
Identical pseudospectra of any geometric

multiplicity∗

Gorka Armentia†, Juan-Miguel Gracia‡, Francisco E. Velasco‡

January 9, 2011

Dedicated to Professor José António Dias da Silva

Abstract

If A,B are n × n complex matrices such that the singular values of
zIn − A are the same as those of zIn − B for each z ∈ C, then A and B
are similar.
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1 Introduction

Let M ∈ Cn×n. Let Λ(M) denote the spectrum of M and let σ1(M) ≥
σ2(M) ≥ · · · ≥ σn(M) denote the singular values of M arranged in decrea-
sing order. We write ‖ · ‖2 for the Euclidean norm on Cn, defined by ‖x‖2 :=
(
Pn
i=1 |xi|2)1/2, and ‖ · ‖ for the associated operator norm on Cn×n, defined by

‖M‖ := sup{‖Mx‖2 : ‖x‖2 = 1}. We write GLn(C) for the group of invertible
matrices of Cn×n. Given ε ≥ 0, the ordinary ε-pseudospectrum of M can be
defined as the set Λε(M) := {z ∈ C : σn(zIn −M) ≤ ε}.

In the Ph.D. Thesis of M. Karow [4] the relationship was shown between
the condition numbers of eigenvalues of a matrix M ∈ Cn×n, whose spectrum
is {λ1, . . . , λp}, and its Jordan decomposition

M =

pX
i=1

(λiPi +Ni),

where Pi is the Riesz projector corresponding to λi and Ni is the eigennilpotent
matrix associated with λi. In particular, the index ν(λi) of each eigenvalue λi
plays a major role. Moreover, in the same dissertation, the condition number of
the eigenvalue λi is related to the connected component of the pseudospectrum
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Λε(M) containing λi. These facts led us to think that there should be a closer
relationship between the Jordan canonical form of A and its pseudospectra.

Let k be an integer, 1 ≤ k ≤ n. For ε ≥ 0, the geometric ε-pseudospectrum
of M of order k can be defined as the set

Λ
(g)
ε,k(M) = {z ∈ C : σn−k+1(zIn −M) ≤ ε}.

In this paper we are going to establish that the geometric pseudospectra Λ
(g)
ε,k(A)

for small enough ε determine the Jordan canonical form of A, or equivalently,
determine its invariant factors. This is the content of the main theorem in this
paper, which is the following.

Theorem 1 (Sufficient condition for similarity). Let A,B ∈ Cn×n. Let us
assume that for each z ∈ C the singular values of zIn−A are the same as those
of zIn −B. Then A and B are similar matrices.

This Theorem will be proved in Section 3.

Remark 1. Notice that if A and B are similar and both matrices are normal,
then for each z ∈ C the singular values of zIn − A are the same as those of
zIn −B. This is no longer true if A and B are not assumed normal.

Theorem 1 was also inspired by Fact 5(b), page 16-2 in Chapter 16 on
Pseudospectra written by M. Embree in the Handbook of Linear Algebra, edited
by L. Hogben [3]. This Fact says that if A and B are n × n complex matrices
that have the same ordinary ε-pseudospectrum for every ε > 0, then A and B

have the same minimal polynomial. We remark that Λε(M) = Λ
(g)
ε,1(M).

Once we had proven our theorems, we read the paper by M. Fortier Bourque
and T. Ransford [1], which came to confirm our hunch. Two matrices A,B ∈
Cn×n are said to be unitarily similar if there exists a unitary matrix U ∈ Cn×n
such that B = U∗AU , where ∗ stands for the conjugate transpose. M. F.
Bourque and T. Ransford say that the complex n × n matrices A and B have
super-identical pseudospectra if, for each z ∈ C, the singular values of zIn − A
are the same as those of zIn − B. In [1] it was also proved that this condition
is excessive, and it is sufficient to require these equalities for a certain finite set
F of C; namely,

Theorem 2. Let F := {rpeiθq : p, q = 0, . . . , n}, where 0 < θ0 < · · · < θn < π
and 0 < r0 < · · · < rn. Suppose that A,B ∈ Cn×n satisfy

σk(zIn −A) = σk(zIn −B) (z ∈ F, k = 1, . . . , n).

Then A and B have super-identical pseudospectra.

