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Abstract
Regarding the pseudospectra of matrices it is easy to derive some conclusions from computer made

graphics. However, those conclusions might be false without further analysis. Indeed, it happened when
discussing the presence of a local maximum at the origin for the least singular value of the characteristic
matrix of the n × n real Toeplitz matrix whose first row and first column are (−1, −b, −b2, . . . , −bn−1) and
(−1, 0, 0, . . . , 0)T, respectively, which was first taken into account by Demmel.

In this paper, we determine the value of a local maximum for the last singular value of the characteristic
matrix of such Toeplitz matrices in the cases n = 3 and n = 5. We also specify the point where this local
maximum is attained at.
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AMS Classification: 15A18, 15A60, 65F15.

1 Notation
Let Cn×n denote the space of n × n complex matrices. For any matrix M ∈ Cn×n, let

σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M)

be its ordered singular values. From now on, we will denote σn(M) by σmin(M). In this paper we will use
the spectral norm of matrices; that is, ∥M∥ = σ1(M). Let us denote the spectrum of M by Λ(M), and the
transpose conjugate of M by M∗. It is said that a pair of vectors of unit length ui, vi ∈ Cn×1 are left and right
singular vectors of M associated with the singular value σi(M) if Mvi = σi(M)ui and M∗ui = σi(M)vi.

Let A ∈ Cn×n and ε > 0 be given. Then the ε-pseudospectrum of A is the set {z ∈ C : σmin(zIn − A) ≤ ε}.
Analogously, the strict ε-pseudospectrum of A is the set {z ∈ C : σmin(zIn − A) < ε}. Identifying z = x + yi ∈ C
with (x, y) ∈ R2, we can define the function (x, y) 7→ σmin((x + yi)In − A), from R2 to R. Let H ∈ Cn×n be
Hermitian, it is known that all of its eigenvalues are real and, therefore, they can be written in decreasing order
as

λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H).

2 Introduction. Main theorems
The paper is about a very specific question. Namely, on the localization of the holes of a strict ε-pseudospectrum
of n × n matrices of type

Db :=


−1 −b −b2 · · · −bn−1

0 −1 −b · · · −bn−2

...
...

...
. . .

...
0 0 0 · · · −1


for n = 3 and n = 5, where b is a real number large enough. The searched value of ε is equal to b

b2−1 and
coincides with a strict local maximum of the function (x, y) 7→ σmin

(
(x + yi)In − Db

)
, which is attained at( 1

b2−1 , 0
)
.
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In [1], we proved the existence of isolated points of the boundary of the strict ε-pseudospectrum of a matrix
for some ε. A referee of that paper drew our attention to a Demmel’s paper, see [4]. Although the aim of the
paper was other, some figures of the pseudospectra of A100 were introduced [4, Fig. 3, p. 342], where

Ab :=

−1 −b −b2

0 −1 −b
0 0 −1

 ; (1)

we recreate those graphs in Figure 1. Despite the lack of terminology on pseudospectra in that paper, what
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Figure 1: Pseudospectra of A100 for ε = 10−5, 10−4, 10−3.25, 10−3.15, 10−2.65.

Demmel pointed out is equivalent to saying some pseudospectra of A100 are not simply connected. Based on his
graphs, Demmel stated that the function (x, y) 7→ σmin

(
(x + yi)I3 − A100

)
reaches a local maximum at origin.

In [3, p. 318], it is repeated the same assertion. We will prove that for every real b no local maximum of the
function

(x, y) 7→ σmin
(
(x + yi)I3 − Ab

)
is attained at (0, 0). This fact was remarked on in [7, p. 1060]. Moreover, we will show that a local maximum
is reached at

(
1

b2−1 , 0
)

and its value is b
b2−1 , for b large enough. In [6, Sec. 3.4], A100 was used to illustrate the

differences between the unstructured and real structured pseudospectra.
For each b, x, y ∈ R, let us define

Fb(x, y) := (x + yi)I3 − Ab; Gb(x) := xI3 − Ab. (2)
We want to prove the following theorems.

