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Resumen 

El proceso de reconocimiento proteína-ligando es fundamental en el ámbito de 

la biología molecular, rigiendo funciones celulares esenciales y mediando en 

diversos procesos biológicos. En el núcleo de estas interacciones reside la notable 

capacidad de las proteínas para unirse de forma selectiva a pequeñas moléculas, 

conocidas como ligandos. Desde las cascadas de señalización que regulan las 

respuestas celulares hasta las reacciones enzimáticas que impulsan el 

metabolismo, el reconocimiento proteína-ligando desempeña un papel central 

en la química de la vida. 

En el proceso de asociación entre una proteína y un ligando la influencia de la 

solvatación, particularmente el comportamiento de las moléculas de agua 

alrededor de la zona de unión es de gran importancia. El agua, componente 

integral en la interfaz biomolecular, desempeña un papel crucial al participar en 

enlaces ubicuos y específicos. Aunque ocupa menos espacio que las cadenas 

laterales polares de las proteínas, las moléculas de agua pueden participar en 

múltiples enlaces de hidrógeno gracias a su adaptabilidad. Esta versatilidad le 

permite interactuar con diversos ligandos y contribuye a la energía de unión 

mediante procesos de desolvatación y reorganización durante la formación del 

complejo. Comprender la influencia del agua en las interacciones proteína-

ligando es fundamental para optimizar el diseño de ligandos y comprender los 

componentes energéticos involucrados en estas interacciones. Además, el 

carácter dinámico de las proteínas les permite responder estructuralmente a la 

unión de ligandos, lo que a su vez puede desencadenar efectos alostéricos en 

regiones distantes al sitio de reconocimiento.  

Entre estos procesos de reconocimiento, cabe destacar el reconocimiento de 

carbohidratos por proteínas en los procesos biológicos. A diferencia de las 

pequeñas moléculas orgánicas, los carbohidratos añaden una dimensión única a 

estas interacciones. Las proteínas que se unen a carbohidratos, como las lectinas, 

desempeñan papeles clave en la adhesión celular, señalización, interacciones 

huésped-patógeno y más. Los patógenos exhiben carbohidratos en su superficie, 

que sirven para mediar la interacción con las células huésped. Estas interacciones 

tienen un impacto notable en la respuesta inmunitaria y ofrecen posibles 

objetivos terapéuticos para modularlas. 

En los últimos años, los estudios experimentales empleando técnicas como la 

cristalografía de rayos X y la espectroscopia de RNM han proporcionado detalles 

precisos sobre las interacciones entre lectinas y carbohidratos. Además, el uso de 

diferentes métodos experimentales ha permitido determinar parámetros 

termodinámicos y cinéticos asociados con el proceso de unión. En paralelo, se 

han desarrollado métodos computacionales en el campo de la Modelización 
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Molecular y la Química Computacional. Estos métodos incorporan diversas 

técnicas a diferentes escalas espaciotemporales, lo que resulta en modelos 

altamente precisos para caracterizar las interacciones entre lectinas y 

carbohidratos, y en predicciones de alta calidad. 

En la primera parte de la presente tesis doctoral se aborda el estudio del 

reconocimiento de carbohidratos por lectinas, en concreto galectinas y DC-SIGN. 

En este estudio se emplean diversas técnicas computacionales, incluyendo 

cálculos de mecánica cuántica y dinámicas moleculares. Todos estos cálculos son 

apoyados por experimentos de Resonancia Magnética Nuclear.  

Las galectinas son una familia de proteínas que destacan por su capacidad para 

unir específicamente β-galactósidos. Estas proteínas están distribuidas 

ampliamente en el cuerpo humano y desempeñan un papel crucial en la 

regulación de numerosos procesos biológicos, como la adhesión celular, la 

señalización intracelular y la respuesta inmunológica. Su capacidad para 

interactuar con carbohidratos presentes en la superficie de células las convierte 

en componentes clave de la adhesión celular y en la formación de complejos 

moleculares. Además, las galectinas están implicadas en la progresión de 

enfermedades como el cáncer, la inflamación y las enfermedades autoinmunes, 

lo que las convierte en objetivos potenciales para el desarrollo de terapias y 

diagnósticos.  

En el Capítulo 3, se lleva a cabo un análisis computacional exhaustivo de las 

interacciones entre las diferentes formas existentes de galectinas humanas y 

carbohidratos. Además, se estudia la posible comunicación alostérica presente 

en estos sistemas y las contribuciones termodinámicas de la solvatación 

utilizando simulaciones de dinámica molecular. Este estudio proporciona 

información detallada sobre los aspectos estructurales, dinámicos y energéticos 

de estas interacciones, destacando la importancia de entender las redes de 

comunicación alostérica y la naturaleza entálpica o entrópica de las interacciones 

clave. Así, se ha caracterizado cómo las diferencias en la composición de los sitios 

de unión de las galectinas son en última instancia responsables de sus 

especificidades, determinando la estructura y dinámica de la microsolvatación 

local y la termodinámica general de la hidratación. Estos hallazgos contribuyen 

al aumento del conocimiento del papel de las zonas de agua conservadas y de 

los efectos alostéricos, ofreciendo información crucial para el diseño de fármacos 

o intervenciones terapéuticas. 

DC-SIGN es una proteína expresada principalmente en las células dendríticas, 

que son componentes clave del sistema inmunológico. DC-SIGN juega un papel 

esencial en la interacción entre las células dendríticas y los patógenos, como 

virus y bacterias, a través de la unión a carbohidratos específicos presentes en la 

superficie de estos microorganismos. Esta interacción desencadena una 
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respuesta inmunológica adaptativa que es fundamental para combatir las 

infecciones. La capacidad de DC-SIGN para reconocer y unir patógenos lo 

convierte en un objetivo importante en la investigación de vacunas y terapias 

antivirales. Además, su papel en la modulación de la respuesta inmunológica 

también lo hace relevante en la comprensión de enfermedades autoinmunes y 

procesos inflamatorios. En conjunto, tanto las galectinas como DC-SIGN 

ejemplifican la importancia crítica de las proteínas que reconocen y se unen a 

carbohidratos en una variedad de procesos biológicos y médicos. DC-SIGN 

muestra una notable promiscuidad en la unión a carbohidratos. Esta amplia 

capacidad de unión de diferentes carbohidratos plantea desafíos en la 

comprensión de las especificidades y las implicaciones funcionales de estas 

interacciones. Investigar la base molecular de la promiscuidad de DC-SIGN y su 

relevancia en las interacciones huésped-patógeno es un área de investigación 

activa con posibles aplicaciones en el desarrollo de terapias y vacunas dirigidas 

a respuestas inmunológicas mediadas por DC-SIGN.  

En el caso de lectinas de tipo C, como DC-SIGN, el proceso de reconocimiento 

de carbohidratos implica la coordinación de un catión calcio por dos grupos 

hidroxilo situados en posiciones vecinales en el monosacárido, lo que resulta en 

una interacción relativamente débil. Sin embargo, se pueden lograr afinidades 

más altas mediante contactos adicionales que involucran residuos situados fuera 

del sitio activo. En el Capítulo 4 se estudia el reconocimiento de monosacáridos 

por DC-SIGN, utilizando diversas técnicas computacionales incluyendo 

mecánica cuántica y dinámica molecular y validando los resultados con 

experimentos de RMN y cálculos de CORCEMA-ST, con el propósito de 

comprender los mecanismos moleculares involucrados en el proceso de 

reconocimiento. En este estudio se presenta el patrón estructural óptimo de 

menor tamaño que debe presentar un ligando cíclico de seis miembros con 

múltiples grupos hidroxilo para ser reconocido por la lectina humana DC-SIGN. 

Basándonos en estos resultados, se ha explorado por primera vez la interacción 

entre diversos ligandos no nativos que presentan este motivo estructural y DC-

SIGN. El conocimiento obtenido sobre las preferencias de unión de los distintos 

ligandos y las interacciones moleculares que las gobiernan podrían tener 

aplicación en el campo del reconocimiento molecular y el diseño de 

medicamentos con capacidad de inhibir esta lectina y dianas similares. 

Además de abordar las interacciones proteína-ligando desde una perspectiva 

fundamental, esta tesis también se adentra en aplicaciones prácticas del diseño 

de proteínas. El diseño de proteínas es un campo de estudio apasionante que se 

encuentra intrínsecamente vinculado al desafío del plegamiento proteico. Este 

es un desafío central en la biología molecular que ha intrigado a la comunidad 

científica durante mucho tiempo. Implica comprender cómo una proteína, que 

se sintetiza inicialmente en el ribosoma como una cadena lineal de aminoácidos, 
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logra plegarse en una estructura tridimensional única y crucial para su función 

biológica. La información necesaria para identificar la estructura plegada de una 

proteína, también conocida como su estado nativo, está completamente 

contenida en la secuencia lineal de aminoácidos de la proteína. La teoría 

termodinámica de Anfinsen sostiene que esta información está codificada en el 

perfil energético de la cadena polipeptídica , poseyendo el estado nativo la 

energía libre más baja. Durante muchos años, este principio sentó las bases para 

un enfoque general en la predicción de la estructura de proteínas, que implica 

muestrear diversas conformaciones, evaluarlas en función de la energía y 

finalmente identificar la conformación con el estado de energía más bajo. El 

proceso de plegamiento se basa en la necesidad de confinar residuos 

hidrofóbicos en el núcleo de la proteína, lejos del solvente acuoso, optimizando 

interacciones de van der Waals y enlaces de hidrógeno intra-proteína, lo que 

resulta en una estructura tridimensional altamente específica y funcional. 

La diversidad de funciones de las proteínas, que abarcan desde catalizar 

reacciones bioquímicas hasta proporcionar soporte estructural y regular 

procesos celulares, está intrínsecamente ligada a sus estructuras 

tridimensionales únicas, determinadas por su secuencia lineal de aminoácidos. 

Durante décadas, los biólogos estructurales han seguido el paradigma 

secuencia-estructura-función, que asume que secuencias de proteínas similares 

generan estructuras y funciones similares. Sin embargo, el crecimiento 

exponencial de secuencias de proteínas disponibles ha superado las capacidades 

de los métodos experimentales tradicionales para determinar estructuras 

proteicas; por ello, en los últimos años se han producido grandes avances en la 

predicción de estructuras proteicas mediante algoritmos de deep learning, 

ejemplificados por programas como AlphaFold y RoseTTAFold. Estos 

desarrollos han revelado que secuencias diferentes pueden plegarse en 

estructuras similares, destacando la importancia de la detección de homología 

lejana y los métodos de reconocimiento de plegamiento. Esto implica reconocer 

similitudes en las secuencias de aminoácidos entre proteínas aparentemente no 

relacionadas, indicando que podrían compartir una estructura tridimensional 

similar. Este enfoque destaca la necesidad de utilizar métodos específicos de 

reconocimiento de plegamiento diseñados para predecir cómo se pliegan las 

proteínas en su estructura tridimensional con base en la secuencia de 

aminoácidos. 

El diseño de proteínas, a menudo descrito como el problema inverso a la 

predicción de estructuras de proteínas, se centra en inferir una secuencia de 

aminoácidos que estabilice la conformación deseada de una proteína en lugar de 

encontrar la conformación más estable para una secuencia de proteína específica. 

Este campo se divide en dos grupos principales: la ingeniería de proteínas y el 

diseño de novo. La ingeniería de proteínas se centra en modificar proteínas 
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existentes para mejorar sus capacidades y explorar nuevas funciones, buscando 

resolver desafíos como la insuficiente estabilidad térmica, la deficiente 

estabilidad en condiciones adversas, y la baja expresión, actividad y 

especificidad, y que suelen presentar las proteínas naturales. Por otro lado, el 

diseño de novo comienza con requisitos preestablecidos, como una forma o 

función deseada, sin depender de proteínas existentes. Dicho diseño se logra 

mediante algoritmos computacionales y principios estructurales con el fin de 

crear proteínas desde cero, abriendo posibilidades para diseñar proteínas con 

funciones a la carta, que no se conocen en la naturaleza.  

En la segunda parte de la presente tesis doctoral, dos proyectos ilustran la 

versatilidad del diseño de proteínas en la modificación y optimización de 

propiedades con aplicaciones diversas. En un caso, se ha abordado la mejora de 

la termoestabilidad de la proteína frataxina humana (Capítulo 5), mientras el otro 

(Capítulo 6) se centra en el diseño de variantes de la enzima TEV con solubilidad, 

expresión, estabilidad y actividad mejoradas.  

Las terapias basadas en proteínas presentan ventajas significativas en 

comparación con los fármacos basados en moléculas pequeñas, ya que ofrecen 

una mayor potencia y una gama más diversa de funciones, como biocatálisis, 

señalización y transporte. Además, dado que han evolucionado para 

desempeñar roles altamente especializados, suelen inducir menos efectos 

secundarios. Sin embargo, el éxito de las terapias basadas en proteínas a menudo 

se ve limitado por la estabilidad de las proteínas terapéuticas. La disminución 

de la estabilidad termodinámica in vitro a menudo se correlaciona con la 

degradación temprana de la proteína terapéutica en el organismo debido a su 

despliegue prematuro y posterior degradación en el proteosoma u otras vías de 

eliminación proteica. Este desafío puede superarse mediante el diseño de 

variantes de proteínas que mantengan conformaciones plegadas estables a 

temperaturas fisiológicas. Para lograrlo, es fundamental que las variantes 

diseñadas sean semejantes a sus contrapartes naturales con el fin de conservar la 

función nativa y evitar respuestas inmunitarias. En particular, la estabilidad 

termodinámica y la solubilidad se pueden mejorar mediante ingeniería de la 

secuencia de aminoácidos, asegurando la estabilidad y solubilidad de la 

proteína. Estas estrategias son fundamentales para mejorar la eficacia 

terapéutica y avanzar en el campo de la terapia génica y proteica. 

La ataxia de Friedreich es una enfermedad autosómica recesiva que afecta a 

pacientes jóvenes y se caracteriza por la disminución de la frataxina, una 

proteína crucial para la función mitocondrial. Los pacientes con esta enfermedad 

muestran una deficiencia en la frataxina debido a mutaciones genéticas. En el 

Capítulo 5 se describe cómo el uso de herramientas de inteligencia artificial, como 

AlphaFold y ProteinMPNN, ha permitido predecir con éxito cambios en la 
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termoestabilidad de las proteínas mediante la ingeniería de su secuencia. En este 

estudio, se han diseñado variantes de frataxina que han demostrado una mayor 

termoestabilidad y resistencia a la degradación, lo que las convierte en 

prometedores candidatos para terapia de reemplazo de proteínas en la ataxia de 

Friedreich. Este enfoque racional podría tener aplicaciones más amplias en el 

diseño de proteínas con propiedades mejoradas para usos terapéuticos y 

biotecnológicos. 

Por otro lado, TEV es una proteasa derivada del virus del tabaco ampliamente 

utilizada en aplicaciones biotecnológicas debido a su capacidad para realizar un 

corte específico entre glutamina y serina dentro de su secuencia de 

reconocimiento (ENLYFQ/S). Este proceso de corte se utiliza frecuentemente 

para eliminar etiquetas de purificación de proteínas producidas por 

recombinación. Sin embargo, a pesar de su interés, el uso de esta enzima a 

menudo presenta desafíos significativos en términos de solubilidad, estabilidad 

térmica y eficiencia catalítica subóptima, lo que puede llevar a tiempos de 

incubación prolongados e incompletos procesos de proteólisis. 

En el Capítulo 6, se describe el uso de técnicas de diseño de proteínas basadas en 

el deep learning, en particular ProteinMPNN, para optimizar la solubilidad de la 

proteasa TEV y abordar sus limitaciones inherentes. Tomando como punto de 

partida una variante de la proteasa TEV conocida como TEVd que ha 

demostrado resistencia a la autólisis, se han diseñado variantes que muestran 

una mejora significativa tanto en la solubilidad, la estabilidad y la eficiencia 

catalítica de la proteasa TEV, allanando el camino para aplicaciones 

biotecnológicas más eficientes y efectivas. 

Así, el uso combinado de información evolutiva y modelos de deep learning para 

el diseño de secuencias (ProteinMPNN) y predicción de estructura (AlphaFold) 

de proteínas ha demostrado ser extremadamente exitoso para la mejora de 

propiedades en proteínas muy diferentes, como son el caso de frataxina y la 

proteasa TEV. La selección racional de posiciones a mutar basada en información 

estructural y funcional, y su posterior muestreo con ProteinMPNN ha sido 

garantía de éxito en el diseño, tal y como se demuestra por los altos valores de 

predictibilidad de los modelos generados mediante AlphaFold, y especialmente 

por los resultados experimentales obtenidos.  

Con esta metodología se han logrado mejoras en el rendimiento de expresión de 

proteínas y en su estabilidad (tanto termodinámica como proteolítica), que son 

cruciales para su potencial uso como herramientas biotecnológicas o agentes 

terapéuticos. Esta estrategia racional basada en deep learning constituye un 

enfoque prometedor para el diseño y la ingeniería de proteínas, pudiendo servir 

como complemento a técnicas de uso común como la mutagénesis aleatoria o la 

evolución dirigida.   
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Abstract 

Protein-ligand recognition is a central to molecular biology, governing essential 

cellular functions and mediating various biological processes. At its core lies the 

remarkable ability of proteins to selectively bind small molecules, known as 

ligands. From regulating cellular responses to driving metabolic reactions, 

protein-ligand recognition plays a central role in life’s chemistry. Solvation, 

particularly water behavior, is vital in protein-ligand interactions. Water, which 

is crucial at the biomolecular interface, participates in promiscuous and specific 

hydrogen bonds. It significantly contributes to binding energy through 

desolvation, reorganization, and displacement during complex formation.  

In its first part, this doctoral thesis focuses on carbohydrate recognition by 

lectins, specifically galectins and DC-SIGN. The study uses a diverse range of 

computational techniques, including quantum mechanics calculations, 

molecular dynamics, conformational analysis, and solvation analysis, supported 

by nuclear magnetic resonance experiments. 

Galectins, a protein family known for their specific binding to β-galactosides, 

play a crucial role in various biological processes such as cell adhesion, 

intracellular signaling, and immune response. Their ability to interact with 

carbohydrates on cell surfaces makes them key components in cellular adhesion 

and molecular complex formation. Galectins have also been implicated in 

diseases like cancer, inflammation, and autoimmune disorders, making them 

potential targets for therapies and diagnostics. 

In Chapter 3, a comprehensive computational analysis is conducted on the 

interactions between different forms of human galectins and carbohydrates. The 

study explores potential allosteric communication and solvation 

thermodynamics using molecular dynamics simulations. Detailed insights into 

the structural, dynamic, and thermodynamic aspects of these interactions are 

provided, offering a deeper understanding of the role of conserved water 

regions and long-distance movements. 

Differences in the binding sites of galectins ultimately dictate their specificities, 

influencing local microsolvation dynamics and overall hydration 

thermodynamics. These findings may prove valuable for future drug design or 

therapeutic interventions. 

DC-SIGN is a protein primarily expressed in dendritic cells, crucial components 

of the immune system. It plays an essential role in the interaction between 

dendritic cells and pathogens, such as viruses and bacteria, by binding to specific 

carbohydrates on the surface of these microorganisms. This interaction triggers 

an adaptive immune response vital for combating infections. DC-SIGN's ability 
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to recognize and bind pathogens makes it a significant target in vaccine research 

and antiviral therapies. Additionally, its role in modulating the immune 

response is relevant to understanding autoimmune diseases and inflammatory 

processes. 

Both galectins and DC-SIGN exemplify the critical importance of proteins 

recognizing and binding to carbohydrates in various biological and medical 

processes. DC-SIGN exhibits notable promiscuity in carbohydrate binding, 

posing challenges in understanding the specificities and functional implications 

of these interactions. Investigating the molecular basis of DC-SIGN's 

promiscuity and its relevance in host-pathogen interactions is an active research 

area with potential applications in developing therapies and vaccines targeting 

DC-SIGN-mediated immune responses. 

In the case of C-type lectins like DC-SIGN, the carbohydrate recognition process 

involves calcium coordination by two neighboring hydroxyl groups in the 

monosaccharide, resulting in a relatively weak interaction. However, higher 

affinities can be achieved through additional contacts involving residues outside 

those conserved in secondary sites. Chapter 4 focus on monosaccharide 

recognition by DC-SIGN, using different computational techniques such as 

quantum mechanics and molecular dynamics, and validating predictions 

through NMR experiments and CORCEMA ST calculations. The goal is to 

understand the molecular mechanisms involved in carbohydrate recognition by 

DC-SIGN and its potential applications in future research and applications. 

The study introduces the optimal structural pattern that a six-membered cyclic 

ligand with multiple hydroxyl groups must have to be recognized by the human 

lectin DC-SIGN. Building upon these findings, the interaction between diverse 

ligands and DC-SIGN is explored for the first time. Insights into binding 

preferences and molecular interactions could have broad implications in the 

field of molecular recognition and drug design, potentially guiding future 

research. 

In addition to addressing protein-ligand interactions from a fundamental 

perspective, the second part of this doctoral thesis delves into practical 

applications of protein design. Protein design is an exciting field intricately 

linked to the challenge of protein folding, a central issue in molecular biology 

that has intrigued the scientific community for a long time. It involves 

understanding how a protein, initially synthesized as a linear chain of amino 

acids, folds into a unique three-dimensional structure crucial for its biological 

function. 

The diverse protein functions, from catalyzing biochemical reactions to 

providing structural support and regulating cellular processes, are inherently 
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linked to their unique three-dimensional structures, determined by their linear 

amino acid sequences. Structural biologists have traditionally followed the 

sequence-structure-function paradigm, assuming that similar protein sequences 

generate similar structures and functions. However, the exponential growth of 

available protein sequences has surpassed the capabilities of traditional 

experimental methods for determining protein structures, leading to significant 

advances in protein structure prediction through deep learning algorithms, 

exemplified by programs like AlphaFold and RoseTTAFold. These 

developments have revealed that different sequences can fold into similar 

structures, highlighting the importance of detecting distant homology and 

folding recognition methods. 

Protein design, often described as the inverse problem of protein structure 

prediction, focuses on inferring an amino acid sequence that stabilizes the 

desired conformation of a protein rather than finding the most stable 

conformation for a specific protein sequence. This field is divided into two main 

groups: protein engineering and de novo design. Protein engineering aims to 

modify existing proteins to enhance their capabilities and explore new functions. 

It seeks to address challenges such as marginal thermal stability, low expression, 

low activity and specificity, and deficient stability under adverse conditions of 

natural proteins. On the other hand, de novo design starts with pre-established 

requirements, such as a desired shape or function, without relying on existing 

proteins. This is achieved through computational algorithms and structural 

principles to create proteins from scratch, opening possibilities for designing 

proteins with custom functionalities that may not exist in nature.  

In this thesis, two projects illustrate the versatility of protein design in modifying 

and optimizing properties with diverse applications. In one case, the challenge 

of improving the thermostability of the Frataxin protein is addressed (Chapter 5), 

while the other (Chapter 6) focuses on designing variants of the TEV enzyme with 

enhanced solubility, expression, stability, and activity. 

Protein-based therapies offer significant advantages over small molecule drugs, 

providing greater potency and a more diverse range of functions, such as 

catalysis, signaling, and transport. Moreover, as they have evolved to play 

highly specialized roles, they often induce fewer side effects. However, the 

success of protein-based therapies is often limited by the stability of therapeutic 

proteins. The decrease in in vitro thermodynamic stability often correlates with 

early degradation of therapeutic proteins in the body due to premature 

unfolding and subsequent degradation in the proteasome or other protein 

elimination pathways. This challenge can be overcome by designing protein 

variants that maintain stable folded conformations at physiological 

temperatures. To achieve this, it is crucial for the designed variants to closely 
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mimic their natural counterparts to preserve native function and avoid immune 

responses. Thermodynamic stability and solubility can be improved through 

amino acid sequence engineering, ensuring the stability and solubility of the 

protein. These strategies are essential for improving therapeutic efficacy and 

advancing the fields of gene and protein therapy. 

Friedreich's ataxia is an autosomal recessive condition affecting young patients 

and characterized by decreased Frataxin, a protein crucial for mitochondrial 

function. The use of artificial intelligence tools, such as AlphaFold, has 

successfully predicted changes in protein thermostability through sequence 

engineering. In Chapter 5, Frataxin variants have been designed to exhibit 

increased thermostability and resistance to degradation, making them 

promising candidates for protein replacement therapy in Friedreich's ataxia. 

This rational approach could have broader applications in designing proteins 

with enhanced properties for therapeutic and biotechnological uses. 

On the other hand, TEV is a widely used protease in biotechnological 

applications due to its ability to perform specific cleavage between glutamine 

and serine within its recognition sequence (ENLYFQ/S). This cleavage process is 

used to remove purification tags from recombinantly produced proteins. 

However, despite its interest, the use of this enzyme often presents significant 

challenges in terms of solubility, thermal stability, and suboptimal catalytic 

efficiency, leading to prolonged incubation times and incomplete cleavage 

processes. 

In Chapter 6, protein design techniques based on deep learning, particularly 

ProteinMPNN, are applied to optimize the solubility of the TEV protease and 

address its inherent limitations. Starting with a variant of the TEV protease 

known as TEVd, which has shown resistance to autolysis, variants have been 

designed that exhibit significant improvement in the solubility, stability, and 

catalytic efficiency of the TEV protease, paving the way for more efficient and 

effective biotechnological applications. 

The combined use of evolutionary information and deep learning models for 

sequence design (ProteinMPNN) and protein structure prediction (AlphaFold) 

has proven to be extremely successful for property enhancement in very 

different proteins, as exemplified by Frataxin and the TEV protease. Rational 

selection of positions to mutate based on structural and functional information, 

followed by sampling with ProteinMPNN, has been a guarantee of success, as 

demonstrated by the high predictability values in AlphaFold models and 

especially by the results of the presented experimental assays. 
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This methodology has achieved improvements in protein expression 

performance and stability (both thermodynamic and proteolytic), crucial for 

their potential use as biotechnological tools or therapeutic agents. The presented 

rational deep learning-based approach constitutes a promising strategy for 

protein design and engineering, serving as a complement to powerful 

techniques such as random mutagenesis or directed evolution. 
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1. Insights into Protein-Carbohydrate Recognition Processes 

1.1 Protein-ligand recognition  

Protein-ligand recognition is a crucial phenomenon in the realm of molecular 

biology, governing essential cellular functions and mediating different 

biological processes. At the core of this interaction lies the remarkable ability of 

proteins to selectively bind small molecules known as ligands. From the intricate 

signaling cascades that regulate cellular responses to the finely tuned enzymatic 

reactions that drive metabolism, protein-ligand recognition plays a central role 

in life’s chemistry.  

At low concentrations, a protein and a ligand can rotate and translate 

independently without running into one another. The association between the 

two molecules only takes place after a collision if their mutual attraction is 

stronger than their mobility. This implies that the energy gained from binding 

should exceed the energy lost due to restricted molecular movement. With an 

increase in temperature, the kinetic energy and the frequency of collisions rise, 

requiring the collision energy to surpass the kinetic energy for successful 

binding. The hydrophobic effect, which refers to the tendency of non-polar parts 

of the protein, especially certain amino acid chains, to group together, further 

enhances complex formation through strong interactions among solvent 

molecules in solution [1]. 

Upon association, the protein and the ligand experience constrained movement, 

losing their independent rotational and translational freedom. Additionally, 

vibrational motion emerges between the molecules. These increased constraints 

lead to a redistribution of kinetic energy. However, the loss of rotational and 

translational freedom is partly compensated by the residual motion of the 

complex, allowing for some remaining movement. As the strength of the 

interaction between the molecules increases and the vibrational motion become 

less flexible, the residual vibration diminishes, ultimately leading to covalent 

bonds in some extreme cases [2]. 

a. Enthalpy-entropy compensation effect 

The binding free energy (∆Gb) for a ligand-target complex at a given temperature 

is determined by Equation 1:  

∆𝐺𝑏 = ∆𝐻𝑏 − 𝑇∆𝑆𝑏 (Equation 1) 
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In the context of protein-ligand recognition, this equation reflects an intrinsic 

and temperature-dependent enthalpy-entropy compensation. Specifically, as the 

complex formation becomes tighter, there is a notable loss of mobility, as 

indicated by the opposing entropic (T∆Sb) and enthalpic (∆Hb) terms in the 

equation. 

This phenomenon covers the correlation and offsetting nature of changes in 

enthalpy (∆Hb) and entropy (T∆Sb), thereby maintaining a relatively constant 

free energy change (∆Gb). Enthalpy-entropy compensation is a prevalent 

occurrence observed in almost all weak intermolecular associations, with 

hydrogen bonding in aqueous solutions being a common example [3]. The extent 

of compensation is limited by two factors: 

 i)  The entropy loss caused by the complete immobilization of 

molecules. To mitigate this entropic loss, a common strategy is to design 

a ligand that is intrinsically more rigid. By minimizing the entropic loss, 

it becomes easier for the complex to overcome this limitation. 

ii) The enthalpic gain from new noncovalent interactions formed in the 

complex, which is the most common strategy used in drug development 

by maximizing the number and strength of polar contacts, hydrophobic 

interactions, salt bridges, etc. 

In a thermodynamically favorable protein-ligand binding process, the combined 

contributions of entropic and enthalpic changes must outweigh any interactions 

between the solvent and the solute.  

In protein-ligand recognition processes, enthalpy-entropy compensation can 

occur in numerous scenarios. Some examples are: 

• Ligand-induced conformational changes 

Binding of a ligand leads to structural rearrangements in the protein, 

balancing enthalpic gains from new interactions with entropic loss due 

to increased rigidity [4]. 

• Solvent reorganization 

Ligand binding causes solvent molecules to rearrange around the 

complex, resulting in enthalpic gain or loss and potential changes in the 

system’s entropy [5]. 

• Hydrophobic interactions 

Hydrophobic regions of the ligand and the protein come together upon 

binding, minimizing contact with bulk water molecules, resulting in 
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favorable enthalpic gain but potentially entropic loss due to ordered 

water molecules at the interface [6]. 

• H-bonding interactions 

The formation or breaking of hydrogen bonds between the ligand and 

the protein contributes to enthalpic changes, while the rearrangement of 

water molecules involved in these interactions can affect entropy [7–9]. 

• Ligand flexibility 

Flexible ligands can adapt their conformation to fit the binding site, 

gaining entropy, but the restriction of ligand flexibility upon binding 

may lead to entropic losses [4]. 

b. Solvation effects 

Considering the protein-ligand recognition process, the influence of solvation, 

particularly the behavior of water molecules, holds immense significance 

alongside the roles of the protein and the ligand themselves [10]. Water, an 

integral component at the biomolecular interface, possesses remarkable 

versatility that profoundly impacts ligands binding. Acting as both hydrogen 

bond donor and acceptor, water plays a dual role in facilitating bond formation. 

Despite occupying less space compared to the polar side chains of a protein, 

water molecules participate in multiple hydrogen bonds. This adaptability 

confers promiscuous binding capabilities to surfaces, since water molecules 

possess a degree of flexibility that allows them to form interactions with different 

types of ligands. However, water also possesses the ability to confer exquisite 

specificity and increased affinity to interactions, enabling precise and high-

affinity binding [11]. 

Water, the universal solvent of life, plays a crucial role in ligand binding, as 

evidenced by the significant influence of the hydrophobic effect and the frequent 

occurrence of water-mediated interactions between proteins and ligands within 

binding sites [1,12]. The processes of ligand association with its binding partner 

necessitates, at least, the partial desolvation of the ligand, the displacement of 

water molecules from the binding site, and the reorganization of water in the 

surrounding vicinity (Fig. 1). On a molecular scale, the hydration status of the 

two binding partners undergoes specific changes during the binding process, 

affecting only a small number of water molecules directly. However, despite 

their limited presence, water molecules play a significantly role in binding 

energetics, making substantial contributions to the overall stability and affinity 

of the complex [13]. 
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Figure 1. Schematic representation of the solvation/desolvation mechanism in protein-

ligand recognition processes. The figure represents how water molecules play a crucial 

role in hydrating the binding site of the protein (green). Upon ligand (red) binding, water 

molecules are displaced, leading to the desolvation of the binding site and creating a 

favorable environment for protein-ligand interactions.  

When considering the displacement of water molecules from an active site in 

favor of a newly introduced non-covalent interaction, several factors come into 

play to determine its favorability. This displacement is only favorable if the 

benefits outweigh the cost of breaking the water molecule’s hydrogen bonds 

with the active site. This involves considering the gain in ligand-protein 

enthalpy and the gain in solvent enthalpy and entropy. This phenomenon 

represents a complex form of enthalpy-entropy compensation and is a common 

challenge in ligand design to achieve strong binding [14]. 

 

Figure 2. Relative binding enthalpy (∆∆Hb°, in green dots), entropy (-T∆∆Sb°, in yellow), 

and free energy (∆∆Gb°, in red) measured experimentally by isothermal titration 

calorimetry (ITC) for a series of fluorinated ligands to human carbonic anhydrase. The 

observed H/S compensation effect is strongly influenced by the structural and 

thermodynamic properties of water surrounding the bound ligands. Figure adapted from 

reference  [5]. 
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Hence, understanding the effect of solvation and the role of water in protein-

ligand recognition processes is vital for comprehending the intricate energetics 

and optimizing ligand design strategies.  

c. Allostery  

Proteins exhibit inherent dynamics that are essential for their functional roles, 

allowing them to undergo significant conformational transitions upon 

encountering external stimuli, such as ligand binding. The process of ligand 

binding can induce alterations in the protein’s structure, and due to their densely 

packed nature, these changes can trigger allosteric effects at distant sites from 

the binding site. This allosteric communication within a protein is crucial for 

facilitating essential biochemical processes. Investigating the protein’s allosteric 

behavior resulting from ligand binding holds significance in understanding the 

thermodynamics of binding, as these remote conformational flexibilities account 

for a contribution to entropy that has often been overlooked in the study of 

protein-ligand interactions [15]. 

 

Figure 3. Allosteric pathways between residue Leu50 of HisF and Glu180 of imidazole 

glycerol phosphate synthase subunit HisH calculated with WISP software. Figure 

adapted from reference [16] 

1.2 Importance of carbohydrate recognition by proteins 

The recognition of carbohydrates by proteins holds significant importance in the 

field of protein-ligand recognition. While conventional protein-ligand 

interactions predominantly focus on small organic molecules, particularly in the 

field of drug discovery, the involvement of carbohydrates introduces a distinct 

dimension to these recognition events.  
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Carbohydrate-binding proteins, such as lectins, play a crucial role in cell 

adhesion [17], signaling events [18], host-pathogen interactions [19], cancer 

development [20], and many more. In numerous cases, the interaction between 

proteins and carbohydrates is not limited to a singular event but instead acts as 

the initial step within a broader sequence of interconnected events and 

interactions [17, 18]. These subsequent processes can give rise to intricate 

signaling cascades, underscoring the multi-faceted nature of protein-

carbohydrate interactions. 

Pathogens, including viruses, bacteria, parasites, and fungi, present 

carbohydrates on their surfaces. These glycans serve as the initial point of 

interaction with host cells, making them potential targets for interventions 

aimed at preventing infection [23]. Carbohydrate-protein interactions also play 

a pivotal role in the immune response and pathogen recognition. Lectins 

recognize specific carbohydrate patterns on pathogens, facilitating their 

clearance and initiating immune response through binding carbohydrate-

containing antigens [21]. Thus, carbohydrate-protein interactions contribute to 

diverse immune processes, including both infection responses and defense 

mechanisms. 

The implications of carbohydrate recognition in protein-ligand recognition 

extend beyond fundamental molecular understanding, offering potential targets 

for therapeutic interventions. Understanding the intricate recognition and 

binding events between carbohydrates and target proteins provides 

opportunities to design therapeutic agents that can effectively modulate such 

interactions.  

1.3 Importance of lectins 

Lectins are sugar-binding proteins that lack catalytic function (they are not 

enzymes) and do not directly trigger immune responses (they are not 

antibodies). However, the specificity observed in the binding between lectins 

and specific carbohydrates can be comparable to that of antigen-antibody or 

substrate-enzyme interactions [24]. The recognition of carbohydrates by lectins 

is widely acknowledged for its crucial role in diverse biological processes, 

underscoring its importance. These proteins possess an extraordinary ability to 

specifically bind carbohydrates present on cell surfaces. This recognition process 

facilitates crucial interactions involved in cell adhesion, immune response 

modulation, and pathogen recognition.  

In the realm of plants, lectins can be classified into 12 distinct families, while in 

animals, there are a minimum of 14 families of lectins [25]. Among the various 
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lectin families, C-type, I-type and S-type lectins are particularly relevant in 

humans. Of these, C-type lectins, which rely on calcium (Ca2+) for their function, 

are found in both transmembrane and soluble protein forms. Certain lectins 

within this family, such as DC-SIGN, langerin and MGL, play critical roles in 

pathogen recognition and have emerged as targets in the field of drug discovery 

[26]. Currently, I-type lectins, particularly sialic acid binding immunoglobulin-

type lectins (Siglecs), have become a subject of significant interest due to their 

critical roles in immune regulation [27]. Galectins, earlier referred to as S-type 

lectins, are a family of proteins that specifically binds to β-galactosides. This 

family consists of 16 members and is widely distributed throughout the human 

body [28]. 

Lectins can bind to free sugars as well as sugar residues present in 

polysaccharides, glycoproteins, or glycolipids, which can exist either in free form 

or as part of cell membranes. Nevertheless, it is important to note that lectin-

monosaccharide interactions typically exhibit relatively weak affinities, with 

dissociation constant frequently falling within the micromolar to millimolar 

range [29–31]. This is in part due to the shallow binding pockets on the surface 

of lectins, as they are exposed to competitive interactions with the solvent. In 

biological systems, multivalency comes into play to overcome the challenge of 

low-affinity binding by facilitating simultaneous synergistic interactions 

between the receptor and the ligand [32–34]. Multivalent presentation provides 

a range of mechanisms to enhance affinity, such as chelation, subsite binding, 

steric stabilization, statistical rebinding and clustering effects, among others [35–

39].  

Lectin bind glycans at the CRD (carbohydrate recognition domain) in a 

noncovalent manner. Carbohydrates engage in interactions with lectins through 

hydrogen bonds, metal coordination, van der Waals, and hydrophobic 

interactions [40]. The abundance of hydroxyl groups on carbohydrates makes 

them well-suited for participating in complex networks of hydrogen bonds. 

These hydrogen bonds are typically cooperative, with the hydroxyl group 

serving as both a donor and an acceptor. Amino acid side chains like aspartic 

acid (Asp), asparagine (Asn) and histidine (His), as well as main-chain amide 

hydrogens and carbonyl oxygen, commonly contribute to these hydrogen bonds, 

while other amino acids are less frequently involved. The hydrogen bonds 

between proteins and carbohydrates can occur directly or can be water-mediated 

[40–42]. 

Divalent cations such as Ca2+ and Mn2+ play important roles in carbohydrate 

recognition. They can indirectly shape the binding site, as seen in legume lectins 

[40], or directly bind to the carbohydrate as in the C-type lectins.  



Chapter 1 Introduction: Insight into Protein-Carbohydrate Recognition Processes 

 
55 

Despite the high polarity of carbohydrates, the arrangement of hydroxyl groups 

creates hydrophobic patches on their surfaces that can interact with hydrophobic 

regions in protein residues. Notably, aromatic amino acids such as 

phenylalanine (Phe), tyrosine (Tyr) or tryptophan (Trp) can engage in stacking 

interactions with monosaccharides [43]. 

Due to their mainly uncharged nature, saccharides typically do not form 

complexes with proteins through ionic interactions. However, there are 

exception such as the heparin-antithrombin III complex [44]. 

1.4 Computational characterization of lectin-carbohydrate recognition 

processes  

In the recent years, experimental studies using techniques such as X-ray 

crystallography and NMR spectroscopy have provided detailed insights into 

lectin-carbohydrate interactions. Moreover, the use of different experimental 

methods has enabled the determination of thermodynamic and kinetic 

parameters associated with the binding process. Alongside experimental data, 

computational methods have been developed in the field of Molecular Modeling 

and Computational Chemistry. These methods incorporate diverse multi-scale 

techniques, leading to highly accurate models for lectin-carbohydrate 

interactions and resulting in high-quality predictions [45,46]. 

