
Computers in Industry 155 (2024) 104065

A
0
n

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

Implementation of a scalable platform for real-time monitoring of machine
tools
Endika Tapia a,∗, Unai Lopez-Novoa a,b, Leonardo Sastoque-Pinilla a,
Luis Norberto López-de-Lacalle a,c

a Advanced Manufacturing Center for Aeronautics, University of the Basque Country, Biscay Science and Technology Park, 202, Zamudio, 48170, Spain
b Department of Computer Languages and Systems, University of the Basque Country, Rafael Moreno pasealekua, 2-3, Bilbao, 48013, Spain
c Department of Mechanical Engineering, University of the Basque Country, Torres Quevedo enparantza s/n, Bilbao, 48013, Spain

A R T I C L E I N F O

Keywords:
Big data
Aeronautical manufacturing
Machine tool
Scalable data processing
Parallel and distributed computing

A B S T R A C T

In the new hyper connected factories, data gathering, and prediction models are key to keeping both
productivity and piece quality. This paper presents a software platform that monitors and detects outliers in
an industrial manufacturing process using scalable software tools. The platform collects data from a machine,
processes it, and displays visualizations in a dashboard along with the results. A statistical method is used
to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways:
firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the
suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the
scalability of the platform with higher data processing needs than the previous ones.
1. Introduction

Nowadays, industrial environments are embracing Information and
Communication Technologies (ICT) techniques in order to digitize and
optimize all sorts of processes (Givehchi et al., 2017). This trend,
usually referred to as the fourth industrial revolution (Industry 4.0)
has been followed by many companies and, thus, in 2021, the Euro-
pean Union stated that the fifth revolution (Industry 5.0) was already
underway. This transition would be not just digital, but also green.

There are several ICT techniques used in these industrial revolu-
tions, like Big Data and Internet of Thing (IoT), but most of them have a
common pillar: to analyze the vast amounts of information produced by
the increasingly digitized industrial environments (Ariyaluran Habeeb
et al., 2019). This is possible thanks to the capabilities of current
manufacturing machines, which allow to collect monitoring data that
can be analyzed in real time or offline (Qi and Tao, 2018).

In the case of the aeronautical manufacturing sector, the main target
of using ICT techniques is to improve productivity, material quality and
reduce manufacturing costs (Wang et al., 2022b). Given the stringent
tolerance requirements for workpieces in aeronautical manufacturing,
it is crucial to put in place measures that enable predictive maintenance
or online defect correction with the shortest refresh times and lowest
possible latencies (Dalzochio et al., 2020).

∗ Corresponding author.
E-mail address: endika.tapia@ehu.eus (E. Tapia).

1 CFAA: https://cfaa.eus.

This work presents the design and implementation of a software
platform that monitors an aeronautical machining centre in order to
identify outliers in the fabrication process in real time. The platform
is built using open source tools and deployed in several Linux-based
virtual machines, to allow for scalability. An industrial protocol is
used to retrieve data from a manufacturing machine at high speed
and Apache software tools for data treatment, processing, storage and
visualization. The aim is to detect outliers during a machining process
and to show them graphically on a dashboard.

This work has been carried out within the Advanced Manufacturing
Centre for Aeronautics1 (CFAA, for its Spanish initials). CFAA works
in areas like additive manufacturing (Sendino et al., 2020), machining
process (Rodríguez et al., 2021), non-conventional processes (del Olmo
et al., 2022), and laser mechanisms (Wang et al., 2019), among others.
The main objective of the centre is to develop novel techniques and
technologies that can improve the production processes for propulsion
systems and engine components.

Beyond this work and in the scope of Industry 4.0, there are many
others that demonstrate the successful application of Big Data and scal-
able technologies. For example, Canizo et al. (2019), propose a platform
that performs real-time analysis of industrial manufacturing systems,
which they validate with data from press machines. Ji et al. (2019),
optimize the machining conditions while simultaneously choosing the
vailable online 19 December 2023
166-3615/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.compind.2023.104065
Received 20 October 2023; Received in revised form 13 December 2023; Accepted
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

15 December 2023

https://www.sciencedirect.com/journal/computers-in-industry
https://www.sciencedirect.com/journal/computers-in-industry
mailto:endika.tapia@ehu.eus
https://cfaa.eus
https://doi.org/10.1016/j.compind.2023.104065
https://doi.org/10.1016/j.compind.2023.104065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.104065&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 1. Components of the Ibarmia™ THR 16 (Ibarmia THR 16, 2022).
optimal machine tool and cutting tool for a given process using Big Data
and artificial neural networks. Moldovan et al. (2021), use Apache
Spark to analyze defects related to discrete manufacturing processes.
Landi et al. (2020) present a platform to analyze machining tool data
using open source components and a custom-made web interface. Shi
et al. (2021) build a software pipeline using popular Apache tools to
monitor a machine tool with a Siemens interface.

In addition, there are two relevant trends in this area that should be
noted. One is the development of Digital Twins, software applications
that replicate the activities of a machine. These are used, e.g., to detect
deviations in industrial processes (Fuller et al., 2020) and to predict the
behavior of machines in real time (Wang et al., 2022a). The other trend
is the shipping of monitoring tools with the machine tools themselves.
Examples of these are Celos (2023) and Active Cockpit (2023) from
Bosh Rexroth and DMG Mori respectively.

The remainder of this paper is structured as follows: Section 2
presents the machine being monitored in detail. The software tools
and architecture of the monitoring platform are presented in Section 3,
followed by a description of the algorithm used to detect outliers in
Section 4. A performance evaluation of the platform is described in
Section 5 and, finally, conclusions and future research directions are
presented in Section 6.

2. Machining process

The Ibarmia THR 16 (2022) is a machining centre that combines
different technologies in a single machine: milling, drilling, turning,
gear cutting and grinding. It is considered a Multiprocess machine, as it
allows machining different types of pieces with the same tool-set. This
reduces the quantity of parts that must be manufactured in batches,
which shortens the production life cycle and reduces the amount of
shifts between machines in a factory.

Fig. 1 highlights the most distinctive components of the THR 16.
The milling machine is comprised of linear axes X, Y and Z and
rotary axes A and C. A workpiece to be machined is placed on top
of the rotatory table (circle shaped component in the bottom), which
enables movement along the X and Y axes. Rotary axes are available
to adjust the angular position of the machining tool and workpiece.
The spindle assumes responsibility for rotating the tool and accurately
2

Table 1
Monitored variables.

