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Functional magnetic resonance imaging data analysis is often directed to identify
and disentangle the neural processes that occur in different brain regions during
task or at rest, and employs the blood oxygenation-level dependent (BOLD) signal
of fMRI as a proxy for neuronal activity mediated through neurovascular coupling.
The goal of this thesis is to enhance and expand techniques for identifying and
analyzing individual trial event-related BOLD responses based on the Paradigm
Free Mapping (PFM) algorithm, which utilizes a linear hemodynamic response
model and relies on regularized least squares estimators to deconvolve the
neuronal-related signal that drives the BOLD effect. Notably, these techniques
estimate neuronal-related activity without relying on prior paradigm information.

First of all, this work aims to establish the equivalence between the synthesis-
based PFM and analysis-based Total Activation algorithms. Then, the thesis
addresses the challenge of selecting the regularization parameter. This was
accomplished by employing the stability selection procedure, which provides
a measure of the likelihood that the estimated neuronal-related events are
accurate. Building upon this, the next goal of this work is to extend the
original univariate PFM formulation to a multivariate context, enabling the
incorporation of spatial information through regularization terms such as the
`1 +`2,1 mixed-norm regularization. Expanding further, the third objective of
this thesis is to extend the multivariate PFM formulation to a multi-subject
framework, facilitating the estimation of shared and individualized neuronal-
related activity across subjects. This approach proved particularly suitable for
naturalistic fMRI experiments. Lastly, the fourth and last goal of this work
is to introduce an additional regularization term, the nuclear norm, into the
multivariate PFM formulation. This term was employed to estimate global
fluctuations during the deconvolution process and mitigate their impact on the
estimation of neuronal-related activity, thereby reducing bias.

The techniques presented in this thesis were thoroughly evaluated using
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simulations and experimental fMRI datasets. Comparisons were made with
established fMRI analysis methods, including the single-trial general linear
model, previous PFM algorithms, and other state-of-the-art techniques. Notably,
the developed methods demonstrated the ability to accurately detect single trial
BOLD responses in resting-state and naturalistic fMRI data, without relying on
prior event information. Additionally, the potential application of multi-subject
PFM in identifying both shared and individualized neuronal-related activity in
more ecological datasets was explored, yielding promising results. Moreover,
the utilization of low-rank and sparse PFM facilitated the extraction of global
fluctuations, such as the global signal, physiological fluctuations, and motion
artifacts, thereby reducing their influence on the analysis. In summary, this
work demonstrates that PFM techniques can be used to reliably retrieve the
neuronal-related activity from fMRI data without any prior information about
the experimental paradigm, and that there now exists a formulation of PFM
that is suitable for potentially any experimental setting and research question.

This thesis is available as an interactive website at phd.enekourunuela.com.
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Normalean, erresonantzia magnetiko funtzionalarekin (fMRI) neurtutako
garunaren aktibitatearen estimazioa modelo lineal orokorren (GLM) bidez
egiten da. Kasu honetan ikerlariek estimuluaren denbora-egituraren informazioa
badutenez, estimuluaren ondoriozko erantzun hemodinamikoa modelatu eta
datuei egokitu dezakete. GLM-a erro karratu txikieko erregresio bidez ebatz
daiteke zarata independiente eta identikoki banatutako (i.i.d.) Gaussiarra dela
suposatuz. Hala, esperimentuarekin lotutako aktibitate neuronalaren estimazioa
modelatutako erantzunaren eta neurtutako seinalearen arteko diferentzia erro
karratuen batura minimizatuz lortzen da. Maiz, erregresoreen kopurua datu
kopurua baino askoz txikiagoa da, eta, beraz, GLM-a problema ebatz daiteke
erregularizaziorik eta suposiziorik egin gabe. Kontuan izan behar da, GLM-
ak estimuluaren denbora-puntuetan besterik ez duela aktibitate neuronalaren
estimaziorik egiten, eta, beraz, ez duela BOLD erantzun osoaren dinamikarik
kalkulatzen.

Hala ere, GLM-a ezin da kasu guztietan erabili. Adibidez, atseden egoerako
esperimentuetan erabiltzea ezinezkoa da, ez baitago estimulurik, eta, beraz,
erantzun hemodinamikoaren modeloa egiteko denbora egiturarik ere ez. Teknika
honen interesa nabarmen handitu da azken hamarkadan, eta horrek datuetan
oinarritzen diren metodo berrien garapena ekarri du atseden egoeran, hau da,
parte-hartzaileak eskanerrean etzanda eta ezer egiterik gabe egon behar duen
egoeran.

Adibidez, konektibitate funtzionala (FC) garunaren area ezberdinen arteko
korrelazioa neurtzen duen teknika da, eta eskala handiko garun-sareak baita
azpiegiturak ikertzeko erabiltzen da. FCak pertsonak identifikatzeko ere balio
du, non pertsona bakoitzaren ezaugarriei "hatz-aztarna" deitzen zaien. Hatz-
aztarna hauek kognizioarekin, pertsonalitatearekin, adinarekin eta gaixotasun
fenotipoekin lotuta daudela ikusi da. Konektibitate funtzional dinamikoak
(dFC) konektibitatea denborarekin nola aldatzen den aztertzen du, mugitzen
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den leiho bat eta taldekatze teknikak erabiliz. Fase sinkroniak (PS) ere denbora
puntu bakoitzean garunaren area ezberdinen arteko sinkronia neurtzen du.
Koaktibazio patroiak (CAP) garunaren alde ezberdinetan puntu bakoitzean
egon daitezken seinalearen puntu maximo edo minimoak aztertzen ditu. CAP-
an oinarritutako analisia innobazio koaktibazio patroien (iCAP) analisira ere
luzatu da, dekonboluzioaren bidez garunaren aktibitatea eta funtzio ezberdinen
azpiegiturak aztertzeko. Antzeko ideak jarraituz, "edge-centric" teknikak
konektibitate funtzionalaren matrizea denbora-puntutan deskonposatzen du
"edge functional connectivity" konektibitate funtzionala (eFC) neurtzeko.
Hau da, eFC-ak garunaren area ezberdinek arteko ko-fluktuazioak neurtzen
ditu. Patroi ia-periodikoek (QPP) ere garunaren aktibitatearen fluktuazio
globalak neurtzen dituzte eta garun-sareetan aktibazio eta desaktibazio egoerak
aztertzeko erabili daitezke. Azkenik, dekonboluzio teknikak gai dira erantzun
hemodinamikoak lausotutako seinale garbitu eta gertaera neuronal aztertzeko
erabili daitezke, gertaera hauek noiz eta non gertatzen den jakin gabe.

Tesi honen helburua fMRI datuetan hemodinamikaren dekonboluzioa
egiteko metodo berriak garatu eta aplikatzea da, atseden egoeran, paradigma
naturalistikoetan eta kasu klinikoetan erabiltzeko duten balioa azpimarratuz.
Hortarako, hemodinamikaren dekonboluzioaren teoria aurkezten du tesiaren
lehen atalak, analisi eta sintesi formulazioetan oinarritutako metodoak aztertuz.
Atal honetan Paradigm Free Mapping eta Total Activation metodoak aurkeztu
eta praktikan berdinak diren aztertzen da. Gero, hemodinamikaren dekonboluzio
metodoen funtzionamendu egokiarentzako hain garraintzitsua den erregularizazio
parametroaren aukeraketa errezten duen estabilitate-selekzio metodoa aurkeztu
eta aplikatzen du hurrengo atalak. Ondoren, Paradigm Free Mapping metodoaren
aldagai bakarreko formulazioa garun osora luzaten du 4. kapituluak aldagai
multipleko formulazio berria aurkeztuz. Estabilitate-selekzio metodoa ere
aplikatzen du atal honek. 5. kapituluak hainbat pertsonaren garunak batera
aztertzeko Paradigm Free Mappingen aldagai multipleko formulazioa erabiltzen
du. Formulazio hau film bera ikusi duten pertsonen garunen aktibitatearen
estimazioa egiteko erabiltzen da eta estimazioaren emaitzak filmaren edukiekin
lotzen ditu atal honek. Azkenik, 6. kapituluak hemodinamikaren dekonboluzio
metodo berri bat aurkezten du, low-rank eta sparse deskomposizio algoritmo
baten bidez. Metodo hau mugimenduak edo prozesu fisiologikoak eragindako
seinale globala estimatzeko gai da, eta, ondorioz, jatorri neuronaleko gertaera
hemodinamikoen estimazio garbiagoa egiten du.

�� ���������� ��������������� ��� ��������������
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Erantzun hemodinamikoaren dekonboluzioa pauso garrantzitsua da fMRI-rekin
neurtutako garunaren aktibitatearen denbora eskala laburrekin lan egiteko. Nahiz
eta denkonboluzio algoritmo konbentzionalak aspalditik egon diren (adibidez
Wiener dekonboluzioa), eskasia bilatzen duten erregularizazioa erabiltzen duten
metodo berriak fMRIarekin garunaren dinamika eta konexioak aztertzeko
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interes handia sortzen ari dira. Kapitulu honetan bi metodoren oinarrizko
kontzeptuak aztertzen dira, Paradigm Free Mapping eta Total Activation,
modu ulergarrienan. Formulazioan ageri diren ezberdintasun guztien arren,
bi metodoak teorian berdinak dira, izan ere, problema beraren sintesi eta analisi
aldeak dira. Kapituluak bi metodoen berdintasun praktikoa erakusten du,
simulazioen (seinale-zarata ratio ezberdinekin) eta atseden eta motore fMRI
esperimentuen bidez. Emaitza berdinak ematen dituzten parametroak ebaluatzen
ditu, eta metodo hauen potentziala beste metodo konbentzional batzuekin
alderatzen du. Kapitulu hau metodo hauen erabiltzaileentzat erabilgarria da,
bereziki dekonboluzio hemodinamikoa egiteko metodo berriak ulertzeko interesa
dutenentzat, eta metodo hauen arteko ezberdintasunei buruzko galderak erantzun
nahi ditu.

�� ���������� ��������������� ������ �������� ���� �������

Aktibitate neuronala fMRI datuetatik kalkulatu daiteke odolaren oxigenazio
mailaren (BOLD) aldaketak noiz gertatzen diren jakin gabe, karratu txikieneko
erregresio erregularizatua erabiltzen duten dekonboluzio metodoen bidez. Lan
honek Sparse Paradigm Free Mapping (SPFM) dekonboluzio algoritmoarentzat
bi hobekuntza proposatzen ditu: aktibitate neuronal luzea duten gertaerak
detektatzeko formulazio berria; eta parametro erregularizatzaileak aukeratzeko
beharra kentzen duen estabilitate-selekzio metodoa. Proposatutako metodoa
fMRI datuetan ebaluatu da, eta SPFM algoritmo originalarekin eta modelo lineal
orokorrarekin (GLM) konparatu da, azken hau aktibitate neuronalaren denbora
modeloaren ezaguna izanda. Erakusten da estabilitate-selekzio metodoa erabiliz
lortutako emaitzek GLM analisiarekin antza gehiago dutela eta SPFM algoritmo
originalarekin konparatuta, aktibitate neuronalaren detekzioa nabarmenki
hobetzen duela, bereziki kontraste-zarata ratio txikiko egoeretan.

�� ���������� ����������� ������������ ������������� ���
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Normalean, fMRI datuen analisiak paradigma esperimentalaren informazioa
erabiltzen du garunaren aktibitatearen hipotesi-mudeloak ezartzeko. Hala ere,
informazio hau okerra, osatu gabea edo eskuraezina izan daiteke hainbat ka-
sutan, adibidez, atseden egoeretan, paradigma naturalistikoetan, edota bald-
intza klinikoetan. Kasu hauetan, aktibitate neuronalaren estimazioa paradigma
gabeko analisi metodoen bidez lortu daiteke, adibidez hemodinamikaren dekon-
boluzioaren bidez. Halere, egungo hemodinamikaren dekonboluzioaren formu-
lazioek hiru arazo edo muga garrantzitsu dituzte: 1) beraien eraginkortasuna
erregularizazio parametroaren aukeraketa egokian oinarritzen da, 2) aldagai
bakarrekoa izanik, garun osoan dagoen informazioa ez du kontuan hartzen,
eta 3) ez dute gertaera neuronal bakoitza detektatzearen ziurtasun estatis-
tikorik ematen. Hemen, arazo edo muga hauei konponbide bat proposatzen
zaie. Zehazki, kapitulu honek MvME-SPFM (multivariate multi-echo sparse
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Paradigm Free Mapping) algoritmoa proposatzen du, garun osoa kontuan hartzen
duen eta norma misto baten bidez informazio espaziala gehitzen duen hemod-
inamikaren dekonboluzio metodo berri bat. Gainera, MvME-SPFM-ek erreg-
ularizazio parametroak aukeratzeko beharra kentzen duen estabilitate-selekzio
metodoa erabiltzen du, eta, halaber, aktibitate neuronalaren probabilitatea esti-
matzen du voxel eta denbora-puntu bakoitzean, estabilitate bideen kurba azpiko
azala (AUC) kalkulatuz. Formulazio hau multi-echo fMRI datuentzako egokitua
dago, eta horrek baliabide gehiago eskaintzen ditu echo-time (TE) denbora-
puntuekin linealki lotutako fluktuazioak aztertuz BOLD jatorriko fluktuazioak
isolatzeko; eta aktibitate neuronalaren estimazioak unitate fisiologikoki interpre-
tagarriak izateko (adibidez, ageriko errelaxazio transbersalaren aldaketekin ¢R

§
2 ).

Kapitulu honek MvME-SPFM algoritmoak beste hemodinamikaren dekonboluzio
metodoek baino emaitza hobeak lortzen dituela erakusten du, eta, halaber, GLM
analisi linealaren emaitzekin duen espazio- eta denbora-koherentzia handiagoa
erakusten du, baita gertaera neuronal bakoitzaren denbora-puntu bakoitzean ere.
Ondorioz, proposatutako MvME-SPFM algoritmoak aktibitate neuronalaren
estimazio fidagarriagoa eskaintzen du, ¢R

§
2 unitateetan, BOLD gertaerak noiz

gertatzen diren jakin gabe garunaren dinamikak aztertzeko. Algoritmo hau
publikoki eskuragarri dago splora Python paketearen barruan hurrengo web
gunean: https://github.com/ParadigmFreeMapping/splora

�� ���������� ������������� �������� ���� �������

fMRI bidezko paradigma naturalistikoak (esaterako, filma ikustea) are eta gehi-
ago erabiltzen ari dira kognizio neurozientzian, ekologikoagoak diren baldintzetan
kognizioa, adibidez, gertaera segmentazioa eta memoriaren eraketa, aztertzeko.
Baina, egungo analisi metodoak mugatuta daude eta ez dira aktibitate neu-
ronalaren dinamika espazio-tenporal zehatzak ondo aztertzeko gai. Adibidez,
GLM analisi tradizionalak eta encoding modeloak BOLD aktibitate mapak
kalkulatzeko gai dira estimuluaren ezaugarriak ezagututa, baina estimuluaren
zer ezaugarri diren garrantzitsu eta hauek modu zehatz batean modelatzeko
suposizio handiak egin behar dituzte. Bestalde, modelorik gabeko metodoek,
adibidez, pertsonen arteko korrelazioak eta gertaera segmentazio algoritmoek,
ez dute estimuluaren ezaugarririk suposatzen, baina informazioa estimuluaren
zenbait denbora-puntutan konbinatzea eskatzen dute, eta, ondorioz, ez dira
berreskuratutako seinalea estimuluaren denbora-puntu zehatzetara lotzeko gai.
Defektu hauei aurre egiteko, kapitulu honetan metodo berri bat proposatzen da:
multi-subject Paradigm Free Mapping (msPFM). Proposatutako metodoak, exis-
titzen diren beste metodoek ez bezela, talde eta banakako aktibitate neuronalaren
estimazioa egiten du erresoluzio espazial eta tenporal zehatzenean. msPFM algo-
ritmoak hainbat aldagaieko karratu txikieko erregresio erregularizatua erabiltzen
du estimuluaren denbora-egituran oinarritu gabe aktibitate neuronalaren esti-
mazioa egiteko. Kapitulu honek, algoritmo honen eraginkortasuna simulazio eta
esperimentazio fMRI datuetan ebaluatu, eta, ondorioz, estimuluaren behe eta
erdi mailako ezaugarriekin lotutako aktibitate neuronala detektatzeko gai dela
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erakusten du. Gainera, metodoak garunaren azalean gradiente formako konfigu-
razio espazio-tenporala aurkitzen du, literaturan aurkeztu diren emaitzekin bat
eginez. Laburki, msPFM-ek fMRI paradigma naturalistikoetan aurki daitezken
garunaren aktibitatearen dinamika espazio-tenporal konplexuak aztertzeko tresna
ahaltsua eskaintzen du. msPFM algoritmoaren Python kode irekia eskuragarri
dago hurrengo estekan: https://github.com/ParadigmFreeMapping/msPFM.

�� ���������� ������ ��� �������� �������� ���� �������

Mugimenduak edo prozesu fisiologikoek (esaterako, arnasketa sakonak) eragin-
dako garun osoko seinale aldaketek egungo dekonboluzio algoritmoen eraginkorta-
suna murrizten dute, eta, ondorioz, jatorri neuronaleko gertaera hemodinamikoak
ezin dira ondo interpretatu. Kapitulu honek garunaren seinale globala eta ak-
tibitate neuronala batera estimatzeko metodo berri bat proposatzen du, BOLD
gertaerak noiz gertatzen diren jakin gabe, low-rank eta sparse deskomposizio
algoritmo baten bidez. Proposatutako metodoaren eraginkortasuna simulazio
eta esperimentazio fMRI datuetan ebaluatu, eta metodo berriaren emaitzak
egungo metodo konbentzional baten emaitzekin alderatu ditu lan honek, azken
metodo honek aktibitate neuronala noiz gertatzen den jakinik. Emaitza hauek
erakusten dutenez, proposatutako low-rank eta sparse Paradigm Free Mapping
algoritmoa esperimentuarekin lotutako mugimendua azaltzen duen seinale glob-
ala estimatzeko gai da, eta, aldi berean, aktibitate neuronala zehaztasun handiz
estimatzen du.
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For over a century, neuroscientists and neurophysiologists have dedicated their
efforts to uncovering the functional organization of the brain. Through the use
of various functional neuroimaging techniques with complementary temporal
and spatial resolutions, they aim to reveal the neuro-anatomical localization and
dynamic changes of brain activations.

While non-invasive electrophysiological techniques such as electroencephalog-
raphy (EEG) or magnetoencephalography (MEG) excel in temporal resolution
(10-100 ms), their spatial resolution is relatively poor (several mm or cm) (Baillet
et al., 2001; Hämäläinen et al., 1993). In contrast, invasive electrophysiological
techniques, including patch clamps (Neher et al., 1978), single-unit or multi-unit
recordings (Arieli et al., 1995), and electrocorticography (ECoG) (Miller et al.,
2007; Nir et al., 2008), offer high spatial resolution.

Functional magnetic resonance imaging (fMRI) and Positron Emission
Tomography (PET) provide insight into cerebral blood flow and oxygen
metabolism, indirectly associated with neural activations. With spatial
resolutions in the order of millimeters, these techniques are capable of capturing
activations in both cortical and deep brain structures, but their temporal
resolution is limited by the sluggish dynamics of hemodynamic changes (Dale &
Halgren, 2001). fMRI offers higher temporal and spatial resolution compared
to PET, making it more suitable for studying the temporal responses to short
neuronal-related events. However, PET has the advantage of measuring well-
defined physiological quantities such as cerebral blood flow (CBF), cerebral blood
volume (CBV), or cerebral metabolic rate of oxygen or CMRO2 (Fox et al., 1986;
Friston et al., 1993).

Functional MR spectroscopy (MRS) is an alternative method for metabolic
imaging, offering quantitative measurements of functional changes in neu-
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rometabolite and neurotransmitter concentrations within a specific brain region.
However, it is important to note that MRS has lower spatial and temporal
resolutions compared to fMRI (Morris, 1999). Typically, MRS is performed in
a single voxel with an isotropic size of a few centimeters, or in multiple voxels
using chemical shift imaging.

Lastly, optical diffusion imaging techniques, such as near infrared spectroscopy
(NIRS) (Kleinschmidt et al., 1996; Villringer et al., 1993), diffusion optical
tomography (DOT) (White & Culver, 2010), or event-related optical signaling
(EROS) (Gratton & Fabiani, 2001; Gratton et al., 1997), utilize an optical
imaging device placed on the scalp to measure changes in cortical blood flow.
However, due to the need for the light to penetrate through the skull, these
techniques have lower spatial resolution compared to MR imaging techniques
and are limited to studying the cortical surface. The temporal resolution of
EROS is similar to MEG and EEG (in the order of milliseconds), while NIRS has
a ten times higher temporal resolution to fMRI.A notable advantage of optical
imaging is its lower cost and portability compared to other techniques such as
MRI or MEG.

��� ����� ������ ����� ��������� ���������� ���

In order to fully comprehend the assumptions and methods presented in this
thesis, it is essential to review some basic concepts related to the physical and
physiological basis of the blood oxygen-level dependent (BOLD) effect. MRI
techniques offer a range of approaches to detect the increased metabolic demand
associated with brain function. These include utilizing the BOLD contrast,
changes in CBV using contrast agents such as gadolinium (Dean et al., 1992),
ferumoxytol (Christen et al., 2012) or hyperoxic contrasts (Bulte et al., 2007),
and assessing CBF through arterial spin labeling techniques (ASL) (Buxton,
2009). BOLD fMRI, introduced by Ogawa et al., 1990, 1992, is particularly
advantageous as it requires no exogenous contrast agent and exhibits higher
sensitivity compared to CBF-based contrast, such as ASL. Consequently, it has
gained widespread usage for functional brain imaging.

����� ������������� ����� �� ��� ���� ���������

The signal contrast in BOLD fMRI images arises from variations in the local
magnetic susceptibility, ¬, caused by disparities in blood hemoglobin oxygen
concentration. As local neuronal activity intensifies, there is a rise in oxygen
consumption, leading to an augmented supply of oxygenated blood that diffuses
passively through the capillary blood vessels to the tissue. When oxygen binds to
hemoglobin (forming oxyhemoglobin), it exhibits slight diamagnetic properties
relative to the tissue, causing the molecule to repel the magnetic field. In contrast,
deoxygenated hemoglobin is paramagnetic compared to the tissue, attracting
the magnetic field. Consequently, the magnetic field becomes distorted near
deoxygenated red blood cells, creating higher local magnetic field gradients in
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the surrounding tissue, which results in spin dephasing. Reduced oxygenation
amplifies the spin dephasing effect, shortening the tissue’s T

§
2 and diminishing the

amplitude of the MR signal in T
§
2 -weighted images. Conversely, higher oxygen

concentration aligns the susceptibility of the blood with that of the surrounding
tissue, reducing the local magnetic field gradient, increasing T

§
2 , and raising

the measured MR signal amplitude by a few percent. This forms the basis of
BOLD fMRI, where changes in blood oxygenation serve as an intrinsic contrast
mechanism in T

§
2 -weighted images, enabling the identification of cortical regions

exhibiting functional activity characterized by increased oxygen demand and
supply (Bandettini et al., 1992; Belliveau et al., 1991; Kwong et al., 1992; Ogawa
et al., 1990, 1992; Turner et al., 1991).

����� �������� ��������������� �� ��� ���� ������� ��� �����������
�������� ��������

The BOLD effect does not directly reflect neuronal activity, but rather measures
the hemodynamic response associated with it (Logothetis, 2008; Logothetis
et al., 2001). The relationship between the hemodynamic response and the
underlying neuronal activity is complex involving dynamic changes in CBF, CBV
and C MRO2 (Buxton, 2009). After neuronal activity increases in a brain region,
there is an initial decrease in blood oxygenation due to oxygen consumption
which might cause a small initial dip in the hemodynamic response following
the first second after the activation (Ernst & Hennig, 1994; Menon et al., 1995).
Although this initial dip is not always observed in fMRI (Behzadi & Liu, 2006;
Buxton, 2009; Hu et al., 1997), it is suggested that it maps more accurately
the site of neural activity (Duong et al., 2000; Malonek & Grinvald, 1996).
Afterwards, the local supply of oxyhemoglobin increases more than it is strictly
demanded, probably to ensure a large oxygen gradient across capillary walls so
that there is a high rate of transfer of oxygen or glucose to tissue (Logothetis,
2008), generating a positive BOLD response due to an excess of oxyhemoglobin.
Negative BOLD responses have also been observed associated with neuronal
deactivations (Shmuel et al., 2006). Regardless of the polarity of the response,
the BOLD response peaks between 5 and 8 s after the activation starts and its
amplitude depends on the type of stimulus and the magnetic field strength. For
instance, for visual stimulation the signal change is 2-3 % at 1.5T, 4-6 % at 3T,
7-10 % at 7T (van der Zwaag et al., 2009). After the stimulus ceases, there is
a return of the BOLD response to baseline, often followed by a post-stimulus
undershoot due to an increase of deoxyhemoglobin which may last for several
seconds until the response returns to baseline. The cause of the post-stimulus
undershoot is also not completely understood, whether this is a vascular, neural
or metabolic effect (Buxton, 2009; Chen & Pike, 2009). In summary, the time
scale of the BOLD response is much slower than the time scale of neural activity
and the return of the BOLD signal to baseline level after a short stimulus may
occur more than 30 s from the stimulus onset. The temporal characteristics of
the BOLD response are usually modelled by a hemodynamic response function
(HRF). Figure 1.1 shows the shape of typical HRF, along with the initial dip
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Figure 1.1: Temporal characterization of the haemodynamic response function.
The shape in bold line corresponds to the canonical haemodynamic response
function.

for illustration of this effect. In this figure, the HRF plotted is the well-known
canonical HRF (Friston, 2007; Friston et al., 1998), which is defined as the
difference of two-gamma functions:

h(t ) = g (t ; a1,b1)° 1
c

g (t ; a2,b2), (1.1)

where the Gamma function is given by

g (t ; a,b) = b
a

t
a°1

e
°bt

°(a)
. (1.2)

The canonical HRF, as described in literature (Friston, 2007), is characterized
by specific parameters. These parameters include a time-to-peak (a/b) of 6 s
and dispersion (a/b

2) of 1 s for the initial overshoot. Additionally, it has a
time-to-peak of 16 s and dispersion of 1 s for the undershoot. The overshoot-
undershoot ratio (c) is approximately 6. However, it is important to note that
the BOLD response exhibits variability across trials, brain regions, and subjects
(Aguirre, Zarahn, & D’Esposito, 1998b; Duann et al., 2002; Handwerker et
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al., 2004; McGonigle et al., 2000; Smith et al., 2005). To account for this
variability, alternative HRF shapes have been proposed in the scientific literature.
These include single gamma functions (Boynton et al., 1996; Cohen, 1997),
two-gamma functions with different HRF parameters (Glover, 1999), Poisson
functions (Friston, Jezzard, & Turner, 1994). and Gaussian functions (Kruggel
& von Cramon, 1999; Rajapakse et al., 1998).

��� ����� �� ���� ����

In addition to neuronal-related activity, the BOLD signal presents multiple
sources of noise related to hardware-related artifacts and drifts, head motion,
confounding physiological fluctuations (Bianciardi et al., 2009; Jorge et al., 2013)
as well as image distortions related to data acquisition that should be accounted
for and corrected during fMRI data preprocessing.

����� ������ ��� ����� ���������

For instance, the images could present geometric distortions in the phase direction
of the acquisition that can be removed by means of mapping field distorsions,
either using field maps or using two images acquired in opposite phase-encoding
directions, and then with a non-linear transformation of the fMRI volumes (e.g.
TOPUP, Andersson et al., 2003; Glasser et al., 2018). Also, fMRI images are
typically acquired slice by slice and the difference in their time of acquisition
can be compensated via slice timing correction, although this step can also
introduce confounding effects in the data due to signal interpolation (Parker &
Razlighi, 2019). More generally, realigning all fMRI volume to a reference image
can deal with part of the artifacts introduced by head motion (Friston, Holmes,
et al., 1994). However, this step does not remove the effect of motion completely
(Caballero-Gaudes & Reynolds, 2017).

The most straight-forward way to deal with signal artifacts is to model them
as regressors of non-interest along with the task regressors (in tIA-fMRI) or to
project them out of the fMRI data if there is no task paradigm, as in resting-state
(RS) experiments. For instance, motion-related effects can be expressed as a set
of the relative translations and rotation obtained during realignment, considering
their first derivative and their squared transformation for up to 24 regressors for
a better denoising (Friston, Holmes, et al., 1994). Similarly, very low frequency
trends due to hardware-related inestabilities can be modelled as a set of basis
functions (e.g. using Legendre polynomials, Discrete Cosine Transform).

Furthermore, large deviations in the fMRI signal (e.g., spikes) caused
by motion jerks and scanner noise can be removed through scrubbing or
censoring (Power et al., 2012). This process consists in identifying those fMRI
volumes characterized by abrupt changes in the BOLD signal and removing
or interpolating them. The identification can be performed by using summary
metrics of motion, like Framewise Displacement (Power et al., 2012), or by
observing transient changes in the signal (DVARS, Power et al., 2012; Smyser
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et al., 2010). However, it is important to notice that, if correctly accounted for,
scrubbing could reduce the degrees of freedom in statistical analysis (Mascali
et al., 2021), leading to biases in second-level analysis between subjects that
move too much and others, or introduce discontinuity in the signal itself, limiting
the use of particular analyses dependent on signal continuity (e.g. ICA, see
Caballero-Gaudes and Reynolds, 2017), and biasing the estimation of functional
connectivity (Mascali et al., 2021). Moreover, interpolating the signal could
introduce spurious changes in the signal.

Another common approach to remove not only motion, but also other sources
of noise, is based on data decomposition techniques. For instance, ICA can
be leveraged to model, identify and remove motion artifacts as well as other
sources of noise (Griffanti2014ICAbasedartifact; Behzadi et al., 2007; Muschelli
et al., 2014; Pruim, Mennes, Buitelaar, & Beckmann, 2015; Pruim, Mennes,
van Rooij, et al., 2015; Salimi-Khorshidi et al., 2014). Ideally, the best candidate
to identify noisy timeseries would be temporal ICA, i.e., a decomposition in
which the independence is forced in the temporal domain (Glasser et al., 2018;
Smith et al., 2012). However, such approach is not feasible in a normal fMRI
context since it would require the samples in time to be much higher than the
samples in space (Smith et al., 2012). Hence, spatial ICA is the most common
application for fMRI decomposition, although this might lead to detect spurious
components that contain both true BOLD signal and noise (Caballero-Gaudes
& Reynolds, 2017). Alternatively, several fMRI sessions could be concatenated
to apply temporal ICA, although this approach would lead to the impossibility
of removing session-specific noise. The challenging factor in adopting ICA for
denoising is the classification of the independent components. Although manual
classification is still the approach with the best outcome (Griffanti et al., 2017),
it is time consuming, it requires trained researchers, and the result is dependent
on the observer. For this reason, different approaches for automatic classification
of ICA components have been proposed in time, from full classifiers (FIX, Salimi-
Khorshidi et al., 2014) to approaches specifically targeting motion artifacts
(ICA-AROMA, Pruim, Mennes, Buitelaar, and Beckmann, 2015; Pruim, Mennes,
van Rooij, et al., 2015).

