on Saturdays.

As for the daily cycle (β20 through β29), now the number of non-significant coef-
ficients grows from 12 to 17. As before, β20 and β22 remain significant and negative
everywhere, while β26 continues to be positive in every market. β25 ceases to be signifi-
cant in Belgium–France–Germany–Italy. Similarly to the above parameters, the absolute
values jump upward: in Table 4 just one of them reaches 10; now, values above 20 and
even 30 are common. Again, β28 is non-significant in Portugal–Spain–Italy. β29 continues
non-significant in Portugal–Spain but now France–Germany–The Netherlands join the list.

To gain additional insights, the following figures display some of the above results for
the three types of seasonalities. Regarding yearly patterns, Figures 3 and 4 show YCi(t)
over the two periods in Germany (core) and Spain (periphery), respectively. A cursory look
allows the observation that the energy crisis has led to much wilder swings in the former
than in the latter (as suggested in Tables 4 and 5 by the changes in β4 through β13). An
absence of pattern changes in the yearly cycle would imply perfect positive correlation
(+1.00) across the two periods. In Spain it is 0.3783. In Germany it is −0.30643.
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Figure 5 focuses on the energy crisis period specifically. The two national cycles
are very different during the first part of the year; in the second, instead, they describe
similar paths. At any time, the German yearly cycle displays wider amplitude than the
Spanish one.
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As for the weekly effects, Figures 6 and 7 show that WCi(t) get more prominent in both
Germany and Spain during the crisis period. As before, the changes are much bigger in the
former than in the latter. On the other hand, Saturday stands apart from the working days.
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Figure 7. Spain weekly effects, WC(t), during the two periods.

Concerning hourly effects over the day, DCi(t), here the differences between the two
countries are smaller than before. In Germany, the correlation of the hourly cycles during
the two periods is 0.9355; see Figure 8. In Spain it is slightly lower, 0.9087; see Figure 9. In
both countries the swings become wider during the crisis period.
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Figure 10 displays the national hourly cycles during the energy crisis period. The
paths are similar, with Spanish patterns following German ones with a delay of 1 to 2 h in
the second part of the day.
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For further comparison purposes, Figures 11 and 12 show hourly spot prices in
Germany and Spain over the energy crisis period along with the respective deterministic
components. There is evidence of (yearly) seasonality, volatility, jumps, and mean reversion,
especially in the particular case of Germany.
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4.2. Stochastic Parts

Now, moving on to the stochastic part of the hourly spot price entails getting the series
of Si

t residuals (Si
t = Pi

t − Di(t), i.e., the residuals of the OLS regression). As expected,
during the energy crisis (June 2021–May 2023) its volatility grows significantly (see Table 6).
This fact renders future prices less predictable than in normal times. The biggest percentage
increases take place in Italy and France; the opposite is true in the Iberian Peninsula and
the UK, where it is smallest.

Table 6. Hourly volatility (EUR/MWh) of the Si
t series in both periods for the sample countries.

Volatility Spain France Portugal UK Italy Germany Belgium The Netherlands

Normal 12.17 12.32 12.14 36.16 8.83 15.12 14.35 12.93
Crisis 45.52 88.19 45.34 96.52 72.61 86.85 84.09 81.89
% Change 274.1% 616.1% 273.6% 167.0% 722.3% 474.5% 485.9% 533.5%

According to Equation (6), the stochastic component Si
t comprises two parts: an OU

process and a Poisson process. We separate the mean-reverting part and the discrete-jumps
part following a recursive approach. Starting from the initial series of Si

t residuals, we
consider that there is jump at a particular time when (the absolute value of) the residual at
this time exceeds three times the standard deviation (‘volatility’) of that series; the same
metrics is used by [6,14], among others. After this first residual is filtered out, the volatility
of the initially considered mean-reverting part will be lower; thus, it is possible that new
values turn up as jumps (in which case they are treated accordingly). The process finishes
when the volatility of the mean-reverting part does not change and therefore no new jump
arises. The number of iterations changes across countries and periods. The minimum
number is six, and the maximum is nine; Ref. [9] performs a filter and smoother algorithm
up to five times, the same number as [6]. In the end, starting from the Si

