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1Instituto de F́ısica Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, 07122 Palma de Mallorca (Spain)
2CA UNED Illes Balears, 07009 Palma (Spain)
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Background
The reduction in sea ice cover with Arctic warming facilitates the transit of ships through routes

that are remarkably shorter than the traditional shipping routes. Automatic Identification System
(AIS), ideally designed to avoid vessel collisions, transmits on vessel navigation information (cur-
rently 27 types of messages) such as name, position or speed, is a powerful data source to monitor
the progress of Arctic shipping as the ice cover decreases.

Results
Based on the analysis of an online platform collecting shipping AIS data, we quantified the

spatial distribution of shipping through the Arctic Ocean, its intensity and the temporal evolution,
in relation to the area released by the sea ice area. Shipping through the Arctic Ocean is distributed
spatially following a heavy-tailed distribution, implying heavy traffic through a limited Arctic area,
with an exponent that depends on the vessel category.

Fishing is the category with the largest spatial spread, with the width of shipping routes correlated
with the proximal sea ice area. The time evolution of these routes is characterized by increasing
extended periods of shipping activity through the year.

Conclusions
AIS data offers valuable information on the activity of the international fleet worldwide. In the

context of the new international agreements, it is a valuable source to monitor shipping, fishing and
the potential impact in marine life among other aspects. Here we have focused on the Arctic shipping
in recent years, which is rapidly growing, particularly around the Northeastern and Northwest
Passage coastal routes, providing an opportunity for the design of shorter shipping routes and
reduced greenhouse gas emissions from transport of goods, but at a risk of impacts on the Arctic
ecosystem.

I. BACKGROUND

Shipping traffic represents the dominant transporta-
tion mode in global trade, delivering more than 80% of
the volume of the international trade of goods [1]. In fact,
economic growth has led to a parallel increase in marine
traffic 60% in the period between 1992 and 2002 [2]. The
importance of maritime transport to the global economy
was evidenced in 2020 when the Suez Canal was blocked
when the Ever Given container ship got stranded. The
opportunity to leverage the opening of new Arctic routes
delivering goods from Asia to Europe and North America
due to the decrease of the ice cover will increase traffic
and bring new threats to this vulnerable ecosystem [3],
adding to the direct impacts of rapid climate change in
the Arctic. In fact, an estimation of the shipping time
has revealed an increase in 7% between 2013 and 2022
[4].

Tracking technologies are playing a major role in the
analysis of vessels’ movement through the oceans, allow-
ing the quantification of multiple vessel behaviors with
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economic, political and ecological consequences. For ex-
ample, tracking of fishing vessels facilitated the inference
of hot spots of fishing activity [5–7]. Moreover, the over-
lap between fishing vessels’ trajectories and movement
tracking of marine animals has revealed the regions with
a high risk of overlap and thus risk of bycatch between
fishing vessels and sharks [8], and the collision risk of
large vessels and whale sharks [9].

Currently, products derived from vessel tracking data
are openly available. For example, Global Fishing
Watch’s main product describes fishing effort at high
spatial and temporal resolution globally [5]. However,
broader datasets, including for instance the trajectories
of other vessel categories globally, are available under pri-
vate purchase. To overcome the problem of data owner-
ship and standardization, new initiatives are being devel-
oped to perform online analyses with access to previously
clean, pre-processed and scientifically validated datasets
from multiple sources. In this direction HUB Ocean has
developed the Ocean Data Platform (oceandata.earth),
where scientists can perform online analyses of multiple
datasets describing diverse oceanic phenomena, such as
parasite infections in fish farms, global vessel emissions
or the geospatial data describing Marine Protected Areas
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(MPAs).
Here, we report our analysis of the shipping traffic on

the Arctic Ocean between January 2020 and April 2022
through a data analysis developed on a Private Preview
Week of the Ocean Data Platform.