Alternatively, decomposing the signal of white matter (WM) and cerebrospinal
fluid (CSF) into principal components and considering the first few (a technique
called anatomical CompCor, see Behzadi et al., 2007) can help retrieving proxies
of motion-related artifacts and physiological fluctuations (Behzadi et al., 2007;
Muschelli et al., 2014). In fact, it has been shown that CompCor can be more
effective in denoising motion artifacts than ICA based techniques and censoring
(Mascali et al., 2021).

Noise in fMRI can also be reduced by using multi-echo (ME) acquisitions that
sample the data at multiple successive echo times (TE). A weighted combination
of the multiple echoes based on each voxel’s T

§
2 value (Posse et al., 1999) or

temporal signal-to-noise ratio (Poser et al., 2006) can smear out random noise
and enhance the sensitivity to the BOLD contrast. In fact, compared with
single-echo data, this optimal combination (Liu et al., 2022) can improve the
mapping of neuronal activity at 3T (Fernandez et al., 2017) and 7T (Puckett
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et al., 2018), with results comparable to other preprocessing techniques requiring
extra data such as RETROICOR (Atwi et al., 2018). Optimal combination of
multiple echo volumes can also improve sensitivity, specificity, repeatability and
reliability of fMRI mapping (Cohen & Wang, 2019; Cohen et al., 2021).

Furthermore, assuming a monoexponential decay, the voxelwise fMRI signal
acquired at a given echo time TE, i.e. S(T E), can be expressed in signal percentage
change as:

S(T E)°S(T E)

S(T E)
º¢Ω°TE ·¢R

§
2 +n, (1.3)

where S(T E) is the average signal at a given TE, ¢Ω represents non-BOLD related
changes in the net magnetisation, ¢R

§
2 represents BOLD-related susceptibility

changes (and is the inverse of ¢T
§
2 ), and n denotes random noise (Kundu et al.,

2012, 2013). As the BOLD-related signal can be expressed as a function of the
TE, whereas noise-related (i.e., non-BOLD) changes in the net magnetization are
independent of TE, the information available in multiple echoes can be leveraged
for the purpose of denoising. For example, in a dual-echo acquisition where the
first TE is suficiently short, the first echo signal mainly captures changes in ¢Ω
rather than in ¢R

§
2 . It is then possible to remove artifactual effects, through

voxelwise regression, from the second echo signal acquired at a longer TE with
appropriate BOLD contrast (Bright & Murphy, 2013).

Collecting more echoes opens up the possibility to leverage ICA and
automatically classifying independent components into BOLD-related (i.e.,
describing ¢R

§
2 fluctuations with a linear TE-dependency) or noise (i.e.,

independent of TE, related to non-BOLD fluctuations in the net magnetization
¢Ω), an approach known as ME independent component analysis (ME-ICA,
Kundu et al., 2012, 2013, 2017). Compared to single-echo data denoising,
ME-ICA can improve the mapping of task-induced activation (DuPre et al.,
2021; Gonzalez-Castillo et al., 2016; Lombardo et al., 2016), for example in
challenging paradigms with slow-varying stimuli (Evans et al., 2015) or language
mapping and laterality (Amemiya et al., 2018). It also outperforms single-echo
ICA-based denoising of resting-state fMRI data (Dipasquale et al., 2017; Lynch
et al., 2020), and provide more effcient and reliable functional connectivity
mapping in individual subjects (Lynch et al., 2020) and in brain regions where
traditional single-echo acquisitions offer reduced signal-to-noise ratio, such as
the basal forebrain (Markello et al., 2018). Finally, ME-ICA also enhances the
deconvolution of neuronal-related signal changes (Caballero-Gaudes et al., 2019).

����� ������������� ���������

When employing BOLD fMRI as an intrinsic contrast to investigate neural
correlates, it becomes essential to decouple the neurovascular coupling. In this
context, physiological signals may introduce noise, requiring their modeling
to account for and minimize their associated variance during preprocessing or
data analyses (Caballero-Gaudes & Reynolds, 2017; Liu, 2016). The principal
frequencies characterising physiological signals like cardiac pulse and respiration

�



�� ���������� �������� ��������� ������� ��� ����� ������ ����� ���������
������

are in a different band compared to those of the neural-related BOLD signal:
namely, the primary component of cardiac related fluctuations are around 1 Hz,
while the respiratory related ones are around 0.3 Hz. Thus, if the temporal
sampling is high enough, a simple band-pass filter could easily remove their
confounding effects (Biswal et al., 1995; Chuang & Chen, 2001; Lowe et al.,
1998). The downside is that this approach will remove the BOLD-related signal
frequencies in the same range as well, and it will not remove the impact of
physiological frequencies in the same range as the BOLD signal (Caballero-
Gaudes & Reynolds, 2017). This is especially true if the temporal sampling is
low and the physiological signal is aliased in the BOLD-related frequency range.
Moreover, physiological signal, and respiration in particular, has an impact on
other sources of noise, like magnetic field perturbation (Raj et al., 2001), and
motion (Fair et al., 2020; Pais-Roldán et al., 2018; Power et al., 2019) that
should be taken into account and removed (Gratton et al., 2020).

An easy way to remove such perturbations is to remove the average brain
signal (also called global signal), since it is often considered as a proxy of the
combined impact of different sources of noise, especially related to movement
or physiological in nature. However, its removal is controversial, since it can
heavily alter the interpretation of BOLD fMRI (Power et al., 2017). For this
reason, Power et al., 2018 proposed to decompose fMRI data in low and high
rank components, and to consider the first few low rank components timeseries
as noise. This technique, called GODEC, showed improved denoising of fMRI
data after ME-ICA (Power et al., 2018; Zhou & Tao, 2011).

As an alternative, the average signal in the white matter (WM) and
cerebrospinal fluid (CSF) can be used as a proxy of physiological noise, since no
neural-related signal is present in these tissues, that are conversely dominated
by cardiac pulsatility and respiration (Anderson et al., 2011; Jo et al., 2010),
although more recently Attarpour et al., 2021 showed that the average CSF does
not represent cardiac fluctuations properly. Specifically, ICA based decomposition
can be set up to retrieve physiological-related signals, both in space (CORSICA,
Perlbarg et al., 2007) and in time (PESTICA, Beall and Lowe, 2007).

An alternative to data-driven approaches consists in acquiring physiological
signals such as cardiac pulse and respiration effort during the imaging session,
opening up the possibility to adopt more model-based approaches to deal with
physiological noise. For instance, it is possible to estimate the frequencies of the
amplitude envelope of cardiac and respiratory signals, and then selectively filter
them from fMRI data (Biswal et al., 1996). However, the main frequency and
the harmonics of physiological fluctuations are usually aliased with the spectra of
BOLD components with neurobiological relevance, and bandpass filtering would
remove them as well.

Alternatively, it is possible to use the measured cardiac and respiratory
signals to model their pseudo-periodic fluctuation that are phase-locked to the
fMRI signal. Cardiac and respiratory phases can be estimated from signal
recordings, then their Fourier expansion can be removed from the data in a
slice-dependent manner at the beginning of the preprocessing, an approach
known as RETROICOR, Glover et al., 2000. However, RETROICOR does not
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remove completely the effect of physiological signal from the data, especially
regional low frequency effects that vary between brain regions (Birn et al., 2006;
Chang et al., 2009; Shmueli et al., 2007).

Noticeably, slow variations in the heart rate (HR, Shmueli et al., 2007)
and the respiration volume per time (RVT, Birn et al., 2006) have been ap-
plied successfully to denoise BOLD signal from physiological fluctuations after
RETROICOR, especially when convolved with a modelled response function,
cardiac (Chang et al., 2009) or respiratory (Birn et al., 2008). Various alter-
natives to RVT to improve breathing-related denoising have been proposed,
either to simplify their calculation, that is normally based on the peak detection
in the respiratory signal, or to improve the detection of particular changes
in the respiratory signal. For instance, Chang and Glover, 2009 proposed to
simply use the standard deviation of the respiratory signal, thus avoiding peak
detection. Power et al., 2018 suggested to compute the standard deviation of
the respiratory envelope in small windows to be more susceptible to breath-
ing changesI think this is not the proper reference by Power for this method.
More recently, Harrison et al., 2021 showed that applying an Hilbert transform
to compute RVT improves the characterisations of breathing rhythms and the
detection of deep breaths. Although the regions impacted by slow variations
in cardiac rate and breathing patterns frequently overlap (Chang et al., 2009;
Kassinopoulos & Mitsis, 2019), HR and RVT regressor can be used together for
better performance (Chang et al., 2009).

Another physiological confound related to RVT consists in spontaneous
changes in arterial CO2, called poikilocapnia, which act as a vasoactive process.
These fluctuations have been corroborated with Transcranial Doppler ultrasound
(TCD) and induce low frequency fluctuations in the BOLD signal. If they are
not accounted for, they can induce a bias in the signal estimation in up to a fifth
of the cortex (Wise et al., 2004). The pattern of biases induced by poikilocapnia
has been found comparable to that of RVT (Chang & Glover, 2009), although
accounting for the latter is not suffcient to explain all the variability induced
by the former (Golestani et al., 2015). However, the fact that BOLD signal is
susceptible to CO2 fluctuations can be conversely seen as an advantage, and
used to image cerebral physiology (Moia et al., 2021; Pinto et al., 2021; Zvolanek
et al., 2023).
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Conventionally, the analysis of task fMRI data consists of solving a generalized
liner model (GLM) analysis. Since researchers have access to the timings of the
stimuli, it is possible to model the expected BOLD response to the stimuli and
then fit the model to the data. For instance, the onsets of the expected neuronal
activity for a given condition can be modeled as an indicator function p(t ) (e.g.,
Dirac functions for event-related designs, or box-car functions for block-designs)
convolved with the HRF h(t ), sampled at the resolution of the TR (Boynton
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et al., 1996; Cohen, 1997; Friston et al., 1998, 2008):

x(t ) = p £h(t ) ! x [k] = p £h(k ·TR). (1.4)

Hence, the vector x = [x [k]]k=1,...,N 2RN represents the regressor that models
the hypothetical BOLD response for an experimental condition. Then, different
regressors either modeling conditions of interest or signals of non interest
(e.g., noise-related signals) can be added as the columns of the design matrix
X = [x1, . . . ,xL] 2 RN£L, where L is the number of regressors, which leads to the
well-known GLM equation:

y = XØ+≤, (1.5)

where the voxel timecourse y 2RN is explained by a linear combination of the
regressors in X, weighted by the regression coefficients Ø 2RL, and the residual
error or noise ≤ 2RN . The GLM can be solved using ordinary least squares (OLS)
under the assumption that the noise is independent and identically distributed
(i.i.d.) Gaussian. Hence, the estimates of neuronal activity corresponding to the
task conditions are obtained minimizing the residual sum of squares between
the fitted model and the measured voxel timecourse. Usually, the number of
regressors is much smaller than the number of samples, and thus the GLM is
an overdetermined problem. In this case, the solution can be obtained without
the need for additional constraints or assumptions (Henson & Friston, 2007).
It is important to note that the GLM only provides estimates of the neuronal
activity associated with the timings of the modelled stimuli.

����� ������������� ����

Conversely, fMRI data analysis in unconstrained conditions such as when subjects
lying still in the scanner without performing any specific task, i.e. in resting-
state, poses a challenge for the application of GLM-based approaches due to the
absence of an experimental paradigm that can be used to model the expected
BOLD response. Given the increasing popularity of resting-state fMRI in the
past decade, various data-driven approaches have emerged to address the analysis
of this type of data.

Seed correlation analysis is widely recognized as the predominant approach
for examining resting-state fMRI data due to its frequent utilization in the
computation of functional connectivity (FC) patterns. It involves measuring the
pairwise Pearson correlation between the timecourse of different voxels or regions
of the brain, presenting the brain’s interregional connections or edges in the form
of a FC matrix. Each edge in the matrix represents the strength or intensity of
the functional connectivity between two regions. In fact, FC has been extensively
utilized to investigate the arrangement of large-scale brain networks (Margulies
et al., 2016; Salvador et al., 2005; Yeo et al., 2011), as well as to partition smaller
brain structures like the thalamus and striatum (Martino et al., 2008; Tian et al.,
2020; Yuan et al., 2015). Notably, FC exhibits subject-specific variations to
such an extent that it can serve as a means of individual identification within a
diverse population. Numerous studies have demonstrated the presence of distinct
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and reliable subject-specific features, commonly referred to as "fingerprints,"
within the FC matrix (Amico & Goñi, 2018; Finn et al., 2015, 2017; Horien
et al., 2019; Jalbrzikowski et al., 2020; Jo et al., 2021; Miranda-Dominguez
et al., 2014; Peña-Gómez et al., 2017; Vanderwal et al., 2017; Waller et al.,
2017). In fact, these fingerprints have been associated with predictive insights
into cognition (Cole et al., 2012; Fong et al., 2019; Rosenberg et al., 2015, 2020;
Sripada et al., 2019; Yamashita et al., 2018), personality traits (Adelstein et al.,
2011; Dubois et al., 2018; Hsu et al., 2018; Nostro et al., 2018), age (Cabral
et al., 2017; Dosenbach et al., 2010; Liem et al., 2017; Nielsen et al., 2018), and
disease phenotype (Emerson et al., 2017; Lake et al., 2019; Lynall et al., 2010;
Plitt et al., 2015; Svaldi et al., 2021).

Functional connectivity patterns offer a valuable insight into the connectivity
among brain regions over a timecourse of data. However, they only provide
a single snapshot and do not capture how this connectivity evolves over time,
thereby neglecting the dynamics of functional connectivity. (Allen et al., 2012;
Di & Biswal, 2020; Hutchison et al., 2013). Dynamic functional connectivity
(dFC) in resting-state is commonly investigated using sliding-window approaches
(Allen et al., 2012; Hutchison et al., 2013; Lurie et al., 2020; Preti et al., 2017).
A sliding-window FC analysis yields a series of time-varying matrices, which
are often effectively condensed into a few distinct brain states using clustering
techniques (Hutchison et al., 2013). In particular, it has been shown that dFC
correlates with underlying neural activity (Keilholz, 2014; Tagliazucchi et al.,
2012; Thompson et al., 2013) and behavior (Liégeois et al., 2019). Furthermore,
studies have demonstrated that dynamic connectivity fluctuations exhibit lower
variability between regions within the same functional networks, while showing
higher variability between regions from different networks (Fu et al., 2017).
This pattern results in an overall negative correlation with stationary functional
connectivity (Thompson & Fransson, 2015; Zhang et al., 2018). However,
due to the unconstrained nature of resting-state fMRI, it becomes challenging
to ascertain the functional significance of the obtained dynamic connectivity
estimates versus their potential derivation from noise (Lindquist et al., 2014).
Recently, researchers have also explored dynamic connectivity in the context
of participants exposed to complex stimuli, such as movie clips (Di & Biswal,
2020). The utilization of movie stimuli offers the advantage of comparing the
time course of dynamic connectivity across participants. If there is a high degree
of inter-individual similarity (Hasson et al., 2004; Nastase et al., 2019), it may
suggest that the observed dynamics of brain patterns is functionally meaningful
and relevant to stimulus processing.

In addition, ongoing developments in the field of dFC methods allow for
their operation within individual timeframes. One such method is the use
of instantaneous phase synchrony (PS), which provides a reliable measure of
connectivity with maximal temporal resolution, comparable to correlation-based
methods. Comparing these patterns over time can be achieved by calculating
the percentage of time points that exhibit significant phase synchronization
throughout the entire scanning duration (Glerean et al., 2012). Alternatively,
the leading eigenvectors can be studied for this purpose (Cabral et al., 2017).
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Another approach involves employing wavelet transform coherence to explore
nonstationary changes in the coupling between fMRI time series. This method
calculates coherence and phase lag between two time series as a function of both
time and frequency. The selected time series could be either seed timecourses
(Chang & Glover, 2010) or timecourses of an ICA (Yaesoubi et al., 2015). Similar
to the sliding window approach, temporal dynamics can be identified through
the application of clustering algorithms (e.g. k-means) (Cabral et al., 2017;
Yaesoubi et al., 2015).

Another alternative method for analyzing single timeframe resting-state
fMRI data involves investigating co-activation patterns (CAP) (Chen, Chang,
et al., 2015; Liu et al., 2013, 2018; Tagliazucchi et al., 2012). Unlike the phase
synchrony approach, CAP analyses focus on identifying simultaneous occurrences
of BOLD signal peaks or troughs in different brain regions, disregarding the
phase of the signal, assuming that the relationship between the BOLD signal
and neural activity is attributed to these brief, transient and sparse co-activation
events (Zhang et al., 2020). Typically, CAP analyses employs k-means clustering
to group the identified events into distinct CAPs, enabling the identification
of temporal dynamics that can potentially be compared to other time-varying
resting-state methods such as sliding-window correlation in dFC and PS. Still, the
basic approach in CAPs uses the fMRI signal as its input, which is thus subject
to the temporal blurring of the hemodynamic response. This phenomenon could
lead to the simultaneous co-activation of multiple regions, despite their distinct
initial onsets, potentially indicating their association with different components
(Rangaprakash et al., 2018). In other words, due to temporal variations in the the
hemodynamic response, the BOLD signals of several brain regions might exhibit
simultaneous peaks despite the fact that their underlying neuronal activity might
have different timings.

To address this potential ambiguity, these neuronal-related events can also
be identified by means of hemodynamic deconvolution approaches that remove
the blurring effect of the hemodynamic response from the time series (Gaudes
et al., 2013; Karahanoğlu et al., 2013; Petridou et al., 2013). Hemodynamic
deconvolution is commonly used in investigating psychophysiologic interactions
(PPI) within task-based functional connectivity studies (Gerchen et al., 2014;
Gitelman et al., 2003) as well as in resting-state fMRI (Di & Biswal, 2015).
Recent deconvolution techniques, in contrast to classical PPI analysis, employ
sparsity-promoting estimators that assume the dynamics of spontaneous brain
activity can be characterized by sparse BOLD events (Gaudes et al., 2013;
Karahanoğlu et al., 2013; Petridou et al., 2013; Uruñuela et al., 2023). These
approaches are akin to methods using point process analysis to examine sparse
BOLD events (Tagliazucchi et al., 2012), and will be the focus of this thesis as
introduced in the next section.

Mixing the ideas of hemodynamic deconvolution and co-activation patterns,
Karahanoğlu and Van De Ville, 2015 proposed a new approach named innovation-
driven co-activation patterns (iCAPs) that is based in transients (i.e. innovations)
of the fMRI signal, rather than its peaks. This technique employs the
hemodynamic deconvolution algorithm of Total Activation (Karahanoğlu et
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al., 2013) to estimate the underlying neural activity prior to applying the
CAP analysis, and therefore encode information about transient changes in the
signals originating the BOLD timecourses. Evidence from the study conducted
by Karahanoğlu and Van De Ville, 2015 using the framework revealed that
well-known resting-state networks, including the default mode network, can be
subdivided into multiple subsystems with distinct temporal dynamics. This
suggests the existence of functionally diverse subnetworks within these networks.
Furthermore, by backprojecting iCAPs to deconvolved fMRI volumes, it becomes
possible to reconstruct iCAP time courses and assess temporal overlaps between
different patterns (Zoller et al., 2019). Notably, it has been observed that, on
average, 3 to 4 iCAPs overlap in time, and the associated brain activity persists
for 5-10 seconds. This finding may explain the necessity of using a window length
of at least 20 seconds to obtain reliable inferences when employing a sliding
window approach (Karahanoğlu & Van De Ville, 2015; Preti et al., 2017).

Another way to investigate functional connectivity is by identifying quasi-
periodic patterns (QPP) of connectivity, which typically persist for approximately
20 seconds in humans. A repeated-template-averaging algorithm can be employed
to detect these patterns in spatiotemporal segments (Majeed et al., 2011). This
approach involves iteratively computing sliding window correlations and averaging
similar segments of BOLD timepoints until convergence is achieved. As a result, a
spatiotemporal averaged template of BOLD dynamics is obtained. Interestingly,
these templates often reveal patterns that reflect global signal fluctuations,
representing the average time course of the BOLD signal across the entire brain
(Bolt et al., 2022; Yousefi et al., 2018). Furthermore, these QPPs have been
found to correlate with local infraslow neural activity (Thompson et al., 2014).
The predominant QPP typically exhibits a sequence characterized by a transition
from strong activation of the default mode network (DMN) and deactivation of
sensory and attention networks to the opposite state, with DMN deactivation
and activation of sensory and attention networks (Abbas et al., 2019; Yousefi &
Keilholz, 2021).

Finally, notice that when the FC strengh between two timecourses (i.e. the
edges of the FC matrix) is measured as the pairwise Pearson’s correlation, this
can be exactly defined in terms of its frame-wise contributions. Therefore,
instead of detecting significant instances of FC change from voxel timecourses,
these can be identified when multiple timecourses exhibit extreme signal changes
simultaneously (i.e. co-activation) (Esfahlani et al., 2020; Faskowitz et al.,
2020). These edge-centric FC (eFC) approach has recently gained notable
popularity in brain imaging and neuroscience, showing that eFC offers large
replicability, stability within individuals across multiple scanning sessions, and
reliability across datasets (Faskowitz et al., 2020). Moreover, clustering the
eFC has revealed overlapping brain communities that hold promise for studying
cognition and behavior beyond the limitations of traditional disjoint brain
parcellations. However, the main findings of the edge-centric analyses can be
derived from a node-centric FC perspective nFC (i.e., the commonly-used FC
matrix) under a static null hypothesis that disregards temporal correlations
(Novelli & Razi, 2022). Consequently, the findings obtained with eFC-based
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methods can be also applied to nFC-based approaches, such as (i)CAPs or
hemodynamic deconvolution, providing a similar set of volumes with large
co-activations are used for subsequent analyses.
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The aim of this thesis is to develop novel methods for the hemodynamic
deconvolution of fMRI data and apply them in resting-state, naturalistic
paradigms, and clinical-based studies.

In Chapter 2 the theoretical background of hemodynamic deconvolution is
presented with a focus on the two different mathematical formulations, i.e.,
analysis and synthesis, and the associated algorithms: Total Activation and
Paradigm Free Mapping. This chapter will aim to compare the two methods
(that work at the individual voxel level), assess whether they are equivalent, and
how they compare with co-activation pattern analysis.

Chapter 3 addresses the challenge of determining adequate regularization
parameters for hemodynamic deconvolution. The method of stability selection is
proposed as a solution to circumvent the need for manual parameter selection.
Furthermore, a novel metric based on the area of the stability path is introduced
that quantifies the likelihood of a neuronal-related event occurring at a specific
voxel and timepoint.

Chapter 4 presents an extension of the hemodynamic deconvolution problem
to a multivariate formulation, which enables the identification of neuronal-related
events that are shared across multiple voxels. The method is presented and
applied to single-echo and multi-echo fMRI data, employs the stability selection
method introduced in Chapter 3 for parameter selection, and is validated with a
comparison with a generalized linear model as the ground truth. Furthermore, the
performance of this novel multivariate method is compared with its univariate
counterpart, as well as with another semi-blind multivariate deconvolution
technique that has been proposed in the literature, named Hemolearn.

Building upon this multivariate formulation, Chapter 5 introduces a novel
method for the simultaneous identification of the neuronal-related events in
multiple subjects. The technique is presented as a new tool that allows for the
analysis of naturalistic fMRI data at the finest spatial and temporal resolution,
unlike other methods that have been proposed in the literature so far. The method
is validated in simulated and real data, and its performance is corroborated by
correlating the identified neuronal-related events with different features of the
movies the subjects watched during the fMRI acquisition.

A novel method, presented in Chapter 6, introduces a paradigm free mapping
approach that effectively identifies and decouples global fluctuations in the BOLD
signal during the deconvolution process. Compensating for these global events
during data preprocessing is challenging, and they can be mistakenly interpreted
as neuronally related due to their temporal signature closely resembling the
assumed HRF in the deconvolution model. Hence, this decoupling is crucial
for optimizing deconvolution approaches, as the estimation accuracy can be
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significantly compromised by widespread signal changes caused by head jerks,
hardware artifacts, or non-neuronal physiological events (e.g., deep breaths).The
method is validated in simulated and real data, and its performance is compared
with a GLM analysis as the ground truth.

Finally, Chapter 7 summarizes the main findings of this thesis and outlines
future directions for research.
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Part of the work described in this thesis has been published in peer-reviewed
journals and presented in conferences. The following list summarizes the main
contributions of this thesis:
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This chapter was published as Uruñuela, E., Bolton, T. A., Van De Ville, D.,
& Caballero-Gaudes, C. (2023). Hemodynamic deconvolution demystified:
Sparsity-driven regularization at work. Aperture Neuro, vol. 3, 1–25. DOI:
https://doi.org/10.52294/001c.87574.

Deconvolution of the hemodynamic response is an important step to access short
timescales of brain activity recorded by functional magnetic resonance imaging
(fMRI). Albeit conventional deconvolution algorithms have been around for a
long time (e.g., Wiener deconvolution), recent state-of-the-art methods based on
sparsity-pursuing regularization are attracting increasing interest to investigate
brain dynamics and connectivity with fMRI. This chapter describes the
principles of hemodynamic deconvolution in fMRI, and revisits the main concepts
underlying two main sparsity-promoting deconvolution algorithms, Paradigm
Free Mapping and Total Activation, in an accessible manner. Despite their
apparent differences in the formulation, these methods are shown theoretically
equivalent as they represent the synthesis and analysis sides of the same problem,
respectively. This chapter demonstrates this equivalence in practice with their
best-available implementations using both simulations, with different signal-to-
noise ratios, and experimental fMRI data acquired during a motor task and
resting-state. The chapter also evaluates the parameter settings that lead to
equivalent results, and showcases the operation of these algorithms in comparison
with co-activation pattern analysis. This note is useful for practitioners interested
in gaining a better understanding of state-of-the-art hemodynamic deconvolution,
and aims to answer questions regarding the differences between the two methods.
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Functional magnetic resonance imaging (fMRI) data analysis is often directed to
identify and disentangle the neural processes that occur in different brain regions
during task or at rest. As the blood oxygenation level-dependent (BOLD) signal
of fMRI (Ogawa et al., 1990) is only a proxy for neuronal activity mediated
through neurovascular coupling (Logothetis et al., 2001), an intermediate step
that estimates the activity-inducing signal, at the timescale of fMRI, from the
BOLD timeseries can be useful. Conventional analysis of task fMRI data relies
on the general linear models (GLM) to establish statistical parametric maps of
brain activity by regression of the empirical timecourses against hypothetical
ones built from the knowledge of the experimental paradigm (Boynton et al.,
1996; Cohen, 1997; Friston et al., 1998, 2008). However, timing information of
the paradigm can be unknown, inaccurate, or insufficient in some scenarios such
as naturalistic stimuli, resting-state, or clinically-relevant assessments.

Deconvolution and methods alike are aiming to estimate neuronal activity
by undoing the blurring effect of the hemodynamic response, characterized as a
hemodynamic response function (HRF)1. Given the inherently ill-posed nature
of hemodynamic deconvolution, due to the sluggish characteristics of the HRF,
the key is to introduce additional constraints in the estimation problem that are
typically expressed as regularization terms. For instance, the so-called Wiener
deconvolution is expressing a “minimal energy” constraint on the deconvolved
signal, and has been used in the framework of psychophysiological interaction
analysis to compute the interaction between a seed’s activity-inducing timecourse
and an experimental modulation (Di & Biswal, 2018; Freitas et al., 2020; Gerchen
et al., 2014; Gitelman et al., 2003; Glover, 1999). Complementarily, the interest
in deconvolution has increased to explore time-varying activity in resting-state
fMRI data (Bolton, Morgenroth, et al., 2020; Keilholz et al., 2017; Lurie et al.,
2020; Preti et al., 2017). In that case, the aim is to gain better insights of the
neural signals that drive functional connectivity at short time scales, as well
as learning about the spatio-temporal structure of functional components that
dynamically construct resting-state networks and their interactions (Karahanoğlu
& Van De Ville, 2017).

Deconvolution of the resting-state fMRI signal has illustrated the significance
of transient, sparse spontaneous events (Allan et al., 2015; Petridou et al., 2013)
that refine the hierarchical clusterization of functional networks (Karahanoğlu
et al., 2013) and reveal their temporal overlap based on their signal innovations
not only in the human brain (Karahanoğlu & Van De Ville, 2015), but also in the
spinal cord (Kinany et al., 2020). Similar to task-related studies, deconvolution
allows to investigate modulatory interactions within and between resting-state
functional networks (Di & Biswal, 2013, 2015). In addition, decoding of the
deconvolved spontaneous events allows to decipher the flow of spontaneous
thoughts and actions across different cognitive and sensory domains while at

1Note that the term deconvolution is also alternatively employed to refer to the estimation
of the hemodynamic response shape assuming a known activity-inducing signal or neuronal
activity (Casanova et al., 2008; Ciuciu et al., 2003; Goutte et al., 2000; Marrelec et al., 2002).

��



������������

rest (Gonzalez-Castillo et al., 2019; Karahanoğlu & Van De Ville, 2015; Tan
et al., 2017). Beyond findings on healthy subjects, deconvolution techniques have
also proven its utility in clinical conditions to characterize functional alterations
of patients with a progressive stage of multiple sclerosis at rest (Bommarito
et al., 2021), to find functional signatures of prodromal psychotic symptoms and
anxiety at rest on patients suffering from schizophrenia (Zoeller et al., 2019), to
detect the foci of interictal events in epilepsy patients without an EEG recording
(Karahanoglu et al., 2013; Lopes et al., 2012), or to study functional dissociations
observed during non-rapid eye movement sleep that are associated with reduced
consolidation of information and impaired consciousness (Tarun et al., 2021).