t series the recursive
procedure leads to two series: one corresponds to the OU process and the other to the
Poisson process. Each series allows the derivation of numerical estimates of the parameters
underlying it.
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Figure 13 displays the decomposition of the Si
t series for Germany during the energy

crisis period. The upper graph shows the original series, i.e., the sum of the OU process
and the Poisson process. The (discrete) series of jumps, whether negative or positive,
is represented in the middle. The bottom graph shows the (continuous) series of mean-
reverting changes. Clearly, whenever the Si

t residual approaches 400 EUR/MWh in the
upper graph the reason is a jump, not mean reversion; just look at the units along the
vertical axes of the middle and bottom graphs.
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At this point, it is worth remembering that, by assumption, E
(
Si

t
)

is zero. This applies
to the upper series in Figure 13. Therefore, the averages of the other two series below must
sum to zero. The graph in the middle shows more positive jumps than negative ones (i.e.,
the mean is positive). This in turn implies that the mean-reverting series in the lower graph
must have a negative mean.

Similarly, Figure 14 displays the decomposition of the Si
t series for Spain during the

energy crisis period. The upper graph shows the original series. It is more stable than
the German one (as suggested by Figures 11 and 12). The jumps in the middle graph are
more abundant; nonetheless, their size is smaller. Interestingly, positive jumps in Spain
synchronize well with the German ones, but this is not true for negative jumps, which are
more frequent in Spain. The bottom graph of mean-reverting changes shows a similar size
reduction: the range in Germany is [−200 EUR/MWh; 200 EUR/MWh], while in Spain it is
[−100 EUR/MWh; 100 EUR/MWh].

The next step is to derive numerical estimates of the parameters underlying Si
t in

both periods. We use the residuals of the OLS regression (their average is zero). Upon
identification of the jump series, parameter estimation is straightforward. Table 7 shows
the results; note that ∆t = 1/(365 × 24).



Energies 2024, 17, 3420 17 of 23

Energies 2024, 17, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 14. Spain’s stochastic part over the crisis period: jumps and mean reversion. 

The next step is to derive numerical estimates of the parameters underlying 𝑆௧௜ in 
both periods. We use the residuals of the OLS regression (their average is zero). Upon 
identification of the jump series, parameter estimation is straightforward. Table 7 shows 
the results; note that ∆t = 1/(365 × 24). 

Table 7. Stochastic part 𝑆௧௜: parameter estimates of the jump process. 

Country Parameter 
Period 1 Period 2 

Value 95% Confidence Int. Value 95% Confidence Int. 

Spain 
𝜆௜ 0.0441 (0.0318, 0.0564) 0.0264 (0.01836, 0.0344) 𝜇௝௜  −14.4427 (−17.7146, −11.1708) 18.5654 (3.6591, 33.4717) 𝜎௝௜ 35.3564 (33.1898, 37.828) 159.637 (149.772, 170.904) 

France 
𝜆௜ 0.0443 (0.0342, 0.0544) 0.0169 (0.0109, 0.0230) 𝜇௝௜  −12.2928 (−15.9278, −8.6578) 278.116 (251.293, 304.938) 𝜎௝௜ 39.3675 (36.96, 42.1129) 229.641 (212.18, 250.257) 

Portugal 
𝜆௜ 0.0442 (0.0317, 0.0567) 0.0260 (0.0180, 0.0341) 𝜇௝௜  −14.3919 (−17.6526, −11.1313) 21.7014 (6.7194, 36.6833] 𝜎௝௜ 35.2744 (33.115, 37.7373) 159.351 (149.44, 170.68) 

UK 
𝜆௜ 0.0247 (0.0180, 0.0315) 0.0255 (0.0183, 0.0326) 𝜇௝௜  60.4514 (34.7452, 86.1576) 302.743 (272.567, 332.919) 𝜎௝௜ 207.616 (190.964, 227.473) 317.244 (297.298, 340.081) 