Also they showed that: (a) A,B ∈ C2×2 have super-identical pseudospectra if
and only if A is unitarily similar to B; (b) A,B ∈ C3×3 have super-identical
pseudospectra if and only if A is unitarily similar to B or to its transpose; (c)
there exist A,B ∈ C4×4 with super-identical pseudospectra such that ‖A2‖ 6=
‖B2‖, this implies that A is not unitarily similar either to B or to its transpose.

We would note that there are problems in pure mathematics and control
theory where the simultaneous consideration of all the singular values leads
to more satisfactory solutions, like the problem of studying the approximation
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of a bounded matrix function on the unit circle by bounded analytic matrix
functions on the unit disc [5].

The organization of this paper is as follows: Given M ∈ Cn×n and z0 an
eigenvalue of M , we will analyze the asymptotic behavior of the singular values
of the characteristic matrix zIn −M when z → z0 in Section 2. We will prove
Theorem 1 in Section 3. In Section 4 we will give an extension of Theorem 1,
and we will frame these results in the theory of pseudospectra.

2 Orders of the singular values of a characteris-
tic matrix as infinitesimals

Let a matrix M ∈ Cn×n and z0 an eigenvalue of M . In this section we will
study the asymptotic behavior of the singular values of the characteristic matrix
zIn−M , when z → z0. To that end, we need the following notations. Let V ′(z0)
be a punctured neighborhood of z0 in C, we consider the set F of real functions
defined on V ′(z0). Then, we have the following definition.

Definition 1. Let f, g ∈ F. If there are constants δ,∆, d > 0 such that for
every z ∈ B′(z0, d) (open punctured disk centered at z0 and radius d)

f(z) > 0, g(z) > 0 and δ ≤ f(z)

g(z)
≤ ∆,

we write (with Hardy’s notation [2])

f(z) � g(z) (when z → z0).

We say that a function f ∈ F is an infinitesimal as z → z0 if limz→z0 f(z) =
0. If f(z) � |z − z0|k (with k integer ≥ 1) we say that f(z) is an infinitesimal
of order k as z → z0. The relation � is an equivalence relation.

Remark 2. If j, k are integers ≥ 0 and

|z − z0|j � |z − z0|k (z → z0),

then j = k.

Remark 3. Recall that for positive functions f, g ∈ F the relation f(z) ∼ g(z)
as z → z0 means

lim
z→z0

f(z)

g(z)
= 1.

It is obvious that f(z) ∼ g(z) as z → z0 implies f(z) � g(z) as z → z0.

The main result of this section is the following lemma.

Lemma 3. If Jk(z0) is the k × k Jordan block with eigenvalue z0, then, as
z → z0,

σj
�
zIk − Jk(z0)

�
∼
¨

1, j = 1, . . . , k − 1,

|z − z0|k, j = k.
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Proof. Without loss of generality, we may suppose that z0 = 0 and write simply
Jk := Jk(0). Since J∗kJk = diag(0, 1, . . . , 1), it follows that the singular values
of Jk are 1, . . . , 1, 0. Hence σj(zIk − Jk) → 1 as z → 0 for j = 1, 2, . . . , k − 1.
Also

kY
j=1

σj(zIk − Jk)2 = det((zIk − Jk)∗(zIk − Jk)) = |det(zIk − Jk)|2 = |z|2k,

whence it follows that σk(zIk − Jk) ∼ |z|k as z → 0.
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For the proof of Lemma 7, we need some preliminary results. The first one
can be seen in [6].

Lemma 4. Let M1,M2,M3 ∈ Cn×n. Then, for k = 1, 2, . . . , n,

σn(M1)σk(M2)σn(M3) ≤ σk(M1M2M3) ≤ ‖M1‖‖M3‖σk(M2).

With this result we can prove the following.

Lemma 5. Let M ∈ Cn×n, P ∈ GLn(C) and z0 ∈ C. Then, for j = 1, 2, . . . , n,

σj(zIn − P−1MP ) � σj(zIn −M) (z → z0).

Lemma 6. Let L ∈ Cq×q and z0 be a complex number such that z0 /∈ Λ(L).
Then, for j = 1, 2, . . . , q,

σj(zIq − L) � 1 (z → z0).

Proof. For j = 1, 2, . . . , q, the limit

lim
z→z0

σj(zIq − L) = σj(z0Iq − L)

is nonzero and finite.