The algorithms for hemodynamic deconvolution can be classified based on
the assumed hemodynamic model and the optimization problem used to estimate
the neuronal-related signal. Most approaches assume a linear time-invariant
model for the hemodynamic response that is inverted by means of variational
(regularized) least squares estimators (Caballero-Gaudes et al., 2019; Cherkaoui
et al., 2019; Costantini et al., 2022; Gaudes et al., 2012; Gaudes et al., 2010,
2013; Gitelman et al., 2003; Glover, 1999; Hernandez-Garcia & Ulfarsson, 2011;
Hütel et al., 2021; Karahanoğlu et al., 2013), logistic functions (Bush & Cisler,
2013; Bush, Zhou, et al., 2015; Loula et al., 2018), probabilistic mixture models
(Pidnebesna et al., 2019), convolutional autoencoders (Hütel et al., 2018) or
nonparametric homomorphic filtering (Sreenivasan et al., 2015). Alternatively,
several methods have also been proposed to invert non-linear models of the
neuronal and hemodynamic coupling (Aslan et al., 2016; Friston et al., 2008;
Havlicek et al., 2011; Madi & Karameh, 2017; Penny et al., 2005; Riera et al.,
2004; Ruiz-Euler et al., 2018).

Among the variety of approaches, those based on regularized least squares
estimators have been employed more often due to their appropriate performance
at small spatial scales (e.g., voxelwise). Relevant for this work, two different
formulations can be established for the regularized least-squares deconvolution
problem, either based on a synthesis- or analysis-based model (Elad et al., 2007;
Ortelli & van de Geer, 2019). On the one hand, Paradigm Free Mapping is based
on a synthesis formulation that is solved by means of regularized least-squares
estimators such as ridge-regression (Gaudes et al., 2010) or LASSO (Gaudes
et al., 2013). The rationale of the synthesis-based model is that we know or
suspect that the true signal (here, the neuronally-driven BOLD component
of the fMRI signal) can be represented as a linear combination of predefined
patterns or dictionary atoms (for instance, the hemodynamic response function).
On the other hand, Total Activation is based on a analysis formulation that is
solved with a regularized least-squares estimator using generalized total variation
(Karahanoglu et al., 2011; Karahanoğlu et al., 2013). The rationale of the
analysis-based approach considers that the true signal is analyzed by some
relevant hemodynamic operator (Khalidov et al., 2011) and the resulting signal
is sparse in time.

The users of these algorithms have often questioned about the similarities
and differences between the two methods and which one is better. To clarify this
point, this chapter initially presents the theory behind these two deconvolution
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approaches: Paradigm Free Mapping (PFM) (Gaudes et al., 2013) — available
in AFNI as 3dPFM2 and 3dMEPFM3 for single-echo and multi-echo data,
respectively — and Total Activation (TA) (Karahanoğlu et al., 2013) — available
as part of the iCAPs toolbox4. The chapter describes the similarities and
differences in their analytical formulations, and how they can be related to each
other. Next, their performance is assessed controlling for a fair comparison on
simulated and experimental data. Finally, the chapter discusses their benefits
and shortcomings and conclude with our vision on potential extensions and
developments.
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Matrices of size N rows and M columns are denoted by boldface capital letters,
e.g., X 2 RN£M , whereas column vectors of length N are denoted as boldface
lowercase letters, e.g., x 2RN . Scalars are denoted by lowercase letters, e.g., k.
Continuous functions are denoted by brackets, e.g., h(t ), while discrete functions
are denoted by square brackets, e.g., x[k]. The Euclidean norm of a matrix X

is denoted as kXk2, the `1-norm is denoted by kXk1 and the Frobenius norm is
denoted by kXkF . The discrete integration (L) and difference (D) operators are
defined as:

L =

2
6664

1 0 . . .
1 1 0 . . .
1 1 1 0 . . .
...

. . . . . . . . . . . .

3
7775 , D =

2
666664

1 0 . . .
1 °1 0 . . .

0
. . . . . . . . . . . .

...
. . . 0 1 °1

3
777775

.

����� ������� ������ ����� ��������

A conventional general linear model (GLM) analysis puts forward a number of
regressors incorporating the knowledge about the paradigm or behavior. For
instance, the timing of epochs for a certain condition can be modeled as an
indicator function p(t ) (e.g., Dirac functions for event-related designs or box-car
functions for block-designs) convolved with the hemodynamic response function
(HRF) h(t ), and sampled at the repetition time (TR) resolution (Boynton et al.,
1996; Cohen, 1997; Friston, Jezzard, & Turner, 1994; Friston et al., 1998):

x(t ) = p §h(t ) ! x[k] = p §h(k ·TR).

The vector x = [x[k]]k=1,...,N 2 RN then constitutes the regressor modelling the
hypothetical response, and several of them can be stacked as columns of the

2https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dPFM.html
3https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dMEPFM.html
4https://c4science.ch/source/iCAPs/
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design matrix X = [x1 . . .xL] 2RN£L, leading to the well-known GLM formulation:

y = XØ+e, (2.1)

where the empirical timecourse y 2 RN is explained by a linear combination
of the regressors in X weighted by the parameters in Ø 2 RL and corrupted by
additive noise e 2RN . Under independent and identically distributed Gaussian
assumptions of the latter, the maximum likelihood estimate of the parameter
weights reverts to the ordinary least-squares estimator; i.e., minimizing the
residual sum of squares between the fitted model and measurements. The
number of regressors L is typically much less than the number of measurements
N , and thus the regression problem is over-determined and does not require
additional constraints or assumptions (Henson & Friston, 2007).

In the deconvolution approach, no prior knowledge of the hypothetical
response is taken into account, and the purpose is to estimate the deconvolved
activity-inducing signal s from the measurements y, which can be formulated as
the following signal model

y = Hs+e, (2.2)

where H 2 RN£N is a Toeplitz matrix that represents the discrete convolution
with the HRF, and s 2 RN is a length-N vector with the unknown activity-
inducing signal. Note that the temporal resolution of the activity-inducing signal
and the corresponding Toeplitz matrix is generally assumed to be equal to the
TR of the acquisition, but it could also be higher if an upsampled estimate
is desired. Despite the apparent similarity with the GLM equation, there are
two important differences. First, the multiplication with the design matrix
of the GLM is an expansion as a weighted linear combination of its columns,
while the multiplication with the HRF matrix represents a convolution operator.
Second, determining s is an ill-posed problem given the nature of the HRF. As
it can be seen intuitively, the convolution matrix H is highly collinear (i.e., its
columns are highly correlated) due to large overlap between shifted HRFs (see
Figure 2.2C), thus introducing uncertainty in the estimates of s when noise is
present. Consequently, additional assumptions under the form of regularization
terms (or priors) in the estimate are needed to reduce their variance. In the
least squares sense, the optimization problem to solve is given by

ŝ = argmin
s

1
2
ky°Hsk2

2 +≠(s). (2.3)

The first term quantifies data fitness, which can be justified as the log-likelihood
term derived from Gaussian noise assumptions, while the second term ≠(s)
brings in regularization and can be interpreted as a prior on the activity-inducing
signal. For example, the `2-norm of s (i.e., ≠(s) = ∏ksk2

2) is imposed for ridge
regression or Wiener deconvolution, which introduces a trade-off between the
data fit term and “energy” of the estimates that is controlled by the regularization
parameter ∏. Other well-known regularized terms are related to the elastic net
(i.e., ≠(x) =∏1kxk2

2 +∏2kxk1) (Zou & Hastie, 2005).
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In Paradigm Free Mapping (PFM), the formulation of Equation (2.3) was
considered equivalently as fitting the measurements using the atoms of the
HRF dictionary (i.e., columns of H) with corresponding weights (entries of
s). This model corresponds to a synthesis formulation. In Gaudes et al.,
2013 a sparsity-pursuing regularization term was introduced on s, which in
a strict way reverts to choosing ≠(s) = ∏ksk0 as the regularization term and
solving the optimization problem (Bruckstein et al., 2009). However, finding the
optimal solution to the problem demands an exhaustive search across all possible
combinations of the columns of H. Hence, a pragmatic solution is to solve
the convex-relaxed optimization problem for the l1-norm, commonly known as
Basis Pursuit Denoising (Chen et al., 2001) or equivalently as the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996):

ŝ = argmin
s

1
2
ky°Hsk2

2 +∏ksk1, (2.4)

which provides fast convergence to a global solution. Imposing sparsity on the
activity-inducing signal implies that it is assumed to be well represented by a
reduced subset of few non-zero coefficients at the fMRI timescale, which in turn
trigger event-related BOLD responses. Hereinafter, this assumption is referred
to as the spike model. However, even if PFM was developed as a spike model, its
formulation in Equation (2.4) can be extended to estimate the innovation signal,
i.e., the derivative of the activity-inducing signal, as shown in Section 2.2.5.
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Alternatively, deconvolution can be formulated as if the signal to be recovered
directly fits the measurements and at the same time satisfies some suitable
regularization, which leads to

x̂ = argmin
x

1
2
ky°xk2

2 +≠(x). (2.5)

Under this analysis formulation, total variation (TV), i.e., the `1-norm of the
derivative ≠(x) = ∏kDxk1, is a powerful regularizer since it favors recovery of
piecewise-constant signals (Chambolle, 2004). Going beyond, the approach of
generalized TV introduces an additional differential operator DH in the regularizer
that can be tailored as the inverse operator of a linear system (Karahanoglu et al.,
2011), that is, ≠(x) =∏kDDHxk1. In the context of hemodynamic deconvolution,
Total Activation is proposed for which the discrete operator DH is derived
from the inverse of the continuous-domain linearized Balloon-Windkessel model
(Buxton et al., 1998; Friston et al., 2000). The interested reader is referred to
(Karahanoglu et al., 2011; Karahanoğlu et al., 2013; Khalidov et al., 2011) for a
detailed description of this derivation.

Therefore, the solution of the Total Activation (TA) problem

x̂ = argmin
x

1
2
ky°xk2

2 +∏kDDHxk1 (2.6)
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will yield the activity-related signal x for which the activity-inducing signal
s = DHx and the so-called innovation signal u = Ds, i.e., the derivate of the
activity-inducing signal, will also be available, as they are required for the
regularization. Modeling the activity-inducing signal based on the innovation
signal is referred to as the block model. Nevertheless, even if TA was originally
developed as a block model, its formulation in Equation (2.6) can be made
equivalent to the spike model as shown in Section 2.2.5.

����� �������� ���� ������������

PFM and TA are based on the synthesis- and analysis-based formulation of the
deconvolution problem, respectively. They are also tailored for the spike and
block model, respectively. In the first case, the recovered deconvolved signal is
synthesized to be matched to the measurements, while in the second case, the
recovered signal is directly matched to the measurements but needs to satisfy its
analysis in terms of deconvolution. This also corresponds to using the forward or
backward model of the hemodynamic system, respectively. Hence, it is possible
to make both approaches equivalent (Elad et al., 2007)5.

To start with, TA can be made equivalent to PFM by adapting it for the
spike model; i.e., when removing the derivative operator D of the regularizer in
Equation (2.6), it can be readily verified that replacing in that case x = Hs leads
to identical equations and thus both assume a spike model, since H and DH will
cancel out each other (Karahanoglu et al., 2011)6.

Conversely, the PFM spike model can also accommodate the TA block model
by modifying Equation (2.4) with the forward model y = HLu+ e. Here, the
activity-inducing signal s is rewritten in terms of the innovation signal u as s = Lu

where the matrix L is the first-order integration operator (Cherkaoui et al., 2019;
Uruñuela et al., 2020). This way, PFM can estimate the innovation signal u as
follows:

û = argmin
u

1
2
ky°HLuk2

2 +∏kuk1, (2.7)

and becomes equivalent to TA by replacing u = DDHx, and thus adopting the
block model. Based on the previous equations (Equation (2.4)), (Equation (2.6))
and (Equation (2.7)), it is clear that both PFM and TA can operate under
the spike and block models, providing a convenient signal model according to
the different assumptions of the underlying neuronal-related signal. This work
evaluates the core of the two techniques; i.e., the regularized least-squares problem
with temporal regularization without considering the spatial regularization term
originally incorporated in TA. For the remainder of this paper, the PFM and
TA formalisms with both spike and block models are used.

5Without dwelling into technicalities, for total variation, this equivalence is correct up to
the constant, which is in the null space of the derivative operator.

6Again, this holds up to elements of the null space.
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Figure 2.1: Flowchart detailing the different steps of the fMRI signal and
the deconvolution methods described. The orange arrows indicate the flow to
estimate the innovation signals, i.e., the derivative of the activity-inducing signal.
The blue box depicts the iterative modus operandi of the two algorithms used
in this paper to solve the paradigm free mapping (PFM) and Total Activation
(TA) deconvolution problems. The plot on the left shows the regularization path
obtained with the least angle regression (LARS) algorithm, where the x-axis
illustrates the different iterations of the algorithm, the y-axis represents points
in time, and the color describes the amplitude of the estimated signal. The
middle plot depicts the decreasing values of ∏ for each iteration of LARS as
the regularization path is computed. The green and red dashed lines in both
plots illustrate the Bayesian information criterion (BIC) and median absolute
deviation (MAD) solutions, respectively. Comparatively, the changes in ∏ when
the fast iterative shrinkage-thresholding algorithm (FISTA) method is made to
converge to the MAD estimate of the noise are shown on the right. Likewise, the
∏ corresponding to the BIC and MAD solutions are shown with dashed lines.
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Despite their apparent resemblance, the practical implementations of the PFM
and TA methods proposed different algorithms to solve the corresponding
optimization problem and select an adequate regularization parameter ∏ (Gaudes
et al., 2013; Karahanoğlu et al., 2013). The PFM implementation available in
AFNI employs the least angle regression (LARS) (Efron et al., 2004), whereas
the TA implementation uses the fast iterative shrinkage-thresholding algorithm
(FISTA) (Beck & Teboulle, 2009). The blue box in Figure 2.1 provides a
descriptive view of the iterative modus operandi of the two algorithms.

On the one hand, LARS is a homotopy approach that computes all the
possible solutions to the optimization problem and their corresponding value
of ∏; i.e., the regularization path, and the solution according to the Bayesian
Information Criterion (BIC) (Schwarz, 1978), was recommended as the most
appropriate in the case of PFM approaches since Akaike Information Criterion
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(AIC) often tends to overfit the signal (Caballero-Gaudes et al., 2019; Gaudes
et al., 2013).

On the other hand, FISTA is an extension of the classical gradient algorithm
that provides fast convergence for large-scale problems. In the case of FISTA
though, the regularization parameter ∏ must be selected prior to solving the
problem, but can be updated in every iteration so that the residuals of the data
fit converge to an estimated noise level of the data æ̂:

∏n+1 = N æ̂
1
2ky°xnk2

F

∏n , (2.8)

where x
n is the n

th iteration estimate, ∏n and ∏n+1 are the n
th and n + 1th

iteration values for the regularization parameter ∏, and N is the number of
points in the time-course. The pre-estimated noise level can be obtained as
the median absolute deviation (MAD) of the fine-scale wavelet coefficients
(Daubechies, order 3) of the fMRI timecourse. The MAD criterion has been
adopted in TA (Karahanoğlu et al., 2013). Of note, similar formulations based
on the MAD estimate have also been applied in PFM formulations (Gaudes
et al., 2012; Gaudes et al., 2011).
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In order to compare the two methods while controlling for their correct
performance, a simulation scenario was created, which can be found in the
GitHub repository shared in Section 2.6. For the sake of illustration, here the
simulations correspond to a timecourse with a duration of 400 seconds (TR = 2
s) where the activity-inducing signal includes 5 events, which are convolved with
the canonical HRF. Different noise sources (physiological, thermal, and motion-
related) were also added and three different scenarios with varying signal-to-noise
ratios (SNR = 20, 10, 3 dB) were simulated, which represent high, medium and
low contrast-to-noise ratios as shown in Figure 2.2A. Noise was created following
the procedure in (Gaudes et al., 2013) as the sum of uncorrelated Gaussian noise
and sinusoidal signals to simulate a realistic noise model with thermal noise,
cardiac and respiratory physiological fluctuations, respectively. The physiological
signals were generated as

2X

i=1

1

2i°1

°
sin

°
2º fr,i t +¡r,i

¢
+ sin

°
2º fc,i t +¡c,i

¢¢
, (2.9)

with up to second-order harmonics per cardiac ( fc,i ) and respiratory ( fr,i )
component that were randomly generated following normal distributions with
variance 0.04 and mean i fr and i fc , for i = [1,2]. The fundamental frequencies
were set to fr = 0.3 Hz for the respiratory component (Birn et al., 2006) and
fc = 1.1 Hz for the cardiac component (Shmueli et al., 2007). The phases of each
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A

B

C

Figure 2.2: A) Simulated signal with different SNRs (20 dB, 10 dB and 3 dB)
and ground truth given in signal percentage change (SPC). B) Canonical HRF
models typically used by PFM (solid line) and TA (dashed line) at TR = 0.5 s
(blue), TR = 1 s (green) and TR = 2 s (black). Without loss of generality, the
waveforms are scaled to unit amplitude for visualization. C) Representation of
shifted HRFs at TR = 2 s that build the design matrix for PFM when the HRF
model has been matched to that in TA. The red line corresponds to one of the
columns of the HRF matrix.

harmonic ¡ were randomly selected from a uniform distribution between 0 and
2º radians. To simulate physiological noise that is proportional to the change in
BOLD signal, a variable ratio between the physiological (æP ) and the thermal
(æ0) noise was modeled as æP /æ0 = a(tSN R)b + c, where a = 5.01£10°6, b = 2.81,
and c = 0.397, following the experimental measures available in Table 3 from
(Triantafyllou et al., 2005)).
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To compare the performance of the two approaches as well as illustrate their
operation, two representative experimental datasets were employed.

Motor task dataset: One healthy subject was scanned in a 3T MR scanner
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(Siemens) under a Basque Center on Cognition, Brain and Language Review
Board-approved protocol. T2*-weighted multi-echo fMRI data was acquired
with a simultaneous-multislice multi-echo gradient echo-planar imaging sequence,
kindly provided by the Center of Magnetic Resonance Research (University
of Minnesota, USA) (Feinberg et al., 2010; Moeller et al., 2010; Setsompop
et al., 2011), with the following parameters: 340 time frames, 52 slices,
Partial-Fourier = 6/8, voxel size = 2.4 £ 2.4 £ 3 mm3, TR = 1.5 s, TEs =
10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70o , multiband factor = 4,
GRAPPA = 2.

During the fMRI acquisition, the subject performed a motor task consisting
of five different movements (left-hand finger tapping, right-hand finger tapping,
moving the left toes, moving the right toes and moving the tongue) that were
visually cued through a mirror located on the head coil. These conditions
were randomly intermixed every 16 seconds, and were only repeated once the
entire set of stimuli were presented. Data preprocessing consisted of first,
discarding the first 10 volumes of the functional data to achieve a steady state
of magnetization. Then, image realignment to the skull-stripped single-band
reference image (SBRef) was computed on the first echo, and the estimated
rigid-body spatial transformation was applied to all other echoes (Jenkinson &
Smith, 2001; Jenkinson et al., 2012). A brain mask obtained from the SBRef
volume was applied to all the echoes and the different echo timeseries were
optimally combined (OC) voxelwise by weighting each timeseries contribution
by its T2* value (Posse et al., 1999). AFNI (Cox, 1996) was employed for
a detrending of up to 4th-order Legendre polynomials, within-brain spatial
smoothing (3 mm FWHM) and voxelwise signal normalization to percentage
change. Finally, distortion field correction was performed on the OC volume
with Topup (Andersson et al., 2003), using the pair of spin-echo EPI images
with reversed phase encoding acquired before the ME-EPI acquisition (Glasser
et al., 2016).

Resting-state datasets: One healthy subject was scanned in a 3T MR scanner
(Siemens) under a Basque Center on Cognition, Brain and Language Review
Board-approved protocol. Two runs of T2*-weighted fMRI data were acquired
during resting-state, each with 10 min duration, with 1) a standard gradient-echo
echo-planar imaging sequence (monoband) (TR = 2000 ms, TE = 29 ms, flip-
angle = 78o , matrix size = 64£64, voxel size = 3£3£3 mm3, 33 axial slices with
interleaved acquisition, slice gap = 0.6 mm) and 2) a simultaneous-multislice
gradient-echo echo-planar imaging sequence (multiband factor = 3, TR = 800 ms,
TE = 29 ms, flip-angle = 60o , matrix size = 64£64, voxel size = 3£3£3 mm3,
42 axial slices with interleaved acquisition, no slice gap). Single-band reference
images were also collected in both resting-state acquisitions for head motion
realignment. Field maps were also obtained to correct for field distortions.

During both acquisitions, participants were instructed to keep their eyes
open, fixating a white cross that they saw through a mirror located on the head
coil, and not to think about anything specific. The data was pre-processed using
AFNI (Cox, 1996). First, volumes corresponding to the initial 10 seconds were
removed to allow for a steady-state magnetization. Then, the voxel time-series
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were despiked to reduce large-amplitude deviations and slice-time corrected.
Inhomogeneities caused by magnetic susceptibility were corrected with FUGUE
(FSL) using the field map images (Jenkinson et al., 2012). Next, functional
images were realigned to a base volume (monoband: volume with the lowest
head motion; multiband: single-band reference image). Finally, a simultaneous
nuisance regression step was performed comprising up to 6th-order Legendre
polynomials, low-pass filtering with a cutoff frequency of 0.25 Hz (only on
multiband data to match the frequency content of the monoband), 6 realignment
parameters plus temporal derivatives, 5 principal components of white matter
(WM), 5 principal components of lateral ventricle voxels (anatomical CompCor)
(Behzadi et al., 2007) and 5 principal components of the brain’s edge voxels
(Patriat et al., 2015). WM, cerebrospinal fluid (CSF) and brain’s edge-voxel
masks were obtained from Freesurfer tissue and brain segmentations. In addition,
scans with potential artifacts were identified and censored when the euclidean
norm of the temporal derivative of the realignment parameters (ENORM) was
larger than 0.4, and the proportion of voxels adjusted in the despiking step
exceeded 10%.
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In their original formulations, PFM and TA specify the discrete-time HRF in
different ways. For PFM, the continuous-domain specification of the canonical
double-gamma HRF (Henson & Friston, 2007) is sampled at the TR and then
put as shifted impulse responses to build the matrix H. In the case of TA,
however, the continuous-domain linearized version of the balloon-windkessel
model is discretized to build the linear differential operator in DH. While the
TR only changes the resolution of the HRF shape for PFM, the impact of an
equivalent impulse response of the discretized differential operator at different
TR is more pronounced. As shown in Figure 2.2B, longer TR leads to equivalent
impulse responses of TA that are shifted in time, provoking a lack of the initial
baseline and rise of the response. The reader is referred to Figure A.1 to see the
differences in the estimation of the activity-inducing and innovation signals when
both methods use the HRF in their original formulation. To avoid differences
between PFM and TA based on their built-in HRF, the synthesis operator H

was built with shifted versions of the HRF given by the TA analysis operator
(e.g., see Figure 2.2C for the TR=2s case).
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The simulated data was used to compare the performance of the two deconvolution
algorithms with both BIC and MAD criteria to set the regularization parameter
∏ (see Section 2.2.6). Here, the evaluation also included investigating if the
algorithms behave differently in terms of the estimation of the activity-inducing
signal ŝ using the spike model described in Equation (2.4) and the block model
based on the innovation signal û in Equation (2.7).
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For selection based on the BIC, LARS was initally performed with the
PFM deconvolution model to obtain the solution for every possible ∏ in the
regularization path. Then, the values of ∏ corresponding to the BIC optimum
were adopted to solve the TA deconvolution model by means of FISTA.

For a selection based on the MAD estimate of the noise, the temporal
regularization in its original form for TA was applied, whereas for PFM the
selected ∏ corresponds to the solution whose residuals have the closest standard
deviation to the estimated noise level of the data æ̂.
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Difference between approaches: To assess the discrepancies between both
approaches when applied on experimental fMRI data, the square root of the
sum of squares of the differences (RSSD) between the activity-inducing signals
estimated with PFM and TA were calculated on the three experimental datasets
as

RSSD=

vuut 1
N

NX

k=1
(ŝPFM[k]° ŝTA[k])2, (2.10)

where N is the number of timepoints of the acquisition. The RSSD of the
innovation signals û was computed equally.

Task fMRI data: In the analysis of the motor task data, the performance of
PFM and TA was evaluated in comparison with a conventional General Linear
Model analysis (3dDeconvolve in AFNI) that takes advantage of the information
about the duration and onsets of the motor trials. Given the block design of the
motor task, this comparison is only made with the block model.

Resting-state fMRI data: The usefulness of deconvolution approaches in the
analysis of resting-state data where information about the timings of neuronal-
related BOLD activity cannot be predicted is also illustrated. Apart from being
able to explore individual maps of deconvolved activity (i.e., innovation signals,
activity-inducing signals, or hemodynamic signals) at the temporal resolution
of the acquisition (or deconvolution), here the average extreme points of the
activity-inducing and innovation maps (given that these examples do not have a
sufficient number of scans to perform a clustering step) is calculated to illustrate
how popular approaches like co-activation patterns (CAPs) (Liu et al., 2018;
Tagliazucchi et al., 2012) and innovation-driven co-activation patterns (iCAPs)
(Karahanoğlu & Van De Ville, 2015) can be applied on the deconvolved signals to
reveal patterns of coordinated brain activity. To achieve this, the average time-
series was calculated in a seed of 9 voxels located in the precuneus, supramarginal
gyrus, and occipital gyri independently, and solve the deconvolution problem
to find the activity-inducing and innovation signals in the seeds. Then, a 95th

percentile threshold was applied and the maps of the time-frames that survive
the threshold were averaged. Finally, the same procedure was applied to the
original— i.e., non-deconvolved— signal in the seed and compare the results
with the widely-used seed correlation approach.
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Figure 2.3A shows the regularization paths of PFM and TA side by side obtained
for the spike model of Equation (2.4) for SNR=3 dB. The solutions for all three
SNR conditions are shown in Figures A.2 and A.3. Starting from the maximum ∏
corresponding to a null estimate and for decreasing values of ∏, LARS computes
a new estimate at the value of ∏ that reduces the sparsity promoted by the
l1-norm and causes a change in the active set of non-zero coefficients of the
estimate (i.e., a zero coefficient becomes non-zero or vice versa) as shown in the
horizontal axis of the heatmaps. Vertical dashed lines depict the selection of the
regularization parameter based on the BIC, and thus, the colored coefficients
indicated by these depict the estimated activity-inducing signal ŝ. Figure 2.3B
illustrates the resulting estimates of the activity-inducing and activity-related
hemodynamic signals when basing the selection of ∏ on the BIC for SNR=3
dB. Given that the regularization paths of both approaches are identical, it
can be clearly observed that the BIC-based estimates are identical too for the
corresponding ∏. Thus, Figure 2.3A, Figure 2.3B, Figure A.2 and Figure A.3
demonstrate that, regardless of the simulated SNR condition, the spike model
of both deconvolution algorithms produces identical regularization paths when
the same HRF and regularization parameters are applied, and hence, identical
estimates of the activity-inducing signal ŝ and neuronal-related hemodynamic
signal x̂.

Likewise, Figure 2.3C demonstrates that the regularization paths for the
block model defined in Equations (2.6) and (2.7) also yield virtually identical
estimates of the innovation signals for both PFM and TA methods. Again, the
BIC-based selection of ∏ is identical for both PFM and TA. As illustrated in
Figure 2.3D, the estimates of the innovation signal u also show no distinguishable
differences between the algorithms. Figure 2.3A-D demonstrate that both PFM
and TA yield equivalent regularization paths and estimates of the innovation
signal and activity-inducing signal regardless of the simulated SNR condition
when applying the same HRF and regularization parameters with the block and
spike models.

As for selecting ∏ with the MAD criterion defined in Equation (2.8),
Figure 2.3E depicts the estimated activity-inducing and activity-related signals
for the simulated low-SNR setting using the spike model, while Figure 2.3F
shows the estimated signals corresponding to the block model. Both plots in
Figure 2.3E and F depict nearly identical results between PFM and TA with both
models. Given that the regularization paths of both techniques are identical,
minor dissimilarities are owing to the slight differences in the selection of ∏ due
to the quantization of the values returned by LARS.
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Figure 2.3: (A) Heatmap of the regularization paths of the activity-inducing
signals (spike model) estimated with PFM and TA as a function of ∏ for the
simulated data with SNR = 3 dB (x-axis: increasing number of iterations or ∏ as
given by LARS; y-axis: time; color: amplitude). Vertical lines denote iterations
corresponding to the BIC (dashed line) and MAD (dotted line) selection of ∏.
(B) Estimated activity-inducing (blue) and activity-related (green) signals with
a selection of ∏ based on the BIC. Orange and red lines depict the ground truth.
(C) Heatmap of the regularization paths of the innovation signals (block model)
estimated with PFM and TA as a function of ∏ for the simulated data with
SNR = 3 dB. (D) Estimated innovation (blue), activity-inducing (darker blue),
and activity-related (green) signals with a selection of ∏ based on the BIC. (E)
Activity-inducing and activity-related (fit, x) signals estimated with PFM (top)
and TA (bottom) when ∏ is selected based on the MAD method with the spike
model, and (F) with the block model for the simulated data with SNR = 3 dB.
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Figure 2.4 depicts the RSSD maps revealing differences between PFM and TA
estimates for the spike (Figure 2.4A and C) and block (Figure 2.4B and D)
models when applied to the three experimental fMRI datasets. The RSSD values
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are virtually negligible (i.e., depicted in yellow) in most of the within-brain
voxels and lower than the amplitude of the estimates of the activity-inducing
and innovation signals. Based on the maximum value of the range shown in
each image, it can be observed that the similarity between both approaches is
more evident for the spike model (with both selection criteria) and the block
model with the BIC selection. However, given the different approaches used for
the selection of the regularization parameter ∏ based on the MAD estimate of
the noise (i.e., converging so that the residuals of FISTA are equal to the MAD
estimate of the noise for TA vs. finding the LARS residual that is closest to the
MAD estimate of the noise), higher RSSD values can be observed with the largest
differences occurring in gray matter voxels. These areas also correspond to low
values of ∏ (see Figure A.4) and MAD estimates of the noise (see Figure A.5),
while the highest values are visible in regions with signal droupouts, ventricles,
and white matter. These differences that arise from the different approaches
to find the optimal regularization parameter based on the MAD estimate of
the noise can be clearly seen in the root sum of squares (RSS) of the estimates
(Figure A.6). These differences are also observable in the ATS calculated from
estimates obtained with the MAD selection as shown in Figure A.9. However,
the identical regularization paths shown in Figure A.7 demonstrate that both
methods perform equivalently on experimental data (see estimates of innovation
signal obtained with an identical selection of ∏ in Figure A.8). Hence, the
higher RSSD values originate from the different methods to find the optimal
regularization parameter based on the MAD estimate of the noise that yield
different solutions as shown by the dashed vertical lines in Figure A.7.