Variable name Description Dimensions

LOAD Axis drive load in % 6

POWER Drive power of the axis in W % 6

RPM Rotation speed (respect to maximum
speed) of the spindle in %

6

LOAD SPINDLE Spindle motor load in % 1

RPM SPINDLE Spindle motor revolutions in RPM 1

SPINDLE OVERRIDE Spindle drive override in % 1

RAPID OVERRIDE Rapid spindle drive override in % 1

TOTAL – 22

positioning and clamping it during turning operations. A video showing
the machine at work can be found online.2.

2.1. Monitored variables

The THR 16 has a Siemens® Sinumerik 840D SL computer numerical
control (CNC) integrated with a programmable logic controller (PLC)
that, among others, collects monitoring data in the form of a set of
variables.

The PLC can monitor up to 300 variables, including currents, hy-
draulic flows, temperatures, alarms, etc. From all these, those related
to the load, power, and rotational speed of the machine’s five axes
and the spindle are considered the most relevant ones because they
represent the state of the machine’s critical components and can reveal
issues during a manufacturing process. These variables are described in
Table 1. Variables like load, power and RPM have 6 dimensions, 5 of
them with the value for the X, Y, Z, A and C axes and the 6th one for
the spindle.

2.2. The OPC-UA protocol

Open Platform Communications Unified Architecture (OPC-UA) is
a cross-platform communication protocol intended for secure and reli-
able data exchange in the industrial automation space (Cavalieri and

2 Ibarmia THR16 Multiprocess: https://youtu.be/QioDWNN8S9c

https://youtu.be/QioDWNN8S9c


Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 2. Design of the software architecture.
Chiacchio, 2013). This protocol replaces an earlier version of OPC and
provides improved features for digitization, independent of platform
and manufacturer.

OPC-UA allows a constant data flow between multiple devices and
control applications with limited restrictions, as well as serving as
a means of communication between Supervisory Control and Data
Acquisition (SCADA) applications and sensors (Ferrari et al., 2018). For
this purpose, an OPC-UA environment will be considered as a network
of one or more clients and servers. The software side of the platform
will act as an OPC client and the PLC of the five-axis milling machine
as the OPC server.

It is important to note that OPC-UA operates as a bidirectional
protocol, allowing data exchange from both the server to the client and
vice versa. This capability enhances dynamic communication in indus-
trial automation. For example, an OPC client, serving as a supervisory
control system, can send instructions to the OPC server (e.g., the milling
machine’s PLC), enabling real-time adjustments like milling speed or
tool configurations.

On regards to security, OPC-UA supports Transport Layer Security
(TLS) or Secure Sockets Layer (SSL) to ensure safe and authenticated
data transfer, complemented by flexible access controls (Tapia et al.,
2023). Nevertheless, similar to many other industrial protocols, using
OPC-UA poses security challenges like encryption issues and addressing
potential discrepancies in software and hardware integration. These
challenges are set to be addressed by the regulations outlined by the
European Parliament (2023), highlighting the urgent need for improved
security in industrial environments.

In terms of capture frequency, OPC-UA is typically used to monitor
a reduced set of variables (from 1 to 5). According to the milling
machine specifications, the minimum sampling interval for 1 variable
is 100 ms, but this latency increases if more variables are requested.
This is explained in more detail in Section 5.1.1.

3. Monitoring platform

This section presents the software platform in two parts: Section 3.1
describes the software building blocks and 3.2 presents the design of the
infrastructure, including the connection between the different software
tools.

3.1. Software toolset

• Apache NiFi (2022) is a distributed Extract, Transform, Load
(ETL) tool that enables to create data flows between different
types of systems in a visual way. It allows to perform trans-
formations and cleaning on data by dragging and connecting
processors, the basic building block of NiFi. Each processor pro-
vides a different functionality, like retrieving data, applying a
filter or forwarding data.
3

• Apache ZooKeeper (2022) is a centralized service used to main-
tain configuration information and naming, as well as to provide
distributed synchronization and group services. The service will
implement consensus, group management, and presence protocols
so that the applications do not need to implement them on their
own.

• Apache Kafka (2022) is a data stream queuing system oriented
to publish, store, process and subscribe to streams of records
immediately. It is designed to distribute data streams to different
consumers while handling data streams from different sources.
Kafka is especially used for exchanging large amounts of data in
real time with low latency. Data is organized and stored in topics
(equivalent to a folder in a file system).

• Apache Spark Structured Streaming (Karau et al., 2015) is an
stream processing engine built on top of Apache Spark, an scal-
able, open source and unified data processing framework. Batch
data are aggregated and analyzed through the streaming process,
sometimes referred as the data stream (Karau et al., 2015).
Spark follows a manager/worker design, with a master process
and one (or more) worker process. The manager process sets up
the environment and schedules job executions. Worker processes
execute the actual data processing.

• InfluxDB (2022) is a NoSQL, open source time series database.
It has been chosen for the storage of timestamped data due to
its high performance and reliability. Also, it provides a SQL-like
language (InfluxQL) with which is possible to query data from
measurements, equivalent to tables in relational databases.

• Grafana (2022) is a software that provides visualization by creat-
ing dashboards and graphs from multiple sources, including time
series databases. Its user-friendly interface allows the creation
of different types of panels that can be used to depict the data
generated by the machinery over the course of a given period of
time.

3.2. Design

The architecture of the platform, built with the software tools
described in Section 3.1, is depicted in Fig. 2. It should be noted that
only one data stream is being considered, which starts in the monitored
machining centre and ends in a graphical visualization.

The software building blocks are deployed in different virtual ma-
chines, forming a distributed system architecture. All these machines
form a Kafka cluster, which works in a distributed way to store, receive
and send messages between its different brokers. The brokers will be
managed and coordinated by Zookeeper, who will also determine a
broker to act as the topic leader.

First of all, a set of variables is obtained from the milling machine
through OPC-UA. These variables are extracted and transformed by
NiFi, which builds data streams through processors. In this platform,
two custom processors have been configured to establish a data flow
between the OPC Server and NiFi.



Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 3. Sample graph chart with load values of the axes and spindle.

Fig. 4. Sample gauge charts with load percentages of the axes and spindle.

NiFi sends the batch data in JSON format to a Kafka topic, which will
keep the data until its consumed by Spark Streaming, ensuring the order
of delivery. Next, Spark’s Structured Streaming library processes and
analyzes batch data using DataFrames. The outliers will be detected by
applying the technique described in Section 4. Then, the data processed
by Spark is sent to InfluxDB for its storage, sorted by timestamp.

Finally, visualization is provided by Grafana, which obtains data
by making queries to InfluxDB. A dashboard shows the 22 variables
described in Section 2.1, mainly with two types of charts: graphs and
gauges. An example of the former is depicted in Fig. 3, with some load
values of the axes and the spindle captured in real time, and an example
for the latter in Fig. 4, with several gauges displaying the capacity of the
axes and the spindle of the THR 16 at a given moment.

