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Abstract
This study employs machine learning algorithms to construct Multi Model Ensembles (MMEs) based on Regional Climate 
Models (RCMs) within the Esca River basin in the Pyrenees. RCMs are ranked comprehensively based on their performance 
in simulating precipitation (pr), minimum temperature (tmin), and maximum temperature (tmax), revealing variability across 
seasons and influenced by the General Circulation Model (GCM) driving each RCM. The top-ranked approach is used to 
determine the optimal number of RCMs for MME construction, resulting in the selection of seven RCMs. Analysis of MME 
results demonstrates significant improvements in precipitation on both annual and seasonal scales, while temperature-
related enhancements are more subtle at the seasonal level. The effectiveness of the ML–MME technique is highlighted by 
its impact on hydrological representation using a Temez model, yielding outcomes comparable to climate observations and 
surpassing results from Simple Ensemble Means (SEMs). The methodology is extended to climate projections under the 
RCP8.5 scenario, generating more realistic information for precipitation, temperature, and streamflow compared to SEM, 
thus reducing uncertainty and aiding informed decision-making in hydrological modeling at the basin scale. This study 
underscores the potential of ML–MME techniques in advancing climate projection accuracy and enhancing the reliability 
of data for basin-scale impact analyses.

Keywords Multi-model ensemble · Machine learning algorithms · Complex orography · Pyrenees · Regional climate 
models

1 Introduction

Accurately characterising future climate is of crucial impor-
tance for medium and long-term water resource planning 
and management within the context of climate change (IPCC 
2022). While General Circulation Models (GCMs) have 

emerged as powerful tools for climate prediction (Semenov 
and Stratonovitch 2010), they still exhibit certain limitations 
when it comes to representing regional climates affected by 
small-scale processes (Torma et al. 2015). Addressing this 
need, Regional Climate Models (RCMs) have been devel-
oped, based on dynamic downscaling of GCM models to 
provide high-resolution data. Notably, the CORDEX (Giorgi 
et al. 2009) initiative has successfully brought together RCM 
projects from around the world, boasting more than 70 simu-
lations for the European region (Jacob et al. 2014, http:// 
www. euro- cordex. net/).

Despite the clear advantages of RCMs over GCMs in 
capturing the primary features of regional climate (Kotlar-
ski et al. 2014; Ciarlo et al. 2021), inherent uncertainties 
persist, extending beyond the scope of downscaling. These 
uncertainties encompass structural disparities in both 
GCM and RCM models (Knutti et al. 2008), the down-
scaling technique itself (Zhu et al. 2019), model para-
metrizations in reference to physical processes (Chen et al. 
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2011), and initial conditions, among other factors (Knutti 
et al. 2008; Dey et al. 2022). Furthermore, in studies con-
ducted at the catchment scale, such as those examining 
the impacts of climate change on water resources, a scale 
mismatch remains, at times leading to unresolved climatic 
dynamics beyond the capabilities of RCM resolutions 
(Crawford et al. 2019). Consequently, these uncertainties 
can result in significant discrepancies in climate change 
projections between different RCMs, even when consid-
ering identical emission scenarios (Ruane and McDermid 
2017). This, coupled with the scale mismatch that intro-
duces limitations in climate representation, hampers the 
effective utilisation of this data for catchment-scale plan-
ning and water resource management (Venkataraman et al. 
2016).

Impact modellers employ a wide array of methods to 
tackle these uncertainties and errors, encompassing a broad 
spectrum of complexities. These methods span from iden-
tifying the best-performing simulations within the study 
area (Crawford et al. 2019; Xu et al. 2020) to the utilisa-
tion of bias correction techniques with observational data 
(Dobor and Hlásny 2019; Teng et al. 2015; Piani et al. 2010), 
and extend to the development of Multi-Model Ensembles 
(MMEs)(Calì Quaglia et al. 2022; Salman et al. 2018). Bias 
correction methods have been instrumental in rectifying the 
systematic biases inherent in simulations (Piani et al. 2010). 
Nevertheless, they often prove less efficient in addressing 
non-stationary biases (White and Toumi 2013; Wang et al. 
2018). A promising avenue for addressing the uncertainty 
of climate models lies in the development of MMEs, which 
have the potential to mitigate uncertainties and enhance the 
confidence in climate projections (Pavan and Doblas-Reyes 
2000; Lutz et al. 2016; Sanderson et al. 2015; Keller et al. 
2019). MMEs are categorised into two distinct groups: SEM 
(Simple Ensemble Mean) and WEM (Weighted Ensemble 
Mean). In the former approach, all ensemble members are 
uniformly assigned equal weights, whereas in the Weighted 
Ensemble Method (WEM), each member is allocated a dis-
tinct weight determined by its proficiency in replicating past 
climate conditions (Oh and Suh 2017; Ahmed et al. 2020). 
SEM, known for its simplicity, is a commonly employed 
method, which provides an overall better performance than 
individual members (Lambert and Boer 2001). However, it 
comes with certain limitations. Many of the models share 
model parameterizations and components, which can lead 
to interdependencies between different climate simulations 
(Sanderson et al. 2015). Failing to account for this inter-
dependence may result in misleading model consensus, 
reduced accuracy, and a flawed estimation of uncertainty 
(Herger et al. 2018). Moreover, SEM may not be suitable for 
all applications, as it significantly diminishes the spatial and 
temporal variability of information when compared to indi-
vidual members and observational data (Wang et al. 2018).