Figure 2.5 depicts the results of the analysis of the Motor dataset with the
PFM and TA algorithms using the BIC selection of ∏ (see Figure A.9 for results
with MAD selection), as well as a conventional GLM approach. The Activation
Time Series (top left), calculated as the sum of squares of all voxel amplitudes
(positive vs. negative) for a given moment in time, obtained with PFM and
TA show nearly identical patterns. These ATS help to summarize the four
dimensional information available in the results across the spatial domain and
identify instances of significant BOLD activity. The second to sixth rows show
the voxel timeseries and the corresponding activity-related, activity-inducing and
innovation signals obtained with PFM using the BIC criterion of representative
voxels in the regions activated in each of the motor tasks. The TA-estimated
time-series are not shown because they were virtually identical. The maps shown
on the right correspond to statistical parametric maps obtained with the GLM
for each motor condition (p < 0.001) as well as the maps of the PFM and TA
estimates at the onsets of individual motor events (indicated with arrows in the
timecourses). The estimated activity-related, activity-inducing and innovation
signals clearly reveal the activity patterns of each condition in the task, as they
exhibit a BOLD response locked to the onset and duration of the conditions.
Overall, activity maps of the innovation signal obtained with PFM and TA
highly resemble those obtained with a GLM for individual events, with small
differences arising from the distinct specificity of the GLM and deconvolution
analyses. Notice that the differences observed with the different approaches to
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Figure 2.4: Square root of the sum of squared differences (RSSD) between the
estimates obtained with PFM and TA for (A) spike model (activity-inducing
signal) and BIC selection of ∏, (B) block model (innovation signal) and BIC
selection, (C) spike model (activity-inducing signal) and MAD selection, (D)
block model (innovation signal) and MAD selection. RSSD maps are shown for
the three experimental fMRI datasets: the motor task (Motor), the monoband
resting-state (Mono), and the multiband resting-state (Multi) datasets.

select ∏ based on the MAD estimate shown in Figure 2.4 are reflected on the
ATS shown in Figure A.9 as well.

As an illustration of the insights that deconvolution methods can provide
in the analysis of resting-state data, Figure 2.6 depicts the average activity-
inducing and innovation maps of common resting-state networks obtained
from thresholding and averaging the activity-inducing and innovation signals,
respectively, estimated from the resting-state multiband data using PFM with a
selection of ∏ based on the BIC. The average activity-inducing maps obtained
via deconvolution show spatial patterns of the default mode network (DMN),
dorsal attention network (DAN), and visual network (VIS) that highly resemble
the maps obtained with conventional seed correlation analysis using Pearson’s
correlation, and the average maps of extreme points of the signal (i.e., with no
deconvolution). With deconvolution, the average activity-inducing maps seem
to depict more accurate spatial delineation (i.e., less smoothness) than those
obtained from the original data, while maintaining the structure of the networks.
The BIC-informed selection of ∏ yields spatial patterns of average activity-
inducing and innovation maps that are more sparse than those obtained with a
selection of ∏ based on the MAD estimate (see Figure A.10). Furthermore, the
spatial patterns of the average innovation maps based on the innovation signals

��



�� ��������������� ��� �������������� ����������� ������������� ��� ����

Figure 2.5: Activity maps of the motor task using a selection of ∏ based on the
BIC estimate. Row 1: Activation time-series (ATS) of the innovation signals
estimated by PFM (in blue) or TA (in red) calculated as the sum of squares of
all voxels at every timepoint. Positive-valued and negative-valued contributions
were separated into two distinct time-courses. Color-bands indicate the onset
and duration of each condition in the task (green: tongue motion, purple: left-
hand finger-tapping, blue: right-hand finger-tapping, red: left-foot toes motion,
orange: right-foot toes motion). Rows 2-6: time-series of a representative voxel
for each task with the PFM-estimated innovation (blue), PFM-estimated activity-
inducing (green), and activity-related (i.e., fitted, orange) signals, with their
corresponding GLM, PFM, and TA maps on the right (representative voxels
indicated with green arrows). Amplitudes are given in signal percentage change
(SPC). The maps shown on the right are sampled at the time-points labeled
with the red arrows and display the innovation signals at these moments across
the whole brain.

using the block model yield complementary information to those obtained with
the activity-inducing signal since iCAPs allow to reveal regions with synchronous
innovations, i.e., with the same upregulating and downregulating events. For
instance, it is interesting to observe that the structure of the visual network
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Figure 2.6: Average activity-inducing (left) and innovation (right) maps obtained
from PFM-estimated activity-inducing and innovation signals, respectively, using
a BIC-based selection of ∏. Time-points selected with a 95th percentile threshold
(horizontal lines) are shown over the average time-series (blue) in the seed
region (white cross) and the deconvolved signals, i.e., activity inducing (left) and
innovation (right) signals (orange). Average maps of extreme points and seed
correlation maps are illustrated in the center.

nearly disappears in its corresponding average innovation maps, suggesting the
existence of different temporal neuronal patterns across voxels in the primary
and secondary visual cortices.
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Hemodynamic deconvolution can be formulated using a synthesis- and analysis-
based approach as proposed by PFM and TA, respectively. This work
demonstrates that the theoretical equivalence of both approaches is confirmed
in practice given virtually identical results when the same HRF model and
equivalent regularization parameters are employed. Hence, it can be argued
that previously observed differences in performance can be explained by specific
settings, such as the HRF model and selection of the regularization parameter
(as shown in Figures 2.4, A.6 and A.7), convergence thresholds, as well as the
addition of a spatial regularization term in the spatiotemporal TA formulation
(Karahanoğlu et al., 2013). For instance, the use of PFM with the spike model
in Tan et al., 2017 was seen not to be adequate due to the prolonged trials in
the paradigm, which better fit the block model as described in Equation (2.7).
However, given the equivalence of the temporal deconvolution, incorporating
extra spatial or temporal regularization terms in the optimization problem
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should not modify this equivalence providing convex operators are employed.
For a convex optimization problem, with a unique global solution, iterative
shrinkage thresholding procedures alternating between the different regularization
terms guarantee convergence, such as the generalized forward-backward splitting
(Raguet et al., 2013) algorithm originally employed for TA.

Our findings are also in line with the equivalence of analysis and synthesis
methods in under-determined cases (N ∑V ) demonstrated in (Elad et al., 2007)
and (Ortelli & van de Geer, 2019). Still, this chapter has shown that a slight
difference in the selection of the regularization parameter can lead to small
differences in the estimated signals when employing the block model with the
BIC selection of ∏. However, since their regularization paths are equivalent,
the algorithms can easily be forced to converge to the same selection of ∏, thus
resulting in identical estimated signals.

Nevertheless, the different formulations of analysis and synthesis deconvolu-
tion models bring along different kinds of flexibility. One notable advantage of
PFM is that it can readily incorporate any HRF as part of the synthesis operator
(Elad et al., 2007), only requiring the sampled HRF at the desired temporal
resolution, which is typically equal to the TR of the acquisition. Conversely, TA
relies upon the specification of the discrete differential operator that inverts the
HRF, which needs to be derived either by the inverse solution of the sampled
HRF impulse response, or by discretizing a continuous-domain differential oper-
ator motivated by a biophysical model. The more versatile structure of PFM
allows for instance an elegant extension of the algorithm to multi-echo fMRI
data (Caballero-Gaudes et al., 2019) where multiple measurements relate to a
common underlying signal. Therefore, the one-to-many synthesis scenario (i.e.,
from activity-inducing to several activity-related signals) is more cumbersome
to express using TA. In other words, a set of differential operators should be
defined and the differences between their outputs constrained. In contrast, the
one-to-many analysis scenario (i.e., from the measurements to several regularizing
signals) is more convenient to be expressed by TA, for example combining spike
and block regularizers. While the specification of the differential operator in TA
only indirectly controls the HRF, the use of the derivative operator to enforce the
block model, instead of the integrator in PFM, impacts positively the stability
and rate of the convergence of the optimization algorithms. Moreover, analysis
formulations can be more suitable for online applications that are still to be
explored in fMRI data, but are employed for calcium imaging deconvolution
(Friedrich et al., 2017; Jewell et al., 2019), and which have been applied for
offline calcium deconvolution (Farouj et al., 2020).

Moreover, deconvolution techniques can be used before more downstream
analysis of brain activity in terms of functional network organization as they
estimate interactions between voxels or brain regions that occur at the activity-
inducing level, and are thus less affected by the slowness of the hemodynamic
response compared to when the BOLD signals are analyzed directly. In particular,
hemodynamic deconvolution approaches hold a close parallelism to recent
methodologies aiming to understand the dynamics of neuronal activations and
interactions at short temporal resolution and that focus on extreme events of the
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fMRI signal. As an illustration, Figure 2.6 shows that the innovation- or activity-
inducing CAPs computed from deconvolved events in a single resting-state fMRI
dataset closely resemble the conventional CAPs computed directly from extreme
events of the fMRI signal (Cifre, Zarepour, et al., 2020; Cifre, Flores, et al.,
2020; Liu & Duyn, 2013; Liu et al., 2013, 2018; Rolls et al., 2021; Tagliazucchi
et al., 2011, 2012, 2016; Zhang et al., 2020). Similarly, it can be hypothesized
that these extreme events will also show a close resemblance to intrinsic ignition
events (Deco & Kringelbach, 2017; Deco et al., 2017). As shown in the maps,
deconvolution approaches can offer a more straightforward interpretability of
the activation events and resulting functional connectivity patterns. Here, CAPs
were computed as the average of spatial maps corresponding to the events of a
single dataset. Beyond simple averaging, clustering algorithms (e.g., K-means
and consensus clustering) can be employed to discern multiple CAPs or iCAPs
at the whole-brain level for a large number of subjects. Previous findings based
on iCAPs have for instance revealed organizational principles of brain function
during rest (Karahanoğlu & Van De Ville, 2015) and sleep (Tarun et al., 2021)
in healthy controls, next to alterations in 22q11ds (Zoeller et al., 2019) and
multiple sclerosis (Bommarito et al., 2021).

Next to CAPs-inspired approaches, dynamic functional connectivity has
recently been investigated with the use of co-fluctuations and edge-centric
techniques (Esfahlani et al., 2020; Faskowitz et al., 2020; Jo et al., 2021; Sporns et
al., 2021; van Oort et al., 2018). The activation time series shown in Figure 2.5A
aims to provide equivalent information to the root of sum of squares timecourses
used in edge-centric approaches, where timecourses with peaks delineate instances
of significant brain activity. Future work could address which type of information
is redundant or distinct across these frameworks. These examples illustrate
that deconvolution techniques can be employed prior to other computational
approaches and could serve as an effective way of denoising the fMRI data.
Hence, an increase in the number of studies that take advantage of the potential
benefits of using deconvolution methods prior to functional connectivity analyses
can be expected.

Even though the two approaches examined here provide alternative repre-
sentations of the BOLD signals in terms of innovation and activity-inducing
signals, their current implementations have certain limitations and call for further
developments or more elaborate models, where some of them have been partially
addressed in the literature. One relevant focus is to account for the variability
in HRF that can be observed in different regions of the brain. First, variability
in the temporal characteristics of the HRF can arise from differences in stimulus
intensity and patterns, as well as with short inter-event intervals like in fast
cognitive processes or experimental designs (Chen et al., 2021; Polimeni & Lewis,
2021; Sadaghiani et al., 2009; Yeşilyurt et al., 2008). Similarly, the HRF shape
at rest might differ from the canonical HRF commonly used for task-based fMRI
data analysis. A wide variety of HRF patterns could be elicited across the whole
brain and possible detected with sufficiently large signal-to-noise ratio. For
instance, Gonzalez-Castillo et al., 2012 showed two gamma-shaped responses at
the onset and the end of the evoked trial, respectively. This unique HRF shape
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would be deconvolved as two separate events with the conventional deconvolution
techniques. The impact of HRF variability could be reduced using structured
regularization terms along with multiple basis functions (Gaudes et al., 2012) or
procedures that estimate the HRF shape in an adaptive fashion in both analysis
(Farouj et al., 2019) and synthesis formulations (Cherkaoui et al., 2021).

Another avenue of research consists in leveraging spatial information by
adopting multivariate deconvolution approaches that operate at the whole-brain
level, instead of working voxelwise and beyond regional regularization terms (e.g.,
as proposed in Karahanoğlu et al., 2013). Operating at the whole-brain level
would open the way for methods that consider shared neuronal activity using
mixed norm regularization terms (Uruñuela-Tremiño et al., 2019), as described
in Chapter 4, or can capture long-range neuronal cofluctuations using low rank
decompositions (Cherkaoui et al., 2021). For example, multivariate deconvolution
approaches could yield better localized activity patterns while reducing the effect
of global fluctuations such as respiratory artifacts, which cannot be modelled at
the voxel level with a multivariate sparse and low-rank model (Uruñuela et al.,
2021), as described in Chapter 6.

Similar to solving other inverse problems by means of regularized estimators,
the selection of the regularization parameter is critical to correctly estimate the
neuronal-related signal. Hence, methods that take advantage of a more robust
selection of the regularization parameter could considerably yield more reliable
estimates of the neuronal-related signal. For instance, the stability selection
procedure (Meinshausen & Bühlmann, 2010; Uruñuela et al., 2020)could be
included to the deconvolution problem to ensure that the estimated coefficients
are obtained with high probability. This approach is described in Chapter 3
(Uruñuela et al., 2020). Furthermore, an important issue of regularized estimation
is that the estimates are biased with respect to the true value. In that sense,
the use of non-convex `p,q -norm regularization terms (e.g., p < 1) can reduce
this bias while maintaining the sparsity constraint, at the cost of potentially
converging to a local minima of the regularized estimation problem. In practice,
these approaches could avoid the optional debiasing step that overcomes the
shrinkage of the estimates and obtain a more accurate and less biased fit of
the fMRI signal (Caballero-Gaudes et al., 2019; Gaudes et al., 2013). Finally,
cutting-edge developments on physics-informed deep learning techniques for
inverse problems (Akçakaya et al., 2021; Cherkaoui et al., 2020; Monga et al.,
2021; Ongie et al., 2020) could be transferred for deconvolution by considering
the biophysical model of the hemodynamic system and could potentially offer
algorithms with reduced computational time and more flexibility.
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The code and materials used in this work can be found in the following GitHub
repository: https://github.com/eurunuela/pfm_vs_ta. The reader can explore
different simulation parameters (e.g., SNR, varying HRF options and mismatch
between algorithms, TR, number of events, onsets, and durations) in the
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provided Jupyter notebooks. Similarly, the experimental data can be found in
https://osf.io/f3ryg/.
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This chapter was published as Uruñuela, E., Jones, S., Crawford, A., Shin,
W., Oh, S., Lowe, M., & Caballero-Gaudes, C. (2020). Stability-based sparse
paradigm free mapping algorithm for deconvolution of functional MRI data.
2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC). DOI: 10.1109/EMBC44109.2020.
9176137.

This chapter proposes the implementation of a subsampling approach based on
stability selection that avoids the choice of any regularization parameter for
hemodynamic deconvolution with sparity-promoting regularized least squares
estimators. The proposed method is implemented to operate with the Sparse
Paradigm Free Mapping (SPFM) algorithm and its performance is evaluated on
real fMRI data and compared with both the original SPFM algorithm, which
used model selection criteria to select the parameters, and a conventional analysis
with a general linear model (GLM) that is aware of the temporal model of the
neuronal-related activity. The results demonstrate that SPFM with stability
selection yields activation maps with higher resemblance to the maps obtained
with GLM analyses and offers improved detection of neuronal-related events
over SPFM, particularly in scenarios with low contrast-to-noise ratio.
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In the preceding chapter, deconvolution approaches were discussed in the context
of functional magnetic resonance imaging (fMRI) data analysis as they offer the
remarkable ability to estimate neuronal-related activity without the need for prior
information on the timings of the blood oxygenation level-dependent (BOLD)

��

10.1109/EMBC44109.2020.9176137
10.1109/EMBC44109.2020.9176137


�� ��������������� ������ �������� ���� �������

events via a linear time-invariant model (i.e., a forward model of the BOLD
response) that is then inverted by means of regularized least-squares estimators
to deconvolve the neuronal-related activity at each voxel (Gaudes et al., 2010,
2013; Gitelman et al., 2003; Hernandez-Garcia & Ulfarsson, 2011; Karahanoğlu
et al., 2013; Khalidov et al., 2011). In particular, the sparse Paradigm Free
Mapping (SPFM) method (Gaudes et al., 2013), which is the basis of this
work, employs sparsity-promoting regularization terms based on the L1-norm
of the estimates (e.g., using the LASSO or the Dantzig Selector). Importantly,
inverse problem solving is linked to a dilemma that has yet to be solved: the
selection of the regularization parameters that yield accurate estimates. As
described in the previous chapter, methods based on model selection criteria
after the computation of the entire regularization path (Gaudes et al., 2013) or
iterative procedures so that the variance of the residuals after deconvolution
is equal to a prior estimate of the noise variance (Karahanoğlu et al., 2013)
have been previously used in the literature for parameter tuning due to their
reduced computational cost. Yet, these methods offer no information about the
appropriateness of the selected parameters.

This chapter proposes the use of the subsampling approach of stability
selection (Meinshausen & Bühlmann, 2010) with the SPFM algorithm (Gaudes
et al., 2013) to avoid the choice of any regularization parameter and account
for the likelihood of the different possible estimates in the regularization path.
Although stability selection has been previously proposed in fMRI data analysis,
for example in the estimation of functional connectivity matrices from partial
correlations with sparse estimators (Ryali et al., 2012) and to detect change
points in time-varying functional connectivity with the graphical lasso (Cribben
et al., 2013), its application for the deconvolution of the fMRI signal is innovative.
Further, this chapter implements a novel procedure that enables to benefit from
the computational speed of the least angle regression algorithm (Efron et al.,
2004) in combination with the robustness of stability selection.

This chapter uses a modification of the original SPFM formulation called block
model –and introduced in Chapter 2– that computes estimates of the innovation
signal of the neuronal-related signal (i.e., defining its changes) (Cherkaoui et al.,
2019; Karahanoğlu et al., 2013; Uruñuela et al., 2023), rather than the signal
itself. The block model formulation fits the data used in this study better as it
improves the estimation of neuronal-related events with long, sustained activity
(Cherkaoui et al., 2019; Karahanoğlu et al., 2013; Uruñuela et al., 2023) that
cannot be adequately described by conventional spike-like models (Gaudes et al.,
2010, 2013; Khalidov et al., 2011). Nevertheless, the proposed stability selection
procedure can be readily implemented for the spike model. The chapter is
organized as follows: in Section 3.2 the signal model and the stability-based
SFPM algorithm are introduced; in Section 3.3, the results of applying this new
algorithm on experimental fMRI data are presented and compare them to the
previous SPFM algorithm.
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For the sake of completeness, this section revises the signal model for
hemodynamic deconvolution, which was already described in Chapter 2. In fMRI
data analysis, the signal of a voxel y(t ) is commonly modelled as the convolution
of an underlying neuronal-related signal s(t ) with the hemodynamic response
function (HRF) h(t ), plus a white noise component: y(t ) = h(t )§ s(t )+n(t ), or
y = Hs+n in a discrete-time matrix notation. Typically, the neuronal-related
signal s(t ) is represented as a train of Dirac impulses at the fMRI timescale
associated with the experimental design. This model of the neuronal-related
signal has been adopted by previous deconvolution algorithms (Gaudes et al.,
2010, 2013; Hernandez-Garcia & Ulfarsson, 2011) relying on regularized least-
squares estimators as follows:

ŝ = argmin
s

1
2
ky°Hsk2

2 +∏kskp , (3.1)

where the Lp -norm kskp penalizes the amplitude of the coefficients of the neuronal-
related signal, e.g., p = 2 (i.e., ridge regression) and p = 1 (i.e., LASSO) were
employed in (Gaudes et al., 2010) and (Gaudes et al., 2013), respectively. Instead
of the on/off pattern described by Dirac impulses, the neuronal-related signal s

can also be represented as a piecewise constant signal in terms of its innovation
signal u (i.e., its first derivative in time). Defining s = Lu where L corresponds to
the discrete integration operator (Cherkaoui et al., 2019), the signal model can
be written as:

y = HLu+n, (3.2)

where y,u,s,n 2RN , L 2RN xN , and H 2RN xN is the Toeplitz convolution matrix
with shifted HRFs, where N is the number of observations of the fMRI signal.
The signal u will represent those instances when significant changes in the
neuronal-related activity occur. Since the innovation signal u is sparser than
the neuronal-related signal s, it is also a more adequate representation if the
temporal deconvolution of the fMRI time series of each voxel is performed with
L1-norm regularized estimators as follows:

û = argmin
u

1
2
ky°HLuk2

2 +∏kuk1. (3.3)
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An appropriate choice of the regularization parameter ∏ in Equation (3.1) or
Equation (3.3) is crucial for appropriate hemodynamic deconvolution. Several
techniques to select it have already been proposed, such as based on the Bayesian
Information Criterion (Gaudes et al., 2013). However, these techniques do not
provide a solution that is robust regardless of the different characteristics the
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data may show (e.g., signal-to-noise ratio, occurrence and duration of neuronal
events).

This problem can be overcome by implementing a novel procedure based
on the stability selection approach (Meinshausen & Bühlmann, 2010). This
procedure generates T = 100 surrogate datasets yi (i = 1, . . . ,T ) where the original
voxel time series is randomly subsampled to retain 60% of its time points. Then,
the optimization problem in Equation (3.3) is solved for each surrogate dataset,
where the model matrix H is subsampled accordingly. Then, the stability paths
of the signal u for each surrogate i and each time point t (i.e., u

i

t
) are computed,

which represent the probability of the coefficient being non-zero for a given ∏.
Originally, the stability selection approach operates by solving Equation (3.3) for
a predefined set of ∏ values, for example by means of the fast iterative shrinkage
thresholding algorithm (FISTA) (Beck & Teboulle, 2009). Instead, this chapter
proposes to use the least angle regression (LARS) algorithm (Efron et al., 2004),
which computes the entire regularization path for an optimal decreasing set of
∏ values and is faster than FISTA (Beck & Teboulle, 2009) for our purposes.
Then, for each surrogate, the estimate u(∏l , t )i at the regularization parameter
∏l and time point t is binarized as c(∏l , t )i = 0 if u(∏l , t )i = 0 or c(∏l , t )i = 1
otherwise. To overcome the fact that solving Equation (3.3) with the LARS
algorithm will generate a different set of ∏ values in each subsampled surrogate,
a new set of ∏ values is created. This new set contains all of the regularization
parameters from all of the surrogate-specific regularization paths in decreasing
order. The coefficients c(∏l , t )i remain 0 or 1 according to the preceding value
of ∏i

l
corresponding to the surrogate-specific regularization path computed by

LARS. This step allows us to calculate the probabilities that construct the
stability paths as the ratio of surrogates where each coefficient u(∏, t ) is different
from 0 at each ∏.

Furthermore, unlike in the original stability selection procedure that sets a
given probability threshold to select the final set of non-zero coefficients, this
implementation calculates the area under the curve (AUC) of the stability paths
of each coefficient ut as follows:

AUCt =
P

L

l=1∏l P
°
u∏l ,t 6= 0

¢
P

L

l=1∏l

, (3.4)

where

P
°
u∏l ,t 6= 0

¢
= T

°1
TX

i=1
c

i

∏l ,t , (3.5)

represents the selection probability of coefficient u(∏, t ) for a particular choice
of the regularization parameter ∏l , and L is the total number of regularization
parameters from all of the LARS regularization paths. Hence, the voxelwise time
series AUC(t ) reveals the most prominent coefficients indicating the probability
of activation at each time point.
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Afterwards, the AUC time series for each voxel are thresholded to identify those
instances with high probability of a significant change in neuronal-related activity
occurring. This threshold is based on a given percentile (or maximum) of the
AUC values in a region of interest where no BOLD signal changes related to
neuronal activity are assumed to occur (or can be detected). For example, the
threshold can be set to the 99th percentile of the AUC values of deep white
matter (DWM) voxels (see Section 3.4).

Finally, it is recommended to remove the bias in the estimates of the neuronal-
related signal owing to the L1-norm regularization term. For the signal model
in Equation (3.1) used in the original SPFM approach (Gaudes et al., 2013), a
debiased estimate of s can be obtained by solving a least squares problem with
a selection of non-zero AUC coefficients.

Rather, in the signal model with the innovation signal, the selected non-zero
coefficients of u are used to define a matrix A whose columns are activation
segments with piecewise constant unit between two non-zero coefficients of u

(Zoller et al., 2019). A final debiased estimate of s is obtained by solving the
following least squares problem:

û = argmin
u

ky°HAuk2
2 (3.6)

Figure 3.1 illustrates the flowchart of the proposed stability-based SPFM
algorithm.

��� �������

The operation of the proposed stability-selection SPFM algorithm is illustrated
in a dataset collected on a healthy subject in a 7T MR scanner (Siemens) using
a 32-channel receive transmit coil. The subject was scanned under a Cleveland
Clinic Institutional Review Board approved protocol (QED, Cleveland, OH). A
volumetric MP2RAGE image was acquired for anatomical visualization. Two
fMRI datasets were acquired with a simultaneous multislice EPI sequence (MB
factor = 3, TE = 21 ms, field of view = 192£ 192 mm2) at TR = 2800 ms
(1.2£1.2£1.5 mm3, flip angle = 55º) and 500 ms (3£3£3 mm3, flip angle =
70º). For both TRs, the subject performed finger tapping events with the right
index and thumb fingers every 45 s, where a single tap was performed in the
first 6 minutes, or 10 taps quickly for the remaining 4 minutes. The onsets and
durations of the paradigm are shown as gray vertical lines in Figure 3.2 (a) and
Figure 3.3 (a).

Data preprocessing comprised an initial correction for motion using SLO-
MOCO2 (Beall & Lowe, 2014), detrending of 6th order Legendre polynomials
and normalization to signal percentage change (SPC) with AFNI. Furthermore,
a mask of white matter voxels was computed from the anatomical image with
3dSeg, which was then eroded 2 voxels to delimit voxels in deep white matter
in the functional space. The preprocessed fMRI data were analyzed with three
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Figure 3.1: Flowchart of the stability-based SPFM algorithm.

different methods: 1) a traditional general linear model (GLM) analysis using
the onsets and durations of the tapping events; 2) the original SPFM approach
(3dPFM) using the LASSO for deconvolution and selection of the regularization
parameter based on the Bayesian Information Criterion (BIC) (Gaudes et al.,
2013); and 3) the novel stability-based SPFM with and without the integration
operator in its formulation. Both SPFM approaches used the double-gamma

��



������� ��� ����������

canonical HRF as a model for deconvolution (SPMG1 shape in 3dDeconvolve
in AFNI). Previous to the final debiasing step, spatio-temporal clustering of a
minimum of 5 contiguous voxels with activation (i.e., non-zero coefficient after
thresholding) in a temporal window of ±1 TR was also performed to remove
spurious, scattered activations.

��� ������� ��� ����������

Figure 3.2 and Figure 3.3 depict the activity maps estimated with all of the
methods for different representative finger-tapping instants and the time courses
of a voxel in the left primary motor cortex (marked with a white cross in the
maps) for the high temporal and low spatial resolution dataset Figure 3.2 (a, b
and c) and the low temporal and high spatial resolution dataset Figure 3.3 (a, b
and c).

In the high temporal and low spatial resolution scenario (i.e., a high contrast-
to-noise ratio regime), the activity maps in Figure 3.2 (c) illustrate that the
original SPFM is able to detect finger tapping events with a high specificity.
Implementing stability selection on the original SPFM algorithm increases the
sensitivity while maintaining the specificity. However, as it can be seen in
Figure 3.2 (a), the lack of an integration operator yields very variable estimates
of the neuronal-related signal after debiasing with least squares (here scaled by
0.05 for visualization purposes) due to the large correlation of the debiasing model
with contiguous non-zero coefficients at this fast temporal resolution. Conversely,
the novel stability-based SPFM with the integration operator shows activity
maps that are comparable to the ground truth despite the lower amplitude of
the estimates. Yet, it can be observed that the signal model with the integrator
overestimates the duration of the piecewise constant estimates for the short finger
tapping events. Thus, in this scenario, the use of the stability selection and the
innovation signal exhibits a similar performance to the original SPFM algorithm
using LASSO and BIC since the high SNR and high temporal resolution (TR =
0.5 s) enables a precise and clear characterization of the dynamics of the BOLD
signal, which facilitates the differentiation between noise and neuronal-related
signal.

In an acquisition with a high spatial resolution and a low temporal resolution
(i.e., a low contrast-to-noise ratio regime), Figure 3.3 (a), (b) and (c) demonstrate
that the novel stability-based SPFM approach is able to detect more finger-
tapping events and their associated brain activity than the original SPFM
method. This advantage is clearly seen in the case of the single-tapping events,
which exhibit a lower amplitude in the response than the long events with ten
consecutive finger taps. The stability selection proves to be essential in correctly
estimating finger tapping events, regardless of the use of the integration operator.
The addition of the integration operator to the SPFM model produces activity
maps that are closer to the ground truth of the GLM analysis (see Figure 3.2 c),
even though the duration of the piecewise constant estimates is overestimated
(see Figure 3.3 a). In this regime, the BIC criterion in the original SPFM is not
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Figure 3.2: Comparison of the novel stability-based SPFM approach with the
SPFM and the GLM methods for data with TR = 0.5 s and a voxel size of 3mm

3

iso. (a) plots the time series of the voxels marked with a cross in (c) containing
the raw data and the estimates of the different methods as shown in the legend.
Onsets and duration of the finger-tapping are depicted as gray vertical lines. (b)
shows the estimates of the different methods fitted with the canonical HRF. (c)
shows the estimated maps of each of the methods for different finger-tapping
events.
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Figure 3.3: Comparison of the novel stability-based SPFM approach with the
SPFM and the GLM methods for data with TR = 2.8 s and a voxel size of
1.2£1.2£1.5mm

3. (a) plots the time series of the voxels marked with a cross
in (c) containing the raw data and the estimates of the different methods as
shown in the legend. Onsets and duration of the finger-tapping are depicted as
gray vertical lines. (b) shows the estimates of the different methods fitted with
the canonical HRF. (c) shows the estimated maps of each of the methods for
different finger-tapping events.
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able to discern between neuronal-related events and noise, failing to detect the
finger tapping events, probably as the shape of the BOLD response, which takes
4-6 s to reach its maximum amplitude, cannot be properly characterized by the
model owing to the low temporal resolution (TR = 2.8 s). Hence, the stability
selection procedure exhibits a robust performance at correctly estimating the
neuronal-related events resulting from the finger tapping tasks, which showcases
that the additions to the SPFM technique are promising, especially in low
temporal resolution settings.
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This chapter was published as Uruñuela, E., Gonzalez-Castillo, J., Zheng, C.,
Bandettini, P., & Caballero-Gaudes, C. (2022). Whole-brain multivariate
hemodynamic deconvolution for multi-echo fMRI with stability selection.
DOI: https://doi.org/10.1016/j.media.2023.103010.