As explained previously, the binding affinity depends on the balance between 

enthalpic and entropic contributions, with interactions between the ligand and 

binding site residues stabilizing the complex. However, unfavorable 

contributions arise from desolvation of binding partners, entropic loss during 

complex formation, and conformational changes within the interacting partners. 

Given the highly flexible and polar nature of carbohydrates, this is particularly 

relevant in protein-carbohydrates interactions. Consequently, the binding 

affinity results from a small difference between the enthalpy and entropy values.  

According to the equation ∆G = –RTln(K), the energetic difference between a 

millimolar and a nanomolar ligand (i.e. six orders of magnitude) is less than 

10 kcal mol-1, underscoring the necessity for theoretical models to precisely 

characterize the carbohydrate recognition process by lectins [47]. Such models 

should consider a myriad of factors, including intermolecular interactions, 

desolvation energies, and entropy changes, among others. 

In the field of Computational Chemistry, two prominent methods, Molecular 

Mechanics (MM) and Quantum Mechanics (QM), offer distinct approaches to 

investigate protein-carbohydrates interactions (Fig. 4).  
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Figure 4. Computational Chemistry methods overview: from highly accurate QM 

methods used for studying chemical reactions to efficient MM methods suited for large-

scale simulations.  

a. Molecular Mechanics Methods 

Remarkably, predicting relative affinity within a given ligand series can be 

sufficient for their comparative evaluation. Given the necessity of sampling 

different conformations, a computationally efficient treatment of the protein-

ligand model becomes crucial [48]. In this regard, classical force fields and 

molecular mechanics (MM) are commonly employed. In simulations, ensuring 

that the so-called ‘ensemble average’ converges is crucial. This convergence 

refers to the stabilization of the average value of a property after exploring a 

broad spectrum of the system’s molecular configurations. When this average 

stabilizes numerically, it indicates that statistically robust results can be 

obtained, offering a comprehensive understanding of the system. Further 

simulations are unlikely to substantially alter the results [49,50]. Achieving this 

convergence, which is necessary for several commonly used binding free energy 

methods, demands considerable sampling. Given their low computational cost, 

MM are indispensable in enabling efficient and extensive conformational 

sampling. This positions them as invaluable tools for studying protein-ligand 

interactions and obtaining accurate binding free energy predictions.  
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MM methods, especially time-resolved Molecular Dynamics (MD) simulations, 

are exceptionally well-suited for elucidating the structure and dynamics of 

protein-carbohydrate complexes, which is a considerable challenge since these 

systems are intrinsically more dynamic than many other protein-ligand 

complexes [51]. MM methods describe the system as point charges connected by 

“springs” to account for the bonds between atoms, while angles and dihedrals 

within the system are addressed using simple mathematical functions (i.e., 

potentials). MD simulations apply Newton’s equations of motion to compute the 

trajectories of atoms as they interact with each other under the influence of the 

forces described by the MM potential energy function.  

In MD simulations, a molecule composed of multiple atoms is represented by a 

set of atomic positions (rN), forming a molecular geometry (R) at a given time (t). 

Successive system configurations are generated by integrating Newton’s laws of 

motion for each atom. Key points to consider are: 

• Representation of molecular geometry  

A molecular with N atoms is expressed as R = (r1, r2, …, rN), where each 

atom has its own set of atomic coordinates 

• Newton’s Second Law 

For each atom, Newton’s second law (𝐹 = 𝑚𝑎 ) is applied, where F 

represents the force acting on the atom. The acceleration (𝑎) is the second 

derivative of position (r) with respect to time (t). Hence, 𝐹𝑖 = 𝑚𝑖
𝜕2𝑟𝑖

𝜕𝑡2  for 

the ith atom. 

• Force-position relationship 

The force of an atom is also related to the first derivative of the potential 

energy. 

𝐹𝑖 = −
𝜕𝑉

𝜕𝑟𝑖
 (Equation 2) 

• Numerical integration 

Analytical solutions are impractical for systems with more than two 

atoms. Instead, a numerical approach, such as the finite difference 

method, is used. Time is divided into small time steps (δt), typically on 

the order of femtoseconds, to solve the equations of motion at each step. 

• Predicting positions and velocity  

At each step, forces are calculated, and from these, accelerations are 

determined.  
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𝑎𝑖 = 
𝐹𝑖

𝑚𝑖

= −
1

𝑚𝑖

𝜕𝑉

𝜕𝑟𝑖
 (Equation 3) 

Using the acceleration, the positions and velocities of atoms are 

predicted at the next time step (t + δt). 

• Trajectory generation 

The process is repeated for many steps, generating a trajectory that 

shows how particle positions and velocities change over time.  

 

Figure 5. Simplified representation showing a Molecular Dynamics simulation protocol. 

The starting point for MD simulations in the context of studying protein-ligand 

interactions can vary depending on the available information. When the X-ray 

crystallographic structure of the complex is available, starting from this often 

offers a more accurate representation of the actual binding conformation. 

However, when this is not available or when one wants to explore different 

conformations from the minimum energy X-ray pose, starting from docking 

poses provide a computationally predicted starting binding pose. Molecular 

docking is a highly parametrized MM technique that computationally predicts 

and calculates the most favorable interaction position between a ligand and a 

target (typically a protein), although with quite limited accuracy.  

Force fields (FF) define the potential energy functions and parameters that 

dictate interactions between system particles. They are constructed based on the 

Born-Oppenheimer approximation, excluding electronic motions and focusing 

solely on nuclear positions. This classical mechanics approach in MD allows for 

the study of large systems, for which would be infeasible for quantum 

mechanical methods that incorporate electrons. A typical force field includes 

various energy components: bond lengths and angles are represented with 

harmonic potentials, dihedral angles utilize periodic functions, while 
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electrostatic and van der Waals interactions are described by Coulomb’s law and 

Lennard-Jones potentials, respectively. A general force field function, such as the 

one used in AMBER, is shown below: 

 

Figure 6. a) Energy function used to derive atomic forces. b) Representation of the 4 basic 

terms typically found in molecular force fields. 

where rN denotes the positions of all system particles. The first summation term 

expands to all covalent interactions between pairs of linked atoms ij. The second 

sum is related to the bond angle among groups of consecutive atoms ijk, while 

the third represents the cumulative torsional angles determined by groups of ijkl 

atoms. The fourth term, which requires the most computational effort to 

determine, relates to both intra and inter-molecular non-bonded interactions.  

The derivation of parameters for each contribution can be achieved through both 

experimental and in-silico methods. The primary objective is to establish 

parameters that reflect experimental results. Determining parameters for every 

atom in a molecule represents a significant computational challenge and is often 

impractical. To address this challenge, existing general-purpose parameters 

might be utilized to characterize various systems. One of the key characteristics 

of MM is that, within a particular force field, parameters are considered 

transferable. This is based on the understanding that the same functional group 

might appear in different molecules and its response is believed to be largely 

consistent across diverse settings.  
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Force fields in computational chemistry are not universally applicable or 

inherently ‘correct’. Their effectiveness is measured by their performance in 

specific scenarios. While some may excel in particular systems, they might fail 

in others. Selection often depends on the balance between accuracy and 

computational feasibility. Presently, there are force fields tailored for specific 

molecular classes, such as those designed exclusively for proteins, optimizing 

the balance between specificity and computational efficiency.  

Numerous FFs are available for modeling various molecular systems under 

different contexts, as outlined in Table 1. Within this dissertation, all MD 

simulations were conducted using the AMBER suite dedicated to biomolecular 

simulations. The GAFF2, ff14SB, and GLYCAM_06j force fields were used to 

parametrize organic molecules (excluding non-modified sugars), proteins, and 

carbohydrates, respectively. 

Table 1. Some examples of force fields employed in computational simulations. The force 

fields shown here are periodically updated and extended. 

Force field Application 

ff14SB Proteins 

GAFF Small organic molecules 

OPLS Small organic molecules 

GLYCAM_06 Carbohydrates 

LIPID17 Lipids 

CHARMM36 Proteins, DNA, RNA, lipids 

AMOEBA Polarizable FF 

MARTINI Coarse-grained proteins, lipids, carbohydrates, nanoparticles 

REF15 Proteins, DNA, RNA, small molecules 

Apart from studying the dynamic behavior of the complex, MD simulations are 

also employed to study the role of solvation and investigate the dynamic effects 

of solvent molecules in the protein-carbohydrate recognition process. In  their 

free states, both the carbohydrate and the protein are hydrated, and 

crystallographic [52] and MD simulations [53] have revealed that these water 

molecules often occupy the carbohydrate-binding site. These water molecules 

are typically found in positions similar to those of the hydroxyl groups of the 

bound ligand in the complex. Therefore, there is limited enthalpy gain expected 

upon replacing these waters with ligand hydroxyl groups.  

However, significant changes in entropy could arise from displacing bound 

waters from each interacting surface [54,55], and entropic contributions have 

been identified as a major factor in determining carbohydrate-binding affinity 
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such as in the binding of xylooligosaccharides to non-primary subsites of 

CsCBM6-1 protein (xylan-specific type B carbohydrate-binding module, CBM, 

from Clostridium stercorarium) [56]. Different methods based on MD simulations 

(e.g.: MM-GB/SA, MM-PB/SA) offer a unique tool to analyze lectin-carbohydrate 

interactions and their associated energies [57–60], which can greatly aid in the 

development of glycomimetics as potential therapeutic agents.  

As stated before, due to their computational efficiency and their ability to handle 

large systems containing thousands of atoms, MD simulations are a powerful 

technique not only to estimate the relative binding affinities but also to analyze 

other important features of the molecular recognition event. The examination of 

possible conformational changes, the role of solvation, the presence of allosteric 

networks, the hydrogen bond networks taking place between protein and 

carbohydrate residues, among others, are important features that can be 

explored by using MD.  

Despite all these advantages, MM force fields have known limitations in 

describing electronic effects, such as polarization, as electrons are not explicitly 

modeled. To achieve accurate binding free energies, accounting for ligand 

polarization within the protein environment is increasingly recognized as crucial 

[48]. Polarization has been demonstrated to substantially influence the 

electrostatic interactions occurring between protein and ligands [61]. 

Traditional force field parametrization uses fixed partial charge models that lack 

important physical details significantly contributing to binding free energies in 

some cases. Nevertheless, despite this limitation, MM force fields remain a 

cornerstone in the field due to their computational efficiency and broad 

applicability. Polarizable MM force field models such as AMOEBA have been 

developed to successfully address polarization effects by considering induced 

dipoles or induced charges. An alternative approach involves using quantum 

mechanical (QM) methods, which provide an explicit representation of 

electrons, allowing the calculation of properties reliant on the electronic 

distribution. However, QM calculations are computationally demanding and 

typically limited to studying tens of atoms, making them less feasible for larger 

systems and extended dispersion interactions.  

b. Quantum Mechanics and QM/MM Methods 

Quantum Mechanics methods offer representation of chemical bond formation 

and cleavage, enabling the exploration of reaction mechanisms. Specially, in the 

case of enzymes, QM methods are widely used to provide a precise description 

of the electronic interactions and changes in electronic distribution that occur 

during enzyme-catalyzed reactions. In these methods, typically within the 
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Density Functional Theory (DFT) framework, the electronic structure of a system 

is described by approximately solving the Schrödinger equation.  

While QM methods provide a more direct representation of polarization, their 

much higher computational cost makes them challenging for larger systems such 

as proteins. Consequently, when using QM methods to model enzyme active 

sites, a small yet crucially selected region of the enzyme needs to be chosen for 

QM treatment representing the active site. This method, known as the quantum 

chemical cluster approach [62] has yielded valuable insights into enzymatic 

reactions. To account for the enzyme’s local environment, peripheral atoms in 

the model are kept fixed based on available X-ray structures, while the model is 

immersed inside a dielectric cavity to incorporate polarization effects exerted by 

the protein. As a consequence, the quantum chemical cluster approach 

inevitably overlooks the detailed influence of the enzyme’s environment. 

Furthermore, a slow convergence has been observed for the cluster approach in 

relation to the cluster size, with calculated energies potentially varying by more 

than 10 kcal mol-1 for models containing up to 230 atoms [63]. Evidently, a more 

realistic depiction of a reaction mechanism necessitates incorporating the full 

enzyme environment into the computations [64]. Here, the combined QM/MM 

approach offers a solution to the intrinsic limitations of both MM and QM. The 

hybrid QM/MM approach is a molecular simulation method that combines the 

strengths of ab initio QM calculations (accuracy) and MM (speed) approaches to 

model molecular systems (Fig. 4). The key considerations in QM/MM treatments 

are defining the boundaries between the QM and MM regions and determining 

the proper size of the QM region. 

Overall, the choice between MM, QM or QM/MM methods depends on the 

system’s size and the level of accuracy required for calculations. 
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2. Protein Design 

2.1 The protein folding problem 

The protein folding problem has long stood as a central challenge in molecular biology. 

It involves understanding how a protein, which is initially synthesized in the ribosome 

as a linear chain of amino acids, folds into a unique, three-dimensional structure that 

is crucial for its biological function. The information needed to identify a protein’s 

folded structure (its native state), according to refolding experiments, is entirely 

included in the protein’s linear amino acid sequence [65–67]. Anfinsen’s 

thermodynamic theory states that this information is encoded in the polypeptide’s 

energy landscape, where the native state has the lowest free energy [68,69]. For many 

years this premise laid the groundwork for a general approach in protein structure 

prediction. This approach integrates the sampling of alternative conformations, 

scoring them based on energy, and ultimately identifying the conformation with the 

lowest energy state [70,71]. 

The primary obstacle to the success of the energy-guided approach for protein folding 

on the biological timescale is the large array of alternative conformations, which grows 

exponentially with chain length rapidly reaching astronomical numbers, despite each 

amino acid only having only a limited and distinct set of potential backbone states [72]. 

The answer to this challenge can be found in the understanding that finding the native 

state does not require exploring the entire conformational space. The energy landscape 

does not resemble a flat ‘golf course’ with a single target ‘hole’; instead, it adopts a 

funnel shape with directional indications, guiding the sampling process towards near-

native conformations (Fig. 7) [71,73]. 

 

Figure 7. a) Simplified energy landscape in the shape of a ‘golf course’, where finding the native 

energy minimum requires extensive exploration of the surface. b) Simplified energy landscape 

in the shape of a ‘funnel’, where a simple downhill search from most starting points effectively 

leads to the native state. 
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The primary driving force behind protein folding lies in burying hydrophobic residues 

within the protein’s core, away from the solvent [74]. Achieving a minimized cavity 

size in water and maximizing van der Waals forces necessitate the close packing of 

side chains in the core, while avoiding energetically unfavorable atomic overlaps. 

Polar groups that interact with the solvent in the unfolded state and become buried 

upon folding must form intra-protein hydrogen bonds to compensate the lack of 

solvation; otherwise, the substantial energy cost of hiding these groups to the solvent 

will impede the folding process [75]. The range of observed amino acid torsion angle 

distributions is effectively constrained by this packing, which also considers the strong 

torsional preferences of both the backbone and side chains. As a result, sidechain 

flexibility is diminished to a limited number of rotamers at each position [76].  

2.2 Sequence-Structure-Function Relationship 

Proteins exhibit a remarkable diversity of functions, ranging from catalyzing 

biochemical reactions to providing structural support and regulating cellular 

processes. Their ability to perform these functions is intimately linked to their unique 

three-dimensional structures [68,77], which are ultimately determined by their lineal 

amino acid sequence.  

For decades, structural biologists have been guided by the sequence-

structure-function paradigm, which posits that similar protein sequences give rise to 

similar structures and functions. As the number of available protein sequences has 

grown exponentially, traditional experimental methods for determining protein 

structures have struggled to keep pace. Nevertheless, the field has undergone a 

profound transformation due to recent advancements in protein structure prediction 

and a renewed focus on machine learning techniques, exemplified by groundbreaking 

methods such as AlphaFold [78] and RoseTTAFold [79]. Despite existing challenges in 

dealing with disordered sequences, large complexes, multiple chains, and protein-

protein interactions, these developments are quickly bridging the gap between 

sequence and structure.  

In a recent study [80], approximately 200000 protein structures for non-redundant 

microbial sequences were predicted providing intriguing examples that questioned 

the traditional sequence-structure-function relationship. Surprisingly, it was observed 

that dissimilar sequences could fold into similar structures, revealing that sequence 

diversity surpasses structural diversity. This remarkable discovery emphasizes the 

significance of distant homology detection and fold recognition methods in predicting 

structures for diverse sequences. 
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In contrast, traditional approaches to protein structure prediction often relied heavily 

on sequence homology, assuming that similar sequences would lead to similar 

structures and functions. However, this limited the scope of structural predictions to 

those with close sequence similarities, leaving out a vast portion of the protein 

universe that exhibited dissimilar sequences but potentially similar functions and 

structures. 

This shift in perspective has opened up exciting possibilities for understanding the 

intricate world of protein structure-function relationships. 

2.3 Protein structure prediction 

Predicting protein structure from its amino acid sequence has long been a complex 

challenge in computational biophysics, due to both its inherent scientific appeal and 

wide-ranging applications, including genome interpretation and protein function 

prediction. Over the past few years, methods for predicting and designing protein 

structures have seen substantial progress. The combination of enhanced computing 

power and rapid expansion in protein sequence and structure databases has driven 

the development of sophisticated, data-intensive strategies for structure prediction.  

Although significantly different, protein structure prediction methods can be broadly 

grouped into three main classes: template-based modelling, template-free modelling, 

and deep-learning-based models.  

a. Template-based modelling 

Also known as homology modeling, it is based on the hypothesis that the 3D structure 

of proteins exhibits higher conservation than their amino acid sequences. This implies 

that if two protein sequences share significant similarity (typically over 30%), they are 

likely to adopt similar 3D structures [81]. In the process of template-based modelling, 

the key steps involve choosing an appropriate structural template, aligning the target 

sequence to the template structure, and modeling mutations, insertions, and deletions. 

Closely related templates can be detected through single-sequence search methods to 

scan the Protein Data Bank (PDB) sequences, like BLAST [82], while more distantly 

related templates require target sequence profiles [83,84]. 

b. Template-free modelling 

This method does not depend on global similarity to known structures, but on ‘the 

first principles’ of protein folding [85,86], enabling its application to proteins with 

unique, non-characterized folds. Template-free modelling approaches are suitable for 

proteins that lack global structural similarity to any known protein in the PDB. It 
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involves a conformational sampling strategy to generate models and an energetic 

ranking criterion to select native-like conformations. The process begins with a 

multiple-sequence alignment (MSA) of the target protein and related sequences. 

Predicted structural features guide the construction of 3D models, which are then 

refined, ranked, and compared to select the best predictions.  

Historically, these methods have been distinct, with template-based approaches 

focusing on identifying and aligning with related known structures, while template-

free methods involve extensive conformational sampling and the use of physics-based 

energy functions. However, recent advances have blurred the boundaries between 

these approaches [76]. Template-based methods now incorporate energy-guided 

model refinement, while template-free methods harness machine learning and 

fragment-based sampling to extract insights from the structural database. 

c. Machine learning-based modelling 

Up until very recently, computational structural biology relied mostly on physically 

based models using force fields and energy functions for biomolecular prediction and 

design. However, these models faced challenges in dealing with the vast protein 

conformational space and accuracy of force fields. Recent advancements in machine 

learning, particularly deep learning methods such as RoseTTAFold [79] and 

AlphaFold [78], have revolutionized the field. These methods, with millions of non-

physical parameters and no assumptions about atomic interactions, achieve 

remarkable accuracy by learning from vast sets of experimentally determined protein 

structures and sequences. While these methods are trained on evolutionary data from 

alignments of homologous sequences, they have demonstrated the ability to predict 

protein structures accurately from single amino acid sequences. This indicates that 

they possess a rich understanding of sequence-structure relationships, making 

evolutionary data unnecessary for simpler systems.  

Deep learning methods using multiple sequence alignments (MSAs) have 

demonstrated high accuracy in protein structure prediction. However, the 

requirement for high-quality MSAs presents challenges. There are instances of orphan 

sequences or “lineage-specific genes” with limited or no homologs in current 

databases. Predictions of these sequences using MSA-based methods often fall short 

in accuracy. Additionally, methods based solely on single sequences can be 

computationally more efficient, given that MSA-based approaches involve resource-

intensive database searches, potentially slowing down predictions for large protein 

databases. Recent research has begun to explore prediction methods solely based on 
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single-sequence inputs employing natural language processing (NPL) methods, such 

as ESMFold[87] and OmegaFold [88]. 

2.4 Protein design 

Protein design is often described as the reverse problem of protein structure 

prediction. Rather than trying to find the most stable conformation for a specific 

protein sequence, the aim is to infer an amino acid sequence that will stabilize the 

desired protein conformation [76]. It is possible to roughly classify protein design 

efforts into two groups: protein engineering and de novo design.  

a. Protein engineering 

Protein engineering focuses on modifying existing proteins to enhance their 

capabilities and explore new protein functions. Generally speaking, natural proteins 

often fall short in meeting real-world application requirements due to factors such as 

marginal thermal stability, low recombinant expression levels, limited activity, 

specificity, and poor stability in harsh conditions. The limited stability of natural 

proteins is attributed to their energy landscape (Fig. 8), which includes energetically 

closely misfolded states that hinder proper function. These misfolded states can 

restrict expression in different hosts and reduce the protein’s longevity in vitro. The 

aim of stability design is to enlarge the energy gap between the correctly folded state 

and misfolded or unfolded states. This can be achieved by reducing the energy of the 

native state and eliminating as many misfolded states as possible, while increasing the 

energy of the remaining ones. This approach not only enhances thermal stability but 

also improves expression levels by inducing unfrustrated folding, thereby enlarging 

the gap between the native and misfolded states and positively impacting both thermal 

stability and expressibility [89]. 
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Figure 8. Left) Schematic illustration of the folding landscape of a marginally stable protein 

compared to the design procedure’s purpose. The hardly stable protein has several competing 

misfolded states that are only slightly more energetic than the original form, thus frustrating 

folding. Right) In the folding landscape of a designed protein certain misfolded states are 

removed, increasing the energy difference between native and unfolded states as well as the 

misfolded states. Figure adapted from reference [89] 

Protein engineering involves techniques such as rational design and directed 

evolution. Rational design aims at strategically modifying specific amino acids in a 

protein’s sequence to achieve desired changes in its function or stability. This approach 

relies on prior knowledge of the protein’s structure-function relationships to guide the 

design process. Directed evolution, on the other hand, emulates natural selection to 

optimize proteins for specific tasks. It involves generating diverse protein variants 

through random mutagenesis or recombination, and then screening and selecting 

those with improved properties. The application of these methods is sometimes 

hindered by limitations when screening a large number of sequence variants, since 

traditional laboratory-based screening processes can be time-consuming and costly. 

The introduction of in silico techniques revolutionized the protein engineering process 

by enabling virtual screening of mutations before conducting expensive and time-

consuming experiments [90]. Computational approaches have facilitated the 

identification of promising mutations and have reduced the number of variants 

needed to be experimentally tested for detecting hits. 
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Computational protein engineering is useful in a diverse range of applications, such 

as: 

- Stabilizing proteins 

The use of computer-based methods to enhance proteins thermodynamic 

stability has gained significant interest over the years [89,91,92]. Increased 

stability is associated with benefits such as improved recombinant protein 

expression and reduced risk of aggregation. It has been observed that 

naturally occurring proteins are not always optimized for stability, prompting 

the exploration of global redesigns where all residues are allowed to mutate. 

These simulations have shown that thermal unfolding temperatures can be 

significantly increased, sometimes by over 30 °C [91,93]. However, for 

practical applications, a more selective approach is preferred to raise stability. 

One effective strategy involves combining computational design simulations 

with information from multiple sequence alignments (MSA) [94]. By 

identifying homologues of the target protein in the NCBI non-redundant 

protein database, one can replace poorly represented amino acids with the 

most evolutionary selected ones at specific positions, resulting in increased 

protein stability, [95,96] such as in the PROSS approach [97].  

- Improving ligand affinity 

Improving protein binding affinities through engineering has been a 

significant challenge for computational protein design [98]. Strategies include 

N-terminal or C-terminal extensions to increase protein-peptide interactions 

[99]. These extensions interact beyond traditional peptide binding sites, 

strengthening affinity. Similarly, protein engineering has been effectively used 

to increase the binding affinity of an antibody fragment to the I-domain of the 

integrin VLA1 [100], a critical component involved in cellular adhesion and 

signal transduction. Additionally, redesigning the Fc-Fcγ receptor interaction 

[101] led to over a hundred-fold enhancement of in vitro effector function. 

- Tailoring substrate specificity 

Given that natural enzymes often have restricted affinity for chemically and/or 

structurally diverse substrates and might not exhibit strong catalytic activity 

towards a wide range of compounds, a key objective for industry is to amplify 

enzyme substrate versatility, allowing for a wider substrate specificity [102]. 

Computational techniques such as structure-based methods, enable strategic 
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mutational design to broaden substrate scope. Engineered lipases, such as 

those from Pseudomonas aeruginosa, exemplify the potential of these methods 

for expanding substrate tolerance [103]. Glycosyl transferases have been 

engineered to create O-, N-, or S-glycosidic bonds, expanding their substrate 

recognition capabilities [104]. Additional examples include the redesign of the 

specificity of an endonuclease [105] and the alteration of calmodulin 

specificity [106]. Notably, OptZyme [107] represents a pioneering 

computational strategy aimed at amplifying enzyme activity for novel 

substrates. The main idea is to use transition state (TS) analogue compounds, 

which are well-established for numerous reactions, as proxies for the often 

unknown TS structures of interest. This approach identifies mutations 

minimizing the interaction energy between the enzyme and its corresponding 

TS analogue, as opposed to the substrate, diminishing the energy barrier 

associated with the formation of the TS and thus increasing reaction rate 

towards the unnatural substrates.  

- Improving enzymatic activity 

Enhancing enzyme activity frequently requires the introduction of multiple 

mutations near the active site [108]. An illustrative example of this is the 

redesign of an ω-transaminase using a mechanism-guided computational 

enzyme design strategy [109]. Employing quantum mechanics and with the 

aid of RosettaDesign [110,111], different variants were designed. The most 

active among them, featuring five mutations, exhibited an astounding 1660-

fold rise in catalytic efficiency as measured by kcat/KM. A successful example of 

this design goal is seen in the development of FuncLib [112,113]. This 

innovative approach centers on the creation of multipoint mutations within 

enzyme active sites, employing a combination of phylogenetic analysis and 

RosettaDesign calculations.  

 

- Customizing stereoselectivity 

Computational protein design is not only able to refine enzyme activity and 

specificity, but also to alter stereoselectivity. The potential of protein 

engineering in customizing stereoselectivity is exemplified by Bacillus sp. 

YM555-1 aspartase [114], which was converted into a library of 

hydroamination biocatalysts through structure-based computational enzyme 

design, enabling the production of enantiopure β-amino acids. Another 

illustrative example is the case of CYP105AS1, a cytochrome P450 enzyme 

from Amycolatopsis orientalis [115]. The natural stereoselectivity of this enzyme 
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must be inverted for producing the cholesterol-lowering agent pravastatin. 

Using the Rosetta CoupledMoves protocol [116], a virtual library of mutants 

was created to bind the substrate in the desired orientation. Rational analysis 

led to the identification of eight promising variants resulting in >99% 

stereoselective hydroxylation of the substrate compactin to pravastatin. 

Enzymatic stereodivergent synthesis to access multiple stereoisomers is very 

challenging, but by employing a strategy called "focused rational iterative site-

specific mutagenesis" (FRISM), Candida antarctica lipase B was engineered into 

four highly complementary variants, each producing specific stereoisomers, 

achieving over 90% selectivity for all possible stereoisomers in a 

transesterification reaction [117].  Furthermore, an alcohol dehydrogenase 

from Thermus thermophilus [118] had its native enantioselectivity transformed 

through a modified CASCO (catalytic selectivity by computational design) 

workflow, integrating Rosetta and molecular dynamics simulations to yield 

four variants with reversed enantioselectivity. 

b. De novo protein design 

Contrary to protein engineering, de novo protein design starts with a predetermined 

requirement, such as a desired shape or function without relying on existing protein 

templates. De novo design involves creating proteins from scratch by using 

computational algorithms and structural principles. It offers the exciting potential to 

design novel proteins with tailor-made functionalities that may not exist in Nature. 

This approach expands the boundaries of protein design by exploring uncharted 

territory and enabling the development of highly stable and specialized proteins for 

specific applications in medicine, materials science, and synthetic biology. 

De novo protein design has evolved significantly over time, starting from parametric 

approaches to more sophisticated machine learning techniques. In the early stages, 

parametric design involved the development of mathematical models to predict 

protein structures and functions based on known principles and physical properties 

[119–121]. However, this approach was limited by its inability to explore the vast 

sequence and conformational spaces of proteins. 

A breakthrough in de novo protein design was achieved by the development of 

fragment-based methods and the Rosetta software suite [110]. These methods combine 

experimental data with computational methods to generate accurate protein structures 

and design novel sequences that fold into desired conformations. This marked a 

significant advancement in protein design capabilities and paved the way for 

designing new proteins with specific functions. 
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For many years, de novo computational protein design workflows primarily followed 

four sequential steps [122] (Fig. 7). Determining the protein target topology was the 

first stage of the protocol. The best backbone generation technique was then selected 

to create thousands of models compatible with the target topology based on the size 

and fold type. After that, these models were subsequently filtered before performing 

full-sequence design calculations. Total energy, side chain packing, amino acid 

composition, total charge, hydrogen bond networks or secondary structure prediction 

are some of the most common filters used. Sequence-structure compatibility was 

typically used to rank the top-ranked backbone-sequence pairs and those exhibiting 

funnel-shaped energy landscapes were selected for experimental validation. 

Backbone building methods in classical de novo methods can be classified based on the 

degree of experimental knowledge they incorporate. These methods can be divided 

into two subcategories:  

a) ab initio methods. These methods use minimal or no preexisting information. 

They start from scratch, without relying on existing protein structures, and 

build backbone purely based on computational algorithms and physical 

principles [123–125]. 

b) Knowledge-based methods. On the other extreme, there are methods which 

rely heavily on prior knowledge. SEWING, for instance, recombines pieces of 

known secondary structure elements and their connections to generate a new-

to-Nature backbone [126].  

Another way to differentiate these backbone generation methods is whether they 

produce continuous or discontinuous backbones: 

a) Fragment-assembly methods. Some methods, like fragment-assembly 

methods, build secondary structure elements along with their loop 

connections, generating completely connected backbones. These methods 

assemble fragments of known protein structures to construct a continuous 

backbone.  

b) Parametric generation methods. Other approaches such as the parametric 

generation of backbones, start by arranging secondary structure elements, 

such as helix bundles, and then require a loop closure step to connect all the 

elements into a continuous amino acid chain. 
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Figure 7. Schematic workflow of a classical de novo protein design protocol. It starts by defining 

the desired protein topology, including various length combinations. Based on the protein's size 

and folding pattern, an appropriate method for generating backbones is selected. This generates 

multiple models consistent with the target topology, which are then refined through filtering 

before undergoing complete sequence design calculations. The most promising backbone-

sequence combinations are assessed for compatibility between their sequences and structures, 

with a focus on identifying those displaying favorable energy landscapes resembling funnels. 

Ultimately, these selected designs are subjected to experimental validation. The protocol 

involves several crucial decisions at each stage of design. Figure adapted from reference [122]. 

After generating the protein backbone model or set of models, the next step in the 

design process involves identifying an amino acid sequence that stabilizes the desired 

conformation or binding event. Sequence optimization programs incorporate two 

main components: an energy function that assesses the favorability of a specific 

sequence, and a protocol to search for more favorable sequences. In both, high-

resolution protein structure prediction and protein design, similar energy functions 

are commonly used since they are aimed at optimizing the same physical properties, 

such as side-chain packing, hydrogen bonding, hydrophobic burial, and backbone and 

side-chain strain. 

De novo protein design revolutionized bioengineering and molecular design, achieving 

remarkable milestones through computational tools and structural principles. This 

transformative field has generated novel protein structures and functions, including 

enzymes with customized catalytic activities, protein nanoparticles for drug delivery, 

engineered protein materials with unique mechanical traits, and foldable mini-
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proteins. De novo techniques have enabled the creation of enzymes that catalyze 

entirely new chemical reactions, such as the Diels-Alder [127], Kemp elimination [128] 

or Retro-Aldol reactions [129]. 

More recently, machine learning algorithms have revolutionized de novo protein 

design. This revolution has been strongly influenced by the developments in protein 

structure prediction as described previously. Machine learning techniques, and in 

particular deep learning methods, leverage vast databases of protein sequences and 

structures to train models that can predict protein stability, folding, and function. 

Machine learning approaches have shown remarkable success in designing proteins 

with novel functions and properties, making de novo protein design more accessible 

and efficient. 

Deep learning methods have enabled simultaneous design of sequence and structure. 

One of the pioneering methods in this field, named protein hallucination [130] allows 

creating novel protein structures with matching sequences, bypassing the need for a 

protein backbone. Essentially, hallucination generates a stabilized structure using a 

random input sequence. This method has been utilized to scaffold functional sites 

without the necessity to predefine the fold or secondary structure of the scaffold [131]. 

This was achieved using a protocol known as “constrained hallucination” that optimizes 

sequences to ensure that their predicted structures will contain the targeted functional 

site. 

There is another approach for facing the same challenge also developed by the Baker 

Lab that is termed inpainting [131]. This approach initiates from a functional site and 

fills in additional sequence and structure information to provide a viable protein 

scaffold. This is achieved in a single forward pass through a specifically trained 

RosettaFold network.  
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Figure 8. a) Constrained hallucination process: each iteration involves feeding a sequence into 

either the trRosetta or RoseTTAFold neural network. This network then predicts 3D coordinates 

and inter-residue distances and orientations. A specialized loss function evaluates these 

predictions, promoting both the structural confidence and the motif representation, alongside 

other task-specific parameters. MCMC stands for Markov chain Monte Carlo. b) Missing 

information recovery (inpainting) approach: inputting partial sequence and/or structural 

information into a modified RoseTTAFold network (called RFjoint) produces a complete 

sequence and structure outcome. Figure adapted from reference [131]. 

While both hallucination and inpainting successfully generate protein sequences and 

backbones for both monomeric and oligomeric novel structures, experimental 

validations frequently reveal solubility issues. In response, just one year after the 

release of the hallucination methodology, a deep learning–based protein sequence 
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design method named ProteinMPNN [132] was developed. ProteinMPNN generates 

highly stable sequences for a designed backbone. For native backbones it produces 

sequences that are predicted to fold into the intended structures more confidently than 

their native counterparts. It has been proved that ProteinMPNN generates sequences 

encoding protein structures with enhanced solubility and stability and with a much 

higher propensity to crystallize.  

One of the latest advances in this area is the development of a guided diffusion model 

for generating de novo proteins called RFdiffusion [133]. Across a diverse set of 

challenges such as topology-constrained protein monomer design, protein binder 

design, symmetric oligomer design, enzyme active site scaffolding, and symmetric 

motif scaffolding for therapeutic and metal-binding protein design, RFdiffusion 

surpasses current protein design techniques. 

The combination of these methods for structure and sequence design has made the 

field of protein design today more advanced and efficient, paving the way for 

unprecedented innovations and applications in molecular biology, medicine, 

biotechnology, material science, to name a few. Beyond the individual strengths of 

structure and sequence design methods, there are now advanced tools such as 

ProteinGenerator [134] that integrate the best of both worlds. By leveraging the 

capacity of RoseTTAFold to model protein sequences and structure concurrently, 

ProteinGenerator can design not only protein backbones but also sequences. This 

allows for designing proteins with any desired combination of sequence and structural 

attributes, marking a significant evolution in protein design capabilities.  

Today, de novo protein design continues to advance, with an increasing emphasis on 

using artificial intelligence to accelerate the design process and enhance the accuracy 

of predictions. These advancements hold tremendous potential for creating 

customized proteins with tailored functionalities, making de novo protein design a 

powerful tool in various scientific and practical applications. 
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The main goals for this Doctoral Thesis are the following: 

1. To provide full-atom models of the structure and dynamics of carbohydrate-lectin 

complexes, mainly using Molecular Dynamics (MD) simulations. Such studies 

involve integrating experimental information derived from crystallographic 

structures, Nuclear Magnetic Resonance (NMR) spectroscopy, and Isothermal 

Titration Calorimetry (ITC), with computer models generated in the framework of 

molecular mechanics/dynamics calculations using the Amber and GLYCAM force 

fields. The lectins object of study are several human galectins DC-SIGN, and the 

glycans involve blood group antigens and simple monosaccharides (galactose, 

mannose, fructose, etc.). Besides the structure and dynamics of the complex in the 

nano- to microsecond scale, relevant aspects for biomolecular recognition such as 

allosteric communication and hydration, will be analyzed in selected cases. 

2. To combine different computational techniques such as quantum mechanics and 

MD simulations with Saturation Transfer Difference (STD) NMR spectroscopy to 

decipher the minimum ligand binding epitope to calcium-dependent lectin 

DC-SIGN. The main purpose of this study is to determine the minimum number 

of hydroxyl groups in a carbohydrate-like ligand, and their geometric 

arrangement, to most effectively bind to both the calcium atom and the 

surrounding amino acids constituting DC-SIGN’s binding site. A special emphasis 

will be placed on augmenting the capabilities of the CORCEMA method, which 

uses experimental information mainly from NMR spectroscopy, with the 

structural and dynamical information of the protein-complex ligand provided by 

MD simulations. 

3. To engineer human frataxin, a protein involved in the progressive 

neurodegenerative disease known as Friedreich ataxia, to increase the 

thermodynamic stability of both the wild-type and pathological single mutants 

compromising its folding. Computational techniques based on bioinformatics 

(analysis of evolutionary data) and deep-learning (ProteinMPNN and AlphaFold) 

will be used to generate variants, and their thermodynamic and biological 

properties will be assayed experimentally, with special emphasis on proteolytic 

resistance and the ability to bind metal ions and other proteins forming the iron-

sulfur cluster. 

4. To improve the expression levels and, if possible, the catalytic properties of 

Tobacco Etch virus (TEV) protease, which is a widely used enzyme in 

biotechnological applications. Evolutionary conservation, biological function and 

deep-learning models (ProteinMPNN and AlphaFold) will be used to address 

these goals. The expression levels, stability and catalytic performance of the 

designed variants will be tested experimentally, and MD simulations will be used 
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to characterize their structural and dynamic properties. This work is done as part 

of the research developed during a research secondment at the Baker Lab, Institute 

for Protein Design, University of Washington, USA. 

5. To propose principles and concepts relevant to both carbohydrate binding and 

protein design, derived from the results obtained from the projects described 

above.
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1. Introduction 

Lectins are a diverse group of proteins known for their capacity to selectively bind to 

specific carbohydrate residues present on the surface of cells or molecules. Among 

them, galectins, also known as S-type lectins, are probably the most ancient glycan-

binding proteins. Through their carbohydrate recognition domain (CRD), galectins 

can recognize and interact with β-galactoside carbohydrates with high affinity and 

specificity [28].  

Human galectins are involved in a variety of physiological functions including cell 

adhesion, the regulation of immune and inflammatory responses, cell migration, 

autophagy and signaling [28]. Galectins have significantly gained importance in recent 

decades due to their association with diseases such as cancer, fibrosis or diabetes. 

Understanding the complex carbohydrate recognition processes mediated by galectins 

is crucial for unraveling their roles in disease development and progression.  

Blood type antigens, ubiquitous on the surface of red blood cells, epithelial cells, and 

various tissues, serve as essential ligands for galectins. The ABO system, consisting of 

A, B, AB, and O blood types, and the Lewis system with its related antigens, play 

pivotal roles in immune responses, cell-cell interactions, and disease susceptibility. 

