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ABSTRACT 

The proliferation of Internet of Things (IoT) devices has heightened the need for robust security 

measures to protect against a growing number of cyberattacks. In this project, a Long Short-

Term Memory (LSTM) neural network approach is presented for classifying attacks in IoT 

networks, leveraging the comprehensive IoT-23 dataset. The objective of the research is to 

develop an effective Artificial Intelligence (AI) model that accurately identifies various types of 

network intrusions and anomalies indicating botnet infiltration, thereby enhancing the security 

posture of IoT environments. 

The IoT-23 dataset is preprocessed to extract relevant features, and the LSTM model is trained 

using these inputs. Superior performance is demonstrated by this approach, achieving an 

accuracy of 98.8% in classifying attacks, thereby improving upon traditional machine learning 

models. These results underscore the potential of LSTM networks in IoT security applications, 

offering a scalable and adaptive solution to detect emerging threats. 

Future work will explore the integration of this model into real-time security systems and its 

applicability to diverse IoT architectures. 

 

Keywords—Internet of Things (IoT), Artificial Intelligence, Botnets, Long Short-Term Memory 

Neural Network, IoT-23 dataset 
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LABURPENA 

Gauzen Interneteko (IoT) gailuen ugaritzeak segurtasun-neurri sendoen beharra areagotu du 

zibererasoen kopuru gero eta handiagotik babesteko. Proiektu honetan, IoT sareetako erasoak 

sailkatzeko Epe Luzeko eta Laburreko Memoriaren sare neuronal batean (LSTM, ingelesezko 

sigletan) oinarritutako ikuspegia aurkezten da, IoT-23 datu integralen multzoa aprobetxatuz. 

Ikerketaren helburua da Adimen Artifizialaren (IA) eredu eraginkor bat garatzea, botneten 

infiltrazioa adierazten duten sareko hainbat intrusio eta anomalia zehaztasunez identifikatzeko, 

eta, horrela, IoT inguruneetako segurtasun-jarrera hobetzeko. 

 

IoT-23 datu-multzoa aurrez prozesatzen da ezaugarri garrantzitsuak ateratzeko, eta LSTM 

eredua sarrera horiek erabiliz entrenatzen da. Ikuspegi horrek errendimendu handiagoa erakutsi 

du, eta erasoen sailkapenean % 98,8ko zehaztasuna lortu du; horrek esan nahi du hobetu egin 

dela ikasketa automatikoko eredu tradizionalekin alderatuta. Emaitza horiek LSTM sareek IoTko 

segurtasun-aplikazioetan duten ahalmena azpimarratzen dute, sortzen ari diren mehatxuak 

detektatzeko irtenbide eskalagarria eta moldagarria eskainiz. 

 

Etorkizuneko lanak eredu hori denbora errealeko segurtasun-sistemetan integratzea eta hainbat 

IoT arkitekturatan aplikatzea aztertuko du. 

 

Gako-hitzak — Gauzen Internet (IoT), Adimen Artifiziala, Botnetak, Epe Luzeko eta Laburreko 

Memoriaren Neurona-sarea, IoT-23 datu-multzoa. 
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RESUMEN 

La proliferación de dispositivos del Internet de las Cosas (IoT) ha incrementado la necesidad de 

medidas de seguridad robustas para protegerse contra un número creciente de ciberataques. 

En este proyecto, se presenta un enfoque basado en una red neuronal de Memoria a Largo y 

Corto Plazo (LSTM, por sus siglas en inglés) para clasificar ataques en redes IoT, aprovechando 

el conjunto de datos integral IoT-23. El objetivo de la investigación es desarrollar un modelo de 

Inteligencia Artificial (IA) efectivo que identifique con precisión varios tipos de intrusiones y 

anomalías en la red que indiquen infiltración de botnets, mejorando así la postura de seguridad 

en los entornos IoT. 

El conjunto de datos IoT-23 se preprocesa para extraer características relevantes, y el modelo 

LSTM se entrena utilizando estas entradas. Este enfoque ha demostrado un rendimiento 

superior, logrando una precisión del 98.8% en la clasificación de ataques, lo que supone una 

mejora con respecto a los modelos tradicionales de aprendizaje automático. Estos resultados 

subrayan el potencial de las redes LSTM en aplicaciones de seguridad en IoT, ofreciendo una 

solución escalable y adaptable para detectar amenazas emergentes. 

El trabajo futuro explorará la integración de este modelo en sistemas de seguridad en tiempo 

real y su aplicabilidad a arquitecturas IoT diversas. 

 

Palabras clave—Internet de las Cosas (IoT), Inteligencia Artificial, Botnets, Red Neuronal de 

Memoria a Largo y Corto Plazo, conjunto de datos IoT-23. 
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1 Introduction 

The Internet of Things (IoT) is transforming the technological landscape by enabling a vast 

network of connected devices to communicate and exchange data seamlessly. From smart 

homes and cities to healthcare, industrial automation, and transportation, IoT technologies are 

revolutionizing various sectors by providing unprecedented convenience and efficiency. 

According to projections, by 2025, the number of IoT devices will exceed 75 billion, a significant 

increase from the 27 billion devices reported in 2017. While the rapid expansion of IoT presents 

numerous opportunities, it also introduces substantial security challenges. IoT devices, often 

characterized by limited computational resources and diverse architectures, are particularly 

vulnerable to cyberattacks, making IoT networks an attractive target for malicious actors. 

Cybercriminals have increasingly focused on exploiting these vulnerabilities, with botnets, such 

as the notorious Mirai botnet, serving as a prominent example of how compromised IoT devices 

can be utilized to launch large-scale cyberattacks. Distributed Denial of Service (DDoS) attacks, 

data breaches, and other malicious activities have become more frequent, with DDoS attacks 

sometimes exceeding 1 Tbps in intensity, severely disrupting online services and infrastructures 

[2]. These security concerns underscore the urgent need for robust and scalable solutions to 

protect IoT networks from potential threats. 

To address the unique security challenges associated with IoT networks, edge computing has 

emerged as a promising solution. By processing data closer to the source, edge computing 

reduces latency and bandwidth usage, enabling faster and more efficient responses to cyber 

threats. In contrast to traditional cloud-based computing, which may introduce delays due to 

centralized processing, edge computing distributes computational tasks across multiple nodes 

closer to the devices themselves. This decentralized approach enhances the ability to detect and 

mitigate threats in real time, making it a vital component of modern security frameworks for IoT 

networks [3]. Additionally, the decentralized nature of edge computing minimizes the risk of a 

single point of failure, increasing the overall resilience of IoT infrastructures. 

Intrusion Detection Systems (IDS) are essential tools in maintaining network security by 

monitoring and analyzing network traffic to detect potential threats. However, traditional IDS 

approaches often struggle to adapt to the diverse and resource-constrained nature of IoT 

devices. The heterogeneous environment, coupled with the large volume of data generated by 

IoT networks, presents challenges for conventional IDS architectures. To overcome these 

limitations, machine learning (ML) techniques, particularly deep learning models, have gained 

attention as effective tools for enhancing IDS performance in IoT environments. 

Among deep learning models, Long Short-Term Memory (LSTM) networks have shown 

significant promise due to their ability to model temporal dependencies in sequential data. LSTM 

networks are especially suited for tasks such as time-series analysis, where the identification of 

patterns over time is critical for detecting abnormal behavior. In the context of IoT networks, 

LSTMs can analyze patterns in network traffic over time and detect deviations that indicate the 

presence of malicious activity. This capability makes LSTM-based IDS solutions highly effective 

for attack detection and classification in dynamic and distributed IoT systems. 
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This report presents a novel approach to attack classification in IoT networks using an LSTM 

neural network, leveraging the IoT-23 dataset, which consists of labeled IoT network traffic data 

[5]. The research aims to develop a robust and scalable model capable of accurately detecting 

and classifying a wide range of cyberattacks, including DDoS attacks, brute-force attempts, and 

data exfiltration. By integrating edge computing principles with advanced deep learning 

techniques, the proposed approach seeks to address the security challenges specific to IoT 

networks. The model is designed to be adaptive, scalable, and capable of real-time threat 

detection, thereby enhancing the security infrastructure of IoT environments. 

The research also highlights the importance of a comprehensive security strategy for IoT 

systems, one that combines robust intrusion detection mechanisms with the advantages of edge 

computing. By leveraging a distributed, low-latency framework, the proposed solution aims to 

enable timely detection and mitigation of attacks, even in resource-constrained IoT networks. 

Through experimental evaluation using the IoT-23 dataset, the study demonstrates the 

effectiveness of the LSTM-based IDS in classifying various types of cyberattacks with high 

accuracy and minimal false-positive rates. Ultimately, this work contributes to the development 

of advanced AI-driven security frameworks capable of protecting IoT networks from emerging 

threats. 

The subsequent sections of this report provide a detailed examination of the context, objectives, 

benefits of the project, methodology with the explanation IoT-23 dataset, discuss the 

architecture and training process of the LSTM model, and present the results of experimental 

evaluations. Furthermore, the implications of edge computing on IDS performance are explored, 

alongside potential directions for future research aimed at improving IoT network security. 
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2 Context  

2.1 Intrusion Detection Systems 

Intrusion Detection Systems (IDS) are a critical component of modern network security, 

designed to monitor and analyze network traffic for suspicious activities that may indicate 

security breaches or unauthorized access. The main function of an IDS is to detect and respond 

to threats in real-time or near real-time, offering protection against cyberattacks. Various types 

of IDS exist, each suited to different environments and threat models. The key types of IDS are 

broadly categorized based on the method of detection and the location of deployment. The 

primary classifications include Network-based IDS (NIDS), Host-based IDS (HIDS), Signature-

based IDS, Anomaly-based IDS, and Hybrid IDS. 

2.1.1 Network-based IDS (NIDS) 

Network-based Intrusion Detection Systems are deployed at strategic points within a network 

to monitor inbound and outbound traffic. NIDS examine packets traveling across the network 

and analyze them for suspicious patterns or behaviors that indicate possible attacks. These 

systems operate by listening to network traffic and comparing it to known attack patterns or 

anomalies. 

• Advantages: NIDS are effective at detecting network-wide attacks such as Distributed 

Denial of Service (DDoS) attacks, scanning attacks, or Man-in-the-Middle (MITM) 

attacks. They offer a broad view of the network and can monitor multiple devices 

simultaneously. 

• Challenges: Since NIDS focus on network traffic, they may miss threats that originate 

from within a host or encrypted traffic. They are also less effective against encrypted 

attacks unless deployed with additional decryption capabilities. 

Examples of NIDS: Snort, Suricata. 

2.1.2 Host-based IDS (HIDS) 

Host-based Intrusion Detection Systems are installed on individual devices (hosts), such as 

servers, workstations, or IoT devices, to monitor and analyze the activities and behavior of the 

host system. HIDS focus on examining system logs, file integrity, system calls, and network 

interface statistics to detect suspicious activity at the device level. 

• Advantages: HIDS provide granular visibility into the behavior of individual devices, 

making them useful for detecting insider threats or malware that may not generate 

suspicious network traffic. They are also well-suited for detecting file-based attacks, 

privilege escalation attempts, and unauthorized access to system files. 

• Challenges: HIDS can be resource-intensive, requiring processing power and storage on 

each monitored device. Moreover, they provide limited insight into network-wide 

activities and may need to be deployed alongside NIDS for comprehensive coverage. 
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Examples of HIDS: OSSEC, Tripwire. 

2.1.3 Signature-based IDS 

Signature-based IDS are one of the most traditional and widely used detection methods. These 

systems rely on a database of predefined signatures or known patterns of malicious behavior. 

Each signature corresponds to a specific type of attack, such as a known virus, worm, or exploit. 

Signature-based systems compare incoming traffic or system activities against this database to 

identify matches with known threats. 

• Advantages: Signature-based IDS are highly accurate at detecting known attacks with 

minimal false positives. They are straightforward to implement and maintain in 

environments where known attack patterns can be cataloged and updated regularly. 

• Challenges: These systems are ineffective against zero-day attacks or new, unknown 

threats, as they can only detect attacks for which signatures have already been 

developed. As a result, signature-based IDS must be continuously updated to remain 

effective. 

Examples of signature-based IDS: Snort, Cisco Secure IPS. 

2.1.4 Anomaly-based IDS 

Anomaly-based IDS rely on establishing a baseline of normal network or host behavior, against 

which deviations can be detected. These systems use statistical models, machine learning 

algorithms, or artificial intelligence to learn normal patterns of activity, such as network traffic 

volume, types of protocols used, or the frequency of specific requests. When the IDS detects 

activity that deviates significantly from this baseline, it flags the behavior as potentially 

malicious. 

• Advantages: Anomaly-based IDS can detect new and previously unknown threats, 

including zero-day attacks, as they are not restricted to predefined signatures. They are 

highly adaptive and can be effective in environments where threats evolve rapidly or 

where custom-built malware is deployed. 

• Challenges: A major challenge for anomaly-based IDS is the high rate of false positives, 

especially in dynamic or changing environments where the baseline of "normal" 

behavior may shift. Additionally, establishing an accurate and meaningful baseline can 

be difficult in complex networks. 

Examples of anomaly-based IDS: Bro (Zeek), Darktrace. 

2.1.5 Hybrid IDS 

Hybrid IDS combine both signature-based and anomaly-based detection methods to provide 

comprehensive protection. By leveraging the strengths of both approaches, hybrid IDS can 

detect known threats efficiently through signature matching while also identifying previously 

unknown or emerging threats via anomaly detection. These systems often incorporate machine 

learning algorithms to improve detection accuracy and reduce false positives. 
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• Advantages: Hybrid IDS provide a balanced solution, offering the high accuracy of 

signature-based detection for known attacks and the adaptability of anomaly-based 

detection for new threats. This approach allows organizations to benefit from both real-

time threat identification and proactive monitoring of suspicious behaviors. 

• Challenges: Hybrid IDS can be more complex to implement and maintain compared to 

single-method systems. Additionally, their reliance on anomaly detection still makes 

them prone to false positives in environments where legitimate activities may trigger 

alerts. 

Examples of hybrid IDS: AlienVault USM, IBM QRadar. 

The landscape of IDS technologies is diverse, with each type offering distinct advantages and 

limitations. Network-based IDS are ideal for monitoring large-scale network traffic, while host-

based IDS provide detailed insights at the device level. Signature-based systems are effective for 

detecting known attacks with precision, whereas anomaly-based systems offer the flexibility to 

identify novel threats. Hybrid systems, incorporating both signature and anomaly detection 

techniques, offer comprehensive coverage. Selecting the appropriate IDS for an organization 

depends on the specific security needs, network architecture, and threat model, particularly in 

dynamic environments like IoT networks, where scalable and adaptive intrusion detection 

mechanisms are increasingly necessary. 

In this project, a Network-based Intrusion Detection System (NIDS) is implemented to enhance 

the security of IoT networks. NIDS is deployed at strategic points within the network to monitor 

and analyze network traffic in real-time, enabling the detection of malicious activities such as 

Distributed Denial of Service (DDoS) attacks, unauthorized access, and data exfiltration 

attempts. Given the highly distributed and resource-constrained nature of IoT devices, a 

network-based approach provides a comprehensive view of network behavior without 

overloading individual devices with security responsibilities. 

The NIDS in this project leverages deep learning techniques, specifically a Long Short-Term 

Memory (LSTM) neural network, to analyze network traffic patterns. By examining traffic for 

suspicious activities and comparing it to known attack behaviors or deviations from normal 

patterns, the system is designed to detect a wide range of cyberattacks targeting IoT networks. 