In contrast, WEM methods have demonstrated their 
capacity to mitigate the impact of systematic biases within 
individual members and even enhance the ensemble’s pre-
dictive capabilities (Krishnamurti et al. 1999, 2000). The use 
of Machine Learning algorithms to generate a Multi-Model 
Ensemble (ML–MME) is an emerging technique in climate 
simulation (Zhu et al. 2023; Sand et al. 2023). These algo-
rithms have a significant potential to enhance the outcomes 
of climate simulations, especially in relation to its potential 
advantages in dealing with non-linearity between response 
variables and predictors (Ahmed et al. 2020; Sachindra et al. 
2018; Xu et al. 2020). Krishnamurti et al. (1999) established 
a precedent of an MME based on multiple regression tech-
niques to improve the 850 hPa meridional wind speed and 
precipitation simulations of eight general circulation models, 
obtaining superior results over the ensemble mean. Wang 
et al. (2018) employed four Machine Learning (ML) tech-
niques to develop MMEs for mean monthly temperature 
and mean monthly precipitation by considering 33 CMIP5 
GCMs over Australia and reported that Random Forest 
(RF) and Support vector machine (SVM) demonstrated a 
significant improvement over the ensemble mean, which is 
in agreement with the results reported by Sa’adi et al. (2017) 
who employed a Generalised Linear Model (GLM) to con-
struct their MMEs obtaining better results for the MMEs 
than for the 20 individual members of the CMIP5 GCMs 
over Borneo Island, Malaysia. Results along these lines have 
been reported in studies in Iraq for monthly mean tempera-
ture (Salman et al. 2018), in Pakistan for monthly precipita-
tion (Ahmed et al. 2020), or in the Gulf Basin and North 
America for both (Crawford et al. 2019). Daily scale studies 
also show favourable results for ML–MME techniques (Jose 
et al. 2022). Likewise, Dey et al. (2022) obtained significant 
improvements in the characterisation of these climate vari-
ables with data from CMIP6 GCMs.

In our study, we ventured into a novel approach by apply-
ing various ML–MME methods to RCMs for the first time. 
These methods were then further applied to a hydrological 
model. We subjected them to a comparative analysis against 
the SEM (Simple Ensemble Mean) approach, focusing on 
monthly precipitation (pr), the monthly average of daily 
maximum temperature (tmax), and the monthly average 
of daily minimum temperature (tmin). Specifically, the 
ML–MME techniques encompassed Linear Regression 
(LR), Gradient Boosting (GB), and Random Forest (RF). 
This investigation is particularly noteworthy as we apply 
it to a complex topography region, which adds a layer of 
novelty to our research given the challenges it presents for 
simulation (Torma et al. 2015; Reder et al. 2020). First, a 
ranking of the RCMs has been developed based on their 
skill to characterize the past climate and the optimal number 
of RCMs to be included in the ML-MMEs has been deter-
mined. Once the final ML–MMEs for the three variables 
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have been defined, the monthly series were analysed in detail 
by comparing them with the climate observations. To illus-
trate the practical utility of the ML–MMEs in the applica-
tion of impact studies at the watershed scale, we employed 
them as input data for the Temez hydrological model, both 
for historical periods and future climate projections within 
the study area.

2  Data and Study Area

We considered the EURO-CORDEX ensemble (Jacob et al. 
2014, 2020), with a total of 72 RCM simulations (Table 1) 
with a spatial resolution of 0.11◦ × 0.11◦ . These simulations 
cover a time period of 130 years, from 1980 to 2100 for 
RCP8.5 and is based on the combination of two models, the 
RCM and the driver model, the GCM, forming an incom-
plete matrix of 12 RCM and 8 GCM models.

CLIMPY observational dataset (Cuadrat et  al. 2020) 
is used as reference, with a spatial resolution of 1 km × 
1 km on a daily basis covering the period 1980–2015. It is 
a reconstruction (Serrano-Notivoli et al. 2017) of the vari-
ables based on the information from 1,343 meteorological 
stations located in Spain, France, and Andorra. This dataset 
was created in the framework of the transboundary project 
CLIMPY and has already been validated in different studies 
(Amblar-Francés et al. 2020; Lemus-Canovas et al. 2019). 
For the proper comparison between the data from simula-
tions and observations, both must be on the same grid. Thus, 
an bilinear interpolation to a the rectilinear grid o the RCMs 
of 0.11◦ × 0.11◦ resolution of CLIMPY has been performed.

The Esca River basin is located in the western Pyrenees, 
northeastern Spain, and covers an area of 425 km2 , which 
corresponds to four grid-cells of the climate datasets. Char-
acterised by a large altitudinal gradient, the elevation of the 
highest point of the basin is 2,100 m, while its lowest point 
is 595 m above sea level. Orographic characteristics make 
this type of basin remarkably difficult to simulate its cli-
mate dynamics (Kotlarski et al. 2014; Smiatek et al. 2016) 
Therefore, they are particularly problematic areas for accu-
rately predicting the future climate and its related impacts 
in hydrology (Fatichi et al. 2016). It is important to make 
efforts to overcome these difficulties, particularly in cases 
such as the Esca river basin, since it is a key tributary feed-
ing the Yesa reservoir, the primary reservoir in the western 
Pyrenees. Data on streamflows of the Esca river were availa-
ble from the website of the Spanish Centre for Hydrographic 
Studies (CEDEX) (https:// ceh. cedex. es/ anuar ioafo ros/ defau 
lt. asp), where data are updated to September 2017.

The selection of the variables pr, tmax and tmin is moti-
vated by two primary considerations. Firstly, their avail-
ability within the CLIMPY database (Cuadrat et al. 2020). 
Secondly, these variables are pivotal for characterizing 

the climate system, as emphasized in prior studies (Meehl 
et al. 2000; Perkins et al. 2007; Careto et al. 2022b, a), 
and play a crucial role in influencing diverse hydrologi-
cal (Piani et al. 2010), biological, and industrial systems 
(Colombo et al. 1999; Coppola et al. 2021).