4. Outlier detection technique

In its current state, the platform detects outliers produced in real
time for any of the monitored variables. To this end, the Inter-Quartile
Range (IQR) is implemented, a well know method to find outliers in
continuous data (Vinutha et al., 2018). IQR is used in many domains
as an analysis method and often as part of the Boxplot technique for
data representation (Bruce et al., 2020).

For a given set of variables, IQR will detect as outliers the values
that fall out of a set of given limits. For this purpose, it has to be trained
with data that represents the target environment.

Fig. 5 depicts the overall calculations of this technique: based on
an input dataset, IQR computes a range consisting of the difference
between the first and the third quartile for each variable. It is necessary
to select percentiles that correctly fit this case. Therefore, it has been
decided that the first quartile corresponds with the 25th percentile and
third quartile with the 75th percentile.

The IQR measure is considered to be:

𝐼𝑄𝑅 = 𝑄3 −𝑄1 (1)

where Q3 and Q1 represent the 3rd and 1st quartile for each variable.
Next, the lower and upper limits of each variable are calculated with
the Eqs. (2) and (3):

Lower limit = 𝑄1 − (1.5 ∗ 𝐼𝑄𝑅) (2)
4

Fig. 5. Boxplot representation of the IQR method.

Upper limit = 𝑄3 + (1.5 ∗ 𝐼𝑄𝑅) (3)

The limits of each variable are used to detect outliers with every
new piece of incoming data. In other words, each time Spark Streaming
receives a batch of variables, it will be compared to the limits extracted
from the dataset containing the historical data. Thus, values that are
beyond the lower or upper limit will be considered as outliers.

Finally, the state of a variable will be represented as a percentage
of the capacity at which a variable is working relative to the known
upper bound. Eq. (4) shows how to obtain the percentage.

Pct (capacity in %) = Current value
Upper limit ∗ 100 (4)

5. Performance evaluation

In this section, we present a set of tests that assess the performance
of the platform. Section 5.1 outlines experiments that evaluate the
platform’s performance in the context of the five-axis machine scenario
and Section 5.2 provides an evaluation of the platform’s performance
using a simulator. Section 5.3 presents an analysis on the module that
runs IQR, firstly on its capacity to detect outliers and secondly on the
overheads for its training.

In these tests, the IQR module has been trained with historical
records of various manufacturing processes (machining of different
pieces) conducted on the THR 16 over a two-year period. These records
contain data for the 300 variables monitored by the PLC and they were
collected at a frequency of 1 s.

In addition, the whole software infrastructure was running in vir-
tual machines (VM) hosted by a private cloud located within CFAA
premises (Sasiain et al., 2020). The Ibarmia™ THR 16 and the data
centre are communicated through a local Ethernet network. Every VM
had the same following specifications:

• Virtual Cores (CPUs): 2
• CPU frequency: 2.1 GHz
• RAM Memory: 8 GB
• Disk space: 128 GB
• Operating system: Ubuntu 20.04

Three types of VMs have been defined, each hosting a subset of
software tools:

• VM 1: NiFi, Spark Streaming manager, Zookeeper coordinator
• VM 2: Kafka broker, Spark Streaming worker
• VM 3: InfluxDB, Grafana

In this work, each VM of type VM2 hosts a single Spark Streaming
worker with multi-threading capabilities, which is able to use both
virtual cores. We also want to note that the data capture frequency
remains constant over time, both in transmission and monitoring.



Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 6. Blocks of time dissection.
T
C

T
C

5

b
m

d
o
c
d
T
(
t
d
f

p
F
s
d

Table 2
Time dissection of the whole pipeline while fetching data from the THR 16.

Number of variables Block 1 Block 2 Total

(1) (2) (3) (4)

1 12 ms 8 ms 13 ms 12 ms 0.045 s
5 43 ms 9 ms 47 ms 13 ms 0.112 s
10 82 ms 10 ms 83 ms 15 ms 0.190 s
22 152 ms 12 ms 177 ms 17 ms 0.358 s
50 356 ms 14 ms 322 ms 20 ms 0.712 s
100 629 ms 16 ms 524 ms 27 ms 1.19 s
300 1975 ms 20 ms 760 ms 39 ms 2.79 s

5.1. Evaluation using the Ibarmia™ THR 16 machine

The experimental results of this section were obtained while a
turbine blade was being manufactured, in order to detect outliers in
the machining process. One VM of each type has been used.

5.1.1. Analysis of the whole pipeline
The first test was a runtime analysis for the whole pipeline of

the software tools. To this end, the stages of the pipeline have been
separated in two blocks, as shown in Fig. 6:

• Block 1: Data captured from the machine using NiFi (1) and
queued in Kafka (2).

• Block 2: Data processed with Spark, stored in InfluxDB (3) and
visualized on Grafana (4).

We measured the time taken by each stage of the block when
retrieving batches of different sizes (i.e. a distinct set of variables from
the THR 16 was retrieved for each batch). Even if the 22 variables
described in Section 2.1 are the most relevant ones for the use case, we
gathered performance metrics for larger batches to test the scalability
of the platform.

Table 2 shows the average result of seven iterations. Results show
that both blocks of the pipeline take a similar amount of time, except
for the case of 300-variable large batches, where the data capture from
the machine takes much longer than any other stage of the process.

It can be concluded that the retrieval of data from the machine is
the main bottleneck for Block 1 and that the Spark processing takes the
most time for Block 2, as the time required to store and retrieve data
from InfluxDB is significantly smaller.

As a follow-up test, we performed an analysis of the CPU and
memory consumption of the whole toolset. Tests have been done for
batches of 50, 100 and 300 variables and were conducted using Linux’s
top command for a period of 2 min while all resources were up and
running.

Results for this test are shown in Tables 3–5 for batches of 50, 100
and 300 variables respectively. We can see that, in the three cases, the
most resource consuming tool is the Spark worker, due to its heavy use
of DataFrame data structures to process incoming data in real time. The
CPU use of InfluxDB increases considerably too with larger batches of
variables, but it is handled correctly with the current setup. We can
conclude that, overall, the setup of 3 VMs is enough to handle the
largest possible batch of variables coming from the machining centre.
5

w

Table 3
CPU and memory usage of the pipeline for batches of 50 variables.