This approach ensures that the system can identify both known threats, using predefined attack 

signatures, and emerging threats, through anomaly detection. 

By focusing on network-level monitoring, the NIDS solution implemented in this project provides 

a scalable and adaptive defense mechanism for IoT environments. This is especially critical as 

IoT networks are often susceptible to attacks that exploit the lack of centralized security 

controls. The NIDS allows for real-time detection and mitigation of threats before they can 

propagate through the network or cause significant damage, thus improving the overall 

resilience of the IoT infrastructure. 
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2.2  IoT Security Risks: Bonets 

As the Internet of Things (IoT) continues to grow rapidly, with projections estimating over 75 

billion devices by 2025 [1], the security of these networks has become a critical concern. IoT 

devices, often designed with limited computational and security resources, are highly vulnerable 

to cyberattacks. One of the most prominent and persistent threats to IoT networks is the 

exploitation of devices through botnets—large networks of compromised devices controlled 

remotely by attackers. These botnets can be used to launch a wide range of malicious activities, 

from Distributed Denial of Service (DDoS) attacks to data theft and malware propagation. 

2.2.1 Botnets 

A botnet is a collection of devices infected with malware that allows attackers to control them 

remotely without the device owner's knowledge. The attacker, referred to as the botmaster, 

uses these compromised devices (or "bots") to carry out coordinated attacks, usually for 

financial gain or to disrupt services. IoT devices, such as smart cameras, thermostats, and 

routers, are particularly attractive targets for botmasters due to their weak security 

configurations, default credentials, and lack of regular software updates. 

Botnets pose significant risks to both the owners of the compromised devices and the broader 

internet infrastructure. IoT botnets can generate massive traffic flows, overwhelming servers 

and networks during DDoS attacks. A well-known example of this is the Mirai botnet, which, in 

2016, hijacked hundreds of thousands of IoT devices and was used to launch one of the largest 

DDoS attacks ever recorded, bringing down major websites like Twitter, Netflix, and Reddit [2]. 

There are several types of botnets, each with different architectures, targets, and attack 

methodologies. The most common botnet types affecting IoT networks are centralized botnets, 

peer-to-peer (P2P) botnets, and hybrid botnets. 

2.2.1.1 Centralized Botnets 

Centralized botnets are the most traditional type of botnet architecture. In this model, all 

compromised devices, or bots, communicate with a central server controlled by the botmaster. 

This central server is often referred to as a Command and Control (C&C) server, which sends 

instructions to the bots and receives data from them. 

• Risks: Centralized botnets are relatively easy for attackers to control, but they are also 

more vulnerable to detection and disruption. If the C&C server is identified and taken 

down by law enforcement or cybersecurity teams, the entire botnet can be dismantled. 

However, many centralized botnets, like Mirai, have been able to cause significant 

damage before being neutralized [3]. 

Example: Mirai botnet – This botnet exploited IoT devices with default credentials and was used 

to launch massive DDoS attacks [4]. 

2.2.1.2 Peer-to-Peer (P2P) Botnets 

Unlike centralized botnets, peer-to-peer (P2P) botnets do not rely on a single C&C server. 

Instead, bots communicate directly with each other, forming a decentralized network. Each bot 
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in the network can act as both a client and a server, receiving instructions from other bots and 

passing them along. This makes P2P botnets much more resilient to takedowns, as there is no 

single point of failure. 

• Risks: P2P botnets are more challenging to disrupt than centralized botnets, as there is 

no central command server to target. Even if a portion of the botnet is taken offline, the 

remaining bots can continue to function and communicate with each other, making P2P 

botnets particularly dangerous and persistent. 

Example: Storm botnet – One of the earliest and most notorious P2P botnets, Storm spread 

through email spam and P2P networks, evading detection for years [5]. 

2.2.1.3 Hybrid Botnets 

Hybrid botnets combine elements of both centralized and P2P architectures. These botnets 

often start with a central C&C server but may shift to a P2P mode to evade detection once the 

botnet is operational. Hybrid botnets provide attackers with both the ease of control offered by 

centralized systems and the resilience of P2P networks. 

• Risks: Hybrid botnets are particularly dangerous because they can adapt their 

communication and control mechanisms based on the level of threat they face. If 

centralized servers are threatened, the botnet can switch to a P2P model, making 

detection and disruption more difficult. 

Example: Waledac botnet – This botnet began as a centralized network but later incorporated 

P2P mechanisms to increase its resilience against takedowns [6]. 

 

IoT botnets have become a significant threat to the security of both individual devices and the 

broader internet infrastructure. Due to the sheer number of IoT devices and their often-poor 

security configurations, attackers can build massive botnets capable of overwhelming even the 

most robust networks. 

• DDoS Attacks: As seen with Mirai, IoT botnets can generate enormous volumes of traffic 

to flood servers and networks, causing widespread outages and service disruptions. 

These attacks can target critical infrastructure, businesses, and even government 

agencies, leading to significant financial losses and operational downtime [7]. 

• Data Theft and Espionage: Beyond DDoS attacks, IoT botnets can be used for data theft, 

as compromised devices often have access to sensitive information. In some cases, 

attackers have used botnets to conduct espionage by intercepting communications or 

stealing personal data from IoT devices like smart cameras or voice-activated assistants 

[8]. 

• Malware Propagation: Botnets can also be used to spread malware, infecting additional 

devices and further expanding the botnet. This creates a vicious cycle where more and 

more devices are compromised, providing attackers with greater firepower for 

subsequent attacks. 
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Botnets represent one of the most significant security risks to IoT networks. Their ability to 

compromise vast numbers of devices and launch large-scale attacks highlights the need for 

enhanced security measures in IoT ecosystems. As IoT continues to expand, the threat posed by 

botnets is expected to grow, necessitating the development of more sophisticated detection 

and mitigation techniques, such as Network-based Intrusion Detection Systems (NIDS) and 

advanced machine learning models like Long Short-Term Memory (LSTM) networks. By focusing 

on proactive defense mechanisms, organizations can better protect their IoT networks from the 

evolving threat landscape. 

 

2.3 Long Short-Term Memory (LSTM) Networks 

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) 

specifically designed to model sequential data and capture long-term dependencies in time-

series information. Standard RNNs often suffer from the problem of vanishing or exploding 

gradients, making them less effective when dealing with long sequences of data. LSTM networks 

address this issue through a unique architecture that allows them to retain information over 

extended time intervals, making them particularly useful for tasks that require the analysis of 

sequential patterns. 

2.3.1 LSTM Architecture 

At the core of an LSTM network are memory cells, which can maintain and update information 

over long periods. Each memory cell is composed of three main gates: 

1. Forget Gate: This gate determines which information from the previous time step 

should be discarded. It takes the current input and the hidden state from the previous 

step and outputs a value between 0 and 1, where 0 represents "forget completely," and 

1 represents "keep entirely." 

2. Input Gate: The input gate controls how much of the new information should be stored 

in the memory cell. It decides whether the incoming data should update the cell's state 

or be ignored. 

3. Output Gate: After the cell's state has been updated, the output gate controls what 

information will be passed to the next layer or time step. It decides which parts of the 

cell state will influence the current output. 

The memory cells' ability to control what to remember, update, or forget at each time step 

allows LSTMs to maintain long-term dependencies in the data, making them highly effective for 

tasks involving time-series or sequential patterns, such as natural language processing, speech 

recognition, and network traffic analysis. 

2.3.2 LSTMs for Attack Classification in IoT Networks 

In the context of IoT networks, the traffic generated by devices can be viewed as sequential 

data, where patterns evolve over time. Anomalous behaviors, such as those caused by 

cyberattacks, often manifest as deviations from normal traffic patterns. By analyzing network 
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traffic as a time-series, LSTMs are well-suited for detecting these irregularities and classifying 

them as potential attacks. 

In this project, a LSTM-based neural network was implemented for attack classification in IoT 

networks. The model was designed to analyze sequences of network traffic data, learning both 

normal patterns and deviations that may indicate an attack. The use of LSTM allows the system 

to capture complex temporal dependencies in the traffic data, making it effective at 

distinguishing between benign activity and various forms of cyberattacks. 

The LSTM model takes as input sequences of features derived from network traffic, such as 

packet size, protocol type, and timing information. Over time, the model learns to identify 

patterns that correspond to different types of attacks, such as Distributed Denial of Service 

(DDoS) attacks, brute-force login attempts, or data exfiltration. By leveraging the IoT-23 dataset, 

which contains labeled IoT traffic data, the model was trained and evaluated on a wide range of 

attack types, demonstrating strong performance in detecting and classifying threats in real-time. 

2.3.3 Advantages of Using LSTM for Attack Classification 

• Capturing Temporal Dependencies: One of the primary advantages of LSTM networks 

is their ability to capture temporal dependencies in network traffic. Attack patterns 

often unfold over time, making LSTM a natural choice for detecting these anomalies as 

they emerge. 

• Robustness to Irregular Time Intervals: In IoT networks, the timing between data 

packets can vary, and LSTMs can handle this variability better than traditional methods, 

as they are not constrained by fixed time intervals. 

• Effective for Sequential Data: IoT traffic, with its sequential nature, benefits greatly 

from LSTM's capacity to process and learn from ordered data. This makes LSTMs more 

effective in detecting sophisticated attacks that evolve gradually rather than triggering 

immediate alerts. 

By implementing an LSTM-based neural network in this project, a robust model was created for 

the classification of cyberattacks in IoT networks. The LSTM's ability to model temporal 

sequences of network traffic allows it to detect anomalies that would be difficult for other 

machine learning models to capture. This capability, combined with the use of real-world IoT 

traffic data, positions the model as an effective tool for strengthening the security infrastructure 

of IoT environments, providing real-time threat detection and classification. 
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3 Objectives and Scope of the Project 

The primary objective of this project is to design and implement an effective Long Short-Term 

Memory (LSTM)-based Intrusion Detection System (IDS) for classifying cyberattacks in IoT 

networks. The increasing proliferation of IoT devices, coupled with their inherent vulnerabilities, 

necessitates the development of advanced security measures to protect these networks. This 

project aims to address these challenges through the following specific objectives: 

1. Develop a LSTM-based neural network model: The project seeks to develop an LSTM-

based neural network capable of analyzing network traffic in real-time. The model will 

be trained to detect anomalies and classify different types of cyberattacks, leveraging 

its ability to capture temporal dependencies in network traffic data. 

2. Utilize the IoT-23 dataset for training and evaluation: The project will make use of the 

IoT-23 dataset, a labeled dataset containing both benign and malicious IoT network 

traffic. The dataset will be used to train the LSTM model, ensuring that it can accurately 

identify and classify a wide range of attacks in IoT environments. 

3. Enhance attack detection in resource-constrained IoT networks: By focusing on IoT 

environments, the project will explore how LSTM-based IDS can be optimized for real-

time performance, even in networks with limited processing and memory resources. 

The model will be evaluated on its ability to detect attacks without overwhelming the 

IoT devices or introducing significant latency. 

4. Provide a scalable and adaptive intrusion detection solution: The LSTM-based IDS will 

be designed to be scalable and adaptive, meaning it should be capable of detecting 

known and unknown (zero-day) attacks across various IoT environments. This will be 

achieved by combining signature-based and anomaly-based detection techniques. 

5. Integrate edge computing principles for real-time detection: The project will leverage 

edge computing principles to process network traffic closer to the source, reducing 

latency and ensuring faster detection and response to threats. This approach will enable 

the IDS to operate efficiently in distributed IoT networks, providing real-time threat 

monitoring and mitigation. 

The scope of this project is focused on the development and evaluation of a LSTM-based 

Intrusion Detection System (IDS) specifically for IoT networks. The project covers the following 

areas: 

1. IoT Network Security: The project is limited to IoT environments and focuses on 

identifying security risks inherent to these networks. While the methodology may be 

applicable to other types of networks, the model is optimized for IoT devices' specific 

challenges, such as limited computational resources and network traffic patterns. 

2. Network Traffic Analysis: The scope of the project involves analyzing network traffic 

data, specifically identifying patterns of malicious activity. The IDS will focus on 
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detecting various types of cyberattacks, including Distributed Denial of Service (DDoS) 

attacks, data exfiltration, brute-force attacks, and others, as found in the IoT-23 dataset. 

3. LSTM-based Model Development: The project is centered on the application of Long 

Short-Term Memory (LSTM) neural networks, which will be used to analyze the 

temporal dependencies in network traffic data. The LSTM model is chosen for its ability 

to handle sequential data and its effectiveness in detecting attacks that develop over 

time. 

4. Real-Time Detection: A key aspect of the project is real-time intrusion detection. The 

system will be designed to operate in real-time, ensuring that cyberattacks are detected 

promptly, thus enabling rapid response and mitigation of security threats. 

5. Evaluation and Testing: The project will include an evaluation of the LSTM-based IDS 

using the IoT-23 dataset. Metrics such as detection accuracy, false-positive rate, and 

system performance will be analyzed to ensure the system's effectiveness in practical 

IoT environments. 

6. Limitations and Assumptions: While the project focuses on the security of IoT networks, 

it does not address other aspects of IoT, such as hardware vulnerabilities or physical 

layer security. Additionally, the IDS will be designed for network-level detection and may 

not fully capture device-level security threats. Furthermore, it is assumed that IoT 

devices in the network communicate using standard protocols, as modeled by the 

dataset. 

The objectives and scope of this project are framed around developing a robust, scalable, and 

real-time intrusion detection system based on LSTM networks, tailored for the unique 

requirements of IoT networks. By leveraging the strengths of LSTM in analyzing time-series data 

and employing edge computing principles, the project aims to enhance the security 

infrastructure of IoT environments, providing a practical and adaptive solution for threat 

detection in real-time. 
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4 Benefits of the project 

The development of a Long Short-Term Memory (LSTM)-based Intrusion Detection System 

(IDS) for IoT networks, as outlined in this project, offers several significant benefits for both 

academic research and practical applications. These benefits are crucial given the growing 

reliance on IoT devices in various domains and the increasing threats these networks face. The 

key benefits of this work are as follows: 

1. Enhanced Security for IoT Networks 

One of the primary benefits of this project is the improvement of security in IoT networks, which 

are notoriously vulnerable due to their resource constraints, lack of standardized security 

protocols, and widespread deployment. The LSTM-based IDS provides an advanced mechanism 

for detecting a wide range of cyberattacks in real-time, allowing for proactive defense measures. 

By continuously monitoring network traffic, the system can detect abnormal behaviors 

indicative of attacks, such as Distributed Denial of Service (DDoS), brute force attempts, and 

malware infections, before they cause significant damage. 

2. Real-Time Threat Detection 

Real-time detection is critical in mitigating the impact of cyberattacks, especially in IoT 

environments where attacks can propagate quickly across devices. The LSTM-based IDS, 

integrated with edge computing principles, allows for faster threat detection and response times 

by processing data closer to the source. This significantly reduces the time between the 

identification of malicious activity and the implementation of countermeasures, minimizing 

potential disruptions and data breaches in IoT systems. 

3. Effective Time-Series Analysis 

IoT networks generate large volumes of sequential data, making time-series analysis crucial for 

detecting temporal patterns associated with attacks. LSTM networks are well-suited for this type 

of analysis, as they can model long-term dependencies in network traffic and detect gradual 

changes in behavior that may indicate the onset of an attack. This makes the system highly 

effective at recognizing sophisticated, multi-stage attacks that evolve over time, which might 

otherwise go undetected by traditional intrusion detection systems. 