II. DATA DESCRIPTION

Shipping traffic. The space use of ships transiting
the Arctic Ocean was inferred from the Automatic Iden-
tification System (AIS) data. AIS is a system introduced
for maritime safety that provides, among different data
variables, the speed, latitude and longitude of the ves-
sels using the system. The platform Ocean Data Plat-
form aggregated AIS tracking data at a monthly resolu-
tion with a high spatial resolution and reported the num-
ber of hours each grid cell has been transited by vessels.
The monthly transiting time was available from January
2020 to April 2022, and it specified five vessel categories
(cargo, fishing, passenger, tanker and other). For our
analysis, we introduced a global grid of 0.1◦ × 0.1◦ res-
olution, selecting latitudes higher than the Arctic Circle
(66.6◦, Fig. 1).

The time evolution of the area covered by the shipping
routes was complemented with the dataset used for a
previous assessment of the Arctic shipping traffic [10], to
provide a comparison of the Ocean Data Platform dataset
and illustrate the long-term time evolution of the ship-
ping traffic in the Arctic Ocean. This previous dataset
reported the monthly number of unique vessels detected
by the AIS system in each 0.25◦×0.25◦ grid cell, between
July 2010 and May 2015.

Sea ice cover. Sea ice area was obtained from the
Sea Ice Index, provided by the National Snow and Ice
Data Center (United States) [11]. This dataset reported
the monthly evolution of the sea ice area in the Northern
Hemisphere, as well as specific subregions of the Arctic,
where we considered the Canadian Archipelago Area, the
Baffin Bay and the Beaufort Sea for the Northwest Pas-
sage route, while we considered the East Siberian Sea,
the Kara Sea and the Barents Sea for the Northeastern
route.

III. ANALYSES

The shipping density was computed as the transit time
in each grid cell divided by the cell area, aggregating the
time of all the ships using AIS in the considered region.
This pattern revealed hot spots of shipping activity, both
in the overall map and in the specific patterns associated
with different vessel categories (Fig. 1). Fishing vessels
represented the largest contribution to shipping in the
Arctic Ocean, especially in the Barents Sea but also in the
proximity of Iceland. Cargo vessels, similarly to tanker
vessels, displayed patterns where we observed the North-
eastern and Northwest Passage routes, with the latter

becoming broader in the Baffin Bay, where tanker trajec-
tories occupied less area in this region. Passenger traffic
covered lower fractions of area as the most frequented
routes were shorter, for example on the Norwegian and
Icelandic coasts.
The shipping density heterogeneity across the space

was described by heavy-tailed distributions, such that
most grid cells displayed a low shipping density, with
a few cells concentrating large values (Fig. 2). Specif-
ically, the shipping density distributions for the aggre-
gated (across categories) and for specific categories were
described by power-law distributions. We performed
a power-law regression to these distributions with the
Python package powerlaw, obtaining the fitted exponents
1.79 (aggregated), 1.49 (passenger), 1.90 (tanker), 1.74
(cargo) and 1.96 (fishing). For fishing, we observed two
regimes, where the distribution is closer to a uniform dis-
tribution for low densities (i.e., with a smaller exponent),
while large densities implied a faster decrease, which was
the behaviour captured by the regression.
We propose a null model of transit between geographi-

cal locations to understand the differences between those
exponents, and we apply it to one- and two-dimensional
systems. In a one-dimensional system, ships can move
through space, modifying their coordinate x and always
with a constant and positive speed v = dx

dt . We consider a
destination located at x = 1, and the origins distributed
uniformly in the interval [0, 1), with vessels departing
randomly from any of these origins. We aim at comput-
ing the distribution of the transit times across different
locations. The total transit time between x and x + dx
will be given by the number of vessels that crossed that
region, that is, Nx, with N being the total number of
vessels, and x being the probability that a vessel departs
from a location lower than x, times dx/v (i.e., the tran-
sit time of one vessel), implying that the shipping density
ρ1d, i.e. the transit time per unit length, is

ρ1d(x) =
Nx

v
(1)

Thus, the cumulative distribution function (CDF) of
the shipping density ρ1d is the length of the segment with
locations that have a shipping density time lower than
ρ1d. This length is x in Eq. (1), leading to