Italy 
𝜆௜ 0.0246 (0.0179, 0.0313) 0.0157 (0.0093, 0.0221) 𝜇௝௜  1.37807 (−2.4449, 5.2010) 219.776 (202.397, 237.156) 𝜎௝௜ 30.8143 (28.3383, 33.768) 143.414 (132.135, 156.814) 

Germany 
𝜆௜ 0.0506 (0.03959, 0.0615) 0.0165 (0.0106, 0.0224) 𝜇௝௜  −22.9209 (−26.7685, −19.0734) 199.309 (174.505, 224.114) 𝜎௝௜ 44.5307 (41.9718, 47.4244) 209.709 (193.579, 228.795) 

Belgium 
𝜆௜ 0.0512 (0.0403, 0.0620) 0.0183 (0.0124, 0.0242) 𝜇௝௜  −14.7873 (−18.6988, −10.8759) 162.406 (136.437, 188.375) 

Figure 14. Spain’s stochastic part over the crisis period: jumps and mean reversion.

Table 7. Stochastic part Si
t: parameter estimates of the jump process.

Country Parameter
Period 1 Period 2

Value 95% Confidence Int. Value 95% Confidence Int.

Spain
λi 0.0441 (0.0318, 0.0564) 0.0264 (0.01836, 0.0344)
µi

j −14.4427 (−17.7146, −11.1708) 18.5654 (3.6591, 33.4717)

σi
j 35.3564 (33.1898, 37.828) 159.637 (149.772, 170.904)

France
λi 0.0443 (0.0342, 0.0544) 0.0169 (0.0109, 0.0230)
µi

j −12.2928 (−15.9278, −8.6578) 278.116 (251.293, 304.938)

σi
j 39.3675 (36.96, 42.1129) 229.641 (212.18, 250.257)

Portugal
λi 0.0442 (0.0317, 0.0567) 0.0260 (0.0180, 0.0341)
µi

j −14.3919 (−17.6526, −11.1313) 21.7014 (6.7194, 36.6833]

σi
j 35.2744 (33.115, 37.7373) 159.351 (149.44, 170.68)

UK
λi 0.0247 (0.0180, 0.0315) 0.0255 (0.0183, 0.0326)
µi

j 60.4514 (34.7452, 86.1576) 302.743 (272.567, 332.919)

σi
j 207.616 (190.964, 227.473) 317.244 (297.298, 340.081)

Italy
λi 0.0246 (0.0179, 0.0313) 0.0157 (0.0093, 0.0221)
µi

j 1.37807 (−2.4449, 5.2010) 219.776 (202.397, 237.156)

σi
j 30.8143 (28.3383, 33.768) 143.414 (132.135, 156.814)

Germany
λi 0.0506 (0.03959, 0.0615) 0.0165 (0.0106, 0.0224)
µi

j −22.9209 (−26.7685, −19.0734) 199.309 (174.505, 224.114)

σi
j 44.5307 (41.9718, 47.4244) 209.709 (193.579, 228.795)

Belgium
λi 0.0512 (0.0403, 0.0620) 0.0183 (0.0124, 0.0242)
µi

j −14.7873 (−18.6988, −10.8759) 162.406 (136.437, 188.375)

σi
j 45.5337 (42.9313, 48.4744) 231.236 (214.277, 251.132)

λi 0.0432 (0.0336, 0.0528) 0.0212 (0.0149, 0.0274)

The Netherlands µi
j −5.56887 (−9.6148, −1.5229) 135.724 (110.714, 160.734)

σi
j 43.2802 (40.6028, 46.3386) 239.605 (223.181, 258.658)
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Regarding Table 7, we focus specially on Germany and Spain (the analysis can be
extended easily to the other markets in the sample). Starting with the former in the two
periods, the expected number of jumps per hour (λi) drops by two-thirds from the normal
period to the crisis period (namely, from 0.0506 to 0.0165). This may be a consequence
of more volatile power prices in the crisis period: the higher the volatility, the higher the
threshold to overcome (three times) in order to qualify as a jump. The jumps become more
acute. The average size (µi

j) switches from (−22.9209) to 199.309 EUR/MWh, and volatility

(σi
j ) jumps from 44.5307 to 209.709 EUR/MWh, a factor of 4.7. In the case of Spain, the

jumps undergo similar changes, but these are milder. The expected jumps per year (λi)
decrease by less than one-half (from 0.0441 to 0.0264). Their average size (µi

j) reverses from

(−14.4427) to 18.5654, and volatility (σi
j ) increases by a factor of 4.5 (from 35.3564 to 159.637).