Theorem 1. For no b ∈ R, does the function x 7→ σmin
(
Gb(x)

)
from R to R have a local maximum at x = 0.

As a consequence of the previous theorem we can deduce the following corollary.

Corollary 2. For no b ∈ R, does the function (x, y) 7→ σmin
(
Fb(x, y)

)
from R2 to R have a local maximum at

(0, 0).

Theorem 3. For each b > 2 +
√

3, the function (x, y) 7→ σmin
(
Fb(x, y)

)
from R2 to R has a local maximum at

the point
(

1
b2−1 , 0

)
and its value is b

b2−1 .
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In [7, Example 4.10, third example, p. 1060], for

Tb :=


−1 −b −b2 −b3 −b4

0 −1 −b −b2 −b3

0 0 −1 −b −b2

0 0 0 −1 −b
0 0 0 0 −1

 (3)

the authors asserted that for b = 5 the function (x, y) 7→ σmin
(
(x + yi)I5 − T5

)
reaches a local maximum close

to (0, 0) but not exactly at (0, 0). In this paper we prove the following result.

Theorem 4. For b ≥ 4, the function

(x, y) 7→ σmin
(
(x + yi)I5 − Tb

)
attains a local maximum at (1/(b2 − 1), 0), and the value of this maximum is b/(b2 − 1).

Remark. For the analysis of the n = 3 case we use some elementary techniques (see [1]) since the singular
value b/(b2 − 1) is double. However, for the n = 5 case this singular value is quadruple; which has led us to use
results on Taylor’s expansions of eigenvalues (see Lemma 10 and Corollary 11).

3 Proof of Theorem 1
In order to prove Theorem 1 we need three previous results.

Lemma 5. For each b ∈ R, b ̸= 0, it is satisfied that

(a) None of the singular values of Ab is equal to 1.

(b) Each singular value of Ab is simple.

Proof.
(a) The singular values of Ab are the nonnegative square roots of the zeros of the following polynomial

pb(λ) := det(λI3 − AbA∗
b) = λ3 − (b4 + 2b2 + 3)λ2 + (2b2 + 3)λ − 1, (4)

Since pb(1) = −b4, we have pb(1) = 0 if and only if b = 0.

(b) The discriminant of pb(λ) is equal to
4b10 + 13b8 + 32b6.

Since b ̸= 0, it follows that the singular values of Ab are simple.
2

The next result we need can be seen in [9, Theorem 1.1].

Lemma 6. Let B ∈ Rn×n. Let σ0 > 0 be a simple singular value of B. Let x 7→ B(x) be a real analytic function
from some neighbourhood of 0 in R to Rn×n such that B(0) = B. Then there exists a real analytic function
x 7→ σ(x) defined in a neighbourhood N0 of 0 in R such that, for every x ∈ N0, σ(x) is a singular value of B(x),
with σ(0) = σ0.

The proof of the following lemma can be seen in [5, p. 450, Theorem 7.3.3].

Lemma 7 (Wielandt’s Lemma). Let M ∈ Cn×n. Let s1 ≥ · · · ≥ sn ≥ 0. Then, s1 ≥ · · · ≥ sn ≥ −sn ≥ · · · ≥
−s1 are the ordered eigenvalues of the Hermitian matrix

H :=
[

O M
M∗ O

]
if and only if s1 ≥ · · · ≥ sn are the ordered singular values of M .

3



Let A ∈ Cn×n. Let x, y, s ∈ R, and set

q(x, y, s) := det
(

sIn (x + yi)In − A
(x − yi)In − A∗ sIn

)
(5)

By Lemma 7, s ≥ 0 is a singular value of (x + yi)In − A if and only if q(x, y, s) = 0. Moreover, by using Schur
complement, we have

q(x, y, s) = det
(
s2In −

(
(x − yi)In − A∗)((x + yi)In − A

))
.