4. Scalable and Adaptive Solution 

The LSTM-based IDS developed in this project is designed to be scalable, making it adaptable to 

different IoT environments with varying levels of traffic and device density. The system can 

efficiently handle large-scale IoT networks, ensuring that it remains responsive and effective 

even as the number of devices grows. Additionally, its adaptive nature, supported by machine 

learning, allows it to detect both known attack patterns (through signature-based detection) 

and emerging threats (through anomaly detection), offering a more comprehensive security 

solution for IoT networks. 
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5. Reduced False Positives 

Intrusion detection systems often suffer from high false-positive rates, where legitimate 

activities are incorrectly flagged as malicious. This project addresses this challenge by utilizing 

LSTM's ability to learn from past network behavior and distinguish between normal variations 

in traffic and actual security threats. Through its sequential learning capabilities, the system can 

minimize false alarms, which reduces the burden on security teams and allows them to focus on 

genuine threats. 

6. Increased Resilience Through Edge Computing 

By leveraging edge computing, this project enhances the resilience and efficiency of the IDS. 

Processing data at the edge reduces network congestion and central server load, making the 

system more responsive and less prone to delays. This is particularly important in distributed 

IoT networks, where latency can compromise security effectiveness. Edge computing also 

reduces the risk of a single point of failure, increasing the overall robustness of the security 

system. 

7. Contribution to Research in Machine Learning for Cybersecurity 

This project contributes to the growing body of research on the application of machine learning, 

particularly LSTM networks, in cybersecurity. The implementation and evaluation of LSTM for 

IoT network intrusion detection not only demonstrate its practical effectiveness but also open 

new avenues for future research in both academia and industry. This work showcases how 

advanced neural network architectures can be applied to real-world problems, paving the way 

for further innovations in AI-driven security solutions. 

8. Practical Application for Industry 

The outcomes of this project can have direct applications in industries that rely heavily on IoT 

networks, such as healthcare, manufacturing, smart cities, and critical infrastructure. The 

deployment of an LSTM-based IDS tailored for IoT networks can provide these industries with a 

more reliable and sophisticated layer of security. This is particularly important for protecting 

sensitive data, ensuring operational continuity, and preventing financial losses that could arise 

from cyberattacks on IoT systems. 

9. Detecting Zero-Day and Evolving Threats 

A significant benefit of the LSTM-based IDS is its ability to detect zero-day attacks and other 

evolving threats. Traditional signature-based systems are limited to recognizing known attack 

patterns, but the anomaly detection capabilities of LSTM networks allow the system to identify 

previously unknown attacks based on deviations from normal network behavior. This proactive 

approach is essential in today's rapidly changing threat landscape, where attackers constantly 

develop new tactics to bypass existing defenses. 
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10. Efficiency in Resource-Constrained Environments 

Many IoT devices are resource-constrained, with limited computational power, memory, and 

battery life. The LSTM-based IDS developed in this project is optimized to operate efficiently in 

such environments, ensuring that security can be maintained without overburdening the 

devices or the network infrastructure. This makes the system particularly suitable for 

widespread deployment in real-world IoT networks, where resource constraints are a common 

challenge. 

This project offers multiple benefits, both in terms of improving IoT network security and 

contributing to the field of machine learning-based intrusion detection systems. By developing 

a scalable, adaptive, and efficient LSTM-based IDS, the project addresses the unique challenges 

posed by IoT networks and provides a robust solution for real-time attack classification. The 

system’s ability to detect zero-day threats, minimize false positives, and function in resource-

constrained environments positions it as a valuable tool for securing the increasingly 

interconnected world of IoT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

22 
 

5 Related works 

The integration of machine learning, artificial intelligence (AI), and neural networks (NN) has 

become increasingly prevalent in the realm of IoT cybersecurity. These technologies offer 

sophisticated tools for detecting and responding to threats in a landscape that is constantly 

being targeted by cyberattacks. 

In their paper titled "Edge Computing for Real-Time Botnet Propagation Detection" Mikhail 

Gromov, David Arnold, and Jafar Saniie [4] explore the utilization of edge computing coupled 

with Convolutional Neural Networks (CNNs) for real-time botnet attack detection. Their 

research leverages the N-BaIoT dataset and proposes a system that operates at the network 

edge, specifically using a Jetson Nano to perform live traffic analysis. This setup is crucial for 

stopping botnet propagation swiftly, enhancing the responsiveness of IoT devices to imminent 

threats. In addition to their existing contributions, the authors have engaged in extensive 

research involving the application of AI for the detection of malicious attacks [5]. Notably, in 

their study titled "Utilizing Computer Vision Algorithms to Detect and Classify Cyberattacks in 

IoT Environments in Real-Time" [6, 7] the authors employ the IoT-23 dataset, the same dataset 

used in this current research Focusing on LSTM neural networks, the "Deep-IDS: A Real-Time 

Intrusion Detector for IoT Nodes Using Deep Learning" paper by Sandeepkumar Racherla et al. 

[8] demonstrates a significant advancement in intrusion detection within IoT systems. This study 

employs a streamlined LSTM architecture, which includes 64 LSTM units, to detect a variety of 

common IoT threats such as Denial of Service and Brute Force attacks using the CIC-IDS2017 

dataset. Their approach underscores the efficacy of LSTM models in handling real-time data 

processing, providing a balance between high detection rates and low false alarm rates. 

Finally, the paper "Enhanced Intrusion Detection with LSTM-Based Model, Feature Selection, 

and SMOTE for Imbalanced Data" research [8] study leverages LSTM's capability to model 

sequential data effectively, alongside SMOTE to address class imbalances prevalent in 

cybersecurity datasets. The combination of LSTM and sophisticated feature selection strategies 

enhances the system's accuracy and efficiency, making it a robust tool against diverse network 

threats. 
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6 Alternative Analysis 

When developing a solution for intrusion detection in IoT networks, selecting the appropriate 

programming language and tools for packet capture and network traffic analysis plays a critical 

role in the project’s performance and efficiency. This section presents an analysis of two key 

decisions made during the project: the choice of Python over C++ and the use of Scapy instead 

of Pyshark for network packet analysis. Each alternative has its own set of advantages and 

disadvantages, and these decisions were carefully considered to meet the project's objectives. 

6.1 Python vs C++ 

In this project, Python was chosen as the primary programming language for developing the 

LSTM-based Intrusion Detection System (IDS). However, it is important to evaluate the potential 

benefits and drawbacks of using Python versus C++, another widely used language in network 

security applications. 

6.1.1 Python 

Python is a high-level, interpreted programming language known for its simplicity, readability, 

and extensive library support. Its popularity in machine learning, data science, and network 

programming has made it a go-to language for many security and AI-related projects. 

• Advantages: 

o Ease of Use and Rapid Development: Python's simple syntax and extensive 

libraries, such as TensorFlow, PyTorch, and Keras for machine learning, allow for 

rapid prototyping and development of complex models like LSTM networks. This 

ease of use reduces development time and lowers the learning curve, especially 

when working with large datasets and neural networks. 

o Extensive Library Support: Python has a rich ecosystem of libraries for network 

analysis (e.g., Scapy, Pyshark), data manipulation (e.g., Pandas, NumPy), and 

deep learning (e.g., TensorFlow, Keras). This makes it highly versatile for tasks 

such as network traffic analysis, feature extraction, and model training. 

o Cross-Platform Compatibility: Python is cross-platform, which allows the 

developed system to run on multiple operating systems with minimal changes. 

This flexibility is particularly useful for projects involving IoT devices deployed in 

diverse environments. 

• Disadvantages: 

o Performance: One of Python's primary drawbacks is its performance compared 

to compiled languages like C++. Python is an interpreted language, meaning it 

executes code slower than C++ in CPU-intensive tasks. For real-time network 

traffic analysis in high-speed IoT networks, this can be a limitation, though 

mitigated in this project through careful optimization and the use of efficient 

libraries. 
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o Memory Management: Python’s automatic memory management through 

garbage collection can lead to inefficiencies in resource-constrained 

environments, such as IoT devices with limited memory and processing power. 

6.1.2 C++ 

C++ is a compiled, high-performance programming language widely used in systems 

programming, game development, and real-time applications. For network security projects, 

C++ is often favored for its speed and control over system resources. 

• Advantages: 

o High Performance: C++ is significantly faster than Python due to its compiled 

nature and ability to optimize code at a low level. This makes it ideal for real-

time applications, such as high-throughput network traffic analysis, where 

performance is a critical factor. 

o Fine-Grained Memory Management: C++ provides more control over memory 

allocation and management, which can be a critical advantage in resource-

constrained environments like IoT devices. This enables more efficient use of 

system resources, reducing overhead in real-time systems. 

o Concurrency Support: C++ offers better support for multi-threading and parallel 

processing, which can improve performance when handling large volumes of 

network traffic or running real-time intrusion detection tasks. 

• Disadvantages: 

o Complexity: C++ is a more complex language with a steeper learning curve 

compared to Python. The need for manual memory management, pointer 

handling, and more verbose syntax can increase development time and 

complexity, particularly for machine learning tasks where Python’s ease of use 

shines. 

o Limited Machine Learning Ecosystem: While libraries like TensorFlow have C++ 

APIs, the machine learning ecosystem in C++ is not as mature or developer-

friendly as in Python. This makes implementing complex models, such as LSTM 

networks, more challenging and time-consuming. 

6.1.3 Conclusion 

The choice of Python in this project was driven by the need for rapid development, ease of use, 

and access to a rich set of libraries for machine learning and network analysis. While C++ offers 

better performance, Python’s flexibility and extensive ecosystem made it the preferred choice 

for building the LSTM-based IDS. The trade-off in performance was considered acceptable for 

the scope of this project, especially since Python’s rich libraries enabled efficient handling of the 

required tasks. 
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6.2  Pyshark vs Scapy 

In network traffic analysis, the choice of tools is equally important. For this project, Scapy was 

chosen over Pyshark for network packet analysis and traffic monitoring. Both tools are widely 

used in the field, and each has unique strengths and weaknesses. 

6.2.1 Scapy 

Scapy is a powerful Python-based network analysis tool that allows users to capture, manipulate, 

and analyze network packets. It is widely used in cybersecurity for tasks such as packet sniffing, 

crafting, and injecting packets into a network. 

• Advantages: 

o Flexibility: Scapy is highly flexible, allowing users to easily create, modify, and 

inject network packets. This is particularly useful in testing scenarios where 

custom packets or specific protocol manipulation is required. 

o Low-Level Control: Scapy provides extensive control over network packets and 

protocols, enabling detailed packet crafting and analysis. This is a key feature 

when experimenting with different network protocols and simulating specific 

attack scenarios, as required for this project. 

o Integration with Python: Since Scapy is written in Python, it integrates 

seamlessly with the machine learning and data processing components of the 

project. This allows for easy extraction of features from network traffic and their 

direct use in the LSTM model for attack classification. 

• Disadvantages: 

o Packet Capture Speed: While Scapy is powerful, it may not be as fast as 

dedicated packet capture libraries such as Pyshark (which is built on top of 

Tshark, a part of Wireshark). Scapy's performance can be a limitation when 

dealing with large volumes of network traffic, though this was manageable 

within the project’s scope. 

6.2.2 Pyshark 

Pyshark is a Python wrapper for Tshark, the command-line interface of Wireshark, which is the 

industry-standard tool for network protocol analysis. Pyshark allows for packet capture and 

analysis using Wireshark’s powerful capabilities. 

• Advantages: 

o Speed and Efficiency: Pyshark is built on Tshark, making it highly efficient in 

capturing and analyzing large volumes of network traffic. This makes it a suitable 

choice for high-speed network environments where performance is a critical 

requirement. 
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o Comprehensive Protocol Support: Since Pyshark leverages Wireshark, it 

supports a wide range of network protocols, ensuring compatibility with various 

types of network traffic and enabling in-depth packet analysis. 

o Ease of Use for Capture: Pyshark simplifies the process of capturing and 

dissecting packets, providing a high-level interface to Wireshark’s capabilities. 

For straightforward packet analysis tasks, Pyshark offers a more user-friendly 

approach compared to Scapy. 

• Disadvantages: 

o Limited Flexibility: Pyshark is primarily designed for packet capture and analysis 

and lacks the low-level packet crafting and manipulation features that Scapy 

offers. For projects that require custom packet injection or network protocol 

testing, Pyshark is less suited than Scapy. 

o Dependency on Tshark: Pyshark requires Tshark to be installed, adding an 

additional dependency to the project. This can complicate deployment in 

certain environments, especially when trying to keep dependencies minimal. 

6.2.3 Conclusion 

Scapy was chosen for this project due to its flexibility and the need for detailed packet crafting 

and manipulation, which were critical in testing specific attack scenarios and simulating network 

traffic. While Pyshark provides faster packet capture and analysis, the ability to fully control and 

modify packets in Scapy aligned better with the project’s objectives, allowing for deeper 

experimentation and integration with Python’s machine learning tools. 
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7 Methodology 

The methodology of the project will be explained in this section of the report. 

7.1. IoT-23 dataset 

The IoT-23 dataset [3] is a comprehensive collection of network traffic data, carefully curated to 

support the development and evaluation of Intrusion Detection Systems (IDS) in Internet of 

Things (IoT) environments. Developed by the Stratosphere Laboratory, the dataset addresses 

the growing need for realistic IoT network traffic data to enhance attack detection and 

classification. The dataset is composed of 23 scenarios, of which 3 scenarios represent benign 

traffic, and 20 scenarios represent malicious traffic, providing a rich resource for researchers 

and practitioners in the field of IoT security. 

 
The dataset includes traffic captured from three widely used IoT devices: 

1. Philips Hue smart LED lamp: A smart lighting system with internet connectivity for 

remote control and automation. 

2. Amazon Echo: A voice-activated personal assistant device designed to control smart 

home devices and interact with cloud services. 

3. Somfy smart door lock: A smart lock system that enables users to remotely manage 

physical access via internet connectivity. 

These devices were chosen to provide a representative sample of typical IoT devices, each with 

distinct communication protocols and patterns, thereby providing insight into both normal and 

malicious IoT network traffic. 

The IoT-23 dataset is composed of two main types of files: 

1. PCAP Files: These packet capture files contain raw network packets recorded from the 

IoT devices. PCAP files allow for a detailed examination of network traffic, including 

packet-level data such as headers, payloads, and timestamps. The PCAP files were used 

in this project to extract network flows and derive features necessary for training the 

LSTM-based neural network. 

2. Labeled Zeek Flow Files: These files summarize network connections using the Zeek 

network monitoring framework. Each flow file includes metadata about network 

connections, such as duration, packet counts, and byte transfers, as well as labels 

indicating whether the traffic is benign or malicious. The labeled flow files were 

instrumental in assigning accurate labels to the flows extracted from the PCAP files. 

For this project, 18 PCAP files and their corresponding Zeek flow files were utilized, comprising 

3 benign captures and 15 malware captures. The use of these files provided a balanced dataset 

for training the LSTM model, with a variety of attack types and benign traffic included in the 

analysis. 
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To manage the dataset size and ensure efficient processing, only the first 300,000 packets from 

each PCAP file were used for analysis. This decision allowed for a balance between 

computational efficiency and maintaining a diverse set of network traffic data. In total, 

1,851,432 network flows were extracted from the PCAP files. These flows were then used to 

generate features such as packet size, inter-arrival time between packets, and protocol types, 

which were crucial for training the LSTM-based IDS model. 

The labeled Zeek flow files were used to assign ground truth labels to the extracted network 

flows, ensuring the accuracy of the data used for training the machine learning model. 