The ABO antigens are categorized into six groups (Scheme 1a), depending on the 

peripheral core disaccharide structures, resulting in a diverse family of epitopes 

presented in different manners. This distinct presentation is recognized to influence 

their antigenicity [135]. The AB blood group carries both GalNAc and Gal 

(characteristic of the A and B types, respectively) as terminal carbohydrates, whereas 

the O blood group lacks such terminal carbohydrates. A total of six antigens belong to 

the Lewis blood group system, however they are often categorized into two main 

groups: Lewis A (Lea) and Lewis B (Leb) (Scheme 1b).  
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Scheme 1. a) The A and B histo-blood group antigens and their possible peripheral disaccharide 

core structures. b) The Lewis A and B antigen 

In this chapter, the interaction of different carbohydrates with galectins of various 

types has been extensively studied in collaboration with the Chemical Glycobiology 

Lab at CIC bioGUNE led by Prof. Jesús Jiménez-Barbero. By combining NMR 

experiments, isothermal titration calorimetry (ITC), and molecular dynamics (MD) 

simulations, the structural determinants of carbohydrate-galectin recognition have 

been scrutinized. 

Galectin structures can be classified in three main groups: dimeric, tandem and 

chimera (Fig. 1). Dimeric galectins consist of homodimers compromising two identical 

carbohydrate recognition domains. Chimera galectins can exist either as monomers or 

in multivalent forms, while tandem galectins possess two distinct CRDs linked by a 

peptide linker.  
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Figure 1. Examples of different galectin structures: h-Gal-1 homodimeric galectin, h-Gal-3 

chimeric galectin and model for h-Gal-8 tandem galectin.  

Representative examples of human galectins were selected to analyze the three 

different galectin forms. Homodimeric galectins, specifically h-Gal-1 and h-Gal-7, were 

examined. The main difference between these two galectins is the distinct relative 

disposition of their domains, with the protein-protein interface being localized in 

different regions for each of them (Fig. 2). 

Chimera galectins were investigated through h-Gal-3 in its monomeric form. 

Additionally, h-Gal-4 and h-Gal-8 were studied as examples of tandem galectins. It is 

important to note that no crystal structures have been fully solved for full-length 

tandem galectins, particularly regarding the flexible peptide linker connecting the two 

CRDs. Therefore, atomistic models were created to represent the complete structure of 

these systems.  
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Figure 2. X-ray structures of human galectin-1 (h-Gal-1, PDB ID: 1W6N) and human galecitn-7 

(h-Gal-7, PDB ID: 4GAL). N-terminal and C-terminal domains are colored in green and yellow, 

respectively.  

As mentioned in the Introduction, protein-ligand recognition in buffered aqueous 

solution can be understood as the sum of numerous interrelated processes. Some of 

the most relevant ones include: 

- Formation of protein-ligand contacts. 

- Rearrangement of water initially solvating the protein.  

- Rearrangement of water initially solvating the ligand. 

- Hydration of the protein-ligand complex. 

- Conformational changes in the protein upon binding. 

- Conformational changes in the ligand upon binding. 

- Alterations in the dynamics of the protein. 

- Changes in the dynamics of the ligand upon binding. 

- Modifications in the organization and interactions involving buffer ions.  

Frequently, even minor differences in the structures of the binding partners or the 

experimental conditions can lead to compensating changes in enthalpies and entropies 

of binding, resulting in no net change in affinities [3]. As discussed above, the 

phenomenon of enthalpy-entropy compensation presents challenges when predicting 

interactions between biomolecules. In this chapter, various aspects behind this 

phenomenon are qualitatively explored.  
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2. Results and discussions   

a. Modeled systems 

The B type II blood antigen was selected for studying its binding to h-Gal-1, -3 and -7 

for comparative purposes, given the availability of experimental data obtained from 

ITC experiments [136,137]. For the h-Gal-4 and -8 tandem galectins, given the different 

binding profiles of their N- and C-termini, the carbohydrate with the highest affinity 

in each case was selected [135,138] (Table 1 and Fig. 3). 

Table 1. Galectin-ligand complexes studied. NT and CT stand for N-terminal and C-terminal 

domains respectively. 

Galectin Ligand KD  

(μM) 

∆G 

(kcal mol-1) 

∆H 

(kcal mol-1) 

−T ·∆S  

kcal mol-1) 

Dimeric     

h-Gal-1 B type II 379 -4.7 -4.3 -0.4 

h-Gal-7 B type II 288 -4.8 -9.5 4.7 

Chimera     

h-Gal-3 B type II 4.4 -7.4 -8.9 1.6 

Tandem     

h-Gal-4 NT B type VI 51 -5.9 -12.3 6.4 

h-Gal-4 CT  A type VI 26 -6.3 -8.3 2.0 

h-Gal-8 NT  sialyl-T antigen 2.2 -7.7 -13.0 5.0 

h-Gal-8 CT  A type II 13.5 -6.7 -11.2 4.6 

 

Figure 3. Chemical structure of studied ligands.  
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b. Galectins binding site description – common interactions  

In the context of molecular recognition between carbohydrates and galectins, pivotal 

interactions such as hydrogen bonds, van der Waals forces, and salt bridges play a 

central role. Galectin carbohydrate recognition domains (CRD) contain around 130-

150 amino acid residues forming two 5- to 6-stranded antiparallel β-sheets arranged in 

a β-sandwich [139]. The concave surface on the S side creates a shallow groove where 

the carbohydrate is accommodated. Certain residues of galectin binding sites are 

conserved among the seven different CRDs studied (Fig. 4). Those are expected to play 

a major role in the carbohydrate binding interactions. Among them, three different 

types of interactions have been selected to be analyzed: a CH···π, hydrogen-bond and 

an ionic interaction (Table 2 and Fig. 5). To characterize these interactions, the 

distances between the atoms involved in them were monitored during the different 

MD simulations of the complexes.   

 

Figure 4. Multiple sequence alignment of (h-Gal-1, h-Gal-3, h-Gal-7, h-Gal-4 N- and C- terminal 

domains and h-Gal-8 N- and C-terminal domains). Residues conserved in all the systems are 

colored in dark green.  
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Figure 5.  Superposition of galectins’ CRDs. Binding site residues conserved in all the studied 

galectins are shown as red sticks. Represented galectins are h-Gal-1, h-Gal-3, h-Gal-4 CT, 

h-Gal-4 NT, h-Gal-7, h-Gal-8 NT and h-Gal-8 CT. NT and CT stand for N-terminal and C-terminal 

domains, respectively. The zoom panel focuses on key interactions involved in the ligand 

recognition process, including CH···π, hydrogen bonds, and ionic interactions. These 

interactions were analyzed through MD simulations. To simplify, a β OH-galactose residue has 

been used in the picture (all studied ligands share a galactose core). 

Table 2. Description of the analyzed interactions. 

Interaction Distance measured 

CH···π Center of mass of the indole ring of the tryptophan residue of galectins’ CRD 

(CM1) and the center of mass of the galactose ring conserved in all the studied 

ligands (CM2). 

H-bond N4 atom of histidine residue and O4 atom of the central galactose conserved 

residue 

Ionic O4 atom of the galactose residue and the NH2 atom of the CRD arginine 

residue 

c. Molecular Dynamics and binding characterization 

To investigate the binding process of the selected galectins with the different 

carbohydrates, microsecond molecular dynamics simulations (μs-MDs) were run for 

the different protein-ligand complexes and the apo form of galectins. Ten independent 

replicas of 2 μs each were run for each system, achieving a total sampling time of 20 μs. 

In order to minimize the influence of other affecting factors, and focus on the very 

same type of interactions but with slightly different proteins and ligands, very similar 
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protein-ligand complexes were selected to carried out these type of analysis. To gain 

insight into the nature of these interactions, the distances obtained from the 20 μs 

accumulated simulated time for each complex were examined. The histogram 

distribution of these distances revealed distinct profiles among different systems 

(Fig. 6). Instead of assuming a Gaussian distribution, which might not accurately 

represent the asymmetric nature of the data, a more appropriate approach was 

followed. The distances were fitted to the extreme function, a type of Gumbel 

distribution. This choice was made due to the observed right skewness (positively 

skewed) in the distances distributions, as indicated by a longer tail on the right side. 

The extreme function, characterized by parameters such as amplitude (A), equilibrium 

distance (xc), and width (w), provided a better fit for the non-Gaussian data. Through 

these parameters derived from the distributions, the strength and tightness of specific 

interactions can be characterized, and their dominant enthalpic or entropic character 

inferred. 

 

Figure 6. Histograms showing the distributions of distances characterizing the studied protein-

ligand interactions in all galectins:glycan complexes. 
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Figure 6 (cont.). Histograms showing the distributions of distances characterizing the studied 

protein-ligand interactions in all galectins:glycan complexes. 
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Figure 6 (cont.). Histograms showing the distributions of distances characterizing the studied 

protein-ligand interactions in all galectins:glycan complexes. 
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Figure 6 (cont.). Histograms showing the distributions of distances characterizing the studied 

protein-ligand interactions in all galectins:glycan complexes. 

The width parameter of the fitting curve is an indication of the tightness of the 

interaction (i.e. how much the atoms involved in the contact fluctuate around the 

energy minimum). As shown in Fig. 7, the tightest interaction among the three studied 

ones is that occurring between the galactose unit of the ligand and the histidine residue 

(a hydrogen bond). The galactose-tryptophan CH···π interaction and galactose-

arginine salt bridge exhibit contrasting behavior, with the former generally being loose 

and the latter being tighter. This trend is consistent across all the studied systems, 

except for h-Gal-8:sialyl-T antigen, where the galactose-tryptophane interaction is 

tighter and the galactose-arginine interaction is looser than the average.  

The width distribution is inversely related to the amplitude, with higher amplitudes 

corresponding to narrower distributions (Fig. 7). Additionally, the equilibrium 

distances, which are characteristic of each interaction, are highly conserved around the 

optimal values for all the systems (Fig. 7). 

 

Figure 7.  a) Width (w), b) amplitude (A) and c) equilibrium distance (xc) parameters obtained 

from the fitting to the extreme function the distributions of Trp-Gal, His-Gal and Arg-Gal 

distances in the different studied systems. Gal stands for the central galactose unit conserved in 

all the studied ligands and FL stands for full-length systems. 
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Figure 7 (cont.).  a) Width (w), b) amplitude (A) and c) equilibrium distance (xc) parameters 

obtained from the fitting to the extreme function the distributions of Trp-Gal, His-Gal and Arg-

Gal distances in the different studied systems. Gal stands for the central galactose unit conserved 

in all the studied ligands and FL stands for full-length systems. 

This type of analysis allows characterizing the associated states with an emphasis on 

describing the intensity and rigidity of molecular contacts. Stronger interactions are 

often more enthalpically intense but tend to exhibit greater rigidity, resulting in 

entropic penalties. Regarding the flexibility of the bound states sampled in our 

simulations (i.e. the unbound states were not characterized), the dispersion-driven 

CH···π interaction between the tryptophan residue and the galactose ring of B type II 

exhibits a loose, entropy-driven character in the three galectins mentioned above, 

particularly in h-Gal-1. On the other hand, both the ionic and the hydrogen bond 

interactions are dominated by electrostatics, tighter, and thus primarily driven by 

enthalpy.  
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d. Allosteric communication  

Proteins can be treated as a four-dimensional network consisting of discrete nodes 

(amino acids) connected through space and time. The result of this crosstalk between 

the constituting amino acids, which can be largely affected by environmental factors 

(solvent, ionic strength, temperature, substrate binding, etc.), defines the structure, 

dynamics and ultimately the properties of a given protein. Although usually the most 

effective communication between these nodes takes place through direct covalent or 

noncovalent interactions, identification of allosteric pathways between pairs of 

residues that are not directly linked provides insight into alternative modes of signal 

transmission and communication within the protein structure. The investigation of 

allosteric pathways between these pairs of residues has been investigated using 

dynamical network and correlated residues analysis [140,141].  

In this study, the allosteric communication between the active sites and distant regions 

of the N- and C- terminal domains of all the examined galectins was analyzed through 

molecular dynamics simulations. Through these simulations, optimal and suboptimal 

pathways for dynamic correlation between binding residues and any other amino acid 

in the protein were traced (Fig. 8) using the Weighted Implementation of Suboptimal 

Paths (WISP) algorithm [16]. 

 

Figure 8. Left) Representation of a dynamic correlation network calculated from MD simulations 

for h-Gal-1; nodes (yellow circles) represent the side chain residues centers of mass and edges 

(black lines) are defined by a metric quantifying the interdependence among nodes. Right) 

Example of 100 optimal and suboptimal pathways based on correlated motions for h-Gal-1 

between His-43 and Phe-177. The width of these pathways is proportionally related to their 

length, the wider paths correspond to the shorter trajectories, and conversely, narrower paths 

represent longer trajectories. 
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Results showed that the correlation motion starting from the binding site histidine 

propagates through the β-sheets of the CRD core, extending even to the homodimer 

interface in the case of h-Gal-1 – and to a lesser extent in h-Gal-7 – when the canonical 

ligand N-acetyllactosamine (LacNAc) is bound (Fig. 9). This observation supports the 

notion of allosteric communication (i.e. long-range ligand binding effects) operating in 

homodimeric galectins. In contrast, the correlated motions in h-Gal-3 dissipate in the 

vicinity of the active site.  This remarkable feature revealed by molecular dynamics 

was further supported by relaxation dispersion NMR experiments conducted on 

h-Gal-1 and h-Gal-3 [137]. In h-Gal-1, binding to LacNAc induces μs-ms dynamics in 

up to 34 residues (Fig. 10c) [137], whereas the limited motions observed in h-Gal-3 are 

attributed to residual thermal motions.  

 

Figure 9.  Color-coded distribution of whole-protein allosteric pathways determined from 

selected residues (shown as yellow-blue sticks) in galectin binding sites through 100 ns MD 

simulations; green and gray colors indicate residues involved in shorter/efficient and 

longer/inefficient pathways, respectively. 

The presence of such long-range correlated motions in the homodimer might be at the 

origin of the unusual energy profile of carbohydrate binding to h-Gal-1, where entropy 

does not impose a penalty to ligand recognition [137]. In the case of the binding of 

LacNAc to h-Gal-1, the residues showing concerted dynamics in the micro-to-

millisecond timescale upon binding determined by transversal relaxation dispersion 
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NMR experiments match those appearing at the highest frequency in the calculated 

pathways (Fig. 6b and c) [137].  

 

Figure 10.  Long-range concerted dynamics observed in h-Gal-1. a) Color-coded distribution of 

whole-protein allosteric pathways determined from a binding site histidine (represented as 

yellow-blue sticks) in apo h-Gal-1 through μs-MD simulations. Shorter/efficient pathways are 

shown in green, while inefficient/longer pathways are depicted in gray. b) Residues most 

frequently involved in the optimal and suboptimal pathways (color-coded in a green gradient) 

calculated from histidine residues (represented as yellow-blue sticks sticks) in both binding sites 

of apo h-Gal-1. c) Residues (in green) exhibiting concerted dynamics at 380 s−1 as determined by 

transversal relaxation dispersion (RD) NMR experiments. 

The identification of residues that play a crucial role in allosteric communication 

provides valuable insights into this phenomenon (Fig. 11a). These residues are 

determined based on their high frequency of occurrence in the calculated pathways, 

indicating their significance in mediating allosteric effects. To our delight, these 

predictions were fully validated by the analysis of NMR chemical shift perturbations 

(CSP) recorded upon ligand binding. In the case of the heterodimeric galectins h-Gal-4 

and h-Gal-8, CSP analysis revealed perturbed residues located far from the binding 

site and concentrated again in the internal β-strands region, suggesting the presence 

of conserved allosteric networks whose effects that are dynamically transmitted 

throughout the core of protein structures. These findings are summarized in Fig. 11b, 

which highlights the regions of each galectin CRD that are most affected by ligand 

binding as determined by both MD simulations and NMR experiments. 
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Figure 11.  a) Residues most frequently involved in the optimal and suboptimal pathways 

calculated from selected residues (shown as yellow sticks) in galectin binding sites through 

100 ns MD simulations; residues with the highest frequency are highlighted in green. b) Most 

perturbated residues in NMR CSP analysis for h-Gal-4 NT:B type VI,  h-Gal-4 CT:A type VI 

complexes,  h-Gal-8 NT:sialyl-T antigen and  h-Gal-8 CT:A type II complexes. 

e. Hydration profiles 

Water, acting as both a hydrogen bond donor and acceptor, exhibits remarkable 

versatility at the biomolecular interface, significantly impacting ligand binding. 

Analysis of protein and ligand solvation, using the grid inhomogeneous solvation 

theory (GIST) [142] method, allows for an in-depth examination of the structural, 

dynamic, and thermodynamic aspects of water molecules surrounding the bound 
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carbohydrate ligands. Notably, water-mediated interactions and the displacement of 

conserved water molecules are critical factors influencing the stability and affinity of 

protein-ligand complexes [52,143,144]. 

i. Crystallographic water 

The identification of water sites in different high-resolution crystallographic structures 

of apo and ligand-bound crystal structures of the studied galectins, provides valuable 

insights on the role of water in such molecular recognition events.  Hence, overlaying 

the X-ray structures of these galectins reveals highly ordered water molecules 

surrounding the binding site (Fig. 12). This observation suggests a relevant role of 

water molecules in the context of galectin-carbohydrate interactions.  

 

Figure 12. Superposition of crystallographic structures of h-Gal-1, h-Gal-3, h-Gal-4, h-Gal-4 CT, 

h-Gal-7, h-Gal8 NT, h-Gal-8 CT showing as spheres water molecules located 5 Å around the 

central Gal unit. Wider spheres represent those conserved in at least three crystallographic 

structures. 

Water displacement from the binding site to the bulk solution upon ligand recognition 

significantly influences the free energy changes associated with the recognition 

process. This displacement involves the movement of water molecules away from the 

binding site, leading to the rearrangement of the surrounding water network. 

Understanding the dynamics and energetics of water displacement is essential for 

comprehending the mechanism of ligand binding [145].  

In the bound state, water sites identified in apo galectins are typically occupied by 

ligands hydroxyl groups (Fig. 13). This occupancy by the ligand hydroxyl groups 
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serves to maintain the hydrogen bonds that were observed in the apo structures. This 

phenomenon is not only an established aspect of ligand binding but also carries 

entropic benefits [146]. The hydrophobic effect associated with water displacement 

reduces the entropic penalty of binding, while enthalpy contributions remain 

relatively similar because water and ligand hydroxyl groups form highly conserved 

interactions. As a consequence, the overall favorable energetics of ligand binding are 

enhanced. 

 

Figure 13. Superposition of crystallographic structures of h-Gal-1, h-Gal-3, h-Gal-4 NT, 

h-Gal-4 CT, h-Gal-7, h-Gal-8 NT, h-Gal-8 CT in complex with B type II antigen. Blue spheres 

represent highly conserved crystallographic water molecules found in the apo crystal structures. 

ii. Bridge water molecules in complexes 

While previous analyses were based on X-ray structures, a more comprehensive 

exploration of water pockets was conducted through MD simulations. This type of 

analysis enables a deeper investigation into the dynamic behaviour of water molecules 

surrounding the binding site. Unlike X-ray methods, MD provides a temporal 

dimension, allowing capturing intricate fluctuations and interactions within solvent 

patches. Simulations, such as MD in aqueous solutions, offer a unique opportunity for 

a thorough investigation of the interactions between water molecules and solutes, with 

significant implications for the recognition process, particularly in carbohydrates 

(Fig. 14) [147–149]. 
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Figure 14. Example of different conformational preferences in two Tn antigen variants: Tn-Ser 

and Tn-Thr guided by the bridging water density around them. Figure adapted from 

reference  [148]. 

• Visualization of water structure 

The global solvation of the studied galectins MD trajectories was assessed through 

GIST analysis. By using a 25 Å x 25 Å x 25 Å grid centered on the shared lactose 

unit, the top 5 most populated voxels were selected. High density water pockets 

were detected in several of the studied systems by superimposing them (Fig 15, 

water sites A to D). These structural waters act as bridges between the ligand and 

the binding site. This approach is related to, but qualitatively different from that 

based on measuring the 2D radial distribution functions to locate high density 

water patches between specific atom pairs [147–149]. 

 

Figure 15. Left) High-dentisity water pockets commonly found in h-Gal-1, h-Gal-3 and 

h-Gal-7. Right) high- density water  pockets commonly found in h-Gal-1, h-Gal-3, h-Gal-4 

CT, h-Gal-4 NT, h-Gal-7, h-Gal-8 NT, h-Gal-8 CT. 

In order to gain a better understanding of the role of water in carbohydrate 

recognition by galectins, we used the grid inhomogeneous solvation theory (GIST) 
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approach to estimate the solvation thermodynamics of water sites A and D found 

in h-Gal-1, h-Gal-3 and h-Gal-7, as well as water site B found in h-Gal-1 and h-Gal-7. 

• Quantitative analysis of local contributions to solvation  

The total referenced entropies, enthalpies and free energies of solvation calculated 

with GIST from MD simulations are summarized in Fig. 16. 

 

Figure 16. Solvation thermodynamics derived from GIST calculations for h-Gal-1, h-Gal-3 

and h-Gal-7 in complex with B type II antigen. Dashed regions colored in wheat, brown and 

yellow represent water sites A, B and D respectively. Water-water (w-w) and solute-water 

(s-w) interaction energy, as well as the orientational and translational entropy are shown 

relative to bulk water (TIP3P). All quantities are given in kcal mol-1. ΔSsolv = ΔSorient + ΔStrans; 

ΔHsolv = ΔHs−w + ΔHw−w; ΔGsolv = ΔHsolv −TΔSsolv. Solvation thermodynamics in water site B 

could not be calculated for h-Gal-3 due to the very low occupancy of water molecules in this 

region. 
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Figure 16 (cont.). Solvation thermodynamics derived from GIST calculations for h-Gal-1, 

h-Gal-3 and h-Gal-7 in complex with B type II antigen. Dashed regions colored in wheat, 

brown and yellow represent water sites A, B and D respectively. Water-water (w-w) and 

solute-water (s-w) interaction energy, as well as the orientational and translational entropy 

are shown relative to bulk water (TIP3P). All quantities are given in kcal mol-1. ΔSsolv = 

ΔSorient + ΔStrans; ΔHsolv = ΔHs−w + ΔHw−w; ΔGsolv = ΔHsolv −TΔSsolv. Solvation thermodynamics 

in water site B could not be calculated for h-Gal-3 due to the very low occupancy of water 

molecules in this region. 

The analysis results revealed two key findings: first, the free solvation energy of 

these water sites (ΔGsolv) is predominantly governed by the enthalpic component 

(ΔHsolv). Secondly, it was observed that the primary contribution to this solvation 

energy stems from water-host interactions, conclusively demonstrating the 

substantial importance of these water pockets in stabilizing the bound state. From 

the data depicted in Fig. 16, it becomes apparent that water is less structured 

around the ligand in h-Gal-3, constituting a clear difference with respect to the 

other studied galectins. 
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Moreover, water sites B and D exhibited a consistent qualitative trend 

characterized by slightly unfavorable entropic contributions, indicating a higher 

degree of water ordering compared to the bulk solvent. These water sites also 

display favorable water-host (either protein or ligand) interactions, thus 

minimizing water-water interactions.  

A similar trend is observed in water site A for h-Gal-1 and h-Gal-7, where the 

entropic term opposes the enthalpic one. However, in the case of h-Gal-3 water site 

A shows a very small but favorable entropic term. This result aligns with the 

experimental observation that recognition of branched tetrasaccharides (B/A type 

II antigens) by h-Gal-3 minimizes the entropy penalty for ligand binding, as 

described by Jiménez-Barbero and co-workers [136].  

Despite their high conservation, there are differences in the composition of 

galectin binding sites residues involved in the water pockets described above (Fig. 

17). In h-Gal-1, water site A involves interactions between the N-acetamido group 

of the terminal GlcNAc unit of the ligand and residues Arg47, Asp53, Arg72; 

additionally, His51 can contribute to stabilization of the solvent molecules in water 

site A, or be oriented towards water site D. In the case of h-Gal-3, water site A 

involves also two arginine residues (Arg50, Arg74), while the aspartic acid residue 

in h-Gal-1 is replaced by a glutamic acid. In h-Gal-7, water site A shares the same 

interacting residues as h-Gal-3 (Arg188, Arg209 and Glu193) but it features an 

additional residue, Thr191, which contributes to the stabilization of this water site. 

The presence of four polar residues, as in h-Gal-1 and -7, seems to enhance the 

stabilization of the solvent molecules.  

 

Figure 17. Representation of the residues bridged by the structured water sites between 

the proteins and the ligands in h-Gal-1:B type II, h-Gal-3:B type II and h-Gal-7:B type II 

complexes. 



Chapter 3 Deciphering Carbohydrate Recognition by Galectins 

112 

 

 

 

Figure 17 (cont.). Representation of the residues bridged by the structured water sites 

between the proteins and the ligands in h-Gal-1:B type II, h-Gal-3:B type II and h-Gal-7:B 

type II complexes. 

Water site D exhibits an interesting pattern where one of the arginine residues 

involved in the interactions with water site A also contributes to water 

organization in water site D across all three galectins (Arg47 in h-Gal-1, Arg50 in 

h-Gal-3 and Arg188 in h-Gal-7). In h-Gal-1, an additional residue Asn45, assists in 

structuring water in site D. In the case of h-Gal-3, it shares these two residues 

(Arg32 and Asn48), but an arginine residue in that region occasionally occupies 

water site D, leading to its desolvation. Similarly, h-Gal-7 also possesses an 

additional arginine residue, Arg166, in that region. However, in this system, 

Arg166 exhibits reduced mobility and does not occupy the binding site; instead, it 

plays a role in structuring water molecules within water site D. 

These subtle variations in the binding site composition of galectins contribute to 

differences in local microsolvation among h-Gal-1, h-Gal-3 and h-Gal-7. The 

specific residues and their dynamic behavior influence the position and dynamics 

of water molecules within the binding site, thereby affecting the overall hydration 

thermodynamics.  
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3. Conclusions 

A comprehensive analysis of galectin-carbohydrate interactions, allosteric 

communication and solvation thermodynamics using molecular dynamics 

simulations, has been performed. The study provides insights into the structural, 

dynamic, and thermodynamic aspects of these interactions, shedding light on the role 

of conserved water patches and long-range motions. The differences in the 

composition of galectins binding sites are ultimately responsible of their specificities 

and determine local microsolvation dynamics and overall hydration thermodynamics. 

These findings might be useful for developing future applications in drug design or 

therapeutic interventions. 

4. Methods 

a. System preparation 

The initial 3D models for apo h-Gal-1, h-Gal-3 and h-Gal-7 were built based on the X-ray 

crystallographic structures of h-Gal-1:LacNAc (PDB ID: 1W6N), h-Gal-3:LacNAc 

(PDB ID: 1KJL) and h-Gal-7:lactose (PDB ID: 4GAL) complexes.  

To construct full-length models for h-Gal-4 and h-Gal-8, the crystallographic 

coordinates of their N- and C- terminal CRDs were used (Table 3). The peptide linkers 

connecting the two domains, which were unresolved in the crystal structures, were 

built in an extended conformation using the tleap module of Amber 20 [150]. The three 

fragments were manually assembled using PyMol [151] and the resulting full-length 

structure was refined through MD simulations (further datils provided below).  

Table 3. PDB codes of the crystallographic structures used for constructing full-length models 

of h-Gal-4 and h-Gal-8 . 

System PDB 

h-Gal-4 N-term 4XZP 

h-Gal-4 C-term 5CBL 

h-Gal-8 N-term 4BMB 

h-Gal-8 C-term 3OJB 

b. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations were run with Amber 20 suite [150] using the 

ff14SB [152] and GLYCAM 06j-1 [153] force fields for the proteins and carbohydrate 

ligands, respectively. Binding histidine residues (H43, H51, H176 and H184 for h-Gal-
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1, H46 for h-Gal-3, H49 for h-Gal-7, H50 for h-Gal-4 N-T, H52 for h-Gal-4 C-T, H65 for 

h-Gal-8 N-T and H46 for h-Gal-8 C-T) were modelled in their Nδ1-H tautomeric state 

(residue name HID in Amber). Initial structures were neutralized with either Na+ or 

Cl- counterions and set at the center of a cubic TIP3P water [154] box with a buffering 

distance between solute and box of 10 Å. A two-stage geometry optimization approach 

was performed. The first stage minimizes only the positions of solvent molecules and 

ions, and the second stage is an unrestrained minimization of all the atoms in the 

simulation cell. The systems were then heated by incrementing the temperature from 

0 to 300 K under a constant pressure of 1 atm and periodic boundary conditions. 

Harmonic restraints of 10 kcalmol-1 were applied to the solute, under the Andersen 

temperature coupling scheme [155]. The time step was kept at 1 fs during the heating 

stages, allowing potential inhomogeneities to self-adjust. Water molecules were 

treated with the SHAKE algorithm [156] such that the angle between the hydrogen 

atoms is kept fixed through the simulations. Long-range electrostatic effects were 

modelled using the particle mesh Ewald method. [157] An 8 Å cut-off was applied to 

Lennard-Jones interactions. Each system was equilibrated for 2 ns with a 2 fs timestep 

at a constant volume and temperature of 300 K. Ten independent production 

trajectories were run for additional 2.0 μs under the same simulation conditions, 

leading to accumulated simulation times of 20 μs for each system (h-Gal-1 apo, h-Gal-

1:B type II, h-Gal-3 apo, h-Gal-3:B type II, h-Gal-7 apo, h-Gal-7:B type II, h-Gal-4 N-T apo, 

h-Gal-4 N-T:B type VI, h-Gal-4 C-T apo, h-Gal-4 C-T:A type VI, h-Gal-8 N-T apo, h-Gal-

8 N-T:sialyl T antigen, h-Gal-8 C-T apo, h-Gal-8 C-T:A type II). 

c. Cluster search 

To obtain the most representative structure for full-length h-Gal-4 and h-Gal-8, initially 

modelled as fully extended conformations, the production trajectories for the apo and 

bound systems were combined, resulting in an accumulated simulation time of 20 μs 

for each system. Conformations were sampled every 40 ns and clustered based on the 

root-mean-square deviation (RMSD) of the N-terminal domain residues. The DBSCAN 

clustering algorithm [158] implemented in cpptraj [159] module of Amber 20 [150], was 

used for clustering analysis. A distance cut-off of 2 Å was applied for forming a cluster, 

with a minimum requirement of 50 points to form a cluster.  

d. Protein-ligand interactions 

To gain insight into the nature of these interactions, the aforementioned distances were 

extracted from the 20 μs accumulated trajectories for each complex. Histogram 

distributions were then fitted to the extreme function (Eq. 1, Fig. 18) for each distance 

in each system. The three parameters that define these distributions were extracted 

from the fitting (Fig. 18b): the amplitude (A), the equilibrium distance (xc) and the 
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width (w). Tight interactions are characterized by high amplitude values and low 

width values (Fig. 18c), while loose interactions exhibit the opposite pattern (Fig. 18c). 

 

Figure 18. a) Definition of the extreme distribution. b) Example of a representation of an extreme 

distribution function. “A” stands for amplitude, “w” for width and “xc” for the equilibrium 

distance. c) Representative examples of the distances distributions shapes for: a tight vs a loose 

interaction. 

e. Allosteric pathways calculation 

First, a correlation matrix (Cij) is constructed using 1000 snapshots extracted every 

100 ps from a window 100 ns within a converged MD trajectory. The correlation 

motion among pairs of nodes is calculated using Eq. 2. In this model, nodes are defined 

by the center of mass of side-chain residues, and nodes are considered to be in contact 

if the mean distance between them along the MD simulation is 6 Å or less. The length 

of the edges connecting these nodes quantifies the degree of dynamic communication 

between pairs of connected nodes, as defined in Eq. 3. The pathway length is inversely 

proportional to the correlation motion between nodes, indicating that shorter wij 

values denote tightly correlated or anticorrelated nodes, while larger values indicate 

less correlated nodes.  
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𝐶𝑖𝑗 =
⟨Δ𝑟𝑖⃗⃗ (𝑡) ⋅ Δ𝑟�⃗⃗� (𝑡)⟩

√⟨Δ𝑟𝑖⃗⃗ (𝑡)²⟩⟨Δ𝑟�⃗⃗� (𝑡)²⟩

 
 (Equation 2) 

𝑤𝑖𝑗 = −log(|𝐶𝑖𝑗|) (Equation 3) 

Then, Dijkstra’s algorithm is used to generate all force-node paths, finding the shortest 

(i.e. optimal) path. WISP employs a bidirectional search approach to identify not only 

the optimal but also suboptimal pathways. Suboptimal pathways are defined as those 

closest in length to the optimal one, but not including it. The available code rapidly 

calculates both optimal and suboptimal communication pathways between two 

user-specified residues of a protein.  

In this study, 100 pathways were computed between the conserved histidine residue 

of the binding sites and all the other residues in each of the studied galectins.  

The so-called length of these calculated pathways can be mapped and color-coded 

onto the protein structure, providing a visual representation of the internal correlated 

motions. This allows for an intuitive visualization of the extent of dynamic 

communication within the protein. Additionally, the frequency with which a given 

amino acid is involved in the calculated allosteric pathways can be represented. This 

representation facilitates the identification of residues that operate as critical nodes to 

relay dynamic information inside the protein (Fig. 10 and 11) 

f. Hydration analysis 

i. Analysis of crystallographic water molecules in apo galectins. 

Ordered waters in the apo form of galectins were identified from high resolution crystal 

structures. To this aim, X-ray structures from the highest resolution apo (when 

available) crystal structures of the studied galectins (Table 4) were superimposed in 

PyMol. 
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Table 4. PDB codes of human galectins used in this work. 

System PDB Resolution (Å) 

h-Gal-1 1W6N 1.65 

h-Gal-3 3ZSM 1.25 

h-Gal-7  1BKZ 1.90 

h-Gal-4-NT 4XZP 1.48  

h-Gal-4-CT 4YM3 1.89 a 

h-Gal-8-NT 2YV8 1.92 

h-Gal-8-CT 3OJB 3.01b 

a h-Gal-4-CT:lactose. 

b h-Gal-8-CT unique apo structure available.  

ii. Prediction of conserved water molecules within protein-ligand complexes 

via MD simulations.  

The structure, dynamics and thermodynamic properties of water molecules 

surrounding  the bound ligands was explored using the grid inhomogeneous solvation 

theory (GIST) method [142]  implemented in cpptraj [159]  module of Amber 20 [150].  

Carbohydrate binding to galectins is an inherently dynamic process, as reflected by 

the generally low affinities measured experimentally. Thus, MD simulations of such 

complexes commonly involve highly flexible scenarios both at the ligand and protein 

binding site level. Bearing this in mind, and to ensure reliable results, the GIST analysis 

required snapshots from MD simulations in which the solute was restrained to 

essentially one conformation. Thus, we investigated the conformational variability of 

them in solution. A clustering analysis was performed on the first 10 ns of trajectories 

of each system, which were later used for the GIST analysis. Conformations were 

sampled every 20 ps and clustered attending to the root-mean-square deviation 

(RMSD). The DBSCAN clustering algorithm [160] was used as implemented in cpptraj 

[159] module of Amber 20. The distance cutoff between points for forming a cluster 

was set to 3.5 Å. At least 50 points were required to form a cluster. All the studied 

complexes exhibited a single unique cluster (Table 5), and the entire analyzed 

trajectories belonged to these clusters (frac = 1). The maximum average distance 

between points in the cluster was found to be 1.91 Å, with a maximum standard 

deviation of points in the clusters of 0.28 Å.  
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Table 5. Cluster analysis of MD trajectories. Frac refers to the size of the cluster as a fraction of 

the total trajectory. AvgDist is the average distance between points in the cluster and Stdev is the 

standard deviation. 

Complex Frac AvgDist Stdev 

h-Gal-1:B type II 1 1.70 0.18 

h-Gal-3:B type II 1 1.62 0.15 

h-Gal-7:B type II 1 1.91 0.28 

h-Gal-4 NT:B type VI 1 1.52 0.13 

h-Gal-4 CT:A type VI 1 1.68 0.14 

h-Gal-8 NT:sialyl-T antigen 1 1.89 0.20 

h-Gal-8 CT:A type II 1 1.68 0.16 

Given that the selected trajectory windows maintained a consistent ligand 

conformation, they were selected as input trajectories for the GIST analysis.  

• Visualization of water structure and dynamics 

First, the global hydration of galectin binding sites was analyzed by visual 

inspection of the results of a GIST analysis. For this initial analysis, GIST was 

performed on a box grid of dimensions 25 Å x 25 Å x 25 Å and a grid spacing of 

0.5 Å, centered in the central lactose unit common to all the ligands studied 

(Fig. 19).  

 

Figure 19. Grids used for the two-stage GIST analysis (h-Gal-1:B type II complex shown as 

an example). The larger box illustrates the grid used for the global hydration analysis 

whereas the smaller boxes are the ones used for the analysis of the local contributions to 

solvation (i.e. water sites).  
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For all the studied complexes, the top 5 most populated voxels were selected 

(shown as large spheres in Fig. 20). These voxels also met two additional criteria: 

- The fraction of oxygen atoms found in the voxel with respect to the bulk 

density is higher than 3.5. 

- The voxel is placed within 10 Å of the center of the box (i.e. the central 

galactose unit).  

 

Figure 20. Local solvation patches around galectins binding sites calculated with GIST 

from MD simulations and represented as volumetric meshes. Large spheres represent the 

top 5 most populated voxels that are within 10 Å of the galactose rings. Meshed volumes 

represent the hydration regions found with the help of the GIST analyses. 
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Figure 20 (cont.). Local solvation patches around galectins binding sites calculated with 

GIST from MD simulations and represented as volumetric meshes. Large spheres represent 

the top 5 most populated voxels that are within 10 Å of the galactose rings. Meshed 

volumes represent the hydration regions found with the help of the GIST analyses. 

• Quantitative analysis of local contributions to solvation 

To analyze the local contributions to the hydration thermodynamics of galectins, 

three subregions were defined. Each subregion corresponds to smaller box grids 

with dimensions of 2.5 Å x 2.5 Å x 2.5 Å, comprising a total of 10 x 10 x 10 voxels 

(1000 voxels in total). The grid spacing was set at 0.25 Å, ensuring detailed 

resolution within the subregion. These boxes were built centered on highly 

structured waters within subregions A, B, and D (Fig. 18). The enthalpic and 

entropic contributions are calculated as indicated in the original GIST manuscript 

[142] (Equations 4-8).  The thermodynamic properties of each water site (ΔSorient, 

ΔStrans, ΔHs−w, ΔHw−w) are internally calculated by the program as the sum of these 



Chapter 3 Deciphering Carbohydrate Recognition by Galectins 

121 

 

values at each voxel comprising the water site grid, multiplied by the voxel volume 

(0.016 Å3)  

∆𝐺𝑠𝑜𝑙𝑣 =  ∆𝐻𝑠𝑜𝑙𝑣 − 𝑇∆𝑆𝑠𝑜𝑙𝑣  (Equation 4) 

∆𝑆𝑠𝑜𝑙𝑣 = ∆𝑆𝑠−𝑤 + ∆𝑆𝑤−𝑤   (Equation 5) 

∆𝑆𝑠𝑜𝑙𝑣 ≈  ∆𝑆𝑠−𝑤    (Equation 6) 

∆𝑆𝑠−𝑤 = ∆𝑆𝑠−𝑤
𝑡𝑟𝑎𝑛𝑠 + ∆𝑆𝑠−𝑤

𝑜𝑟𝑖𝑒𝑛𝑡  (Equation 7) 

∆𝐻𝑠𝑜𝑙𝑣 = ∆𝐻𝑠−𝑤 + ∆𝐻𝑤−𝑤  (Equation 8) 
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1. Introduction  

C-type lectins (CTL) are Ca2+-dependent carbohydrate-binding proteins. They feature 

a carbohydrate-recognition domain (CRD) that exhibits structural similarities across 

different C-type lectins. Oligomerization is common among CTLs, increasing their 

avidity for multivalent ligands and enhancing their recognition via pattern recognition 

receptors [161]. Some well-known proteins belonging to the C-type lectin family 

include DC-SIGN, mannose receptor, dectin-1 and selectins.  

The dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN or CD209) is one 

of the most studied C-type lectins over the last twenty years as it is a key piece in the 

infection by Human Immunodeficiency Virus (HIV) [162]. DC-SIGN is a 

transmembrane protein primarily expressed on the surface on immature dendritic 

cells and macrophages [163]. Dendritic cells play a crucial role in the immune response, 

acting as antigen-presenting cells and triggering adaptative immune responses. 