Software tool VM 1 VM 2 VM 3

CPU RAM CPU RAM CPU RAM

Spark worker – – 65.8% 14.3% – –
Java (JVM) – 13.3% – 11.9% – 8.7%
NiFi 11.3% 12.4% – – – –
Spark manager 0.3% 3% 10.6% 2.9% – –
Kafka + Zookeeper 6.8% 8.9% 1.4% 5.9% – –
InfluxDB – – – – 32.7% 8.1%
Grafana – – – – 1.4% 1.2%

TOTAL 18.4% 37.6% 77.8% 35% 34.1% 18%

able 4
PU and memory usage of the pipeline for batches of 100 variables.
Software tool VM 1 VM 2 VM 3

CPU RAM CPU RAM CPU RAM

Spark worker – – 126.5% 15.7% – –
Java (JVM) – 13.7% – 12.3% – 8.8%
NiFi 19.2% 14.6% – – – –
Spark manager 0.3% 3% 11.2% 2.9% – –
Kafka + Zookeeper 7.3% 9.1% 1.4% 6% – –
InfluxDB – – – – 75.4% 25%
Grafana – – – – 1.6% 1.2%

TOTAL 26.8% 40.4% 139.2% 36.8% 77% 35%

able 5
PU and memory usage of the pipeline for batches of 300 variables.
Software tool VM 1 VM 2 VM 3

CPU RAM CPU RAM CPU RAM

Spark worker – – 140.8% 17.1% – –
Java (JVM) – 13.8% – 12.5% – 8.8%
NiFi 24.1% 16.6% – – – –
Spark manager 0.3% 3% 12.2% 2.9% – –
Kafka + Zookeeper 7.5% 9.2% 1.4% 6% – –
InfluxDB – – – – 85.3% 32%
Grafana – – – – 1.7% 1.2%

TOTAL 31.9% 42.6% 154.4% 38.5% 87% 42%

.1.2. Analysis of the data capture stage
Given that the retrieval of variables from the OPC server is the main

ottleneck of the pipeline, we conducted two additional tests to get
ore insight into this stage.

The first test has been to examine the performance of NiFi. As
escribed in Section 3.1, actions in NiFi are configured through the use
f processors. NiFi is bundled with several built-in processors that enable
onnectivity using different protocols but, in this work, we used ones
eveloped by Zylk (2023), a third party, to set OPC-UA communication.
hese processors were an upgrade from another third party (Linksmart
2022)) processors. Here in after, linksmart’s processors will be referred
o as default OPC-UA processors. A performance comparison of these
efault OPC-UA processors and Zylk’s ones has been conducted when
etching batches of different sizes from the THR 16.

Results of this test are depicted in Fig. 7, where it is clear that Zylk’s
rocessors provide much better performance for batches of any size.
urther investigation revealed that the THR 16’s CNC sets a minimum
ampling interval of 100 ms, which limits the performance of the
efault processors. However, it has been possible to obtain variables

ith a higher frequency thanks to Zylk’s customized processors.



Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 7. Performance comparison of NiFi’s default and Zylk’s OPC-UA processors.

Fig. 8. Network latency with different configurations.

In order to dig deeper into the main bottleneck of Block 1, we
investigated the latencies induced by the network in CFAA. In partic-
ular, we measured the time taken by NiFi to fetch batches of different
sizes from the THR 16 in 3 different ways: connecting directly with
an Ethernet cable to the machine, connecting to the Ethernet switch in
the Rack where the rest of the CFAA workshop machines are linked and
a connection through the virtual machines mentioned above. In order
to measure the times of the first two connections, we used a laptop
running NiFi exclusively.

Fig. 8 shows the results of the test, where it can be seen that the
network has reduced impact in the capture of the data for batches
with 100 variables or less. In the largest scenario, with batches of 300
variables, there is a 270 millisecond time difference between requests
made directly to the milling machine and those made from a virtual
machine.

5.1.3. Analysis of the spark structured streaming stage
In this section, we provide an analysis of the most relevant per-

formance metrics of Spark Structured Streaming, as part of the data
processing pipeline. These metrics have been obtained from Spark’s
internal web monitoring module. As a note, in this section, we shall
refer to a batch of variables as a record, which is a term used in the
Spark environment.

Firstly, we compared the input rate (the aggregate rate of data
arriving to Spark) with the process rate (the aggregate rate at which
Spark is processing data). This provides a measure of the capacity of
Spark to process data in an streaming manner.

Results for this test are shown in Fig. 9. With batch sizes of 22
variables or less, the input rate remains very close to the process rate,
indicating no issues in the Spark stage. However, with batch sizes of 50
variables or more, the input rate starts to increase while the process rate
decreases. At first sight, a situation where the input rate is significantly
higher than the process rate should mean that Spark workers cannot
6

Fig. 9. Comparison of input rate and process rate in Spark processing data from the
THR 16.

cope with the pace that the data is arriving at. However, we conducted
additional tests with 2 and 3 Spark workers (with additional VMs of
type VM2), but the ratio of input to process rate remained the same.

Further investigation revealed that the issue came from latencies
induced by NiFi: Spark reports the input rate as an average value and,
as NiFi sends data at the pace provided by the OPC server, there is not a
regular flow of data with large batches, but one with stalls in between.

As a step further, we analyzed the input rows and batch duration
values reported by Spark, which refer to the aggregate number of
records processed in a trigger and to the time taken to process a micro-
batch (a data structure, subset of a record) in a trigger respectively. In
Spark terms, a trigger refers to the moment when a new set of data
arrives to a DataFrame.

Fig. 10 depicts the time plots of the input rows and the batch
duration for 1, 22, 100 and 300 variables in a batch. These metrics were
measured for the last 100 Spark micro-batches of each test. Overall, the
more variables are extracted in the NiFi batch, the fewer input rows
arrive to Spark, as the sampling frequency decreases. In the case of
a single variable, an average of 25 records are processed per trigger,
whereas for 300 variables, only 0.7 records are processed.

Regarding batch duration, the increment of variables in the NiFi
batch causes an increase in the time taken to process the micro-batch.
With batches of a single variable, the micro-batch processing time on
average is 332 ms, while for 300 variables, it takes 532 ms. In order
to obtain the delay mentioned in the dissection of Table 2, the batch
duration has been divided by the input rows. This way, it is possible to
know how long it takes for the variables of the batch to be processed
by Spark in the same trigger.

5.2. Evaluation using simulation

In this section, additional tests of the platform using a simulator
are presented. The aim is to assess the behavior of the platform as
a standalone system, with a different input data flow, to validate its
scalability.

We developed a simulator that emulates the milling machine by
sending batches of variables, read from a historic file generated on the
THR 16. The simulator will replace the OPC server and NiFi in the
current tests, as data will be sent directly to Kafka.

In these tests, we will focus on the largest batches (50, 100 and
300 variables), which will be sent every 5 ms. This will allow for an
evaluation of the platform when data is received at a faster rate than the
one provided by the OPC server. In contrast to the tests of the previous
section, additional Spark workers will be added to explore scalability.



Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 10. Input rows (above) and Batch duration (below) for batch sizes of: (a) 1 variable, (b) 22 variables, (c) 100 variables, (d) 300 variables.
5.2.1. Analysis of the spark structured streaming stage
Spark performance metrics for these tests are presented in Table 6.

For the case of 50 variables per batch, using 1 Spark worker processes
up to 130.3 records/s on average, with a very similar input rate. In
contrast, in the tests with the milling machine presented in the previous
section, the input rate capped at 15.6 records/s and the process rate 3.4
records/s, confirming the issue with the data acquisition at machine
level.

In the case of 100 variables per batch, we tested the platform with
1 and 2 Spark workers. We see that Spark is capable of maintaining
similar input and process rates in both cases, and also confirm that the
IQR implementation scales well: using 2 workers (i.e. 2 VMs of type
VM2) makes the batch duration to be reduced roughly in half.

In the case of 300 variables per batch, a single Spark worker is not
capable of processing the data in time at a rate of 5 ms, which causes
the significant latencies. This is explored later in this section. With 2
and 3 workers, Spark can handle the incoming data at a proper rate.

In addition, we present in Fig. 11 the evolution of the number of
input rows and batch duration for the case of 300-variable batch sizes.
With a single worker, incoming batches from Kafka get retained but
unprocessed, which turns Spark into a bottleneck as time goes by. With
2 and 3 workers, we can observe that the amount of input rows and
batch duration remain roughly stable over time.

5.2.2. Analysis of the hardware resources
In this section, the CPU and RAM usage obtained from the simulator-

based tests are described. As the simulator sends the batches directly
to Kafka, VM1 machines are not used in these test, hence their results
are not presented.

Table 7 shows the results for 50-variable batches with 1 Spark
worker, Table 8 for 100-variable batches with 2 Spark workers and
Table 9 for 300-variable batches with 3 Spark workers. In the two latter
cases, the values for VM2 are the average for the VMs of this type.
7

In the case of 50-variable batches, we can observe that VM2 is close
to using all the available CPU. This is in contrast to the tests with
the THR 16, where an average of 77.8% of CPU was used. The higher
use of CPU is likely due to the higher frequency of data arrival using
the simulator. Regarding VM3, InfluxDB uses 60.1% of CPU, which is
almost twice the amount used in the tests with the milling machines
(34.1%).

In the cases of 100-variable and 300-variable batches, with 2 and
3 workers respectively, we can see that CPU usage is 120.7% at most,
which means that current tests have not been limited by compute ca-
pacity. We can also see that the CPU usage by InfluxDB reaches 71.4%
in the tests with 300-variable batches, far from being a bottleneck in
VM3.

5.3. Analysis of the outlier detection module

In this last section, we provide some insight on the outlier detection
module of the platform in two ways: firstly, on the outlier detection
conducted by the IQR and, secondly, on the overheads of the module
as part of the platform.

In order to understand the outlier detection capability of the plat-
form, we conducted an statistical analysis on a subset of the dataset
used in the previous section, which contains 812250 samples. We focus
on the 22 variables described in Section 2.1. The values are shown in
Table 10, where we provide the following values for each variable:

• Minimum, average and maximum values (Min, Average and Max
columns).

• The lower and upper limits computed as part of the IQR (Lower
limit and Upper limit columns).

• Number of detected outliers in each variable and percentage with
respect to the total number of samples (Num. outliers and % outlier
columns).



Computers in Industry 155 (2024) 104065E. Tapia et al.
Fig. 11. Input rows (left) and Batch duration (right) for 300 variables using the simulator with 1 worker (a), 2 workers (b) and 3 workers (c).
Table 6
Spark Structured Streaming metrics using the simulator.
Number of
variables

Number of
workers

Input rate
(records/s)

Process rate
(records/s)

Input rows per
worker
(records)

Batch
duration (s)

50 1 128.9 130.3 52 0.390

1 112.3 113.1 84 0.913
100 2 114.7 115.8 54 0.450

1 70.6 38.6 >300 (linear
increment)

>5 (linear
increment)

2 74.1 70.7 215 3.15300
3 87.1 87.5 124 1.42
Table 7
CPU and memory usage of the pipeline with batches of 50 variables, simulator-based
tests with 1 Spark worker.

Software tool VM 2 VM 3

CPU RAM CPU RAM

Spark worker 80.8% 17.1% – –
Java (JVM) – 12% – 8.8%
Spark manager 9.7% 2.9% – –
Kafka + Zookeeper 1.5% 6.1% – –
InfluxDB – – 60.1% 8.1%
Grafana – – 1.2% 1.4%

TOTAL 92% 38.1% 61.3% 18.3%

Table 8
CPU and memory usage of the pipeline with batches of 100 variables, simulator-based
tests with 2 Spark workers.

Software tool VM 2 VM 3

CPU RAM CPU RAM

Spark worker 95.6% 18.4% – –
Java (JVM) – 12.6% – 9.1%
Spark manager 10.7% 2.9% – –
Kafka + Zookeeper 1.5% 6.4% – –
InfluxDB – – 64.4% 21%
Grafana – – 1.2% 1.4%

TOTAL 107.8% 40.3% 65.6% 31.5%
8

Table 9
CPU and memory usage of the pipeline with batches of 300 variables, simulator-based
tests with 3 Spark workers.

Software tool VM 2 VM 3

CPU RAM CPU RAM

Spark worker 106.8% 18.9% – –
Java (JVM) – 12.9% – 9.2%
Spark manager 12.3% 2.9% – –
Kafka + Zookeeper 1.6% 7.2% – –
InfluxDB – – 71.4% 27%
Grafana – – 1.2% 1.5%

TOTAL 120.7% 41.9% 72.6% 37.7%

The analysis shows that the percentage of outliers is relatively low
for every monitored variable (2.53% in the largest case), which are the
expected values for the experiments conducted in the Ibarmia machine.
However, these values could be different in other machines and, to
our knowledge, there is no definitive quantification in the literature
regarding the acceptable number of outliers for a machining process.
This is attributed to the intricate variability inherent in each stage
of the machining process. Machining centers are designed under the
assumption that internal and controllable factors, such as geometric
compensation of moving machine components and minor variations
in energy supply, minimally impact the process. External factors, in-
cluding the material being machined, machining parameters, tool type
and condition, coolant type, composition, and quantity, significantly
influence the machining outcome.