3  Methodology

This study follows a specific methodology, which pro-
gresses through several phases:(1) a ranking of the RCMs 
was developed according to the performance of the three 
analyzed variables—tmax, tmin, and pr—on a seasonal 
scale (Sect. 3.1), (2) the SEM and the ML–MMEs were 
constructed (Sect. 3.2) and (3) the optimal number of 
RCMs to form the MMEs was chosen (Sect. 3.3). (4) The 
definitive MMEs were evaluated (Sect. 3.4). Then, (5) to 
assess the impact of climate variables MMEs on flow char-
acterization, we utilized these MMEs as input data for the 
Temez hydrological model (Sect. 3.5). Finally, (4) as an 
illustrative example of application of ML–MME results 
for climate change impact assessment, the definitive 
ML–MME algorithms were applied to the climate projec-
tions of the RCP8.5 emissions scenario.

The methodology proposed in the described 1, 2, 3 and 
4 steps follows an outline of the data analysis processes 
(Berthold et al. 2010) presented in Fig. 1. The method-
ology initiates with a feature selection process aimed at 
eliminating noise-inducing features (RCMs) from the data-
set, thus ensuring the development of a stable and reliable 
prediction model. This involves conducting an RCM rank-
ing followed by the application of a filter-wrapper tech-
nique to identify the most suitable features. Upon selecting 
the optimal RCMs, various ML models are generated by 
optimising their hyperparameters using cross-validation. 
Subsequently, MMEs of tmax, tmin and pr are generated 
using the developed ML algorithms. These MMEs were 
subjected to an statistical performance evaluation.

Fig. 1  Outline of the stages of 
the data analysis process fol-
lowed in the work

https://ceh.cedex.es/anuarioaforos/default.asp
https://ceh.cedex.es/anuarioaforos/default.asp
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3.1  Ranking of RCMs

Within intelligent data analysis, one of the first phases is 
data pre–processing. In this instance, a selection of char-
acteristics was applied to create an RCM ranking and to 
select those with the most relevant information for the 
attainment of a reliable predictive model. The procedure 
followed entails filter-wrapper processing, which consists 
of two parts: the filter part and the wrapper part. Initially, 
a ranking was created using a quantitative measure (filter 
part), and subsequently, the most relevant ones were selected 
(wrapper part– Sect. 3.3). Thus, the following procedure was 
applied to rank the RCMs according to their performance 
based on the observational data: The time series of pr, tmax, 
and tmin were divided into the four seasons representative 
of the Atlantic climate of the study area, namely, winter 
(DJF), spring (MAM), summer (JJA) y autumn (SON). For 
each variable and season the TSS (Taylor Skill Score, Tay-
lor 2001) was calculated (filter index). The TSS provides a 
quantitative measure of the ability of each RCM to simulate 
the variables pr, tmax, and tmin. It is based on the correla-
tion and the ratio of the standard deviation of the RCMs 
against the observations of a given climate variable:

where �f  refers to the ratio of the standard deviation of the 
RCMs versus the observations, R refers to the Pearson cor-
relation coefficient, and R0 represents the maximum value 
of the correlation, namely 1. TSS ranges from 0 to 1. A 
higher value indicates better simulation performance, while 
a lower value indicates worse performance. Based on the 
TSS results, twelve rankings were obtained, one per variable 
and season, which were taken into account to calculate the 
metric value rating RM (Ahmed et al. 2020):

where n and m represent the number of RCMs and seasons, 
respectively, while ranki refers to the number of the ranking 
corresponding to the member at the ith season. Finally, the 
RCM members were ordered according to the RM. As a 
result, we obtained a ranking of the RCM models ordered 
from best to worst according to their performance in relation 
to observational data in the studied basin.

3.2  Development of SEM and ML–MME Algorithms

After developing the ranking of the RCMs, the MMEs 
structure and characteristics have been designed. In the 

(1)TSS =
4(1 + R)4

(�f + 1∕�f )
2(1 + R0)

4
,

(2)RM = 1 −
1

nm

n∑

i=1

ranki ,
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first place, when formulating ML–MME algorithms, it is 
crucial to account for the seasonal dynamics inherent in 
the variables. This consideration enhances the algorithms’ 
ability to discern patterns of variability. Due to the evi-
dent interannual temperature dynamics in out mid-latitude 
region, we have opted to consider the seasons indepen-
dently, specifically for tmin and tmax when constructing 
the ML–MME algorithms (Morales-García et al. 2023; 
Ahmed et al. 2020). Conversely, with precipitation, we 
have pursued an alternative strategy: Given the complex 
nature of this variable and the alterations observed in 
the annual cycle over recent decades in European mid-
latitudes (Christidis and Stott 2022; Paluš et al. 2005), 
establishing clear seasonal patterns becomes a more intri-
cate task. Designing ML algorithms solely based on the 
seasons might prove misguided, potentially hindering 
the algorithms from accurately capturing the variable’s 
behaviour.

To address this complexity and unbalance of the data, we 
have chosen to consider monthly precipitation events cat-
egorising them into two subgroups Chao et al. (2018): those 
exceeding the 80th percentile and those below it according 
to observational data. Through the separation of precipita-
tion into two distinct databases, the range of the variable 
was reduced, leading to increased accuracy in the results 
obtained by the ML models. Following this rationale, each 
ML–MME technique has resulted in four algorithms for 
tmax and tmin, corresponding to each season. Additionally, 
two algorithms have been generated for precipitation: one 
for events within the 0–80 percentile interval and another for 
events in the 80–100 percentile interval.

Different methods were applied to construct the MME 
on a monthly scale, including, on the one hand, SEM, and 
on the other hand, three ML techniques: RF, GB and LR. 
The first MME development technique is the SEM, com-
monly and widely used for MME calculation (Clark 2017). 
The remaining three techniques are more elaborate and are 
based on ML regression models. These three techniques are 
detailed below:

• Random Forest (RF). RF is a machine learning technique 
whose basis is a combination of predictor trees such that 
each tree depends on the values of a random vector tested 
independently and with the same distribution for each 
of them. It is a substantial modification of bagging that 
builds a large collection of uncorrelated trees and then 
averages them. The algorithm for inducing a random for-
est was developed by Breiman (2001). Bagging is the 
ensemble learning method typically used to reduce the 
variance within a noisy data set. The RF method com-
bines the idea of bagging and random attribute selection 
to build a collection of decision trees with controlled 
variation. The selection of a random subset of attributes 

is an example of the random subspace method, a way to 
perform stochastic discrimination (Breiman 2001).