DC-SIGN is characterized by its ability to bind a wide range of carbohydrates present 

on pathogens, such as bacteria, viruses, and fungi (Fig. 1). This interaction has been 

described as a critical step when capturing and processing pathogens by dendritic 

cells, initiating in that way specific immune responses.  

 

Figure 1. a) Schematic representation of a dendritic cell with DC-SIGN receptors on its 

membrane. The recognition processes of bacteria, fungi, and virus are exemplified. b) Tetramer 

DC-SIGN schematic structure formed by: Carbohydrate Recognition Domain (CRD), a neck 

region composed for seven and one incomplete repeats of a 23 amino acid sequence, and a 

transmembrane domain followed by a cytoplasmic tail.  



Chapter 4 Investigating the structural basis of sugar recognition by DC-SIGN 

127 

 

DC-SIGN exhibits a remarkable level of promiscuity in its ability to bind 

carbohydrates, making it a versatile receptor for pathogen recognition, immune cell 

adhesion, and modulation of immune responses [26]. However, the broad range of 

carbohydrate ligands also presents challenges in understanding the specificities and 

functional consequences of these interactions. Elucidating the molecular basis of 

DC-SIGN's promiscuity and its implications in host-pathogen interactions is an active 

area of research that can contribute to the development of therapeutics and vaccines 

targeting DC-SIGN-mediated immune responses. 

In most of C-type lectins, the carbohydrate recognition process takes place through the 

coordination of calcium by two vicinal hydroxyl groups in the monosaccharide 

(Fig. 2a). This interaction is relatively weak, with affinity in the millimolar range [26]. 

However, higher affinities can be achieved through additional contacts involving 

residues outside the conserved ones at secondary sites, and from the multivalent 

architecture presentation of the lectin allowing the generation of sugar-lectin clusters. 

In this chapter, an in-depth investigation is conducted into the recognition of 

monosaccharides by DC-SIGN, using a wide range of computational techniques. The 

computational findings are further validated and complemented by NMR experiments 

and CORCEMA calculations carried out in collaboration with the Chemical 

Glycobiology Lab at CIC bioGUNE led by Prof. Jesús Jiménez-Barbero. The main 

objective is to gain a comprehensive understanding of the molecular mechanisms 

involved in sugar recognition by DC-SIGN, with the potential to guide future 

applications.  

2. Results and discussion   

a. Structural characterization of the minimum binding epitope and 

binding patterns to DC-SIGN 

First, a systematic search was conducted on all available crystallographic structures of 

protein-ligand complexes involving L-Fuc and D-Man oligosaccharides in association 

with DC-SIGN, including synthetic glycomimetics. This investigation aimed at 

identifying common structural features irrespective of the specific sugar type, leading 

to the discovery of a conserved arrangement of atoms referred as the minimum ligand 

binding epitope (Fig. 2a). Notably, the positions of the vicinal diol (COH-COH) motif, 

which coordinates the Ca2+ ions, remained constant, while the atomic coordinates of 

the pyranose ring varied (Fig. 2a). The presence of this minimum epitope in all 

crystallized protein-ligand complexes highlights its importance for ligands to 

effectively bind to DC-SIGN. To precisely characterize the spatial distribution of the 
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COH-COH motif, a plane was defined by bisecting the C-C bond of this minimum 

binding epitope and passing through the three Ca2+ ions of the lectin (Fig. 2b). The 

solvent-exposed side of the plane was arbitrarily assigned as positive (+), with the 

labeled +O representing the oxygen atom in that region. Conversely, the side of the 

plane facing the protein was designated as negative (–), with the labeled –O 

representing the corresponding oxygen atom. 

 

Figure 2. a) Overlay of DC-SIGN’s crystallographic structures with D-Man (left) and L-Fuc 

(right) oligosaccharides. The calcium-interacting monosaccharide in each structure is 

represented with thick sticks (D-Man is shown in green and L-Fuc in red). Middle: the conserved 

minimum pattern of atomic types and positions found in all structures (minimum binding 

epitope). b) The reference plane passing through the three Ca2+ ions of the lectin (in gray) bisects 

the minimum binding epitope through the C-C bond. Each oxygen atom of the minimum 

binding epitope lies in a different side (– or +) of the plane, and thus are labelled as –O and +O 

respectively. Most of the protein’s structure is located at the – side of the plane, whereas the + 

side is solvent exposed.  

In line with the hypothesis of a minimal motif being largely responsible of 

carbohydrate binding to DC-SIGN, a comprehensive analysis was conducted on the 

orientations of α-OMe-L-Fuc and α-OMe-D-Man at the binding site by superimposing 

all possible permutations of their vicinal CO-CO pairs onto the geometry of the 

minimum binding epitope. Only structures showing a nearly perfect alignment with 
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the minimum binding epitope (RMSD < 0.15 Å) were considered as potential binding 

modes to DC-SIGN (Scheme 1, see Methods) 

 

Scheme 1. Protocol followed to analyze the proposed binding modes (BM = binding mode) 

Considering the C2 symmetry axis exhibited by the minimum epitope (Fig. 2a), each 

sugar containing a Ca2+-coordinating COH-COH pair can adopt at least two potential 

binding orientations. For α-OMe-L-Fuc and α-OMe-D-Man, four binding 

permutations fulfill the requirements of the minimum binding epitope outlined in 

Scheme 1 (see Methods). To characterize these binding modes, a two-digit 

nomenclature was used, indicating the atomic positions of +O and –O oxygen atoms in 

the pyranose ring. Thus, the resulting binding poses for α-OMe-L-Fuc and 

α-OMe-D-Man fulfilling the minimum epitope are labeled as 2-3, 3-2, 3-4, and 4-3, with 

the 1-2 and 2-1 arrangements being hindered by the presence of the methoxy group 

(OMe) at the anomeric center.  

Considering the six-membered cyclic nature of the ligand, this analysis revealed three 

distinct Structural Binding Patterns (SBPs) for both α-OMe-L-Fuc and α-OMe-D-Man 

in the crystallographic DC-SIGN complexes, which remains consistent regardless of 

the sugar type. These SBPs are denoted as A, B1, and B2 (Fig. 3) and are characterized 

as follows: 

- SBP A: both the +O and –O oxygen atoms occupy equatorial positions in the 

pyranose ring. 

- SBP B1: the +O and –O oxygen atoms occupy axial and equatorial position in 

the pyranose ring, respectively. 

- SBP B2: the +O and –O oxygen atoms occupy equatorial and axial positions in 

the pyranose ring, respectively. 
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Figure 3. Structural binding patterns (SBP) A, B1, and B2 found in carbohydrate ligands bound 

to DC-SIGN. Sugar pyranoses have been simplified to a substituted cyclohexane ring (shown in 

sticks), and only the hydroxyl groups interacting with the Ca2+-binding motif are shown.  

Based on the defined structural patterns, the potential binding modes of α-OMe-L-Fuc 

and α-OMe-D-Man to DC-SIGN can be classified as presented in Table 1. 

Table 1. Classification of the binding modes of α-OMe-L-Fuc and α-OMe-D-Man to DC-SIGN 

based on Structural Binding Patterns (SBPs). eq = equatorial; ax = axial. 

Sugar Binding pose SBP +O/–O configuration 

α-OMe-L-Fuc 

2-3 A eq/eq 

3-2 A eq/eq 

3-4 B2 eq/ax 

4-3 B1 ax/eq 

α-OMe-D-Man 

2-3 B1 ax/eq 

3-2 B2 eq/ax 

3-4 A eq/eq 

4-3 A eq/eq 
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b. Energetic analysis of Structural Binding Patterns towards 

DC-SIGN 

In order to assess the relative stability of the three Structural Binding Patterns (A, B1, 

and B2) at the lectin binding site, a quantum mechanical cluster model [62] was 

employed. This method focuses on modeling the protein’s binding site and the ligand, 

with their positions being fixed either completely or partially [164]. By combining 

quantum mechanics with a continuum solvent model [165], an accurate description of 

the system’s energetics, specifically ligand binding, was obtained (see Methods for 

details). 

To determine the stability and energetics, the minimum energy conformers of 

α-OMe-L-Fuc and α-OMe-D-Man bound to the protein cluster model were considered 

for the four binding poses previously described. Using an analogous di-aquo complex 

as a representation of the protein’s apo state, the binding enthalpy (∆Hbind) of the 

conformers was calculated through an isodesmic reaction (Fig. 4). Furthermore, 

α-OMe-L-Gal, which is similar to α-OMe-L-Fuc but has a hydroxymethyl group 

instead of a methyl group at C5, was also included in this analysis. Additionally, the 

impact of incorporating the sidechain of Val351, known to play a significant role in the 

recognition of fucosylated sugars by DC-SIGN [166,167], was taken into account (see 

Methods). 

 
Figure 4. Example of an isodesmic reaction used to calculate the relative binding enthalpy of 

α-OMe-D-Man to DC-SIGN through a cluster model. Calcium atoms are represented as green 

spheres. Water molecules are represented as balls and sticks. Carbohydrates are represented as 

sticks.  

The results of the energetic calculations are depicted in Fig. 5. It is observed that the 

B1 structural binding patterns (+Oax/-Oeq, Table 2), which corresponds to the 2-3 binding 

mode for α-OMe-D-Man and the 4-3 binding mode for α-OMe-L-Fuc and αOMe-L-Gal, 

exhibits higher affinities to DC-SIGN by at least 2 kcal mol-1 (>95% population at 25 °C).  
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These findings suggest an important contribution of the outer-sphere hydrogen bond 

formed between a third pyranose hydroxyl group adjacent to those coordinated to 

Ca2+, and the residue Glu354, which is a characteristic feature of this binding mode 

(Fig. 5c). 

 

Figure 5. Binding enthalpies (ΔHbind) calculated for each binding mode of α-OMe-D-Man 

(green), α-OMe-L-Fuc (red), and α-OMe-L-Gal (yellow) a) in the absence and b) in the presence 

of Val351 sidechain. c) α-OMe-D-Man bound to DC-SIGN in the B1 structural binding pattern. 

Ca2+-oxygen interactions and protein-ligand hydrogen bonds common to all binding modes are 

depicted as blue and black dashed lines respectively. The extra hydrogen bond taking place in 

B1 binding modes is depicted with pink dashed lines. d) Relative binding enthalpies (ΔΔHbind) 

calculated for each binding mode of α-OMe-D-Man (green), α-OMe-L-Fuc (red), and 

α-OMe-L-Gal (yellow) in the presence vs. absence of Val351 sidechain. 

Furthermore, the presence of the Val351 sidechain consistently enhances the binding 

affinity of all sugars by approximately 2 kcal mol-1 through dispersion interactions 

[41,168,169]. This effect maintains or further strengthens the overall preference for the 

B1 pattern (Fig. 5d). Notably, this effect is more pronounced for α-OMe-L-Fuc and 

α-OMe-L-Gal. 
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c. Stability of Structural Binding Patterns in complex with 

DC-SIGN in solution 

The quantum mechanical cluster model analysis provides insight into the inherent 

strength of the carbohydrate-lectin binding interactions with DC-SIGN based on 

existing crystallographic structures. However, it is important to acknowledge that 

such interactions might be different in solution. Therefore, to account for the influence 

of surrounding water molecules, ions, and thermal effects, microsecond molecular 

dynamics simulations were performed on the carbohydrate-lectin CRD complexes, 

starting from all the different structural binding patterns (see Methods).  

The three studied carbohydrates (α-OMe-D-Man, α-OMe-L-Fuc, and α-OMe-L-Gal) 

exhibited similar ligand residence time profiles throughout the simulations, as 

depicted in Fig. 6. Consistently with the higher affinity calculated using quantum 

mechanics, ligands in the B1 binding poses remained bound the entire simulation. In 

contrast, the other binding modes showed moderate persistence in solution, with the 

exception of one of the A binding modes that displayed a notably unstable behavior 

(ligand residence frequency < 20%). 

 

Figure 6. Ligand residence frequencies derived through MD simulations for α-OMe-D-Man (in 

green), α-OMe-L-Fuc (in red), and α-OMe-L-Gal (in yellow) bound to DC-SIGN in each different 

pose. Residence frequencies are calculated as the fraction of bound complex over the entire 

simulation time (1 µs).  

The hydrogen bonds between the carbohydrate hydroxyl groups coordinating the Ca2+ 

ion and glutamic acid residues Glu347 and Glu354 were conserved across all structural 

binding patterns (Fig. 7). Other hydrogen bonds involving the same coordinating OH 

groups, such as those with Ca2+-binding Asn365, Asp366 and Asn349, were found to 

be stronger in the B1 motif compared to the other structural patterns. Of note, the 

characteristic hydrogen bond in motif B1 between the contiguous equatorial hydroxyl 

group not directly involved in Ca2+ binding and residue Glu354 (Fig. 5), was 

consistently conserved throughout most of the trajectory for the three ligands. These 
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hydrogen bonds were previously observed in the quantum mechanical study, and MD 

simulations demonstrated their remarkable persistence even in an aqueous solution.  

 

Figure 7. a) Atoms involved in the main hydrogen bond interactions between the carbohydrate 

ligands and DC-sign binding site. b) Hydrogen bonds measured for each ligand-protein 

complex in different binding modes during the section of the MD simulation in which the ligand 

is bound to DC-SIGN. The fraction of the ligand-bound snapshots in which the hydrogen bonds 

occur is shown in the bar plots.  
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Figure 7 (cont.). a) Atoms involved in the main hydrogen bond interactions between the 

carbohydrate ligands and DC-sign binding site. B) Hydrogen bonds measured for each ligand-

protein complex in different binding modes during the section of the MD simulation in which 

the ligand is bound to DC-SIGN. The fraction of the ligand-bound snapshots in which the 

hydrogen bonds occur is shown in the bar plots.  
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Additionally, specific hydrophobic contacts between the carbohydrate and the protein 

were exclusively detected in the B1 arrangement. These contacts involve the sidechain 

of Val351 and the C1H and C2H (with α-OMe-L-Fuc and α-OMe-L-Gal) or the C4H 

and C6H2 groups (with α-OMe-D-Man), as shown in Fig. 8 and Fig. 9. Such van der 

Waals interactions have been reported previously in both experimental and 

computational studies [41,168,169] and may contribute significantly to the enhanced 

stability of the B1 structural pattern compared to the other alternatives, as computed 

quantum mechanically in the previous section.  

 
Figure 8. Representative snapshots from MD simulations of a) α-OMe-L-Fuc (in dark red) and 

b) α-OMe-D-Man (in green) bound to DC-SIGN (in light brown) in the B1 binding structural 

pattern. Protein residues involved in Ca2+ binding are shown as lines, and residues involved in 

direct contacts with the carbohydrates are shown as sticks. Conserved hydrogen bonds are 

shown as light brown dashed lines whereas van de Waals contacts with Val351 are represented 

as yellow and blue planes. Calcium atoms are represented as green spheres.  

 

Figure 9. Occurrence of Van der Waals interactions between any non-polar hydrogen of the 

sugar (CH) and Val351 found on the MD trajectories, expressed as % of the total simulation time 

in which the ligand is bound to DC-SIGN. Van der Waals (VdW) interactions are considered to 

take place when the distance between  the pair of atoms involved is lower than 1.2 times the 

sum of their VdW radii. Only the binding modes in which these interactions are found in more 

than 10% of the simulated time are represented in this graph (all of them correspond to B1 

structural patterns).  
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d. STD-NMR experiments and CORCEMA analysis 

To experimentally confirm the computationally predicted prevalence of the B1 

structural pattern in the binding of single monosaccharides to the lectin, the 

interactions between α-OMe-D-Man and α-OMe-L-Fuc with the extracellular domain 

of DC-SIGN were investigated by the Chemical Glycobiology Lab at CIC bioGUNE 

using 1H-STD-NMR experiments. Saturation-Transfer Difference (STD) NMR is a 

useful technique for characterizing the ligand’s position at the binding site, thereby 

providing insight into the existence of distinct binding geometries.  

The experiments were conducted with a large excess of the monosaccharides to 

minimize any potential re-binding effects. The results (Fig. 10) showed that 

α-OMe-D-Man had the strongest response at proton H4, with moderate effects 

observed for H3 and H6. For α-OMe-L-Fuc, the highest response was observed for 

protons H1 and H2, which matched the saturation patterns found in previous studies 

with DC-SIGN and fucose-containing oligosaccharides [168,169].  

 

Figure 10. 1H-STD spectra of a α-OMe-D-Man and α-OMe-L-Fuc in the presence of DC-SIGN 

ECD at tsat = 2 s (blue spectra). The off -resonance spectra are shown in red. Relative STD 

intensities using saturation grown rates at tsat = 0 s shown below the spectra in each case.  

The experimental STDs were quantitatively analyzed using full matrix relaxation 

calculations (CORCEMA-ST) [170] and the MD trajectories of each complex with the 

ligand in the different binding poses (see Methods). Unlike using a single averaged 
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structure to predict theoretical STDs, subsets of structural ensembles derived from the 

MD simulations were used. This approach accounts better for the dynamic behavior 

of the molecules in solution. Finally, the average STD from all individual MD 

snapshots was calculated and compared to the experimental data using a NOE 

R-factor function (see Methods). In short, the binding mode whose MD ensemble 

yields the lowest R-factor is the one best reproducing the experimental STD data. This 

methodology allowed for a more comprehensive evaluation of the binding interactions 

between the monosaccharides and DC-SIGN.  

The B1 structural pattern exhibited the best correlation with the experimental STD 

intensities in both the α-OMe-D-Man (NOE R-factor 0.47) and α-OMe-L-Fuc (NOE 

R-factor 0.37) complexes with DC-SIGN (Fig. 11a). The comparison between the 

averaged STD intensity of the ensemble for the highest-ranked binding pose (resulting 

in the lowest NOE R-factor) and the experimental STD showed good agreement 

(Fig. 11b). Interestingly, the other binding poses ranked significantly worse, with the 

relative deviations from the best pose (B1) ranging from 80% to 100% for both ligands. 

Besides introducing the intrinsic dynamics of each binding mode trough an MD 

ensemble when comparing predicted and experimental STD, it is also worth 

considering the possibility of multiple binding modes occurring simultaneously in 

solution when interacting with the receptor, as previously observed for DC-SIGN with 

mannose oligosaccharides [171]. To investigate this, the BM-Mixer [171] procedure 

was applied. Results consistently showed that including structures belonging only the 

B1 binding modes yields the best agreement with the experimental data (Fig. 11c), 

indicating a single-mode interaction with the receptor. This finding aligns with 

previous studies that identified the B1 binding mode in D-Man [172]. Interestingly, the 

crystal structures of D-Man oligosaccharides revealed a different binding mode (A), 

which was not observed with natural monosaccharides. This discrepancy in binding 

poses between short and long glycans is likely due to the additional interactions of 

non-Ca2+ binding sugars with other amino acids in an extended binding site.  
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Figure 11. a) NOE R-Factors of the average STD intensities of each ensemble of binding modes 

calculated by CORCEMA-ST. Each ensemble is represented with a different color. 

b) Experimental (in orange) vs. CORCEMA-ST predicted (in green) STD of the best scoring 

ensemble for α-OMe-D-Man (left) and α-OMe-L-Fuc (right) in the presence of DC-SIGN at 

tsat = 0.5 s. 200 Snapshots from each MD trajectory were used in each case. The corresponding 

normalized STD values are represented in the sketched carbohydrates. c) Top scoring mixes of 

binding modes found by BM-Mixer. Note that the best result (i.e. the lowest NOE R-factor) 

involves structures from only the B1 motif (2-3 pose for α-OMe-D-Man and 4-3 pose for 

α-OMe-L-Fuc). 

e. Exploring novel DC-SIGN binders 

Based on the identified optimal binding motif (B1), new potential binders of DC-SIGN 

were surveyed and experimentally tested. L-Gal, which is structurally similar to L-Fuc 
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but with an hydroxymethyl group at C5, was selected. Similarly, the natural occurring 

D-Rha, which is similar to D-Man but with a methyl group at C5, showed potentially 

similar binding modes. Unlike previously described D-Man and L-Fuc derivatives, 

these molecules are not O-protected at the anomeric position, thus allowing for both 

the α and β hydroxyl groups to engage in even more potential binding modes that the 

α-1-methoxy derivatives. Additionally, myo-inositol, a common metabolite precursor 

in eukaryotes cells, was tested.  

 

Figure 12. Potential DC-SIGN binders (box) explored based on the B1 binding motif together 

with previously analyzed DC-SIGN binders α-OMe-D-Man and α-OMe-L-Fuc. The OH groups 

capable of binding in the B1 mode are highlighted in gray. 

The potential binding modes for α/β-L-Gal, α/β-D-Rha, and myo-inositol to DC-SIGN 

can be classified as presented in Table 3. 
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Table 3. Classification of the binding modes of α-L-Gal, β-L-Gal, α-D-Rha, β-D-Rha, and myo-

inositol to DC-SIGN based on their Structural Binding Patterns (SBPs). eq = equatorial; ax = axial. 

Sugar Binding pose SBP 
+O/–O 

configuration 

α-L-Gal 

1-2 B1 ax/eq 

2-1 B2 eq/ax 

2-3 A eq/eq 

3-2 A eq/eq 

3-4 B2 eq/ax 

4-3 B1 ax/eq 

β-L-Gal 

2-3 A eq/eq 

3-2 A eq/eq 

3-4 B2 eq/ax 

4-3 B1 ax/eq 

α-D-Rha 

β-D-Rha 

2-3 B1 ax/eq 

3-2 B2 eq/ax 

3-4 A eq/eq 

4-3 A eq/eq 

myo-inositol 

1-2 B2 eq/ax 

2-1 B1 ax/eq 

4-5 A eq/eq 

5-4 A eq/eq 

6-1 A eq/eq 

1-6 A eq/eq 

Following the protocol described above, MD simulations were performed to analyze 

the binding poses of α/β-L-Gal, α/β-D-Rha, and myo-inositol that met the minimum 

binding epitope requirements. All possible binding modes were considered, including 

1-2 and 2-1 poses for α-L-Gal. The residence time profiles of these systems were 

comparable to those observed for α-OMe-D-Man, α-OMe-L-Fuc, and α-OMe-L-Gal, 

proving their similar binding properties (Fig. 13). The analysis of protein-ligand 

interactions also revealed characteristic contacts similar to those in SBP A, B1, and B2 

of the α-methoxy derivatives (Figs. 14 and 15).  
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Figure 13. Ligand residence frequencies derived through MD simulations for a) α/β-D-Rha, b) 

α/β-L-Gal, and myo-inositol at the lectin binding site in each of the different poses. 
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Figure 14. Hydrogen bond interactions measured for each ligand-protein complex during the 

section of the MD simulation in which the ligand is bound to DC-SIGN. The fraction of the 

ligand-bound snapshots in which the hydrogen bonds occur is shown in the bar plots.  
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Figure 14 (cont.). Hydrogen bond interactions measured for each ligand-protein complex during 

the section of the MD simulation in which the ligand is bound to DC-SIGN. The fraction of the 

ligand-bound snapshots in which the hydrogen bonds occur is shown in the bar plots.  
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Figure 14 (cont.). Hydrogen bond interactions measured for each ligand-protein complex during 

the section of the MD simulation in which the ligand is bound to DC-SIGN. The fraction of the 

ligand-bound snapshots in which the hydrogen bonds occur is shown in the bar plots.  
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Figure 14 (cont.). Hydrogen bond interactions measured for each ligand-protein complex during 

the section of the MD simulation in which the ligand is bound to DC-SIGN. The fraction of the 

ligand-bound snapshots in which the hydrogen bonds occur is shown in the bar plots.  

 

Figure 15. Occurrence of Van der Waals interactions between any non-polar hydrogen of the 

sugar (CH) and Val351 found on the MD trajectories, expressed as % of the total simulation time 

in which the ligand is bound to DC-SIGN. Van der Waals (VdW) interactions are considered to 

take place when the distance between the pair of atoms involved is lower than 1.2 times the sum 

of their VdW radii. Only the binding modes in which these interactions are found in more than 

10% of the simulated time are represented in this graph (all of them correspond to B1 structural 

patterns).  
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The B1 pattern was again predicted to show a more persistent binding in the MD 

simulations, except for β-L-Gal, where the B2 pattern of the 3-4 binding pose was more 

stable (Fig. 14). This was attributed to the lack of hydrophobic interactions between 

Val351 and CH1 (now in axial position) in the 4-3 binding mode (B1 pattern) of β-L-Gal 

(Fig.15). In the case of myo-inositol, the A pattern and the B1 pattern exhibited similar 

ligand residence times. Interestingly, the 1-2 and 2-1 binding modes in α-L-Gal 

involving the anomeric hydroxyl group were highly unstable, likely due to the weaker 

Ca2+-coordinating properties of the hemiacetal group.  

STD-NMR experiments were conducted for α/β-L-Gal, α/β-D-Rha, and myo-inositol. 

All compounds showed measurable STD effects, indicating their interaction with the 

lectin. The relative STD profiles of the ligands were similar, suggesting a similar 

binding epitope. However, there were significant differences in the absolute STD 

values, suggesting variations in the binding affinities.  

Applying a similar methodology as in the case of α-OMe-D-Man and α-OMe-L-Fuc, 

CORCEMA-ST calculations were performed on the MD ensembles of α/β-L-Gal, 

α/β-D-Rha, and myo-inositol bound to DC-SIGN. Unlike the 1-methoxy derivatives for 

which the KD and kon values needed for the calculation of theoretical STDs were 

simultaneously optimized, different values of KD were explicitly tested at a fixed value 

of kon for the potential binders to find the one better reproducing the experimental data 

(see Methods). The results showed that the binding modes belonging to the B1 pattern 

consistently fit better to the experimental data in a range of KD values, yielding 

minimum NOE R-factors (Fig. 16, data plotted in red for α/β-L-Gal, α/β-D-Rha, and 

yellow for myo-inositol). In contrast, the other MD ensembles exhibited much worse 

NOE R-factors. 
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Figure 16. NOE R-Factor calculated at several KD in the 0.5-6 mM range for α/β-D-Rha, α/β-L-

Gal and myo-inositol in the different ligand binding modes. MD ensembles comprising 200 

snapshots for each sugar:lectin complex were used. The results shown are calculated at tsat = 0.5 

s. Ligand:protein ratios were adjusted to match the experimental ratios in each case, and the 

experimentally measured T1 for each sugar proton were used in the calculations. d) Estimated 

KD values  displaying the minimum NOE R-Factor for all studied DC-SIGN binders. 
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To consider the potential coexistence of multiple binding modes in solution, BM-Mixer 

calculations were conducted on the CORCEMA-calculated STDs. The results revealed 

that the majority of the best solutions involved a population of 80-100% binding poses 

belonging to the B1 pattern. This suggests minimal or no competition between binding 

modes for the same monosaccharide (Fig. 17). 

 

Figure 17. Top BM-Mixer solutions at tsat = 0.5 s for α/β-D-Rha (theoretical KD = 3 mM), 

α-L-Gal (theoretical KD = 0.5 mM), β-L-Gal (theoretical KD = 1 mM), and myo-inositol (theoretical 

KD = 3 mM).  

f. Ligand binding affinity by competition experiments using 19F-NMR 

Competition experiments were conducted to assess the relative binding affinity of the 

new ligands for DC-SIGN using α-D-Me-6-F-Man as mono-fluorinated spy molecule, 

using previously reported methodology [173]. In these experiments, increasing ligands 

concentrations ([I]) were introduced into a DC-SIGN sample in the presence of the spy 

molecule. At each [I]/[Spy] ratio, the transversal relaxation rate of the fluorine 

nucleuos, 19F-R2,obs, was calculated for each substrate (Fig. 18).  
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Figure 18. 19F-R2,obs of the spy molecule α-OMe-6-F-Man for increasing amounts of 

α-OMe-D-Man, α-OMe-L-Fuc, D-Rha, L-Gal and myo-inositol at 298 K. The same initial solution 

of [α-OMe-6-F-Man] = 2.02 mM and [DC-SIGN (CRDs)] = 26.9 µM was used in each case. 

These R2 relaxation experiments results allow the ranking of the tested molecules 

based on their relative affinity for DC-SIGN, as shown in Fig. 18. In all cases, as the 

concentration of competing ligands increases, the observed relaxation rate of the spy 

molecule progressively returns to its original state. This phenomenon occurs because 

the bound spy molecule is displaced from the lectin binding site to a free state in the 

solution. Notably, α-OMe-L-Fuc exhibits a significantly more pronounced recovery of 
19F-R2,obs indicating its higher affinity compared to the other ligands, as suggested 

above, followed by L-Gal. D-Rha shows similar  R2,obs recovery compared to 

α-OMe-D-Man, while myo-inositol is revealed as the lowest affinity binder, as it has 

the lowest impact on the fluorine relaxation rate of the spy molecule.  

It is important to note that in the case of L-Gal and D-Rha, the ligand concentrations 

represent a sum of both α and β anomers in solution. Because it is impossible to 

distinguish the contribution of each individual anomer to the binding affinity in these 

relaxation experiments, the resulting observed affinity in these relaxation experiments 

reflects an apparent value for the anomeric mixture as a whole, potentially 

underestimating the affinity of any individual anomer. Only in the hypothetical 

scenario where both anomers were recognized by the lectin with the same KD, would 
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the experiment accurately reflect the relative affinity of the receptor for L-Gal and D-

Rha (either the α or β anomers). Based on previous STD experiments and MD 

simulations, this scenario is likely for D-Rha, where both anomers are expected to bind 

with similar affinity. In contrast, β-L-Gal is expected to bind DC-SIGN with lower 

affinity than the α anomer, thus resulting a decreased value for the observed affinity 

of the mixture in the 19F-R2,obs NMR experiments. 

One plausible explanation for the difference in affinity among different affinities of 

these ligands, which share all sharing the B1 structural pattern, may be the modulation 

of binding by Val351, as discussed earlier. From this perspective, α/β D-Rha would 

shows slightly higher affinity compared to D-Man due to its methyl group at C6, 

potentially engaging in better hydrophobic interactions with Val351 than the flexible 

and polar hydroxymethyl group counterpart in D-Man. Similarly, the endocyclic H1 

C1H in α-OMe-L-Fuc and α-L-Gal, positioned in an equatorial disposition facing 

Val351, may form more favorable dispersion interactions. In the case of β-L-Gal, the 

lack of an equatorial C1H in the β-anomer might reduce potential hydrophobic 

contacts with Val351, as observed in MD simulations, thus leading to decreased 

affinity compared to the α anomer. Likewise, myo-inositol likely exhibits the lowest 

affinity due to its lack of the equatorial C1H necessary for van der Waals interactions 

with Val351, and more importantly, failing to meet the ideal +Oax-–Oeq-Oeq-Heq scaffold 

inferred above. 

3. Conclusions 

An in-depth understanding of the optimal minimal structural pattern recognized by 

the human lectin DC-SIGN has been performed through a combination of 

computational methods and STD-NMR experiments. This ideal minimal scaffold, 
+Oax-Oeq-Oeq-Heq, serves as the basis for the recognition by DC-SIGN of six-membered 

cyclic polyhydroxylated ligands. Hence, several requirements must be met for a 

molecule to be recognized as a potential DC-SIGN binder. First, the specific chirality 

of the minimum binding epitope (the C+O – C–O motif coordinating Ca2+) is crucial. 

Once this condition is satisfied, the presence of an adjacent equatorial OH group 

followed by an equatorial H allows additional interactions with Glu354 (hydrogen 

bond) and Val351 (van der Waals), leading to increased stabilization and modulation 

of affinity towards the lectin. Notably, it has been demonstrated that L-Fuc and D-Man 

share a similar binding epitope, despite their different binding modes found in 

crystallographic structures when they are part of larger oligosaccharides. 

Based on these findings, the interaction of α/β-L-Gal, α/β-D-Rha, and myo-inositol 

with DC-SIGN was explored for the first time. While myo-inositol exhibited lower 

affinity compared to α-OMe-D-Man, the α/β-D-Rha anomeric mixture displayed 
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significantly higher affinity for the lectin. The α/β-L-Gal mixture exhibited the highest 

affinity among the tested DC-SIGN ligands, α-OMe-D-Fuc being the best binder of all 

tested ligands. Our cluster QM calculations and MD simulations predicted, and STD-

NMR experiments confirmed, that all these binders share the same binding epitope as 

L-Fuc and D-Man with DC-SIGN, although involving different hydroxyl groups 

within the six-membered ring. The insight gained into binding preferences and 

molecular interactions could have broader implications in the field of molecular 

recognition and drug design, potentially guiding future discovery campaigns.  

4. Methods 

a. PDB search, minimum binding epitope definition, and 

classification of binding modes 

The crystallographic structures of DC-SIGN obtained from the Protein Data Bank 

(PDB) with IDs: 1SL4, 1SL5, 1K9I, , 2IT5, 2IT6, 2XR5, 2XR6, , 6GHV, 7NL6 and 7NL7 

were carefully examined and compared using PyMOL [151]. 

b. QM cluster model building 

The crystal structure of DC-SIGN in complex with lacto-N-fucopentaose III (LNFP III) 

(PDB ID: 1SL5) was chosen as the protein template for this study. For the cluster model, 

the Ca2+ atom and the polar residues surrounding it at the binding site, including 

Asn365, Asp366, Asn349, Glu347 and Glu354 were considered. To ensure the complete 

coordination sphere around the calcium atom and maintain correct capping, several 

modifications were made: i) the backbone NH of Asn365 was substituted with a 

hydrogen atom, ii) the backbone CO of Asp266 was capped with an N-methyl 

acetamide, iii) the side chains of Glu347 and Glu354 were truncated to acetic acid, and 

iv) the side chain of residue Asn349 was transformed into an acetamide group 

(Fig.  19). Additionally, the sidechain of Val351 was also considered. 



Chapter 4 Investigating the structural basis of sugar recognition by DC-SIGN 

153 

 

 

 

Figure 19. Cluster model of DC-SIGN’s binding site (from crystallographic structure 1SL5) used 

for the ligand conformational search and binding enthalpy calculation. a) apo state (in brown 

sticks) (55 atoms included in the cluster model), b) example of a bound state with α-OMe-D-Man 

(in green sticks) (82 atoms included in the cluster model). Ca2+ atom is shown as a green sphere. 

c. Conformational search 

To explore the conformational space of both the free and protein-bound ligands, a 

Low-Mode Conformational Search (LMCS) [174] was conducted using Schrödinger 

Macromodel software [175]. The search involved 100000 Monte Carlo steps and 

focused on identifying all possible conformers. The analysis specifically examined the 

first 10 low-frequency modes of the system. Each Monte Carlo cycle started from the 

previous structure only if its energy fell within a 10 kcal mol-1 window. The OPLS3e 

force field was utilized for the conformational search, while water was employed as 

the solvent with the GB/SA (Generalized Born Surface Area) solvation model. The 

truncated Newton (TNCG) method was applied for the minimization process.  

This method has demonstrated its effectiveness in identifying low-energy 

conformations for both cyclic and acyclic molecules [174]. The ligands were positioned 

within the binding site of the lectin, and a conformational search was performed for 

each of the binding poses (2-3, 3-2, 3-4, 4-3) that matched the predefined structural 
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binding patterns (A, B1 and B2). During the conformational search, all proteins atoms, 

excluding hydrogens, were kept fixed.  

Additionally, the two hydroxyl groups of the ligand directly involved in Ca2+ 

coordination (Fig. 20) were kept in a fixed position to preserve the crystallographic 

binding geometry. By incorporating these constraints, the search was focused on 

exploring the conformational space of the ligands within the context of their 

interactions with the lectin. 

 

Figure 20. a) Example of a starting cluster model pose for the conformational search with 

α-OMe-D-Man in the B1 structural pattern. b) Extended model including Val351 (light gray). 

Atoms colored in gray were fixed during the calculation. 

d. Quantum mechanical calculations 

All unique conformers found through the LMCS were subjected to quantum 

mechanical geometry optimizations. Calculations were carried out with Gaussian 16 

[176] using the M06-2X hybrid functional [177] and 6-31+G(d,p) basis set in 

combination with ultrafine integration grids. Bulk solvent effects in water considered 

implicitly through the IEF-PCM polarizable continuum model [178]. In these 

calculations, all protein atoms of the model except hydrogens and the N-methyl amide 

were frozen. Additionally, the Cα atom of Val351 was fixed when this residue is 

considered in the calculations. All the energetically accessible conformers within a 

3 kcal mol-1 range were subjected to additional frequency calculations. Frequency 

analyses were carried out at the same level used in the geometry optimizations, and 

the nature of the stationary points was determined in each case according to the 

appropriate number of negative eigenvalues of the Hessian matrix. Scaled frequencies 

were not considered. Enthalpies at 298 K (ΔH) were employed in the discussion on the 
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relative stabilities of the structures, as well as the lowest energy conformer for each 

calculated stationary point. Cartesian coordinates, electronic energies, entropies, 

enthalpies, Gibbs free energies, and the lowest frequencies of the lowest energy 

calculated structures are available in Tables 4 and 5. 

Table 4. Table of energies, entropies and lowest frequencies of the calculated lowest energy 

structures in the unbound statea. 

 

Structure 
Eelec 

(Hartree) 

Eelec + ZPE 

(Hartree) 

H 

(Hartree) 

S 

(cal 

mol-1 

K-1) 

G 

(Hartree) 

Lowest 

freq.  

(cm-1) 

# of 

imag 

freq. 

2H2O-gas1-wat –152.814635 –152.768540 –152.761621 72.0 –152.795827 26.7 0 

αOMe-D-Man (gg) –726.257534 –726.029345 –726.014650 114.1 –726.068861 64.0 0 

αOMe-D-Man (gt) –726.257487 –726.029345 –726.014610 114.3 –726.068905 64.6 0 

αOMe-L-Fuc –651.061976 –650.838986 –650.825450 107.9 –650.876702 84.2 0 

αOMe-L-Gal (gt) –726.259285 –726.030597 –726.016161 112.7 –726.069699 76.2 0 

αOMe-L-Gal (gg) –726.259026 –726.030590 –726.015974 113.7 –726.069974 74.5 0 
aEnergy values calculated at the PCM(H2O)M06-2X/6-31+G(d,p) level. 1 Hartree = 627.51 kcal 
mol-1. Thermal corrections at 298.15 K.  

 

Table 5. Table of energies, entropies and lowest frequencies of the calculated lowest energy 

structures in the bound statea. 

Without Val354 

Structure 
Eelec 

(Hartree) 

Eelec + ZPE 

(Hartree) 

H 

(Hartree) 

S 

(cal 

mol-1 

K-1) 

G 

(Hartree) 

Lowest 

freq.  

(cm-1) 

# of 

imag 

freq. 

model-H2O-complex –2388.300631 –2387.945159 –2387.927731 134.4 –2387.991574 51.5 0 

αOMe-D-Man23 (gg) –2961.76338 –2961.227336 –2961.200839 177.4 –2961.28513 19.0 0 

αOMe-D-Man32 (gt) –2961.757597 –2961.221222 –2961.194270 181.4 –2961.280450 20.1 0 

αOMe-D-Man34 (gg) –2961.759575 –2961.223636 –2961.196666 181.5 –2961.282902 19.8 0 

αOMe-D-Man43 (gg) –2961.760766 –2961.224245 –2961.197598 178.4 –2961.282358 27.4 0 

αOMe-L-Fuc-23 –2886.556885 –2886.027681 –2886.002299 173.6 –2886.084767 –4.9 0 

αOMe-L-Fuc-32 –2886.558699 –2886.029127 –2886.003001 175.8 –2886.086527 27.8 0 

αOMe-L-Fuc-34 –2886.559309 –2886.028408 –2886.002597 173.7 –2886.085132 23.8 0 

αOMe-L-Fuc-43 –2886.564167 –2886.033263 –2886.007620 173.7 –2886.090151 20.8 0 

αOMe-L-Gal-23 (gt) –2961.756039 –2961.220181 –2961.193412 180.0 –2961.278946 19.6 0 

αOMe-L-Gal-32 (gt) –2961.756381 –2961.221028 –2961.194080 179.8 –2961.279497 24.9 0 

αOMe-L-Gal-34 (tg) –2961.761675 –2961.224605 –2961.198035 177.3 –2961.282281 24.7 0 

αOMe-L-Gal-43 (tg) –2961.766018 –2961.228943 –2961.202444 178.7 –2961.287359 17.9 0 
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Table 5 (cont.). Table of energies, entropies and lowest frequencies of the calculated lowest 

energy structures in the bound statea. 
With Val351 

Structure 
Eelec 

(Hartree) 

Eelec + ZPE 

(Hartree) 

H 

(Hartree) 

S 

(cal 

mol-1 

K-1) 

G 

(Hartree) 

Lowest 

freq.  