This chapter proposes a novel hemodynamic deconvolution algorithm, multivari-
ate sparse paradigm free mapping (Mv-SPFM), that operates at the whole brain
level and adds spatial information via a mixed-norm regularization term over
all voxels. Additionally, Mv-SPFM employs the stability selection procedure
that removes the need to select regularization parameters and also lets us obtain
an estimate of the true probability of having a neuronal-related BOLD event
at each voxel and time-point based on the area under the curve (AUC) of the
stability paths. Besides, its formulation is adapted for multi-echo fMRI acquisi-
tions (MvME-SPFM), which allows us to better isolate fluctuations of BOLD
origin on the basis of their linear dependence with the echo time (TE) and to
assign physiologically interpretable units (i.e., changes in the apparent transverse
relaxation ¢R

§
2 ) to the resulting deconvolved events. Remarkably, Mv-SPFM

also achieves comparable performance when using a conventional single-echo
formulation. The MV-SPFM algorithm outperforms previous hemodynamic
deconvolution approaches, showing higher spatial and temporal agreement with
the activation maps and BOLD signals obtained with a standard model-based
linear regression approach. Furthermore, owing to the stability selection, the
proposed algorithm provides more reliable estimates of neuronal-related activity
for the study of the dynamics of brain activity when no information about the
timings of the BOLD events is available. This algorithm is publicly available as
part of the splora Python package.
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Conventionally, the analysis of functional MRI (fMRI) data relies on available
information about the experimental paradigm to establish hypothesized models
of brain activity. However, this information can be inaccurate, incomplete or
unavailable in multiple scenarios such as resting-state, naturalistic paradigms or
clinical conditions. In these cases, blind estimates of neuronal-related activity
can be obtained with paradigm-free analysis methods such as hemodynamic
deconvolution. Yet, current formulations of the hemodynamic deconvolution
problem have three important limitations: 1) their efficacy strongly depends on
the appropriate selection of regularization parameters, 2) being univariate, they
do not take advantage of the information present across the brain, and 3) they
do not provide any measure of statistical certainty associated with each detected
event.

Despite the range of deconvolution methods that have been developed, few
capitalize on the various properties of fMRI data, such as the advantages of
multi-echo fMRI for denoising fMRI data (Bright & Murphy, 2013; Kundu
et al., 2017), or the use of tissue-based or parcellation-based information to
improve the accuracy of the estimates of neuronal activity. Recent exceptions
include deconvolution algorithms that incorporate a multivariate formulation
to perform spatio-temporal deconvolution (Bolton et al., 2019; Cherkaoui et al.,
2021; Costantini et al., 2022; Uruñuela et al., 2021), thus addressing the second
limitation stated in the previous paragraph. In addition, one deconvolution
algorithm has been presented that exploits the mono-exponential decay model
of the multi-echo fMRI signal: multi-echo sparse Paradigm Free Mapping (ME-
SPFM) (Caballero-Gaudes et al., 2019). Furthermore, approaches have been
developed to deal with the third limitation stated above and estimate the
likelihood of having a neuronal event at each time-point and for each voxel by
means of logistic regression (Bush & Cisler, 2013; Bush, Cisler, et al., 2015) or
Gaussian mixture models (Pidnebesna et al., 2019). However, wouldn’t it be
desirable to have an algorithm that addresses all three limitations mentioned
above? Specifically, it would be beneficial to obtain a measure of the probability
of each voxel containing a neuronal event at each time-point using regularized
estimators, while also leveraging the spatio-temporal information and physical
properties of the fMRI signal for estimating the activity-inducing signal.

This chapter proposes a novel approach for the hemodynamic deconvolution of
fMRI data that operates at the whole-brain level (i.e., multivariate formulation)
to incorporate spatial information through a mixed-norm regularization term.
Furthermore, this work proposes a stability selection procedure (Meinshausen &
Bühlmann, 2010) that makes the estimation of the neuronal activity more robust
to the selection of the regularization parameters, while providing the likelihood
of having a neuronal-related event at each time-point and for each voxel. Using
multi-echo fMRI data acquired from 10 healthy subjects (16 datasets) this
chapter demonstrates that the proposed multivariate multi-echo Paradigm Free
Mapping (MvME-SPFM) algorithm not only provides more robust estimates
of the neuronal activity, but also yields a measure of the probability of each
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voxel containing a neuronal event at each time-point. Moreover, MvME-SPFM
returns quantitative estimates of ¢R

§
2 in interpretable units (s°1), which is

relevant for functional analysis across different acquisition methods and field
strengths. The chapter is structured as follows: the multivariate signal model
and the multivariate multi-echo PFM algorithm are introduced in Section 4.2;
Section 4.4 describes the data used and the analysis performed to evaluate this
novel algorithm; the results of applying this new algorithm on experimental fMRI
data are presented and compared to the previous PFM algorithms in Section 4.5;
finally, the findings are discussed in Section 4.6.

��� ������
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Chapter 2 introduced that the BOLD fMRI signal model of a particular voxel
can be written in matrix notation as:

y = H¢s+e (4.1)

where, assuming zero-boundary conditions, the variables y, ¢s, e 2RN are the
voxel’s time-series, the activity-inducing signal changes and the noise term,
respectively, and H 2 RN£N is the Toeplitz convolution matrix defined by the
HRF (Gaudes et al., 2013; Gitelman et al., 2003). Hereinafter in the chapter, the
noise term is assumed to be an additive white Gaussian noise (i.e., uncorrelated).
Furthermore, the ¢s can be defined in a finer temporal resolution (i.e., increasing
its dimension by a factor Æ > 1 such that ¢s 2 RÆN ) so that it can describe
activity-inducing signal changes that are asynchronous to the TR of the data.
Though in such scenario, the convolution matrix becomes non-Toeplitz (i.e.
H 2RN£ÆN ) (Ciuciu et al., 2003).

The previous signal model is applicable for single-echo and multi-echo fMRI
data. In the particular case of multi-echo fMRI acquired with a gradient-echo
sequence, the voxel’s time-series in terms of the signal percentage change has
a linear relationship with the echo time (TE) as y(TEk ,n) º¢Ω(n)°TEk¢R

§
2 (n),

where ¢R
§
2 (n) denotes the BOLD-like signal changes and ¢Ω(n) corresponds to

changes in the net magnetization, for instance due to head motion (Kundu et al.,
2017). The signal changes associated to fluctuations in the net magnetization can
be effectively reduced in preprocessing, for example using multi-echo independent
component analysis (Caballero-Gaudes et al., 2019; Kundu et al., 2012), and are
neglected hereinafter. Hence, considering that neuronal-related signal changes
¢s produce a change in ¢R

§
2 , the signal model in Eq.(4.1) can be adapted to

contain the signal acquired at all K echo-times (TE) via concatenation:
2
64

y1
...

yK

3
75=°

2
64

TE1H

...
TEK H

3
75¢s, (4.2)

which can be simplified into ȳ =°H¢s, where ȳ 2RK N , ¢s 2RN and H 2RK N£N .
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Assuming that the shape of the hemodynamic response can be similarly
modeled across all brain voxels, the previous voxel-wise (i.e., univariate) model
in Eq.(4.2) can be extended straightforwardly to a multivariate formulation that
considers all the voxels V of the brain:

2
64

y1,1 · · · y1,V
...

. . .
...

yK ,1 · · · yK ,V

3
75=°

2
64

TE1H

...
TEK H

3
75

£
¢s1 · · · ¢sV

§
, (4.3)

which can be simplified into Ȳ = °H̄¢S, where Ȳ 2 RK N£V , H̄ 2 RK N£N and
¢S 2RN£V .
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As described in Chapter 2, an estimate of the activity that induces the BOLD
response ŝ can be obtained by solving an ordinary least-squares problem such as:

¢ŝ = argmin
s

1
2
kȳ° H̄¢sk2

2 +∏k¢sk1, (4.4)

where ∏ is the regularization parameter that regulates the level of sparsity of
the estimates given the `1-norm, which is defined as k¢sk1 =ßN

n=1|¢sn |.
The inverse problem in Eq.(4.4) can be directly adapted to be solved at the

whole-brain using the multivariate formulation in Eq.(4.3). More interestingly
though, solving the inverse problem at the whole-brain level opens up many
possibilities in the form of additional regularization terms to take advantage of
the spatial information for an informed estimation of the activity-inducing signal
¢Ŝ. For instance, mixed-norms in the form of `p,q can be employed to separate
coefficients into groups that are blind to each other, while the coefficients within
a group are treated together (Kowalski, 2009). Hence, regularization terms based
on mixed-norms can promote spatio-temporal structures that are observed in
fMRI signals.

Here, an `2,1 +`1 mixed-norm regularization term (Gramfort et al., 2011) is
added to the multivariate convex problem to promote the co-activation of the
activity-inducing signal ¢Ŝ considering the coefficients of the voxels of the brain
(V ) at time n as one group:

¢Ŝ = argmin
S

1
2
kȲ° H̄¢Sk2

2 +∏Ωk¢Sk1 +∏(1°Ω)k¢Sk2,1, (4.5)

where `2,1-norm is defined as k¢Sk2,1 = ßN

n=1

q
ßV

v=1¢S
2
n,v , and 0 < Ω < 1 is a

parameter that controls the tradeoff between the sparsity introduced by the
`1-norm and the grouping of voxels promoted by the `2,1-norm so that the
estimation of one voxel coefficient at time n is influenced by the estimates of
the rest of the brain voxels at the same time. Note that when Ω = 1 Eq. (4.5)
is the whole-brain equivalent of Eq. (4.4). Additionally, it is worth noting that
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mixed-norm regularization, such as group LASSO, has been previously used
in MEG/EEG studies (Gramfort et al., 2011). However, in those cases, the
spatial and temporal dimensions were swapped compared to Eq. (4.5).On the
other hand, the regularization parameter ∏ can be adapted voxel-wise in order
to account for differences in the signal-to-noise ratio across voxels. Consequently,
the multivariate deconvolution problem can be written as:

¢Ŝ = argmin
S

1
2
kȲ° H̄¢Sk2

2 +ΩkD¢Sk1 + (1°Ω)kD¢Sk2,1, (4.6)

where D = diag (∏1, . . . ,∏V ) 2 RV £V is a diagonal matrix with the voxel-specific
values of ∏. In practice, a criterion must be used to select the voxel-specific ∏s.
Instead, the use of stability selection to avoid this critical choice is proposed (see
Section 4.4.2).

Therefore, given the convex nature of the inverse problem in Eq. (4.6),
estimates of ¢Ŝ can be calculated using the fast iterative shrinkage-thresholding
algorithm (FISTA) (Beck & Teboulle, 2009) with the following proximity operator
for `1 +`2,1:

Sn,v =
Zn,v

|Zn,v |
°
|Zn,v °∏vΩ

¢+
0
B@1° ∏v (1°Ω)

qP
v

°
|Zn,v |°∏vΩ

¢+2

1
CA

+

, (4.7)

where ¢S = prox∏(Ωk·k1+(1°Ω)k·k2,1) (Z) 2RN£V , (x)+ = max(x,0) for x 2R, and 0
0 = 0

by convention.
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The evaluation of the proposed MvME-SPFM was performed on ME-fMRI data
acquired in 10 subjects using a multi-task rapid event-related paradigm. Six
subjects performed two functional runs, the other 4 subjects only performed 1 run
due to scanning time constraints (i.e., a total of 16 datasets). All participants
gave informed consent in compliance with the NIH Combined Neuroscience
International Review Board-approved protocol 93-M-1070 in Bethesda, MD. A
thorough description of the MRI acquisition protocols and experimental tasks in
the experimental design can be found in (Gonzalez-Castillo et al., 2016), only
those details that are relevant to this analysis are given here.

MRI data was acquired on a General Electric 3T 750 MRI scanner with a
32-channel receive-only head coil (General Electric, Waukesha, WI). Functional
scans were acquired with a ME gradient-recalled echoplanar imaging (GRE-
EPI) sequence (flip angle = 70± for 9 subjects, flip angle = 60± for 1 subject,
TEs = 16.3/32.2/48.1 ms, TR = 2 s, 30 axial slices, slice thickness = 4 mm,
in-plane resolution = 3£3 mm2, FOV 192 mm, acceleration factor 2, number
of acquisitions = 220). Functional data was acquired with ascending sequential
slice acquisitions, except in one subject where the acquisitions were interleaved.
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In addition, high resolution T1-weighted MPRAGE and proton density images
were acquired per subject for anatomical alignment and visualization purposes
(176 axial slices, voxel size = 1£1£1 mm3, image matrix = 256£256).

Each run of data acquisition consisted of 6 trials with 5 different tasks each:
biological motion observation (BMOT), finger tapping (FTAP), passive viewing
of houses (HOUS), listening to music (MUSI), and sentence reading (READ).
The reader is referred to that paper for details on the preprocessing steps, and
comparison with alternative single-echo models for deconvolution. This data had
previously been employed, preprocessed and ME-ICA denoised for the evaluation
of the ME-SPFM algorithm in (Caballero-Gaudes et al., 2019).

����� ��������� ��������� �� ��� �������������� ��������� ∏

The choice of the regularization parameter ∏ is crucial to obtain accurate
estimates of ¢Ŝ. Although the value of ∏ of each voxel could be fixed ad-hoc,
previous work has opted for the use of model selection criteria, such as the
Bayesian Information Criterion (BIC), on the regularization path (Caballero-
Gaudes et al., 2019), computed by means of the least angle regression (LARS)
algorithm (Efron et al., 2004). Even though the use of BIC performed well
for ME-SPFM (Caballero-Gaudes et al., 2019) and its single-echo counterpart
(SPFM) (Gaudes et al., 2013), due to its high specificity, it can be problematic
for certain voxels where the BIC curve might present multiple local minima or
even fail to present a clear minima for the evaluated range of ∏.

This chapter proposes a more robust procedure to address this shortcoming
for selecting ∏ with the usage of the stability selection method (Meinshausen
& Bühlmann, 2010) described in Chapter 3. Moreover, the stability selection
procedure presented here yields the probability to have a non-zero coefficient in
the activity-inducing signal at each time-point. Specifically, our implementation
of the stability selection procedure generates T = 30 surrogates of each
voxel timecourse by randomly subsampling 60% of the time-points (a more
computationally expensive version was also tested with T = 100 surrogates
that yielded very similar results). The convolution matrix H is subsampled
accordingly. The surrogate data is then analyzed with the inverse problem in
Eq. (4.5) for a voxel-specific range of ∏ values using the fast iterative shrinkage
thresholding algorithm (FISTA). Here, 30 values of ∏ are spaced logarithmically
between 5% and 95% of the voxel-specific maximum ∏ possible to more accurately
sample the lower range. Then, the ratio (probability) of surrogates where the
estimated coefficient at each time-point is non-zero is calculated for each time-
point and value of ∏. As illustrated in Figure 4.1, these probabilities build the
so-called stability paths, which resemble the well-known regularization paths of
conventional regularized estimators (e.g., LASSO, Ridge Regression) that plot
the amplitude of the coefficients for each ∏.

Unlike the original stability selection procedure, which sets a given probability
threshold to select the final set of non-zero coefficients (Meinshausen & Bühlmann,
2010), the area under the curve (AUC) of the stability path of each time-point
is calculated as an index of confidence of having a non-zero coefficient across
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Figure 4.1: Example of the regularization path and the stability path for a voxel
timeseries with Ω = 1. On the left, the regularization path shows the amplitude
of each coefficient estimate ¢Ŝ (one per TR). At first, all the coefficients are
zero and successively they become non-zero as ∏ decreases towards zero, which
corresponds to the orthogonal least squares solution (i.e., no regularization).
On the right, the corresponding stability path plots the probablity that each
coefficient estimate (i.e., each TR) is non-zero for each value of ∏ based on the
stability selection procedure. Note that both paths can have a different maximum
value of ∏ given the subsampling step in the stability selection. Lines in the
stability path correspond to different TRs of a single voxel. The darker lines
denote the coefficient estimates corresponding to the TRs during the task-related
events.

the evaluated range of ∏. As a result, the AUC timecourse provides a measure
of the probability of having neuronal-related activity at each time-point and
voxel. Next, the AUC time-series are thresholded according to the histogram of
AUC values in a region of non-interest (hereinafter, denoted as the null AUC
histogram) to yield a sparse representation of the signal. Alternatively, a null
distribution of AUC values could be generated from surrogate data (Liégeois et
al., 2021). Accordingly, when employing stability selection, the individual voxels’
estimates might not be equivalent to the voxels’ estimates in any single one of the
whole-brain models that can be formulated with a given value of ∏ in Eq.(4.5)
or D in Eq. (4.6)), but are rather obtained by computing area-under-the-curve
(AUC) values for neuronal-related events.

Finally, a fitting step is applied to each voxel by defining a reduced convolution
model with the selected non-zero coefficients and fitting it by means of a
conventional orthogonal least squares estimator. This step reduces the bias
towards zero imposed by the sparsity-promoting regularization terms, and thus
obtains more realistic estimates of the neuronal-related signal (here, in terms of
¢R

§
2 ) (Caballero-Gaudes et al., 2019).
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The `2,1-norm regularization term in Eq. (4.5) promotes structured spatio-
temporal sparsity in the sense that the estimates of all brain voxels at a given
time-point are treated as a group and this term forms a constraint on the number
of groups with at least one non-zero estimate to model the data. Assuming
that Ω = 0, either the value of all the voxel estimates at one time point can be
non-zero or all of them are nulled. Hence, this regularization term considers
spatial information from all brain voxels for the deconvolution since the value of
a given voxel coefficient also depends on the rest of the voxels.

To illustrate the effect of the corresponding regularization parameter Ω, this
chapter solves the multivariate regularization problem in Eq. (4.5) using stability
selection for Ω = 1, Ω = 0.5 and Ω = 0.; i.e., applying the sparsity-promoting
`1-norm only, equally weighting the sparsity and spatial regularizations, and
employing the `2,1-norm spatial regularization only, respectively.
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To evaluate how the multivariate formulation combined with stability selection
improves the accuracy of the estimates of ¢Ŝ compared with its univariate
counterpart ME-SPFM using the BIC for voxel-wise selection of ∏ (Caballero-
Gaudes et al., 2019), the spatial sensitivity, specificity and overlap (using a Dice
coefficient metric) of the MvME-SPFM activation maps were calculated using
the trial-level GLM-based activation maps (p ∑ 0.05) as the ground truth. These
analyses were computed with the independently modulated (IM) option of the
3dDeconvolve program in AFNI that implements an orthogonal least squares
estimation for each trial, thus also assuming uncorrelated noise as in our model.
Single trial GLM maps (GLM-IM) were obtained from the optimally combined
and ME-ICA denoised data, and only negative ¢R

§
2 (i.e., ¢Ŝ < 0 that generate

a positive BOLD response) were considered for the computation of the Dice
coefficients.

For the MvME-SPFM, the following two strategies for thresholding the AUC
timeseries were considered in order to define the corresponding activation maps:

• Static thresholding (ST): The estimates of ¢Ŝ obtained with the novel
MvME-SPFM technique that utilizes stability selection, where the AUC
threshold was chosen as the 95th percentile of the histogram of AUC in
deep white matter voxels (i.e., a fixed, static threshold), which were labeled
after tissue segmentation of the T1-weighted anatomical MRI using 3dSeg
in AFNI, and eroding 4 voxels of the resulting white matter tissue mask at
anatomical resolution.

• Time-dependent thresholding (TD): The estimates of ¢Ŝ obtained with
the novel MvME-SPFM technique with stability selection, where the AUC
threshold varies temporally according to the 95th percentile of the null
histogram of AUC at each time-point. This implementation was based on
the hypothesis that a time-dependent threshold would be able to better
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control for widespread spurious deconvolved changes in ¢Ŝ, for instance
due to head motion or deep breaths.

Note the ST and TD thresholding strategies can be applied in the analysis
of single-echo and multi-echo fMRI data.

����� ���������� ���� ������� ���������������� ������������
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In order to evaluate how the MvME-SPFM algorithm compares with another
state-of-the-art multivariate deconvolution method, Hemolearn (Cherkaoui et al.,
2021) was chosen, a recently proposed multivariate semi-blind deconvolution
method that can estimate the HRF and the neuronal signal in a paradigm-
free setting and that has been shown to faithfully capture intrinsic functional
connectivity networks at the subject level. This technique introduces a low-rank
constraint to learn both K temporal atoms (with K ø P ) and their corresponding
spatial maps, which encode various functional networks, each of them with their
specific neural activation profile. Hence, HemoLearn models the brain activity as
a linear combination between the neural activations Z = (zk )K

k=1 2R
K£T and the

spatial patterns U = (uk )K

k=1 2R
K£P , where T is the total number of TRs in the

data and P is the number of voxels. The BOLD fMRI signal model is then given
by the convolution between an estimated regional HRF and the activation as:

Y =
√

MX

m=1
Hm

!
§

√
KX

k=1
uk

T
zk

!
+E (4.8)

Thus, the minimization problem proposed by HemoLearn can be described
as:

argmin
U,Z

= 1
2
kY°

√
MX

m=1
Hm

!
§

√
KX

k=1
uk

T
zk

!
k2

F
+∏

KX

k=1
krzkk1 (4.9)

The practical implementation of Hemolearn –which is available at https:
//hemolearn.github.io/– requires the specification of the number of components
to be estimated, which has no standard procedure to be determined. Here, the
analysis was performed with a range of components from 5 to 40. With the aim
of making the comparison as fair as possible, the component that maximized
the correlation between the estimated activity map and the session-level GLM-
based activation map was selected for each condition in the task. The selected
component time-series were compared with the corresponding ¢Ŝ obtained with
MvME-SPFM using stability selection and the time-dependent thresholding (TD),
and the selected component activity maps with the corresponding trial-level
MvME-SPFM activity maps obtained with the same thresholding strategy.
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The output of deconvolution algorithms such as ME-SPFM and the proposed
MvME-SPFM is a 4D dataset that matches the dimensions (both spatial and
temporal) of the input data, i.e., it is a movie of the estimated ¢R

§
2 maps. In

addition, the use of stability selection generates the area under the curve (AUC)
4D output dataset, which indicates the probability of having a neuronal-related
event at each time-point for every voxel in the brain.

Figure 4.2 depicts the area under the curve (AUC) time-series and maps
obtained with stability selection for Ω = 0.5 in representative voxels of each
task in the paradigm (indicated with a cross in the maps), where the AUC
maps correspond to single time-points signaled by the blue arrows. The AUC
time-series of the ST and TD thresholding approaches are shown on top of
the original AUC time-series. The AUC maps depict spatial patterns of ¢R

§
2

where regions that are typically involved in the tasks show higher probabilities
of having neuronal-related activity compared with other brain regions.

Figure 4.3 displays the comparison of the ¢R
§
2 maps obtained by solving the

inverse problem in Eq. (4.5) with a fixed selection of ∏ (1st row) and with the
use of stability selection (2nd , 3r d and 4th rows) for Ω = {0,0.5,1}. The ¢R

§
2 maps

obtained with a fixed selection of ∏ equal to the noise estimate of the first echo
volume (1st row) are very sensitive to the selection of Ω. Similar observations
were obtained with other values of ∏. With a selection of Ω = 1, only the `1-norm
regularization term is applied, which produces ¢R

§
2 maps with few non-zero

coefficients. With Ω = 0, only the `2,1-norm spatial regularization is applied,
which yields a ¢R

§
2 map that covers the entire brain and does not exhibit a

spatial pattern in concordance with the task. However, a selection of Ω = 0.5
yields a ¢R

§
2 map that is more similar to the activity maps often observed when

participants are asked to look at the image of a house, depicting negative ¢R
§
2

in bilateral fusiform regions. In contrast, the use of stability selection yields
AUC maps (row 2) and the corresponding ¢R

§
2 maps after each thresholding

strategy (rows 3-4) reveal activation patterns concordant with those often seen
for viewing houses regardless of the selection of Ω. In other words, the ¢R

§
2

maps obtained with stability selection are less sensitive to the selection of Ω
while obviating the need to choose ∏. In fact, the spatial correlations between
the AUC maps for each pair of Ω’s were nearly equal to 1 for all time points
(average correlations are 0.97 between Ω = {0,0.5}, 0.98 between Ω = {0,1}, and
0.97 between Ω = {0.5,1}). In addition, it can be seen that using a TD threshold
yields BOLD signal changes that are more confined to the expected areas in
bilateral fusiform cortices than the ST threshold. Due to the high similarity
of the AUC maps for any value of Ω, only the results for Ω = 0.5 are discussed
hereinafter.

Figure 4.4 provides an in-depth view of how the time-dependent thresholding
operates when motion- and respiration-related artifacts are present in the
data. The grayplot (Power, 2017) in Figure 4.4A clearly shows bands spanning
throughout the entire brain that illustrate significant changes in the amplitude
of the signal. The source of these signal changes can be attributed to head
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Figure 4.2: Left: Original (blue), ST thresholded (orange) and TD thresholded
(green) AUC time-series for a representative voxel for each task in the paradigm
(Ω = 0.5). Note that the three time-series are overlaid; i.e., the static and time-
dependent time-courses are thresholded versions of the original AUC. Gray blocks
depict the onset and duration of each trial. Right: AUC maps at the time-points
signaled by the blue arrows.

motion events (see Euclidean norm in Figure 4.4C) and deep breaths (see
arrows for respiration volume signal (Chang et al., 2009) in Figure 4.4D). The
respiration-related events cause a drop in the global signal (see Figure 4.4B)
seconds after the peak in the respiration volume signal. Interestingly, our results
show a decrease in the equivalent ST percentile that corresponds to the 95th TD
threshold (Figure 4.4E) at the instances of these large respiratory-related events.
This decrease can also be observed in the corresponding AUC value of the TD
thresholding strategy as shown in Figure 4.4F. The distributions of AUC values
at the time-points with respiratory- and motion-related artifacts have a shorter
tail than the distribution of the AUC values at the time-points where subjects
performed the task. Hence, in these events the TD thresholding strategy is able
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Figure 4.3: Comparison of the ¢R
§
2 maps obtained with a fixed selection of ∏

(row 1) and the use of stability selection (rows 2-4: AUC, stability selection with
static thresholding (ST), and stability selection with time-dependent thresholding
(TD)) for Ω = 0 (column 1), Ω = 0.5 (column 2), and Ω = 1 (column 3). These
maps correspond to a single-trial event of the house-viewing task (HOUS).

to adjust the threshold so that the final estimates of ¢R
§
2 specifically capture

task-activated voxels while excluding voxels that are affected by artifacts. The
higher specificity of the TD thresholding strategy can be clearly seen in the
ROC values shown in Figure 4.4H-L. The use of stability selection with the TD
threshold yields more specific estimates of ¢R

§
2 than with ST thresholding or

the original ME-SPFM method, while the sensitivity is slightly reduced. On
the other hand, the use of stability selection with a ST threshold improves the
sensitivity of the ¢R

§
2 estimates compared to the original ME-SPFM technique

while preserving its specificity.
Figure 4.5 depicts the time-series of the estimated ¢R

§
2 and denoised BOLD,

i.e., ¢R
§
2 convolved with the HRF, for a representative voxel of each task for the

subject depicted in Figure 4.4 and Figure 4.7 and compared to a reference voxel
in the lateral ventricles. The location of the voxels is shown in the corresponding
maps in Figure 4.7. The ST thresholding approach detects ¢R

§
2 events of the
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Figure 4.4: Representative subject with motion and respiration artifacts. A:
Grayplot of the second echo volume. The grayplot is divided into 4 sections:
gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and deep
white matter (DWM). B: Time-series of the global signal calculated in the whole
brain (WB, blue) and the deep white matter (DWM, green).
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Figure 4.4: C: Euclidean norm (e-norm) of the temporal derivative of the
realignment parameters. D: respiration volume signal. E: AUC percentile
corresponding to the time-dependent threshold (lines at 95th and 99th percentiles
are shown for reference).F: AUC values corresponding to the time-dependent
threshold are shown in blue. The horizontal dashed lines indicate the 95th
(orange) and 99th (green) percentiles corresponding to ST thresholding. Gray
bars in B-F indicate the onset and duration of each trial in the paradigm, with
their respective initials on top. Blue arrows point out two respiration-related
events, green arrows point out two motion-related events, and the orange arrow
points out a finger-tapping event. G: Probability density functions (estimated
by kernel density estimate) of the AUC values corresponding to the instances
of the two respiratory-related events (blue lines), a representative time-point
of one finger-tapping trial (orange line), the two largest peaks in the e-norm
trace (green lines), and the overall AUC distribution (black). The corresponding
coloured vertical dashed lines indicate the AUC value for the 95th percentile
of the TD thresholding approach, along with the 95th and 99th AUC values of
ST thresholding. H-L: Receiver operating characteristic (ROC) values for the
original ME-SPFM (orange), and proposed MvME-SPFM technique with the use
of stability selection with the ST (light blue) and TD (dark blue) thresholding
approaches for this dataset. The ROC plots depict the sensitivity and specificity
of the methods at correctly estimating the activity maps that correspond to the
6 trials of each task in the paradigm.

activity-inducing signal that correctly match the timings of the stimuli (i.e.,
high temporal sensitivity), but also shows events that occur in the resting state
and do not coincide with any activity-evoking trial. Based on comparison with
the events detected in the time series extracted from the lateral ventricles,
it can be conjectured that some of these events might be due to artifactual
and physiological fluctuations that remain in the signal after preprocessing.
On the other hand, ¢R

§
2 values estimated with the TD thresholding approach

match the timings of the stimuli almost perfectly with few missed trials (high
temporal specificity). This is supported by the few ¢R

§
2 events obtained for

the reference voxel in the ventricles. Likewise, the denoised BOLD time-series
obtained with the TD thresholding approach clearly describes signal changes
associated with the trials, whereas the denoised BOLD time-series estimated
with the ST thresholding strategy fits the original data very closely, which could
be interpreted as a signature of overfitting.