The IoT-23 dataset contains 10 distinct labels, representing both benign and malicious network 

traffic. These labels were used in the project to train the LSTM-based model for intrusion 

detection and attack classification. The distribution of labels, along with their corresponding IDs 

and flow counts, is shown below: 

 
Table I. Labels 

Label name Label ID Number of Flows 

Benign 1 242,133 

C&C 2 4,128 

C&C-FileDownload 3 13 

C&C-HeartBeat 4 575 

C&C-Torii 6 14 

FileDownload 7 12 

Okiru 8 710715 

DDoS 9 212 

Attack 10 3,729 

PartOfHorizontalPortScan 11 889,898 

 

These labels encompass both benign network traffic (Label 1) and various types of malicious 

activity. A number of malicious labels are associated with activities that contribute to botnet 

formation and other types of cyberattacks. Key examples include: 

• C&C (Command and Control): Traffic between a compromised device and a command 

and control server, used by attackers to manage botnets or issue instructions to infected 

devices. 

• C&C-FileDownload: A subtype of C&C traffic where malicious files are downloaded onto 

compromised IoT devices. 

• Okiru: A malware family designed to infect IoT devices and use them in botnets to 

launch large-scale cyberattacks, such as DDoS attacks. 

• PartOfHorizontalPortScan: A technique used by attackers to scan multiple devices for 

open ports, often preceding larger attacks, such as malware infections or DDoS attacks. 
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Several labels, including Okiru, C&C, and PartOfHorizontalPortScan, represent activities that are 

integral to the formation and management of botnets. Botnets are networks of compromised 

devices controlled by an attacker, and they are often used to launch large-scale attacks, such as 

Distributed Denial of Service (DDoS) attacks or data theft. 

• Okiru: This malware is designed to exploit vulnerabilities in IoT devices, turning them 

into part of a botnet that can be used for further malicious activities, such as 

participating in DDoS attacks. 

• C&C Traffic: Command and Control traffic is vital to understanding how attackers 

maintain control over botnets. The communication between botnet controllers and 

infected devices is essential for issuing commands, downloading additional malware, 

and orchestrating attacks. 

• Port Scanning: Horizontal port scanning is commonly used to identify vulnerabilities in 

a range of IoT devices. Once vulnerabilities are discovered, attackers can compromise 

the devices and add them to a botnet. 

The IoT-23 dataset provides an extensive and realistic dataset of IoT network traffic, offering a 

diverse range of benign and malicious activities for research purposes. By incorporating network 

traffic from widely used IoT devices and a variety of malware types, the dataset enables 

researchers to develop and evaluate machine learning models for IoT security. In this project, 

the dataset was used to train an LSTM-based Intrusion Detection System, leveraging both PCAP 

and labeled Zeek flow files to identify and classify attacks in IoT networks. The use of real-world 

attack scenarios and a broad spectrum of malware types ensures that the resulting model is 

both robust and applicable to modern IoT environments. 

 

7.2 Data preprocessing 

The data preprocessing phase was a critical step in preparing the network traffic data captured 

in the PCAP (Packet Capture) files for analysis using the LSTM neural network. This phase 

ensured that raw network data was transformed into a structured format that could be 

efficiently processed by the machine learning model. For this project, the Pyshark library was 

employed to parse the PCAP files and extract a comprehensive set of features from each 

network flow, allowing the LSTM model to detect patterns indicative of benign or malicious 

activity. The preprocessing phase included several key steps: feature extraction, data labeling, 

and encoding and data splitting. 

7.2.1 Feature Extraction 

Feature extraction is an essential step in transforming raw network traffic into a format 

suitable for machine learning. For each flow captured in the PCAP files, various features were 

extracted that encapsulated the behavior and characteristics of the network traffic. These 

features were chosen to capture not only basic flow information but also statistical properties 

that could reveal underlying patterns in the communication between devices. In total, 24 
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features were selected to train the LSTM neural network, encompassing aspects of traffic 

volume, timing, packet statistics, and protocol information. 

The table below provides an overview of the features extracted for each network flow: 

Table II. Extracted features 

Feature Name Description 

Source IP The IP address of the device that initiated the network 

flow. 

Destination IP The IP address of the device that received the flow. 

Source Port The port number used by the source device for 

communication. 

Destination Port The port number used by the destination device. 

Protocol The transport or application layer protocol used (e.g., 

TCP, UDP, HTTP, DNS). 

Packet Size (Mean) The average packet size in bytes for all packets in the 

flow. 

Packet Size (Median) The median packet size in bytes. 

Packet Size (Standard 

Deviation) 

The standard deviation of packet sizes, indicating 

variability in packet size. 

Packet Size (Min) The smallest packet size in the flow. 

Packet Size (Max) The largest packet size in the flow. 

Inter-Packet Arrival Time 

(Mean) 

The average time between consecutive packets within 

the flow, measured in seconds. 

Inter-Packet Arrival Time 

(Median) 

The median time between consecutive packets. 

Inter-Packet Arrival Time 

(Standard Deviation) 

The variability in the timing of packet arrivals. 

Inter-Packet Arrival Time (Min) The shortest time between consecutive packets. 

Inter-Packet Arrival Time (Max) The longest time between consecutive packets. 

Flow Duration The total duration of the flow, measured from the first to 

the last packet in seconds. 
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Forward Packet Count The number of packets sent from the source to the 

destination device. 

Backward Packet Count The number of packets sent from the destination back to 

the source device. 

Forward Bytes The total number of bytes sent from the source to the 

destination. 

Backward Bytes The total number of bytes sent from the destination back 

to the source. 

Connection State The state of the connection (e.g., initiated, established, 

reset, terminated). 

Origin Bytes The total number of bytes sent by the source (client) in 

the flow. 

Response Bytes The total number of bytes sent by the destination 

(server) in response. 

Total Packets The sum of forward and backward packets in the flow. 

 

Key Features: 

1. Source and Destination IP/Port: These features uniquely identify each flow by 

specifying the origin and destination of the communication. They are essential for 

tracking the direction of the traffic and recognizing patterns related to specific devices 

or ports. Malicious flows often target specific IPs or use unusual port numbers. 

2. Protocol: Knowing the protocol used in a communication flow is crucial for 

differentiating between different types of traffic. For example, malicious actors may use 

uncommon or non-standard protocols to avoid detection. 

3. Packet Size and Inter-Packet Arrival Time: These features help capture the size and 

timing patterns of network traffic. Irregularities in packet size distribution or abnormal 

timing between packets could indicate suspicious activities like denial-of-service attacks 

or botnet communication. 

4. Flow Duration: The total duration of a flow provides insight into whether a connection 

lasted unusually long or short, which can be a characteristic of certain attacks. For 

example, a very short connection with high data throughput could be a sign of a malware 

infection attempting to exfiltrate data. 

5. Packet Counts and Bytes: These features measure the volume of traffic moving in both 

directions between devices. In many cases, an abnormal number of packets or bytes 

(e.g., a large number of requests with no responses) can signify a brute force attack or 

other anomalous activity. 
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6. Connection State: Monitoring the state of the connection lifecycle (initiation, 

establishment, reset, termination) helps track irregular patterns in network behavior, 

such as abrupt connection terminations that could indicate an ongoing attack or 

compromised device. 

In total, 24 features were extracted and processed for each flow, capturing both the high-level 

behavior and low-level statistical properties of network traffic. These features were designed to 

maximize the model’s ability to distinguish between benign and malicious flows, while also 

providing sufficient contextual information about each communication. 

7.2.2 Data Labeling 

To ensure accurate training and testing of the LSTM model, each network flow needed to be 

correctly labeled as either benign or malicious. The labeling process was conducted by 

comparing the IP addresses and ports extracted from the PCAP files with those cataloged in the 

Zeek flow files. The Zeek files contained pre-labeled data, indicating whether each connection 

in the network was associated with a known malware type or represented normal, benign 

behavior. 

By matching the IPs, ports, and other flow characteristics with the information from the Zeek 

flow files, each network flow extracted from the PCAP files was accurately classified. This step 

was critical in maintaining the integrity of the training and testing datasets, ensuring that the 

LSTM model was trained on reliable and correctly labeled data. The labels are shown in Table 1. 

7.2.3 Encoding and Data Splitting 

After the features were extracted and labeled, additional preprocessing steps were applied to 

prepare the dataset for the LSTM neural network. Specifically, One-Hot Encoding was applied 

to transform categorical features (such as protocols and connection states) into a binary matrix 

format that could be used as input to the model. One-Hot Encoding is a common technique in 

machine learning for converting categorical variables into a format that is easy for neural 

networks to interpret. 

Once encoding was complete, the dataset was split into two subsets: 

• Training Set (80%): Used to train the LSTM neural network. This set was carefully 

curated to ensure that the model could learn from both benign and malicious traffic, 

including a variety of attack types. 

• Testing Set (20%): Reserved for evaluating the performance of the trained model. This 

set allowed for an unbiased assessment of the model’s ability to generalize to new, 

unseen network flows. 

This 80/20 split was selected to balance the need for a robust training process while still 

maintaining sufficient data for effective model validation. 

The entire preprocessing pipeline is summarized in the following flowchart, outlining the steps 

from raw PCAP file parsing, feature extraction, data labeling, encoding, and data splitting, to 

the final datasets ready for input into the LSTM neural network. 
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Figure I. DATA PREPROCESSING FLOWCHART 

 

 

7.3 LSTM Model Architecture 

The Long Short-Term Memory (LSTM) model was developed to classify network attacks within 

IoT environments by leveraging the sequential nature of network traffic data. This 

architecture, implemented using the Keras library [11], is designed to exploit the temporal 

dependencies in the data, which is crucial for identifying patterns indicative of benign or 

malicious activities. LSTM networks are particularly suited for time-series data, as they excel at 
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retaining information over extended sequences, making them highly effective in network 

intrusion detection tasks. 

The following provides a detailed description of the layers and configurations used in the 

model, which is visually depicted in Figure II. 

 

Figure II. LSTM model architecture 

 

1. Input Layer: 

The input layer is configured to receive sequences of data corresponding to the 

24 extracted features from the IoT network flows. These features include 

statistics such as packet sizes, inter-packet arrival times, flow durations, and 

protocol information (as described in the data preprocessing section). Each input 

sequence is normalized to ensure that the features are on a consistent scale, 

facilitating faster convergence during model training. The shape of the input data 

is thus defined by the sequence length (number of network flows in each 

sequence) and the 24 features. 

2. First LSTM Layer: 

The first LSTM layer consists of 35 LSTM units (neurons). It is configured with 

return_sequences=True, meaning that it outputs the full sequence of hidden 

states to the next layer, rather than a single final output. This is essential for 

capturing long-range dependencies across the input sequence, which is 

particularly important in network traffic data where the behavior of one packet 
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may influence packets further down the sequence. This layer processes the 

sequential data while retaining memory of previous events, allowing the model 

to learn both short-term and long-term patterns in the network flows. 

3. Dropout Layer (1st Dropout): 

Following the first LSTM layer, a Dropout layer is applied with a dropout rate of 

0.35. Dropout is a regularization technique used to prevent overfitting by 

randomly setting a fraction of the input units to zero during training. This forces 

the network to learn more robust features, as it cannot rely on any single neuron 

being consistently active. The chosen dropout rate was determined through 

hyperparameter tuning, ensuring an optimal balance between preventing 

overfitting and maintaining model performance. 

4. Second LSTM Layer: 

The second LSTM layer also contains 35 LSTM units, but unlike the first, it is 

configured to output only the final hidden state (return_sequences=False). This 

means that rather than returning the entire sequence of hidden states, the layer 

produces a single output representing the accumulated knowledge from the 

entire input sequence. This output condenses the learned features and is used 

as input to the next layer for final classification. The use of two LSTM layers 

enhances the model's ability to capture both high-level and detailed temporal 

patterns in the network traffic. 

5. Dropout Layer (2nd Dropout): 

Another Dropout layer is applied with the same dropout rate of 0.35, further 

helping to reduce the risk of overfitting by introducing noise during training. This 

second dropout layer ensures that the final output from the second LSTM layer 

is less dependent on specific units, increasing the model’s generalization ability 

when dealing with unseen network traffic. 

6. Output Layer: 

The final layer is a fully connected (dense) output layer, with 10 output units, 

corresponding to the 10 classes present in the dataset. These classes represent 

different attack types as well as benign network traffic. The output layer employs 

a softmax activation function, which converts the output into a probability 

distribution over the possible classes. The softmax function ensures that the sum 

of all class probabilities equals 1, making it ideal for multiclass classification tasks 

like this one, where the model must assign an input sequence to one of several 

attack types or benign traffic. 
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The model is trained using the Adam optimizer, a popular choice for deep learning 

models due to its adaptive learning rate and ability to efficiently converge on optimal 

solutions. Adam combines the advantages of two other extensions of stochastic gradient 

descent—AdaGrad and RMSProp—allowing for faster convergence and better handling 

of sparse gradients. In this project, Adam is used to minimize the categorical cross-

entropy loss, which is the standard loss function for multiclass classification tasks. Cross-

entropy measures the difference between the predicted probability distribution and the 

true labels, guiding the model in adjusting its weights to minimize this difference during 

training. 

To prevent overfitting and improve the generalization of the model, the Optuna library 

was used for hyperparameter tuning. Optuna is an open-source library that automates 

the search for optimal hyperparameters by systematically testing different 

combinations of parameters such as the number of LSTM units, dropout rates, and 

learning rates. This method ensures that the model is fine-tuned to perform optimally 

given the specific characteristics of the IoT-23 dataset. The final configuration of 35 units 

and a dropout rate of 0.35 was chosen based on these optimization trials. 

The LSTM model was trained over 50 epochs, with each epoch representing a complete 

pass through the training dataset. This number of epochs was determined based on 

preliminary experiments, which showed that training for 50 epochs provided the best 

balance between model accuracy and overfitting. Training for fewer epochs resulted in 

the model not fully learning the complex patterns in the data, while training for more 

epochs risked overfitting to the training set. 

During training, the model adjusted its weights to capture the intricate patterns in the 

network traffic, learning to distinguish between benign traffic and various types of 

cyberattacks. The performance of the model was monitored using the accuracy metric, 

which measures the percentage of correctly classified instances out of the total number 

of predictions. 

This LSTM architecture, with its two LSTM layers and carefully applied dropout 

regularization, was designed to efficiently process network flow data for attack 

classification. By leveraging the temporal characteristics of IoT network traffic, the 

model is capable of identifying patterns indicative of different types of attacks, including 

botnet activity, DDoS attacks, and other forms of malicious behavior. The use of Optuna 

for hyperparameter optimization ensured that the model was fine-tuned to achieve the 

best possible performance on the IoT-23 dataset. 

The model's architecture and training process demonstrate a robust approach to 

detecting anomalies and classifying attacks in real-time, providing a scalable solution for 

intrusion detection in IoT networks. 
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7.4  System Methodology and Process Flow 

The overall methodology for developing and evaluating the Long Short-Term Memory (LSTM)-

based Intrusion Detection System (IDS) follows a structured, step-by-step process. This ensures 

that the system is built on a solid foundation of clean, well-prepared data and is evaluated 

accurately to assess its effectiveness in detecting network attacks. The general process is 

depicted in Figure 3, and the following is a detailed explanation of each step involved in the 

system: 

1. Load Data 

The first step in the process involves loading the network traffic data, both benign and malicious, 

from the PCAP files in the IoT-23 dataset. These files contain raw packet capture data 

representing various scenarios of network traffic, including regular IoT device communication 

and traffic generated by malware and other types of cyberattacks. Loading the data is a crucial 

step, as the PCAP files provide the basis for extracting meaningful features and constructing the 

dataset for the LSTM model. This step ensures that the system can work with both benign traffic 

(such as regular device usage) and malicious traffic (such as Distributed Denial of Service (DDoS) 

or botnet communication), giving the model a diverse and comprehensive set of data to learn 

from. 