(cm-1) 

# of 

imag 

freq. 

model-H2O-complex –2546.677879 –2546.192516 –2546.16948 161.3 –2546.246118 29.0 0 

αOMe-D-Man23 (gt) –3120.142694 –3119.477337 –3119.445022 203.3 –3119.541631 24.9 0 

αOMe-D-Man32 (gt) –3120.135531 –3119.469843 –3119.437229 207.4 –3119.535776 18.9 0 

αOMe-D-Man34 (gg) –3120.139629 –3119.473957 –3119.441693 202.9 –3119.538094 21.5 0 

αOMe-D-Man43 (gg) –3120.139742 –3119.473325 –3119.441278 202.0 –3119.537256 24.4 0 

αOMe-L-Fuc-23 –3044.935476 –3044.276427 –3044.244711 204.3 –3044.341797 8.9 0 

αOMe-L-Fuc-32 –3044.936480 –3044.277238 –3044.245546 200.6 –3044.340848 30.1 0 

αOMe-L-Fuc-34 –3044.937432 –3044.276665 –3044.245247 199.3 –3044.339936 24.4 0 

αOMe-L-Fuc-43 –3044.944907 –3044.284615 –3044.253428 198.7 –3044.347817 19.3 0 

αOMe-L-Gal-23 (gt) –3120.133954 –3119.468627 –3119.436081 207.6 –3119.534738 18.1 0 

αOMe-L-Gal-32 (gt) –3120.134183 –3119.469137 –3119.436533 206.0 –3119.534427 25.6 0 

αOMe-L-Gal-34 (tg) –3120.146674 –3119.479561 –3119.447748 200.1 –3119.542827 24.1 0 

αOMe-L-Gal-43 (tg) –3120.141344 –3119.474708 –3119.442768 200.3 –3119.537926 22.5 0 
aEnergy values calculated at the PCM(H2O)M06-2X/6-31+G(d,p) level. 1 Hartree = 627.51 kcal 
mol-1. Thermal corrections at 298.15 K.  

e. Molecular dynamics simulations 

Molecular dynamics (MD) simulations were run with Amber 20 [150] suite, using the 

ff14SB [152] and GLYCAM 06j-1 [153] force fields for the protein and the carbohydrate 

ligands, respectively. Protein complexes were immersed in a box with 10 Å buffer of 

TIP3P [154] water molecules and neutralized by adding explicit Na+ or Cl- counterions. 

A two-stage optimization approach was performed. The first stage minimizes only the 

positions of solvent molecules and ions, and the second stage is an unrestrained 

minimization of all the atoms in the simulation cell. The systems were then heated by 

incrementing the temperature from 0 to 300 K under a constant pressure of 1 atm and 

periodic boundary conditions. Harmonic restraints of 10 kcal mol-1 were applied to the 

solute, and the Andersen temperature coupling scheme [155,179] was used to control 

and equalize the temperature. The time step was kept at 1 fs during the heating stages, 

allowing potential inhomogeneities to self-adjust. Water molecules were treated with 

the SHAKE algorithm [156] such that the angle between the hydrogen atoms is kept 

fixed through the simulations. Long-range electrostatic effects were modelled using 

the particle mesh Ewald method [157]. An 8 Å cut-off was applied to Lennard-Jones 

interactions. Each system was equilibrated for 2 ns with 2 fs time step at a constant 
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volume and temperature of 300 K. Five independent production trajectories were then 

run for additional 200 ns under the same simulation conditions, leading to 

accumulated simulation times of 1 μs for each carbohydrate-lectin complexes studied, 

using the complete CRD structure with the ligand in the all the proposed binding 

poses. 

The residence frequency of the ligands in the binding pocket were estimated based on 

the following criteria: 

i) The distances between the Ca2+ and its two coordinating oxygen atoms in the ligand 

(< 3.5 Å for bound geometries) 

ii) The distances between the same oxygen atoms of the ligand and the carboxylic 

carbon atom of the two glutamic acid residues of the binding site Glu345 and Glu347 

(< 4 Å for bound geometries) 

f. CORCEMA-ST calculations 

The quantitative analysis of the STD-NMR data was accomplished by applying the 

complete relaxation and conformational exchange matrix theory as implemented in 

the MATLAB program CORCEMA-ST 3.8 [170]. The same conditions and parameters 

used in the STD experiments were conserved for each protein-ligand complex 

(including solvent, ligand and protein concentration, magnetic field strength, etc.). For 

parameters not directly measured (e.g., ligand and receptor correlation times), 

consistent values from the literature were applied [170,180]. 

As the experimental STD-NMR data were obtained in D2O, calculations excluded 

exchangeable hydrogens (OH and NH). Additionally, experimental longitudinal 

relaxation times (T1) were measured and incorporated into the analysis. Generally, 

only well-resolved STD peaks were considered in the calculations.  

For α/β-D-Rha, both isochronous H6-α and H6-β were incorporated, given their 

significance in the 2-3 binding pose. Due to a slight direct saturation of these protons 

in the on-resonance spectrum, their STD intensities were adjusted by subtracting the 

STD blank, experiment of α/β-D-Rha. This reference experiment was conducted under 

identical conditions but in the absence of DC-SIGN. For myo-inositol, the computed 

STD intensities of the isochronous proton signals (H1 with H3, and H4 with H6) were 

combined to facilitate comparison with the experimental STD intensities.  

As the STD-NMR experiments were conducted at two distinct temperatures (278 K for 

α-OMe-L-Fuc and 298 K for the remaining ligand molecules), a protocol was devised 

to determine an optimal kon value for CORCEMA-ST calculations at each temperature. 

The efficacy of the protocol was assessed using the α-OMe-D-Man and α-OMe-L-Fuc 
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complexes as benchmark systems, chosen for their extensively studied interaction with 

DC-SIGN and the availability of abundant experimental affinity data. For these 

carbohydrate-lectin complexes, simultaneous optimization of the association rate 

constant (kon) and dissociation constant (KD) in CORCEMA-ST calculations was 

conducted, with other input parameters kept fixed.  

Initial steps involved extracting subsets of 50 randomly selected snapshots from MD 

trajectories of DC-SIGN complexes with α-OMe-D-Man and α-OMe-L-Fuc in various 

binding poses. CORCEMA-ST calculations were executed with KD values ranging from 

0.5 to 6 mM and kon from 104 to 108 M-1s-1, within previously reported ranges. Three 

saturation times (0.5, 1, and 2 s) were considered. Subsequently, averaged STD values 

for each MD ensemble were calculated, and their alignment with experimental STD 

data was evaluated using the NOE-R Factor (Eq. 1): 

𝑁𝑂𝐸 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = √
∑ (𝑆𝑇𝐷𝑒𝑥𝑝,𝑖 − 𝑆𝑇𝐷̅̅ ̅̅ ̅̅

𝑐𝑎𝑙,𝑖)
2𝑘

𝑖=1

∑ (𝑆𝑇𝐷𝑒𝑥𝑝,𝑖)
2𝑘

𝑖=1

 (Equation 1) 

where STDexp,i and STDcal,i represent the experimental and averaged calculated STD 

intensities for proton i, and the sum extends to the kth ligand proton.  

Moreover, these initial tests allowed an assessment of the self-consistency in 

CORCEMA-ST predictions concerning saturation time. The validation of CORCEMA-

ST intensities using experimental STD at tsat 0.5, 1, and 2 s allowed an examination of 

whether the best-ranked ensemble (with the lowest NOE-R Factor) remained 

consistent across the tested saturation time range. Thus, it was essential that for the 

(KD, kon) pair resulting in the minimum NOE R-Factor, this self-consistency validation 

criterion was met. In cases where this criterion was not fulfilled, the corresponding 

(KD, kon) combination was disregarded, and the second-best solution was re-evaluated 

for self-consistency across the saturation time range. This iterative process ensures 

greater confidence that the obtained results in the search for the best models explaining 

the experimental STDs are not contingent on specific user-selected input CORCEMA 

parameters. 

The optimal kon values were determined to be 5·104 M-1s-1 for α-OMe-L-Fuc and 

106 M-1s-1 for α-OMe-D-Man:DC-SIGN complexes, yielding the lowest NOE R-Factors 

within the tested range. For consistency, kon = 106 M-1s-1 was chosen for all remaining 

ligand-lectin systems, since the STD-NMR experiments were acquired at the same 

temperature (298 K). This selection is grounded in the reasonable assumption that, due 

to similar size and chemical features, the kon values for all monosaccharides would be 

comparable at the same temperature. Consequently, variations in STD intensities 
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among sugars likely arise from differences in their respective koff, influenced by specific 

lectin-sugar interactions, ultimately leading to distinct KD values. 

After optimizing kon and KD for α-OMe-L-Fuc and α-OMe-D-Man:DC-SIGN complexes, 

CORCEMA-ST calculations were extended to subsets of 200 snapshots from MD 

ensembles for each binding pose. Similarly, for α/β-L-Gal, α/β-D-Rha, and 

myo-inositol complexes, 200 snapshots from each MD trajectory were used. Four KD 

values (0.5, 1, 3, and 6 mM) were computed for these complexes using the optimized 

kon value of 106 M-1s-1.  

The final CORCEMA-ST calculations used a saturation range of 0.7 ppm for 

α-OMe-D-Man, α/β-L-Gal, α-OMe-D-Gal, and myo-inositol, and 0.4 ppm for 

α-OMe-L-Fuc and D-Rhamnose. This accounts for varying attenuation applied for 

selective protein saturation in the STD-NMR experiments. 

g. BM-MIXER calculations 

For a given ligand:DC-SIGN complex, BM-mixer takes as input the STD data predicted 

with CORCEMA-ST for each binding mode. Subsequently, the program generates new 

STD datasets, referred to as ‘binding-mode mixes’, by randomly combining specific 

fractions of each of them. The program is designed to explore all possible combinations 

of relative contributions from the original STD-datasets within a specific search depth. 

This set of potential combinations (C) can be generalized for n binding modes with a 

search depth of k as: 

𝐶 = {(𝑘𝑥1, 𝑘𝑥2, … , 𝑘𝑥𝑛−1, 100 − ∑ 𝑘𝑥𝑖
𝑛−1
𝑖=1 ) ∈ ℕ𝑛 | 0 ≤ 𝑥𝑖 ≤

100
𝑘

, ∑ 𝑘𝑥𝑖
𝑛−1
𝑖=1 ≤ 100} 

For instance, consider a scenario with two binding modes labeled A and B, and a 

search depth of 20%. The set C of combinations is defined as follows: 

𝐶 =  {(0,100), (20,80), (40,60), … , (100,0)}.  

Where the sum of the relative contributions from each binding mode always equals 

100% (%A + %B = 100). 

The NOE-R Factor for each mix in set C is calculated using Eq. 1. This process is 

repeated for a specific number of iterations, with the number set to 5 in the presented 

data. Subsequently, the averaged NOE-R Factors are computed, resulting in the 

outcomes depicted in Fig. 11c and Fig 16.  
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This work is part of the following article currently under revision: 

Optimal Epitope Mapping and Discovery of New Ligands for DC-Sign Recognition. J. 

D. Martínez, R. Núñez-Franco, P. Valverde, J. Jiménez-Barbero, G. Jiménez-Osés, F. J. 

Cañada (submitted manuscript)  
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1. Introduction 

Therapeutics based on proteins have benefits over small molecule drugs, providing 

higher potency and a more diverse range of functions, such as catalysis, signaling, and 

transport. Additionally, as they have evolved to perform highly specialized roles, they 

typically induce fewer side effects [181]. Since the first FDA approval of a recombinant 

protein, insulin, in 1982, approximately 350 protein-based therapeutics have been 

developed, spanning antibodies (Blinatumomab [182]), enzymes  (Pegademase bovine 

[183]), coagulation factors, protein hormones, and cytokines, addressing a spectrum of 

conditions from leukemia to multiple sclerosis. Group I protein therapeutics, 

exemplified by insulin and pancreatic enzymes from pigs, utilize exogenous enzymes 

and regulatory proteins to counteract the impacts of deficiencies or malfunctions in 

natural proteins due to pathological mutations [184]. These developments show 

improved versatility and specificity, becoming integral components in contemporary 

medical treatment approaches. 

The success of protein-based therapeutics is frequently limited by the stability of the 

biomolecular active principle. Numerous examples demonstrate that diminished 

thermodynamic stability in vitro often aligns with compromised protein homeostasis 

in vivo [185] due to early unfolding and subsequent degradation of the active species 

in the proteasome [186] or other protein clearance pathways [187]. This challenge can 

potentially be mitigated by developing protein variants that maintain stable folded 

conformations at physiological temperatures. For successful implementation of this 

thermodynamic stabilization strategy, it is imperative that the engineered variants closely 

mimic their natural counterparts to preserve the native function and avoid triggering  

immune responses [188]. 

Various strategies have been used to optimize protein-based therapeutics by 

engineering their physicochemical properties [181,182,191,183–190]. These strategies 

aim at regulating protein homeostasis, enhancing bioavailability, and extending the 

time they remain functional in the body. For instance, some strategies improve 

bioavailability by enlarging the hydrodynamic diameter of the protein. This reduces 

kidney filtration and is achieved through chemical modifications of the protein surface 

with polymer grafts like polyethylene glycol or by fusing them to larger, more soluble 

proteins. 

In turn, thermodynamic stabilization and solubility can be achieved by engineering 

the amino acid sequence [181]. This methodology is especially advantageous as it 

bypasses chemical modifications, thereby enhancing reproducibility and yield in 

protein expression. This approach has been effectively used to modify, for instance, 

the pharmacokinetics of insulin. Engineering the amino acid sequence of insulin to 

alter its isoelectric point has produced the long-active variant (24 h) glargine [192], 
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where the slower absorption is due to increased precipitation resulting from an 

isoelectric point closer to physiological pH, as well as the faster acting variant glulisine, 

where shifting the isoelectric point in the opposite direction minimizes the formation 

of oligomers and facilitates absorption [193]. This approach of mutagenesis has been 

similarly applied to interferon β-1B, interleukin-2, and human growth hormone, 

among others [194–196].  

Friedreich’s ataxia, an autosomal recessive disorder manifesting between the ages of 

10-15 years, is receptive to treatment with Group I protein-therapeutics. The disease 

manifests with progressive ataxia, loss of tendon reflexes, and dysarthria, with a 

prevalence of 1–2 per 50000 [197]. Patients diagnosed with this condition consistently 

exhibit diminished levels of functional frataxin, a compact iron-storage protein crucial 

for chaperoning ferrochelatase which serves as an allosteric modulator for iron-sulfur 

clusters biosynthesis. This activity is achieved by binding of frataxin to an assembly 

complex in the mitochondria, consisting of proteins NFS1, ISD11, ACP, and ISCU (Fig. 

1). This deficiency consequently results in the impaired maturation of iron–sulfur 

cluster proteins, affecting mitochondrial respiratory complexes, Krebs cycle proteins, 

and proteins integral for DNA repair and replication [197]. 

Human frataxin undergoes maturation from a 210 amino acid precursor protein and, 

after proteolytic processing within the mitochondria, it is converted into its mature, 

operational form, constituting amino acids 81-210 [198]. Structurally, it includes a 

flexible N-terminus, a preserved antiparallel β-sheet integral for protein recognition, 

two α-helices, and a non-structured C-terminus [199]. Each frataxin unit can bind up 

to 7-10 Fe2+ ions via a conserved anionic surface (i.e., the acidic ridge, Fig. 1). When 

bound to Fe2+, frataxin exhibits specificity in binding to protoporphyrin IX — which 

shares the same binding epitope as ferrochelatase — with micromolar affinity [200]. 

In over 96% of the patients, homozygous expansions of GAA trinucleotide repeat in 

intron 1 of the frataxin (FXN) gene are observed, triggering local chromatin changes 

leading to transcriptional repression of the gene (FXN mRNA levels reduced by 

70-95%) [197]. In a minority of cases, patients with Friedreich’s ataxia exhibit a GAA 

expansion on one allele and a missense mutation on the other. Over 10 missense 

mutations have been identified, including I154F and L198R, which lead to a reduction 

in frataxin levels, thereby affecting its stability, solubility, and function [201,202]. 

While no cure for the disease has been approved yet, there are indications suggesting 

that an increase in frataxin levels could potentially mitigate and revert the associated 

symptoms, opening avenues for gene therapy-based replacement approaches 

[203-205]. 



Chapter 5  Thermodynamic Stabilization of Human Frataxin 

166 

 

 

Figure 1. Cryo-EM structure of the frataxin-bound active human complex (PDB ID: 6NZU) [206]. 

The complex contains two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer. NFS1: 

mitochondrial cysteine desulfurase (colored in green); ISD11: LYR motif-containing protein 4 

(colored in light brown); ACP: acyl carrier protein (colored in light orange); ISCU: iron-sulfur 

cluster assembly enzyme (colored in dark orange); FXN: frataxin (colored in dark red). A close-

up view of frataxin is shown in the circle. The spheres represent the residues involved in iron 

binding, with each color representing one potential iron binding site, capable of binding more 

than one ion [207] (site 1: E92, E96, site2: E121, D122, D124, site3: E100, E101, D104, E108, E111, 

D112, D115). 

Alternatively, protein replacement therapy emerges as a viable option, if frataxin can 

be successfully delivered to the mitochondria [197]. Currently, a Phase 2 human trial 

is underway to investigate the therapeutic potential of a fusion protein integrating 

FXN and CTI-1601 (Larimar Therapeutics, Inc. ClinicalTrials.gov Identifier: 

NCT05579691), which leverages the cell-penetrating capability of the trans-activator of 

transcription (TAT) peptide for targeted delivery [208,209]. To improve protein 

replacement therapy options, engineering the homeostasis of frataxin to increase its 

thermodynamic stability and solubility, can bolster its resistance to intracellular 

degradation and potentially its bioavailability, thus optimizing its therapeutic efficacy. 

This study focuses on the structured region of mature human frataxin, spanning 

residues 91–210. Through computational design, engineered thermostable variants of 

both the wild-type frataxin and its pathological single mutants I154F and L198R are 

developed, highlighting their potential in protein replacement therapy. 
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Recent advances in Artificial Intelligence (AI) have produced tools such as AlphaFold 

[78], RoseTTAFold [79], and ESMFold [87], which are capable of predicting highly 

accurate three-dimensional protein models from sequences thus narrowing the 

sequence-structure gap [210] and introducing novel avenues for in silico protein design 

and engineering [211–213]. By integrating AlphaFold structure ensembles with Rosetta 

energy predictions, our group has developed a computational method to predict 

protein thermostability changes upon mutation. This method has been validated 

across diverse enzyme families engineered by directed evolution [214]. In this work 

we combine i) mutational hotspots selection from biological function and evolutionary 

data, ii) sequence sampling on these identified hotspots using ProteinMPNN [213]— 
a deep learning approach for sequence optimization of a given fold, and iii) our 

AlphaFold/Rosetta method for assessing thermostability to design stabilized, 

biologically active frataxin variants (Fig. 2). 

 

Figure 2. Design strategy for thermostabilizing human frataxin. The first panel illustrates the 

data guiding the design, including evolutionary and structural information. Then, sequence 

design options are presented, either relying on consensus information or sampling mutations 

with ProteinMPNN. Structures derived from the designed sequences are predicted and screened 

through our combined AlphaFold/Rosetta method to assess their thermostability. Finally, the 

top ranked designs are experimentally tested.  

All designed variants have been expressed in Escherichia coli in high yields (see 

Methods), and their melting temperatures (Tm) measured. Among the 26 evaluated 

designs, all of them exhibited comparable or superior thermostability and unfolding 

reversibility than the natural sequence. Notably, the FXN-10 variant achieved a large 

thermostabilization of ΔTm = + 23 °C relative to the wild-type. Additionally, this variant 

demonstrated enhanced thermodynamic stabilization at physiological temperatures, 
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leading to increased proteolytic resistance while retaining the ability to bind divalent 

cations and the FeS assembly complex, demonstrating its potential in protein 

replacement therapy. 

2. Results and discussion 

a. Design based on the consensus approach  

Thermostability serves as an indicator of protein thermodynamic stability. 

Engineering this property is crucial as it seeks to broaden the temperature range at 

which proteins remain stable and functional. This enhancement is crucial for 

development of industrial and biomedical applications [215]. The consensus approach 

has yielded successful thermostabilization within enzyme families such as phytase-1, 

resulting in melting temperature increase above 20 °C through the cumulative effect 

of single mutations [216,217]. To set a baseline for the thermostabilization that can be 

achieved through evolutionary information, a consensus variant (FXN-01) was first 

designed using 7 mutational hotspots derived from a conservation analysis of the 

frataxin-enriched multiple sequence alignment named as MSA80 (alignment of 

sequences with at least 80% identity to human frataxin; positions with conservation 

below 60% selected as mutational hotspots; see Methods) and selecting the most 

abundant amino acid at each position.  

The AlphaFold/Rosetta-based methodology [214] developed within our research 

group predicted the consensus variant FXN-01 to be more stable than the wild-type, 

and indeed it showed a Tm increase of + 6.1 °C (Tables 1 and 2). The F120P single 

mutation, located in a loop region, imparted the most pronounced thermostabilizing 

effect, while the remaining six mutations were nearly thermoneutral (variant FXN-02, 

∆Tm = + 0.4 °C). The F120P mutation on its own (variant FXN-03) induced a substantial 

∆Tm of + 5.1 °C. Aligned with these results, the strategic introduction of proline 

residues in flexible loops is a classic strategy for enhancing thermostability, frequently 

observed in thermophilic-mesophilic protein pairs [218]. Such proline locally increase 

protein rigidity in both the folded and denatured states [219], leading to augmented 

thermal stability by reducing the entropic penalty to folding. 

Inspection of available X-ray and NMR structures of wild-type frataxin and 

Friedreich’s Ataxia single mutants [199,206,220–222] reveals a flexible region (residues 

136-141) interacting with Phe120 (Fig. 3a). Similarly, AlphaFold ensembles of 

wild-type frataxin depict significant flexibility with two distinct backbone 

conformations for residues 138 and 129 (Fig. 3a), highlighting AlphaFold’s dynamic 

prediction capabilities [214,223]. In the ensemble of FXN-03, however, one 

conformation dominates, indicating that the F120P mutation reduces conformational 
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variability not only in the loop where it’s located but also in the neighboring 137-140 

region.  

This selected conformation is predicted by Rosetta to be more energetically stable, 

particularly in FXN-03 (Fig. 3b). 

 

Figure 3. a) Flexible region between residues 137 to 140 in a) an overlay of NMR and X-ray 

structures (PDB ID: 1EKG, 3S4M, 3S5D, 3S5E, 3S5F, 3T3J, 3T3L, 3T3T, 3T3X, 1LY7, 6NZU) of 

different frataxin variants, and AlphaFold ensembles (25 structures) of wild-type frataxin and 

F120P single mutant FXN-03. While two backbone conformations are observed for residues 138 

and 139 in both the experimental and AlphaFold predicted structures for wild-type frataxin, 

only one conformation is observed for FXN-03. b) Normalized kernel density estimates of the 

Rosetta energy distributions calculated for each variant in the two conformations. REU: Rosetta 

energy units. 
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Intrigued by the evolutionary significance of the highly conserved F120P mutation, a 

phylogenetic analysis was performed of the frataxin-enriched MSA80 alignment (see 

Methods). This analysis clearly pinpointed the presence of this substitution, alongside 

two additional mutations (S160T and T191S), acting as distinctive markers between 

different orders of mammals and amphibians/reptilians/birds (Figs. 4 and 13). 

Notably, the combination of these mutations into the triple mutant FXN-04, which our 

protocol predicted to be at least as stable as FXN-01, yielded a further Tm increase of + 

8.6 °C compared to the wild-type.  

 

Figure 4. Unrooted phylogenetic tree of the sequences in a curated version of the MSA80 dataset, 

focusing on positions 120, 160 and 191. Branch lengths are ignored for clarity. Only branches 

with population >4% (highlighted with the corresponding colors in Table 10) are shown for 

clarity. 

b. ProteinMPNN sequence design  

Recently, the Baker Lab at the Institute for Protein Design, University of Washington, 

introduced a highly efficient deep learning-based protein sequence design method 

called ProteinMPNN. This method achieves exceptional protein sequence recovery on 
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native backbones, bypassing the need for extensive sidechain packing calculations 

[213]. As an alternative to the classic consensus approach, the same 7 mutational 

hotspots identified in the MSA80 dataset were sampled with ProteinMPNN (see 

Methods). This led to generation of three additional variants: FXN-05 and FXN-06 

(each with 5 mutations), anticipated to be the most stable sequences with our 

AlphaFold/Rosetta protocol, and FXN-07 as the most frequently occurring solution 

(also with 5 mutations) (Tables 1 and 2). To our delight, all three designs exhibited 

increased Tm values compared to the wild-type FXN, ranging from + 2.5 °C to + 7.3 °C, 

thus either matching or surpassing the thermostabilization achieved by the consensus 

approach based solely on sequence conservation.  

To explore the potential for enhanced thermostabilization through broader sequence 

sampling, ProteinMPNN was used to sample the larger sets of hotspots generated 

from the MSA70 and MSA60 sequence alignments. These alignments include 

sequences with a minimum identity of 70% and 60% to human frataxin, respectively. 

Within these alignments, 11 and 26 positions exhibit conservation levels below 60%, 

making them suitable for mutation (see Methods). This attempt yielded FXN-08 (9 

mutations) and FXN-09 (16 mutations) as the variants predicted by our 

AlphaFold/Rosetta protocol to be the most stable within each pool. Of note, these 

variants outperformed all previous designs in terms of stability. With these variants, 

even larger increases in Tm over the wild-type were achieved (+ 11.9 °C and + 12.7 °C, 

respectively) (Tables 1 and 2). These findings strongly indicate that broader sequence 

design can indeed lead to improved thermostabilization. It is worth noting that 

ProteinMPNN selectively mutates a subset of available hotspots (i.e. not all positions 

marked as mutable are indeed modified) to achieve significant enhancements in target 

properties, as previously documented [213].  

An alternate approach to use evolutionary data, without imposing arbitrary per-

residue conservation thresholds, involves calculating the Shannon entropy per 

position [224] within a given multiple sequence alignment (MSA). Shannon entropy 

(SE) not only captures the conservation levels but also considers the broader 

distribution of amino acid identities across different sequences. Consequently, 

positions with higher SE values experience both more frequent variations and a to 

more diverse amino acids within the MSA. These high-SE positions are identified as 

mutational hotspots (see Methods). 

Sampling the top 20 mutational hotspots identified through SE analysis on MSA80 

using ProteinMPNN yielded FXN-10 (13 mutations), predicted to be the most stable 

variant within this set. Strikingly, FXN-10 displayed a substantial + 23.3 °C increase in 

Tm compared to wild-type (Tables 1 and 2). It should be emphasized that our 

computational approach efficiently yielded a superstable frataxin variant by selecting 

just 13 mutations from a relatively small mutational landscape (20 positions). 
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Moreover, this remarkable improvement in thermostability was achieved in a single 

design step, eliminating the need for  multiple rounds of extensive mutation often 

required by methods like iterative saturation mutagenesis or directed evolution 

[225,226]. Furthermore, this approach achieved thermostabilization levels comparable 

to the most successful computational techniques to date [97,227,228], while 

significantly reducing the computational cost (less than 1 hour per variant on a mid-

range workstation, see Table 12; calculations are trivially parallelizable across a 

computing cluster effectively allowing the design of hundreds of variants in less than 

a day). 

Table 1. Summary of the thermostabilized designs for wild-type frataxin, with indication of the 

method used for hotspot selection, the number of mutational hotspots (N. hotspots), the 

approach followed to generate the mutations, the name of the variant, the number of mutations 

(N. mutations), the difference in melting temperature (ΔTm), and the predicted unfolding free 

energy change (∆∆𝐺𝑐𝑎𝑙𝑐) (REU: Rosetta energy units). All quantities are referred to wild-type 

frataxin. The identity of the mutations for each variant are presented in Table 2. See Methods for 

the definition of multiple sequence alignments MSA80, MSA70 and MSA60. 

Hotspot 

detection 

N.  

hotspots 

Mutation 

approach 
Variant 

N. 

mutations 

∆Tm 

(°C) 

∆∆Gmut,u
𝒄𝒂𝒍𝒄  

(REU) 

Per-residue 

conservation 

 ≤ 60% on 

MSA80 

7 

Conservation 

FXN-01 7 6.1a 8.2 

FXN-02 6 0.4a 3.1 

FXN-03 1 5.1 4.1 

FXN-04 3 8.6 7.7 

ProteinMPNN 

FXN-05 5 7.3 11.9 

FXN-06 5 4.8 10.6 

FXN-07 5 2.5 9.0 

Per-residue 

conservation 

 ≤ 60% on 

MSA70 

11 ProteinMPNN FXN-08 9 11.9 12.2 

Per-residue 

conservation 

 ≤ 60% on 

MSA60 

26 ProteinMPNN FXN-09 16 12.7 14.3 

Shannon 

entropy (SE > 

0.65) on MSA80 

20 ProteinMPNN FXN-10 13 23.3 12.7 
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Table 2. Number and identity of mutations for wild-type and designed frataxin variants.  

Variant 
N. 

mutations 
Mutations 

wild-type FXN 0  

FXN-01 7 F120P, S160T, K171R, A187S, A188T, T191S, K192T 

FXN-02 6 S160T, K171R, A187S, A188T, T191S, K192T 

FXN-03 1 F120P 

FXN-04 3 F120P, S160T, T191S 

FXN-05 5 F120P, S160T, K171T, A188T, T191S 

FXN-06 5 F120P, S160T, K171S, A188K, T191S 

FXN-07 5 F120P, S160T, K171E, A188K, T191S 

FXN-08 9 
R97K, Y118F, F120P, S160T, K171T, A188K, T191S, S202H, 

A204K 

FXN-09 16 
T93S, E108D, A114K, K116Q, Y118F, F120Q, E121P, S160T, 

K171S, N172S, A187S, A188E, A193L, K197P, L198I, S202H 

FXN-10 13 
R97K, A114K, Y118F, F120P, S129D, S160T, K171T, V180K, 

A187S, A188E, T191S, S202H, A204K 

 

c. Rescue of pathological mutants I154F and L198R 

Having successfully achieved thermostabilization of wild-type frataxin, the next goal 

was to rescue the thermostability of two pathological single mutants, FXN-I154F and 

FXN-L198R, both of which lead to substantial decreases in Tm by over 10 °C. In this 

context, consequences of pathological mutations in Friedreich’s ataxia has been widely 

discussed, as distinct mutations result in varying disease phenotypes affecting protein 

levels, localization, and function [229].  

Full-length frataxin comprises an unstructured region at its N-terminus including the 

initial 41 amino acids. Maturation into the functional form (residues 81-210) involves 

at least one intermediate state (residues 42-210) [229]. The I154F pathological mutation 

(∆Tm = ‒ 12.9 °C, Fig. 5) has been linked to decreased mature frataxin levels and 

hindered intermediate accumulation, without compromising its association with 

mitochondria [201]. This mutation also triggers precipitation upon iron binding due to 

increased flexibility [230]. In contrast, the L198R pathological mutation 

(∆Tm = ‒ 20.5 °C, Fig. 5), located in the C-terminal domain, introduces a positive charge 

in a nonpolar environment. This destabilizes the native state, leading to increased 

dynamics in the microsecond/millisecond timescale around the mutation 

[229,231,232]. 
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Figure 5. Overlay of AlphaFold models for FXN-I154F and FXN-L198R frataxin variants 

showing the location of the pathological mutations. 

For each of these pathological variants, we generated eight designs by three different 

strategies: 

i) Transferring one or the three stabilizing mutations identified in the 

phylogenetic analysis (F120P, S160T, T191S). 

ii) Resampling the same 26 mutational hotspots sampled in the wild-type 

using ProteinMPNN. 

iii) Transferring mutations from the most stable engineered wild-type 

variants (FXN-09 and FXN-10). 

This resulted in designs FXN-11 to FXN-18 (derived from FXN-I154F) and FXN-19 to 

FXN-26 (derived from FXN-L198R) (Tables 3-4). Regarding the I154F mutation, five 

variants achieved Tm increases of at least + 20 °C, fully compensating for the 

destabilizing effect of the pathological mutation, and even surpassing wild-type 

stability. A similar trend was observed for the L198R pathological mutation, with four 

variants exhibiting ∆Tm > + 24 °C. Notably, the largest stabilization  was accomplished 

by transferring mutations from FXN-10 (variants FXN-18 and FXN-26), although 

resampling with ProteinMPNN (variants FXN-15/16 and FXN-23/24) yielded 

comparable results in terms of both thermostability (∆Tm + 20 to + 24 °C) and 

introduced mutations (96-98% sequence identity), as expected. Significantly, nearly all 

variants developed augmented stability without compromising folding reversibility; 

this is particularly notable for variants designed with ProteinMPNN, which in many 

cases even improved reversibility (see Methods, Fig. 16 and 18 and Table 16). This 

characteristic is crucial for enhancing protein homeostasis in vivo, as proteins that are 
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irreversibly unfolded tend to be more susceptible to aggregation and degradation. In 

summary, these results demonstrate the capability of this methodology to 

allosterically rescue the pathological single mutations through extensive substitutions 

in different regions of the protein.  

Table 3. Summary of the thermostabilized designs for FXN-I154F and FXN-L198R with 

indication of the method used for hotspot selection, the number of mutational hotspots (N. 

hotspots), the method used to generate the mutations, the name of the variant, the number of 

mutations (N. mutations), the difference in melting temperature (ΔTm), and the predicted 

unfolding free energy change (∆∆𝐺𝑐𝑎𝑙𝑐) (REU: Rosetta energy units). All quantities are referred 

to the corresponding parent pathological mutant FXN-I154F or FXN-L198R.  The identity of the 

mutations for each variant are presented in Table 4. See Methods for the definition of multiple 

sequence alignments MSA80, MSA70 and MSA60.  

Hotspot 

detection 

N.  

hotspots 

Mutation 

approach 
Variant 

N. 

mutations 

∆Tm 

(ºC) 

∆∆Gmut,u
𝒄𝒂𝒍𝒄  

(REU) 

I154F + mutations from FXN-04 FXN-11 3 9.9 9.5 

I154F + mutations from FXN-03 FXN-12 1 6.7 5.7 

Per-residue 

conservation ≤ 

60% on MSA60 

26 ProteinMPNN 

FXN-13 16 20.3 8.8 

FXN-14 15 21.1 9.0 

Shannon 

entropy (SE > 

0.65) on MSA80 

20 ProteinMPNN 

FXN-15 11 21.1 12.5 

FXN-16 11 20.5 13.3 

I154F+ mutations from FXN-09 FXN-17 16 16.4 14.0 

I154F+ mutations from FXN-10 FXN-18 13 23.4 15.2 

       

L198R + mutations from FXN-04 FXN-19 3 9.3 2.6 

L198R + mutations from FXN-03 FXN-20 1 4.1 1.7 

Per-residue 

conservation ≤ 

60% on MSA60 
26 ProteinMPNN 

FXN-21 12 19.8 10.5 

FXN-22 14 22.9 8.1 

Shannon 

entropy (SE > 

0.65) on MSA80 
20 ProteinMPNN 

FXN-23 13 23.7 11.7 

FXN-24 12 23.9 9.6 

L198R+ mutations from FXN-09 FXN-25 15 16.6 15.1 

L198R + mutations from FXN-10 FXN-26 13 24.1 12.3 
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Table 4. Number and identity of mutations for pathological mutants FXN-I154F, FXN-L198R 

and frataxin variants. Pathological mutation is shown in red. 

Variant 
N. 

mutations 
Mutations 

FXN-I154F 1 I154F 

FXN-11 3+1 F120P, I154F, S160T, T191S 

FXN-12 1+1 F120P, I154F 

FXN-13 16+1 

T93A, R97K, E108D, A114K, K116Q, Y118F, F120P, I154F, 

S160T, K171E, N172A, A188K, A193L, K197P, L198I, S202H, 

A204K 

FXN-14 15+1 
T93A, A114K, K116Q, Y118F, F120P, I154F, S160T, K171E, 

N172S, A188K, K192T, A193L, K197P, L198I, S202H, A204K 

FXN-15 11+1 
R97K, A114K, Y118F, F120P, S129D, I154F, S160T, K171S, 

A188K, T191S, S202H, A204K 

FXN-16 11+1 
R97K, A114K, Y118F, F120P, S129D, I154F, S160T, K171S, 

V180K, A188E, T191S, A204K 

FXN-17 16+1 

T93S, E108D, A114K, K116Q, Y118F, F120Q, E121P, I154F, 

S160T, K171S, N172S, A187S, A188E, A193L, K197P, L198I, 

S202H 

FXN-18 13+1 
R97K, A114K, Y118F, F120P, S129D, I154F, S160T, K171T, 

V180K, A187S, A188E, T191S, S202H, A204K 

       

FXN-L198R 1 L198R 

FXN-19 3+1 F120P, S160T, T191S, L198R 

FXN-20 1+1 F120P, L198R 

FXN-21 12+1 
T93A, E108A, A114K, K116Q, Y118E, F120P, S160T, K171D, 

N172T, A188T, A193L, K197P, L198R 

FXN-22 14+1 
T93E, R97K, A114K, K116Q, Y118F, F120P, S160T, K171E, 

N172S, A188K, A193L, K197P, L198R, S202H, A204K 

FXN-23 13+1 
R97K, E108T, A114K, Y118F, F120P, S129D, S160T, K171S, 

V180K, A188E, T191S, L198R, S202H, A204K 

FXN-24 12+1 
R97K, E108K, A114K, Y118F, F120P, S129D, S160T, K171S, 

A188K, T191S, L198R, S202H, A204K 

FXN-25 15+1 
T93S, E108D, A114K, K116Q, Y118F, F120Q, E121P, S160T, 

K171S, N172S, A187S, A188E, A193L, K197P, L198R, S202H 

FXN-26 13+1 
R97K, A114K, Y118F, F120P, S129D, S160T, K171T, V180K, 

A187S, A188E, T191S, L198R, S202H, A204K 

d. Physical origin of improved thermostability 

The circular dichroism (CD) spectra of both wild-type frataxin and the highly stable 

FXN-10 variant were recorded at various temperatures (Fig. 6a and Methods). 
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Notably, at 75 °C, wild-type frataxin unfolds, while the FXN-10 variant maintains a 

secondary structure closely resembling that of the wild-type, even at this elevated 

temperature. This observation underscores that the mutations incorporated into 

FXN-10 do not significantly alter the native folded structure of the protein.  

 

Figure 6. a) CD spectra at 25, 50, 75 °C (heating phase) and 25 °C (cooling phase) for wild-type 

frataxin and design FXN-10. b) AlphaFold model for FXN-10 colored according to Shannon 

entropy with indication of the mutated positions as spheres (left). Salt bridges introduced in 

thermostable design FXN-10 and not present in wild-type frataxin (right). 

The most stable variants share many  common mutations (8 between FXN-08 and 

FXN-10; 6 between FXN-09 and FXN-10), including hydrophobic-to-charged (A114K, 

A188E/K, A204K), hydrophobic-to-polar (A187S), charged-to-polar (K171T/S), 

substitutions to closely related amino acids (R97K, Y118F, S160T, T191S), 

interconversion of polar amino acids (S202H), and substitutions to proline (F120P, as 

discussed previously) (Tables 2 and 4). Such surface-level mutations involving 

charged amino acids or proline are frequently observed in thermophilic counterparts 

of mesophilic proteins [218]. In line with this, it is known that ProteinMPNN tends to 

introduce charged amino acids at lower sampling temperatures, which might 

contribute to the enhanced thermostability of designed sequences [213].  