Figure 4.7 illustrates the activation maps of representative single-trial events of
each task for the same subject depicted in Figure 4.4. The activation maps of the
proposed MvME-SPFM formulation were compared using the two thresholding
approaches with the activation maps obtained with a single-trial GLM and
the previous ME-SPFM approach. While all PFM methods exhibit activation
maps that highly resemble those obtained with the single-trial GLM analysis,
differences between the methods can be observed. For instance, although the use
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Figure 4.5: Comparison of the estimated ¢R
§
2 (blue) and denoised BOLD (orange),

i.e., ¢R
§
2 convolved with the HRF, time-series when employing the ST (left) and

TD (right) thresholding approches, for representative voxels of each task (rows)
as well as one voxel from the lateral ventricle for reference. The estimates shown
here were obtained with Ω = 0.5. The preprocessed time series is shown in black.
The gray bars indicate the onset and duration of each trial for each task of the
experimental paradigm.

of stability selection with a ST thresholding approach yields maps with clusters
of activation of comparable size and location to those found with ME-SPFM, in
certain noisy trials (e.g., see HOUS-Trial 1), the ST-thresholding MvME-SPFM
maps can yield reduced spatial specificity, probably related to spurious, scattered
changes in R

§
2 . Across all tasks, the maps obtained with TD thresholding exhibit

a notably larger resemblance to the single-trial GLM, showing higher spatial
specificity and lower sensitivity compared to the other two PFM methods.

To further evaluate the proposed MvME-SPFM, the motor task of a single
subject (100206) extracted from the Human Connectome Project (HCP) dataset
(Van Essen et al., 2013) was analyzed. The data was 3 min 24 s long (after
removing the first 10 seconds for steady magnetization) with a TR of 0.72 s,
a multi-band factor of 8 and a spatial resolution of 2£2£2 mm3. The images
were already preprocessed using a standard HCP pipeline including realignment,
coregistration, spatial normalization and smoothing. The task was composed of
5 blocks of 12 s each, preceded by a 3 s cue indicating the task to be performed
by the participant. The conditions in each 5-second block were: left hand finger
tapping, right hand finger tapping, left foot movement, right foot movement, and
tongue movement. The process was repeated once more, resulting in a total of
10 blocks. We adjusted the signal model in Eq. (4.3) to be used with single-echo
data as described in (Gaudes et al., 2013; Uruñuela et al., 2023)

The accurate performance of the proposed MvME-SPFM method observed in
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Figure 4.6: Single-trial activity maps estimated for the single-echo motor task
data from the Human Connectome Project.Row 1 depicts the activation maps
obtained with a single-trial GLM (p ∑ 0.05), row 2 depicts the maps detected
with the novel Mv-SPFM technique with stability selection, Ω = 0.5 and a static
threshold (ST), and row 3 illustrates the results using a time-dependent threshold
(TD). The activity maps corresponding to the first trial are shown on top, and
the activity maps corresponding to the second trial are shown on the bottom.

the multi-echo fMRI data is consistent with the results found in the single-echo
data from the Human Connectome Project. Figure 4.6 depicts the single-trial
activity maps obtained with a GLM and the proposed approach with stability
selection and both ST and TD thresholding. In general, the activity maps
obtained with the proposed method are highly comparable to the single-trial
GLM activation maps. Importantly, the proposed method showed a larger
sensitivity to detect the activity evoked by the motor task for certain trials than
the timing-aware GLM analysis. For instance, the Mv-SPFM activation maps of
the second trial for the left hand finger tapping condition shows more BOLD
activity in motor regions of the right precental gyrus, which is barely seen in the
corresponding single-trial GLM map.

As illustrated in Figure 4.8, the Dice coefficient between the estimated
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Figure 4.7: Comparison of single-trial activation maps obtained with a GLM
(row 1) thresholded at p ∑ 0.05, the original ME-SPFM formulation with a
fixed selection of ∏ (row 2), the novel MvME-SPFM technique with stability
selection, Ω = 0.5 and a static threshold (ST, row 3), and using a time-dependent
threshold (TD, row 4). A representative trial is shown for each task. All the
maps correspond to the same subject and run shown in Figure 4.4.

single-trial ¢R
§
2 activity maps and the reference GLM activity maps (p ∑ 0.05)

demonstrates only a slight improvement over the original ME-SPFM formulation
when employing an ST thresholding approach with the novel MvME-SPFM
technique. In contrast, the Dice coefficients obtained with TD thresholding
show a very notable increase of nearly 50% in the median of the distribution of
Dice coefficients compared with the original ME-SPFM approach. Similarly, the
sensitivity and specificity distributions of ST thresholding demonstrate a slight
improvement with respect to the original ME-SPFM formulation. On the other
hand, the use of TD thresholding offers nearly perfect specificity (∏ 95%) at the
cost of reduced sensitivity across all experimental conditions. Hence, increasing
the specificity of the ¢R

§
2 maps is more beneficial for increasing the concordance

with the GLM maps than increasing the sensitivity.
The receiver operating characteristic (ROC) values in Figure 4.9 corroborate

the previous observations regardless of the value of Ω used in the MvME-SPFM
method. The estimates obtained with the ST threshold reveal an overall higher
sensitivity and a slightly higher specificity compared to the original ME-SPFM
technique. In contrast, the ROC values for the TD thresholding approach show
a clear improvement in specificity but lower sensitivity. These findings are in
line with the results shown in Figure 4.3, Figure 4.7 and Figure 4.5, as the
Dice and ROC values certify that the use of stability selection yields robust
activation maps regardless of the selection of the spatial regularization term
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Ω and obviating the need to choose the temporal regularization parameter ∏.
An interactive version of Figure 4.8 and Figure 4.9 is available in the following
GitHub repository: https://github.com/eurunuela/MvMEPFM_figures.

Figure 4.8: Dice coefficient (i.e., spatial overlap), sensitivity and specificity
coefficients of the single-trial activation maps for each of the experimental
conditions obtained with ME-SPFM, MvME-SPFM with stability selection and
a static thresholding approach (ST), and MvME-SPFM with stability selection
and a time-dependent thresholding approach (TD). These metrics were obtained
with a selection of Ω = 0.5. Reference activation maps were obtained with a single
trial GLM analysis and thresholded at uncorrected p ∑ 0.05. The density plot
shows the shape of the distribution of the Dice coefficients, and the box plot
depicts the median with a solid line, with each box spanning from quartile 1 to
quartile 3. The whiskers extend to 1.5 times the interquartile range.

These findings are further corroborated by the average activity maps across
trials, sessions and subjects for each condition in the task shown in Figure 4.10.
The maps obtained with the novel MvME-SPFM technique with stability selection
and TD thresholding show a high resemblance to the average of the single-trial
GLM activation maps (3dDeconvolve with independently-modulation (IM) option
in AFNI, thresholded at p < 0.05). Interestingly, the MvME-SPFM approach
seems to offer improved detection of neuronal-related activity than the GLM
approach for certain conditions, for example, in the voxels of the left inferior
frontal gyrus (i.e., Broca’s region) and left posterior superior temporal gyrus
(i.e., Wernicke’s region) for the reading condition, where the GLM maps show a
smaller cluster of activation.

Figure 4.11 shows the comparison with the HemoLearn algorithm (Cherkaoui
et al., 2021). Panels A and B illustrate the difficulty of selecting a suitable number
of components K for Hemolearn since the number of components giving the
highest correlation to the session-level GLM was different for each condition. The
timecourses of the estimated activity-inducing signal in C show that Hemolearn
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Figure 4.9: Receiver operating characteristic (ROC) values with the sensitivity
and specificity of each single trial’s activation map for all conditions and the
reference map obtained with a single-trial GLM. Different colors are used for the
different analyses: the original ME-SPFM, and the novel MvME-SPFM approach
using stability selection with the spatial regularization parameter set to Ω = 0.5
and the two different thresholding methods: static (ST) and time-dependent
(TD). In each analysis each dot represents a single trial, depicting all trials across
all datasets, and the centroids across all the single trials are also shown for the
three analyses.

Figure 4.10: Average activity maps across trials, sessions and subjects for
each condition in the task obtained with (top) a single-trial GLM analysis
(independently modulated, IM) and the proposed MvME-SPFM algorithm with
stability selection, Ω = 0.5 and a time-dependent threshold (TD).

struggles to capture the timings of the task in all conditions, while the MvME-
SPFM technique with stability selection and TD thresholding is able to capture
the expected activity-inducing signal with barely missing any of the events in
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the task. These observations are also visible in the activity maps shown in D,
where the activity maps obtained with the MvME-SPFM technique with stability
selection and TD thresholding are comparable to those obtained with the GLM
(see Figure 4.7), while the maps of the Hemolearn components that had the
highest correlation with the session-level GLM maps do not show a clear activity
pattern related to the task.

��� ���������� ��� ����������

The proposed whole-brain (i.e., multivariate) formulation for hemodynamic
deconvolution of multi-echo fMRI data with the use of stability selection
achieved a closer agreement with the activation maps obtained with a single-
trial GLM analysis than the original ME-SPFM method (Caballero-Gaudes
et al., 2019) and other state-of-the-art multivariate deconvolution method like
Hemolearn (Cherkaoui et al., 2021), while obviating the need to select the
temporal regularization parameter ∏ (as shown in Figure 4.7 and Figure 4.11).

Furthermore, this chapter demonstrated that the performance of the proposed
method was robust not only for the analysis of multi-echo data, but also when
analyzing single-echo data, as demonstrated in Figure 4.6. In addition, our
results illustrated that the stability selection procedure also offers robustness
against the choice of the spatial regularization parameter Ω, as the AUC maps for
different selections of Ω were practically identical, as shown in Figure 4.3. Hence,
although stability selection could be employed with a double selection of the
regularization parameters ∏ and Ω, this can be avoided for computational reasons
with little influence in the results. In any case, extending the proposed stability
selection technique to other formulations of the hemodynamic deconvolution
problem, such as the voxel-wise (i.e., univariate) single-echo (Gaudes et al.,
2013; Uruñuela et al., 2020) described in Chapter 2 and Chapter 3, univariate
multi-echo (Caballero-Gaudes et al., 2019), or low-rank and sparse formulations
(Cherkaoui et al., 2021; Uruñuela et al., 2021) described in Chapter 6, is relatively
straightforward.

One of the most interesting features of the proposed stability selection
procedure is the estimation of the area under the curve (AUC) measure, which
provides a new perspective for exploring fMRI data: a 4D movie with the
probability of each voxel and time point containing a neuronal-related event.
Therefore, the AUC time-series and maps provide complementary information
to the estimates of ¢R

§
2 , and serve as a reliability measure. Even though the

AUC measures were employed here to produce the final estimates of the activity-
inducing signal, they could also be exploited on their own. For instance, they
could be exploited to constrain functional connectivity analysis (Faskowitz et al.,
2020; Tagliazucchi et al., 2016) to voxels and instants with a high probability of
containing a neuronal-related event. Furthermore, the stability selection and the
AUC metric can also be interpreted from a machine learning perspective, where
the outputs from a collection of lasso learners are combined with an ensemble
regression approach. Alternatively, the stability selection procedure could also
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Figure 4.11: Comparison of the activity maps obtained with the novel MvME-
SPFM technique with stability selection, Ω = 0.5 and a time-dependent threshold
(TD) with Hemolearn. Session 1 of subject P3SBJ01 was used for this comparison.
A and B show the highest correlation to the session-level GLM regressor and
activity map respectively obtained by Hemolearn for each condition in the task
(FTAP in red, HOUS in dark blue, BMOT in green, READ in yellow, and MUSI
in purple) and the range of K components explored (K = 5. . .40). C illustrates
the timecourses of MvME-SPFM (blue, ¢R

§
2 ) and Hemolearn-estimated (orange,

percent signal change) activity-inducing signal in a representative voxel for each
condition.

be linked to Bayesian approaches where the prior is given by the range of values
of the regularization term ∏ and the total posterior probability of the neuronal
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Figure 4.11: The gray bars show the onset and duration of each trial within
a condition, and the measured fMRI signal is shown in percent signal change
(PSC) in black. D compares the trial-level activity maps estimated with MvME-
SPFM with the Hemolearn activity map with the highest correlation with the
session-level GLM map across the explored range of K components. Every row
in C and D correspond to the different conditions in the task.

event is calculated as the integration of the stability paths, i.e., the AUC (see
discussion in Meinshausen & Bühlmann, 2010).

Although the estimation of the AUC eliminates the need to select the
spatial and temporal regularization parameters ∏ and Ω, it requires the use
of a thresholding approach given the nature of the AUC measure, which
cannot be equal to zero by definition. This chapter adopted two data-driven
thresholding strategies, static (ST) and time-dependent (TD), based on the AUC
values of a region where no BOLD signal changes related to neuronal activity
are assumed to occur (e.g., deep white matter voxels). The use of a static
AUC thresholding approach yielded higher sensitivity than the original ME-
SPFM method (Caballero-Gaudes et al., 2019) while maintaining the specificity
as demonstrated in Figure 4.9. Notably, this improvement was seen in all
trials with the exception of one outlier run, regardless of the choice of the
spatial regularization parameter Ω. Nevertheless, the use of a time-dependent
thresholding approach may be even justified by the increased specificity and
nearly perfect retrieval of the activity-inducing signal (row 3 in Figure 4.5) when
motion- and respiration-related artifacts are visible in the data (see arrows in
Figure 4.4). However, the application of the time-dependent threshold may
reduce sensitivity at the single-trial level in some cases. Hence, the results
shown in Figure 4.9 encourage the use of the static thresholding approach as
an exploratory step before employing the time-dependent threshold. Other
thresholding criteria could involve the comparison of AUC values obtained from
surrogate (null) data (Liégeois et al., 2021) with the AUC values obtained with
the original data.

Furthermore, the extension of the original ME-SPFM algorithm from a
voxel-wise to a whole-brain (i.e., multivariate) regularized problem paves the
way for more refined formulations that exploit the spatial characteristics and
information available in fMRI and complementary imaging data into the spatial
regularization term in order to improve the estimation of ¢R

§
2 . For instance, the

spatial regularization could be constrained within brain regions delineated by
commonly used parcellations (e.g., the Schaefer-Yeo atlas) (Karahanoğlu et al.,
2013) or within neighbouring gray matter voxels (Farouj et al., 2017). Other
mixed-norm regularization terms could also be investigated in future work to
account for alternative models of spatially varying noise SNR, e.g., the octagonal
shrinkage and clustering algorithm for regression (OSCAR) (Gueddari et al.,
2021), which employs a `1 plus a pairwise `1-norm between voxels instead of a
global `2-norm to account for spatially varying SNR across voxels. Moreover, the
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multivariate formulation could exploit complimentary multimodal information
such as structural connectivity from diffusion-based MRI data (Bolton et al.,
2019). In addition, the proposed formulation can be easily adapted to model
the changes in neuronal activity in terms of its innovations, which can be more
appropiate to capture sustained BOLD events as described in Chapter 2 (see
also (Uruñuela et al., 2023)).

One limitation of the proposed MvME-SPFM technique is the assumption of
a particular shape of the hemodynamic response to construct the HRF matrix
for deconvolution in Eq. (4.3). The proposed model does not account for the
variability in the temporal characteristics of the HRF across the brain, which
originates from differences in stimulus intensity and patterns, short inter-event
intervals, or differences in the HRF shape between resting-state and task-based
paradigms (Chen et al., 2021; Polimeni & Lewis, 2021; Sadaghiani et al., 2009;
Yeşilyurt et al., 2008). To resolve this issue, given that the performance of
MvME-SPFM is not time-locked to the trials, the current formulation could
be extended to account for variability in the onset of the activity-inducing
signal, as well as to introduce flexibility in the model, by employing multiple
basis functions (Gaudes et al., 2012). Furthermore, our method could be easily
employed independently within parcels of any commonly-used atlases with a
pre-estimated, localized HRF. Finally, the computational demands involved in
the stability selection procedure, which solves the regularization problem in
Eq. (4.5) for a range of ∏ values on a number of subsampled surrogate datasets,
are higher than solving the regularization path and finding an adequate solution
via model selection criteria as in ME-SPFM (Caballero-Gaudes et al., 2019).
At the moment of writing, the method took approximately 10 hours to run
on a high-performance computing cluster parallelizing the stability selection
procedure so that each surrogate dataset was processed in a different core.

��� ���� ��� ���� ������������

The code and materials used to generate the figures in this work can be found in
the following GitHub repository: https://github.com/eurunuela/MvMEPFM_
figures.

The Python package is available as part of splora in the following GitHub
repository: https://github.com/ParadigmFreeMapping/splora.
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This chapter is in preparation to be published and will be available as an
interactive website at https://github.com/eurunuela/msPFM_paper.

Functional magnetic resonance imaging (fMRI) during naturalistic paradigms
has become increasingly popular in cognitive neuroscience as a way to investigate
cognition and behaviour within more ecologically valid contexts. However,
current methods for fMRI data analysis in naturalistic paradigms are limited in
how they can characterize the precise spatio-temporal dynamics of neural activity
evoked by naturalistic stimuli. On the one hand, model-based approaches, such
as traditional general linear model (GLM) analyses and encoding models, make
strong assumptions about what features of the stimulus might be important
and when they ocurr, which limits an accurate interpretation of the resulting
maps of blood oxygenation-level dependent (BOLD) activity. On the other hand,
model-free approaches, such as inter-subject correlation and event segmentation
algorithms, make no assumptions about stimulus features, but necessitate
combining information across multiple time points, making it difficult to
trace the recovered signal back to particular moments in the stimulus. To
address these limitations, this chapter introduces a novel method for fMRI
data analysis in naturalistic paradigms, called multi-subject Paradigm Free
Mapping (msPFM). Unlike existing approaches, msPFM estimates shared
and individualized neuronal-related brain responses at the finest spatial and
temporal resolution available in fMRI data. The msPFM algorithm implements a
multivariate regularized least-squares algorithm for hemodynamic deconvolution
of fMRI data that estimates the neuronal-related BOLD activity without relying
on the temporal structure of the stimuli. Its performance is demonstrated
through simulations and experimental movie-watching datasets, showcasing its
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ability to detect moment-to-moment neuronal-related activity patterns associated
with low- and mid-level features of the movie. Furthermore, msPFM reveals
a spatial cortical gradient of BOLD activity that aligns with previous findings
obtained with event segmentation methods. It also provides an extra temporal
dimension to the maps obtained with intersubject correlation analyses. In
summary, msPFM offers a powerful tool for exploring the spatio-temporal
dynamics of the rich patterns of neural activity evoked by naturalistic fMRI
paradigms. Researchers can access the open-source Python package for msPFM
at https://github.com/ParadigmFreeMapping/msPFM.

��� ������������

The use of movies and stories in the so-called naturalistic paradigms combined
with functional magnetic resonance imaging (fMRI) has increased considerably
in recent years as a replacement for task and resting state experimental
paradigms to study human cognition and mapping brain function (Finn, 2021).
It owes its popularity not only to its similarity with freeform cognition and
unconstrained behaviour, but also to the fact that individual differences in
functional connectivity are more stable (Vanderwal et al., 2017; Wang et
al., 2017) and offer improved predictions of behavior (Finn & Bandettini,
2021). Furthermore, naturalistic paradigms have emerged as valuable tools
for investigating various neurological and developmental disorders. For example,
studies utilizing movie-watching have revealed distinct functional network
configurations among individuals with autism, highlighting their idiosyncratic
patterns (Bolton, Freitas, et al., 2020; Bolton et al., 2018). Additionally, research
has demonstrated a reduction in intersubject correlations within attention-related
brain areas among individuals with attention deficit hyperactivity disorder
(ADHD), indicating a desynchronization of brain activity in this diseased
population (Salmi et al., 2020). Movie-watching fMRI has also been utilized
to investigate the memory representations of healthy individuals during the
retrieval of movie scenes, which revealed a shared spatial organization among
subjects exposed to identical naturalistic stimuli (Chen et al., 2017). Finally,
naturalistic paradigms have played a crucial role in demonstrating the meaningful
structure and reliability of movie scene segmentation across subjects (Raccah
et al., 2022; Speer et al., 2009; Zacks et al., 2009). Notably, studies have revealed
that variations in these patterns of event segmentation are associated with age,
cognitive abilities (Bailey et al., 2017; Jafarpour et al., 2022; Zacks et al., 2006),
and clinical conditions (Zalla et al., 2004).

Several techniques have been employed to analyze naturalistic fMRI data.
One such technique is intersubject correlation (ISC), which involves calculating
the synchrony among the voxelwise signals of multiple subjects throughout
the data acquisition process (Chen et al., 2020; Hasson et al., 2004; Jangraw
et al., 2023; Nastase et al., 2019; Wilson et al., 2007). An extension to this
approach incorporates the temporal dimension with the sliding window ISC
method (averaging ISC over a temporal window of a few volumes) or the
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instantaneous phase synchronization (Glerean et al., 2012), These approaches
generate voxelwise measures of moment-to-moment synchrony (Nummenmaa
et al., 2012), which can then be contrasted against stimulus models, offering
an intermediate approach that combines aspects of stimulus-dependent and
stimulus-free analyses. However, the degree of synchrony is calculated during the
entire acquisition or within the win dow duration, i.e. spanning over multiple
TRs. Intra and inter-subject correlation of functional connectivity (Vanderwal
et al., 2017) and the intersubject correlation of dynamic connectivity (Di &
Biswal, 2020) offer additional approaches for investigating naturalistic fMRI data
that examine the interplay between brain regions and the consistent patterns of
connectivity across individuals. Alternatively, the detection of event segmentation
boundaries has also been a major focus in the development of data analysis
techniques for naturalistic paradigms. Currently, two main state-of-the-art
techniques are mostly used to blindly identify temporal boundaries within a
sequence of events without prior knowledge: hidden Markov models (HMM)
(Baldassano et al., 2017) and greedy state boundary search (GSBS) (Geerligs
et al., 2021). Finally, another strategy involves constructing encoding models
that utilize representations extracted from neural network language models to
forecast BOLD responses to natural language stimuli (Jain et al., 2020), as well
as the use of deep neural network models using human visual areas to learn
non-hierarchical representations (St-Yves et al., 2023).

However, the aforementioned methods have several limitations. First,
ISC reveals widespread synchronization across individuals without specific
associations with events of particular cognitive functions throughout a scan.
Although sliding-window ISC can enhance temporal resolution for characterizing
such events, it should be noted that this technique does not offer the utmost level
of temporal precision. Second, the HMM and GSBS operate at the ROI level,
and hence provide a low spatial resolution that does not allow the discovery of
precise, individualized spatial patterns. More importantly, all these techniques
summarize the within-region fMRI signal into states or connectivity patterns
that are sustained over several TRs, and therefore, they do not capture temporal
dynamics at the fastest temporal resolution available in the data, i.e., at the TR
level. In summary, these methods rule out the precision mapping of idiosyncratic
spatio-temporal patterns evoked by naturalistic stimuli. One possible approach
to address this issue is to employ data-driven techniques that operate at the TR
and voxel level. Hemodynamic deconvolution is a method that falls under this
category (Gaudes et al., 2010; Karahanoğlu et al., 2013; Uruñuela et al., 2023).
It has the ability to estimate neuronal-related activity without relying on the
temporal information of the experimental paradigm, and as a result, it proves to
be particularly valuable when dealing with naturalistic stimuli.

Here, we introduce a novel method for the analysis of naturalistic fMRI
data called multi-subject Paradigm Free Mapping (msPFM) that overcomes
the limitations mentioned above. msPFM solves a multivariate regularized
least-squares problem for hemodynamic deconvolution of the fMRI signal across
subjects to blindly estimate the shared and individualized neuronal-related
activity without requiring any temporal model of the stimulus. Unlike previous
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methods for naturalistic fMRI data, this formulation allows the msPFM algorithm
to operate at the fastest temporal resolution (TR), and the highest spatial
resolution (voxel). We introduce msPFM and evaluate the method in simulations
and two experimental datasets with movie-watching paradigms to showcase
its potential to elucidate moment-to-moment spatio-temporal neural activity
patterns evoked by naturalistic paradigms and assess their ability to map low-
and mid-level movie features. The datasets, Iteration and Sherlock, differed in
terms of the studied low- and mid-level features, subject counts (43 vs 16), and
data type (multi-echo vs single-echo).

��� ������������� �������� ���� �������
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In gradient-echo fMRI acquisitions, the time series of a voxel v normalized
to signal percentage change can be approximated with the following linear
relationship with the echo time (TE) (Kundu et al., 2017):

y(v,T Ek , t ) º¢Ω(v, t )°T Ek¢R
§
2 (v, t )+≤(v, t ), (5.1)

where ¢R
§
2 (v, t ) represents BOLD-like changes, ¢Ω(v, t ) describes changes in the

net magnetization, and ≤(v, t ) is a random noise term. Changes in the net
magnetization ¢Ω(v, t ) are mostly due to motion- and hardware-related artefacts,
which can be reduced in preprocessing by using denoising tools such as ICA-
AROMA (Pruim, Mennes, van Rooij, et al., 2015) for single-echo acquisitions or
ME-ICA (Kundu et al., 2012, 2017) for multi-echo acquisitions. Hereinafter, the
term ¢Ω(v, t ) can be neglected for a simpler notation.

Following the same notation described in previous chapters, let us also consider
that changes in R

§
2 (v, t ) that are related to neuronal activity will follow a linear

time-invariant model that is defined as the convolution of the activity-inducing
signal s(v, t ) with the hemodynamic response h(v, t ) (Boynton et al., 1996; Glover,
1999). Considering the signal is sampled at every TR, the previous signal model
can be written in discrete matrix form as yv =°T Ek Hsv +≤v , where H 2 RN£N

is the Toeplitz convolution matrix with shifted versions of the hemodynamic
response function (HRF) (Gaudes et al., 2013; Gitelman et al., 2003), yv , sv ,
≤v 2RN , and N is the number of scans (i.e. TRs).

Without loss of generalization, we assume that the HRF model is the same
across voxels. As described in Chapter 2, the activity-inducing signal sv can also
be written in terms of the innovation signal uv as sv = Luv , where the matrix
L 2RN£N is the first-order integration operator (Cherkaoui et al., 2019; Uruñuela
et al., 2020, 2023). Hence, the signal model for a given T Ek (i.e. single-echo)
can be written as follows:

yv,k =°T Ek HLuv +≤v , (5.2)
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which can be extended for a multi-echo acquisition by concatenating the time
series of each echo (k = 1, . . . ,K ) in a single vector:

2
64

yv,1
...

yv,K

3
75=

2
64

°TE1HL

...
°TEK HL

3
75uv +

2
64
≤v,1
...

≤v,K

3
75 . (5.3)

Assuming that data from multiple subjects (s = 1, . . . ,S) are aligned to a
common space, the multivariate multi-echo formulation introduced by (Uruñuela
et al., 2022) (see Chapter 4) is adapted to simultaneously estimate shared
and individualized voxelwise activity-inducing signal in multiple subjects. This
method, referred to as multi-subject Paradigm Free Mapping (msPFM), therefore
proposes to concatenate the voxelwise fMRI signal of multiple subjects into
Yv 2RK ·N S . Hence, for a given voxel v or ROI the signal model of msPFM can
be written as follows:
2
64

yv,1,1 · · · yv,S,1
...

. . .
...

yv,1,K · · · yv,S,K

3
75=

2
64

°TE1HL

...
°TEK HL

3
75

£
uv,1 . . . uv,S

§
+

2
64
≤v,1,1 . . . ≤v,S,1

...
. . .

...
≤v,1,K . . . ≤v,S,K

3
75 ,

(5.4)
which can be simplified as Y = HUv +E.
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Assuming the noise follows a Normal distribution, the innovation signals for
all subjects can be estimated by solving a multivariate ordinary least squares
problem. However, due to high collinearity of the Toeplitz convolution matrix H,
the estimates will exhibit a large variance in temporal space. Furthermore, in this
multi-subject setting where subjects are exposed to the same naturalistic stimuli,
certain amount of synchronization of the neuronal activity across subjects can
be presumed at given instances. Based on these priors, the estimation of the
innovation signal Uv can be solved with the following regularized multivariate
least squares problem:

Uv = argmin
Uv

kYv °HUvk2
2 +ΩkDv Uvk1 + (1°Ω)kDv Uvk2,1. (5.5)

Here, the regularization term kDv Uvk1 promotes sparsity of the innovation signals
across time and subjects, treating each estimate independently. On the other
hand, the mixed-norm regularization term kDv Uvk2,1 promotes the co-activation
of the innovation signals across all subjects simultaneously (Gramfort et al.,
2011; Uruñuela et al., 2022). The parameter Ω controls the balance between the
two regularization terms, and Dv = diag(∏v,1, . . . ,∏v,S ) 2RS£S is a diagonal matrix
with subject-specific and region-specific regularization parameters ∏v,s , which
allows adjusting to the level of noise in each subject’s data and region.

As it has been discussed in previous chapters, the selection of the
regularization parameters ∏v,s is critical to obtain accurate estimates of the
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innovation signal U. Here, for each region, a subject-specific regularization
parameter ∏v,s = 30æs was chosen for each subject s, where æs is a pre-estimated
noise level of the data fit and the pre-estimated noise level is derived from the
median absolute deviation of fine-scale wavelet coefficients (Daubechies, order
3) of each subject. In addition, the parameter Ω was set to 0.8 to balance the
sparsity of the innovation signals (i.e. capturing the idiosyncrasies of each subject
and moment) and the grouping of synchronous co-activations across subjects
(i.e. shared neuronal responses across subject at a given time). Both the ∏ and
Ω parameters were set based on simulations.

Relevantly, notice that msPFM estimates a 4D dataset of the innovation
signal Uv 2RT£S for every subject. That is, unlike a GLM method that calculates
activation maps for each onset in the paradigm, msPFM estimates activity maps
for each TR. In fact, the innovation signal estimated by msPFM can easily be
converted into the activity-inducing signal with an integration operator, and
convolved with the HRF to obtain a denoised reconstruction of the data.

��� �������
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We generated a voxel time-series for subjects divided into three groups (groups
1-3) with similar, yet different BOLD patterns to simulate group responses and
idiosyncrasies as shown in Figure 5.1 and Figure 5.2. We also generated two
time-series with no BOLD responses (group 4) as a time-series were msPFM
should not find any activity. The time-series included Gaussian noise to simulate
the effect of noise in fMRI data, and were normalized to percent signal change.

Two scenarios were simulated to study the effect of how the relative number
of subjects in each group affects the estimation of the innovation signal in the
other subjects: (1) the groups contained a different ratio of subjects per group:
group 1 contained 35 subjects, group 2 contained 15 subjects, and group 3
contained 5 subjects (see Figure 5.1); and (2) the same ratio of subjects per
group is preserved: groups 1, 2 and 3 contain the same amount of subjects (20)
as shown in Figure 5.2.

The data for both scenarios were analyzed with the msPFM algorithm, where
∏s for each subject was carefully chosen as ∏s = 30æs , as described in detail in
Section 5.2.2 The parameter Ω was set to 0.8. A Jupyter Notebook with all
the simulated scenarios is available at https://github.com/eurunuela/msPFM_
paper.