2. Preprocess Data 

Once the network traffic data is loaded, the next step is to preprocess the data. This step 

includes two major tasks: 

• Feature Extraction: Using the Pyshark library, features are extracted from the raw 

network flows captured in the PCAP files. These features include packet size statistics, 

inter-packet arrival times, protocol types, flow durations, and more, providing a rich set 

of attributes that describe each flow. The extraction of these features transforms the 

raw traffic data into a structured format suitable for machine learning. 

• Data Labeling: After feature extraction, each flow is labeled as either benign or 

malicious by comparing the extracted features (such as IP addresses and ports) with the 

Zeek flow files. The Zeek files contain pre-labeled data, which provides a ground truth 

reference for distinguishing between normal and malicious traffic. This labeling process 

is essential for ensuring that the training and testing datasets are properly classified, 

allowing the LSTM model to learn how to differentiate between benign and malicious 

behaviors. 

3. Train-Test Split 

To ensure that the LSTM model is evaluated accurately, the dataset is split into training and 

testing subsets. This step is critical for building a robust machine learning model. Typically, 80% 

of the data is allocated for training the model, and 20% is reserved for testing. The training 

subset is used to teach the model how to recognize patterns in the network traffic, while the 

testing subset is held back to evaluate how well the model performs on unseen data. This split 
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allows the system to avoid overfitting and ensures that the model generalizes well to new traffic 

patterns. 

4. Encode Labels 

Since machine learning models, particularly neural networks, require numerical inputs, the 

labels in the dataset (e.g., benign or different types of malicious traffic) must be encoded into a 

format suitable for the LSTM model. In this step, One-Hot Encoding is applied to convert the 

categorical labels into a binary matrix format. This encoding method ensures that each class 

label is represented as a binary vector, where the vector length equals the number of classes in 

the dataset, and a 1 indicates the presence of a specific class. For example, a network flow 

labeled as "benign" might be encoded as [1, 0, 0, ..., 0], while an attack type might be encoded 

as [0, 0, 1, ..., 0]. This transformation is necessary to train the model effectively. 

5. Normalize Features 

In this step, the extracted features are normalized to ensure that they are on a consistent scale 

before being fed into the LSTM model. Normalization is a preprocessing technique that adjusts 

the scale of the features so that they fall within a common range (e.g., between 0 and 1). This is 

important because features with larger numerical ranges can disproportionately influence the 

model's learning process. By standardizing the input data, normalization allows the model to 

converge more quickly during training and prevents any one feature from dominating the 

others. Common normalization methods include min-max scaling or z-score standardization. 

6. Train Model 

Once the data has been preprocessed, the system proceeds to the training phase. During this 

step, the preprocessed and normalized network traffic data is fed into the LSTM model. The 

model learns by adjusting its internal weights through backpropagation and gradient descent. 

In this case, the Adam optimizer is used to optimize the learning process, while categorical cross-

entropy is employed as the loss function to measure the model's performance during training. 

The model is trained over a series of epochs, where each epoch represents one complete pass 

through the training data. For this project, the LSTM model was trained for 50 epochs, as 

preliminary experimentation showed that this number of epochs provided an optimal balance 

between comprehensive learning and avoiding overfitting. During training, the model adjusts its 

parameters to minimize the loss function and improve its accuracy in classifying the different 

types of network traffic. 

7. Evaluate Model 

After the model has been trained, the next step is to evaluate its performance. The evaluation 

process involves testing the model on the reserved testing subset to assess how well it 

generalizes to new, unseen data. This evaluation provides insights into the model’s ability to 

detect various types of attacks and benign traffic, offering several key outputs: 

• Save Model: Once the model has been trained and evaluated, it is saved for future use. 

Saving the trained model allows it to be deployed in real-world environments where it 
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can monitor IoT network traffic and detect potential intrusions in real-time. The saved 

model can also be reloaded for further training or fine-tuning if needed. 

• Generate Predictions: The trained model generates predictions on the test data, 

classifying each network flow as either benign or one of the attack types. These 

predictions are compared against the actual labels to measure the model’s accuracy and 

identify any misclassifications. 

• Plot Training History: A plot of the model’s training history is generated to visualize the 

learning process over the 50 epochs. This plot typically shows the loss and accuracy 

metrics for both the training and testing sets, helping to determine whether the model 

overfitted or underfitted during training. 

8. Confusion Matrix 

A confusion matrix is then generated to provide a detailed breakdown of the model's 

predictions. The confusion matrix is a table that compares the predicted class labels to the actual 

class labels, highlighting how well the model performed for each individual class. It shows true 

positives, true negatives, false positives, and false negatives, which are essential for 

understanding the strengths and weaknesses of the model in terms of classification accuracy 

and misclassification. For instance, the confusion matrix may reveal that the model accurately 

detects botnet traffic but struggles with detecting certain types of DDoS attacks. 

In conclusion, this structured methodology ensures that the LSTM-based intrusion detection 

system is developed systematically, from data loading and preprocessing through to model 

training and evaluation. Each step in the process contributes to building a robust and accurate 

model capable of detecting and classifying a variety of cyberattacks in IoT networks. 
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Figure III. System flowchart 
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8 Results 

8.1 Optimal Hyperparameters  

To optimize the performance of the LSTM-based Intrusion Detection System (IDS), a 

systematic hyperparameter tuning process was conducted using the Optuna library [12]. 

Optuna is an advanced framework that automates hyperparameter optimization by efficiently 

exploring different configurations and identifying those that maximize model performance. 

Through this process, several combinations of hyperparameters were tested, and the 

configuration that yielded the best balance between learning efficiency and model complexity 

was selected. 

The optimal configuration identified through the tuning process consisted of the following: 

• LSTM Units: The model was most effective with 35 LSTM units in each of the two 

LSTM layers. This number of units allowed the model to capture the temporal 

dependencies and patterns in the network traffic data without becoming too complex 

or overfitting. 

• Dropout Rate: A dropout rate of approximately 34.89% (rounded to 35%) was 

selected. Dropout is a regularization technique that helps prevent overfitting by 

randomly omitting a subset of neurons during training. This dropout rate was found to 

be ideal in forcing the network to learn more generalized and robust features from the 

input data. 

• Learning Rate: The learning rate was fine-tuned to 0.000741507, which enabled the 

model to gradually converge on an optimal solution without oscillating or diverging. 

This relatively low learning rate allowed for fine adjustments to the model weights, 

ensuring a stable and steady learning process. 

These hyperparameters proved effective in optimizing both the learning speed and the ability 

of the model to generalize to unseen data. The balance between the number of units, dropout 

rate, and learning rate ensured that the LSTM model learned efficiently while maintaining an 

appropriate level of complexity. 

8.2 Training and Validation Performance  

The training and validation performance of the LSTM model is illustrated in Figure 4, 

which shows the evolution of training accuracy, validation accuracy, training loss, and 

validation loss over the course of 50 epochs. These charts provide valuable insight into 

the model’s learning behavior and its ability to generalize from the training data to new, 

unseen data. 

8.2.1 Training and Validation Accuracy: 

The accuracy plot demonstrates a consistent increase in both training accuracy and 

validation accuracy over the training period. The training accuracy shows a steady 

improvement as the model gradually learns from the data, stabilizing at around 98% by 
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the end of the training process. This indicates that the model effectively learned the 

patterns and features in the network traffic data, allowing it to correctly classify a large 

majority of the traffic. 

The validation accuracy, which measures the model’s performance on unseen test data, 

closely follows the training accuracy throughout the 50 epochs. This close alignment 

between training and validation accuracy is a strong indicator that the model is 

generalizing well and not overfitting to the training data. At its peak, the validation 

accuracy reaches just under 98%, further demonstrating the model’s robustness in 

handling new network traffic flows and accurately distinguishing between benign and 

malicious behaviors. 

8.2.2 Training and Validation Loss: 

The loss plot shows the progression of training loss and validation loss over the same 

50 epochs. The training loss decreases steadily as the model continues to learn and 

adjust its weights, reaching a very low value by the end of training. This reduction in loss 

indicates that the model is becoming increasingly confident in its predictions and is 

successfully minimizing the error between its predicted and actual classifications. 

The validation loss, which measures the error on the test data, also decreases over time, 

closely mirroring the trend in training loss. However, slight fluctuations are observed in 

the validation loss, particularly around epochs 30 and 40. These fluctuations are normal 

and suggest that the model is responding to variations in the validation set. Notably, the 

validation loss peaks around epoch 41 before quickly returning to a lower value. This 

spike could be due to specific traffic patterns or anomalies in the validation data, but it 

did not significantly impact the overall performance of the model. 

8.2.3 Model Robustness and Generalizability: 

The close tracking of validation accuracy with training accuracy, as well as the similar 

trends in training and validation loss, highlights the robustness of the LSTM model. The 

model demonstrates a strong ability to generalize, meaning it can accurately classify 

network traffic that it has not encountered during training. The high accuracy on both 

training and validation data indicates that the model is not overfitting and is well-suited 

for deployment in real-world scenarios where it will encounter previously unseen data. 

Additionally, the use of dropout layers in the model helped prevent overfitting by 

introducing regularization. The dropout rate of approximately 35% ensured that the 

model did not rely too heavily on specific features or neurons, thus encouraging it to 

learn more generalized patterns from the input data. 
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8.2.4 Summary of Performance: 

• Accuracy: The model achieved approximately 98% accuracy on both the training 

and validation datasets, demonstrating its effectiveness in distinguishing 

between benign traffic and a wide range of network attacks. 

• Loss: Both training and validation loss steadily decreased, confirming that the 

model learned effectively over the course of 50 epochs and did not suffer from 

significant overfitting or underfitting. 

The high performance of the model across both training and validation datasets 

highlights its suitability for real-time intrusion detection in IoT networks. The 

combination of systematic hyperparameter tuning, the use of dropout layers to prevent 

overfitting, and careful model evaluation ensured that the LSTM model was both 

accurate and generalizable. 

 

 

Figure IV. Loss and accuracy graphs 
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8.3 Test Accuracy  

After completing the training and validation phases, the LSTM model was subjected to 

a comprehensive evaluation using the test dataset, which had been reserved for final 

performance validation. The test set consists of network traffic data that the model has 

never encountered before, making this step a critical measure of the model’s true 

generalization capability and its effectiveness in real-world deployment scenarios. 

The evaluation on the test set revealed an impressive accuracy of 98.79%. This high level 

of accuracy reflects the model’s exceptional ability to correctly classify both benign 

traffic and various types of malicious activities present in IoT networks. A test accuracy 

close to 99% demonstrates that the model can reliably distinguish between normal 

behavior and a wide range of network attacks, including botnets, Distributed Denial of 

Service (DDoS) attacks, and Command and Control (C&C) traffic. 

8.3.1 Significance of Test Accuracy 

Achieving such a high test accuracy indicates that the LSTM model has successfully 

learned the temporal dependencies and patterns that distinguish different types of 

network traffic. It suggests that the model is capable of handling the complexity and 

diversity of the traffic generated by IoT devices, which often involve various 

communication protocols and packet structures. The following aspects of the test 

accuracy are particularly noteworthy: 

• Generalization Capability: The fact that the model performed so well on the test 

set, which contains unseen data, signifies that it has generalized effectively from 

the training data. This generalization is crucial for real-world deployment, where 

the model will need to analyze live network traffic that is likely to differ from the 

data it was trained on. The ability to maintain high accuracy on previously unseen 

data demonstrates the robustness and adaptability of the LSTM architecture. 

• Classification of Diverse Attack Types: The high test accuracy suggests that the 

model is not only proficient at identifying benign traffic but also excels at 

classifying different types of attacks, such as botnet-related traffic, horizontal 

port scans, file downloads initiated by malware, and various forms of DDoS 

attacks. Each of these attack types presents unique challenges, but the LSTM 

model’s accuracy indicates that it can reliably recognize these threats based on 

the patterns and features present in the network flows. 

• Precision in Identifying Malicious Traffic: In addition to the overall accuracy, the 

model’s high test accuracy implies strong performance in identifying malicious 

traffic with precision. In intrusion detection systems, a high precision rate is 

critical, as it minimizes the number of false positives (benign traffic incorrectly 

classified as malicious) and false negatives (malicious traffic that goes 
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undetected). The 98.79% accuracy achieved on the test set suggests that the 

model strikes an excellent balance between sensitivity to attacks and minimizing 

misclassifications. 

8.3.2 Factors Contributing to High Test Accuracy 

Several factors contributed to the LSTM model's ability to achieve such a high level of 

accuracy on the test set: 

1. LSTM’s Capability to Model Temporal Dependencies: The LSTM architecture is 

specifically designed to capture the temporal dependencies in sequential data, 

such as network traffic. By analyzing the sequence of packets and the timing 

between them, the model can detect patterns that might indicate normal 

behavior or malicious activity. The use of two LSTM layers ensured that the 

model was able to capture both short-term and long-term dependencies within 

the network flows, enhancing its classification performance. 

2. Comprehensive Feature Set: The set of 24 features extracted during the data 

preprocessing phase, including packet size statistics, inter-packet arrival times, 

and flow durations, provided the model with a rich and diverse dataset for 

learning. These features captured both the high-level behavior of network flows 

(e.g., total bytes and packet counts) and the low-level timing characteristics (e.g., 

variability in packet arrival times), which are critical for identifying subtle 

differences between benign and malicious traffic. 

3. Dropout for Overfitting Prevention: The use of dropout layers in the model 

architecture played a key role in preventing overfitting. By randomly omitting a 

portion of neurons during each training iteration, the dropout layers forced the 

model to generalize better, rather than memorizing the training data. This 

helped ensure that the model remained robust and adaptable when exposed to 

new traffic patterns in the test set. 

4. Hyperparameter Tuning with Optuna: The fine-tuning of hyperparameters using 

the Optuna library contributed to the high test accuracy by optimizing key 

settings such as the number of LSTM units, dropout rate, and learning rate. These 

hyperparameters were carefully calibrated to ensure that the model could 

efficiently learn from the data without becoming too complex or prone to 

overfitting. The resulting configuration allowed the model to balance learning 

speed and generalization, achieving optimal performance on the test set. 

8.3.3 Practical Implications of High Test Accuracy 

Achieving a 98.79% accuracy on the test set carries significant practical implications for 

real-world applications of this model in IoT security: 
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• Real-Time Threat Detection: In an operational setting, this model can be 

deployed to monitor live network traffic in real time, detecting and classifying 

potential threats with a high degree of accuracy. The model’s strong 

generalization ability means it can reliably identify previously unseen attack 

patterns, providing an effective defense against emerging threats. 

• Reduction in False Alarms: A high test accuracy is also indicative of the model’s 

capacity to minimize false positives, which are a common issue in many intrusion 

detection systems. Reducing the number of false alarms ensures that network 

security teams can focus their efforts on genuine threats, improving overall 

efficiency and response times. 

• Scalability to Larger Networks: The robustness of the model, as demonstrated 

by its test accuracy, suggests that it can be scaled to larger and more complex 

IoT networks without significant degradation in performance. This makes the 

model suitable for deployment in a wide range of IoT environments, from small 

home networks to large industrial IoT systems. 

In conclusion, the 98.79% test accuracy achieved by the LSTM model is a testament to 

its ability to accurately detect and classify a variety of network traffic behaviors, both 

benign and malicious. This high level of accuracy demonstrates the effectiveness of the 

LSTM architecture, feature engineering, and hyperparameter optimization techniques 

used in this project, positioning the model as a robust and scalable solution for real-time 

intrusion detection in IoT environments. 
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6.4 Confusion Matrix  

As illustrated in Figure V, the LSTM model demonstrates high precision and recall across 

most of the classes, particularly in identifying benign traffic, Okiru malware, DDoS 

attacks, and horizontal port scanning traffic. The majority of diagonal cells in the matrix 

exhibit values close to or above 98%, indicating that the model is highly accurate in 

distinguishing between different types of network traffic and attack vectors. 