CDF(ρ1d) =
ρ1dv

N
(2)

with ρ1d ∈ (0, N
v ]. Taking the derivative of the cumula-

tive distribution function, this leads to a uniform proba-
bility density function (pdf)

pdf(ρ1d) =
v

N
(3)

In two dimensions, we consider that the origin is lo-
cated at the centre of a circular space of radius 1, while
the destinations are located uniformly at a distance from
the centre R = 1, and the vessels transit with ballistic
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FIG. 1. Arctic shipping between January 2020 and April 2022. Shipping density is computed as the aggregated transit time
over all the vessels, at each 0.1◦ × 0.1◦ cell, divided by the cell area. Left panel represents the total shipping traffic, while right
panels include the traffic for passenger, tanker, cargo and fishing vessel categories.

FIG. 2. Shipping density distributions for total shipping (left) and each vessel category (right). These heavy-tailed distributions
fit to a power-law distribution pdf(x) ∼ x−α for x > xmin. The slope, obtained from fitting with the Python package powerlaw
[12], is represented in the black lines

motion at speed v from the origin towards a randomly
chosen destination. In this case, considering the polar co-
ordinates r and ϕ, we compute the transit time of a vessel
that crosses a region at distance r from the origin of size
dr×dϕ. Analogously to the one-dimensional system, the

transit time of a vessel is dr/v. Additionally, the number
of vessels that transit this region is Ndϕ/(2π), leading to

a total transit time of Ndrdϕ
2πv . However, if we consider

cells of size dr × dϕ, these cells will be larger for higher
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r, such that the number of vessels on them does not rep-
resent the shipping density. To solve this, we consider
uniform cells of size dxdy, with drdϕ = dxdy

r . Thus, the
shipping density, obtained as the transit time per unit
area, ρ2d:

ρ2d(r, ϕ) =
N

2πrv
(4)

which, due to the symmetry of the system, does not de-
pend on ϕ. In this case, the cumulative distribution func-
tion will be the fraction of area with density lower than
ρ. This area will be πR2 −πr2, and considering from (4)
r = N

2πρ2dv
, we obtain

CDF(ρ2d) = 1− N2

4π2ρ22dv
2

(5)

with ρ2d ∈ [ N
2πv ,∞). Taking the derivative of the cu-

mulative distribution function, we obtain the probability
density function, described by a power-law

pdf(ρ2d) =
N2ρ−3

2d

2π2v2
(6)

Summing up, a random null model considering an
origin-destination flux, with a fixed origin and a uni-
form probability of reaching any destination or vice-
versa, leads to a uniform distribution in one dimension,
while the distribution is heavy-tailed with an exponent 3
in two dimensions.

To detect shipping routes, we computed the average
shipping density per longitude, considering only the grid
cells with non-zero values, and represent the relative ship-
ping density of each grid cell, that is, the shipping density
divided by the average shipping density of its longitude
(see Methods). We observed that the highest values are
located in the proximity of the shore (Fig. 3). This tech-
nique revealed the main shipping routes (red corridors
on Fig. 3), as well as several fishing hot spots in the
high seas. We detected two main Arctic shipping routes,
the Northeastern and the Northwest Passage routes, both
linking the Northern Pacific and the Northern Atlantic
oceans, with the Northeastern Route splitting in two at
the North and South of Lyakhovsky Islands. Most of
the traffic of both routes was associated with tanker and
cargo vessels, as shown by the absence of spatial conti-
nuity along the routes in passenger and fishing vessels,
which are expected to display shorter range trips.

After analyzing the spatial properties of the shipping
density at the aggregated dataset and across different
vessels categories, we focused on the temporal evolution
of the shipping traffic, aggregating all the observations
across the Arctic Circle. The highest shipping traffic in
the whole period corresponded to fishing vessels followed,
in decreasing order, by passenger, cargo and tanker ves-
sels (Fig. 4). While the relative evolution of fishing and
passenger vessels did not display large relative fluctua-
tions, the shipping traffic for cargo and tanker vessels

showed a maximum activity in the summer and early au-
tumn of both 2020 and 2021.