����� ������������ ����� �� ����������� ��� �������������

The performance of the proposed msPFM approach is illustrated in two
naturalistic movie-watching datasets acquired with different MRI parameters and
with different cognitive characteristics: The Iteration dataset and the Sherlock
dataset. These datasets were chosen due to their diffferent characteristics, as
they would allow to validate the proposed msPFM method in a broader manner.
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In particular, Iteration offers 43 subjects and multi-echo data as opposed to
Sherlock’s 16 subjects and single-echo data. However, Sherlock has been widely
used by the naturalistic fMRI community and thus is well known. In addition,
Sherlock contains a higher number of characters compared with the single
character in Iteration (a second one appears at the very end), which implies
that there is a higher amount of speech present in Sherlock. Finally, the movies
are also different in terms of their visuals, with Iteration mostly having a bright
background, while Sherlock contains more variety in terms of brightness.

��� ��������� �������

48 participants were used in this study (all native English speakers; 27F, median
age 24.5, range = (19,64)) from the National Institutes of Health (NIH). See
Sava-Segal et al., 2022 for full procedural detail but in brief: subjects watched
four movies (ranging from 7:27-12:27 min each) and subsequently completed a
task battery designed to probe their interpretations and reactions to the movie,
including the following: (i) a 3-min free recall/appraisal task in which subjects
spoke freely about their memories and impressions of the movie, during which
their speech was captured with a noise-canceling microphone; (ii) multiple-choice
comprehension questions designed to ensure they had been paying attention; (iii)
multiple-choice and Likert-style items assessing reactions to various characters
and to the movie overall. The movie order was pseudorandomized for each
subject such that order was counterbalanced at the group level. From the four
movies, we selected the one with the clearest event boundaries or scene cuts.

MRI data were collected using a 3T Siemens Prisma scanner with a 64-
channel head coil in 43 subjects (all native English speakers; 27F, median
age 24.5, range= (19,64)) while they watched a movie (called Iteration;
https://youtu.be/c53fGdK84rc - 12:27 min:sec) at the National Institutes of
Health (NIH). All subjects provided informed written consent prior to the
start of the study in accordance with experimental procedures approved by the
Institutional Review Board of the NIH. Functional images were acquired using a
T2*-weighted multiband multi-echo echo-planar imaging (EPI) pulse sequence
(TR = 1000 ms, echo times (TE) = [13.6, 31.86, 50.12 ms], flip angle = 60 deg,
field of view = 216 x 216 mm, voxel resolution = 3.0 mm isotropic, number
of slices = 52 (whole-brain coverage), multiband acceleration factor = 4, with
interleaved acquisition). Anatomical images were acquired using a T1-weighted
MPRAGE pulse sequence (TR = 2530 ms, TE = 3.30 ms, flip angle = 7 deg, field
of view = 256 x 256 mm, voxel resolution = 1.0 mm isotropic). For more details
on the data and experimental design, we refer the reader to (Sava-Segal et al.,
2022). The raw data are available at https://openneuro.org/datasets/ds004516/.

Following the conversion of the original DICOM images to NIFTI format,
we used AFNI (Cox, 1996) to preprocess MRI data. The preprocessing pipeline
was generated with AFNI’s afni_proc function and edited to use tedana (DuPre
et al., 2021; The Tedana Community et al., 2022) for multi-echo independent
component analysis (ME-ICA) denoising. Preprocessing included the following
steps: despiking, volume realignment, affine coregistration with the subject-
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specific anatomical T1-weighted image, nonlinear warping to the MNI152_2009
template, multi-echo ICA decomposition with tedana (DuPre et al., 2021; The
Tedana Community et al., 2022), manual classification of ME-ICA components
with Rica (Uruñuela, 2023), nuisance regression of the components classified
as noise, spatial smoothing with an isotropic gaussian kernel with full-width
half-maximum of 4 mm, detrending of up to 6th order polynomials, nuisance
regression of each subject’s six motion time series, their derivatives, and linear
polynomial baselines for each of the functional runs, and normalization to percent
signal change. Nuisance regression steps were perfomed together in as single
step before normalizing to percent signal change.

Finally, the preprocessed data was then analyzed with a shared response
model (Chen, Chen, et al., 2015) in BrainIAK (Kumar et al., 2020) to account
for different functional topographies across individuals. First, the model was fit
to capture reliable whole-brain responses to the movie across subjects in a lower
dimensional feature (or component) space of 50 features. Then, the individual
voxelwise time courses for each participant were reconstructed using this model.
This procedure serves as an additional denoising step and makes spatiotemporal
patterns more consistent across subjects. For computational reasons, all analyses
were conducted on the average time-series of the 1000 cortical ROIs of the
Schaefer atlas (Schaefer et al., 2017).

��� �������� �������

16 participants from the Sherlock dataset in (Chen et al., 2017) were used for
this study. See the original manuscript for full procedural details, but in brief:
participants watched a 48-min segment of the BBC television series Sherlock and
subsequently verbally recalled the narrative of the show aloud while undergoing
fMRI data acquisition. During the recall task participants were instructed to
talk for a minimum of 10 minutes, and were allowed to talk for as long as they
wished. Experimenters manually ended the scanning run during the recall task
based on verbal indication from participants.

MRI data were collected on a 3T Siemens Skyra scanner with a 20-channel
head coil. Functional images were acquired using a T2*-weighted echo-planar
imaging (EPI) pulse sequence (TR = 1500 ms, TE = 28 ms, flip angle = 64 deg,
field of view = 192 £ 192 mm2, in-plane resolution = 3.0 £ 3.0 mm2, slice thickness
= 4 mm, number of slices = 27 (whole-brain coverage) with ascending interleaved
acquisition). Reported analyses come from a viewing run of 23 minutes. The raw
data were available at https://openneuro.org/datasets/ds001132/versions/1.0.0.

The Sherlock data was preprocessed using fMRIPrep (Esteban et al., 2018)
with the ICA AROMA option (Pruim, Mennes, van Rooij, et al., 2015).
The preprocessing also included spatial smoothing with a gaussian kernel of
fwhm=6mm, and voxelwise nuisance regression of the 6 realignment parameters,
their squares, their derivatives, and squared derivatives. Finally, we performed a
detrending step using a 6th order polynomial to remove slow drifts in the data and
normalized the data to percent signal change. Similar to The Iteration dataset,
the preprocessed data was then applied the shared response model (Chen, Chen,
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et al., 2015) in BrainIAK (Kumar et al., 2020), and analyses were conducted
using the average time-series of the 1000 ROIs from the Schaefer atlas (Schaefer
et al., 2017).
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The msPFM algorithm was employed to estimate the activity-inducing signal for
each subject and parcel in the Schaefer 1000-ROI atlas. While msPFM allows for
a voxelwise analysis, 1000 ROIs were employed in the analysis for computational
efficiency and to address the voxel mismatch issue caused by variations in
anatomical structures across subjects. The regularization parameters ∏ and Ω
were selected as described in the simulations section above. The double-gamma
SPM HRF was employed via nilearn’s first level GLM module.
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In order to summarize the estimated activity-inducing signal across subjects and
to compute metrics that allow us to validate our method, the positive population
synchrony was calculated, denoted as PopSync+. This metric quantifies the
number of subjects that show positive neuronal-related activity at each TR,
i.e., the number of subjects that activate together in response to the stimuli.
This metric was calculated for each ROI, thus obtaining a 4D map of positive
population synchrony. Note that unlike other methods that have been used in the
literature to quantify population synchrony, this method provides a continuous
measure at the TR level, rather than a value per temporal window, which allows
us to perform a more fine-grained analysis of the population synchrony.
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Recent studies have used hidden Markov model (HMM) algorithms to automati-
cally segment brain activity during the experimental acquisition into a sequence
of events (a.k.a. event segmentation). A cortical gradient of segmentation rate
has been reported such that primary sensory regions segment (transition between
events) more quickly, while higher-order association regions segment more slowly
(Baldassano et al., 2017; Geerligs et al., 2022); this principle has been related to
temporal receptive windows and intrinsic timescales of brain regions (Hasson
et al., 2008; Murray et al., 2014). Conversely, these findings suggest a lower
occurrence in higher-order association areas that are known to be sensitive to
narrative information over longer timescales (Honey et al., 2012; Lerner et al.,
2011). The aim here was to determine if msPFM recovers this same cortical
gradient. To this end, the msPFM-based event rate was calculated for each
parcel, defined as the number of activity-inducing signal events per minute,
using the PopSync+ time series. Only events in the activity-inducing signal
that elicited a positive BOLD response were used; i.e., events were defined as
instances where the activity-inducing signal remained non-zero for at least 5
TRs.
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Another known feature of brain activity during naturalistic stimulation is
that synchrony of activity time courses across subjects, known as inter-subject
correlation (ISC) (Finn et al., 2020; Hasson et al., 2004; Nastase et al., 2019),
also roughly follows a sensory-association gradient, such that subjects are more
similar to one another (i.e., more synchronized) in primary visual and auditory
regions, while activity becomes more idiosyncratic in higher-order regions. An
ISC-like metric was defined from msPFM estimates by quantifying the median
correlation across subjects of the estimated activity-inducing signal in each
parcel. Then, this was compared to a "classic" ISC approach, in which the
median correlation across subjects of average raw BOLD signal was quantified
in each parcel.
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In order to confirm that the multi-subject Paradigm Free Mapping method can
detect brain activity patterns related to sensory stimuli, the correlation between
the population synchrony and the following low-level features was calculated:
changes in luminance (i.e., the derivative of the luminance), and changes in audio
(i.e., the derivative of the audio envelope). The low-level features were extracted
from the movies employing a Python package named pliers. More precisely,
the BrightnessExtractor and RMSExtractor functions were used respectively.
The correlation between the population synchrony and the low-level features
was calculated for each ROI, thus obtaining a 3D dataset of correlation values.

The study of the relationship between the brain activity and the naturalistic
stimuli was extended to mid-level features. For instance, naturalistic stimuli
where subjects see faces, buildings and hand-related movements evoke brain activ-
ity patterns in the fusiform gyrus (Epstein & Kanwisher, 1998; Haxby et al., 2000),
the collateral sulcus (Aguirre, Zarahn, & D’Esposito, 1998a; Epstein & Kan-
wisher, 1998), and the middle postcentral sulcus (Hasson et al., 2004) respectively.
In this study, the primary focus was to examine the relationship between popula-
tion synchrony and speech, the presence of hands, and the presence of faces in the
movies. To extract the relevant information, the ClarifaiAPIVideoExtractor
and FaceRecognitionFaceLocationsExtractor functions provided by the
pliers library we utilized. These functions allow to accurately determine the
timing of speech and hand movements, as well as detect the presence of faces in
the movie footage.

��� �������
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Benchmarking msPFM on simulated data where the ground truth is known
enables to assess whether it can effectively identify shared neuronal responses
across subjects, while accommodating individual differences in response to
naturalistic stimuli. The two simulation scenarios described in Section 5.3 were
employed here.
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Figure 5.1: Results of running msPFM on simulated data for a ratio of subjects
per group of 35, 15, and 5 subjects respectively (groups are separated by a
dashed line). The first two heatmaps represent the simulated BOLD and activity-
inducing signals for all the simulated subjects. The third and fourth heatmaps
represent the estimated activity-inducing and innovation signals for all the
simulated subjects. The time courses below depict the simulated BOLD (black)
and activity-inducing (blue) signals for a subject in each group and the estimated
activity-inducing signal is shown in red.

Visual inspection of the results, as presented in the bottom two heatmaps
and the red time courses on Figure 5.1 and Figure 5.2, revealed that the
activity-inducing signal estimated by msPFM closely resembled the ground
truth. This was true for both scenarios, with an unequal and an equal number
of subjects per group. msPFM demonstrates proficiency in estimating prolonged
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Figure 5.2: Results of running msPFM on simulated data for a ratio of subjects
per group of 20, 20, and 20 subjects respectively (groups are separated by
a dashed line). The first two heatmaps represent the simulated BOLD and
activity-inducing signals for all the simulated subjects. The third and fourth
heatmaps represent the estimated activity-inducing and innovation signals for
all the simulated subjects. The time courses below depict the simulated BOLD
(black) and activity-inducing (blue) signals for a subject in each group and the
estimated activity-inducing signal is shown in red.

activity-inducing signals owing to the adequacy of using a model that estimates
the innovations, albeit with relatively lower accuracy in capturing shorter,
transient activations (we refer the reader to Uruñuela et al., 2023 for an in-
depth comparison between models based on the activity-inducing signal –the
spike model– or the innovations –the block model). Furthermore, the influence
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of the `2,1-norm (see Equation (5.5)) is conspicuous in the estimation of group
four, which lacks simulated activity-signal. In this case, artifacts originating
from the estimates of the remaining groups are noticeable, yet these artifacts are
relatively minor compared to the estimated activity-inducing signals of the other
groups. In addition, the estimated signals for these subjects never return to zero,
making it unlikely that they represent any neuronal-related activity and easily
identifiable as artefacts. These results are consistent for both scenarios. Hence,
based on the simulations, msPFM can pinpoint events that trigger shared and
individualized neuronal responses without knowing their timings.
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Figure 5.3 and Figure 5.4 show a proof of concept of the PopSync+ metrics
and the individual differences in the estimated activity-inducing signal. In fact,
the thinner time series in both datasets clearly demonstrate the presence of
individual differences in the msPFM estimates of each subject, ehich are consistly
observed in the two examples of the left middle temporal gyrus (Brodman area
21) and the V1 visual area. Notably, the PopSync+ time series (depicted in red)
displays a pronounced alignment with speech events occurring in the movies
(depicted in black). This alignment is particularly prominent in the context
of Sherlock, wherein the episode encompasses a notably higher frequency of
speech events compared to Iteration. In the case of the latter, msPFM not only
captures the speech events but also identifies additional neural dynamics during
non-speech periods in this ROI. Figure 5.4 illustrates the synchrony between
changes in the luminance of the movies and the PopSync+ in V1. Specifically,
a stronger alignment is observed in the case of Iteration, where the changes in
luminance exhibit greater extremes compared to the case of Sherlock, which is
also reflected in the estimated neuronal response in V1 and hence the PopSync+
measure.
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As shown in Figure 5.5, the event rates of both HMM and msPFM for the
Iteration dataset show a posterior-to-anterior cortical gradient with a higher
frequency of events in posterior, sensory regions and slower rates in anterior,
higher-order regions. This gradient is consistent with previous findings in the
literature (Sava-Segal et al., 2022). However, the scatter plots in the bottom
row illustrate that the difference in event rates between posterior and anterior
regions is less pronounced in the case of msPFM as compared with the HMM.
This discrepancy can be attributed to the divergent definitions of what an event
is for the two methods. The HMM approach identifies states that are expected to
persist for a specific number of time points, while the msPFM algorithm captures
"punctate" events that can be directly associated with individual moments in
the stimulus. As a consequence, the msPFM algorithm is expected to detect
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Figure 5.3: Time series of the estimated activity-inducing signal for each subject
in the left middle temporal gyrus (Brodman 21 area) for the Iteration (top)
and Sherlock (bottom) datasets. The black lines represent the speech events in
the movie. The red lines represent the PopSync+, i.e., the sum across subjects
of the activity-inducing signal that evokes a positive BOLD response in each
parcel. Representative instances of the movies and their respective Speech and
PopSync+ TRs are shown for both datasets.

a greater number of events, particularly in anterior regions. In the context
of the Sherlock dataset, it is worth noting that the event rate is noticeably
lower when calculated with HMM, and consequently, the cortical gradient is
less apparent. On the other hand, the msPFM event rate demonstrates values
similar to Iteration and reveals a more distinct cortical gradient. When it comes
to the inter-subject correlation, the two maps and their values were remarkably
similar as shown in Figure 5.6, indicating that msPFM is able to recover this
same sensory-association gradient, with subjects being more synchronized with
one another lower-order regions, while being more idiosyncratic in higher-order
regions.
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Figure 5.4: Time series of the estimated activity-inducing signal for each subject
in V1 for the Iteration (top) and Sherlock (bottom) datasets. The black lines
represent the changes in luminance in the movie. The red lines represent the
PopSync+, i.e., the sum across subjects of the activity-inducing signal that
evokes a positive BOLD response in each parcel. Representative instances of the
movies and their changes in luminance and PopSync+ TRs are shown for both
datasets.
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The results of the correlation analysis with the low- and mid-level movie features
are shown in Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 respectively.

In terms of luminance, our observations reveal contrasting patterns between
Sherlock and Iteration in regions of the visual cortex. While Sherlock
demonstrates a positive correlation, indicating a relationship between luminance
and brain activity, Iteration exhibits a negative correlation in the same regions.
Conversely, when examining changes in luminance (i.e., the derivative of the
luminance time course), both datasets display a positive correlation within
the visual cortex. These findings can be interpreted as a consequence of the
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Figure 5.5: Event rate for the Iteration (left) and Sherlock (right) datasets. The
event rate maps obtained with the HMM (top) and msPFM algorithms (bottom)
are compared. The bottom row shows the differences in values between msPFM
and the HMM approach.

luminance adaptation in Iteration. The movie predominantly features very
bright scenes, occasionally transitioning to dark moments as shown in the blue
time courses at the bottom left of Figure 5.7. In contrast, Sherlock contains
more diverse scenes in multiple locations, thereby exhibiting a greater range of
luminance with both the luminance and its derivative being very similar (see
red time courses in the bottom left of Figure 5.7).

The audio envelope analysis reveals a noteworthy positive correlation within
regions of the auditory cortex for both datasets, with a more pronounced
correlation observed in Iteration. Examination of audio envelope variations,
i.e., the derivate of the audio envelope, further demonstrates a robust positive
correlation within the auditory cortex for both datasets. In this case, both the
audio envelope and its derivate showed a very similar pattern (see red and blue
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Figure 5.6: Inter-subject correlation for the Iteration (left) and Sherlock (right)
datasets. The inter-subject correlation obtained with msPFM (bottom) is
compared with the inter-subject correlation obtained with the classic approach
(top). The bottom row shows the differences in values between msPFM and the
classical ISC approach.

time courses in the bottom right of Figure 5.8). This underscores the ability of
msPFM to accurately capture the intricate neural dynamics associated with the
auditory component of the movies.

Next, mid-level movie features were examined, including the presence of
speech as well as hands and faces onscreen. Significantly, it can be observed
that msPFM adeptly captures the intricate neural dynamics linked to speech
in both datasets, revealing large correlations in expected areas of the superior
temporal gyrus, Heschl’s gyrus, middle temporal and inferior frontal gyrus,
all of them bilaterally. These maps demonstrate the adaptability of msPFM
to capture varying amounts of speech present in the respective movies. This
adaptability is particularly pronounced in the context of Iteration, characterized
by a scarcity of speech compared to Sherlock—a movie abundant in speech- as
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Figure 5.7: Correlation between the PopSync+ and low-level features of the
movie with luminance on the left and its derivative on the right. Significant
regions are highlighted by a black contour, while non-significant regions are
displayed with increasing transparency as the correlation values are further from
the significance threshold. The correlation maps are shown for the Iteration (top)
and Sherlock (bottom) datasets. The time courses below depict the luminance
(lighter color) and its derivate (darker color) for Iteration (blue) and Sherlock
(red).

shown in the time courses in the bottom left of Figure 5.9. Notwithstanding
this discrepancy, msPFM reliably captures the neural dynamics associated with
speech in language-related areas, reaffirming its efficacy.

Furthermore, positive correlation between the msPFM-estimated activity-
inducing signal and the presence of hands in the movies can also be observed
in bilateral sensorimotor regions around the central sulcus. In the context
of Iteration, the correlation was observed prominently within regions of the
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Figure 5.8: Correlation between the PopSync+ and low-level features of the
movie with luminance and its derivative on the left, and the audio envelope and
its derivative on the right. Significant regions are highlighted by a black contour,
while non-significant regions are displayed with increasing transparency as the
correlation values are further from the significance threshold. The correlation
maps are shown for the Iteration (top) and Sherlock (bottom) datasets. The
time courses of the audio envelope (lighter color) and its derivate (darker color)
are shown in blue for Iteration and in red for Sherlock.

somatosensory cortex (i.e. postcentral gyrus) and supplementary motor areas,
while Sherlock exhibited correlation within more anterior regions in the motor
cortex (i.e. precentral gyri). These findings could potentially be explained by the
contrasting composition of Iteration and Sherlock. While Iteration predominantly
incorporates hands in relation to other objects or the main character’s actions
(see the high frequency in the blue time course at the bottom left of Figure 5.9),
it features fewer hands-only shots. On the other hand, Sherlock exhibits a higher
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Figure 5.9: Correlation between the PopSync+ and mid-level features of the
movie with the presence of speech on the left and hands on the right. Significant
regions are highlighted by a black contour, while non-significant regions are
displayed with increasing transparency as the correlation values are further from
the significance threshold. The correlation maps are shown for the Iteration (top)
and Sherlock (bottom) datasets. The time courses below depict the presence of
speech (lighter color) and hands (darker color) for Iteration in blue and Sherlock
in red.

frequency of hands-only shots (though few across the entire movie as shown in
red in the bottom left time course in Figure 5.9), which may account for the
aforementioned findings.

Finally, as shown in Figure 5.10, correlation between the PopSync+ time-
series and the presence of faces was found in the Iteration movie in the left
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Figure 5.10: Correlation between the PopSync+ and mid-level features of the
movie with the presence of faces on the left and its derivative on the right.
Significant regions are highlighted by a black contour, while non-significant
regions are displayed with increasing transparency as the correlation values are
further from the significance threshold. The correlation maps are shown for
the Iteration (top) and Sherlock (bottom) datasets. The time courses of the
presence of faces (lighter color) and its derivate (darker color) are shown in blue
for Iteration and red for Sherlock.

middle temporal gyrus, a region associated with facial familiarity (Zhen et al.,
2013), and the posterior superior temporal sulcus, a region associated with the
processing of gaze and expression (Baseler et al., 2012). This finding aligns with
the movie’s nature, as Iteration predominantly features a single character and
contains several headshots where viewers have their eyes locked on the character’s
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eyes and can see her facial expression. No significant or substantial correlation
between the PopSync+ measure and the presence of faces was found in the movie
in the Sherlock dataset. However, when focusing on changes in faces specifically
within the Sherlock dataset, a positive correlation was observed in the fusiform
gyrus, a region associated with face recognition (Kanwisher & Yovel, 2006;
Kanwisher et al., 1997; Rossion et al., 2003) Interestingly, this correlation with
changes in faces was not as strong when examining changes in faces for Iteration.
These contrasting findings may be attributed to the distinctive characteristics of
the movies. In Sherlock, which showcases multiple characters and their facial
expressions during dialogue, the adaptation or identification of faces may play a
role (see long periods of changing faces in the red time courses at the bottom of
Figure 5.10). On the contrary, Iteration primarily focuses on a single character,
suggesting an fMRI adaptation effect in fusiform face areas, i.e. a lower response
to an identically repeated face than to new faces (Avidan & Behrmann, 2010;
Eger et al., 2005; Gauthier & Nelson, 2001; Pourtois et al., 2005; Rotshtein et al.,
2004; Yovel & Kanwisher, 2004).

Overall, these analyses showcase the potential of msPFM in capturing the
activity linked to lower- and mid-level stimulus features within anticipated brain
regions and timeframes, even without prior knowledge of event timings and
regardless of the stimulus itself. Furthermore, these findings highlight the ability
of msPFM to identify additional stimulus-specific regions associated with the
intricate and distinctive content inherent to each stimulus.
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The potential of multi-subject Paradigm Free Mapping (msPFM) to detect and
elucidate moment-to-moment spatio-temporal neural activity patterns evoked by
naturalistic stimuli has been showcased using simulations and two experimental
datasets. While previous investigations have employed alternative approaches,
such as hidden Markov models (HMM) (Baldassano et al., 2017), greedy state
boundary search (GSBS) (Geerligs et al., 2021), inter-subject correlation (Nastase
et al., 2019) or dynamic functional connectivity (Di & Biswal, 2020), these
methods operate on a limited number of regions of interest (ROIs) and condense
the temporal dynamics of the BOLD signal into states or connectivity patterns
that encompass a time period exceeding the acquired data’s temporal resolution.
Consequently, the results shown here highlight the unparalleled potential of
msPFM to operate at the utmost temporal and spatial precision achievable.

Importantly, msPFM was validated by comparing it against other common
algorithms used to assess naturalistic fMRI data, such as Hidden Markov Models
(HMM) and intersubject correlation (ISC). First, the event-rate analysis shown
in Figure 5.5 revealed a distinct cortical gradient, characterized by faster event
rates in posterior sensory regions and slower rates in anterior higher-order regions.
These results align with previous findings on neural event boundaries across
subjects and the segmentation of events using HMM (Baldassano et al., 2017;
Sava-Segal et al., 2022), which could support the idea that the brain’s cortical
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organization is arranged hierarchically, with sensory inputs passing through
unimodal areas and being abstracted into broader conceptual and cognitive
representations in transmodal areas (Bernhardt et al., 2022; Margulies et al.,
2016; Samara et al., 2023). However, msPFM offers several advantages over the
HMM-based approach. First, the HMM method requires specifying a desired
number of events (k) for each region. While there are data-driven ways to
estimate an appropriate value for k at the group level, these require additional
computational time and power, and are not straightforward to implement for
individual subjects. In contrast, msPFM does not require pre-specifying any value
of k, and instead recovers individual neuronal-related events at both the group
and individual level. Furthermore, the HMM model assumes that each "state"
exhibits a unique neural activity signature that changes at state boundaries,
which may not hold true universally, as certain brain regions could potentially
revert to previous or new states inside this perdiod. In contrast, msPFM applies
no restriction on the number and duration of the neural activity patterns that
can be detected, thereby providing a more comprehensive representation of the
brain’s spatio-temporal dynamics. The crucial distinction is that the HMM
approach identifies events or states that persist for a specific duration, whereas
the msPFM technique retrieves discrete instances of neuronal-related BOLD
activity, which can be directly associated with individual moments in the stimulus.
Another important distinction is the computational cost needed to analyse data
with each of the two techniques. In fact, while finding the appropiate number
of events with HMM can take > 24h at the single-subject level with 1000 ROIs
using a high performance computing server with up to 512GB of RAM available,
finding estimates of the activity-inducing signal and counting the number of
events with msPFM only took between 5 and 10 minutes.

Furthermore, techniques like HMM and inter-subject correlation are not
specifically designed to detect activity evoked by the stimulus in different brain
regions, but rather to identify regions that encode stimulus-related information
consistently across multiple individuals (Nastase et al., 2019). In contrast,
msPFM can detect moment-to-moment neuronal resonses not only shared across
subject, but also distinguish patterns occurring in individual subjects. By
correlating the recovered population synchrony with features of the movies, ??
and ?? show that msPFM is able to detect neuronal activity driven by both low-
and mid-level features of the stimulus in both primary sensory and higher-order
brain regions. Particularly, fMRI adaptation to the stimulus (Grill-Spector &
Malach, 2001) may be present in some features such as luminance, with the
visual cortex mostly showing activity in response to changes in the luminance in
Iteration probably due to the increased contrast associated with these changes
(Goodyear & Menon, 1998); or the presence of faces, with Iteration having a
single character and no reliable face-related activity in the fusiform gyrus as
opposed to Sherlock and the many characters in the clip, where the fusiform gyrus
showed correlation with changes in faces (Kanwisher & Yovel, 2006; Kanwisher
et al., 1997; Rossion et al., 2003). The case of Sherlock is particularly challenging
because faces are always closely followed by speech, which is a stronger effect
and can hide the response to the presence of faces (de la Vega et al., 2022).
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While this study introduces a novel approach for analyzing naturalistic fMRI
data, there is potential for further enhancements. Adopting a data-driven strategy
like stability selection (Meinshausen & Bühlmann, 2010; Uruñuela et al., 2022)
could eliminate the need for manually selecting the regularization parameter. By
adopting such an approach, not only would the method’s robustness be enhanced,
but it would also enable estimation of the probability of neuronal-related events
at each TR, subject, and voxel or ROI. Additionally, the utilization of optimal
transport methods could further refine the spatial differentiation of shared and
individualized patterns by improving its robustness against anatomical (spatial)
and hemodynamic (temporal) variability between subjects (Janati et al., 2020).
Nevertheless, the current methodology adequately demonstrates the potential of
msPFM-alike approaches in investigating the brain’s spatio-temporal dynamics
during naturalistic stimuli. For instance, msPFM offers a valuable approach to
unraveling the precise neural mechanisms involved in event segmentation. It
can be employed independently or in conjunction with other techniques such as
HMM or GSBS to gain an understanding of the timescale for memory encoding,
as well as the continuous updating or encoding of memory fragments following
the completion of an event (Baldassano et al., 2017; Silva et al., 2019). Moreover,
novel research utilizing msPFM could be aimed at comprehending how the human
brain comprehends these complex multiplexed signals and understanding the
specific features of the stimulus that elicit responses in the human brain. Finally,
the proposed method has the potential to elucidate the connection between
individual differences in these responses and subsequent memory formation or
appraisal of the stimulus.

��� ���� ��� ���� ������������

The code and materials used to generate the figures in this work can be found in
the following GitHub repository: https://github.com/eurunuela/msPFM_paper.

The msPFM Python package is available in the following GitHub repository:
https://github.com/ParadigmFreeMapping/msPFM

���

https://github.com/eurunuela/msPFM_paper
https://github.com/ParadigmFreeMapping/msPFM


�������

6
������ ��� �������� ��������
���� �������

This chapter was published as Uruñuela, E., Moia, S., & Caballero-Gaudes,
C. (2021). A low rank and sparse paradigm free mapping algorithm for
deconvolution of fMRI data. 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI). DOI: https://doi.org/10.1109/ISBI48211.2021.
9433821.

Current deconvolution algorithms for functional magnetic resonance imaging
(fMRI) data are hindered by widespread signal changes arising from motion or
physiological processes (e.g. deep breaths) that can be interpreted incorrectly as
neuronal-related hemodynamic events. This work proposes a novel deconvolution
approach that simultaneously estimates global signal fluctuations and neuronal-
related activity with no prior information about the timings of the blood
oxygenation level-dependent (BOLD) events by means of a sparse and low
rank decomposition algorithm. The performance of the proposed method is
evaluated on simulated and experimental fMRI data, and compared with state-
of-the-art sparsity-based deconvolution approaches and with a conventional
analysis that is aware of the temporal model of the neuronal-related activity.
This chapter demonstrates that the novel Sparse and Low Rank Paradigm
Free Mapping (SPLORA-PFM) can estimate global signal fluctuations related
to motion in the task, while estimating the neuronal-related activity with
high fidelity. The open-source Python package for SPLORA is available at
https://github.com/ParadigmFreeMapping/splora
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As noted in previous chapters of this thesis, hemodynamic deconvolution
algorithms of functional magnetic resonance imaging (fMRI) data aim to estimate
blood oxygenation level-dependent (BOLD) events with no prior knowledge of
their timing. These algorithms can be specially useful when the information about
the timing of the neuronal activity that drives the BOLD events is unknown,
inaccurate or insufficient (e.g., resting-state, naturalistic paradigms, clinical
conditions). However, the performance of existing deconvolution approaches can
be hampered considerably in presence of global, widespread signal changes due
to head jerks, hardware artefacts or prominent non-neuronal physiological events
(e.g., deep breaths) (Power et al., 2017). Signal artefacts due to head motion and
hardware malfunction can be reduced by means of denoising algorithms, such
as ICA-AROMA (Pruim, Mennes, van Rooij, et al., 2015) or ME-ICA (Kundu
et al., 2012), or can be compensated with a multi-echo Paradigm Free Mapping
formulation (Caballero-Gaudes et al., 2019). However, global physiological events
are more difficult to compensate during data preprocessing (Power et al., 2018)
and can be misinterpreted as neuronally related since their temporal signature
can closely resemble the hemodynamic response function (HRF) assumed in the
deconvolution model to describe neurovascular coupling.