Computers in Industry 155 (2024) 104065E. Tapia et al.
Table 10
Statistics, IQR limits and outliers of historic dataset.
Variable Min Lower limit Average Upper limit Max Num. outliers % outliers

LOAD(X) 0 −1.48 2.56 5.72 54.7 16 520 2.03%
LOAD(Y) 0 −3.5 3.14 8.5 59.6 2425 0.29%
LOAD(Z) 0 −4.35 7.05 18.3 100 2914 0.35%
LOAD(A) 0 −0.63 2.81 6.3 76.4 1267 0.16%
LOAD(C) 0 −0.65 0.54 1.1 34.3 8551 1.05%
LOAD(SP axis) 0 −1.84 348.3 6.03 1114.1 7129 0.87%
POWER(X) −5387.4 −153.9 23.2 273.7 15 044.6 18 541 2.28%
POWER(Y) −1994.3 −356.9 28.2 606.8 7466.5 16 091 1.98%
POWER(Z) −3848.6 −4.85 81.5 8.09 11 383.9 20 588 2.53%
POWER(A) −5742.9 −1406.3 563.7 2343.7 55 171.9 11 075 1.36%
POWER(C) −7022.9 −1632.9 142.9 3225.4 45 074.2 7119 0.87%
POWER(SP axis) −6093.8 −1101.6 350.9 3960.9 64 781.3 18 191 2.24%
RPM(X) 0 −0.46 3.07 0.75 100 14 231 1.75%
RPM(Y) 0 −0.28 3.71 0.47 100 15 483 1.91%
RPM(Z) 0 −0.5 2.49 0.84 100 14 244 1.75%
RPM(A) 0 −0.002 0.14 0.006 26.4 8622 1.06%
RPM(C) 0 −0.18 1.51 0.3 95 14 208 1.75%
RPM(SP axis) 0 −6.34 13.3 17.1 100 11 082 1.45%
LOAD(SPINDLE) 0 −2 0.97 3.32 90.9 11 074 1.36%
RPM(SPINDLE) −3001.5 −606.9 292.1 1035.7 12 045.9 4083 0.50%
SPINDLE OVERRIDE 0 0 74.5 160 100 0 0%
RAPID OVERRIDE 0 −25 76.9 175 120 0 0%
Fig. 12. Elapsed time to calculate IQR and limits.

We also want to note that the variables whose minimum value is
0 have a lower limit lower than 0. This is due to the way that IQR is
computed and, in these cases, the detected outliers are values that fall
between the upper limit and the maximum value, which is the expected
behavior in those cases.

Additionally, we present the time required by the IQR technique to
compute the limits for the variables of a given dataset, a step required
to use IQR afterwards. For this end, we created trimmed down versions
of the dataset described at the beginning of this section. It should be
noted that this is a process conducted in the start-up of the software
tools, not required as part of the online outlier detection pipeline.

Results are shown in Fig. 12. It is observed that in the largest case,
with a dataset of 10M rows, it takes 26 s to compute the limits needed
by IQR. In a scenario where a whole re-calculation of the limits would
be needed, this is considered to be a reasonable amount of time. If a
faster recalculation of the limits would be needed, processing a 1M row
dataset takes 3.15 s, which is significantly faster but it would lead to
less accurate results.

6. Conclusions

This work has presented a software platform to monitor machining
processes in the context of aeronautical manufacturing. This platform is
built using open source tools, mostly from the Apache ecosystem, and
runs on Linux virtual machines. The tools are arranged as a pipeline:
data is captured from the manufacturing machine, gets processed, then
stored and finally visualized in a dashboard in real time.
9

We conducted some tests to evaluate the performance of the pipeline
using a real machining centre located at the CFAA in Zamudio, Spain.
These tests revealed that the main bottleneck was the data capture
stage: even if the platform was configured to obtain data at maximum
speed, the communication with the machine introduced latencies which
had an impact in the performance, specially when trying to retrieve
batches of data with significant sizes.

We also did some additional assessment using a simulator to assess
the scalability of the platform. This simulator sent data to the pipeline,
as a replacement of the milling centre, in order to test the performance
of the software tools with a different input rate. These tests confirmed
a good scalability of the platform, specially of the Spark stage, which
conducted some processing to detect outliers in the monitored data.

This work has many open lines of future work, but we will lay the
three most relevant ones. The first one is reducing the time taken to
fetch data from the OPC server. To that end, the intention is to replace
OPC with Profibus or Profinet. These two are industrial communication
and control protocols that provide much better latencies than OPC, but
with increased control complexities.

The second line of work is to replace or complement the IQR with
an AI technique that provides prediction capabilities. Machine Learning
algorithms could be used to conduct time series analysis and foresee
tool wear or malfunction. A step further away would be to use these
algorithms to create a Digital Twin which provides real time diagnosis
and forecasting.

The third aspect involves implementing variable frequency moni-
toring based on data relevance. This means adjusting the monitoring
frequency dynamically, especially for factors like spindle speed, to
ensure optimal performance in different scenarios. For example, a
frequency of 1 s could be sufficient when the spindle speed is 0 but,
if a significant change was detected, like exceeding 1 RPM, the system
would transition to a 0.1 s interval. This adaptive approach would
not only optimize real-time performance but also significantly improve
scalability.

CRediT authorship contribution statement

Endika Tapia: Conceptualization, Investigation, Methodology, Soft-
ware, Validation, Writing – original draft, Writing – review & edit-
ing. Unai Lopez-Novoa: Conceptualization, Investigation, Methodol-
ogy, Validation, Writing – original draft, Writing – review & editing.
Leonardo Sastoque-Pinilla: Conceptualization, Supervision, Valida-
tion, Writing – review & editing. Luis Norberto López-de-Lacalle:
Supervision, Writing – review & editing.



Computers in Industry 155 (2024) 104065E. Tapia et al.

v
h
A
p
A
t
b
f

c
I
i
s
a
s
B
g
P
p
5
I

R

A

A

A

A

A

B

C

C

C

D

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

The authors are grateful to Ibarmia™ Innovatek, S.L.U. for pro-
iding the industrial case study, and specifically Eng. Aitor Ginto for
is support in this work. We would like to thank Iñigo Angulo and
ndoni Angulo from Zylk for the aid to configure their custom NiFi
rocessors. We want also to acknowledge the support received from the
rtificial Intelligent Manufacturing for Sustainability Unit (AIMS) of

he University of the Basque Country. This work was in part supported
y the Smart Networks for Everything (SN4E) experimental facility,
unded by European Union NextGeneration EU.