These increases in jump sizes and volatilities are consistent with Table 6: Si
t is more volatile

in Germany than in Spain and becomes more so (see also Table 1).
The above patterns are broadly similar across all the sample markets. The expected

number of jumps per year drops everywhere (except in the UK, where it is almost constant).
In the normal period, the average jump size is negative in six (out of eight) markets (the
exceptions being the UK and Italy). However, it is positive in all of them during the crisis
period; for one, in Italy the average jump rises from 1.37807 to 219.776 EUR/MWh. As for
jump volatility, in the normal period the UK is at the top (207.616) and Italy at the bottom
(30.8143). They both keep their positions in the crisis period, but the gap compresses
noticeably (317.244 and 143.414, respectively).

When it comes to the OU process, the parameters are estimated by OLS with HAC
robust standard errors; see Table 8. Again, we look in particular to Germany and Spain;
regarding the absolute parameter estimates, note that in Equation (6) the first parenthesis is
multiplied by dt, which equals (1/8760) here. As explained in Section 2, the joint parameter
αi/κi is the level toward which the mean-reverting part of the electricity price in country i
tends in the long term; further, it does so at a reversion speed κi. During the normal period,
the long-term level of Si

t is positive in both Germany (1.1574) and Spain (0.6410), both
measured in EUR/MWh. Nonetheles, it switches to negative in the crisis period (−3.2956
and −0.4108, respectively). On the other hand, remember that, by assumption, E

(
Si

t
)
= 0:

the averages of the two underlying processes must sum to zero. In this regard, whenever
the value of µi

j in Table 7 is negative, the corresponding αi/κi on Table 8 is positive, and the
opposite is also true. Overall, the results are consistent with those in Table 6, namely the
higher volatility levels in Germany (whatever the period considered) and also the bigger
increase in volatility.

The reversion speed κi falls in both countries: by around two-thirds in Germany
(from 1431.94 to 507.31) and less than one-fifth in Spain (from 900.05 to 737.42). Note that
k = ln2/t1/2, where t1/2 is the expected half-life of the (deseasonalized) stochastic part,
i.e., the time required for the gap between Si

0 and the long-term level αi/κi to halve. A
lower speed of reversion means that, when a shock to Si

t strikes, the impact takes longer
to disappear (or Si

t takes longer to stabilize). In other words, the anchoring effect of long-
run levels αi/κi weakens. In turn, intuition suggests that more observations far from the
average (because of the slower reversion) will lead to higher volatility in the series. Table 8
shows that the volatility of the mean-reverting process (σi) doubles in the crisis period: in
Germany from 219.36 to 480.02, and in Spain from 187.94 to 362.41. Again, this is consistent
with the results in Table 6.

Now at the sample level, in the normal period, the long-term level αi/κi is negative in
just two countries, namely the UK (−1.5009) and Italy (−0.0354). All other countries are
somewhere between The Netherlands (0.2383) and Germany (1.1574). Perhaps a possible
interpretation is that even in this period, the UK was already hard-pressed in terms of
power prices (in Table 1 it tops the rank with the highest average price, 53.0 EUR/MWh,
followed by Italy, so the ‘natural’ path forward is downward). Yet, in the second period all
of them display negative values of αi/κi. The lowest ones correspond to the UK (−7.6989)
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and France (−4.7273). In the opposite extreme, we find Spain (−0.4108) and Portugal
(−0.4869). The biggest drops take place in the UK and France, and the smallest ones in
Spain and Portugal.

Table 8. Stochastic part Si
t: parameter estimates of the mean-reverting process.

Country Parameter
Period 1 Period 2

Value 95% Confidence Int. Value 95% Confidence Int.