Proof of Theorem 1
First, let us assume that b = 0. By (1) and (2) it is obvious that G0(x) = (x + 1)I3 and, therefore,

σmin(G0(x)) = |x + 1|, which contradicts the local maximality of x 7→ σmin(G0(x)) at x = 0.
Hence, let us assume b ̸= 0. By Lemma 5(b) the singular values of Ab are simple; from that fact and

Lemma 6, it follows that the function x 7→ σb(x) := σmin(Gb(x)) is real analytic in a neighbourhood of 0. Since
y = 0 in this case, q(x, y, s) is reduced to a polynomial which depends on s and x

qb(x, s) : = det
(
s2I3 − Gb(x)∗Gb(x)

)
= s6 −

(
b4 + 2b2 + 3(x + 1)2)s4

+
(
b4x2 + 2b2(x + 1)2 + 3(x + 1)4)s2 − (x + 1)6. (6)

We prove the theorem by contradiction. Assume that σb reaches a local maximum at the origin for some
b ∈ R, b ̸= 0. Thus the following equalities hold.

qb(0, σb(0)) = 0, σ′
b(0) = 0. (7)

From Lemma 5(b), we infer that (qb)′
s(0, σb(0)) ̸= 0. Therefore, since

σ′
b(0) = − (qb)′

x(0, σb(0))
(qb)′

s(0, σb(0)) ,

we have (qb)′
x(0, σb(0)) = 0. As a consequence of that, equalities (7) are equivalent to

qb(0, σb(0)) = 0, (qb)′
x(0, σb(0)) = 0. (8)

Setting σ0 := σb(0), we can write equalities (8) as−b4σ4
0 + 2b2σ2

0(1 − σ2
0) + (σ2

0 − 1)3 = 0,

2
(
2b2σ2

0 − 3(σ2
0 − 1)2) = 0.

(9)

By multiplying on the left the invertible matrix4 2b2σ2
0 + (σ2

0 − 1)(3σ2
0 + 1)

2
0 1/2


by the column vector (

−b4σ4
0 + 2b2σ2

0(1 − σ2
0) + (σ2

0 − 1)3

2
(
2b2σ2

0 − 3(σ2
0 − 1)2)

)
,

we deduce that system (9), whose unknowns are σ0, b, is equivalent to the system(1 − σ2
0)3(9σ2

0 − 1) = 0,

2b2σ2
0 − 3(σ2

0 − 1)2 = 0.

By solving the first equation, we have σ0 = 1, 1/3. However, by Lemma 5(a), the only feasible singular value of
σ0 is 1/3. By substituting that value in the second equation, we obtain b = ±4

√
6/3 =: β. A little calculation

shows that the singular values of Aβ , for the two values of β, are

6 +
√

33 ≈ 11.7446, 1/3 ≈ 0.3333, 6 −
√

33 ≈ 0.2554.

Therefore, 1/3 is not the least singular value of Aβ . This contradicts our assumption, namely, x 7→ σmin(Gb(x))
reaches a local maximum at x = 0 for some b ̸= 0.

2

4



4 Proof of Theorem 3
To prove Theorem 3, we need a previous result. By (5), for (x, y, s) ∈ R3 we have

q(x, y, s) := det
(

sI3 Fb(x, y)
F ∗

b (x, y) sI3

)
∈ R[x, y][s]. (10)

So, combining Theorems 7 and 10 in [1] yields the following Lemma.

Lemma 8. Let us assume that (x0, y0, σ0) ∈ R3 satisfies the conditions
q(x0, y0, σ0) = 0,

q′
x(x0, y0, σ0) = 0,

q′
y(x0, y0, σ0) = 0,

q′′
xy(x0, y0, σ0)2 − q′′

xx(x0, y0, σ0)q′′
yy(x0, y0, σ0) < 0,

and σ0 = σmin(Fb(x0, y0)). Then the function

(x, y) 7→ σmin(Fb(x, y))

has a local maximum at (x0, y0).