To quantify the time evolution of the shipping routes
that we observed in Fig. 3, we computed the average
shipping density and the route width for each meridional
cross-section (that is, zones with constant longitude and
varying latitude, see Methods), leading to a representa-
tion of the zonal variability of these variables. First, we
observed that the average shipping density displayed a
seasonal behavior in most of the longitudes except for
those where Norwegian, Greenland and Barents seas are,
where the traffic was not interrupted in the analyzed pe-
riod (Fig. 5, top). We also quantified the time evolution
across longitudes of the route width, observing the same
seasonal behaviour, and the appearance of long-range
routes whose widths were maximum at the late summer
and early autumn, with vessels using the the Northeast-
ern route for four months, while they transited the North-
west Passage route for 2-3 months (Fig. 5, bottom), with
these periods overlapping with the relative maxima of the
shipping traffic for cargo and tanker vessels (Fig. 4, top).
This temporal evolution of the routes allowed us to select
two longitudes as the most representative for the North-
eastern (150◦) and the Northwest Passage (-90◦) routes.
We considered that the environmental variable with the
highest impact on these two shipping routes is the sea
ice area, and assessed the correlations between this vari-
able and the route width on the selected longitudes of
-90◦ and 150◦. We linked the sea ice area in Baffin Bay,
Canadian Archipelago and Beaufort Sea to the Northwest
Passage route, and the sea ice area in East Siberian, Kara
and Barents seas to the Northeastern route. We checked
the correlations between the route width and the sea ice
area in these regions, considering only the non-zero route
widths, obtaining negative values in all the cases (i.e., as
expected, an increase in sea ice area led to a decrease in
the vessel traffic route width). In the case of the North-
west Passage route, the absolute correlation between the
vessels route width at -90◦ longitude and the sea ice area
was maximum for the Beaufort Sea (C = −0.90), with
correlations of C = −0.78 and C = −0.72 for, respec-
tively, the Canadian Archipelago and the Baffin Bay. On
the other hand, for the Northeastern route, the absolute
correlation between the vessels’ route width at 150◦ lon-
gitude and the ice area displayed its maximum value for
the Kara Sea (C = −0.842), showing the correlations of
C = −0.837 and C = −0.67 for, respectively, the East
Siberian Sea and the Barents Sea. We focused on the ar-
eas with maximum absolute correlation between the sea
ice area and the route width for the Northwest Passage
and the Northeastern routes, assessing the functional re-
lationship between these variables finding, as suggested
by the negative correlations, that the route width was
maximum when the sea ice area was minimum (Fig. 6,
inset), and obtaining an exponential decrease of the route
width with the sea ice area, with characteristic areas of
1.3× 105 km2 and 2.3× 105 km2 for the sea ice area in,
respectively, the Beaufort Sea and the Kara Sea (Fig. 6).
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FIG. 3. Route detection on shipping traffic. For every cell, given its longitude, we computed the relative shipping density as
the shipping density (as represented in Fig. 1), divided by the average shipping density for that longitude, computed over cells
with non-null density. This highlighted some hot spots at each longitude, which we associate with the shipping routes. Left
panel represents the total shipping, while right panels are broken down into vessel categories.

Finally, we quantified the long-term evolution of the
Northwest Passage and the Northeastern routes with a
complementary dataset that described the number of
unique vessels observed at each 0.25◦× 0.25◦ grid cell
between July 2010 and May 2015. To warrant the com-
parability with our dataset, we obtained the vessel route
width following the same procedure as described above,
but considering the same grid cell size, that is, cells with
0.25◦ side. We observed a similar pattern across differ-
ent years in the case of the Northwest Passage, while the
Northeastern route displayed a remarkable reduction in
its maximum value on the most recent dataset, together
with a growth in the period when the route displayed
observable activity (Fig. 7).