This chapter proposes a new Paradigm Free Mapping algorithm for spatio-
temporal deconvolution of fMRI data that is capable of simultaneously estimating
global signal fluctuations and neuronal-related activity based on a sparse and low-
rank decomposition approach. The proposed algorithm extends the formulation
of the multivariate-sparse Paradigm Free Mapping (Mv-SPFM) introduced in
Chapter 4 by using a regularized estimator consisting of the same structured
sparsity promoting `2,1+`1 norm but adding a low-rank-promoting nuclear-norm
(Otazo et al., 2015).

��� ������ ��� �������� �������� ���� �������

Let us consider that the whole-brain fMRI data Y 2RN £V where N is the number
of volumes and V is the number of voxels of the acquisition can be decomposed
into three terms, i.e.

Y = HS+L+N, (6.1)

where the neuronal-related component HS is the convolution of voxel-specific
neuronal-related signals S with the Toeplitz matrix H 2RN £N with shifted HRFs
in its columns (i.e. similar to the formulation used for multivariate Paradigm Free
Mapping Uruñuela et al., 2022), the global fluctuations can be captured as the
sum of P spatially widespread (i.e. global) low-rank components L =P

P

p=1 vp a
T
p

where vp 2RN £1 and ap 2RV £1 denote their corresponding spatial and temporal
signatures, and N represents additional white Gaussian noise.

The following multivariate regularized least-squares problem is proposed to
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Algorithm 1 SPLORA-PFM algorithm using MFISTA-VA
1: input: Y,H

2: initialize: L0,S0,YS,0,YL,0,YA,0 = 0, c = kHk2
F

3: while not converged do
4: ZS = YS,k + (1/c)§ (Y°YA,k)
5: ZL = YL,k + (1/c)§ (Y°YA,k)
6: # L: singular-value soft thresholding (SVT)
7: Lk = SVT∏L (ZS)
8: # S: proximity operator for the `2,1+`1 norm
9: Sk = proxDS (ZL)

10: # Update A

11: ZA = (Lk °YL,k)+H(Sk °YS,k)
12: Ak = YA,k +ZA

13: # Calculate MFISTA step size: tk =
1+

q
1+4§t

2
k°1

2
14: # Calculate ¥k as in (Zibetti et al., 2018)
15: YS,k+1 = Sk + tk°1

tk+1
(Sk °Sk°1)+ tk

tk+1
(ZS °Sk)+ tk

tk+1
(¥k °1)(ZS °YS,k)

16: YL,k+1 = Lk + tk°1
tk+1

(Lk °Lk°1)+ tk

tk+1
(ZL °Lk)+ tk

tk+1
(¥k °1)(ZL °YL,k)

17: YA,k+1 = Ak + tk°1
tk+1

(Ak °Ak°1)+ tk

tk+1
(ZA °Ak)+ tk

tk+1
(¥k °1)(ZA °YA,k)

18: end while
19: output: Lk,Sk

estimate both the neuronal-related signals and the global components:

L̂, Ŝ = argmin
L,S

kY°HS°Lk2
F
+∏LkLk§+ (1°Ω)kDS Sk2,1 +ΩkDS Sk1, (6.2)

where k · kF denotes the Frobenious norm, the `2,1+`1-norm term enforces
temporal sparsity and spatial structure on the estimate of the neuronal-related
activity and Ω controls the tradeoff between both terms (Gramfort et al., 2011;
Uruñuela et al., 2022) and Ds = diag

°
∏S1 , . . . ,∏SV

¢
is a diagonal matrix with voxel-

specific non-negative regularization parameters that balances the sparsity of S

and data fidelity for each voxel. In addition, the nuclear-norm k ·k§ encourages
the estimation of low-rank components where the non-negative regularization
parameter ∏L controls the number of low-rank components.

Here, Ω is empirically set to 0.8 to enforce structure in the spatial domain
and maintain the sparsity of the estimates. For each voxel, ∏Si

is set equal to
the median absolute deviation estimate of the noise standard deviation from the
fine-scale wavelet coefficients of the voxel time series (Daubechies, order 3). After
the singular value decomposition (SVD) of the data, ∏L is set to select P low-rank
components corresponding to the largest eigenvalues showing a difference of at
least 10% with respect to the next eigenvalue.

The optimization problem in Equation (6.2) is solved via monotone FISTA
with variable acceleration (MFISTA-VA) (Zibetti et al., 2018) as shown in
Algorithm 1.
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1000 voxels were simulated including two groups of 50 voxels with a known
BOLD signal, whereas the remaining voxels did not contain any BOLD signal.
For each voxel, different signal sources representing motion-related, thermal
and physiological noise were added following (Gaudes et al., 2013), as well as
two global low-rank components (see Figure 6.1 A) with a random voxelwise
amplitude simulating widespread signal changes due to two deep breaths (Power
et al., 2018) and large amplitude spikes mimicking spin-history artefacts due to
head jerks, respectively.

The performance of the proposed SPLORA-PFM algorithm was asssesed
on different signal to noise ratio (SNR) settings and with different ratios of
voxels with BOLD signals to total number of voxels (denoted as BOLD/total
voxels ratio). Four different algorithms based on Equation (6.2) were evaluated
depending on the regularization parameters:

1. SPFM with no low-rank estimation and no spatial regularization (SPFM,
Ω = 1, ∏L = 0)

2. MV-SPFM with no low-rank estimation (MV-SPFM, Ω = 0.8, ∏L = 0)

3. SPLORA-PFM algorithm with only the L1-norm (LR+SPFM, Ω = 1)

4. SPLORA-PFM algorithm (Ω = 0.8)

These were benchmarked against the original univariate SPFM algorithm with
regularization parameter selected according to the Bayesian Information Criterion
(SPFM-BIC) (Gaudes et al., 2013). Note that both the SPFM algorithm with
Ω = 1 and ∏L = 0 and the original SPFM-BIC algorithm operate voxelwise, except
the regularization parameters are chosen differently.

True and false positive and negative values were calculated for the ROC values
comparing the estimated activity-inducing signal with the simulated (binary)
activity-inducing signal (ground truth) as follows: a TR was deemed as a true
positive (TP) when the estimated and simulated values were both non-zero; a
TR was treated as true negative (TN) when both the estimated and simulated
values were zero; false positives (FP) were given to those TRs with a non-zero
estimated value when the simulated value was zero; and false negatives (FN)
were considered when the estimated value was zero but the simulated value was
non-zero. Sensitivity and specificity values were calculated as TP/(TP+FN) and
TN/(TN+FP) respectively.

����� ������������ ����

Nine healthy subjects were scanned in a 3T Siemens Prisma MR scanner in
ten sessions at the same hour and day of the week. T2*-weighted multi-echo
fMRI data was collected with a multiband (MB) multiecho gradient echo planar
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imaging sequence (340 scans, 52 slices, Partial-Fourier=6/8, voxel size=2.4x2.4x3
mm3, TR=1.5 s, TEs=10.6/28.69/46.78/64.87/82.96 ms, flip angle=70o , MB
factor=4, GRAPPA=2). During the fMRI acquisition, subjects performed a
motor task consisting of five different movements (left-hand finger tapping, right-
hand finger tapping, moving the left toes, moving the right toes and moving the
tongue). These conditions were randomly intermixed every 16 seconds, and were
only repeated once the entire set of conditions were presented. For this work,
only the first two sessions were selected to evaluate the algorithm.

Data preprocessing was carried out with AFNI (Cox, 1996) including volume
realignment, optimally combining the echo time datasets with tedana (DuPre et
al., 2021), detrending of up to 5th-order Legendre polynomials, spatial smoothing
with a Gaussian kernel of 3 mm Full Width Half Maximum, and normalization
to signal percentage change. Based on the simulation results, preprocessed data
was analyzed with the novel SPLORA-PFM algorithm with Ω = 0.8, and ∏L and
DS were selected as described in Section 6.2.

��� ������� ��� ����������
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Figure 6.1B depicts the receiver operating characteristic (ROC) curves with
the sensitivity and specificity rates for the estimation of the neuronal-related
signal Ŝ for each simulation scenario. Regardless of the simulated SNR and the
BOLD/total voxels ratios, the ROC values demonstrate the proposed SPLORA-
PFM algorithm achieves higher specificity and sensitivity than the original
SPFM method, except for the highest BOLD/total number of voxels ratio and
highest SNR where the multivariate nature of the model prevents the algorithm
from fitting accurately each voxel. As expected, all variations of the proposed
algorithm exhibit lower sensitivity as the SNR is reduced while maintaining
the level of specificity. In addition, Figure 6.1C plots the error of the low-rank
component estimate obtained with the SPLORA-PFM algorithm for Ω = 0.8,
showing that its estimate improves with a lower BOLD/total voxels ratio.

����� ������������ ����

Figure 6.2A-F depict the results of the SPLORA-PFM algorithm in a
representative dataset. For this subject and session, the proposed method
estimated P = 3 global low-rank components whose time series ap and spatial
maps vp are shown in Figures 2C and 2F, respectively. Figure 6.2A shows the
Euclidean norm of the motion displacements (E-norm), DVARS (the spatial
root mean square of the data; Power et al., 2012; Smyser et al., 2011) and
the average global signal (GS) time series, whereas Figure 6.2B displays the
grayplots of the preprocessed data (RAW), estimated low-rank component and
estimated neuronal-related component in gray matter (GM) and white matter
(WM) voxels. The first low-rank component captures signal fluctuations related
to head movements and susceptibility artefacts during the ’moving the tongue’
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Figure 6.1: Simulation results. A) An example of the simulated signals for the
different SNR conditions; B) ROC values for the estimation of the neuronal-
related signal with: SPFM using BIC (SPFM BIC), SPFM with no low-rank
estimation and no spatial regularization (SPFM, Ω = 1), MV-SPFM with no low-
rank estimation (MV-SPFM, Ω = 0.8), the SPLORA-PFM algorithm with only
the L1-norm (LR+SPFM, Ω = 1), and the SPLORA-PFM algorithm (Ω = 0.8). C)
Estimation error of the low-rank components for different ratios of BOLD/total
number of voxels.

condition, suggesting that the subject moved the head while performing the
tongue movement task. The second low-rank component has a time series that
closely follows the global signal and its spatial map actually delineates major
arteries and draining veins, whereas the third component is clearly related
to widespread physiological fluctuations. Among participants, the number of
estimated low-rank components ranged between 1 and 5.

Furthermore, Figure 6.2D and Figure 6.2E illustrate the time series of the
estimated neuronal-related signal for a representative voxel (see cross in the first
map) and the maps for several individual events of the tongue movements and
right hand finger tapping conditions, respectively. The SPLORA-PFM maps
reveal clusters of activity in similar regions to those inferred with a traditional
general linear model (GLM) analysis, which is aware of the timings of the events.
The single-trial GLM activation maps are thresholded based on their t-statistic
at a significance threshold of p < 0.001. Notably, the SPLORA-PFM maps still
depict the tongue areas of the motor cortex bilaterally even though the timing
of the first low-rank component also closely followed the tongue condition.

Finally, Figure 6.3 depicts the ROC values of the MV-SPFM and SPLORA-
PFM, both using Ω = 0.8, and the original SPFM algorithm using the GLM
maps of each event thresholded at a p = 0.001 as the ground-truth. The ROC
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Figure 6.2: A) Euclidean norm of the motion displacements (E-norm) (blue),
DVARS (black) and global (gray) signals of the fMRI data; B) Grayplots of
gray matter (GM) and white matter (WM) of the preprocessed fMRI data, the
estimated low-rank and neuronal-related components; C) Time series and F)
maps of the estimated low-rank components; D) Time series and E) maps of
representative single-trial neuronal-related (motor) activity. The color bands in
the plots with the time series illustrate the timing of the different conditions.
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Figure 6.3: ROC values of the five conditions for the three algorithms tested:
SPFM, MV-SPFM and SPLORA-PFM (red, dark-purple and dark-green dots
correspond to the subject in Figure 6.2).

curves of the five motor task conditions show that both the MV-SPFM and the
SPLORA-PFM approaches provide higher sensitivity at the cost of a reduced
specificity, and that the higher complexity involved in estimating the low-rank
component does not diminish the accuracy in deconvolving the neuronal-related
component of the signal.

This work introduced a novel formulation for the deconvolution of BOLD
fMRI data using a low rank and sparse algorithm that captures global fluctuations
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due to motion artefacts or physiological signals that typically reduce the accuracy
of neuronal related estimates of currently used algorithms. The formulation
described in this chapter was presented for single-echo acquisition and the
spike model. However, it can be adapted straightforwardly for multi-echo
(Caballero-Gaudes et al., 2019) or the block model (Cherkaoui et al., 2019;
Karahanoğlu et al., 2013; Uruñuela et al., 2023) using the multi-echo and
innovation signals described in Chapter 4 and Chapter 2 respectively. Likewise,
the selection of the regularization parameters Ds , ∏L and Ω was done empirically
here and could be further optimized using robust approaches such as stability
selection (Meinshausen & Bühlmann, 2010; Uruñuela et al., 2020) as described in
Chapter 3 and Chapter 4. Finally, future work will be directed towards evaluating
the performance of SPLORA-PFM on resting-state data. Specifically, these
evaluations will assess its effectiveness in mitigating the influence of commonly
observed global fluctuations on activity-inducing signal estimates, since it is
expected that SPLORA-PFM will exhibit superior performance in this regard
compared to its performance on task fMRI data.
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As mentioned in the introduction (Chapter 1), conventional single trial fMRI
analysis relies heavily on preexisting knowledge of event timing (Buckner et al.,
1996; Menon et al., 1998; Richter et al., 1997). However, in certain situations such
as clinical settings, resting-state, or naturalistic paradigms, it can be challenging
or even impossible to formulate a temporal model of activations. This thesis has
introduced new fMRI analysis techniques that allow for the study of true single
trial BOLD responses without any prior information about the event timings.
These methods greatly improve upon the Paradigm Free Mapping approach
(Gaudes et al., 2013), and extend its capabilities to include multivariate and
multi-subject settings.

In Chapter 2, the underlying motivations and principles of Paradigm Free
Mapping (PFM) and hemodynamic deconvolution are discussed. Additionally,
the chapter also delved into existing fMRI analysis methods that aim to conduct
single trial experiments without the need for precise or null specifications of the
experimental paradigm. Notably, Total Activation (TA) was highlighted as a
leading deconvolution technique that follows an analysis formulation, in contrast
to the synthesis formulation of PFM. The chapter also introduced the block
model for PFM, which allows for the estimation of the innovation signal –the
derivative of the activity-inducing signal. This approach is especially useful for
block-design experiments and utilizes the sparsity constraint of the LASSO more
effectively. After thorough comparison, it was found that the two methods are
essentially equivalent, with PFM emerging as the preferred option due to its
simplistic and adaptable formulation. This paved the way for the development of
various PFM techniques in this thesis, including stability-based PFM (Chapter 3),
multivariate PFM (Chapter 4), multi-subject PFM (Chapter 5), and sparse and
low-rank PFM (Chapter 6).
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A crucial aspect for achieving satisfactory operation of the PFM techniques
is the accurate selection of the regularization parameters, as the deconvolution
relies on regularized estimators. In the original PFM techniques (Gaudes et al.,
2013), the choice of the regularization parameter ∏ was determined using Akaike
and Bayesian information criteria independently for each voxel. Chapter 3
introduced an alternative approach based on stability selection, which eliminates
the need for selecting this parameter altogether. Moreover, this new procedure
offers an additional metric, defined as the area under the curve of the stability
path, that represents the likelihood of the detected events being true at the finest
spatial and temporal scales.

Chapter 4 presented a novel approach to the PFM methodology, introducing
a multivariate formulation that organizes voxel or ROI time series into a matrix
and incorporates the stability selection procedure. By combining these two
techniques with the use of the `1+`2,1 mixed norm group sparsity regularization
–which incorporates spatial information and interactions into the formulation–
the chapter showcased the enhanced performance of the multivariate PFM with
stability selection in comparison to the original univariate formulation of PFM.
Notably, this method yielded results that were more concordant with single-trial
GLM findings. Additionally, the chapter demonstrated the robustness of the
approach across both single-echo and multi-echo fMRI data. This was achieved
through the utilization of the area under the curve (AUC) measure, which
facilitated the application of various thresholding techniques adaptable to the
noise level inherent in the data.

Chapter 5 introduced a new application of the multivariate PFM formulation:
simultaneous deconvolution of multiple subjects performing a naturalistic
paradigm. In this case, instead of concatenating voxels or ROIs to form a
time by space matrix, the same voxel or ROI from different subjects was used
to create a time by subject matrix. The underlying assumption is that the
estimation of neuronal-related activity should not be significantly affected by
anatomical and functional differences between subjects once their data has been
aligned to a shared space or template. This assumption holds true when analyzing
data at the ROI level, where differences are smoothed out during averaging
and spatial resolution is reduced. However, when working with voxels, this
assumption no longer holds, and differences across subjects are expected. Due
to the immense computational cost and memory requirements of simultaneously
deconvolving 43 subjects at the voxel level, the analysis in this chapter was
performed at the ROI level, where the assumption remained valid. The results
demonstrated the capability of the multi-subject PFM (msPFM) algorithm
to detect shared and individualized neuronal-related activity across subjects
without prior knowledge. Furthermore, the technique successfully linked moment-
to-moment brain activity to its underlying causes. Encouragingly, the group
synchrony metric showed significant correlations with changes in luminance,
audio, speech, the presence of hands, and the presence of faces. Importantly,
msPFM was able to adapt to different movies. For example, in the movie
"Iteration," where a single character’s face was frequently shown, the group
synchrony metric correlated with the presence of faces in left middle temporal
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gyrus, which is associated with face familiarity and gaze. In contrast, in the
movie "Sherlock," where multiple characters appeared and facial identification
was more challenging, the group synchrony metric correlated with changes in
the presence of faces in the fusiform face areas. These findings indicate that
participants may have adapted to certain characteristics of the stimuli, such
as luminance and the presence of faces, and that the msPFM estimates were
able to capture this adaptation. Although these results are promising, many
questions still remain unanswered. For instance, utilizing msPFM could help us
understand how the human brain comprehends complex multiplexed signals and
identify the specific stimulus features that elicit responses. Furthermore, msPFM
has the potential to elucidate the connection between individual differences in
these responses and subsequent memory formation or appraisal of the stimulus.

In Chapter 6, the nuclear norm was employed as an additional regularization
term in the multivariate PFM formulation. This term effectively tackles the
issue of global fluctuations in the BOLD signal, including motion-related signals
and physiological artifacts, which can distort the deconvolution of neuronal-
related activity. By employing the sparse and low-rank PFM algorithm, the
method successfully mitigated this bias, resulting in an accurate estimation of the
activity-inducing signal. Notably, the results exhibited a remarkable similarity
between the sparse and low-rank PFM algorithm and the single-trial GLM
results in detecting neuronal-related activity in a complex dataset characterized
by numerous conditions in the experimental task. When the regularization
parameter ∏ was manually selected, the algorithm performed comparably to the
multivariate PFM. However, the selection of the regularization parameter for
the nuclear norm penalty in the sparse and low-rank PFM posed a significant
challenge, which will be addressed in the subsequent section. Given the success of
the stability selection procedure in Chapter 3 and Chapter 4, it is worth exploring
its adaptation for this algorithm to avoid selecting all three regularization
parameters.

Overall, these series of studies demonstrate that PFM techniques can be used
to reliably retrieve the neuronal-related activity from fMRI data without any
prior information about the experimental paradigm, and that there now exists a
formulation of PFM that is suitable for potentially any experimental setting and
research question.

Finally, the code used for all the research and algorithms presented in this
thesis was written in Python. To promote the use of the PFM techniques
developed within this thesis, three separate Python packages have been created
and made available as open source software: pySPFM for the univariate analysis
and as the core library for the other two, splora for the multivariate and
sparse and low-rank PFM, and msPFM for the multi-subject version of PFM. The
packages are available on GitHub at https://github.com/paradigm-free-mapping
and can be installed using the Python package manager pip.
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This thesis showcases research findings that emphasize certain aspects deserving
further developments or refinement. First of all, this thesis assumed an identical
hemodynamic response model for the entire brain. However, the waveform of the
hemodynamic response function (HRF) is known to vary across voxels within
cortical regions, across cortical regions, and across subjects (Aguirre, Zarahn,
& D’Esposito, 1998b; de Zwart et al., 2005; Handwerker et al., 2004; Miezin
et al., 2000; Saad et al., 2001), potentially reflecting different local distributions
of vascular anatomy and neurovascular coupling. Therefore, employing prior
information about the HRF would allow a more precise estimation of neuronal-
related events. Its implementation is straightforward in the case of the univariate
formulation of PFM. However, the use of voxel- or region-specific HRFs is not as
straightforward in a multivariate scenario. An alternative solution would be to
apply the multivariate PFM technique within ROIs using an ROI-specific HRF.
An alternative strategy would be to adaptively model the HRF by including
the temporal and dispersion derivatives of the assumed canonical HRF in the
Toeplitz matrix of the deconvolution model (Gaudes et al., 2012).

Another area of focus to improve PFM is the integration of new regularization
terms to mitigate the bias associated with the `1-norm. In cases where a grouping
sparsity constraint is not applied or when dealing with the univariate PFM,
an effective method would be to implement regularization with the `0-norm.
However, this presents a challenge as the optimization problem associated with
the `0-norm is known to be a non-convex, NP hard problem. In such cases,
an alternative solution could be to utilize `0.5-norm regularization instead. For
the multivariate formulations, a viable option would be to adopt the OSCAR
(octagonal selection and clustering algorithm for regression) regularizer. This
method involves the use of a combination of `1 and pair-wise `1-norms, which
is responsible for its grouping behavior. This approach was proposed to promote
group sparsity in situations where the groups are not known beforehand (Bondell
& Reich, 2008; Gueddari et al., 2021).

The multivariate formulation of PFM has introduced a significant advance-
ment by enabling the incorporation of spatial information and interactions into
the estimation of neuronal-related activity. This opens up possibilities for enhanc-
ing the estimation process. For example, the matrix representing the estimated
activity-inducing signal S could be multiplied by a connectivity matrix that
represents the interactions between voxels or ROIs in the penalty term. This
connectivity matrix could be obtained from other imaging modalities, either
structural connectivity from diffusion-weighted MRI or functional connectivity
from complementary electrophysiological recordings (e.g., EEG or MEG).

The main limitation of the current multi-subject PFM approach is the
assumption that the anatomical and hemodynamic differences between subjects
do not significantly affect the estimation of neuronal-related activity when all the
data is moved into a shared space. This assumption holds to some extent when
working with ROIs, where spatial resolution is reduced and finer anatomical
differences across subjects are smoothed out during averaging. However, this
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assumption no longer holds striclty in the case of operating at the voxel level. In
other words, a perfect anatomical alignment and voxel-to-voxel correspondence
in the location of activations cannot be assumed across different subjects. To
address the issue of inter-subject spatial variability of functional activations,
optimal transport theory could be adopted. This approach, as demonstrated
in (Gramfort et al., 2015; Janati et al., 2019, 2020), does not require exact
spatial correspondence between neuronal-related events in the group of subjects.
Instead, it compares the estimates by considering the geodesic distances between
their locations. Furthermore, to tackle the sources of invariance arising from
shifts in time, space, and total population size, a more sophisticated formulation
that integrates dynamic time warping and unbalanced optimal transport could
be considered (Janati et al., 2022).

Furthermore, the selection of the regularization parameter for the nuclear
norm in the sparse and low-rank PFM poses a significant challenge. In this
thesis, a fixed number of low rank components was chosen as the criterion for
selection. However, if functional activations are widespread, this approach may
mistakenly classify components resembling BOLD responses as a low-rank, global
components. Alternatively, one could consider using a more liberal value for the
regularization parameter and then employ a decision tree to distinguish between
global and neuronal-related components. For instance, such a decision tree could
be developed by drawing inspiration from the ICA AROMA (Pruim, Mennes,
van Rooij, et al., 2015) or ICA FIX (Salimi-Khorshidi et al., 2014) methods.
Moreover, the application of the low-rank and sparse PFM to resting-state fMRI
data remains to be studied.

Future research should also consider the development of deep learning
methods for fMRI deconvolution based on physical models of the BOLD signal.
Convolutional neural networks (CNNs) have gained significant attention due
to their exceptional performance in object classification and segmentation
tasks, achieved through training on large image databases. Inspired by
these achievements, CNNs have been applied to various inverse problems in
imaging, such as denoising, deconvolution, superresolution, and medical image
reconstruction (McCann et al., 2017; Wang et al., 2020). These applications
have demonstrated promising results, surpassing state-of-the-art techniques,
including compressed sensing. Consequently, the implementation of CNNs in
PFM techniques has the potential to enhance the accuracy of neuronal-related
activity estimates. However, these models are very expensive to train as they
require large amounts of data and computational power. Hence, physics-based
and self-supervising models could be explored for the development of PFM’s
deep learning counterparts (Aggarwal et al., 2019; Hammernik et al., 2023;
López-Tapia et al., 2021; Lucas et al., 2018).

Finally, the availability of the Python libraries for researchers is crucial.
However, in order to promote wider adoption of the PFM techniques, it is
essential that these libraries are well documented and include numerous usage
examples. Therefore, the development of a comprehensive documentation and
tutorial is a priority for the near future.
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A
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Figure A.1: Activity-inducing (A) and innovation (B) signals estimated with
PFM (red) and TA (blue) using their built-in HRF as opposed to using the same.
The black line depicts the simulated signal, while the green lines indicate the
onsets of the simulated neuronal events. X axis shows time in TRs.
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Figure A.2: Spike model simulations. (Left) Heatmap of the regularization paths
of the activity-inducing signal estimated with PFM and TA as a function of ∏
(increasing number of iterations in x-axis), whereas each row in the y-axis shows
one time-point. Vertical lines denote iterations corresponding to the Akaike
and Bayesian Information Criteria (AIC and BIC) optima. (Right) Estimated
activity-inducing (blue) and activity-related (green) signals when set based on
BIC. All estimates are identical, regardless of SNR.

���



SNR = 20dB

SNR = 10dB

SNR = 3dB

BIC
MAD

Simulated signal
Simulated BOLD response

Simulated innovation signal

Simulated activity-inducing 
signal

Estimated innovation signal

Estimated activity-inducing 
signal

Estimated BOLD response

A

C

E

B

D

F

Figure A.3: Block model simulations. (Left) Heatmap of the regularization
paths of the innovation signal estimated with PFM and TA as a function of
∏ (increasing number of iterations in x-axis), whereas each row in the y-axis
illustrates one time-point. Vertical lines denote iterations corresponding to
the Akaike and Bayesian Information Criteria (AIC and BIC) optima. (Right)
Estimated innovation (blue) and activity-related (green) signals when is set
based on BIC. All the estimates are identical when compared between the PFM
and TA cases, regardless of SNR.
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Figure A.4: Values of ∏ across the different voxels in the brain used to estimate
(A) the activity-inducing signal (spike model) and (B) the innovation signal
(block model) with the BIC selection, as well as (C) the activity-inducing signal
(block model) and (D) the innovation signal (block model) with a MAD-based
selection. The ∏ maps are shown for the three experimental fMRI datasets: the
motor task (Motor), the monoband resting-state (Mono), and the multiband
resting-state (Multi) datasets.
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Figure A.5: Values of the MAD estimate of standard deviation of the noise
across the different voxels in the brain for the three experimental fMRI datasets:
the motor task (Motor), the monoband resting-state (Mono), and the multiband
resting-state (Multi) datasets.
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Figure A.6: Root sum of squares (RSS) comparison between Paradigm Free
Mapping and Total Activation for the three experimental fMRI datasets: the
motor task (Motor), the monoband resting-state (Mono), and the multiband
resting-state (Multi) datasets. RSS maps are shown for the spike (left) and block
(right) models solved with a selection of ∏ based on the BIC (top) and MAD
(bottom) criteria.
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Figure A.7: Regularization paths of the innovation signal estimated with PFM
and TA as a function of ∏ (increasing number of iterations in x-axis, whereas
each row in the y-axis shows one time-point) for the representative voxels of
the motor task shown in Figure Figure 2.5. Vertical lines denote selections of ∏
corresponding to the BIC (black), MAD based on LARS residuals (blue) and
MAD based on FISTA residuals (green) optima.
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Figure A.8: Estimated innovation signal (blue) and activity-related signal (green)
for the representative voxels of the motor task shown in Figure Figure 2.5 with
the MAD selection of ∏ made by TA, i.e., employing the same ∏ with both PFM
and TA.
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Figure A.9: Activity maps of the motor task using a seletion of ∏ based on
the MAD estimate. Row 1: Activation time-series of the innovation signals
estimated by PFM (in blue) or TA (in red) calculated as the sum of squares of
all voxels at every timepoint. Positive-valued and negative-valued contributions
were separated into two distinct time-courses. Color-bands indicate the onset
and duration of each condition in the task (green: tongue, purple: left-hand
finger-tapping, blue: right-hand finger-tapping, red: left-foot toes, orange: right-
foot toes). Rows 2-6: time-series of a representative voxel for each task with
the PFM-estimated innovation (blue), PFM-estimated activity-inducing (green),
and activity-related (i.e., fitted, orange) signals, with their corresponding GLM,
PFM, and TA maps on the right. The maps shown on the right are sampled at
the time-point labeled with the red arrows and display the innovation signals at
that moment across the whole brain.
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Figure A.10: Activity-inducing CAPs (left) and innovation CAPs (right) obtained
with the PFM-estimated activity-inducing and innovation signals respectively,
using a MAD-based selection of ∏. Time-points selected with a 95th percentile
threshold are shown over the average time-series (blue) in the seed region (white-
cross) and the deconvolved signal (orange). CAPs and seed correlation maps are
illustrated in the center.
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