Proof of Theorem 3
From (1), (2) and (10), setting x0 := 1/(b2 − 1), y0 := 0 and σ0 := b/(b2 − 1), we infer that

q(x0, y0, σ0) = q′
x(x0, y0, σ0) = q′

y(x0, y0, σ0) = 0,

and that

q′′
xy(x0, y0, σ0)2 − q′′

xx(x0, y0, σ0)q′′
yy(x0, y0, σ0) = − 4b8

(b2 − 1)4 (b4 − 14b2 + 1).

Since the roots of b4 −14b2 +1 = 0 are 2±
√

3 and −2±
√

3, it is easy to check that for b > 2+
√

3 the inequality
q′′

xy(x0, y0, σ0)2 − q′′
xx(x0, y0, σ0)q′′

yy(x0, y0, σ0) < 0 holds. To complete the proof, let us observe that the positive
roots of q(x0, y0, s) = 0 with respect to s are

b4

b2 − 1 ,
b

b2 − 1 ,
b

b2 − 1 ;

therefore, σ0 = σmin
(
Fb(x0, y0)

)
.

2

5 Proof of Theorem 4
For the proof of Theorem 4 we need some previous results. The following can be found in [2, Corollary III.2.6,
p. 63, and Corollary III.1.5, p. 59].

Lemma 9. Let H, G ∈ Cn×n be Hermitian matrices and let Hk ∈ Ck×k be a principal submatrix of H. Then

(a) Weyl’s perturbation theorem:

|λi(H + G) − λi(H)| ≤ ∥G∥, i = 1, . . . , n.

(b) Cauchy’s interlacing theorem:
λk(Hk) ≥ λn(H).

By Lemma 9 (a) the function Z 7→ λi(Z) is continuous on the space of Hermitian matrices in Cn×n. Hence, the
function

t 7→ λi(H + tG)
from R to R is continuous, for i = 1, . . . , n. The next lemma, on the behavior of the eigenvalues of Hermitian
matrices of the form H + tG when t → 0+, is adapted from Theorem A.4 of [8].
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Lemma 10. Let H, G ∈ Cn×n be Hermitian matrices. Let us suppose that the eigenvalue α of H has algebraic
multiplicity k and

α = λi0+1(H) = · · · = λi0+k(H).
Let us define

δ0 :=

 min
j /∈{i0+1,...,i0+k}

|λj(H) − α| if k < n

1 if k = n
δ := ∥G∥

δ0
, (11)

r0 := (2δ + 4δ2)(∥H∥ + ∥G∥), t0 := min
{

1
2 ,

1
4δ

}
. (12)

Let M ∈ Cn×k be a matrix whose columns are orthonormal eigenvectors of H corresponding to the eigenvalue
λi0+1(H).

Then for each j = 1, 2, . . . , k the function

fj(t, G) :=


λi0+j(H + tG) − λi0+1(H) − tλj(M∗GM)

t2 if t ∈ (0, t0]
0 if t = 0

satisfies
|fj

(
t, G

)
| ≤ r0, t ∈ [0, t0].

PROOF
Case 1: k < n
For the sake of brevity we denote the eigenvalues of the Hermitian matrix M∗GM by µi := λi(M∗GM) for

i = 1, . . . , k. Let M1 ∈ Cn×(n−k) be a matrix whose columns are orthonormal eigenvectors of H corresponding
to the eigenvalues λi(H) ̸= α, and let R := (M, M1) ∈ Cn×n be unitary. Let us define the matrices

H1 := R∗HR =
(

αIk O
O Σ

)
,

Σ := diag(λ1(H), . . . , λi0(H), λi0+k+1(H), . . . , λn(H))

G1 := R∗GR =
(

M∗GM M∗GM1
M∗

1 GM M∗
1 GM1

)
,

G′
1 :=

(
M∗GM O

O M∗
1 GM1

)
.