Funding: This work is co-financed by InterQ project that has re-
eived funding from the European Union’s Horizon 2020 Research and
nnovation Programme under grant agreement No. 958357, and it is an
nitiative of the Factories-of-the-Future (FoF) Public Private Partner-
hip. Thanks are addressed to MCIN/ AEI/10.13039/501100011033/
nd European Union NextGeneration EU/PRTR (Proyectos de Tran-
ición Ecológica 𝑦 Transición Digital). Thanks are also addressed to
asque Government, Spain for the support of University research
roups, IT1573-22. Results were analyzed by models developed in
roject KK-2022/0065 Lanverso. This work was also partially sup-
orted by grants QUOLINK (TED2021-130044B-I00) and Orchesmart-
G (PID2020-117876RB-I00), funded by the Ministry of Science and
nnovation.

eferences

ctive Cockpit, 2023. Bosch rexroth ACTIVE cockpit. https://www.boschrexroth.com/
en/es/products/product-groups/assembly-technology/topics/manual-production-
systems/cip-software-solution-activecockpit/. (Accessed 24 December 2023).

pache Kafka, 2022. Apache Kafka documentation. https://kafka.apache.org/30/
documentation.html. (Accessed 2 November 2022).

pache NiFi, 2022. Apache NiFi documentation. https://nifi.apache.org/docs/nifi-docs/
html/overview.html. (Accessed 13 July 2022).

pache ZooKeeper, 2022. Apache ZooKeeper documentation. https://zookeeper.apache.
org/. (Accessed 15 September 2022).

riyaluran Habeeb, R.A., Nasaruddin, F., Gani, A., Targio Hashem, I.A., Ahmed, E.,
Imran, M., 2019. Real-time big data processing for anomaly detection: A survey.
Int. J. Inf. Manage. 45, 289–307, https://doi.org/10.1016/j.ijinfomgt.2018.08.006.

ruce, P., Bruce, A., Gedeck, P., 2020. Practical Statistics for Data Scientists: 50+
Essential Concepts using R and Python, second ed. O’Reilly Media.

anizo, M., Conde, A., Charramendieta, S., Miñón, R., Cid-Fuentes, R.G., Onieva, E.,
2019. Implementation of a large-scale platform for cyber–physical system real-time
monitoring. IEEE Access 7, 52455–52466. http://dx.doi.org/10.1109/ACCESS.2019.
2911979.

avalieri, S., Chiacchio, F., 2013. Analysis of OPC UA performances. Comput. Stand.
Interfaces 36 (1), 165–177. http://dx.doi.org/10.1016/j.csi.2013.06.004.

elos, 2023. DMG mori celos PC version. https://en.dmgmori.com/products/
digitization/celos/pc-version. (Accessed 24 November 2023).

alzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., Barbosa, J.,
2020. Machine learning and reasoning for predictive maintenance in industry 4.0:
Current status and challenges. Comput. Ind. 123, 103298, https://doi.org/10.1016/
j.compind.2020.103298.
10
del Olmo, A., López de Lacalle, L., Martínez de Pissón, G., Pérez-Salinas, C., Ealo, J.,
Sastoque, L., Fernandes, M., 2022. Tool wear monitoring of high-speed broaching
process with carbide tools to reduce production errors. Mech. Syst. Signal Process.
172, 109003. http://dx.doi.org/10.1016/j.ymssp.2022.109003.

European Parliament, 2023. Regulation 2023/1230/EU for machinery regulation (eu)
2023/1230 of the european parliament and of the council of 14 june 2023 on
machinery and repealing directive 2006/42/ec of the european parliament and
of the council and council directive 73/361/eec. https://eur-lex.europa.eu/eli/reg/
2023/1230/oj. (Accessed 22 November 2023).

Ferrari, P., Flammini, A., Rinaldi, S., Sisinni, E., Maffei, D., Malara, M., 2018. Impact of
quality of service on cloud based industrial iot applications with opc ua. Electronics
7 (7), http://dx.doi.org/10.3390/electronics7070109.

Fuller, A., Fan, Z., Day, C., Barlow, C., 2020. Digital twin: Enabling technologies,
challenges and open research. IEEE Access 8, 108952–108971. http://dx.doi.org/
10.1109/ACCESS.2020.2998358.

Givehchi, O., Landsdorf, K., Simoens, P., Colombo, A.W., 2017. Interoperability for
industrial cyber–physical systems: An approach for legacy systems. IEEE Trans.
Ind. Inform. 13 (6), 3370–3378. http://dx.doi.org/10.1109/TII.2017.2740434.

Grafana, 2022. Grafana for time series. https://grafana.com/docs/grafana/latest/basics/
timeseries/. (Accessed 6 March 2022).

Ibarmia THR 16, 2022. Ibarmia THR 16 website. https://www.ibarmia.com/en/
machining-centres/t-series/t-multiprocess/. (Accessed 23 November 2022).

InfluxDB, 2022. InfluxDB documentation. https://docs.influxdata.com/influxdb/v2.1/.
(Accessed 14 November 2022).

Ji, W., Yin, S., Wang, L., 2019. A big data analytics based machining optimisation
approach. J. Intell. Manuf. 30 (3), 1483–1495. http://dx.doi.org/10.1007/s10845-
018-1440-9.

Karau, H., Konwinski, A., Wendell, P., Zaharia, M., 2015. Learning Spark: Lightning-Fast
Big Data Analysis. O’Reilly Media, Inc.

Landi, L., Chiavatti, N., Grilli, L., Preteni, M., et al., 2020. Configurable monitoring
of machine tools status in smart factories. In: Proceedings of the 30th European
Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and
Management Conference. Research Publishing, Singapore, pp. 3584–3591.

Linksmart, 2022. Linksmart’s nifi processors for OPC-UA. https://github.com/linksmart/
nifi-opc-ua-bundles. (Accessed 21 September 2022).

Moldovan, D., Anghel, I., Cioara, T., Salomie, I., 2021. Apache Spark for Digitalization,
Analysis and Optimization of Discrete Manufacturing Processes. Springer Interna-
tional Publishing, Cham, pp. 37–57. http://dx.doi.org/10.1007/978-3-030-38836-
2_2.

Qi, Q., Tao, F., 2018. Digital twin and big data towards smart manufacturing and
industry 4.0: 360 degree comparison. IEEE Access 6, 3585–3593. http://dx.doi.
org/10.1109/ACCESS.2018.2793265.

Rodríguez, A., Calleja, A., de Lacalle, L.L., Pereira, O., Rubio-Mateos, A., Rodríguez, G.,
2021. Drilling of cfrp-ti6al4v stacks using co2-cryogenic cooling. J. Manuf. Process.
64, 58–66. http://dx.doi.org/10.1016/j.jmapro.2021.01.018.

Sasiain, J., Sanz, A., Astorga, J., Jacob, E., 2020. Towards flexible integration of 5 g
and iiot technologies in industry 4.0: A practical use case. Appl. Sci. 10 (21), 7670.
http://dx.doi.org/10.3390/app10217670.