• Gradient Boosting (GB). GB is a machine learning tech-
nique for regression analysis and statistical classification 
problems based on boosting. Boosting consists of com-
bining the results of several weak classifiers to obtain a 
robust classifier. When these weak classifiers are added, 
they are added in such a way that they have different 
weights depending on the accuracy of their predictions. 
After a weak classifier is added, the data changes its 
weight structure: cases that are misclassified gain weight 
and those that are correctly classified lose weight. Thus, 
the strong classifiers focus more strongly on the cases 
that were misclassified by the weak classifiers. The GB 
technique creates a predictive model based on weak 
prediction models, usually decision trees. The GB is an 
ensemble that provides a set of prediction models, which 
conclude a satisfactory prediction outperforming in some 
cases the random forest ensemble (Bentéjac et al. 2021).

• Linear Regression (LR). LR is a supervised learning 
algorithm used in machine learning and statistics. In its 
simplest version, it calculates a line that will indicate the 
trend of a continuous data set. LR can be defined as an 
approach to model the relationship between a dependent 
scalar variable and one or more explanatory variables. 
The LR technique should minimise the cost of a quad-
ratic error function and those coefficients will correspond 
to the optimal line. There are several methods to mini-
mise the cost. The most common is to use a vector ver-
sion and the so-called Normal Equation which will give 
a direct result (Weisberg 2005).

For the selection of the hyperparameters of the machine 
learning techniques, a Grid has been used by means of 
cross-validation to sweep through all the parameters and 
thus select the most optimal ones.

3.3  Selection of RCMs

After the RCM ranking was completed and the MMEs char-
acteristics defined, the process of selecting the optimal num-
ber of RCMs to be considered when creating the MMEs 
for each variable (tmax, tmin and pr) was initiated. This 
process is the wrapper part of feature selection presented 
in Fig. 1. The MMEs were developed considering the RM-
based rank of RCMs from 1 to 40 (Table 1). Initially, only 
the outputs of the RCM with a rank of 1 were used to pro-
vide inputs to the MME. Subsequently, the outputs of the 
RCM with a rank of 2 were added to the input set, followed 
by the incremental introduction of RCMs with overall ranks 
3, 4, 5... 40 into the input set, one RCM at a time. This 
approach, known as the top-ranked approach (Ahmed et al. 
2020), started with the best-performing RCM (rank 1) and 
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progressed with subsequent RCMs in ascending order of 
their RM-based rank.

The evaluation of the performance of the MME outputs, 
generated with varying numbers of RCMs, has been con-
ducted on the reconstructed time series. This reconstruction 
of the results obtained by the MME has been carried out by 
transforming the data divided into seasons (tmax, tmin) or 
percentile intervals (pr) described in Sect. 3.2. into a time 
series.

The evaluation metric was the Modified Index of Agree-
ment (md, (3)), which was initially proposed by Willmott 
(1981) and has been later widely applied (Ahmed et al. 
2020). It ranges from 0 to 1, with higher values indicating a 
better fit of the model

where xsim,i and xobs,i are the ith data point in the simulated 
RCM and the observed data series of a climate variable, 
respectively. It has been calculated for the four grid cells 
considered in this study.

With this procedure all RCMs are incoporated into the 
MMEs. Then the cut-off point is made just at the RCMs that 
start to worsen the md metric or when an overfitting issue is 
observed. This indicates that from that RCM onwards, the 
information provided by the other RCMs is more noisy than 
beneficial.

3.4  Evaluation of SEM and ML–MME Algorthims

Once the selection phase was completed and the definitive 
MMEs were built, the evaluation was carried out. The data 
was divided in the training and testing phases, representing 
80 % and 20 % of the data, respectively, divided chrono-
logically. Therefore, the training phase covered the period 
of 1980–2006 while the test phase covered the period of 
2007–2015. Notably, data from all four points in the mesh 
have been incorporated to feed the algorithms. Moreover, 
the evaluation was carried out with three additional metrics 
commonly used in the characterisation of time series simi-
larities: the coefficient of determination ( R2 ), the root-mean-
square error (RMSE), and the root mean square percentage 
error (RMSEPE).

3.5  Application of ML–MME data to Temez 
Hydrological Model

The Temez model (Témez 1977), extensively applied in 
Spanish watersheds (Pérez-Sánchez et al. 2019; Escriva-Bou 
et al. 2017; Chavez-Jimenez et al. 2013; García-Barrón et al. 
2015; Jódar et al. 2017; Marcos-Garcia et al. 2017; Senent-
Aparicio et al. 2018), falls within the category of aggregated 

(3)md = 1 −

∑n

i=1
(xobs,i − xsim,i)

j

∑n

i=1
(�xsim,i − x̄obs� + �xobs,i − x̄obs�)j

,

watershed simulation models (Estrela 1992). Operating from 
the onset of rainfall to the initiation of runoff and subsequent 
discharge into rivers, the Temez model manages moisture 
balances across interconnected processes within a hydrologi-
cal system. Input variables for the Temez model encompass 
the spatial average monthly precipitation for the entire basin 
and Potential Evapotranspiration (ETP). In line with the cur-
rent investigation’s focus on monthly climate data, ETP was 
determined using the Thornthwaite method (Thornthwaite 
1948).

We assessed the hydrological model’s outcomes based 
on four widely adopted evaluation criteria in hydrological 
research (Jimeno-Sáez et al. 2018). These criteria include 
the Nash–Sutcliffe Efficiency coefficient (NSE), the percent 
bias (PBIAS), the Pearson correlation coefficient (r), and the 
Kling–Gupta Efficiency coefficient (KGE).