In fact, the five charged residues introduced in the most stable variant FXN-10 (Lys97, 

Lys114, Lys180, Glu188, and Lys204) establish a dense network of salt bridges absent 

in wild-type frataxin (Fig. 6b). This observation aligns with earlier discoveries that 

optimizing charge-charge interactions on the protein surface serves as a mechanism 

for stabilization [233–235]. Nevertheless, it is important to mention that the theoretical 

isoelectric point (pI = 5.4) and total charge at pH 7.4 (Z = ‒ 8.1) of FXN-10 are nearly 

identical to those of the wild-type (pI = 5.2, Z = ‒ 8.1) (Tables 14-16). 
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In order to gain a deeper understanding of the mechanisms underlying the achieved 

thermostabilization, we measured the protein stability curves [236] of selected variants 

through chemical denaturation experiments at different temperatures, focusing on the 

wild-type, FXN-03, FXN-08, and FXN-10 variants (Figs. 7 and 18). These variants 

showed similar temperatures of maximal stability (Ts = 11–16 °C) and raised stability 

curves at all temperatures – an ubiquitous  phenomenon in the majority of mesophile-

thermophile pairs [218,237–240] – with the FXN-08 and FXN-10 variants achieving a 

thermodynamic stabilization of ∆∆Gs ~ 3 kcal mol-1. While the stability curve of FXN-08 

shows essentially the same curvature as the wild-type – indicating similar heat 

capacities of unfolding (∆Cp) – it is shifted upwards due to a larger enthalpy of 

unfolding at the melting temperature (∆Hm). On the other hand, variants FXN-03 and 

FXN-10 exhibit comparable ∆Hm and lower ∆Cp values relative to wild-type frataxin. 

Particularly, for the FXN-10 variant, which showcases the largest increase in Tm, ∆Cp 

decreases by 0.8 kcal mol-1K-1, resulting in a notable flattening of the curve, a 

stabilization mechanism observed in heat adaptation [237,239,240]. Significantly, the 

enhanced stability exhibited by these variants at physiological temperatures 

underscores the potential ability of this approach to improve homeostasis in vivo.  

 

Figure 7. Stability curves measured for wild-type frataxin, FXN-03, FXN-08 and FXN-10, 

together with the melting temperature (Tm), temperature of maximum thermodynamic stability 

(Ts), maximum thermodynamic stability (∆𝐺𝑠), enthalpy of unfolding at Tm (∆𝐻𝑚), and heat 

capacity of unfolding (∆𝐶𝑝) derived from these curves. Numbers in parenthesis indicate the 

standard errors arising from the fitting. Note that FXN-08 is the most thermodynamically stable 

variant (i.e., largest ∆∆𝐺𝑠), while FXN-10 is the most thermostable one (i.e., largest ΔTm). 

e. Evaluation of in silico prediction accuracy 

To assess the global accuracy and predictivity of our methodology, a comparison was 

made between the calculated (∆∆𝐺𝑐𝑎𝑙𝑐 , Table 11) and the experimentally measured 

changes in thermostability for the set of variants designed in this work. As previously 

described, the curvature of the stability curve might not be the same across all variants; 

consequently, the generalized approximation that changes in melting temperatures 

and unfolding free energies are lineally related [236] (see Methods) cannot be applied 
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in this instance. On the other hand, a thorough determination of the thermodynamic 

stabilization (∆∆𝐺𝑠 ) of the nearly 30 assayed variants from their stability curves is 

beyond the scope of this work. Thus, since the direct comparison between Rosetta and 

experimental energies is not possible, the correlation between ∆∆𝐺𝑐𝑎𝑙𝑐 and ∆𝑇𝑚 values 

relative to wild-type frataxin was examined (Fig. 8). Overall, a strong correlation was 

observed between calculated and empirical stabilities within a Tm range extending 

over 40 °C, surpassing the predictability of widespread force-field and machine-

learning-based methodologies [241]. 

 

Figure 8. a) Correlation between theoretical ∆∆𝐺𝑐𝑎𝑙𝑐  and experimental ∆𝑇𝑚 values for the 26 

variants designed to stabilize wild-type frataxin (in green) and the two pathological mutants 

I154F (in yellow) and L198R (in red), using wild-type frataxin (in gray) as a reference. Positive 

and negative values indicate stabilization and destabilization, respectively. Each data point 

corresponds to a different protein variant. 𝜌: Pearson correlation coefficient. The dashed line 

indicates a linear regression with slope 1.35 and intercept –3.74. 

Outliers from the generally good alignment are observed in designs FXN-10 and 

FXN-25, whose  ∆𝑇𝑚  are under- and overestimated, respectively. Particularly, for 

FXN-10, the thermodynamic parameters derived from the stability curves suggest that 

the underestimation may arise from the flattening of the curve due to a lower ∆𝐶𝑝, 

which differentially increases ∆𝑇𝑚  over ∆∆𝐺𝑠 .  Indeed, for the thermodynamically 

characterized variants, Rosetta energies display a better correlation with free energy 
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differences at the stability maximum than with those approximated from ∆𝑇𝑚 (Fig. 9). 

This suggests that our approach might be best suited for predicting changes in 

thermodynamic stability rather than thermostability. 

 

Figure 9. Correlation between theoretical ∆∆𝐺𝑐𝑎𝑙𝑐 and experimental ∆∆𝐺𝑎𝑝𝑝𝑟  (approximated 

from ∆𝑇𝑚 assuming parallel stability curves in the Tm region using Eq. 14, Table 16; ●) and ∆∆𝐺𝑠 

(derived from the stabilization curves; ■) for designed variants FXN-03, FXN-08 and FXN-10, 

using wild-type frataxin as a reference. Positive values indicate stabilization. 𝜌 : Pearson 

correlation coefficient. The dashed line indicates a linear regression. 

Remarkably, when dissecting Rosetta energies, FXN-10 emerges as an outlier in terms 

of the different contributions to the computed values. More specifically, there were 

significant differences in the relative weight of Rosetta’s ref term in the calculated 

energy of each variant compared to the wild-type. This term accounts for the 

contribution of the unfolded state to the unfolding free energy [242]; due to the 

prohibitive cost and susceptibility to errors of explicit calculations on the inherently 

complex unfolded state, the ref term was originally  introduced in the Rosetta energy 

function to assign an structure-independent and empirically determined weight to 

each amino acid in a sequence to maximize native sequence recovery [242]. In FXN-10, 

this contribution surpasses those in other variants and dominates ∆∆𝐺𝑐𝑎𝑙𝑐  (Fig. 10), 

pointing towards a significant role of the unfolded state in thermodynamic 

stabilization. Given that ∆𝐶𝑝 values are known to correlate with changes in the solvent 

accessible surface area between unfolded and folded states (ΔSASA) [243], we 

tentatively attriute the observed decrease in ∆𝐶𝑝 for FXN-10 to a smaller SASA in its 

unfolded state relative to the wild-type. This hypothesis is supported by the small 

SASA difference (~2%) calculated for the folded states of the two proteins (Table 11).  

These results suggest that our AlphaFold/Rosetta-based methodology not only 

correctly predicts the direction and relative magnitude of thermostability changes due 

to mutation, but also qualitatively informs on the underlying biophysical mechanisms 

of thermostabilization. 
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Figure 10. Calculated energies decomposition ( ∆∆𝐺′𝑐𝑎𝑙𝑐 = ∆∆𝐺𝑐𝑎𝑙𝑐 − ∆𝑟𝑒𝑓)  for variants 

designed to stabilized a) wild-type frataxin, b) pathological mutation FXN-I154F, and 

c) pathological mutation mutant FXN-L198R. In each case the corresponding frataxin variant is 

used as a reference. Variants whose calculated stabilization is clearly dominated by the ∆𝑟𝑒𝑓 

term are highlighted in gray.  

f. Stabilizing mutations confer improved resistance to proteolytic 

degradation 

To determine how much the designed variants could enhance protein homeostasis in 

a biological context, their susceptibility to enzymatic degradation was assessed. 

Previous research on extremely thermophilic bacteria shows that enzymes derived 

from these organisms are more resistant to proteolysis than their mesophilic 

counterparts [244], suggesting that such resistance might be a common characteristic 

of thermostable proteins [245]. Indeed, resistance to proteolytic degradation has been 

used as a proxy of the thermodynamic folding stability of large protein libraries [246]. 

Consistent with this, the most thermostable frataxin variant developed in this study, 

FXN-10 (∆𝑇𝑚  = + 23.3 °C), displayed significant resistance to degradation by trypsin 

compared to the wild-type (Fig. 11a and Table 17). This enhanced resistance to 

proteolytic degradation can extend the protein's lifetime in biological environments, 

making our designs attractive as candidate protein therapeutics. 

g. Stabilizing mutations preserve biological function 

In addition to being thermally and enzymatically stable, an engineered protein must 

maintain the relevant biological activity to be considered as a potential therapeutic. 

Through a series of NMR experiments developed in the Precision Medicine and 

Metabolism Lab at CIC bioGUNE [200], it was confirmed that the superstable variant 

FXN-10 retains the ability to bind Zn2+ ions (serving as a proxy for Fe2+) and 

protoporphyrin IX (ppIX) which, when bound to metal-loaded frataxin shares the 

binding epitope with ferrochelatase (Figs. 19-21). FXN-10 was also able to engage in 

protein-protein interactions with the iron-sulfur assembly cluster. The chemical shift 
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perturbation (CSP) measured upon the addition of Zn2+ and ppIX indicated changes 

upon binding consistent with those identified for wild-type frataxin [200] (Fig. 11b, 22 

and 23). Additionally, the interaction of frataxin with the iron-sulfur assembly 

complex reveals the appearance of a new set of signals (Fig. 11c, 24 and 25), consistent 

with the slow exchange regime of the interaction, in line with previous observations 

made for wild-type frataxin. These results validate the biological competency of the 

designed, stable variant. 

 

Figure 11. a) Protein stability assay by trypsin degradation and mass spectrometry analysis 

shows decreased proteolysis for engineered variant FXN-10 compared to wild-type frataxin. 

Spectral counts refer to peptide-spectrum match (PSM), i.e., peptides identified after protein 

digestion. R1, R2 and R2 stand for replicas 1, 2, and 3, respectively. b) CSP observed for u-15N,13C-

labelled FXN-10 in the presence of Zn2+ and protoporphyrin IX (ppIX). c) 800 MHz 2D 15N-sf-

HMQC spectra of u-15N,13C-labelled FXN-10 in the presence of increasing amount of FeS 

assembly complex. Residue numbers are arbitrary due to lack of complete assignment of the 

protein. 
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3. Conclusions 

Human frataxin variants with enhanced stability have been designed in silico by 

integrating evolutionary information for hotspot selection, sequence sampling with 

ProteinMPNN, and stability evaluation using AlphaFold ensembles and the Rosetta 

energy function. Remarkably, these predictions have been made in one single step, 

required minimal computational resources and achieved 100% success rate. Thus, all 

designed variants showed higher thermostability than the wild-type, to different 

degrees. The best design, FXN-10, whose stabilization is largely associated to a lower 

∆𝐶𝑝  of unfolding as seen in heat adaptation mechanisms, exhibits remarkable 

resistance to proteolytic degradation. Moreover, it maintains the ability to bind metal 

ions and interact with the FeS assembly complex. These features make FXN-10 a prime 

candidate for protein replacement therapy targeting Friedreich’s ataxia. Our rational 

approach might prove generalizable for designing proteins with improved properties 

for therapeutic uses and broader biotechnological applications. 

4. Methods 

a. Mutational hotspots selection 

Different sets of mutable amino acids were identified from various conservation 

analyses conducted on a common multiple sequence alignment (MSA). This MSA was 

generated by the jachmmer [247] search of the wild-type target frataxin sequence 

(residues 91-210) against the UniRef90 database [248,249] at the initial stage of the 

AlphaFold version 2.3.0 structure prediction (database size: 140403594 sequences; 

execution flags: --F1 0.0005 --F2 5e-05 --F3 5e-07 --incE 0.0001 -E 0.0001 -N 1), and 

contains 1999 sequences. The distribution of sequence identities, computed after 

removing the gaps from the target frataxin sequence has a maximum at around 40% 

identity (Fig. 12). At a higher identity (above 60%), a collection of clusters 

predominantly comprises frataxin homologs, with sporadic occurrences of ferroxidase 

and phosphatidylinositol 4-phosphate 5-kinase (type-1 beta isoform) homologs (Table 

5). Of note, ferroxidase activity has been reported for yeast frataxin [250,251]. 
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Figure 12. Distribution of sequences in the original Uniref90 multiple sequence alignment for 

human frataxin (1999 sequences), and derived subsets at 60% (MSA60), 70% (MSA70) and 80% 

(MSA80) identity, used for mutational hotspots identification. 

To generate mutational pools of varying sizes, this MSA was further filtered by 

applying three different sequence identity cutoffs with respect to the target human 

frataxin sequence after removing gaps (60%, 70%, and 80%). This resulted in MSA60, 

MSA70, and MSA80, respectively (Tables 6-10). For each reduced alignment, positions 

with less than 60% conservation were chosen as mutational hotspots, guided by the 

principle that the least conserved positions are better suited for mutation without 

compromising structural integrity and the associated function [252–255]. 

Consequently, no mutational hotspots were allowed on the β-sheet plane, which is 

pivotal for binding to ISCU (iron-sulfur cluster assembly enzyme). Notably, the 

pathological mutation W155G located in this region has been identified to obliterate 

the desulfurase activity of the supercomplex responsible for iron–sulfur cluster 

assembly [256].  

Table 5. Composition of the multiple sequence alignments used for identification of mutational 

hotspots. The different protein categories are extracted from their definition in the FASTA files 

downloaded from UniProt (https://www.uniprot.org). 

Category Uniref90 MSA60 MSA70 MSA80 

Frataxin 576 (29%) 316 (94%) 196 (93%) 170 (94%) 

Frataxin-like 12 (1%) 0 (0%) 0 (0%) 0 (0%) 

Ferroxidase 1041 (52%) 2 (1%) 0 (0%) 0 (0%) 

Iron-sulfur_cluster 75 (4%) 0 (0%) 0 (0%) 0 (0%) 

Iron_donor_protein 82 (4%) 0 (0%) 0 (0%) 0 (0%) 

Other_iron-related 9 (0%) 0 (0%) 0 (0%) 0 (0%) 

Uncharacterized 103 (5%) 7 (2%) 7 (3%) 5 (3%) 

Other 101 (5%) 10 (3%) 7 (3%) 5 (3%) 

TOTAL 
1999  

(100%) 

335  

(100%) 

210  

(100%) 

180  

(100%) 
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A fourth collection of mutational hotspots was derived from the frataxin-enriched 

MSA80 dataset by evaluating each position of frataxin orthologs using Shannon 

entropy (SE) [224] and excluding gaps : 

𝑆𝐸(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) =  −∑ 𝑓𝑖 ln 𝑓𝑖𝑖   (Equation 1) 

Here, 𝑓𝑖 is the frequency of each amino acid at the specified position. Variable positions 

return positive SE values, whereas fully conserved ones result in an SE value of zero. 

In our case, the 20 positions with the highest entropy (SE > 0.65) were arbitrarily 

selected, allowing a maximum of 15% of the sequence to mutate. Fourteen of these 

positions are shared with the hotspots identified from the MSA60 dataset using a per-

residue conservation threshold of ≤ 60% (see Table 6 for a detailed comparison 

between the two approaches). 

Table 6. Number of sequences and mutational hotspots obtained after applying different 

consecutive filters to the initial UniRef90 MSA obtained for the target human frataxin sequence 

(1999 sequences) during AlphaFold prediction of wild-type frataxin: 1) sequence identity and 2) 

individual amino acid conservation or Shannon entropy. Common hotspots across the different 

datasets are shown in red (found in the four mutation pools), orange (found in at least three of 

the mutation pools) and green (found through either per-residue conservation or Shannon 

entropy approaches). 

Multiple 

sequence  

alignment 

Sequence  

identity  

threshold 

Number 

of  

sequences 

Per-residue  

conservation  

threshold 

N. of 

mut.  

hotspots 

Mutational 

hotspots 

MSA60 60% 335 60% 26 

93, 94, 97, 105, 108, 

114, 116, 118, 120, 

121, 140, 160, 171, 

172, 184, 187, 188, 

190, 192, 193, 194, 

197, 198, 202, 204, 

208 

MSA70 70% 210 60% 11 
97, 118, 120, 160, 171, 

187, 188, 191, 192, 

202, 204 

MSA80 80% 180 60% 7 120, 160, 171, 187, 

188, 191, 192 

Multiple 

sequence  

alignment 

Identity  

threshold 

Number 

of  

sequences 

Shannon  

entropy  

threshold 

N. of 

mut.  

hotspots 

Mutational 

hotspots 

MSA80 80% 180 0.65 20 

97, 108, 114, 118, 120, 

129, 134, 140, 

152,160, 171, 179, 

180, 187, 188, 190, 

191, 192, 202, 204 
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Figure 13. Per-residue conservation (cons) of the mutational hotspots derived from the a) MSA60 

(335 sequences, conservation threshold 60%), b) MSA70 (210 sequences, conservation threshold 

60%), and c) MSA80 (180 sequences, conservation threshold 60%), datasets sorted by amino acid 

type. For clarity, only values 5 ≤ cons ≤ 60% are shown. Cells are colored according to their 

conservation value (0%: white; 100%: red). A sequence logo representation of these mutational 

hotspots is shown below. 
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b. Phylogenetic analysis  

First, a protein sequence search was performed using wild-type frataxin (residues 91-

210) as a query and the Basic Local Alignment Search Tool (BLAST; 

https://blast.ncbi.nlm.nih.gov) on the non-redundant protein sequences (nr) database, 

excluding models (XM,XP), non-redundant RefSeq proteins (WP) and 

uncultured/environmental sample sequences with default parameters (blastp 

algorithm expect threshold 0.05, word size 5, max matches in a query range 0, matrix 

scoring BLOSUM62, gap costs of existence: 11 and extension 1, conditional 

compositional score matrix adjustment and no filters or masks). 994 sequences were 

found, which were filtered to ≥ 80% identity resulting in 389 sequences. A distance tree 

representation of these results (Blast Tree View; tree method: fast minimum evolution; 

max seq difference: 0.9; distance: Grishin protein; sequence label: Blast name) clearly 

shows evolutionary differences between amphibians/reptilians/birds and mammals 

characterized by mutations at positions 120 and 160 (Fig. 14). 

 

Figure 14. Blast tree view of sequences producing significant alignments to wild-type frataxin 

(contained in the cluster highlighted in yellow). The node characterized with mutations at 

positions 120 and 160 is highlighted with a blue star. 
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Second, the MSA80 dataset (180 sequences) was curated removing redundancies and 

sequences of unknown origin to yield 141 sequences, and their taxonomy annotated 

(kingdom, phylum, class, order, family, genus, species) using the Global Biodiversity 

Information Facility (GBIF; https://www.gbif.org/tools/species-lookup) (Table 10). 

Sequences were clustered at positions 120, 160 and 191 and an approximately-

maximum-likelihood phylogenetic tree was constructed using FastTree [257,258] and 

represented using Interactive Tree Of Life (iTOL; https://itol.embl.de) (Fig. 4). A clear 

partitioning is observed between different orders of mammals and 

amphibians/reptilians/birds (characterized by the F120P and S160T mutations with 

respect to human frataxin).  

Table 10. Number of sequences and population of the clusters found within the curated MSA80 

dataset (141 sequences) as a function of the amino acid identities at positions 120, 160 and 191, 

together with the taxonomic classes and orders of the species characterizing these clusters. 

Position Num. of. 

sequences 
Population 

Taxonomic 

class 
Taxonomic order 

120 160 191 

Phe Ser Thr 49 34.8% Mammalia 
Primates, carnivora, 

chiroptera, cetacea 

Phe Ser Ser 6 4.3% Mammalia 
Afrosoricida, 

macroscelidea, proboscidea 

Leu Ser Thr 27 19.1% Mammalia Rodentia, carnivora 

Leu Cys Thr 2 1.4% Mammalia Rodentia 

Ser Ser Ser 4 2.8% Mammalia 
Monotremata, 

diprotodontia 

Ser Ser Thr 2 1.4% Mammalia Rodentia 

Ser Thr Ser 3 2.1% Mammalia 
Didelphimorphia, 

diprotodontia 

Ser Thr Thr 1 0.7% Mammalia Soricomorpha 

Cys Ser Thr 5 3.5% Mammalia Chiroptera, cetacea 

Arg Ser Thr 1 0.7% Mammalia Erinaceomorpha 

Pro Thr Ser 40 28.4% Aves 
Passeriformes, galliformes, 

crocodylia, testudines  

Pro Ile Ser 1 0.7% Reptilia Squamata 

c. Sequence sampling with ProteinMPNN 

Reference sequences were mutated simultaneously at all the selected hotspots for each 

mutation pool with ProteinMPNN [213] at three so-called temperatures (0.1, 0.2, and 

0.3) excluding mutations to cysteine. In ProteinMPNN, the temperature is an 

hyperparameter that influences the amino acid compositional bias; lower 

temperatures have been shown to increase the frequency of charged over polar amino 

acids in the designs, leading to increased thermostability [213]. For each set of 

mutational hotspots, 30 sequences were generated (10 sequences per temperature) and 
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filtered selecting either the most frequently occurring ones or, more often, the 

sequences corresponding to the highest thermostabilization over the reference frataxin 

variant predicted with our AlphaFold/Rosetta-based protocol (see below). 

d. Prediction of relative thermostability of designed variants 

For each design, we calculated its relative thermostability (∆∆𝐺𝑐𝑎𝑙𝑐 ) defined as the 

difference in free energy of unfolding between each variant and the reference (either 

wild-type frataxin or the pathological single mutants I154F or L198R) using the 

approach described recently by our group [214]. Briefly, each sequence is subjected to 

30 independent AlphaFold structure predictions (models 3-5, which do not use PDB 

templates, see Table 11 for a characterization of structure similarity) and each of the 90 

generated models is scored using Rosetta’s minimize application [111]. 

The average Rosetta energies of the 25 top scoring decoys of each protein represents 

its folding free energy (∆𝐺𝑓), in such a way that relative stability values are computed 

as ∆∆𝐺𝑐𝑎𝑙𝑐 = −(∆𝐺𝑑𝑒𝑠𝑖𝑔𝑛,𝑓
𝑐𝑎𝑙𝑐 − ∆𝐺𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑓

𝑐𝑎𝑙𝑐 ). Therefore, positive and negative ∆∆𝐺𝑐𝑎𝑙𝑐 

values indicate stabilization and destabilization, respectively.  

For consistency, predictions on all variants were made using sequences excluding the 

N-terminal residues derived from the inserted affinity tags (i.e., starting at position 91) 

and the two last very flexible, negatively charged (Asp-Glu) C-terminal residues (i.e., 

finishing at position 208). 

Table 11. Minimum average root-mean-square deviation of the atomic positions of the alpha 

carbons (RMSD-Cα), solvent-accessible surface area (SASA; probe radius 1.4 Å) and average 

Rosetta stability (∆𝐺𝑓
𝑐𝑎𝑙𝑐) in Rosetta energy units (REU) within the AlphaFold ensemble (top 25 

decoys) for wild-type, pathological mutants and designed frataxin variants. Relative stability 

values (∆∆𝐺𝑐𝑎𝑙𝑐) are computed with respect to wild-type frataxin and pathological variants FXN-

I154F or FXN-L198R.  

Variant  
RMSD-Cα 

(Å)  

SASA 

(Å2)  
∆Gf

calc (REU) 
∆∆Gcalc 

(REU)a  

∆∆Gcalc 

(REU)b  

∆∆Gcalc 

(REU)c  

wild-type FXN  0.1 6442 ± 29  –373.1 ± 1.1  0   
FXN-01  0.1 6480 ± 36  –381.3 ± 2.0  8.2   
FXN-02  0.1 6482 ± 28  –376.2 ± 1.2  3.1   
FXN-03  0.1 6454 ± 36  –377.2 ± 1.5  4.1   
FXN-04  0.1 6453 ± 34  –380.8 ± 1.9  7.7   
FXN-05  0.1 6456 ± 33  –385.0 ± 1.9  11.9   
FXN-06  0.1 6497 ± 32  –383.8 ± 1.7  10.6   
FXN-07  0.1 6537 ± 28  –382.1 ± 1.2  9   
FXN-08  0.1 6608 ± 23  –385.3 ± 1.5  12.2   
FXN-09  0.1 6213 ± 22  –387.4 ± 1.4  14.3   
FXN-10  0.1 6606 ± 23  –385.8 ± 1.5  12.7   
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I154F  0.1 6495 ± 16  –367.0 ± 1.1  –6.2  0  
FXN-11  0.1 6514 ± 25  –376.4 ± 1.4  3.3 9.5  
FXN-12  0.1 6506 ± 16  –372.7 ± 1.8  –0.5  5.7  
FXN-13  0.1 6547 ± 19  –375.8 ± 2.6  2.7 8.8  
FXN–14  0.2 6460 ± 21  –375.9 ± 1.3  2.8 9  
FXN–15  0.1 6706 ± 21  –379.5 ± 1.2  6.4 12.5  
FXN–16  0.1 6652 ± 19  –380.3 ± 1.3  7.2 13.3  
FXN–17  0.2 6253 ± 19  –381.0 ± 0.7  7.9 14  
FXN–18  0.1 6648 ± 15  –382.1 ± 1.2  9 15.2  
L198R  0.11 6438 ± 34  –365.4 ± 1.5  –7.7   0 

FXN–19  0.15 6421 ± 38  –368.0 ± 1.6  –5.1   2.6 

FXN–20  0.15 6415 ± 37  –367.1 ± 2.1  –6.1   1.7 

FXN–21  0.12 6277 ± 16  –375.9 ± 2.3  2.7  10.5 

FXN–22  0.17 6601 ± 26  –373.5 ± 3.0  0.4  8.1 

FXN–23  0.13 6496 ± 45  –377.1 ± 1.4  4  11.7 

FXN–24  0.13 6623 ± 37  –375.0 ± 1.7  1.9  9.6 

FXN–25  0.11 6236 ± 41  –380.5 ± 2.1  7.4  15.1 

FXN–26  0.11 6561 ± 33  –377.7 ± 1.5  4.6  12.3 

a Relative stability calculated with respect to wild-type FXN. b Relative stability calculated with 

respect to FXN-I154F. c Relative stability calculated with respect to FXN-L198R. 

The most computationally demanding part of our ProteinMPNN/AlphaFold/Rosetta 

protein design protocol is the generation of the AlphaFold ensembles (models 3, 4, 5; 

30 replicas; 90 predicted structures in total). Overall, designing and characterizing a 

mutant takes under an hour (around 40 minutes if precomputed MSA are reused), 

making this protocol attractive for protein engineering in the scale of hundreds of 

variants (Table 12). 

Table 12. Timings for computational ∆∆𝐺𝑐𝑎𝑙𝑐 prediction of a frataxin variant. Hardware: Intel 

Xeon Gold 6240R CPU 2.40GHz, Nvidia GeForce RTX 3090 GPU. 

Type of calculation  Software  Hardware  Time  

ProteinMPNN 

sampling 
ProteinMPNN 1.0.1 

CPU (1 core, 4 GB RAM memory) 

GPU (24 GB) 
13 s 

MSA generation AlphaFold 2.3.0 CPU 20 m 

Structure prediction 

AlphaFold 2.3.0 

models 3, 4, 5  

30 replicas 

CPU (1 core, 80 GB RAM memory) 

GPU (24 GB) 
36 m 

Minimization Rosetta 3.13 CPU (1 core, 2 GB RAM memory) 1 m 
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e. Protein expression and purification  

The recombinant plasmid pG-S21a (purchased from GenScript Biotech) encoding 

between restriction sites NdeI and XhoI for residues 91-210 of either the wild-type 

frataxin, the pathologic single mutants I154F and L198R or any of the 26 designed 

proteins bearing a N-terminal 6xHis tag, was transformed into BL21 (D3) E. coli 

competent cells, plated on Luria-Bertani (LB) broth-ampicillin agar plates and 

incubated overnight at 37 °C. A single colony from each plate was picked and then 

resuspended in an aqueous solution of 10 mL of LB broth (Lennox) and 10 μL of 

50 mg/mL ampicillin followed by incubation at 37 ºC until the optical density at 600 

nm (OD600) reached a value between 0.4-0.6. Induction was carried out by adding 10 

μL of 0.5 M isopropyl β-D-1-thiogalactopyranoside (IPTG) and growth continued 

overnight at 25 °C. Initial designs FXN-01 and FXN-02 (and a non-6xHis-tagged 

version of wild-type frataxin) were expressed following the same protocol, but the 

encoded genes were equipped with a N-terminal 6xHis-GST tag. Cells were harvested 

by centrifugation at 5000 rpm for 20 min. The cell pellets were resuspended in 40 mL 

of lysis buffer (120 mM NaCl, 20 mM Tris pH 8.0, 2 mM imidazole, 1 mM protease 

inhibition cocktail PIC). The suspended cells were lysed by sonication (60% amplitude, 

36 x 10 s bursts, with 20 s between each burst), and then clarified by centrifugation at 

25000 rpm for 30 minutes at 4 °C. The soluble fraction was loaded onto 2 mL of Ni-NTA 

resin (Merck), cleaned with 10 mL of washing buffer (120 mM NaCl, 20 mM Tris pH 

8.0) and eluted with 3.5 mL of high-imidazole buffer (120 mM NaCl, 20 mM Tris pH 

8.0, 300 mM imidazole). The 6xHis-GST tag of designs FXN-01 and FXN-02 was 

cleaved by incubation with 2 IU of thrombin per mg of target protein at 4 °C overnight. 

The cleaved protein was separated from 6xHis-GST and the uncleaved protein by a 

second affinity purification step using the Ni-NTA resin. For subsequent imidazole 

removal the buffer of the pooled fractions was exchanged to 20 mM Tris pH 8.0 and 

120 mM NaCl using PD-10 desalting columns packed with Sephadex G-25 resin (GE 

Healthcare). The elution volume was 3.5 mL. Protein purity (size: ~13.8 to 14.4 kDa) 

was monitored using SDS-PAGE (5–20% gradient gel) (Fig.15) and the concentrations 

were determined spectrophotometrically using an extinction coefficient ε in the 

25440-26930 cm-1 M-1 range as determined by the ProtParam tool 

(https://web.expasy.org/protparam). 
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Figure 15. SDS-PAGE gels of expressed frataxin variants. 

Table 13. Molecular weight (MW) , theoretical extinction coefficient at λ = 280 nm in water (Ε280), 

isoelectric point (IP) and total charge at pH 7.4 (Z) (calculated with Isoelectric Point Calculator 

2.0 [259]), and the differences in the number of charged amino acids (ΔN. charged) and prolines 

(ΔN. Pro) for wild-type and designed frataxin variants.  

Variant MW (Da) Ε280 (M-1 cm-1) IP Z ΔN. charged ΔN. Pro 

wild-type FXN 14240.7 26930 5.22 –8.1   

FXN-01 13770.17 26930 4.55 –9.1 -1 1 
FXN-02 13820.23 26930 4.55 –9.1 -1 0 
FXN-03 14190.64 26930 5.22 –8.1 0 1 
FXN-04 14190.64 26930 5.22 –8.1 0 1 
FXN-05 14193.59 26930 5.04 –9.1 -1 1 
FXN-06 14206.63 26930 5.22 –8.1 0 1 
FXN-07 14248.67 26930 5.08 –9.1 1 1 
FXN-08 14283.81 25440 5.51 –7.1 1 1 
FXN-09 14283.68 25440 5.02 –10.0 -2 2 
FXN-10 14414.9 25440 5.39 –8.1 4 1 

 

Table 14. Molecular weight (MW) , theoretical extinction coefficient at λ = 280 nm in water (Ε280), 

isoelectric point (IP) and total charge at pH 7.4 (Z) (calculated with Isoelectric Point Calculator 

2.0 [259]), and the differences in the number of charged amino acids (ΔN. charged) and prolines 

(ΔN. Pro) for pathological mutant FXN-I154F and frataxin variants. 

Variant MW (Da) Ε280 (M-1 cm-1) IP Z ΔN. charged ΔN. Pro 

FXN-I154F 14274.71 26930 5.22 –8.1   

FXN-11 14224.65 26930 5.22 –8.1 0 1 
FXN-12 14224.65 26930 5.22 –8.1 0 1 
FXN-13 14340.86 25440 5.22 –9.1 1 2 
FXN-14 14371.83 25440 5.06 –10.1 0 2 
FXN-15 14388.9 25440 5.52 –7.1 4 1 
FXN-16 14368.82 25440 5.27 –8.2 4 1 
FXN-17 14317.69 25440 5.02 –10.0 -2 2 
FXN-18 14448.91 25440 5.39 –8.1 4 1 
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Table 15. Molecular weight (MW), theoretical extinction coefficient at λ = 280 nm in water (Ε280), 

isoelectric point (IP) and total charge at pH 7.4 (Z) (calculated with Isoelectric Point Calculator 

2.0 [259]), and the differences in the number of charged amino acids (ΔN. charged) and prolines 

(ΔN. Pro) for pathological mutant FXN- L198R and frataxin variants. 

Variant MW (Da) Ε280 (M-1 cm-1) IP Z ΔN. charged ΔN. Pro 

FXN-L198R 14283.72 26930 5.39 –7.1   

FXN-19 14233.66 26930 5.39 –7.1 1 1 
FXN-20 14233.66 26930 5.39 –7.1 1 1 
FXN-21 14197.58 25440 4.93 –10.0 0 2 
FXN-22 14437.93 25440 5.24 –9.1 2 2 
FXN-23 14399.89 25440 5.65 –6.1 4 1 
FXN-24 14396.97 25440 5.92 –4.2 4 1 
FXN-25 14326.71 25440 5.19 –9.0 -2 2 
FXN-26 14457.92 25440 5.53 –7.1 4 1 

 

f. Circular dichroism (CD) spectroscopy 

The secondary structure of all frataxin variants was analyzed using CD spectroscopy. 

Protein samples were prepared at 5 μM concentration in buffer solution (20 mM 

HEPES pH 7.4, 120 mM NaCl) in a 2 mm quartz cuvette. CD spectra were recorded on 

a JASCO J-815 spectropolarimeter equipped with a Peltier temperature control unit at 

25 °C. Data were collected from 200 to 300 nm with a 0.2 nm step size and a 2 nm 

bandwidth.  

CD spectra were acquired first at 25 °C using freshly prepared proteins (blue lines in 

the plots below), and then after heating up to 90 °C and cooling back to 25 °C to test 

unfolding/folding reversibility (orange lines in Fig. 16). 

 
Figure 16. CD spectra of frataxin (FXN) variants (210-260 nm). 
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Figure 16 (cont). CD spectra of frataxin (FXN) variants (210-260 nm). 
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Figure 16 (cont). CD spectra of frataxin (FXN) variants (210-260 nm). 
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Figure 16 (cont). CD spectra of frataxin (FXN) variants (210-260 nm). 
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Figure 16 (cont). CD spectra of frataxin (FXN) variants (210-260 nm). 

g. Melting temperature (Tm) measurement 

Thermal stability was measured by monitoring the change in ellipticity at 222 nm as a 

function of temperature using a JASCO J-815 spectropolarimeter equipped with a 

Peltier temperature control unit. Protein samples were prepared at 5 μM concentration 

in buffer solution (20 mM HEPES pH 7.4, 120 mM NaCl) in a 2 mm quartz cuvette. The 

CD signal was monitored at a fixed wavelength (222 nm) while the temperature was 

increased from 35 °C to 90 °C at a rate of 1.2 °C/min. For the pathological FXN mutants 

I154F and L198R, temperature scans started at 15 °C. 

For each variant, Tm values were computed by fitting ellipticity values (𝐸) versus 

temperature to a two-state (folded/unfolded) model. The fitting was performed through 

a least-squares minimization of the error between the measured ellipticity values 𝐸 

and simulated ellipticity values 𝐸𝑠𝑖𝑚 obtained using the following equation: 

𝐸𝑠𝑖𝑚 = 𝐹𝐹𝑠𝑖𝑚 ∙ (𝑚1𝑇 + 𝑏1) + (1 −  𝐹𝐹𝑠𝑖𝑚) ∙ (𝑚2𝑇 + 𝑏2) (Equation 2) 

where 𝐹𝐹𝑠𝑖𝑚 is the fraction of protein in the native (folded) state, T is the temperature, 

and the parameters 𝑚1, 𝑏1, 𝑚2, and 𝑏2 (fitting parameters) are the slopes and intercepts 

of the (linear) ellipticity in the native and denatured state, respectively (Fig. 17). Initial 
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guesses of 𝑚1, 𝑏1, 𝑚2, and 𝑏2were obtained from linear fitting of the first 20 ellipticity 

points (𝑚1, 𝑏1) and the last 20 ellipticity points (𝑚2, 𝑏2). 𝐹𝐹𝑠𝑖𝑚is defined as a parametric 

function derived from the equilibrium constant of folding (𝐾𝑠𝑖𝑚). 

𝐹𝐹𝑠𝑖𝑚 = 
𝐾𝑠𝑖𝑚

1 − 𝐾𝑠𝑖𝑚

 (Equation 3) 

In turn, the equilibrium constant is obtained from the free energy of unfolding (∆𝐺𝑠𝑖𝑚): 

𝐾𝑠𝑖𝑚 = 𝑒
∆𝐺𝑠𝑖𝑚

𝑅𝑇  (Equation 4) 

     

where ∆𝐺𝑠𝑖𝑚 = ∆𝐻𝑠𝑖𝑚 − 𝑇∆𝑆𝑠𝑖𝑚 (Equation 5) 

and the enthalpy (∆𝐻𝑠𝑖𝑚) and entropy (∆𝑆𝑠𝑖𝑚) of unfolding, are calculated from guesses 

of the enthalpy of unfolding at the melting temperature (∆𝐻𝑠𝑖𝑚), the change in specific 

heat capacity of unfolding (∆𝐶𝑝 ) and 𝑇𝑚 , where ∆𝐻𝑚 and 𝑇𝑚 are the parameters to 

optimize and ∆𝑐𝑝is a constant. 

∆𝐻𝑠𝑖𝑚 = ∆𝐻𝑚 + ∆𝐶𝑝(𝑇 − 𝑇𝑚) (Equation 6) 

∆𝑆𝑠𝑖𝑚 = ∆𝑆𝑚 + ∆𝐶𝑝 ln
𝑇

𝑇𝑚

 (Equation 7) 

The initial guess values for ∆𝐻𝑚  and 𝑇𝑚 were set to 48 kcal mol-1 and 333.15 K (60 °C), 

respectively. The value of ∆𝐶𝑝 is estimated from the number of residues of the protein 

[243]. 

Assuming a linear relationship between the number of residues (n) and the change in 

solvent accessible surface area of unfolding (∆𝑆𝐴𝑆𝐴), the latter can be computed as: 

∆𝑆𝐴𝑆𝐴 (Å2) =  −907 + 93 ∙ 𝑛 (Equation 8) 

From ∆𝑆𝐴𝑆𝐴, ∆𝐶𝑝 can be estimated as: 

∆𝐶𝑝 (𝑐𝑎𝑙 𝑚𝑜𝑙−1𝐾−1) =  −251 + 0.19 ∙  ∆𝑆𝐴𝑆𝐴 (Equation 9) 

For the 127 residues frataxin and its variants, and ∆𝑆𝐴𝑆𝐴 =  10904 Å2  and 

∆𝐶𝑝 =  1.82 kcal mol-1 K-1. 
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Figure 17. a) Evolution of the ellipticity as a function of temperature along thermal unfolding. 

Blue dots: measured E(T) values; magenta line: fitted 𝐸𝑠𝑖𝑚(T). b) Evolution of the fraction of 

folded protein as a function of temperature along thermal unfolding. c) Evolution of the free 

energy of unfolding as a function of temperature along thermal unfolding. 

In Fig. 15, 𝑇𝑚  curves were represented considering for each variant the heating and 

cooling ellipticity values and linearly rescaling them to [0,1] range according to: 

 

𝐸𝑛𝑜𝑟𝑚 = 
𝐸 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

 (Equation 10) 

where 𝐸 is the measured ellipticity, 𝐸𝑚𝑖𝑛  the absolute minimum of 𝐸 values 

considering the heating and cooling curves, and 𝐸𝑚𝑎𝑥  the absolute maximum under the 

same conditions.  