Spain
αi 576.92 (−82.96, 1236.79) −302.94 (−2145.33, 1539.46)
ki 900.05 (789.28, 1010.81) 737.42 (653.18, 821.65)
σi 187.94 (186.67, 189.25) 362.41 (360.48, 364.36)

France
αi 722.81 (−57.06, 1502.68) −2668.79 (−5643.07, 305.49)
ki 1336.16 (1216.69, 1455.64) 564.55 (485.44, 643.64)
σi 201.44 (200.07, 202.83) 480.17 (477.63, 482.76)

Portugal
αi 551.88 (−87.67, 1205.88) −354.12 (−2177.74, 1469.51)
ki 872.89 (762.38, 983.4) 727.29 (645.87, 808.71)
σi 186.31 (185.04, 187.6) 360.71 (358.8, 362.66)

UK
αi −2916.67 (−4275.61, −1557.73) −6064.53 (−9442.32, −2686.73)
ki 1943.31 (1818.22, 2068.39) 787.72 (706.02, 869.42)
σi 260.43 (258.66, 262.23) 489.85 (487.25, 492.49)

Italy
αi −55.61 (−736.76, 625.54) −1910.29 (−4408.36, 587.77)
ki 1570.10 (1457.43, 1682.8) 542.41 (469.32, 615.5)
σi 192.30 (190.99, 193.63) 442.67 (440.32, 445.04)

Germany
αi 1657.33 (712.19, 2602.47) −1671.86 (−4724.35, 1380.61)
ki 1431.94 (1302.63, 1561.25) 507.31 (436.22, 578.39)
σi 219.36 (217.88, 220.88) 480.02 (477.48, 482.61)

Belgium
αi 1230.48 (281.95, 2179.01) −2221.93 (−5894.06, 1450.2)
ki 1636.34 (1499.6, 1773.09) 745.24 (661.05, 829.44)
σi 241.23 (239.6, 242.91) 514.47 (511.74, 517.25)

The Netherlands
αi 431.50 (−528.79, 1391.79) −2455.92 (−6258.76, 1346.96)
ki 1810.56 (1669.2, 1951.93) 853.33 (769.38, 937.28)
σi 221.68 (220.18, 223.22) 518.87 (516.12, 521.67)

Regarding the reversion speed, κi falls the most in Italy (65.45%) and Germany
(64.57%). It falls the least in Portugal (16.68%) and Spain (18.07%). As before, the volatility
of the mean-reverting process (σi) increases significantly in the crisis period. It rises by
138.37% in France and 134.06% in The Netherlands. Instead, it does so only by 88.09% in
the UK and 92.83% in Spain.

5. Discussion

Looking at hourly prices in both sub-periods, we found that price averages and
volatilities rise noticeably from the first one to the second (with the increases comparatively
weaker in the Iberian Peninsula). Skewness is also reinforced in the crisis period (except
in the UK, where it reaches the highest levels). The same applies to kurtosis, which
increases everywhere (except in the UK), well above 3.0 in every market. On the other hand,
correlation analysis shows a fragmented market. In the first period, correlation between the
five mainland countries is higher than 75%. It falls to around 50% between them and the
UK, and somewhere between 62% and 74% between them and Portugal and Spain (which
display an almost perfect match, 99.8%). In the second period, we identify two distinct
dynamics: the correlation between core countries increases above 85%, and above 70%
between them and the UK; instead, between core countries and the two Iberian countries, it
falls to somewhere between 38% and 45% (which suggests de-coupling with the mainland).
To some extent, these results resemble those in [19]: they too find strong similarities among
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most markets, while the Spanish and Portuguese electricity exchanges exhibit the weakest
similarity to the broader European market.

Then, we estimated the model with hourly data from the above countries over the
two periods. Regarding the deterministic component, we ran a linear OLS regression. In
the normal period, the intercept is statistically significant everywhere, ranging between
14.00 EUR/MWh in the UK and 3.19 EUR/MWh in Spain. The linear time trend is also
significant everywhere and positive (around 50). The quadratic time trend, instead, is
not significant anywhere. Not surprisingly, some regularities arise in terms of season-
alities across countries. In the crisis period, there are several dramatic changes. Thus,
the regression intercept remains significant but becomes negative and huge (between
−1229.5 EUR/MWh in France and −345.44 EUR/MWh in Portugal). The linear time trend
remains significant and positive, but jumps above 1000 in some countries. The quadratic
time trend now becomes significant and negative. There are also changes in the seasonalities
parameters. Common to all of them is a sizeable increase in their absolute values.