After the evaluation of the four proposed ML–MME 
techniques, the algorithms were applied to future climate 
projections for the RCP8.5 emission scenario for long-term 
future and were utilized as input data for simulating future 
streamflow.

4  Results and Discussion

4.1  Ranking of RCMs

Table 1 presents the RCM rankings based on TSS across the 
DJF, MAM, JJA, and SON seasons for the variables tmin, 
tmax, and pr. Notably, substantial variations emerge among 
seasons and variables. In certain instances, an RCM that 
excels in simulating one variable and season finds itself at 
the lower end of the ranking when compared to other vari-
ables and seasons. A case in point is IPSL–RCA4 (Code 
33), which stands out as the top performer in simulating 
precipitation during SON and JJA, as well as maximum 
temperature in SON. However, it exhibits inefficiencies in 
comparison to other RCM members when simulating pre-
cipitation in DJF and MAM (Kotlarski et al. 2014).

A notable observation is the high contribution of the 
GCM driver on the ranking position, which is in line with 
what is stated by Vautard et al. (2021), who established that 
some variables are conditioned by large-scale boundary con-
ditions defined by the GCMs. For instance, RCM members 
driven by the MPI–ESM–LR GCM consistently achieve the 
highest RM values (Table 1), indicating superior overall 
performance. This aligns with findings from Brands et al. 
(2013), underscoring the GCM’s excellent ability to simu-
late precipitation over European mid-latitudes. A poor RCM 
performance, however, can also have a significant impact on 
the simulation, as in the case of the 60 and 48 models which, 
despite having the MPI as driver, occupy poor positions in 
the ranking. In the same way, RCMs with CNRM–CM5 as 
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driver also rank high, because they are able to adequately 
characterise the temperatures (McSweeney et al. 2015). 
Conversely, a GCM with deficiencies in simulating climate 
conditions adversely affects the ranking of RCMs that are 
driven by it. Such is the case with MOHC–HadGEM2, 
which exhibits notable biases in climate variables represen-
tation. Consequently, MOHC–HadGEM2 attains lower posi-
tions across all variables and seasons.

4.2  Selection of the Optimal Number of RCMs

To extract meaningful insights for determining the optimal 
number of RCMs to include in further analyses, we con-
ducted an examination of the ML–MME learning curve. 
All machine learning techniques described previosly have 
been used to select the number of RCMs. As depicted in 
Fig. 2, the md values, relative to observations, are plotted 
against the number of RCMs utilised to construct the SEM 
and the ML–MMEs. The incorporation order of RCMs fol-
lows a top-ranked approach (Ahmed et al. 2020). Notably, 
for fewer than three RCMs, the md values exhibit a sub-
stantial increase initially, stabilising thereafter to an asymp-
totic trend for most ML techniques across all variables and 
periods. An exception is observed with GB, where, beyond 

a certain quantity of RCMs (for pr 16, for tmax 35 and for 
tmin 25), the md values approach 1. This indicates overfit-
ting (Ying 2019; Dietterich 1995).

Upon closer examination of individual variables, pre-
cipitation stands out with notable differences between SEM 
and ML–MME. SEM records md values near 0.4, while 
ML–MME techniques yield values ranging from 0.6 to 0.8 
(excluding the overfitting case of GB). For temperature vari-
ables, the initial md is higher, approximately 0.6, indicating 
that RCMs exhibit a greater capacity to replicate monthly 
temperature patterns compared to precipitation. This dif-
ference arises due to the higher complexity inherent in 
the dynamics of precipitation, which poses challenges for 
numerical models to simulate accurately (Perkins et al. 2007; 
Aghakhani Afshar et al. 2017), specifically affecting RCMs 
(Vautard et al. 2021; Herrera et al. 2020; Kotlarski et al. 
2014). While improvements are observed in temperature 
variables with ML–MME, the contrast in md values is less 
pronounced, particularly for minimum temperature.

After reviewing the evolution of result improvements 
concerning the number of RCMs, and recognising a plateau 
after the initial progress, we opted to include a total of seven 
RCMs. This decision is motivated also to avoid instances of 
overfitting, as observed with GB for tmin variable, while 
maintaining a balance between model complexity and pre-
dictive performance. The number of models utilized aligns 
with the findings of Dey et al. (2022), who, following a pre-
selection process, incorporated 5 models into their analysis. 
Likewise, Ahmed et al. (2020) achieved comparable results 
in their precipitation analysis, drawing from data generated 
by 7-10 models exhibiting high performance.

4.3  Evaluation of SEM and ML–MMEs

Figures 3, 4, and 5 offer an assessment of the SEM and 
ML–MME results relative to CLIMPY observations for the 
variables pr, tmax, and tmin. To enhance result clarity, we 
focused on evaluating the spatial average of pr, tmax, and 
tmin within the study area. Notably, in the first column of 
Fig. 3, the Taylor diagram for precipitation during both the 
training and test periods indicates substantial enhancements 
resulting from ML–MME application compared to SEM. 
Among the ML–MME methods, RF and LR yield compara-
ble outcomes, while GB achieves the most favourable results 
at the annual scale for both training and test periods.

Concerning the spatial average of temperatures, Taylor 
diagrams do not reveal appreciable improvements. Both 
SEMs of tmin and tmax already exhibit statistics indica-
tive of a robust representation of monthly temperatures in 
the study area, attributed to the high-quality simulations of 
the pre-selected RCMs (Table 1). The exceptional starting 
point of RCMs’ simulation quality may limit the potential 
enhancement capacity that ML–MMEs could offer.