Folding reversibility percentages were computed from the fitted ellipticity values 

(Eq. 2) according to the following equation: 

reversibility (%) =  
𝐸90

𝑐𝑜𝑜𝑙 − 𝐸35
𝑐𝑜𝑜𝑙

𝐸90
ℎ𝑒𝑎𝑡 − 𝐸35

ℎ𝑒𝑎𝑡 𝑥 100 (Equation 11) 

where 𝐸90
𝑐𝑜𝑜𝑙 , 𝐸35

𝑐𝑜𝑜𝑙 , 𝐸90
ℎ𝑒𝑎𝑡 , and 𝐸35

ℎ𝑒𝑎𝑡  are the ellipticities measured at 90 °C and 35 °C 

during heating (i.e., forward thermal unfolding) and cooling (reverse thermal folding). 
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Figure 18. Thermal unfolding of frataxin (FXN) variants measured by circular 

dichroism (CD) spectroscopy. Reversibility is always measured at 35 °C for fair 

comparison across different variants (dashed red line). 
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Figure 18 (cont). Thermal unfolding of frataxin (FXN) variants measured by circular 

dichroism (CD) spectroscopy. Reversibility is always measured at 35 °C for fair 

comparison across different variants (dashed red line). 
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Figure 18 (cont). Thermal unfolding of frataxin (FXN) variants measured by circular 

dichroism (CD) spectroscopy. Reversibility is always measured at 35 °C for fair 

comparison across different variants (dashed red line). 
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Figure 18 (cont). Thermal unfolding of frataxin (FXN) variants measured by circular 

dichroism (CD) spectroscopy. Reversibility is always measured at 35 °C for fair 

comparison across different variants (dashed red line). 
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Figure 18 (cont). Thermal unfolding of frataxin (FXN) variants measured by circular 

dichroism (CD) spectroscopy. Reversibility is always measured at 35 °C for fair 

comparison across different variants (dashed red line). 

h. Stability curve determination 

Chemical denaturation experiments were performed to obtain the Gibbs-Helmholtz 

curves (∆𝐺𝑢vs 𝑇) of wild-type frataxin and FXN-03, FXN-08, and FXN-10. Protein 

samples were prepared at 1 μM concentration in buffer solution (20 mM HEPES pH 

7.4, 120 mM NaCl) in a 10 mm quartz cuvette. Guanidinium hydrochloride (GdnHCl) 

was used as the denaturant. The concentration of GdnHCl was gradually increased 

from 0 to 4 M while monitoring the change in ellipticity in the 220-230 nm range using 

a JASCO J-815 spectropolarimeter equipped with a Peltier temperature control unit. 

∆𝐺𝑢 values derived from chemical denaturation experiments were considered at five 

temperatures for wild-type frataxin (10, 20, 30, 40 and 50 °C), three for FXN-10 (10, 30, 

50 °C), and two for FXN-08 and FXN-03 (10 and 30 °C). Ellipticity values (𝐸) vs. 

denaturant concentration at each temperature were fitted using a least squares 

algorithm to a two-state model following Eq. 12. 

𝐸 = 𝐹𝐹 ∙ (𝑚1[𝐷] + 𝑏1) + (1 − 𝐹𝐹) ∙ (𝑚2[𝐷] + 𝑏2) (Equation 12) 

where 𝐹𝐹 is the fraction of protein in the native (folded) state, [𝐷] the denaturant 

concentration, and parameters 𝑚1 , 𝑏1 , 𝑚2 , and 𝑏2  the slopes and intercepts of the 

(linear) ellipticity in the native and denatured state, respectively. 𝐹𝐹 can be expressed 

as a function of the free energy of unfolding in the presence of the denaturant ∆𝐺𝑢𝐷, 

𝐹𝐹 = 1/(1 + 𝑒−
∆GuD

𝑅𝑇 ), which is itself a function of the denaturant concentration 

∆𝐺𝑢𝐷([𝐷]) = ∆𝐺𝑢 − 𝑚[𝐷], where 𝑚 is the denaturant slope and ∆𝐺𝑢  the free energy of 

unfolding at the given temperature in the absence of denaturant. Ellipticity data were 

simultaneously fitted optimizing i) 𝑚1 , 𝑏1 , 𝑚2 , and 𝑏2 , for each variant and 

temperature and ii) a common denaturant slope 𝑚using an in-house Python3 script, 

obtaining for each variant and temperature the extrapolated ∆𝐺𝑢  value. 
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Additional ∆𝐺𝑢  vs T datapoints were extracted from the CD spectra of thermal 

denaturation (i.e., Tm measurement) in a symmetric 6 °C range around the melting 

temperature (34 datapoints for wild-type frataxin, 31 for FXN-03, 32 for FXN-08, and 

30 for FXN-10), where significant populations of the folded and unfolded states thus 

allowing the calculation of accurate ∆𝐺𝑢 values.  

Finally, to obtain the stability curves the ∆𝐺𝑢 values were fitted to the Gibbs-Helmholtz 

equation (Eq. 13) with a least squares algorithm optimizing the ∆𝐻𝑚  ∆𝐶𝑝 and Tm 

parameters. ∆𝐻𝑚 is the enthalpy of unfolding at the melting temperature and ∆𝐶𝑝 the 

change in specific heat between denatured and native state. 

∆𝐺𝑢(𝑇) =  ∆𝐺𝑚 − 𝑇
∆𝐻𝑚

𝑇𝑚

+ ∆𝐶𝑝 [𝑇 − 𝑇𝑚 − 𝑇 ln(
𝑇

𝑇𝑚

)] (Equation 13) 

 

Figure 19. Fitted stability curves for wild-type frataxin (black), FXN-03 (green), FXN-08 (yellow) 

and FXN-10 (red), and changes in the thermodynamic parameters derived from them with 

respect to those of the wild-type. The differences between the thermodynamic stabilization (∆∆𝐺𝑠) 

and thermostabilization (∆𝑇𝑚) measured for each designed variant with respect to the wild-type 

are highlighted as blue boxes. Note that FXN-08 is the most thermodynamically stable variant, 

while FXN-10 is the most thermostable one. 

Under the assumption that the stability curves are parallel in the 𝑇𝑚 region, 

approximated changes in stabilization for related variants (∆∆𝐺𝑎𝑝𝑝𝑟) can be obtained 

from a simple linear relationship using the ∆𝑇𝑚, ∆𝐻𝑚 and 𝑇𝑚 values derived from the 

stability curve of the wild-type (Table 16). This approximation assumes a common first 

derivative of ∆𝐺𝑢(𝑇) at the melting temperatures (∆𝐻𝑚/𝑇𝑚 = ∆𝑆𝑚). 

∆∆𝐺𝑎𝑝𝑝𝑟  =  
∆𝐻𝑚

𝑇𝑚

 ∆𝑇𝑚 (Equation 14) 



Chapter 5  Thermodynamic Stabilization of Human Frataxin 

206 

 

Table 16. Experimentally measured unfolding/folding temperature (Tm), differences in unfolding 

Tm (ΔTm), reversibility (rev.), and approximated thermostability changes (∆∆𝐺𝑎𝑝𝑝𝑟 ) for wild-

type, pathological mutants and designed frataxin variants. ∆∆𝐺𝑎𝑝𝑝𝑟  values were derived from 

ΔTm values with respect to wild-type frataxin using Eq. 14.  

Variant 
Tm,u  

(°C)a 

Tm,f 

(°C)b 

rev. 

(%) 

ΔTm 

(°C)a,c 

ΔTm 

(°C)a,d 

ΔTm 

(°C)a,e 

∆∆𝑮𝒂𝒑𝒑𝒓 

(kcal mol-1) 

wild-type FXN 62.8 61.4 92.9 0 
  

0 

FXN-01 72.6 71.8 97.5 +6.1f 
  

1.7 

FXN-02 66.9 66.5 93.1 +0.4f 
  

0.1 

FXN-03 67.9 66.5 86.3 5.1 
  

1.4 

FXN-04 71.3 69.9 96.6 8.6 
  

2.3 

FXN-05 70 67.6 97 7.3 
  

2.0 

FXN-06 67.6 65.5 94.7 4.8 
  

1.3 

FXN-07 65.2 63 93.6 2.5 
  

0.7 

FXN-08 74.6 73.5 96.4 11.9 
  

3.2 

FXN-09 75.5 73.3 99.2 12.7 
  

3.4 

FXN-10 86 82.7 111.8g 23.3 
  

6.3 

FXN-I154F 49.9 47.3 95.1 –12.9 0 
 

–3.5 

FXN-11 59.7 57.6 93 –3.1 9.9 
 

–0.8 

FXN-12 56.6 54.6 82.8 –6.2 6.7 
 

–1.7 

FXN-13 70.2 69.2 94.3 7.4 20.3 
 

2.0 

FXN-14 71 70.5 102.4g 8.2 21.1 
 

2.2 

FXN-15 71 69.9 99.3 8.2 21.1 
 

2.2 

FXN-16 70.4 69.5 106.9g 7.6 20.5 
 

2.1 

FXN-17 66.3 65.1 98.1 3.5 16.4 
 

1.0 

FXN-18 73.3 72.4 99.7 10.5 23.4 
 

2.8 

FXN-L198R 42.2 40 89 –20.5 
 

0 –5.6 

FXN-19 51.5 51.2 87.7 –11.2 
 

9.3 –3.0 

FXN-20 46.3 42.4 62.8 –16.5 
 

4.1 –4.5 

FXN-21 62.1 60.9 96.7 –0.7 
 

19.8 –0.2 

FXN-22 65.1 64 97.6 2.4 
 

22.9 0.6 

FXN-23 65.9 65 94.9 3.1 
 

23.7 0.9 

FXN-24 66.1 65 101.7g 3.4 
 

23.9 0.9 

FXN-25 58.8 58.3 91.1 –4.0 
 

16.6 –1.18 

FXN-26 66.3 65.5 97.9 3.5 
 

24.1 1.0 

a Measured during forward thermal unfolding (u) (i.e. heating). b Measured during reverse 

thermal folding (f) (i.e. cooling). c Calculated with respect to wild-type FXN. d Calculated with 

respect to FXN-I154F. e Calculated with respect to FXN-L198R. f The difference in melting 

temperature (ΔTm) for these variants is calculated with respect to non-6xHis-tagged wild-type 

frataxin (Tm,u = 66.5; Tm,f = 65.9). g Reversibility values higher than 100% are due to numerical 

errors in the calculation of fitted ellipticities, and complete reversibility is assumed. 
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i. Proteolytic resistance assay 

• Mass spectrometry 

Wild-type frataxin and the superstable FXN-10 variant (three samples: R1, R2 and R3) 

were incubated with trypsin at 37 °C, at an enzyme:protein ratio of 1:100 for 5, 10, 20 

and 60 min. The resulting peptides were desalted and resuspended in 0.1% formic acid 

using C18 stage tips (Millipore). Samples were analyzed in a hybrid trapped ion 

mobility spectrometry – quadrupole time of flight mass spectrometer (timsTOF Pro 

with PASEF, Bruker Daltonics) coupled online to a nanoElute liquid chromatograph 

(Bruker). Each sample (100 ng approx.) was directly loaded in a 15 cm Bruker 

nanoelute FIFTEEN C18 analytical column (Bruker) and resolved at 400 nl/min with a 

100 min gradient. The column was heated to 50 °C using an oven. 

• Data analysis 

Database searching was performed using MASCOT 2.2.07 (Matrixscience) through 

Proteome Discoverer 1.4 (Thermo) against a Uniprot/Swissprot database consisting of 

Homo sapiens entries, including the frataxin variants of interest. The following 

parameters were adopted for the searches: carbamidomethylation of cysteines (C) as 

fixed modification and oxidation of methionines (M) as variable modifications, 20 ppm 

of peptide mass tolerance, 0.05 Da fragment mass tolerance and up to 2 missed 

cleavages. Spectral counts, that is, the number of spectra matching to a certain protein 

in each sample, were used for the assessment of frataxin cleavage levels. 

Table 17. Protein stability assay by trypsin degradation and mass spectrometry analysis shows 

decreased proteolysis for the engineered variant FXN-10 compared to wild-type frataxin. 

Spectral counts refer to peptide-spectrum match (PSM), i.e. peptides identified after protein 

digestion. The data shown is the average over three replicas followed by its standard deviation. 

Variant 
Spectral counts 

5 min 10 min 20 min 1h 

wild-type FXN 109.3 ± 335.3 200 ± 46.6 224.0 ± 31.0 271.3 ± 45.0 

FXN-10 31.7 ± 6.8 37.7 ± 10.1 51.0 ± 2.6 74.3 ± 13.6 

j. Binding of frataxin variants to Zn2+/ppIX and FeS assembly complex 

• Expression and purification of 15N/13C labelled proteins 

The recombinant plasmid pG-S21a (purchased from GenScript Biotech) encoding 

between restriction sites NdeI and XhoI for residues 91-210 of FXN-10 bearing a 

N-terminal 6xHis tag, was transformed into BL21 (D3) E. coli competent cells, plated 

on Luria-Bertani (LB) broth-ampicillin agar plates and incubated overnight at 37 °C. A 
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single colony from each plate was picked and then resuspended in an aqueous solution 

of 10 mL of LB broth (Lennox); this process was repeated in triplicate. Subsequently, 

the suspensions were incubated at 37 °C for 6-8 hours. Next, 200 μL of each of these 

preinocula were transferred to 200 mL of minimal M9 media (24 mM Na2HPO4, 11 mM 

KH2PO4, 4.3 mM NaCl, 2mM MgSO4, 0.1 mM CaCl2, 200 mg/L thiamine, 10 mg/L 

ampicillin, 10 mg/L biotin, and 50 mg/L ampicillin) supplemented with trace metal 

mix composition[260], along with 1 g/L 15NH4Cl (≥98 atom % 15N, Sigma-Aldrich) for 

uniform 15N labelling and 2 g/L D-glucose. These cultures were then incubated 

overnight at 37 °C. Subsequently, these precultures were added to 1.5 L of minimal M9 

media and incubated again at 37 °C until the OD reached values between 0.4–0.6. 

Induction was carried out by adding 10 μL of 0.5 M isopropyl 

β-D-1-thiogalactopyranoside (IPTG) and growth continued overnight at 25 °C. The 

subsequent cell harvest and purification steps followed the protocol described in 

previous sections. 

Uniform 15N/13C labelled human frataxin was prepared following the experimental 

procedure described previously by the Precision Medicine and Metabolism Lab at CIC 

bioGUNE [200] and used as a reference. Briefly, the recombinant plasmid pGS21a 

(purchased from GeneScript Biotech) encoding for residues D91 to A210 of wild- type 

human frataxin fused via a thrombin cleavage site to a N-terminal 6xHis-GST tag was 

transformed into E. coli BL21(DE3) competent cells, and expressed under control of the 

T7 promoter at 30 °C for about 18 h in minimal M9 media (24 mM Na2HPO4, 11 mM 

KH2PO4, 4.3 mM NaCl, 2mM MgSO4, 0.1mM CaCl2, 200 mg/L thiamine hydrochloride, 

100 mg/L kanamycin) supplemented with trace metal mix composition [260], along 

with 1 g/L 15NH4Cl (≥98 atom % 15N, Sigma-Aldrich) for uniform 15N labelling and 

3 g/L D-glucose or, optionally, for the production of samples bearing uniform 13C 

labelling with 2 g/L D-glucose-13C6 (≥99 atom % 13C, Sigma-Aldrich) as the only 

nitrogen and carbon source, respectively. 

For protein purification, the cell pellet was thawed and resuspended in lysis buffer (20 

mM Tris pH 8, 120 mM NaCl, 2 mM imidazole, 10% glycerol, 0.1% triton-X100, and 

one tablet of cOmplete™EDTA-free protease inhibitor cocktail), and incubated for 

about 30 min on ice prior completing cell lysis by ultrasonication on ice for a total time 

of 2.5 min (Vibracell VC505 sonicator, 14 mm diameter probe). The cell debris was 

removed by ultracentrifugation at 60 kg. The soluble fraction was passed through a 

0.22 μm filter and loaded onto 3 mL cobalt-charged NTA agarose column equilibrated 

with lysis buffer before extensive cleaning with washing buffer (20 mM Tris pH 8, 120 

mM NaCl, 2 mM imidazole, and 10% glycerol) for at least 20 column volumes before 

elution of the protein from the column in one step in presence of 200 mM imidazole in 

the washing buffer. For subsequent imidazole removal the pooled fractions were 

desalted using a Sephadex™G-25 column equilibrated with 20 mM Tris pH 8, 120 mM 

NaCl, and 10% glycerol. Subsequently, the 6xHis-GST tag was cleaved by incubation 
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with thrombin at room temperature for 6 h applying 2 units of the enzyme per mg of 

target protein. Traces for uncleaved protein were removed by a second affinity 

chromatography step before loading the sample onto a Sd75/16/600 gel filtration 

column for final polishing. The apparent elution volume was 76.5 mL. The purity of 

the obtained protein (13.8 kDa) was monitored using SDS-PAGE (5%-20% gradient 

gel) and the concentration was determined spectrophotometrically (using an 

extinction coefficient ε of 26930 cm-1 M-1) and by a Bradford assay. 

• Expression and purification of FeS assembly complex 

The FeS assembly complex prepared was composed of the iron-cluster assembly 

enzyme (ISCU, residues His36 to C-terminal Lys167, 15.0 kDa), human mitochondrial 

cysteine desulfurase (NFS1, residues Leu56 to C-terminal His457, 47.8 kDa, theoretical 

pI = 6.7), and human LYR motif-containing protein 4 (LYRM4, residue Arg6 to C-

terminal Thr91, 10.6 kDa), all required for the de novo synthesis of iron-sulfur (Fe-S) 

clusters within mitochondria responsible for maturation of both, mitochondrial and 

cytoplasmic [2Fe-2S] and [4Fe-4S] proteins, respectively. The construct of ISCU was 

cloned into pET28a vector (purchased from GenScript Biotech), whereas LYRM4 and 

NFS1 were cloned into pCDFDuetTM-1 plasmid (purchased from GenScript Biotech) 

containing two multiple cloning sites. Co-transformed BL21 E. coli cells for in vivo 

formation of the FeS assembly complex were obtained from sequential chemical 

transformation. Given the high affinity for the complex formation only the construct 

for cysteine desulfurase NFS1 was bearing a N-terminal His-tag (MGSSHHHHHH-, 

followed by a small linker and a TEV cleavage site SQDPNSSSG-ENLYFQG-). Thus, 

during the initial affinity step both other components were captured and co-purified 

further when bound to that bait protein (providing a secondary affinity support). 

Under applied buffer conditions (50 mM HEPES Na at pH 8.0, 120 mM NaCl), the 

hydrodynamic radii of the complex (about 73.4 kDa) observed by gel filtration 

resembled the size of a di-trimeric complex (as observed in the orthorhombic unit cell 

of the complex crystal structure (PDB ID 6NZU). The calculated extinction coefficient 

for the di-trimer complex (2 x 655 residues, 146.2 kDa) is 2 x 57.760 M-1 cm-1. Lysis of 

the cells were performed by a freeze and thaw cycle at -80 °C followed by sonication 

in the absence of any detergent in the buffer. Due to the basic character of LYR motif-

containing protein 4 (LYRM4, pI = 10.7) and the iron-sulfur cluster assembly enzyme 

(ISCU, pI = 8.8), a digestion step with benzonase at 25 °C was mandatory to get rid of 

bound RNA/DNA contamination that would otherwise strongly interfere during the 

subsequent purification. After an initial affinity capture step using NTA resin charged 

with cobalt the concentrated elute was polished by gel filtration using a Sd200/16/600 

column (preparative grade). 
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• Sample preparation 

Frataxin variants were transferred into 50 mM HEPES Na pH 8.0, 120 mM NaCl, and 

100 μM TCEP using PD-10 desalting columns packed with Sephadex G-25 resin (GE 

Healthcare) followed by concentration to about 300 μM using a 12 mL Vivaspin device 

(cutoff 10 kDa). Samples for NMR supplemented with 7% D2O were inserted into 

regular 5 mm tubes. The final protein concentrations were determined 

spectrophotometrically at 280 nm, using extinction coefficients of 26930 M-1 cm-1 and 

25440 M-1 cm-1 for the wild-type protein and the FXN-10 mutant, respectively.  

Protoporphyrin IX (ppIX) was purchased from Frontier Scientific (Product Number: 

P562-9; CAS Number: 553-12-8). 

• NMR data acquisition 

For monitoring titration with increasing amounts of either Zn(AcO)2/ppIX or FeS 

assembly complex, a series of 2D sofast HMQC experiments [261] with band-selective 
HN excitation for fast T1 recovery were acquired at 298 K on a 600 MHz Bruker 

Avance III and a Bruker Avance III 800 MHz spectrometer equipped with a 5 mm TXI 

probe and a 5 mm TCI cryoprobe, respectively. The chemical shifts of the proton-

bearing carbons and their attached protons of human wild-type frataxin and the 

FXN-10 variant were derived from 2D 13C-HSQC spectra recorded with 1JCH matched 

adiabatic full passage (AFP) pulses and echo/anti-echo gradients for coherence 

selection. All experiments were acquired at 298 K. 1H chemical shifts were directly 

referenced to added DSS (2,2-dimethyl-2-silapentane-5-sulphonic acid) and 15N 

chemical shifts were referenced indirectly relative to 1H using IUPAC ratios 

(https://bmrb.io/ref info/cshift.shtm). All NMR data were processed with NMRpipe 

[262] and analyzed with NMRFAM-Sparky [263]. 



Chapter 5  Thermodynamic Stabilization of Human Frataxin 

211 

 

 

Figure 20. 600 MHz 2D 15N-sf-HMQC spectra of u-15N,13C-labelled FXN-10 and u-15N labelled 

wild-type frataxin. Top: overall, the chemical shift coordinates of both proteins are quite 

different due to presence of 13 single-residue mutations in FXN-10. Therefore, 1HN/15N 

resonances are not unambiguously assigned for FXN-10 and all peaks are labelled with arbitrary 

numbers. Bottom: 2D 15N-sf-HMQC spectra with backbone amide and sidechain amide 

assignments (for indol Hε1/Nε, Asn Hγ1,2/Nγ and Gln Hδ1,2/Nδ, respectively) of wild-type frataxin. 
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Figure 21. 800 MHz 2D 13C-HSQC spectra of FXN-10 and constant time (ct) multiplicity-edited 

2D 13C-HSQC spectra of wild-type frataxin (methyl groups region). Despite the presence of 13 

mutations in FXN-10, the resonances for the methyl groups superimpose reasonably well, 

suggesting that the packing of the protein core is very similar. 

 

Figure 22. 600 MHz 2D 15N-sf-HMQC spectra of u-15N,13C-labelled FXN-10 (arbitrary residue 

numbers due to lack of assignment) in the presence of increasing Zn2+ concentrations. 
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Figure 23. Signal intensity ratios and chemical shift perturbations (CSP) observed for a) u-
15N,13C-labelled FXN-10 (arbitrary residue numbers due to lack of assignment), and b) u-15N-

labelled wild-type frataxin in the presence of Zn2+ and protoporphyrin IX (ppIX). Top: signal 

intensity ratios extracted from 2D 15N-sf-HMQC spectra. Bottom: CSP plot shows the 

characteristic changes found at the C-terminus of helix α1 upon addition of a binder and 

indicates Zn2+/ppIX binding. 
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Figure 24. Signal intensity ratios and chemical shift perturbations (CSP) observed for a) 

u-15N,13C-labelled FXN-10 (arbitrary residue numbers due to lack of assignments), and 

b) u-15N-labelled wild-type frataxin in the presence of FeS assembly complex. Top: signal 

intensity ratios extracted from 2D 15N-sf-HMQC spectra. Bottom: consistent with the slow 

exchange signature of the spectra, no changes of the chemical shifts are observed, except around 

residue K171 in the wild-type. This residue (substituted by Thr in FXN-10) stablishes transient 

interactions with N172 that might be differently populated in the presence of the FeS assembly 

complex. 
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Figure 25. 800 MHz 2D non-constant time 13C-HSQC spectra of u-15N,13C-labelled FXN-10 in the 

presence of increasing concentrations of the FeS assembly complex. Regions of typical chemical 

shifts for A) sidechain methine, methylene and methyl moieties as well as B) Hα and aromatic 

proton-bearing carbons, are displayed. The complete spectra are shown in the top left insert. 

The intensities of the C–Hx=1-3 resonances clearly decrease upon ISCU/NFS1/LYRM4 addition 

without any alteration of their chemical shift coordinates, evidencing binding to the FeS 

assembly complex. 
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Figure 26. A) High resolution crystal structures of the homodimeric human 

FXN/NFS1/ISD11/ACP/ISCU-Zn2+ complex (PDB ID: 6NZU). Frataxin (FXN) is located between 

the ISCU and NFS1protomers. B) Each monomer contains a Zn2+ ion bound to ISCU, a 

pyridoxalphosphate (PLP) cofactor for the cysteine desulfurase NFS1, and a long chain fatty acid 

(40-phosphopantetheine) of ACP inserting into the helical center of the LYRM4 subunit. 

Mapping of backbone chemical shift perturbations (CSP) onto the NMR solution model (C) and 

to bound frataxin in the FeS assembly complex (D) locates only effected site around residue K171 

located in the flexible loop β5/α2 facing outwards into the solvent. The color code is proportional 

to the standard deviation scale from the average value, as indicated in the bar legend (x: average 

value, in green).
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1. Introduction  

Evolution often prioritizes function over robustness in numerous naturally occurring 

proteins [264]. This tendency can lead to challenges such as reduced solubility, 

diminished thermal stability, and issues with expression in heterologous systems, 

ultimately impacting the quantity of functional protein [265,266]. The industrial use of 

numerous protein-based therapeutics and catalysts is often restricted due to their 

limited stability, highlighting the growing interest in protein stabilization research 

[267,268]. While traditional methods such as directed evolution are effective in 

enhancing certain protein characteristics, they can demand considerable resources and 

workforce [269,270]. In recent times, computational tools have been crafted to mirror 

the advantages of directed evolution with less need for hands-on experimentation 

[97,271–273]. One such tool, PROSS [97] (protein repair one-stop shop), combines 

evolutionary data with Rosetta's physics-driven energy calculations to remodel 

protein sequences based on their 3D structures. This has demonstrated improved 

solubility and thermal resistance in a range of native enzymes. Moreover, the rise of 

deep learning in protein modeling has paved the way for the development of novel 

natural protein variants. This includes the use of language models tailored for 

generating sequences specific to enzyme family or functions [273], convolutional 

neural networks that employ structural details to predict enhanced function mutations 

[272], and the introduction of simpler neural networks that guide combinatorial 

directed evolution processes [274].  

Using deep learning-based methodologies for engineering protein sequences has 

proven highly effective in the production of novel proteins that exhibit enhanced levels 

of expression, solubility, and precision compared to initial designs [212,213,273]. A 

remarkable example is ProteinMPNN, recognized for its ability to generate stable 

sequences for designed backbones. Additionally, when applied to native backbones, it 

yields sequences that likely align more closely with intended structures than their 

original counterparts [213]. Therefore, ProteinMPNN has the potential to become a 

general-purpose tool to boost protein stability through sequence alterations. To 

validate this possibility, the widely recognized protease from the Tobacco etch virus 

(TEV) has been used as a benchmark protein.  

TEV protease is extensively utilized in biotechnological applications to perform 

specific cleavage between glutamine and serine within its recognition sequence 

(ENLYFQ/S). This cleavage action serves to remove purification tags from 

recombinantly produced proteins. However, the practical use of TEV is often hindered 

by limited solubility, low thermostability, and suboptimal catalytic activity, leading to 

prolonged incubation times and incomplete cleavage. The core objective of this study 

is to leverage the capabilities of ProteinMPNN to optimize the stability of TEV 

protease, addressing its inherent limitations. The initial focus is on an autolysis-
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resistant S219D variant [275] of TEV protease known as TEVd, which provides a 

reliable starting point for further enhancements. 

ProteinMPNN uses a protein structure as an input to generate sequences that are 

predicted to idealize that given structure. The method relies solely on structural 

information and lacks access to functional insights. Thus, for ProteinMPNN-designed 

sequences to maintain their function, additional information is required. This work 

explores various approaches to preserve functionality throughout the design process, 

incorporating different levels of residue conservation and proximity to the active site 

in the mutation process.  

This study has been developed as part of a research secondment at the Baker lab at the 

Institute for Protein Design (University of Washington). 

2. Results and discussions 

a. Solubility and activity enhancement 

Overcoming TEV protease's solubility issues is vital for enhancing its use in 

biotechnological applications. In response to this, a series of TEV protease variants 

were designed using information on evolutionary conservation within the TEV 

protease family and ProteinMPNN as a primary tool. The main goal of this design 

campaign was to enhance solubility without compromising the inherent activity of the 

protease.  

Different design sets were generated, preserving the identity of not only active site but 

also highly conserved residues (Fig. 1; see Methods). In short, 144 TEV protease 

variants were generated with ProteinMPNN by mutating non-active site residues 

located at least 7 Å away from the active site. Additionally, positions were ranked 

according to their conservation in the multiple sequence alignment, and the top 30, 50 

or 70% most conserved ones were fixed during design. All of them were predicted by 

AlphaFold to adopt a TEV-like structure with high confidence (pLDDT scores of the 

variants > 87.5; pLDDT score of native variant = 90). These designs showed sequence 

identities ranging from 55 to 85% with respect to the native variant. 
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Figure 1. Design strategy for enhancing the expression and stability of the tobacco etch virus 

(TEV) protease. The first panel shows the data guiding the design, including the 3D structure of 

the protein and evolutionary insights derived from a multiple sequence alignment. The 

subsequent selection process for the design space prioritizes the preservation of enzyme native 

function. Ligand-binding site residues are selected based on their proximity to the ligand, using 

as reference the substrate-bound model of X-ray structure with PDB code 1LVM. The structure 

and fixed positions are then inputted into ProteinMPNN. The sequences are then predicted 

using AlphaFold, filtered and experimentally validated.  

Synthetic genes containing ProteinMPNN-generated designs and several previously 

reported variants with improved stability used as controls, were introduced and 

expressed in E. coli. Following expression, the resulting proteins were purified using 

affinity and size exclusion chromatography (SEC) techniques. Among the 144 designs, 

134 were successfully purified as monomers (Fig. 2a). Notably, designs featuring lower 

sequence conservation displayed higher soluble yields (Fig. 2b). In terms of soluble 

expression levels, 129 out 144 designs outperformed the parent variant TEVd (which 

had an average yield of 1 mg per liter of culture). The designs, on average, achieved a 

remarkable yield of 20.1 mg per liter of culture (Fig. 2c). 
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Fig 2. a) Size exclusion chromatography (SEC) absorbance profiles of 144 designed variants. 134 

of 144 designs were successfully expressed and purified via SEC. b) Lower evolutionary 

constraints are linked to increased soluble expression levels. The legend denotes the regions that 

were kept fixed during the design based on sequence conservation, with active site residues 

being fixed in all designs. c) Histogram distribution of expression yields for the 144 designs. The 

black dashed line indicates the yield for the parent TEVd.  

Catalytic activity was assessed using a previously described [270] coumarin derivative 

as a substrate, where 7-amino-4-trifluoromethylcoumarin was conjugated to the 

C-terminal of the substrate peptide Ac-ENLYFQ (Fig. 3a). Following protein 

purification, the enzyme was exposed to the peptide-coumarin substrate, and 64 

designs displayed fluorescence progress curves exceeding the background, indicative 

of substrate turnover (Fig. 4). Despite designs generated without evolutionary 

constraints exhibited improved soluble expression compared to the parent sequence 

(Fig. 2b), they remained inactive towards the peptide substrate (Fig. 3b). Conversely, 

designs that demonstrated the highest activity were those designed with residues 

showing at least 50% conservation fixed.  

 

Figure 3. a) Structure of the peptide-coumarin substrate, AFC, used to assay proteolytic activity. 

b) Designs made with the active site and residues showing at least 50% conservation fixed 

during design exhibited the highest catalytic activity. Raw apparent rate is reported in relative 

fluorescent units (RFU) per second. 
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Figure 4. Initial screening of proteolytic activity on a fluorescent reporter substrate. Designs 

generated by fixing active site only residues (in blue), and active site plus residues conserved at 

least 30% (in dark green), 50% (in light green) or 70% (in yellow) were assayed. Pure protein was 

normalized to 500 nM and assayed against a single concentration of substrate of 10µM AFC, in 

an initial screen for catalytic turnover.  

A detailed kinetic analysis was conducted on three highly active designs from the 50% 

conservation set – named hyperTEV56 (59 mutations), hyperTEV60 (62 mutations) and 

hyperTEV89 (58 mutations) – alongside the parent sequence TEVd [275]. The designs 

exhibited up to 26-fold enhanced catalytic efficiencies (kcat/KM) in comparison to TEVd 

(Table 1, Fig. 5). 
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Table 1. Kinetic parameters for three designed and parent TEV variants. Kinetic parameters 

were derived from a cleavage assay with the fluorescent peptide-coumarin substrate. 

Uncertainties are standard deviations of values calculated from fitting three technical replicates. 

  

Variant 
kcat 

(min-1) 

Km 
(μM) 

kcat/Km 
(μM-1 min-1) 

hyperTEV56 0.0106 ± 0.0005 1.4 ± 0.2 0.00770 

hyperTEV60 0.0140 ± 0.0020 1.4 ± 0.4 0.01000 

hyperTEV89 0.0050 ± 0.0001 2.0 ± 1.0 0.00240 

TEVd 0.0023 ± 0.0003 6.0 ± 3.0 0.00039 

 

Figure 5. Michaelis-Menten plots for three designed TEV variants and parent TEVd. Error bars 

represent standard deviations from three technical replicates.  

Next, the most promising designs were evaluated using a fusion protein substrate to 

test their efficiency in tag removal. Designs hyperTEV56, hyperTEV60, and 

hyperTEV89 were compared with a selection of previously engineered TEV protases 

[275–279]. Proteins were incubated at 30 °C with the fusion protein substrate 

MBP-TEVcs-FKBP-EGFP, where MBP is maltose-binding protein, TEVcs is the TEV 

peptide cleavage site (ENLYFQG), FKBP is FK506-binding protein, and EGFP is 

enhanced green fluorescent protein. Proteolysis was estimated by observing the 
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increase of the cleaved product through SDS-PAGE (Fig. 6a). Designs hyperTEV56 and 

hyperTEV60 showed notably superior cleavage rates than the parent TEVd, resulting 

in 50% cleaved product roughly after 4 hours, whereas TEVd achieved a similar yield 

in 24 hours (Fig. 6a and b). These designs also surpassed other known TEV variants, 

with results showing 30% turnover for superTEV, 15% for TEV1∆, and 50% for S219V 

after a 24-hour incubation period (Fig. 6b). Straight-line fitting of the product 

accumulation and substrate depletion reveal catalytic efficiencies that corroborate 

those determined in the peptide assay (Fig. 6c). The gains in catalytic efficiency are due 

to both increase in kcat, which could reflect a higher fraction of enzyme in a catalytic 

competent state, and decrease in KM, which could be related to better substrate binding 

properties.  

 

Figure 6. a) Diagram of TEV substrate (top) and product fluorescent gel image of TEV cleavage 

reactions at various time points (bottom). b) Plot of accumulated product normalized to 

fluorescent intensity of uncleaved substrate over time. Fluorescence intensity was quantified 

with ImageJ software. Designs hyperTEV56 and hyperTEV60 show increased turnover rate 

compared to previously reported variants. c) Straight-line fit for initial turnover rates in gel 

assay for hyperTEV60 and TEVd. Curves were fitted from monitoring substrate conversion for 

hyperTEV60 and production accumulation for TEVd. Error bars represent standard deviation 

from three technical replicates.  



Chapter 6  Improving protein expression, stability and activity of TEV protease 

229 

 

b. Thermal stability 

An approximate melting temperature of 84 °C for hyperTEV60 was measured by 

circular dichroism (CD) spectroscopy analysis, which is 40 °C higher than that of TEVd 

(Fig. 7a and c). To the best of our knowledge, this temperature surpasses any 

previously reported TEV variant’s melting temperature. To delve deeper into the 

stability of the designed variant, TEVd and the most active design, hyperTEV60, were 

subjected to incubation at 30 °C for various time intervals prior to their use in the 

aforementioned peptide-coumarin cleavage assay. Following a 4-hour incubation 

period, hyperTEV60 retains 90% of its initial cleavage activity, while TEVd’s activity 

dropped to just 15% of its original level (Fig. 7b). These findings suggest a substantial 

enhancement in benchtop stability. Collectively, these results underscore the 

capability of sequence design using ProteinMPNN to enhance the benchtop stability, 

thermostability, and catalytic activity of natural enzymes.  

 

Figure 7. a) CD melting temperature plots of designed and parent TEV (signal reported in molar 

residue ellipticity, MRE). b) Benchtop stability comparison of parent TEVd and designed variant 

hyperTEV60 assessed as the activity (normalized to the value at t = 0) measured after being 

incubated at 30 °C for a given time. c) CD spectra of hyperTEV60 and TEVd over a temperature 

gradient from 25 °C to 95 °C indicates enhanced resistance to thermal unfolding in 

ProteinMPNN design hyperTEV60. CD signal is reported in molar residue ellipticity (MRE). 
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c.  Molecular dynamics simulations analysis 

While catalytic and substrate-binding residues remained unchanged during 

ProteinMPNN design, notable improvements in catalytic efficiency with both peptide 

and protein substrates were observed. Mutations away from the active site can 

modulate catalytic activity by stabilizing catalytically productive conformations 

[280,281] or inducing global conformational shifts [282]. To investigate if the 

stabilization of functional conformations contributed to enhanced activity, 

microsecond molecular dynamics (µs-MDs) simulations were carried out on 

TEV-peptide complexes. These simulations revealed increased rigidity in loop regions 

throughout the designs compared to TEVd (Fig. 8 and 11a). Such backbone 

rigidification, especially in areas not directly involved in substrate binding, might be 

associated not only with the measured higher thermal stability, but also with allosteric 

enhancement of substrate binding, supported by the 2- to 3-fold lower KM values 

measured for the designed variants (Table 1). The region spanning residues 115 to 125 

(region 1 in Fig. 8) showed a qualitative correlation between rigidity and activity; 

hyperTEV60 exhibited the highest rigidity, while TEVd and a non-active design 

showed increased flexibility (Fig. 8 and 11a).  

 

Figure 8. Visualization of the atomic root-mean-square fluctuations (RMSF) of designed and 

native TEV variants. Rigidified regions with respect to TEVd are marked with numbered circles.  
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The catalytic mechanism of TEV involves a well-studied cysteine protease mechanism 

(Scheme 1). TEV protease operates through a catalytic triad consisting of cysteine 

(Cys151), histidine (His46), and aspartic acid (Asp81) residues. In this reaction, the 

cysteine residue acts as a nucleophile, initiating the cleavage by forming a bond with 

the carbon atom of the peptide bond in the substrate. Histidine plays a pivotal role, 

functioning as a general base to facilitate this nucleophilic attack with assistance of 

deprotonated aspartic acid. Simultaneously, the backbone NH groups of residues 

Gly149 and Cys151 form the oxyanion hole that stabilize the negative charge 

developed in the carbonyl oxygen at the transition state and subsequent tetrahedral 

intermediate in the first step, thus aiding in the efficient cleavage of the peptide bond. 

Collapse of this intermediate leads to release of the C-terminal product fragment and 

a covalent thioester enzyme-substrate complex. The second half of the reaction 

involves subsequent release of the N-terminal product fragment in the deacylation 

step, in which a water molecule acts as a nucleophile to hydrolyze the acyl-enzyme 

intermediate and regenerate the catalyst. This mechanism allows TEV protease to 

efficiently and specifically cleave peptide bonds in target substrates upon recognition 

of the ENLYFQG sequence (the  symbol denotes the cleavage site). 

 

Scheme 1. Mechanism of peptide bond cleavage catalyzed by TEV protease. The green 

star represents the fluorescent probe. 
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To assess the structural integrity of the TEV designs, specific catalytic distances (Fig. 9) 

were measured during the MD simulations. These distance measurements provided 

insights into the structural dynamics and catalytic competence of the TEV protease 

variants. Interestingly, all the designed variants exhibited a reduced amount of 

catalytically competent Cys-His dyad conformations compared to native TEV protease 

(TEVd). However, a notable exception was observed in the case of hyperTEV60, which 

displayed an increased occurrence of such competent conformations, correlating with 

its enhanced catalytic efficiency (kcat), as depicted in Figure 10. 