2

Lemma 7. Let J be the Jordan form of a matrix M ∈ Cn×n. Let z0 ∈ C and
k ∈ {1, . . . , n}. Then the number of k× k Jordan blocks in J with eigenvalue z0
is equal to the number of j ∈ {1, . . . , n} such that σj(zIn −M) � |z − z0|k as
z → z0.

Proof. By Lemma 6 if z0 /∈ Λ(M), then for j ∈ {1, . . . , n},

σj(zIn −M) � 1 (z → z0);

so, in this case, there is no j such that σj(zIn −M) � |z − z0|k as z → z0.
If z0 ∈ Λ(M), by Lemma 5, for j = 1, . . . , n,

σj(zIn −M) � σj(zIn − J) (z → z0).

Let
J = J0 ⊕ J1,
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where J0 ∈ Cn0×n0 is the direct sum of the t Jordan blocks associated with z0,
and z0 /∈ Λ(J1). When z is sufficiently close to z0, the last t singular values of
zIn − J are just the infinitesimal singular values of zIn0

− J0 as z → z0. Thus,

lim
z→z0

σj(zIn − J) = 0, for j = n− t+ 1, . . . , n− 1, n.

The number of j ∈ {n−t+1, . . . , n−1, n} such that the order of the infinitesimal
σj(zIn − J) as z → z0 is k, is equal to the number of k× k Jordan blocks in J0
associated with z0. For j ∈ {1, . . . , n− t}, we have σj(zIn − J) � 1 as z → z0.

2

3 Proof of the main result

In this section, we will prove the main result of this paper.

Proof of Theorem 1.

Let M ∈ Cn×n and z0 ∈ C. Then z0 ∈ Λ(M) if and only if σn(z0In−M) = 0.
Since for each z ∈ C, σn(zIn − A) = σn(zIn − B), the eigenvalues of A and B
are the same,

Λ(A) = Λ(B) = {λ1, λ2, . . . , λp}.

As σj(zIn − A) = σj(zIn − B) for z ∈ C and j ∈ {1, . . . , n}, then for each
k ∈ {1, . . . , n} and λi ∈ Λ(A), the number of j ∈ {1, . . . , n} such that

σj(zIn −A) � |z − λi|k as z → λi

is equal to the number of j ∈ {1, . . . , n} such that

σj(zIn −B) � |z − λi|k as z → λi.

Thus, by Lemma 7, the number of k × k Jordan blocks associated with λi in
the Jordan forms of A and B is the same. Given that this holds for every
λi ∈ Λ(A) = Λ(B), we infer that A and B are similar.

2

4 Remarks

Following a line of reasoning similar to that of Theorem 1, we can establish the
following theorem.

Theorem 8. Let A ∈ Cn×n, B ∈ Cm×m. Let us suppose that n ≥ m and let

gi(λ)|gi+1(λ)| · · · |gm−1(λ)|gm(λ)

be the nontrivial invariant factors of B. Let us assume that for each z ∈ C and
k = 1, 2, . . . ,m− i+ 1,

σn−k+1(zIn −A) = σm−k+1(zIm −B) (1)

Then the last m− i+ 1 invariant factors of A,

fn−m+i(λ)|fn−m+i+1(λ)| · · · |fn−1(λ)|fn(λ),
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are nontrivial, and

fn(λ) = gm(λ), fn−1(λ) = gm−1(λ), . . . , fn−m+i(λ) = gi(λ).

Let M ∈ Cn×n. For every real number ε ≥ 0, another equivalent definition
of the ordinary ε-pseudospectrum of M is

Λε(M) :=
[

X∈Cn×n

‖X−M‖≤ε

Λ(X).

For z ∈ C we denote by gm(z,M) the geometric multiplicity of z as eigenvalue
of M . If z /∈ Λ(M), we agree that gm(z,M) = 0. Let k be an integer, 1 ≤ k ≤ n,

and let Λ
(g)
k (M) denote the set of z ∈ Λ(M) such that gm(z,M) ≥ k. For ε ≥ 0,

the geometric ε-pseudospectrum of M of order k can be defined, alternatively,
by

Λ
(g)
ε,k(M) :=

[
X∈Cn×n

‖X−M‖≤ε

Λ
(g)
k (X).

5 Conclusions

Let A,B be n×n complex matrices such that the singular values of zIn−A are
the same as those of zIn−B for each z ∈ C. Then A and B are similar. A more
general result for square matrices A and B of distinct sizes has been stated.
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