Fig. 2  md vs. the number of RCMs for precipitation (pr), maximum 
temperature (tmax) and minimum temperature (tmin). The shaded 
area represents the standard deviation of the four grids of the mesh
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For a more detailed analysis of precipitation performance, 
Fig. 4 presents monthly time series plots of the spatial aver-
age results for SEM and ML–MME. The improvement 
across all ML–MMEs in comparison to SEM is evident. 
Whereas SEM exhibited a fit close to zero, high RMSE, 
and md below 0.5 in both periods, all ML–MME techniques 
demonstrate significantly improved performance, indicat-
ing their superior ability to simulate monthly precipitation 
patterns. Notably, GB achieves the best md results, with 
values of 0.88 and 0.75 for the training and test periods, 
respectively. RF, however, is not far behind, boasting an R2 
in the test period of 0.80, surpassing GB’s 0.75. Despite 
LR showing higher RMSE values (around 44 mm/month) 
and a lower capacity to detect precipitation minima and 
maxima, the ML–MME based on LR markedly improves 
the representation of the study area’s precipitation compared 
to SEM. These results are in line with those obtained in 
several studies (Acharya et al. 2014; Salman et al. 2018; Li 
et al. 2021). For instance, Dey et al. (2022) developed ML-
based MME approaches for CMIP6 in an Indian River basin 

obtaining that the RF-based ML–MME showed improved 
performance compared to SEM. In the same vein, Jose et al. 
(2022) proposed RF as the best suitable ML model over 
India for creating MME and simulating the past observed 
climate variables, in a tropical river basin. In addition to 
studies conducted at basin scales, ML–MME approaches 
have also been applied at broader spatial scales. This is the 
case of Wang et al. (2018) who applied SEM, BMA, RF, 
and SVM with CMIP5 data over Australia, concluding that 
RF and SVM could generate better-performing MMEs com-
pared to SEM and BMA.

Figure  5 provides a thorough evaluation of SEM, 
ML–MMEs, and the seven individual RCMs, both at the 
annual and seasonal scales during the test period. Notably, 
when comparing SEM with the ML–MME techniques, a 
widespread enhancement is observed, particularly in pre-
cipitation. For instance, the DJF season, which records 
the lowest md values (around 0.2) for individual RCMs, 
sees substantial improvement with ML–MME techniques, 
elevating md to approximately 0.55 for RF and LR, and 

Fig. 3  Taylor diagrams of the spatial average of the variables precipitation (pr), maximum temperature (tmax) and minimum temperature (tmin) 
for the training (1980–2006) and test (2007–2015) periods
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surpassing 0.70 for GB. This improvement is consistent 
across all seasons and holds true for annual data as well. 
Similarly, R2 and RMSE exhibit substantial enhance-
ments across the board for precipitation. The coefficient 
R2 , which occasionally dips to 0 for certain RCMs and sea-
sons, now consistently remains above 0.6 for all seasons 
and ML–MME techniques, reaching annual values of 0.8. 
The RMSEPE, expressed as a fraction, which exceeds 3 
in some individual RCMs, is consistently below 1 for all 
ML–MME cases. This noticeable and significant improve-
ment in the characterization of precipitation at both sea-
sonal and annual levels, as evidenced by the three met-
rics analyzed in the study region, represents a significant 
qualitative advantage offered by ML-MMEs compared to 
the results obtained from individual RCM members. This 
enhancement could potentially yield significant benefits 

for regional planning, including water and agricultural 
management, as well as climate risk preparedness, among 
others.

For temperatures, while no notable seasonal improvement 
is evident in r and md, annual values display enhancement 
for both tmax and tmin. However, the improvement in simu-
lation quality, even at the seasonal scale, is manifested as 
a decrease in the RMSE values. Individual RCMs exhibit 
RMSE values ranging from 2.0 ◦C to 5.2 ◦C for tmax. Post-
application of ML–MME techniques, RMSE is drastically 
reduced, with values between 0.8 ◦C and 3 ◦C . A parallel 
behaviour is observed for tmin. This improvement in tem-
perature representation is of particular interest in an area 
like the analyzed study region, where the presence of snow 
and snowmelt processes are key factors directly dependent 
on temperatures, greatly influencing regional management.

Fig. 4  Spatially averaged observed precipitation and simulated precipitation time series and evaluation metrics (SEM and ML–MME) for the 
training (1980–2006) and test (2007–2015) periods



 N. Bilbao-Barrenetxea et al.

Published in partnership with CECCR at King Abdulaziz University

In each examined case, MMEs consistently outper-
form individual members, even when represented by the 
least effective MME, SEM. This observation is supported 
by numerous studies that emphasise the MME’s ability to 

enhance individual member performance and reduce climate 
output uncertainties. Notable analyses include regions such 
as India (Gusain et al. 2019), the USA (Srivastava et al. 
2020), China (Zhuang et al. 2016), and Europe (Evin et al. 

Fig. 5  Heat maps representing the md, R2 , RMSE (tmax, tmin) and RMSEPE (pr) obtained from the comparison of the observations versus the 
SEM, the ML–MMEs and the individual RCMs for the test (2007–2015) period
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2021). Additionally, our results indicate that ML–MME 
exhibits superior performance to SEM, particularly for pre-
cipitation, as depicted in Figs. 4 and 5. This finding under-
scores the ML–MME’s relevance at the catchment scale. 
The enhanced performance of ML–MME over SEM may be 
attributed to ML approaches’ capacity to address nonlinear, 
high-dimensional correlations between climate model out-
puts and observational datasets (Dey et al. 2022). Moreover, 
as highlighted by Li et al. (2021), ML–MME algorithms 
could be able to capture detailed information at local scales 
due to the incorporation of high-resolution observations on 
the construction of ML–MME algorithms.

In this study, we successfully integrate the EURO-COR-
DEX RCMs, the climatic simulations with higher spatial 
resolution for the study area, with the strengths of ML math-
ematical algorithms. This combination holds promise for 
reducing uncertainty in basin-scale climate projections. In 
the following section (Sect. 4.4), we utilise the outputs of the 
ML–MME algorithms to feed a hydrological model within 
the Esca River basin.