These differences offer insights into how ProteinMPNN might facilitate activity 

increase without explicitly introducing function-enhancing design elements. It is also 

plausible that a primary contributor to the improved kcat in hyperTEV60 is the 

increased fraction of the protein existing in a catalytically competent state on a broader 

structural scale, including not only the catalytic triad but also a more global 

conformational context within the protein, not directly observable in the timescale of 

MD simulations (10 µs). This global perspective underscores the multifaceted nature 

of enzyme design and its capacity to optimize enzymatic function through intricate 

structural adaptations. 

 

Figure 9. Key distances within the TEV catalytic triad (in green sticks) as seen in a selected 

snapshot from a MD simulation of TEVd protease. Peptide substrate is shown in gray sticks. The 

grey sphere represents the center of mass of the carboxylate oxygens. 
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Figure 10. Histogram distributions of catalytic distances obtained from MD simulations on 

designed and parent TEV protease variants.  

d. AlphaFold ensemble analysis  

To further validate the observations from MD simulations and gain insight into the 

structural implications of the designs, an analysis using AlphaFold ensemble 

predictions was carried out. For many protein types, including globular proteins and 

protein complexes, it has been established that pLDDT scores from AlphaFold are 

highly consistent with RMSF profiles from MD simulations [283]. In this context, the 

per-residue pLDDT analysis provided an in-depth examination of structural 

confidence across the sequence. Consistent patterns of structural rigidity and 

flexibility, similar to those observed in the MD simulations (Fig. 11), were apparent.  
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Figure 11. Root-mean-square fluctuations (RMSF) of designs in region 1 shows a positive 

qualitative correlation between activity and rigidification, with TEVd and a design inactive on 

the peptide substrate showing the highest flexibly in this region. c) Per-residue pLDDT values 

from AlphaFold ensemble prediction exhibit similar trends of increased rigidification in more 

active designs. 

3. Conclusions 

In this work, we demonstrate the efficacy of ProteinMPNN, guided by sequence and 

structural information, in enhancing the expression, stability, and function of native 

proteins. For the TEV protease, several variants were identified with improved soluble 

yield and thermostability compared to the native protein. Notably, the most optimized 

TEV protease designs exhibited superior apparent catalytic efficiency on both peptide 

and protein substrates compared to the parent enzyme and other documented 

variants. Although the ideal number of residues to conserve for maintaining (and 

potentially augmenting) function might vary and require empirical determination, the 

simplicity of this method combined with the computational efficiency and user-

friendliness of ProteinMPNN makes the process straightforward.  
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In alignment with the results shown in the previous chapter, where in silico designs 

yielded variants like FXN-10 with exceptional thermostability and resistance to 

proteolytic degradation, the presented methodology based on ProteinMPNN for 

sequence design and AlphaFold for structure prediction proves its efficacy. The 

success of this approach, both in TEV protease and frataxin cases, emphasizes the 

efficiency, simplicity, and robustness of utilizing ProteinMPNN and deep learning 

methods in protein design. Importantly, our approach drastically reduces the number 

of variants that need experimental validation, making it a more efficient alternative to 

traditional high-throughput screenings. These advancements in protein design 

broaden potential applications, both in enhancing biotechnological innovations and in 

facilitating the development of specialized therapeutic approaches. For industry, 

enhanced proteins, such as the designed TEV variants, have the potential to 

revolutionize synthetic processes in an environmentally friendly manner. 

Simultaneously, these developments present opportunities for innovative medical 

treatments, as demonstrated by potential therapies for conditions such as Friedreich’s 

ataxia. 

4. Methods 

a. Fixed residue selection 

Several approaches were tested to maintain functionality throughout the design 

process. Initially, and in order to preserve the catalytic machinery and 

substrate-binding site of the enzyme, the amino acid identities of the first shell 

functional positions were kept constant. Active site residues were identified based on 

their proximity to the substrate in the ligand-bound crystal structure of the autolysis 

resistant S129D variant (PDB ID: 1LVM), specifically those with backbone atoms 

within 7 Å or sidechain atoms within 6 Å of the substrate. As a second step, the 

residues most conserved within the protein family were also held fixed, considering 

that even residues distal to the active site can make significant contributions to 

function [281] This conservation was determined through multiple sequence 

alignments (MSAs). The MSA was constructed using four iterative HHblits searches 

[84] against the UniRef30 database (accessed June 30, 2020) at E-value cutoffs of 1e-50, 

1e-30, 1e-10, and 1e-4, and the final results was filtered for 90% identity redundancy, 

50% coverage, and 30% minimum query identity. From this alignment, amino acid 

frequencies at each position were determined, highlighting the most prevalent amino 

acid at each location. Positions were ranked based on the conservation of the 

predominant amino acid, and the top segments (30%, 50%, and 70%) of these positions 

were retained during the sequence design process.  
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b. ProteinMPNN sequence design and structure prediction  

For each set of fixed residues, sequence design on a fixed backbone was carried out 

using ProteinMPNN. The crystallographic structure of TEVd (PDB ID: 1LVM) was 

used as structural input to ProteinMPNN, with the active site and conserved residues 

being excluded from the design. The amino acid cysteine was not allowed to be 

introduced during the design process. Throughout the design, three temperature 

settings (0.1, 0.2, and 0.3) were explored to balance native sequence recovery and 

sequence diversity. Sequence generation was accomplished using a ProteinMPNN 

model that was calibrated with a noise threshold of 0.2 Å on protein backbone training 

sets. A total of 144 sequences were produced under different constraints:  

• 24 variants with only the active site residues fixed (183 mutational 

hotspots) 

• 24 variants with both the active site and the top 30% most conserved 

residues fixed (155 mutational hotspots) 

• 48 variants with both the active site and the top 50% most conserved 

residues fixed (94 mutational hotspots) 

• 48 variants with both the active site and the top 70% most conserved 

residues fixed (51 mutational hotspots)  

After design, the sequences underwent structural prediction using AlphaFold [78], 

using model 3 with 6 iterative recycling steps. Predictions for both the new designs 

and the native TEV proved to be of low confidence when relying solely on a single 

sequence with few recycling iterations. It became evident that utilizing MSAs for 

structural templating was crucial for precise predictions. To generate MSAs of each 

design for structure prediction, the MSA of the parent sequence or designed variants 

were used. The AlphaFold models for all the designed sequences exhibited 

Cα RMSD < 2.0 Å and pLDDT scores > 85.0. They were also predicted to maintain 

essential structural components within their active site, leading to their subsequent 

selection for experimental testing.  

c. Expression and purification of TEV designs 

Double-stranded DNA fragments encoding the designs (codon-optimized for bacterial 

expression) were purchased from Integrated DNA Technologies (IDT) as eBlocks™ 

Gene Fragments. Following the Golden Gate cloning protocol [212], the DNA 

fragments encoding design sequences and including overhangs suitable for a BsaI 

restriction digest were cloned into a custom pET29b(+) target vector containing lethal 

ccdb gene, and C-terminal SNAC42 and hexahistidine tags (#191551, Addgene). This 

yielded final expressed sequences as: MSHHHHHHSG<design>GS. Vectors 
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containing TEV designs were transformed into E. coli BL21(DE3) by heat shock. DNA 

was incubated on ice with competent cells for 30 minutes, followed by 10 second heat 

shock at 42 °C, and 2-minute incubation on ice. 100 μL rich medium (super optimal 

broth with catabolite repression) was added to transformed cells and samples were 

incubated at 37 °C, 1050 rpm on a Heidolph shaker for 1 hour. Entire transformations 

were transferred to 900 μL of TBM-5052 autoinduction expression medium containing 

50 μg/mL kanamycin. Expression cultures were incubated at 37 °C, 1050 rpm for 20 

hours. Pellets were harvested by centrifugation at 4,000 g for 10 minutes and lysed 

with BPER lysis reagent containing 6.25 Units/mL benzonase (4 uL / 40 mL at 250 

U/μL), 0.1 mg/mL lysozyme, and 1 mM PMSF. Lysate was collected by centrifugation 

at 4000 xg for 20 minutes and applied to Ni-NTA resin that was equilibrated with wash 

buffer (20 mM Tris-HCl, 300 mM NaCl, 25 mM imidazole, pH 8.0). The resin was 

washed with 25 column volumes (CV) of wash buffer. Protein was eluted with 250 μL 

of elution buffer (20 mM Tris-HCl, 300 mM NaCl, 540 mM imidazole, pH 8.0) and 

further purified via size exclusion chromatography (SEC) in an S75 5/150 GL increase 

column (GE Healthcare). Protein collected from SEC was normalized to 1 μM where 

possible.  

In scale-up experiments, 50 mL cultures of TBM-5052 autoinduction media with 

50 μg/mL kanamycin were inoculated with a scrape of transformed competent cells 

from glycerol stock and grown at 37 °C, 200 rpm for 20 hours. Cells were harvested by 

centrifugation at 10000 xg for 10 minutes, resuspended in 30 mL of wash buffer (20 mM 

Tris-HCl, 300 mM NaCl, 25 mM imidazole, pH 8.0) containing 0.01 mg/mL Dnase, 

0.1 mg/mL lysozyme, and a protease inhibitor tablet (Thermo Scientific Pierce), and 

lysed by sonication. Lysate was collected via centrifugation at 18000 xg for 40 minutes 

and applied to Ni-NTA resin that was equilibrated with wash buffer. The resin was 

washed with 30 CV of wash buffer. Protein was eluted with 4 mL of elution buffer and 

concentrated to 1 mL in a 3 kDa protein concentrator (Millipore Sigma). Concentrated 

protein was purified by SEC as described above. 

d. Expression and purification of MBP-TEVcs-FKBP-EGFP 

construct 

The protease substrate FKBP-EGFP was cloned into an E. coli expression vector 

containing an N-terminal maltose binding protein (MBP), a TEV protease recognition 

site, and a C-terminal His-6 tag. The FKBP-EGFP coding sequence was obtained from 

Addgene #106924, with a 4X GGS linker between FKBP and EGFP. Vector containing 

the protease substrate was transformed into E. coli BL21(DE3) by heat shock. Cells 

were transferred to 4 0.5 L LB medium cultures with 50 μg/mL kanamycin and 

incubated at 37 °C, 200 rpm until optical density reached 0.5 AU, at which point 

expression was induced with 1 mM IPTG. Temperature was reduced to 18 °C and cells 

were incubated for an additional 18 hours. Cells were harvested by centrifugation at 
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10000 xg for 10 minutes, resuspended in 30 mL of wash buffer (20 mM Tris-HCl, 

300 mM NaCl, 25 mM imidazole, pH 8.0) containing 0.01 mg/mL Dnase, 0.1 mg/mL 

lysozyme, and a protease inhibitor tablet (Thermo Scientific Pierce), and lysed by 

sonication. Lysate was collected via centrifugation at 18000 xg for 40 minutes and 

applied to Ni-NTA resin that was equilibrated with wash buffer. The resin was washed 

with 30 column volumes (CV) of wash buffer. Protein was eluted with elution buffer 

until resin no longer appeared yellow and concentrated to 1 mL in a 3 kDa protein 

concentrator (Millipore Sigma). Concentrated protein was purified by SEC as 

described above. 

e. Kinetic characterization of designed proteases  

Designs were initially screened for activity on a peptide-coumarin conjugate substrate 

(WuXi) of the TEV recognition sequence (ENLYFQ) fused to a fluorescent coumarin 

derivative (7-amino-4-trifluoromethylcoumarin). The N-terminus of the peptide bears 

an acetyl modification and the C-terminus is conjugated to the coumarin group via an 

amide bond. Initial activity screen was performed in 50 mM Tris-HCl, 50 mM NaCl, 

pH 8.0 buffer containing freshly prepared 2 mM DTT. Reactions contained 500 nM 

protein and 10 μM substrate at a total volume of 30 μL. Protein and substrate were 

rapidly mixed and monitored for fluorescence at excitation 400 nm, emission 492 nm 

at room temperature (RT) for 5 hours in a BioTek Synergy Neo2 microplate reader.  

For detailed kinetic characterization, reactions were performed in 50 mM Tris-HCl pH 

8.0 containing 50 mM NaCl, 1 mM EDTA, and freshly prepared 2 mM DTT. For TEV 

redesigns, reactions contained 50 nM protein and substrate concentration ranging 

from 0.1 μM to 10 μM at a total volume of 30 μL. Protein and substrate were rapidly 

mixed and monitored for fluorescence at excitation 400 nm, emission 492 nm at RT for 

2 hours in a BioTek Synergy Neo2 microplate reader. Fluorescent signal was converted 

to concentration of cleaved coumarin product using a calibration curve of 

7-amino-4-trifluoromethylcoumarin. Reactions were performed in triplicate and each 

technical replicate was separately fitted to a Michaelis Menten model. Expressed 

uncertainty in kcat and KM is the standard deviation between technical replicates. 

f. Screening of designed proteases on fusion protein 

MBP-TEVcs-FKBP-EGFP  

Reactions were performed in 50 mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, pH 8.0 

buffer containing freshly prepared 2 mM DTT. Reactions contained 60 nM protein and 

substrate concentrations ranging from 2 μM to 17 μM. Reactions were incubated at 

30 °C and at 0, 1, 2, 4, 8, and 24 hours, 10 μL aliquots were quenched in 10 μL of 

2X Laemmli loading buffer and subsequently frozen in liquid nitrogen. Samples were 

analyzed by SDS-PAGE and imaged for EGFP fluorescence at 488 nm on a LI-COR 
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Odyssey M imager. Band intensities were quantified with ImageJ software and 

converted to concentration using a standard curve prepared from known amounts of 

cleaved substrate with fluorescence gel imaging. A straight-line fit was applied to the 

initial velocities using GraphPad Prism. Points represent the averages of three 

technical replicates and error bars represent the standard deviations. 

g. Benchtop stability characterization of TEV redesigns  

Samples of purified enzyme were incubated at 30 °C for 0.5, 1, 2, 4, 8, 18, or 24 hours 

before being used in the previously described peptide-coumarin cleavage assay. The 

activity of samples was defined as initial rate of turnover and normalized to initial rate 

at incubation of t = 0 hours. 

h. Circular dichroism spectroscopy  

To determine secondary structure and thermostability of the designs, far-ultraviolet 

circular dichroism (CD) measurements were carried out on a JASCO J-1500 instrument 

using a 1 mm pathlength cuvette. Samples of purified protein were prepared at 

1.0 mg/mL in 20 mM sodium phosphate, 50 mM potassium fluoride. The temperature 

of the sample was scanned from 25 °C to 95 °C with full spectrum scans from 190 nm 

to 260 nm performed after each 10 degree increment. The signal at 216 nm was plotted 

over the temperature gradient and fitted to a Boltzmann sigmoidal curve with 

GraphPad Prism 9. Tm values were calculated from the inflection point. 

i. Molecular Dynamics simulations 

Structures generated with AlphaFold [78] were used as starting geometries. For the 

protein-substrate complexes, substrate peptide was superimposed onto AlphaFold 

structures using the crystallographic structure of catalytically active TEV protease 

(PDB ID: 1LVM) as a template. Simulations were carried out with AMBER 20 [150] 

implemented with the ff14SB force field for the protein and substrate peptide, and the 

general Amber force field (GAFF2) [284] for the substrate peptide C-terminal 

fluorescent probe (7-amino-4-(trifluoromethyl)coumarin). Parameters were generated 

with the antechamber module of AMBER, combining ff14SB and GAFF2 force fields 

and with partial charges set to fit the electrostatic potential generated with HF/631G(d) 

using the RESP method [285]. The charges were calculated according to the Merz-

Singh-Kollman scheme using Gaussian 16 [176]. Catalytic histidine residue (H46) was 

modeled in its Nδ1-H tautomeric state (corresponding to residue name HID in Amber). 

Initial structures were neutralized with either Na+ or Cl– ions and set at the center of a 

cubic TIP3P [286] water box with a buffering distance between solute and box of 10 Å.  

A two-stage geometry optimization approach was performed. The first stage 

minimizes only the positions of solvent molecules and ions, and the second stage is an 
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unrestrained minimization of all the atoms in the simulation cell. The system was then 

heated by incrementing the temperature from 0 to 300 K under a constant pressure of 

1 atm and periodic boundary conditions (PBC). Harmonic restraints of 10 kcal mol-1 

were applied to the solute, and the Andersen temperature coupling scheme [155,179] 

was used to control and equalize the temperature. The time step was kept at 1 fs during 

the heating stages, allowing potential inhomogeneities to self-adjust. Water molecules 

were treated with the SHAKE algorithm [287] such that the angle between the 

hydrogen atoms is kept fixed through the simulations. Long-range electrostatic effects 

were modeled using the particle mesh Ewald method [157]. An 8 Å cut-off was applied 

to Lennard-Jones interactions. The system was equilibrated for 2 ns with a 2 fs time 

step at a constant volume and temperature of 300 K. Ten independent production 

trajectories were then run for additional 1000 ns under the same simulation conditions, 

leading to accumulated simulation times of 10 μs for each system. Root mean square 

(rms) fluctuations and interatomic distance analyses were carried out with the cpptraj 

module of AMBER. 

 

This work has been published in the following article: 

Improving Protein Expression, Stability, and Function with ProteinMPNN. K. H. 

Sumida, R. Núñez-Franco, I. Kalvet, S. J. Pellock, B. I. M. W., L. F. Milles, J. Dauparas, 

J. Wang, Y. Kipnis, N. Jameson, A. Kang, J. De La Cruz, B. Sankaran, A. K. Bera, G. 

Jiménez-Osés, D. Baker. J. Am. Chem. Soc. 2024, (article ASAP)
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The main conclusions derived from this Doctoral Thesis are summarized below: 

1. A detailed study of the binding between carbohydrates of different complexities 

(blood group antigens and monosaccharides) and human galectins (h-Gal) 

through Molecular Dynamics (MD) simulations has revealed the very different 

characteristics of such protein-glycan complexes, particularly allosteric 

communication networks and binding site hydration. While homodimeric h-Gal-1 

and, to a lesser extent, h-Gal-7 show significant long-range dynamic effects 

extending from the binding sites to very distant regions of the proteins – 

corroborated by relaxation NMR spectroscopy – lectins with spatially separated 

carbohydrate recognition domains (CRD) such as chimeric galectin h-Gal-3 and 

tandem galectins h-Gal-4 and h-Gal-8 do not show this behavior despite the high 

similarities existing among their binding sites. Additionally, hydration around the 

bound ligand has been modeled to be also strikingly different, particularly in the 

case of h-Gal-3. Such differences might be at the origin of the markedly different 

behavior observed experimentally for those galectins in terms of binding 

enthalpies and entropies, and the compensation between them determining 

affinity towards carbohydrates. 

2. The weak (micro- to millimolar affinity) and highly dynamic binding observed 

experimentally between lectins – both galectins and DC-SIGN – and simple 

carbohydrates has been corroborated computationally by MD simulations in the 

microsecond scale. Hence, unbinding events have been frequently observed 

during the simulations, which makes mandatory the propagation of multiple 

trajectories instead of single, very long ones as it is common practice nowadays in 

molecular recognition studies. 

3. A minimal ligand binding epitope has been found computationally, and verified 

experimentally, for the recognition of carbohydrate ligands to DC-SIGN lectin. 

Such minimal motif, present in natural monosaccharide binders D-mannose and 

L-fucose, is characterized by three hydroxyl groups arranged in a very particular 

axial-equatorial-equatorial orientation in space, and was discovered to exist also 

in L-galactose and D-rhamnose. These findings provide a rationale for designing 

new inhibitors for DC-SIGN with enhanced properties. 

4. The use of multiple binding modes, as well as structural ensembles derived from 

MD simulations, enhance the capabilities of the NMR-based CORCEMA method 

to interpret STD information. This approach provides a broader view of 

carbohydrate binding to lectins than the use of single structural models since, as 

verified through both experimental and computational studies, such molecular 

recognition event is frequently weak and intrinsically dynamic in nature. 
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5. The combined used of evolutionary information and deep-learning models for 

sequence design (ProteinMPNN) and structure prediction (AlphaFold) has 

demonstrated to be exceedingly successful in improving the properties of very 

different proteins, such as human frataxin and TEV protease. The rational selection 

of mutable positions by imposing evolutionary (i.e. discarding highly conserved 

amino acids) and functional constraints based on structure (i.e. forbidding 

mutation at the surroundings of the active site or certain binding motifs), virtually 

guarantees success when sampling sequence with ProteinMPNN, as verified by 

the high confidence achieved by the AlphaFold models and, most importantly, by 

experimental assays. With an average mutation rate of only 10% across the entire 

amino acid sequence for human frataxin and 27% for TEV protease, which 

involves substitution in around 60% of the allowed mutational hotspots in both 

cases, ProteinMPNN has demonstrated an unparalleled accomplishment in fold 

idealization through sequence design. 

6. Our approach for protein design has achieved impressive improvements in 

protein expression yield and stability (both thermodynamic and proteolytic, 

relevant for homeostasis), which are crucial for their potential use as 

biotechnological tools or therapeutic agents. Moreover, and although not imposed 

explicitly as a driving force or used as a selection method, the catalytic efficiency 

of TEV has been improved, and the native biological activity of frataxin has been 

preserved. Hence, our rational deep-learning based strategy constitutes a 

promising approach for protein design and engineering, complementing powerful 

high-throughput techniques such as random mutagenesis or directed evolution.
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This chapter compiles all the articles that were published in collaboration with other 

research groups during the doctoral studies.  

1. Precise Installation of Diazo-Tagged Side-Chains on Proteins to Enable 

In Vitro and In-Cell Site-Specific Labeling (Bioconjugate Chemistry. 2020, 

31, 1604-1610) 

 

Abstract: The chemistry of diazo compounds has generated a huge breadth of 

applications in the field of organic synthesis. Their versatility combined with their 

tunable reactivity, stability, and chemoselectivity makes diazo compounds desirable 

reagents for chemical biologists. Here, we describe a method for the precise installation 

of diazo handles on proteins and antibodies in a mild and specific approach. 

Subsequent 1,3-cycloaddition reactions with strained alkynes enable both bioimaging 

through an in-cell “click” reaction and probing of the cysteine proteome in cell lysates. 

The selectivity and efficiency of these processes makes these suitable reagents for 

chemical biology studies. 

Specifically, my contribution was to perform quantum mechanical 

calculations of activation barriers and frontier molecular orbitals involved in 

the reactions. These calculations provided insights into a 1,3-dipolar 

cycloaddition reaction involving strained cyclooctynes with diazo 

compounds. 



Appendix Collaborations 

251 

 

2. Unravelling the Time Scale of Conformational Plasticity and Allostery 

in Glycan Recognition by Human Galectin-1 (Phys. Chem. Chem. Phys. 

2022, 24(4), 1965-1973) 

 

Abstract: The interaction of human galectin-1 with a variety of oligosaccharides, from 

di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been 

scrutinized by using a combined approach of different NMR experiments, molecular 

dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and 

receptor-based NMR experiments assisted by computational methods allowed 

proposing three-dimensional structures for the different complexes, which explained 

the lack of enthalpy gain when increasing the chemical complexity of the glycan. 

Interestingly, and independently of the glycan ligand, the entropy term does not 

oppose the binding event, a rather unusual feature for protein-sugar interactions. 

CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding 

affected residues far from the binding site and described significant changes in the 

dynamics of the protein. In particular, motions in the microsecond-millisecond 

timescale in residues at the protein dimer interface were identified in the presence of 

high affinity ligands. The dynamic process was further explored by extensive MD 

simulations, which provided additional support for the existence of allostery in glycan 

recognition by human galectin-1. 

My contribution in this work involved the analysis of allosteric 

communication through microsecond molecular dynamic simulations. These 

calculations aided at understanding dynamic processes at the molecular level, 

shedding light on allostery mechanisms and their implications in 

carbohydrate binding by lectins. 
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3. Galectin-4 N-terminal domain binding preferences toward A and B 

antigens with different peripheral core presentations (Front. Chem., 2021, 

9, 193) 

 

Abstract: The tandem-repeat Galectin-4 (Gal-4) contains two different domains 

covalently linked through a short flexible peptide. Both domains have been shown to 

bind preferentially to A and B histo blood group antigens with different affinities, 

although the binding details are not yet available. The biological relevance of these 

associations is unknown, although it could be related to its attributed role in pathogen 

recognition. The presentation of A and B histo blood group antigens in terms of 

peripheral core structures differs among tissues and from that of the antigen-

mimicking structures produced by pathogens. Herein, the binding of the N-terminal 

domain of Gal-4 toward a group of differently presented A and B oligosaccharide 

antigens in solution has been studied through a combination of NMR, isothermal 

titration calorimetry (ITC), and molecular modeling. The data presented in this paper 

allow the identification of the specific effects that subtle chemical modifications within 

this antigenic family have in the binding to the N-terminal domain of Gal-4 in terms of 

affinity and intermolecular interactions, providing a structural-based rationale for the 

observed trend in the binding preferences. 

I contributed to this study by performing MD to provide insights into the 

mechanisms and structural dynamics of carbohydrate binding to the 

N-terminal carbohydrate recognition of human galectin 4.  
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4. The two domains of human galectin-8 bind sialyl-and fucose-containing 

oligosaccharides in an independent manner. A 3D view by using NMR 

(RSC Chem. Biol., 2021, 2, 932-941) 

 

Abstract: The interaction of human galectin-8 and its two separate N-terminal and 

C-terminal carbohydrate recognition domains (CRD) to their natural ligands has been 

analysed using a synergistic combination of experimental NMR and ITC methods, and 

molecular dynamics simulations. Both domains bind the minimal epitopes 

N-acetyllactosamine (1) and Galβ1–3GalNAc (2) in a similar manner. However, the 

N-terminal and C-terminal domains show exquisite and opposing specificity to bind 

either Neu5Ac- or Fuc-containing ligands, respectively. Moreover, the addition of the 

high-affinity ligands specific for one of the CRDs does not make any effect on the 

binding at the alternative one. Thus, the two CRDs behave independently and may 

simultaneously target different molecular entities to promote clustering through the 

generation of supramolecular assemblies. 

 In this work, I performed MD simulations to refine a model for h-Gal-8 full 

length and explore its structure and dynamics. The simulations revealed 

interactions of the peptide linker with different domains of the protein. 

Simulations also captured ligand unbinding events, thereby providing 

insights into binding affinity dynamics, which correlated with experimental 

dissociation constants.  
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5. Structural insight into the unique conformation of cystathionine 

β-synthase from Toxoplasma gondii (Comput Struct Biotechnol J., 2021, 19, 

3542-3555) 

 

Abstract: Cysteine plays a major role in the redox homeostasis and antioxidative defense 

mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health 

is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine 

biosynthesis in this parasite is the reverse transsulfuration pathway involving two key 

enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from 

T. gondii (TgCBS) catalyzes the pyridoxal-5-́phosphate-dependent condensation of 

homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can 

perform alternative reactions that use homocysteine and cysteine as substrates leading to 

the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the 

intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal 

heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe 

the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the 

same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex 

with reaction intermediates. A complementary molecular dynamics analysis revealed a 

unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our 

data provides one missing piece in the structural diversity of CBSs by revealing the so far 

unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain 

distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These 

results pave the way for understanding the mechanisms by which TgCBS regulates the 

intracellular redox of the parasite, and have far-reaching consequences for the functional 

understanding of CBSs with similar domain distribution. 

In this work, I performed  MD simulations to investigate the catalytic behavior 

of TgCBS. A principal component analysis (PCA) was performed on the MD 

simulations to uncover significant structural changes within the homodimeric 

protein, such as longitudinal and lateral displacements, as well as rotational 

transformations of Bateman domains within the protein. These results 

contribute to a deeper understanding of CBS enzyme dynamics and its 

catalytic mechanisms with implications for therapeutic interventions. 
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6. Unveiling the role of pyrylium frameworks on π-stacking interactions a 

combined ab initio and experimental study (Phys. Chem. Chem. Phys. 2022, 

24(4), 1965-1973) 

 

Abstract: A multidisciplinary study is presented to shed light on how pyrylium 

frameworks, as π–hole donors, establish π–π interactions. The combination of CSD 

analysis, computational modelling (ab intitio, DFT and MD simulations) and 

experimental NMR spectroscopy data provides essential information on the key 

parameters that characterize these interactions, opening new avenues for further 

applications of this versatile heterocycle. 

My contribution in this work involved performing MD simulations to explore 

the structure and dynamics of a pyrylium tetrafluoroborate in DMSO, 

complementing quantum mechanical calculations and NMR experiments
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7. Deconvoluting the directed evolution pathway of engineered 

acyltransferase LovD (Chem. Cat. Chem, 2022, 14(4)) 

 

Abstract: Pharmaceutical industry is progressively replacing the chemical synthesis of 

cholesterol-lowering agents by enzymatic processes. The directed evolution of 

acyltransferase LovD was a breakthrough in the synthesis of simvastatin, although 

little is known about how the in vitro evolution path raised up an engineered variant 

(LovD9) with excellent biocatalytic properties (high catalytic efficiency and stability 

under reaction conditions). In this study, we unveil how different mutation clusters 

scattered across LovD9 primary sequence specifically contribute to enhance both 

enzyme kinetics and stability. To this aim, simvastatin synthetic and hydrolytic 

activities, kinetic parameters and thermostability of several engineered variants were 

assessed. Through a rational combination of those clusters of mutations, we generated 

the variant LovD−BuCh2 whose catalytic efficiency is around 90 % of that obtained 

with LovD9 but with 15 less mutations. Supported by molecular dynamics simulations, 

this work demonstrates the cumulative effect of mutations at both the active site and 

the substrate entrance channel to enhance binding of the acyl donor and speed up the 

acyl transfer step from the acyl-enzyme complex to monacolin J acid, while 

simultaneously minimizing detrimental side-reaction pathways, substrate inhibition 

and increasing thermostability. 

My contribution in this study can be found in the MD simulation section, 

where the enhanced catalytic activity of LovD variants resulting from directed 

evolution is explored. Previous MD analysis revealed improved activity in 

certain variants due to the broader motions of catalytic Tyr188. This was 

absent in crystallography. The study extended this by evaluating different 

variant ability to transfer the α-dimethylbutyryl group to acyl acceptor MJA 

in their acyl-enzyme complex forms. Models, derived from crystal structures, 

underwent MD simulations, revealing intramolecular interactions optimizing 

substrate orientation. LovD6, a highly evolved variant, maintained an optimal 

distance for efficient binding to MJA. MD studies also uncovered structural 

changes caused by evolution and elucidated the impact of specific mutations 

on catalytic efficiency. Evolution-induced mutations narrowed the substrate 

entrance channel, reducing water exposure and enhancing product formation. 
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8. 1, 2-OxaThia-3-Azoles (Reference Module in Chemistry, Molecular Sciences 

and Chemical Engineering, 2021) 

 

In this article, the chemistry of 1,2,3-dithiazoles and 1,2,3-oxathiazoles is covered from 

2009 to 2018 inclusive. 1,2,5-Oxathiazoles have not been investigated during this 

period. The chemistry of 4-chloro-1,2,3-dithiazolo-5-imines, -5-ones, -5-thiones, 

and -5-ylidenes that can readily obtained from Appel salt (4,5-dichloro-

1,2,3-dithiazolium chloride) has been greatly expanded with many contributions from 

the Koutentis and Rakitin groups. The structure and electronic properties of bis-

dithiazolyl radicals have been extensively investigated by the combination of many 

experimental and theoretical techniques. The reactions of cyclic sulfimidates and 

sulfamidates have been profusely investigated, achieving a dominant position in the 

preparation of a- and b-amino acids, amino alcohols, amines and fused bicycles with 

high control of chemo-, regio- and diastereoselectivity.  

My contribution to this book chapter was to review all the recent literature 

regarding 1,2,3-dithiazoles, and write the corresponding section. 
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9. A Computational Perspective on Molecular Recognition by Galectins 

(Curr Med Chem., 2022, 29(7), 1219-1231) 

 

Abstract: This article presents an overview of recent computational studies dedicated 

to the analysis of binding between galectins and small-molecule ligands. We first 

present a summary of the most popular simulation techniques adopted for calculating 

binding poses and binding energies and then discuss relevant examples reported in the 

literature for the three main classes of galectins (dimeric, tandem, and chimera). We 

show that simulation of galectin-ligand interactions is a mature field that has proven 

invaluable for completing and unraveling experimental observations. Future 

perspectives to further improve the accuracy and cost-effectiveness of existing 

computational approaches will involve the development of new schemes to account 

for solvation and entropy effects, which represent the main current limitations to the 

accuracy of computational results. 

My contribution to this review was to summarize theoretical methods 

commonly used to model galectin-ligand complexes, particularly MD 

simulations, and write the manuscript. 
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10. Distal Mutations Shape Substrate-Binding Sites during Evolution of a 

Metallo-Oxidase into a Laccase (ACS Catalysis, 2022, 12, 5022-5035) 

 

ABSTRACT: Laccases are in increasing demand as innovative solutions in the 

biorefinery fields. Here, we combine mutagenesis with structural, kinetic, and in silico 

analyses to characterize the molecular features that cause the evolution of a 

hyperthermostable metallo-oxidase from the multicopper oxidase family into a laccase 

(kcat 273 s−1 for a bulky aromatic substrate). We show that six mutations scattered across 

the enzyme collectively modulate dynamics to improve the binding and catalysis of a 

bulky aromatic substrate. The replacement of residues during the early stages of 

evolution is a stepping stone for altering the shape and size of substrate-binding sites. 

Binding sites are then fine-tuned through high-order epistasis interactions by inserting 

distal mutations during later stages of evolution. Allosterically coupled, long range 

dynamic networks favor catalytically competent conformational states that are more 

suitable for recognizing and stabilizing the aromatic substrate. This work provides 

mechanistic insight into enzymatic and evolutionary molecular mechanisms and spots 

the importance of iterative experimental and computational analyses to understand 

local-to-global changes. 

My specific contribution to this research involved computational aspects, 

including conducting docking studies and MD simulations. Additionally, I 

carried out analyses related to allosteric regulation using protein residue 

network analysis. This computational framework allowed for a 

comprehensive exploration of the enzyme behavior, offering valuable insights 

into its structural dynamics, substrate binding, and allosteric interactions. The 

integration of these computational techniques contributed significantly to the 

overall understanding of the enzymatic and evolutionary processes described 

in the study. 
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11. Structures of the Inhibitory Receptor Siglec-8 in Complex with a High-

Affinity Sialoside Analogue and a Therapeutic Antibody (JACS Au, 

2023, 3(1), 204–215) 

 

Abstract: Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an 

inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell 

degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated 

ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory 

responses in diverse diseases, such as allergic airway inflammation. Herein, we have 

deciphered the molecular recognition features of the interaction of Siglec-8 with the 

mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with 

the potential to suppress mast cell degranulation. The three-dimensional structure of 

Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, 

solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate 

recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding 

mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-

Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray 

crystallography. Our results show that the sialoside ring of NSANeuAc binds to the 

canonical sialyl binding pocket of the Siglec receptor family and that the high affinity 

arises from the accommodation of the NSA aromatic group in a nearby hydrophobic 

patch formed by the N-terminal tail and the unique G–G′ loop. The results reveal the 

basis for the observed high affinity of this ligand and provide clues for the rational 

design of the next generation of Siglec-8 inhibitors. Additionally, the specific 

interactions between Siglec-8 and the N-linked glycans present on the high-affinity 

receptor FcεRIα have also been explored by NMR. 

In this study I contributed with MD simulations to assess the conformational 

stability of the complex formed between Siglec-8 and NSANeu5Ac. The 

simulations, covering 500 ns, confirmed the stability of the crystallographic 

binding pose. Key polar contacts, salt bridges involving the sugar sulfate 

group, and hydrogen bonds were maintained, aligning with the NMR data 

obtained for sulfated ligands. The presence of the sulfate group was found to 

be essential for stabilizing interactions within the canonical sialic acid binding 

site of Siglec-8. Additionally, removing the sulfate group led to disrupted 

interactions and increased motion of Neu5Ac. This MD analysis validated the 

crystallographic interactions and provided insights into the ligand-receptor 

binding dynamics. 
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12. Expanding the Substrate Scope of Acyltransferase LovD9 for the 

Biosynthesis of Statin Analogues (Chem. Eur. J., 2023, 29(42)) 

 

Abstract: This study identifies new acyl donors for manufacturing statin analogues 

through the acylation of monacolin J acid by the laboratory evolved acyltransferase 

LovD9. Vinyl and p-nitrophenyl esters have emerged as alternate substrates for LovD9-

catalyzed acylation. While vinyl esters can reach product yields as high as the ones 

obtained by α-dimethyl butyryl-S-methyl-3-mercaptopropionate (DMB-SMMP), the 

thioester for which LovD9 was evolved, p-nitrophenyl esters display a reactivity even 

higher than DMB-SMMP for the first acylation step yet the acylation product yield is 

lower. The reaction mechanisms were elucidated through quantum mechanics (QM) 

calculations. 

In the context of this study, I conducted Quantum Mechanical calculations on 

the mechanism underlying catalytic Ser76 acylation with various thioester and 

ester surrogate models. A significant shift was observed in the acylation 

mechanism from the conventional stepwise process observed with thioesters 

and alkyl/vinyl esters to a concerted mechanism in the case of p-nitrophenyl 

(pNP) esters. These calculations not only shed light on the unique reactivity of 

pNP esters but also studied different acyl donors, including thioesters, as 

novel substrates for the biosynthesis of statins catalyzed by engineered LovD9.  
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13. Thermodynamic Stabilization of Human Frataxin 

 

Abstract: Recombinant proteins and antibodies are routinely used as drugs to treat 

prevalent diseases such as diabetes or cancer, while enzyme replacement and gene 

therapies are the main therapeutic intervention lines in rare diseases. In protein-based 

therapeutics, optimized in vivo stability is key as intrinsic denaturation and 

intracellular proteostatic degradation will limit potency, particularly in treatments 

requiring a sustained action, while clearance mechanisms may limit the amount of 

circulating protein. In vivo stability is ultimately correlated with the intrinsic 

thermodynamic stability of the biomolecule, but this is difficult to optimize because it 

often goes at the expense of reducing protein activity. Here, we have used in silico 

engineering approaches to thermodynamically stabilize human frataxin, a small 

mitochondrial protein that acts as an allosteric activator for the biosynthesis of Fe-S 

clusters, whose genetically-driven impairment results in a rare disease known as 

Friedreich ataxia. Specifically, we developed an efficient thermostability engineering 

computational approach that combines information on amino acid conservation, the 

Rosetta energy function, and two recent artificial intelligence tools – AlphaFold and 

ProteinMPNN – to produce thermodynamically stabilized variants of human frataxin. 

Such protein variants rescued the large destabilization exerted by well-known 

pathological mutations, with an increase over 20 °C in the melting temperature and a 

thermodynamic stabilization of more than 3 kcal·mol-1 at the physiological 

temperature. This stability surplus is translated into an enhanced resistance to 

proteolysis, while maintaining the protein fully functional. This case-study highlights 

the power of our combined computational approach to generate optimized variants, 

adequate for protein-based therapeutics. 

 In this work, I performed the computational design and energetic evaluation 

of frataxin variants, together with the experimental characterization of 

designs, including expression, purification and thermodynamic 

characterization. 
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14. Improving Protein Expression, Stability, and Function with ProteinMPNN 

 

Abstract: Natural proteins are highly optimized for function but are often difficult to 

produce at a scale suitable for biotechnological applications due to poor expression in 

heterologous systems, limited solubility, and sensitivity to temperature. Thus, a 

general method that improves the physical properties of native proteins while 

maintaining function could have wide utility for protein-based technologies. Here, we 

show that the deep neural network ProteinMPNN, together with evolutionary and 

structural information, provides a route to increasing protein expression, stability, and 

function. For both myoglobin and tobacco etch virus (TEV) protease, we generated 

designs with improved expression, elevated melting temperatures, and improved 

function. For TEV protease, we identified multiple designs with improved catalytic 

activity as compared to the parent sequence and previously reported TEV variants. Our 

approach should be broadly useful for improving the expression, stability, and 

function of biotechnologically important proteins. 

My contribution in this study was related to the TEV design campaign. I 

computationally designed part of the variants and characterized them 

experimentally, including expression, stability and catalytic activity.  
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