When it comes to the stochastic component, the starting point is the series of residuals
of the earlier OLS regression. Its volatility grows significantly in the crisis period. As for
estimation, the first step is to break the single series down into two, namely the continuous
mean-reverting series and the discrete-jumps series. For this purpose we follow a recursive
approach (it filters out the residuals whose absolute value exceeds three times the series
volatility). The number of iterations ranges between six and nine; it changes across countries
and periods.

The series of jumps lends itself to straightforward estimation of the underlying pa-
rameters. Overall, in the second period the expected number of jumps per hour decreases
across all the markets (apart from the UK, where it is essentially constant). The reason may
be higher price volatilities in it, which raise the threshold to qualify as a jump (namely
three times volatility). In addition, in the normal period the average jump is negative in
most countries, but turns to positive everywhere in the crisis period. Jump volatility also
rises in all of the markets, with the UK at the top and Italy at the bottom.

Unlike the former, the mean-reverting process is estimated from the corresponding
series by OLS regression. In the normal period, the long-term level of the stochastic
component is positive in most of the countries. However, it switches to negative in all of
them in the crisis period; the extreme values are found in the UK (−7.6989 EUR/MWh) and
Spain (−0.4108 EUR/MWh). The reversion speed falls everywhere in the second period,
with the highest drop taking place in Italy (65.45%) and the lowest in Portugal (16.68%).
The opposite happens with volatility, which increases significantly in the second period
(the most in France and The Netherlands, and the least in the UK and Spain).

In short, the road toward an integrated EU internal market for electricity is far from
over. As the impacts of the COVID-19 pandemic have faded away and the economies return
to ‘normal’, core power markets have gotten more correlated; in a sense, it has brought the
EU goal closer to fulfillment. Nonetheless, regarding the Iberian Peninsula, the pandemic
seems to have put it farther apart from the mainland. This unexpected setback jeopardises
ongoing efforts to bridge structural isolation from the main markets.

Our findings can be adressed from different perspectives, e.g., empirical and theo-
retical. Thus, Ref. [7] mentions several reasons for deviations from uniform spot prices,
among them limited inter-connection capacities and differences in market design (e.g.,
auction design, pricing rules, closing hours. . .). Because of these ‘imperfections’, market
coupling can play an important role in fostering market integration. But constraints loom.
For instance, Ref. [26] finds a convergence of power prices in France and Germany in 2010
and 2011 (in the wake of market coupling). Nonetheless, since 2012 they have diverged; re-
newable generation in Germany is so high in certain hours that inter-connectors tend to get
congested. Ref. [7] considers 25 European electricity market areas and finds similar results.

According to our results, policy makers face two opposing trends (convergence/divergence)
behind recent events. Fortunately, this does not necessarily mean that they must take some
mutually offsetting measures. For one, increasing inter-connection capacity bodes well
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both for the center and the periphery. Enhanced inter-connections not only contribute
to integrating markets, but to the green energy transition as well. Consistent with this
view, the European Commission published the fifth list of Projects of Common Interest
(PCI) in November 2021. As it turns out, the majority of PCI projects involve just four
countries, namely France, Germany, Spain, and Portugal. The largest one in particular con-
cerns the French–Spanish border; Ref. [30] assesses the economics of the French–Spanish
inter-connector over the period 2020–2022. Despite these projects, even in 2030 up to
eight countries will fall short of the minimum inter-connection requirement (15%), among
them France, Germany, Italy, and Spain; see Ref. [31]. Thus, additional investments in
inter-connectors are needed. As suggested above, progress must be made in market harmo-
nization as well.