Sendino, S., Gardon, M., Lartategui, F., Martinez, S., Lamikiz, A., 2020. The effect of
the laser incidence angle in the surface of l-pbf processed parts. Coatings 10 (11),
1024. http://dx.doi.org/10.3390/coatings10111024.

Shi, X.-L., Sun, W.-T., Song, J., 2021. Design and implementation of real-time mon-
itoring system for multiple machine tools. Procedia Comput. Sci. 183, 274–280.
http://dx.doi.org/10.1016/j.procs.2021.02.059.

Tapia, E., Sastoque-Pinilla, L., Lopez-Novoa, U., Bediaga, I., López de Lacalle, N.,
2023. Assessing industrial communication protocols to bridge the gap between
machine tools and software monitoring. Sensors 23 (12), http://dx.doi.org/10.
3390/s23125694.

Vinutha, H.P., Poornima, B., Sagar, B.M., 2018. Detection of outliers using interquartile
range technique from intrusion dataset. In: Satapathy, S.C., Tavares, J.M.R.,
Bhateja, V., Mohanty, J.R. (Eds.), Information and Decision Sciences. Springer
Singapore, Singapore, pp. 511–518.

Wang, Y., Kang, X., Chen, Z., 2022a. A survey of digital twin techniques in smart
manufacturing and management of energy applications. Green Energy Intell.
Transp. 1 (2), 100014, https://doi.org/10.1016/j.geits.2022.100014.

Wang, J., Sánchez, J., Iturrioz, J., Ayesta, I., 2019. Artificial intelligence for advanced
non-conventional machining processes. Procedia Manuf. 41, 453–459. http://dx.
doi.org/10.1016/j.promfg.2019.09.032.

Wang, J., Xu, C., Zhang, J., Zhong, R., 2022b. Big data analytics for intelligent
manufacturing systems: A review. J. Manuf. Syst. 62, 738–752, https://doi.org/
10.1016/j.jmsy.2021.03.005.

Zylk, 2023. Zylk’s custom processors for OPC-UA. https://github.com/zylklab/nifi-opc-
ua-bundles. (Accessed 12 February 2023).

https://www.boschrexroth.com/en/es/products/product-groups/assembly-technology/topics/manual-production-systems/cip-software-solution-activecockpit/
https://www.boschrexroth.com/en/es/products/product-groups/assembly-technology/topics/manual-production-systems/cip-software-solution-activecockpit/
https://www.boschrexroth.com/en/es/products/product-groups/assembly-technology/topics/manual-production-systems/cip-software-solution-activecockpit/
https://www.boschrexroth.com/en/es/products/product-groups/assembly-technology/topics/manual-production-systems/cip-software-solution-activecockpit/
https://www.boschrexroth.com/en/es/products/product-groups/assembly-technology/topics/manual-production-systems/cip-software-solution-activecockpit/
https://kafka.apache.org/30/documentation.html
https://kafka.apache.org/30/documentation.html
https://kafka.apache.org/30/documentation.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://nifi.apache.org/docs/nifi-docs/html/overview.html
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb6
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb6
http://dx.doi.org/10.1109/ACCESS.2019.2911979
http://dx.doi.org/10.1109/ACCESS.2019.2911979
http://dx.doi.org/10.1109/ACCESS.2019.2911979
http://dx.doi.org/10.1016/j.csi.2013.06.004
https://en.dmgmori.com/products/digitization/celos/pc-version
https://en.dmgmori.com/products/digitization/celos/pc-version
https://en.dmgmori.com/products/digitization/celos/pc-version
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.compind.2020.103298
http://dx.doi.org/10.1016/j.ymssp.2022.109003
https://eur-lex.europa.eu/eli/reg/2023/1230/oj
https://eur-lex.europa.eu/eli/reg/2023/1230/oj
https://eur-lex.europa.eu/eli/reg/2023/1230/oj
http://dx.doi.org/10.3390/electronics7070109
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1109/TII.2017.2740434
https://grafana.com/docs/grafana/latest/basics/timeseries/
https://grafana.com/docs/grafana/latest/basics/timeseries/
https://grafana.com/docs/grafana/latest/basics/timeseries/
https://www.ibarmia.com/en/machining-centres/t-series/t-multiprocess/
https://www.ibarmia.com/en/machining-centres/t-series/t-multiprocess/
https://www.ibarmia.com/en/machining-centres/t-series/t-multiprocess/
https://docs.influxdata.com/influxdb/v2.1/
http://dx.doi.org/10.1007/s10845-018-1440-9
http://dx.doi.org/10.1007/s10845-018-1440-9
http://dx.doi.org/10.1007/s10845-018-1440-9
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb20
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb21
https://github.com/linksmart/nifi-opc-ua-bundles
https://github.com/linksmart/nifi-opc-ua-bundles
https://github.com/linksmart/nifi-opc-ua-bundles
http://dx.doi.org/10.1007/978-3-030-38836-2_2
http://dx.doi.org/10.1007/978-3-030-38836-2_2
http://dx.doi.org/10.1007/978-3-030-38836-2_2
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1016/j.jmapro.2021.01.018
http://dx.doi.org/10.3390/app10217670
http://dx.doi.org/10.3390/coatings10111024
http://dx.doi.org/10.1016/j.procs.2021.02.059
http://dx.doi.org/10.3390/s23125694
http://dx.doi.org/10.3390/s23125694
http://dx.doi.org/10.3390/s23125694
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
http://refhub.elsevier.com/S0166-3615(23)00215-4/sb30
https://doi.org/10.1016/j.geits.2022.100014
http://dx.doi.org/10.1016/j.promfg.2019.09.032
http://dx.doi.org/10.1016/j.promfg.2019.09.032
http://dx.doi.org/10.1016/j.promfg.2019.09.032
https://doi.org/10.1016/j.jmsy.2021.03.005
https://doi.org/10.1016/j.jmsy.2021.03.005
https://doi.org/10.1016/j.jmsy.2021.03.005
https://github.com/zylklab/nifi-opc-ua-bundles
https://github.com/zylklab/nifi-opc-ua-bundles
https://github.com/zylklab/nifi-opc-ua-bundles

	Implementation of a scalable platform for real-time monitoring of machine tools
	Introduction
	Machining process
	Monitored variables
	The OPC-UA protocol

	Monitoring platform
	Software toolset
	Design

	Outlier detection technique
	Performance Evaluation
	Evaluation using the Ibarmia"2E THR 16 machine
	Analysis of the whole pipeline
	Analysis of the data capture stage
	Analysis of the Spark Structured Streaming stage

	Evaluation using simulation
	Analysis of the Spark Structured Streaming stage
	Analysis of the hardware resources

	Analysis of the outlier detection module

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