 

Figure IV. Confusion matrix 

Key observations from the matrix: 

• The model achieves 98.78% accuracy in correctly classifying benign traffic, with 

minimal misclassifications. This is particularly important, as correctly identifying 

benign traffic reduces the risk of false positives, which are common in many 

intrusion detection systems. 

• The model performs exceptionally well in detecting C&C (Command and 

Control) traffic, achieving 97.94% accuracy in this class. This indicates that the 

LSTM model has effectively learned to recognize the distinctive features of C&C 

communication, which is crucial for identifying compromised devices in a botnet. 
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• Okiru malware is classified with near-perfect accuracy, with 99.99% of Okiru 

traffic being correctly identified. This demonstrates the model’s strong capability 

to detect this specific type of malware, which is a common threat in IoT 

environments. 

While the overall classification performance is strong, the confusion matrix highlights a 

few areas where the model struggles to differentiate between certain classes, 

particularly those with limited representation in the dataset. The red cells in the matrix 

indicate errors, which are mostly concentrated in the following categories: 

• C&C File Download (8.77% misclassified as Benign): The model shows significant 

misclassification of C&C File Download traffic, with 8.77% of instances being 

incorrectly labeled as benign. This likely stems from the limited number of 

examples in the training set for this specific class, making it harder for the model 

to learn the distinct features that characterize this type of malicious behavior. 

• C&C Torii (100% misclassified as PartOfHorizontalPortScan): The C&C Torii 

traffic is entirely misclassified as horizontal port scanning traffic. Again, this error 

can be attributed to the small dataset size for C&C Torii, resulting in insufficient 

training for the model to learn the nuances of this particular malware type. 

• File Download (misclassified as C&C File Download): Similarly, File Download 

traffic is also misclassified as C&C File Download, indicating that the model is not 

able to distinguish between these two closely related attack types. This could be 

due to the fact that both classes involve similar activities (downloading files), 

which may have led to overlapping features in the dataset. 

These misclassifications emphasize the importance of balanced datasets when training 

machine learning models for intrusion detection. Classes that are underrepresented in 

the training data tend to be misclassified more often, as the model does not have 

enough examples to accurately learn the patterns associated with these attack types. 

The confusion between certain attack classes, particularly C&C File Download, C&C 

Torii, and File Download, suggests that these classes share similar feature distributions, 

making it difficult for the model to distinguish between them based on the available 

data. This overlap can be attributed to several factors: 

1. Insufficient Data for Rare Classes: The dataset contains fewer examples of 

certain attack types, such as C&C File Download and C&C Torii, which means the 

model has less opportunity to learn the patterns specific to these classes. 

Increasing the representation of these attack types in the dataset would likely 

improve classification accuracy for these classes. 
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2. Feature Overlap: Some attack classes may exhibit similar behavior in terms of 

network traffic features. For example, both C&C File Download and File 

Download involve the transfer of files over the network, which may result in 

similar flow characteristics (e.g., packet size, flow duration). Introducing more 

discriminative features or performing feature engineering could help the model 

better differentiate between these classes. 

3. Model Complexity: The current LSTM model may benefit from further tuning or 

additional layers to capture the more subtle differences between certain attack 

classes. Adding attention mechanisms, for instance, could help the model focus 

on the most relevant parts of the sequence when making predictions, potentially 

improving its ability to distinguish between similar classes. 

Despite these areas of confusion, the confusion matrix overall paints a picture of a highly 

effective model. The precision and recall for the most frequent classes, such as benign 

traffic, Okiru malware, and DDoS attacks, remain high, indicating that the model can 

reliably detect common attack patterns and distinguish them from normal network 

behavior. 

However, to further improve the model’s performance on underrepresented classes, 

the following steps could be taken: 

• Data Augmentation: Increasing the number of samples for rare attack types, 

either by collecting more real-world data or by augmenting the existing data, 

could help balance the dataset and improve the model's ability to classify less 

frequent attacks. 

• Feature Engineering: Exploring additional features, such as deeper packet-level 

attributes or temporal relationships between flows, could provide the model 

with more information to differentiate between closely related attack types. 

• Model Enhancements: Incorporating more advanced architectures, such as 

attention mechanisms or adding additional LSTM layers, could allow the model 

to capture more complex patterns in the data, improving its ability to classify 

rare or subtle attack types. 

In summary, the confusion matrix highlights the model’s strong overall performance, 

particularly in detecting common IoT threats, while also pointing out areas for 

improvement, particularly in handling underrepresented attack classes. These insights 

are valuable for guiding future model enhancements and data collection efforts to 

further improve the accuracy and robustness of the LSTM-based intrusion detection 

system. 
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9 Project planification 

Project Timeline: 06/11/2023 - 22/07/2024 

Phase 1: Initial Research and Dataset Exploration 

• Duration: 06/11/2023 - 18/12/2023 (6 weeks) 

o Activities: 

▪ Conduct background research on IoT security, intrusion detection 

systems, and LSTM neural networks. 

▪ Explore the IoT-23 dataset to understand its structure, features, and 

labeling. 

▪ Identify relevant literature and benchmark studies to guide model 

development. 

o Milestones: 

▪ Research summary and literature review completed. 

▪ Initial understanding of the IoT-23 dataset and preliminary ideas for 

feature extraction. 

Phase 2: Data Preprocessing and Feature Engineering 

• Duration: 19/12/2023 - 29/01/2024 (6 weeks) 

o Activities: 

▪ Implement feature extraction processes using Pyshark and Zeek flow 

files. 

▪ Experiment with different feature selection techniques (manual, 

correlation analysis, recursive feature elimination). 

▪ Prepare the dataset by labeling and normalizing features. 

o Milestones: 

▪ Feature extraction pipeline developed. 

▪ Labeled and normalized dataset ready for model input. 

Phase 3: Model Development (LSTM Architecture Design) 

• Duration: 30/01/2024 - 18/03/2024 (7 weeks) 

o Activities: 
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▪ Design the LSTM architecture based on initial exploration and 

literature review. 

▪ Implement the model using Keras, with initial hyperparameters. 

▪ Train initial models with smaller dataset samples to verify architecture 

viability. 

o Milestones: 

▪ LSTM model architecture designed. 

▪ Preliminary model trained and evaluated for initial performance. 

Phase 4: Hyperparameter Tuning and Model Optimization 

• Duration: 19/03/2024 - 22/04/2024 (5 weeks) 

o Activities: 

▪ Use Optuna to optimize key hyperparameters (LSTM units, dropout 

rate, learning rate). 

▪ Test different configurations, recording model accuracy and 

performance metrics. 

▪ Apply regularization techniques (dropout, etc.) to prevent overfitting. 

o Milestones: 

▪ Optimized hyperparameters determined. 

▪ Final model architecture and configuration ready for full training. 

Phase 5: Full Dataset Training and Testing 

• Duration: 23/04/2024 - 20/05/2024 (4 weeks) 

o Activities: 

▪ Train the LSTM model using the full dataset. 

▪ Evaluate the model using train/test split (80/20). 

▪ Analyze training and validation performance (accuracy, loss). 

o Milestones: 

▪ Full dataset training completed. 

▪ Model performance validated with testing data. 

Phase 6: Evaluation and Results Analysis 
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• Duration: 21/05/2024 - 10/06/2024 (3 weeks) 

o Activities: 

▪ Generate and analyze confusion matrices and classification reports. 

▪ Compare model performance with state-of-the-art methods from 

literature. 

▪ Identify strengths and weaknesses of the model, including areas for 

potential improvement. 

o Milestones: 

▪ Confusion matrix and classification reports generated. 

▪ Final results summarized, including test accuracy and error analysis. 

Phase 7: Documentation and Report Writing 

• Duration: 11/06/2024 - 08/07/2024 (4 weeks) 

o Activities: 

▪ Write the research report, detailing methodology, experiments, and 

results. 

▪ Incorporate diagrams, graphs, and visualizations (e.g., confusion 

matrix, training history plots). 

▪ Revise the literature review section based on insights gained from 

model development. 

o Milestones: 

▪ Complete draft of the research report. 

▪ Peer review and revisions based on feedback. 

Phase 8: Final Presentation and Submission 

• Duration: 09/07/2024 - 22/07/2024 (2 weeks) 

o Activities: 

▪ Prepare the final presentation, including slides and supporting 

material. 

▪ Finalize the report with all necessary revisions. 

▪ Submit the report and project materials. 

o Milestones: 
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▪ Final presentation delivered. 

▪ Report submitted for evaluation. 
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10 Faced Challenges  

Throughout the development of the LSTM-based Intrusion Detection System (IDS) 

using the IoT-23 dataset, several challenges emerged, requiring careful consideration 

and innovative solutions. These challenges spanned various aspects of the project, 

from feature selection and data management to hyperparameter tuning and memory 

optimization. The following sections highlight the key challenges faced during the 

project and the strategies implemented to overcome them. 

10.1 Feature Selection 

One of the primary challenges encountered was identifying the most relevant features 

from the IoT-23 dataset, which is extensive and contains a wide variety of features 

representing different aspects of network traffic. The dataset includes numerous 

attributes related to packet sizes, inter-packet arrival times, protocol types, flow 

statistics, and connection states, making it difficult to determine which features would 

provide the most value for detecting malicious activity. 

Initially, manual feature selection was attempted based on domain knowledge and 

intuition. However, this approach proved inadequate due to the complexity and 

variability of the data. Malicious behaviors in network traffic can manifest in subtle 

and varied ways, making it difficult to identify the key features manually. As a result, 

the initial models were not as effective as anticipated, and further exploration of 

automated feature selection techniques became necessary. 

To address this challenge, the following methods were explored: 

• Correlation Analysis: This method was used to identify the relationships 

between different features and their correlation with the target variable 

(malicious or benign). Features with low correlation to the target or high 

correlation with each other were considered for removal, as they either 

contributed little to predictive power or introduced redundancy. 

• Recursive Feature Elimination (RFE): RFE is a feature selection technique that 

iteratively removes less important features while training a model. By using this 

method, the project was able to rank the importance of features and identify 

those that contributed the most to improving model accuracy. 

• Dimensionality Reduction (PCA): Principal Component Analysis (PCA) was 

considered as a dimensionality reduction technique to streamline the feature 

set. However, balancing dimensionality reduction while retaining essential 

information was a delicate process that required careful experimentation. 
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While PCA reduced the feature space, there was a risk of losing critical patterns 

in the data, so a cautious approach was taken. 

Ultimately, a combination of correlation analysis and recursive feature elimination was 

used to refine the feature set. These techniques helped the project focus on the most 

relevant features while ensuring that unnecessary or redundant information was 

minimized. 

10.2 Memory Constraints and Dataset Size 

Another significant challenge arose from the large size of the IoT-23 dataset, which 

caused memory constraints during data preprocessing and model training. Initially, the 

project utilized only five PCAP files for training and evaluation. While this allowed for 

early experimentation, it quickly became clear that this limited dataset was insufficient 

for achieving the desired level of model accuracy and generalization. 

As the project progressed, efforts were made to increase the dataset size by including 

18 PCAP files. This expanded the dataset considerably, providing greater diversity in 

traffic patterns and attack types. However, this also introduced the problem of 

managing the increased memory requirements. Handling large amounts of network 

traffic data, especially during feature extraction and model training, placed a significant 

burden on system memory. 

To overcome these memory challenges, the following strategies were implemented: 

• Data Chunking: Rather than loading the entire dataset into memory at once, the 

data was processed in chunks. This allowed for efficient memory usage by 

loading only small portions of the dataset at a time, ensuring that the system was 

not overwhelmed. 

• Efficient Data Preprocessing Pipelines: The data preprocessing pipeline was 

optimized to minimize redundant calculations and streamline the feature 

extraction process. This reduced the time and memory required to transform 

raw network traffic into a usable format for the LSTM model. 

• Data Batching and On-the-Fly Augmentation: During model training, data 

batching was used to divide the dataset into smaller, manageable batches. 

Additionally, on-the-fly data augmentation was employed to dynamically modify 

the data during training, further reducing memory overhead. 

• Cloud-Based and High-Performance Computing Resources: Cloud-based 

resources and high-performance computing environments were explored to 

support the project’s need for greater computational power and memory. These 
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environments provided the flexibility to handle larger datasets and more 

complex models without being constrained by local system limitations. 

Despite these improvements, memory management remained a critical concern 

throughout the project. However, the combination of chunking, batching, and cloud 

resources helped mitigate these issues and allowed the project to scale effectively. 

10.3 Hyperparameter Optimization 

Determining the optimal hyperparameters for the LSTM model was another significant 

challenge, as incorrect settings could lead to overfitting or underfitting. 

Hyperparameters such as the number of LSTM units, dropout rate, and learning rate 

play a critical role in controlling the model’s complexity and its ability to generalize to 

new data. 

Initial models were prone to overfitting when the number of LSTM units was too high or 

when the dropout rate was too low, causing the model to memorize the training data 

instead of learning generalized patterns. Conversely, settings that were too conservative 

led to underfitting, where the model failed to capture the complexity of the network 

traffic, resulting in poor performance on both the training and test sets. 

To address this challenge, the project employed several techniques to optimize 

hyperparameter settings: 

• Grid Search and Random Search: Initially, manual grid search and random search 

techniques were used to explore the hyperparameter space. While these 

methods provided some improvements, they were time-consuming and 

computationally expensive, as they required testing multiple combinations of 

hyperparameters. 

• Automated Hyperparameter Optimization (Optuna): To streamline the process, 

the project implemented an automated hyperparameter optimization process 

using the Optuna library. Optuna is a powerful tool that uses a trial-based 

approach to systematically explore different combinations of hyperparameters, 

identifying the configuration that yields the highest performance. This method 

significantly reduced the time spent on tuning and led to better overall results. 

Although the automated hyperparameter optimization was highly effective in finding 

the best settings, it also introduced additional computational challenges. The 

optimization process required numerous trials, each involving full model training and 

evaluation, which increased the overall computational cost and complexity of the 

project. Despite this, the use of Optuna helped achieve higher accuracy and stability in 

the model, making the trade-off worthwhile. 
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The challenges faced during the development of the LSTM-based IDS were multifaceted, 

spanning feature selection, memory management, and hyperparameter optimization. 

Each challenge required creative solutions, from advanced feature selection techniques 

and efficient data preprocessing to leveraging cloud resources and automated 

hyperparameter tuning. By overcoming these hurdles, the project was able to develop 

a highly effective and scalable model for detecting intrusions in IoT networks, ultimately 

contributing to the robustness and accuracy of the final system. 
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11 Conclusion 

The LSTM model developed in this study demonstrated high effectiveness in classifying 

network attacks within IoT environments, achieving a test accuracy of 98.79%. This impressive 

level of accuracy reflects the model's capacity to accurately differentiate between benign and 

malicious network behavior across a wide range of attack classes. The detailed confusion 

matrix generated during the evaluation process further underscores the model's robustness 

and precision, revealing its capability to correctly classify complex patterns of network activity 

that are characteristic of IoT environments. 

The success of the LSTM model can be attributed to the careful selection and optimization of 

its hyperparameters, including the number of LSTM units, the dropout rate, and the learning 

rate. Through an extensive hyperparameter optimization process, these elements were finely 

tuned to enhance the model's performance. The optimal combination of these parameters 

allowed the model to effectively capture the temporal dependencies, and intricate patterns 

present in network traffic data, leading to superior classification results. 