4.4  Application of SEM and ML–MME Climate Data 
to Temez Hydrological Model

4.4.1  Temez Model Setup

For the model setup development, the simulation period 
was divided into two distinct phases: the calibration period, 
spanning from 1981 to 2000, and the subsequent valida-
tion period, covering 2001 to 2014. A warm-up year was 

introduced to attain a stable state for the Temez model. 
Calibration focused on adjusting four key parameters: Hmax 
(maximum soil storage capacity), C (surplus starting coef-
ficient), Imax (maximum infiltration) and � (groundwater 
contribution coefficient). The first two parameters govern 
soil storage regulation, the third distinguishes surface runoff 
from groundwater runoff, and the fourth modulates subsur-
face drainage (Murillo and Navarro 2011). Table 2 presents 
the metrics described in Sect. 3.4 for the comprehensive 
assessment of hydrological simulation.

According to what was established by Moriasi et  al. 
(2007) and Brighenti et al. (2019), the performance of the 
model both in the calibration and validation period is satis-
factory since the results of NSE and KGE exceed 0.5 and the 
PBIAS reaches its maximum in the calibration period with 
−12.76 %, remaining below the ±25 %.

4.4.2  Evaluation of Streamflow for SEM and ML–MME Input 
Data

Starting from the calibrated and validated Temez model, 
the simulations described bellow have been carried out in 
order to evaluate the impact of the climate-corrected data, 
which have been analysed in detail in section 4.3, on the 
characterisation of the flow variable. First, the monthly flow 
simulation has been developed by feeding the Temez model 
with data from precipitation observations and with the ETP 
derived from the tmax and tmin observations, denoted as 
Qsim-OBS . Following the same approach, four additional flow 
simulations, subsequently identified as Qsim-SEM , Qsim-GB , 
Qsim-LR and Qsim-RF , were developed. Each simulation incor-
porated input data derived from MME techniques: SEM, 
GB, LR, and RF, respectively. To facilitate the explanation, 
another term has been incorporated that refers to the group 
formed by the simulated flows using the climate data derived 
from the ML–MME, Qsim-ML−MME.

Table 3 presents the statistics of the described simula-
tions for the training period (1980–2006) and test period 
(2007–2015) of the ML–MME algorithms. The choice 
of these specific periods aligns with the study’s focus on 
improving climate representation through ML–MME 

Table 2  Calibration (1981–2000) and validation (2001–2014) results 
for the Temez hydrological model

 The presented statistics are the Nash–Sutcliffe Efficiency coefficient 
(NSE), the Pearson correlation coefficient (r), the Root Mean Square 
Error (RMSE), the Kling–Gupta Efficiency coefficient (KGE), and 
the Percent Bias (PBIAS)

NSE r RMSE KGE PBIAS

Calibration 0.63 0.85 13.27 0.78 − 12.76
Validation 0.67 0.83 13.08 0.82 7.21

Table 3  Statistics of simulated 
vs. observed streamflows for the 
training (1980–2006) and test 
(2007–2015) periods

The presented statistics are the Nash–Sutcliffe Efficiency coefficient (NSE), the Pearson correlation coef-
ficient (r), the Root Mean Square Error (RMSE), and the Kling–Gupta Efficiency coefficient (KGE)

Training Test

NSE r RMSE KGE NSE r RMSE KGE

Qsim-OBS 0.67 0.85 12.55 0.81 0.60 0.82 15.00 0.78
Qsim-SEM

− 1.84 0.59 36.59 − 0.27 − 1.97 0.58 40.95 − 0.36
Qsim-GB 0.69 0.85 12.08 0.81 0.48 0.74 17.13 0.73
Qsim-LR 0.56 0.77 14.48 0.69 0.52 0.74 16.42 0.61
Qsim-RF 0.66 0.83 12.59 0.76 0.61 0.80 14.86 0.63
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techniques and assessing the extent to which these improve-
ments influence streamflow representation. The congruence 
in analysis periods for both climate variables and flow vari-
ables enhances the study’s coherence. From the analysis 
of the statistics in Table 3 it is concluded that while the 
Qsim-SEM obtains unsatisfactory results for both periods, the 
ML–MMEs manages to enhance the representation of the 
flow significantly. Notably, both Qsim-RF and Qsim-GB exhibit 
statistics comparable to Qsim-OBS , with NSE remaining above 
0.60 for the training period and r achieving values exceed-
ing 0.74 in both periods. The Qsim-LR simulation, although 
satisfactory, yields inferior results with higher PBIAS and 
lower NSE and KGE values. These outcomes signify that 
the improvements in climate variable representation by 
ML–MMEs propagate and significantly enhance flow char-
acterisation in both the training and test periods.

To further assess the performance of the hydrologi-
cal simulations, the annual cycle for the four Qsim-ML–MME 
together with the Qsim-OBS and QOBS have been depicted 
in Fig. 6. The latter refers to the observed flow rates. It is 
observed how in the training period (1980–2006) the annual 
cycle of the streamflow consists of two maxima in January 
and May and a minimum recorded in August and September. 
This interannual dynamics is captured by the calibrated and 
validated Temez model for the Qsim-OBS simulation. If we pay 
attention to the Qsim-MME , we observe that while QSEM fails to 
characterise the annual cycle with a generalised overestima-
tion of the flow that extends over most of the year, the other 

Qsim-MME accurately reproduce the hydrological cycle of the 
Esca river. The annual cycle of the test period (2007–2015) 
presents differences with respect to the training period, 
especially in the spring maximum, which is more accentu-
ated and reaches 60 Hm3 . The Temez model with input data 
from climate observations ( Qsim-OBS ) has more difficulty in 
simulating the hydrological cycle for this period, although it 
roughly succeeds in characterising it. The Qsim-ML–MME simu-
lations accurately reproduce the Qsim-OBS cycle, especially 
Qsim-GB , while Qsim-SEM demonstrates poor performance. In 
essence, the Qsim-ML–MME reproduce the interannual dynam-
ics captured by the Temez model in the Qsim-OBS simula-
tion, thus demonstrating that the improvements achieved in 
the climate representation derived from the application of 
ML–MME techniques have a positive impact on the char-
acterisation of the hydrological cycle. On the other hand, it 
is important to highlight that the differences derived from 
the flow observations ( QOBS ) and the simulations are attrib-
uted to the errors provided by the Temez model, probably 
related to the misrepresentation of snow accumulation and 
melting processes by the hydrological model (Jimeno-Sáez 
et al. 2020).