IV. DISCUSSION

Data availability on the marine environment, for exam-
ple animal trajectories or threats to the marine life [13],
has been historically limited in contrast to the data de-
scribing processes occurring on land. However, a change
of paradigm from the community and the scientific fund-
ing agencies towards data sharing policies is translated
into more frequent marine data releases. In this context,
online platforms gathering, cleaning, and standardizing
multiple source datasets represent a major benefit to ad-
vance marine science [14, 15]. Moreover, the availability
of servers for online computation brings a shift towards
the democratization of not only the data access, but also

the computational resources to process big data. In this
context, we have developed our analysis of the Arctic
shipping traffic at no cost using the Ocean Data Connec-
tor of HUB Ocean, in a Private Preview Week.

We observed that the shipping density was broadly dis-
tributed across the Arctic region, with a few locations
with a shipping density that was several orders of magni-
tude higher than the average shipping densities, revealing
hot spots of shipping transit (Figs. 1, 2). We proposed
two null models of shipping traffic to understand the ob-
served patterns, obtaining analytically that uniform dis-
tributions were associated with one-dimensional traffic,
while power-law distributions with exponent α2D = 3
represented two-dimensional traffic. Although the ob-
served exponents (Fig. 2) were different from these two
null models, the models allowed us to understand the
variability of these exponents across different vessel cate-
gories. Particularly, fishing vessels displayed the highest
exponent (αfishing = 1.96) suggesting, in parallelism to
the two-dimensional null model, traffic between different
fishing ports and the closest fisheries. In contrast, passen-
ger vessels showed the lowest exponent αpassenger = 1.49,
which we associate with more directed routes between
a few ports, displaying some heterogeneity in the ship-
ping density due to environmental and political factors
such as the weather, the ice distribution, Exclusive Eco-
nomic Zones boundaries or oceanic currents. Finally,
cargo and tanker vessels shipping density distributions
were described by intermediate exponents (αcargo = 1.74,
αtanker=1.90), with the latter being higher, which we link
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FIG. 4. Time evolution of the total shipping traffic through
the Arctic Ocean. The top panel represents the indepen-
dent evolution of each vessel category, while the bottom panel
shows the joint evolution across different categories.

to the higher space occupancy of tanker vessels in the
Barents Sea, where cargo vessels displayed more concen-
trated trajectories (Fig. 1).

Our analysis of the connection between the shipping
traffic route width and the sea ice area revealed max-
imum absolute (negative) correlations with the sea ice
area in regions located far from the locations that we se-
lected as representative for the Northwest Passage and
the Northeastern routes. Specifically, for the Northeast-
ern route, we selected the longitude λNE = 150◦, which
crosses the East Siberian Sea but, although we considered
the sea ice area in that sea, the correlation was higher
with the sea ice area in the Kara Sea. Similarly, we se-
lected λNWP = −90◦ to analyse the route width of the
Northwest Passage route, crossing the area of the Cana-
dian Archipelago but leading to a higher correlation with
the sea ice area in the Beaufort Sea. This suggests the
presence of ice bottlenecks where windows of ice-free con-
ditions enable the opening of long-distance routes, such
that far locations display a correlation with the sea ice
area on these ice bottlenecks.

The long-term analysis of the shipping traffic on the
Northeastern and the Northwest Passage routes reported

FIG. 5. Time evolution of the shipping traffic per longitude.
The top panel represents the average shipping density over
cells with non-null shipping at each longitude, while the bot-
tom represents the sectional length of these cells. White en-
tries represent the absence of traffic. The black lines in the
top panel stand for the longitudes that we chose as the most
representative for measuring the Northeastern and the North-
west Passage routes being, respectively, 150º and -90º.