The study's findings suggest that deep learning, and LSTM networks in particular, are highly 

suitable for addressing the complex and dynamic nature of network traffic associated with IoT 

devices. IoT networks are characterized by their heterogeneity and high volume of data, which 

can vary significantly over time. Traditional machine learning models often struggle to adapt to 

these complexities, whereas LSTM networks excel due to their ability to process sequential 

data and maintain information over long periods. 

Moreover, the LSTM model's architecture enables it to learn not only from individual packet 

features but also from the sequences and contexts in which these packets occur. This 

sequential learning capability is crucial for identifying subtle patterns of malicious activity that 

might be overlooked by models that do not account for temporal relationships. By analyzing 

sequences of network traffic, the LSTM model can detect sophisticated attack techniques, such 

as those involving multi-stage intrusions or coordinated botnet activities. 

The practical implications of this study are significant, as IoT devices continue to proliferate 

across various sectors, including smart homes, healthcare, industrial automation, and 

transportation. Each of these domains presents unique security challenges, making the need 

for effective intrusion detection solutions increasingly critical. The LSTM model offers a 

scalable and adaptive solution that can be integrated into existing security frameworks, 

providing real-time threat detection and response capabilities. 

Additionally, the model's adaptability to diverse IoT architectures will be assessed. This 

includes evaluating its performance across different device types, communication protocols, 

and network topologies. By ensuring the model's generalizability, its deployment can be 

extended to a wide array of IoT environments, each with its unique security requirements and 

challenges. 

Furthermore, the potential for combining LSTM networks with other advanced machine 

learning techniques, such as ensemble methods or hybrid models, will be investigated. Such 
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combinations may enhance detection accuracy and resilience against novel attack vectors, 

providing a comprehensive and robust defense mechanism for IoT networks. 

In conclusion, the LSTM model developed in this study represents a significant advancement in 

IoT security, demonstrating the efficacy of deep learning in tackling the challenges posed by 

complex network traffic. As IoT devices become increasingly integrated into the fabric of 

modern life, the need for reliable and adaptive security solutions will only continue to grow. 

This study provides a promising foundation for further exploration and innovation in the field 

of IoT cybersecurity. 
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12 Future work 

The successful development and application of the LSTM-based Intrusion Detection System 

(IDS) in this project open up a wide array of possibilities for future research, practical 

applications, and advancements in IoT security. Although the current model demonstrates 

strong performance in detecting and classifying network attacks within the IoT-23 dataset, 

there are several areas where further improvements and enhancements can be explored to 

refine its capabilities and expand its use cases. 

12.1 Real-Time Intrusion Detection 

A key avenue for future work involves deploying the LSTM model as part of a real-time 

Intrusion Detection System (IDS) in IoT networks. While the current model processes historical 

network data from the IoT-23 dataset, transitioning to a real-time application requires 

additional developments to handle live network traffic. Real-time IDS systems must 

continuously monitor traffic and provide immediate responses to detected threats, making 

low-latency detection critical. 

To enable real-time functionality, the following challenges must be addressed: 

• Reducing Detection Latency: In a real-time environment, the model must quickly 

process incoming network flows and make instantaneous decisions about potential 

threats. This could involve optimizing the model architecture, such as reducing the 

complexity of certain layers or adjusting the number of LSTM units to improve 

processing speed without sacrificing accuracy. 

• Leveraging Efficient Computational Resources: Utilizing Graphics Processing Units 

(GPUs) or Field-Programmable Gate Arrays (FPGAs) could significantly accelerate the 

model’s inference time. These hardware accelerators are well-suited for parallel 

processing and would enable the system to analyze large volumes of network traffic in 

real-time. 

• Integrating with Real-Time Monitoring Tools: Integrating the model with network 

monitoring frameworks such as Zeek, Snort, or Suricata could facilitate the collection 

of live traffic and immediate threat analysis. By coupling the LSTM model with these 

systems, the IDS could act as an active defense mechanism within IoT networks, 

triggering alerts or countermeasures when malicious activity is detected. 

Developing a real-time IDS based on the LSTM model will contribute to enhanced operational 

security by enabling proactive threat detection and rapid responses to cyberattacks, thereby 

minimizing damage and protecting critical IoT infrastructures. 

12.2 Model Optimization and Scalability 

As the LSTM model transitions to real-time applications, there will be a need to further 

optimize its performance in terms of both speed and scalability. This entails fine-tuning 
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various aspects of the model to ensure it can handle large-scale IoT networks, which may 

consist of thousands or even millions of connected devices. 

• Scalability Across Different Networks: Future work should test the model's 

performance in different network environments and under varying conditions, such as 

fluctuating traffic loads or different communication protocols. By applying the model 

to diverse datasets, researchers can evaluate its generalizability and ensure that it 

remains effective across a broad range of IoT deployments. Such testing may also 

reveal the need to adapt the model to specific types of IoT networks, such as industrial 

IoT or smart cities, where the types of devices and traffic patterns differ from typical 

consumer IoT devices. 

• Optimizing for Resource-Constrained Environments: Many IoT devices operate with 

limited computational resources, memory, and power. Future research could explore 

lightweight versions of the LSTM model that are specifically optimized for deployment 

on these resource-constrained devices. Techniques such as model pruning, 

quantization, and knowledge distillation can help reduce the model’s size and 

computational overhead, making it more feasible for deployment on smaller devices. 

• Distributed Detection Systems: Another approach to scalability involves developing 

distributed IDS systems, where the LSTM model is deployed across multiple nodes in a 

network. Each node would monitor traffic in its local area, and the results could be 

aggregated at a central node for comprehensive network analysis. This would reduce 

the load on individual devices and improve the system’s ability to scale across large IoT 

networks. 

12.3 Exploring Hybrid and Ensemble Learning Approaches 

While the LSTM model shows strong performance in identifying attacks, future work could 

explore hybrid approaches that combine LSTM networks with other machine learning or 

statistical techniques. Such approaches could provide greater robustness, improve 

classification accuracy, and enhance the system’s ability to detect more sophisticated attack 

patterns. 

• Hybrid Models: A potential direction is to combine the LSTM model with 

Convolutional Neural Networks (CNNs), which are excellent at detecting spatial 

patterns in data. While LSTMs excel at capturing temporal relationships in network 

traffic, CNNs can identify important spatial features (such as packet signatures) that 

might otherwise be missed. Combining the two architectures could lead to more 

comprehensive threat detection. 

• Ensemble Methods: Another promising area of research involves using ensemble 

learning techniques such as Random Forests, Gradient Boosting, or XGBoost in 

conjunction with the LSTM model. By creating ensembles of models, each specializing 

in different aspects of network traffic analysis, the system could leverage the strengths 

of each model to improve overall accuracy and robustness. Ensemble methods are 
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particularly effective in reducing the variance of predictions and mitigating errors from 

individual models. 

• Adversarial Training: To increase the model's resilience to evolving threats, future 

work could explore adversarial training, where the LSTM model is trained on 

adversarial examples designed to confuse it. This process could harden the model 

against evasion attacks, where attackers intentionally modify their traffic patterns to 

bypass detection. 

12.4 Integration with Additional Data Sources 

Another area of future research involves expanding the data sources used by the IDS model to 

enhance its detection capabilities. Currently, the model focuses on network flow features 

derived from packet captures, but additional contextual data could provide deeper insights 

into potential attacks. 

• Incorporating Device Metadata: Integrating IoT device metadata, such as device type, 

firmware version, or historical behavior patterns, could improve the model's ability to 

detect specific attacks that target device vulnerabilities. By analyzing how different 

devices behave in the network, the model could detect anomalies that go beyond just 

packet-level features. 

• Fusion with External Threat Intelligence: The model could also be integrated with 

external threat intelligence feeds that provide real-time information on new malware 

strains, known malicious IP addresses, or attack techniques. By combining real-time 

intelligence with the network traffic analysis performed by the LSTM model, the IDS 

could become more proactive in detecting emerging threats before they fully 

manifest. 

12.5 Deployment in Real-World IoT Systems 

Collaborating with industry partners, IoT device manufacturers, and network operators 

presents a valuable opportunity to test and refine the LSTM model in real-world environments. 

Deploying the IDS in actual IoT systems will help validate its effectiveness under practical 

conditions, where challenges such as network noise, variable traffic patterns, and device 

heterogeneity are more prominent. 

• Field Testing in IoT Ecosystems: Conducting field tests in diverse IoT ecosystems, such 

as smart homes, industrial IoT systems, or smart cities, would provide insights into 

how the LSTM-based IDS performs in realistic scenarios. Collaborating with IoT 

platform vendors and network security teams could ensure that the model is fine-

tuned to meet the specific security requirements of these environments. 

• Customization for Different IoT Platforms: Real-world deployment would also involve 

customizing the IDS to integrate seamlessly with various IoT platforms. Each IoT 

system may have its own unique communication protocols and network architectures, 
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so the model may need to be adapted to ensure compatibility and efficient 

deployment. 
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14 Anex 

14.1 DataPreprocessing.py 

import os 

import pandas as pd 

import numpy as np 

import pyshark 

from collections import defaultdict, Counter 

from concurrent.futures import ProcessPoolExecutor 

 

# Define the features to extract 

FIELDNAMES = ['source_ip', 'source_port', 'destination_ip', 'destination_port', 'protocol', 

              'application_protocol', 'packet_count', 'tot_fwd_pkts', 'tot_bwd_pkts', 

'byte_count', 

              'orig_bytes', 'resp_bytes', 'packet_size_mean', 'packet_size_std', 

'packet_size_median', 

              'packet_size_min', 'packet_size_max', 'inter_packet_arrival_mean', 

'inter_packet_arrival_std', 

              'inter_packet_arrival_median', 'inter_packet_arrival_min', 

'inter_packet_arrival_max', 

              'flow_duration', 'conn_state', 'label'] 

 

# Protocol mapping 

PROTOCOL_MAP = {'6': 'tcp', '17': 'udp', '1': 'icmp'} 

 

# Label mapping 

label_map = { 

    '-   benign   -': 1, 

    '(empty)   Benign   -': 1, 

    '-   Benign   -': 1, 
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    '(empty)   Malicious   C&C': 2, 

    '-   Malicious   C&C': 2, 

    '-   Malicious   C&C-FileDownload': 3, 

    '-   Malicious   C&C-HeartBeat-FileDownload': 4, 

    '(empty)   Malicious   C&C-HeartBeat': 4, 

    '-   Malicious   C&C-HeartBeat': 4, 

    '-   Malicious   C&C-Mirai': 5, 

    '-   Malicious   C&C-Torii': 6, 

    '-   Malicious   FileDownload': 7, 

    '(empty)   Malicious   Okiru': 8, 

    '-   Malicious   Okiru': 8, 

    '-   Malicious   DDoS': 9, 

    '-   Malicious   Attack': 10, 

    '(empty)   Malicious   Attack': 10, 

    '(empty)   Malicious   PartOfAHorizontalPortScan': 11, 

    '-   Malicious   PartOfAHorizontalPortScan': 11, 

} 

 

def extract_features_from_pcap(pcap_file, max_packets=300000): 

    """Extract features from the PCAP file using PyShark.""" 

    try: 

        print(f"Processing PCAP file: {pcap_file}") 

        flows = defaultdict(lambda: {'timestamps': [], 'sizes': [], 'forward': 0, 'backward': 0, 

'total_size': 0, 'orig_bytes': 0, 'resp_bytes': 0, 'protocols': set(), 'conn_states': set()}) 

        cap = pyshark.FileCapture(pcap_file, only_summaries=False) 

 

        packet_count = 0 
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        for packet in cap: 

            if packet_count >= max_packets: 

                break 

            if 'IP' in packet: 

                src_ip = packet.ip.src 

                dst_ip = packet.ip.dst 

                transport_layer = packet.transport_layer 

                if transport_layer and hasattr(packet, transport_layer.lower()): 

                    protocol = PROTOCOL_MAP.get(packet[transport_layer].layer_name.lower(), 

packet[transport_layer].layer_name.lower()) 

                    src_port = int(getattr(packet[transport_layer.lower()], 'srcport', 0)) 

                    dst_port = int(getattr(packet[transport_layer.lower()], 'dstport', 0)) 

                    flow_key = (src_ip, src_port, dst_ip, dst_port, protocol) 

                     

                    flows[flow_key]['timestamps'].append(float(packet.sniff_time.timestamp())) 

                    flows[flow_key]['sizes'].append(int(packet.length)) 

                    flows[flow_key]['total_size'] += int(packet.length) 

                    flows[flow_key]['protocols'].add(packet.highest_layer.lower()) 

                    if packet.ip.src == src_ip: 

                        flows[flow_key]['forward'] += 1 

                        flows[flow_key]['orig_bytes'] += int(packet.length) 

                    else: 

                        flows[flow_key]['backward'] += 1 

                        flows[flow_key]['resp_bytes'] += int(packet.length) 

 

                    # Extract connection state 

                    if protocol == 'tcp': 

                        tcp_flags = packet.tcp.flags 
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                        if tcp_flags == '0x0002':  # SYN 

                            flows[flow_key]['conn_states'].add('S0') 

                        elif tcp_flags == '0x0012':  # SYN-ACK 

                            flows[flow_key]['conn_states'].add('S1') 

                        elif tcp_flags == '0x0010':  # ACK 

                            flows[flow_key]['conn_states'].add('S2') 

                        elif tcp_flags == '0x0011':  # FIN-ACK 

                            flows[flow_key]['conn_states'].add('S3') 

                        elif tcp_flags == '0x0014':  # RST 

                            flows[flow_key]['conn_states'].add('R') 

                        elif tcp_flags == '0x0004':  # RST without SYN 

                            flows[flow_key]['conn_states'].add('RSTR') 

                        elif tcp_flags == '0x0018':  # ACK + PSH 

                            flows[flow_key]['conn_states'].add('SH') 

                        else: 

                            flows[flow_key]['conn_states'].add('OTH')  # Other TCP states 

                    elif protocol == 'udp': 

                        flows[flow_key]['conn_states'].add('SF')  # Assume UDP flows are "SYN-FIN" 

                    elif protocol == 'icmp': 

                        flows[flow_key]['conn_states'].add('SF')  # Assume ICMP flows are "SYN-FIN" 

                    else: 

                        flows[flow_key]['conn_states'].add('OTH')  # Other protocols 

                     

                    packet_count += 1 

         

        cap.close() 

        print(f"Extracted {len(flows)} flows from {pcap_file}") 
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        return flows 

    except Exception as e: 

        print(f"Error processing PCAP file {pcap_file}: {e}") 

        return {} 

 

def calculate_flow_statistics(flows): 

    """Calculate flow statistics from extracted features.""" 

    flow_data = [] 

    for key, flow in flows.items(): 

        src_ip, src_port, dst_ip, dst_port, protocol = key 

        packet_count = len(flow['timestamps']) 

        tot_fwd_pkts = flow['forward'] 

        tot_bwd_pkts = flow['backward'] 

        byte_count = flow['total_size'] 

        orig_bytes = flow['orig_bytes'] 

        resp_bytes = flow['resp_bytes'] 

        packet_size_mean = np.mean(flow['sizes']) if flow['sizes'] else 0 

        packet_size_std = np.std(flow['sizes']) if flow['sizes'] else 0 

        packet_size_median = np.median(flow['sizes']) if flow['sizes'] else 0 

        packet_size_min = np.min(flow['sizes']) if flow['sizes'] else 0 

        packet_size_max = np.max(flow['sizes']) if flow['sizes'] else 0 

        inter_packet_times = np.diff(flow['timestamps']) 

        inter_packet_arrival_mean = np.mean(inter_packet_times) if len(inter_packet_times) 