In addition to the above factual issues, our results are also dependent on the particular
price model adopted, which has some limitations. Thus, the parameters underlying mean
reversion and discrete jumps are time-independent. This precludes any seasonal behavior,
which can be restrictive; for instance, jumps may be more frequent at peak hours, or in
winter (this is an empirical issue). Maybe continuous changes and discrete jumps revert to
their starting levels at different speeds; imposing a single speed can lead to overestimation
for the former and underestimation for the latter. In a more general model, they would be
time-dependent; volatility would also be stochastic and account for jumps. Our treating
national price series independently (as opposed to jointly) is another limitation of the paper.
These venues are left for future research.

6. Conclusions

This paper focuses on spot power prices in Western Europe during the COVID-19
pandemic and the outbreak of the Russia–Ukraine war. It aims to assess whether these
events have changed the inner dynamics of these prices (and, if so, how).

We introduce a new model for the hourly spot price of electricity. It comprises a
deterministic component (with a time trend plus yearly, weekly, and daily seasonalities)
and a stochastic component (with both a continuous- and a discrete-time process).

Our sample comprises Belgium, France, Germany, Italy, The Netherlands, Portugal,
Spain, and the UK. Drawing on publicly available market prices, within the sample period
we identify a ‘normal’ or ‘pre-crisis’ period (April 2020–May 2021) and an (energy prices)
‘crisis’ period (June 2021–May 2023).

A cursory look at hourly prices shows that all of the usual descriptive statistics (price
averages, volatilities, skewness, and kurtosis) increase noticeably in the second period
(relative to the first one). On the other hand, in the second period the correlation between
core countries rises, while it falls between them and the two Iberian countries (which
suggests de-coupling). In short, the pandemic and the war seem to have had two opposing
impacts on the bumpy road toward an integrated EU internal market for electricity; while
core power markets are getting more correlated (thus bringing the EU goal closer to
fulfillment), the Iberian Peninsula is farther apart from the mainland.

Regarding estimation of the price model, we start from the deterministic component.
In the first period, we find a positive linear time trend which, in the second one, shows
up accompanied by a negative quadratic time trend. Not surprisingly, some regularities
arise in terms of seasonalities across countries. In the crisis period, all of the seasonality
parameters undergo a sizeable increase in their absolute values. Concerning the stochastic
component, in the second period the expected number of price jumps per hour decreases
everywhere, the average jump turns from negative to positive, and jump volatility rises.
On the other hand, the long-term price level switches from positive to negative everywhere,
the reversion speed falls, and volatility increases.

Our findings are partly owing to market ‘imperfections’, which call for further market
harmonization. Increasing inter-connection capacity is another venue for improvement. Be
that as it may, both private and public agents have prominent roles to play.
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31. Mezősi, A.; Kácsor, E.; Diallo, A. Projects of common interest? Evaluation of European electricity interconnectors. Util. Policy

2023, 84, 101642. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eneco.2021.105260
https://doi.org/10.1016/j.eneco.2021.105110
https://doi.org/10.1016/j.eneco.2021.105504
https://doi.org/10.3390/en14061639
https://doi.org/10.3390/en14041056
https://doi.org/10.3390/en14010096
https://doi.org/10.3390/en17092161
https://doi.org/10.3390/en16186515
https://www.who.int/europe/emergencies/situations/covid-19
https://www.who.int/europe/emergencies/situations/covid-19
https://doi.org/10.1002/jae.1095
https://doi.org/10.1016/j.enpol.2012.08.047
https://doi.org/10.1080/14697688.2020.1733059
https://doi.org/10.3390/en13184698
https://doi.org/10.1111/j.1468-0327.2004.00126.x
https://doi.org/10.1016/j.eneco.2020.104802
https://doi.org/10.5547/01956574.44.4.imas
https://www.sistemaelectrico-ree.es/2021/informe-del-sistema-electrico/mercados/mercado-diario
https://doi.org/10.5547/01956574.37.3.jkep
https://doi.org/10.1016/j.energy.2021.121177
https://doi.org/10.1016/j.jup.2023.101642

	Introduction 
	Methodology (Stochastic Model for the Electricity Price) 
	Data 
	Monthly Overview 
	Hourly Overview 

	Numerical Estimates of National Price Processes 
	Deterministic Parts 
	Stochastic Parts 

	Discussion 
	Conclusions 
	References