4.5  Future Projections of Climate and Hydrological 
Variables

Thus far, it has been demonstrated that the utilization of ML-
MME techniques has not only enhanced the representation 

Fig. 6  Annual cycle of streamflow for the training (1980–2006) and 
test (2007–2015) periods. Results are shown for observational flow 
data ( QOBS ), Temez-simulated flow with input data from CLIMPY 

climate observations ( Qsim-OBS ) and Temez-simulated flow with input 
data from SEM and ML–MMEs ( Qsim-MME ). The shaded area repre-
sents the annual variability of the streamflow results
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of climate variables but has also significantly improved the 
accuracy of hydrological characterization during the histori-
cal period in the study area. Extending this methodology to 
future scenarios under the RCP8.5 emission scenario sug-
gests that projections from trained ML–MME models may 
offer more realistic data than those from the SEM (Liang 
et al. 2008).

Figure 7 illustrates the annual cycles of the analysed vari-
ables-pr, tmax, tmin, and Q-for two distinct periods: histori-
cal (1986–2015), and long-term future (2065–2095). This 

figure juxtaposes simulation data from the ML–MME tech-
niques with observational data from the historical period. 
A comparative analysis reveals that ML–MME techniques 
better characterise climatic patterns compared to the SEM. 
Specifically, while the SEM tends to overestimate precipi-
tation during DJF and MAM, the ML–MME captures the 
interannual dynamics more accurately, manifesting two 
peaks in April and November and a minimum that extends 
from June to August (Lemus-Canovas et al. 2019). Similarly, 
ML–MME techniques more precisely replicate interannual 

Fig. 7  Annual cycles of pr, tmin, tmax and Q for historical and long-term future (RCP8.5 emission scenario) covering 1986–2015, 2066–2095 
respectively. The shaded area for Q variable represents the annual variability of the results
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temperature variations. Further, the ML–MME techniques 
positively influence the streamflow annual cycle repre-
sentation by the Temez model in the study area. Indeed, 
simulations driven by the SEM consistently exhibit over-
estimations, as discussed in Sect. 4.4, whereas RF–MME, 
GB–MME, and LR–MME demonstrate markedly superior 
performance (Fig. 7).

These results and those analysed in sects.  4.3. and 4.4. 
indicate that the ML–MME techniques provide more real-
istic information than SEM, also for the projections of the 
RCP8.5 emission scenario. If we focus on RF and GB we 
see that according to these projections, precipitation will 
decrease throughout the year except for DJF and MAM 
where will increase, thus modifying the interannual pre-
cipitation patterns. Concurrently, temperatures are expected 
to rise consistently (Amblar-Francés et al. 2020; Lemus-
Canovas and Lopez-Bustins 2021), with minimum tempera-
tures notably increasing in March and April. These shifts 
in interannual dynamics will likely reshape the hydrologi-
cal cycle, resulting in a more pronounced summer minima 
and intensified, albeit shorter-duration, maxima in February 
and March, as projected by RF and GB and in line with 
the results obtained in numerous Pyrenean Rivers (López-
Moreno et al. 2014; García Ruiz et al. 2001; Stahl et al. 
2010; Zabaleta et al. 2017; Boé et al. 2009; OPCC-CTP 
2018). While the simplicity of this hydrological modeling 
approach, coupled with monthly-scale analysis, limits our 
conclusions to informative insights, it also highlights the 
potential of integrating ML-MME techniques with more 
intricate hydrological models on a daily scale thus paving 
the way for the development of projections that can facilitate 
more precise resource-planning and adaptation strategies in 
the context of climate change.

5  Conclusions

In this study, we effectively implemented machine learn-
ing algorithms to develop Multi Model Ensembles (MMEs) 
based on Regional Climate Models (RCMs) within the 
Esca River basin, situated in the high mountain region of 
the Pyrenees. A comprehensive ranking of the RCMs was 
established, revealing substantial variability in performance 
across individual variables and seasons, with MPI-driven 
RCMs consistently outperforming others.

To determine the optimal number of RCMs for MME 
construction, a top-ranked approach was adopted. Seven 
RCMs were selected based on performance curves analysis, 
forming the definitive MMEs.

Noteworthy enhancements were observed in precipita-
tion representation on both annual and seasonal scales by 
the Machine–Learning (ML) based MMEs. Although the 
results obtained for temperatures using ML-based MMEs 

are more subtle at seasonal scale, a relevant improvement 
is observed in the annual RMSE values. Hydrological sim-
ulations employing MMES of climate variables based on 
Random Forest, Linear Regression and Gradient Boosting 
yielded outcomes comparable to those fed by climate obser-
vations, significantly outperforming simulations based on 
single RCMs and SEM. Our results showcase two key find-
ings. Firstly, they highlight the potential of machine learning 
techniques in constructing MMEs to enhance the characteri-
zation of climate variables. Secondly, they underscore the 
advantages of utilizing these ML-MMEs as input data for 
hydrological models.

Additionally, our methodology showcased versatility by 
applying algorithms to climate projections under the RCP8.5 
scenario, providing more realistic information than tradi-
tional methods and thereby offering opportunities for reduc-
ing uncertainty in climate outputs for adaptation planning 
and basin-scale impact analyses in the context of climate 
change. This contribution holds particular significance and 
novelty in a region characterized by complex topography, 
such as the high mountain region of the Pyrenees, where 
predicting future changes is not only a complex task but also 
essential for the climate change adaptation of the region.
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