> 0 else 0 

        inter_packet_arrival_std = np.std(inter_packet_times) if len(inter_packet_times) > 0 

else 0 

        inter_packet_arrival_median = np.median(inter_packet_times) if 

len(inter_packet_times) > 0 else 0 
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        inter_packet_arrival_min = np.min(inter_packet_times) if len(inter_packet_times) > 0 

else 0 

        inter_packet_arrival_max = np.max(inter_packet_times) if len(inter_packet_times) > 

0 else 0 

        flow_duration = flow['timestamps'][-1] - flow['timestamps'][0] if 

len(flow['timestamps']) > 1 else 0 

         

        application_protocol = Counter(list(flow['protocols'])).most_common(1)[0][0] if 

flow['protocols'] else 'N/A' 

        conn_state = Counter(list(flow['conn_states'])).most_common(1)[0][0] if 

flow['conn_states'] else 'N/A' 

         

        flow_data.append([src_ip, src_port, dst_ip, dst_port, protocol, application_protocol, 

packet_count, tot_fwd_pkts, tot_bwd_pkts, 

                          byte_count, orig_bytes, resp_bytes, packet_size_mean, packet_size_std, 

packet_size_median, 

                          packet_size_min, packet_size_max, inter_packet_arrival_mean, 

inter_packet_arrival_std, 

                          inter_packet_arrival_median, inter_packet_arrival_min, 

inter_packet_arrival_max, flow_duration, conn_state]) 

     

    df_flows = pd.DataFrame(flow_data, columns=FIELDNAMES[:-1]) 

    df_flows['label'] = 'N/A' 

     

    return df_flows 

 

def read_zeek_file(zeek_file, max_lines=300000): 

    """Read and process the Zeek analysis file.""" 

    try: 

        print(f"Processing Zeek file: {zeek_file}") 

        records = [] 
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        with open(zeek_file, 'r') as file: 

            for line in file: 

                if len(records) >= max_lines: 

                    break 

                if line.startswith("#") or not line.strip(): 

                    continue 

                fields = line.strip().split("\t") 

                if len(fields) >= 21: 

                    source_ip = fields[2] 

                    source_port = int(fields[3]) 

                    destination_ip = fields[4] 

                    destination_port = int(fields[5]) 

                    protocol = fields[6].lower() 

                    raw_label = fields[20].strip() 

                    label = label_map.get(raw_label, 0)  # Default to 0 if not found 

                    records.append([source_ip, source_port, destination_ip, destination_port, 

protocol, label]) 

         

        zeek_df = pd.DataFrame(records, columns=['source_ip', 'source_port', 

'destination_ip', 'destination_port', 'protocol', 'label']) 

        print(f"Zeek DataFrame:\n{zeek_df.head()}") 

        return zeek_df 

    except Exception as e: 

        print(f"Error processing Zeek file {zeek_file}: {e}") 

        return pd.DataFrame(columns=['source_ip', 'source_port', 'destination_ip', 

'destination_port', 'protocol', 'label']) 

 

def merge_flows_with_zeek(df_flows, zeek_df): 
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    """Merge PCAP extracted features with Zeek analysis.""" 

    try: 

        # Ensure consistent data types for merging 

        for col in ['source_ip', 'destination_ip', 'source_port', 'destination_port', 'protocol']: 

            df_flows[col] = df_flows[col].astype(str) 

            zeek_df[col] = zeek_df[col].astype(str) 

         

        merge_columns = ['source_ip', 'destination_ip', 'source_port', 'destination_port', 

'protocol'] 

         

        # Debug: Print sample keys to verify before merging 

        print("Sample keys from df_flows:") 

        print(df_flows[merge_columns].head()) 

        print("Sample keys from zeek_df:") 

        print(zeek_df[merge_columns].head()) 

         

        combined_df = pd.merge(df_flows, zeek_df, on=merge_columns, suffixes=('', 

'_zeek')) 

         

        # Debug: Print combined DataFrame before dropping columns 

        print(f"Combined DataFrame before dropping columns:\n{combined_df.head()}") 

         

        # Drop the original 'label' column and rename 'label_zeek' to 'label' 

        combined_df.drop(columns=['label'], inplace=True) 

        combined_df.rename(columns={'label_zeek': 'label'}, inplace=True) 

         

        # Remove duplicate flows 

        combined_df.drop_duplicates(subset=merge_columns, inplace=True) 
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        print(f"Combined DataFrame after merging:\n{combined_df.head()}") 

        return combined_df 

    except Exception as e: 

        print(f"Error merging dataframes: {e}") 

        return df_flows 

 

def process_file(pcap_file, zeek_file, max_packets=300000, max_lines=300000): 

    """Process a single pair of PCAP and Zeek files.""" 

    try: 

        flows = extract_features_from_pcap(pcap_file, max_packets) 

        if not flows: 

            print(f"No flows extracted from {pcap_file}") 

            return pd.DataFrame() 

        df_flows = calculate_flow_statistics(flows) 

        zeek_df = read_zeek_file(zeek_file, max_lines) 

        df_flows_with_labels = merge_flows_with_zeek(df_flows, zeek_df) 

        return df_flows_with_labels 

    except Exception as e: 

        print(f"Error processing files {pcap_file} and {zeek_file}: {e}") 

        return pd.DataFrame() 

 

def process_folder(pcap_folder, zeek_folder, output_file, max_packets=300000, 

max_lines=300000, n_workers=2): 

    """Process all PCAP and Zeek files in a folder and save the combined dataset.""" 

    all_flows = [] 

     

    pcap_files = [f for f in os.listdir(pcap_folder) if f.endswith(".pcap")] 
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    zeek_files = [f.replace(".pcap", ".labeled") for f in pcap_files] 

     

    with ProcessPoolExecutor(max_workers=n_workers) as executor: 

        futures = [] 

        for pcap_file, zeek_file in zip(pcap_files, zeek_files): 

            pcap_path = os.path.join(pcap_folder, pcap_file) 

            zeek_path = os.path.join(zeek_folder, zeek_file) 

            if os.path.exists(zeek_path): 

                futures.append(executor.submit(process_file, pcap_path, zeek_path, 

max_packets, max_lines)) 

            else: 

                print(f"Corresponding Zeek file not found for {pcap_file}") 

         

        for future in futures: 

            try: 

                result = future.result() 

                if not result.empty: 

                    all_flows.append(result) 

            except Exception as e: 

                print(f"Error processing file pair: {e}") 

     

    if all_flows: 

        combined_df = pd.concat(all_flows, ignore_index=True) 

        combined_df.to_csv(output_file, index=False) 

        print(f"Combined dataset saved to {output_file}") 

        print(f"Total rows in combined dataset: {len(combined_df)}") 

        print(f"Label counts:\n{combined_df['label'].value_counts()}") 

    else: 
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        print("No data processed.") 

 

# Paths to the PCAP and Zeek folders 

pcap_folder = '/home/VICOMTECH/ialcorta/iot-23/captures' 

zeek_folder = '/home/VICOMTECH/ialcorta/iot-23/labels' 

output_file = 'attack_dataset.csv' 

 

# Run the processing function 

process_folder(pcap_folder, zeek_folder, output_file, max_packets=300000, 

max_lines=300000, n_workers=2) 

 

11.2. LSTM.py 

import pandas as pd 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from tensorflow.keras.models import Sequential, load_model 

from tensorflow.keras.layers import Dense, LSTM, Dropout, Input 

from tensorflow.keras.utils import to_categorical 

import optuna 

from optuna.integration import TFKerasPruningCallback 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.metrics import confusion_matrix, classification_report 

import ipaddress 

import numpy as np 

import logging 

 

# Enable logging for Optuna 
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optuna.logging.set_verbosity(optuna.logging.INFO) 

 

def preprocess_data(df): 

    # Convert IP addresses to integers using .loc to avoid SettingWithCopyWarning 

    df.loc[:, 'source_ip'] = df['source_ip'].apply(lambda x: int(ipaddress.ip_address(x))) 

    df.loc[:, 'destination_ip'] = df['destination_ip'].apply(lambda x: int(ipaddress.ip_address(x))) 

 

    # Encode application protocols using .loc to avoid SettingWithCopyWarning 

    if 'application_protocol' in df.columns: 

        app_protocol_encoder = LabelEncoder() 

        df.loc[:, 'application_protocol'] = 

app_protocol_encoder.fit_transform(df['application_protocol'].astype(str)) 

 

    # Encode connection state using .loc to avoid SettingWithCopyWarning 

    if 'conn_state' in df.columns: 

        conn_state_encoder = LabelEncoder() 

        df.loc[:, 'conn_state'] = conn_state_encoder.fit_transform(df['conn_state'].astype(str)) 

 

    # Encode protocol using .loc to avoid SettingWithCopyWarning 

    protocol_encoder = LabelEncoder() 

    df.loc[:, 'protocol'] = protocol_encoder.fit_transform(df['protocol'].astype(str)) 

 

    # Ensure label is categorical using .loc to avoid SettingWithCopyWarning 

    df.loc[:, 'label'] = df['label'].astype(int) 

 

    return df 

 

# Load your data 
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data = pd.read_csv('attack_dataset.csv') 

 

# Count the occurrences of each label 

label_counts = data['label'].value_counts() 

 

# Print the counts 

print("Label counts before filtering:") 

print(label_counts) 

 

# Plot the distribution of labels 

plt.figure(figsize=(10, 6)) 

label_counts.plot(kind='bar') 

plt.title('Distribution of Labels in the Dataset') 

plt.xlabel('Labels') 

plt.ylabel('Count') 

plt.xticks(rotation=45) 

plt.show() 

 

# Set a threshold for minimum number of instances per label 

threshold = 2 

 

# Filter out labels with fewer than the threshold 

filtered_data1 = data[data['label'].isin(label_counts[label_counts >= threshold].index)] 

# Filter out rows with label 0 

filtered_data = filtered_data1[filtered_data1['label'] != 0] 

 

# Print the updated counts 
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updated_label_counts = filtered_data['label'].value_counts() 

print("Label counts after filtering:") 

print(updated_label_counts) 

 

# Apply preprocessing 

preprocessed_data = preprocess_data(filtered_data) 

 

# Remove any rows with remaining non-numeric placeholders 

preprocessed_data.replace('-', np.nan, inplace=True) 

preprocessed_data.dropna(inplace=True) 

 

# Select numeric features for the model 

features = preprocessed_data.drop(columns=['label']) 

labels = preprocessed_data['label'] 

 

# Normalize features 

scaler = StandardScaler() 

features = scaler.fit_transform(features) 

 

# Print shapes of features and labels 

print(f"Features shape: {features.shape}") 

print(f"Labels shape: {labels.shape}") 

 

# Save the preprocessed features to a new CSV 

preprocessed_df = pd.DataFrame(features, columns=preprocessed_data.columns.drop('label')) 

preprocessed_df['label'] = labels.values 

preprocessed_df.to_csv('preprocessed_features.csv', index=False) 
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X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, 

random_state=42, stratify=labels) 

 

# Encode the labels 

label_encoder = LabelEncoder() 

y_train_encoded = label_encoder.fit_transform(y_train) 

y_test_encoded = label_encoder.transform(y_test) 

 

# One-hot encode the labels 

y_train_categorical = to_categorical(y_train_encoded, 

num_classes=len(label_encoder.classes_)) 

y_test_categorical = to_categorical(y_test_encoded, 

num_classes=len(label_encoder.classes_)) 

 

# Print the size of the training and testing sets 

print(f"Training set size: {X_train.shape[0]} samples") 

print(f"Testing set size: {X_test.shape[0]} samples") 

 

# Print shapes of training and testing sets 

print(f"X_train shape: {X_train.shape}") 

print(f"X_test shape: {X_test.shape}") 

print(f"y_train shape: {y_train_categorical.shape}") 

print(f"y_test shape: {y_test_categorical.shape}") 

 

# Define your LSTM model 

def create_model(num_units=50, dropout_rate=0.2, learning_rate=0.001): 

    model = Sequential() 

    model.add(Input(shape=(X_train.shape[1], 1))) 
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    model.add(LSTM(num_units, return_sequences=True)) 

    model.add(Dropout(dropout_rate)) 

    model.add(LSTM(num_units)) 

    model.add(Dropout(dropout_rate)) 

    model.add(Dense(len(label_encoder.classes_), activation='softmax')) 

 

    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) 

    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) 

    return model 

 

# Define the objective function for Optuna 

def objective(trial): 

    num_units = trial.suggest_int('num_units', 32, 128) 

    dropout_rate = trial.suggest_float('dropout_rate', 0.2, 0.5) 

    learning_rate = trial.suggest_float('learning_rate', 1e-4, 1e-2, log=True) 

 

    print(f"Trial {trial.number}: num_units={num_units}, dropout_rate={dropout_rate}, 

learning_rate={learning_rate}") 

 

    model = create_model(num_units, dropout_rate, learning_rate) 

 

    # Use a small number of epochs for quick testing 

    history = model.fit(X_train, y_train_categorical,  

                        validation_split=0.2,  

                        epochs=10,  

                        callbacks=[TFKerasPruningCallback(trial, 'val_accuracy')], 

                        verbose=1) 
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    val_accuracy = history.history['val_accuracy'][-1] 

    print(f"Trial {trial.number} finished with validation accuracy: {val_accuracy}") 

    return val_accuracy 

 

# Create an Optuna study and optimize 

#study = optuna.create_study(direction='maximize') 

#study.optimize(objective, n_trials=5) 

 

# Get the best parameters 

#best_params = study.best_params 

#print("Best parameters: ", best_params) 

 

# Train the model with the best parameters 

best_model = create_model(num_units=57,  

                          dropout_rate=0.36678015982771744,  

                          learning_rate=0.0016592879780433026) 

history = best_model.fit(X_train, y_train_categorical, epochs=50, validation_split=0.2, 

verbose=1) 

 

# Save the model 

model_path = 'best_lstm_model.h5' 

best_model.save(model_path) 

print(f"Model saved to {model_path}") 

 

# Evaluate the model on the test set 

test_loss, test_accuracy = best_model.evaluate(X_test, y_test_categorical, verbose=0) 

print(f'Test accuracy: {test_accuracy}') 

 



  

83 
 

# Generate predictions 

y_pred = best_model.predict(X_test) 

y_pred_classes = np.argmax(y_pred, axis=1) 

 

# Confusion matrix 

conf_matrix = confusion_matrix(y_test_encoded, y_pred_classes) 

print("Confusion Matrix:") 

print(conf_matrix) 

 

# Classification report 

class_report = classification_report(y_test_encoded, y_pred_classes, 

target_names=label_encoder.classes_) 

print("Classification Report:") 

print(class_report) 

 

# Plot the training history 

def plot_training_history(history): 

    plt.figure(figsize=(12, 6)) 

 

    # Plot accuracy 

    plt.subplot(1, 2, 1) 

    plt.plot(history.history['accuracy'], label='Training Accuracy') 

    plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

    plt.title('Training and Validation Accuracy') 

    plt.xlabel('Epoch') 

    plt.ylabel('Accuracy') 

    plt.legend() 
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    # Plot loss 

    plt.subplot(1, 2, 2) 

    plt.plot(history.history['loss'], label='Training Loss') 

    plt.plot(history.history['val_loss'], label='Validation Loss') 

    plt.title('Training and Validation Loss') 

    plt.xlabel('Epoch') 

    plt.ylabel('Loss') 

    plt.legend() 

 

    plt.tight_layout() 

    plt.show() 

 

plot_training_history(history) 