an expected seasonal pattern in both routes, displaying a
low variability on the Northwest Passage. However, the
Northeastern Route showed a recent reduction on the
maximum route width, together with a longer seasonal
behaviour, i.e. the route was narrower, but used through
a longer fraction of the year. The local, regional and in-
ternational mobility restrictions to reduce the spread of
COVID-19, on the already called “anthropause” [16, 17],
overlapped with most of our analyzed period, implying
as well a reduction on factory production rates, and may
explain this decrease in the width of the Northeastern
route, as a decrease in traffic would lead to vessels follow-
ing paths that are closer to the optimal, in terms of dis-
tance, considering all the geographical and environmental
(ice) constraints. In fact, a global analysis revealed a de-
cline of 1.4% on traffic occupancy in the early months
of the pandemic, especially in the Northern Hemisphere
[18].
The decline in the extent of sea ice in the Arctic Ocean

with rapid Arctic warming represents an opportunity to
optimize shipping routes, reducing the transit duration
and costs and, therefore, the greenhouse gas emissions.
However, this increase in Arctic shipping traffic may be
a harbinger of the “blue acceleration” [19] on the Arc-
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FIG. 6. Correlation between traffic and sea ice area. We
selected two specific longitudes that displayed a seasonal be-
havior: -90º (West, Northwest Passage route) and 150º (East,
Northeastern route), computing the route width L (Fig. 5).
We computed the Pearson correlation of the route width with
the non-zero values of the Sea Ice Area in different Arctic
seas, obtaining the maximum absolute value of the corre-
lation for the Beaufort Sea (West, C = −0.90) and Kara
Sea (East, C = −0.84). The main plots represent the route
width as a function of the sea ice area, while the insets depict
their temporal evolution. Points represent data, while the
dashed lines are exponentially decreasing fits, L = Ae−BI ,
with BNWP = 7.68 × 10−6 km−2 and BNER = 4.29 × 10−6

km−2 for, respectively, the Northwest Passage and the North-
eastern Route.
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FIG. 7. Time evolution of the route width at two specific
longitudes: -90º (West, Northwest Passage route) and 150º
(East, Northeastern route), to characterize the long-term evo-
lution of shipping traffic. The local route width is computed
as, for each constant longitude and each month, the cross-
sectional length of the cells that display non-null shipping
traffic. Data between 2010 and 2015 has been extracted from
a different database [10] with resolution of 0.25◦, number of
unique vessels per month. For comparability, this figure in-
cludes our analyzed dataset considering grid cells of 0.25◦ side
instead of those of 0.1º side.

tic, threatening the marine species that were not pre-
viously exposed to shipping hazards [20], such as ship
strikes [21] or underwater noise [22], in addition to other
stressors such as the already detected plastic pollution
[23, 24]. On the other hand, the availability of new ship-
ping routes may represent a human-based negative feed-
back on global warming, reducing the emissions from ves-
sels due to the use of shorter routes [25]. These potential
positive and negative aspects highlight the importance

of data analyses to monitor and manage Arctic shipping
traffic, conducive to minimize environmental impacts.

V. METHODS

Shipping density. The raw data provided the ship-
ping transit time on high-resolution grid cells of vessels
equipped with AIS devices, including all the transiting
vessels and its breakdown into four vessel categories, fish-
ing, passenger, cargo and tanker. We aggregated these
high-resolution grid cells onto grid cells of size 0.1◦× 0.1◦.
We obtained the shipping density dividing the shipping
transit time by the cell area A:

A = R2

(
sin

π(ϕ+∆ϕ)

180
− sin

πϕ

180

)
∆λπ

180
(7)

where R = 6371 km is the Earth radius, ϕ is the lati-
tude in degrees, and ∆λ and ∆ϕ are, respectively, the
longitudinal and latitudinal sides of the cell in degrees.

Average shipping density per longitude. We
compute the average shipping density per longitude as
the sum of the total shipping transit times through cells
with the same longitude, divided by the area of those
cells with a non-zero transit time, following Eq. 7. For
the time evolution of this value (Fig. 5, top), at each
time step we only consider the cells with non-zero transit
time on that specific period.

Route width per longitude. We consider all the
grid cells in the Arctic region with a specific longitude λ,
and compute the time evolution of the number of cells
N(λ, t) that displayed a non-zero transit time. We com-
puted the route width W (λ, t) as the length of the lati-
tudinal cross-section of these cells:

W (λ, t) = RN(λ, t)
∆ϕπ

180
(8)
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E. Van Sebille, T. J. Ballatore, V. M. Egúıluz, J. I.
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