(13)

Let us define
V :=

(
O −M∗GM1(Σ − αIn−k)−1

(Σ − αIn−k)−1M∗
1 GM O

)
. (14)

A little calculation shows that
V H1 − H1V + G1 = G′

1. (15)
Moreover, by (11) and (14) we deduce that

∥V ∥ ≤ δ. (16)
Since V is skew Hermitian, for each real t the matrix etV is unitary, that is(

etV
)∗ =

(
e−tV

)
=
(
etV
)−1

. (17)

Consequently, H + tG and etV (H1 + tG1)e−tV are unitarily similar. Using the power series expansion of the
matrix exponential, we get

etV (H1 + tG1)e−tV

=

In + tV +
∞∑

j=2

(tV )j

j!

 (H1 + tG1)

In − tV +
∞∑

j=2

(−tV )j

j!


= H1 + t(V H1 − H1V + G1) + t2(V G1 − V H1V − G1V ) − t3V G1V

+ (In + tV )(H1 + tG1)
∞∑

j=2

(−tV )j

j! +
∞∑

j=2

(tV )j

j! (H1 + tG1)e−tV .

6



By (15) and the previous equality, we deduce that

etV (H1 + tG1)e−tV

= H1 + tG′
1 + t2(V G1 − V H1V − G1V ) − t3V G1V

+ (In + tV )(H1 + tG1)
∞∑

j=2

(−tV )j

j! +
∞∑

j=2

(tV )j

j! (H1 + tG1)e−tV .

(18)

In the remainder of Case 1 we assume t to run over [0, t0]. From (12) and (16), it follows that ∥tV ∥ ≤ 1/4.
Furthermore, we can infer that∥∥∥∥∥∥

∞∑
j=2

(tV )j

j!

∥∥∥∥∥∥ ≤
∞∑

j=2

∥tV ∥j

j! ≤ ∥tV ∥2
∞∑

j=0

∥tV ∥j

(j + 2)! ≤ t2δ2
∞∑

j=0

∥tV ∥j

(j + 2)!

≤ t2δ2
∞∑

j=0

1
(j + 2)! ≤ t2δ2;

hence ∥∥∥∥∥∥
∞∑

j=2

(tV )j

j!

∥∥∥∥∥∥ ≤ t2δ2,

∥∥∥∥∥∥
∞∑

j=2

(−tV )j

j!

∥∥∥∥∥∥ ≤ t2δ2;

it is easy to check that ∥∥∥∥∥∥
∞∑

j=2

tj−2V j

j!

∥∥∥∥∥∥ ≤ δ2,

∥∥∥∥∥∥
∞∑

j=2

(−t)j−2V j

j!

∥∥∥∥∥∥ ≤ δ2. (19)

Now, using (13) too, we have

∥V G1 − V H1V − G1V ∥ ≤ 2δ∥G∥ + δ2∥H∥,
∥V G1V ∥ ≤ δ2∥G∥,
∥In + tV ∥ ≤ 2,
∥H1 + tG1∥ ≤ ∥H∥ + ∥G∥.

(20)

Setting
F (t) := (V G1 − V H1V − G1V ) − tV G1V

+ (In + tV )(H1 + tG1)
∞∑

j=2

(−t)j−2V j

j! +
∞∑

j=2

tj−2V j

j! (H1 + tG1)e−tV ,
(21)

we can rewrite (18) as
etV (H1 + tG1)e−tV = H1 + tG′

1 + t2F (t). (22)

From (12), (17), (19) and (20) we obtain

∥F (t)∥ ≤ 2δ∥G∥ + δ2∥H∥ + tδ2∥G∥ + 2δ2(∥H∥ + ∥G∥) + δ2(∥H∥ + ∥G∥)
≤ 4δ2∥H∥ + (2δ + 3δ2 + tδ2)∥G∥ ≤ (2δ + 4δ2)(∥H∥ + ∥G∥),

where t0 ≤ 1/2 is used in the last inequality. Hence, by (12) we conclude that

∥F (t)∥ ≤ r0. (23)

Let us now define the matrix Z := Z1 ⊕ In−k ∈ Cn×n, where Z1 ∈ Ck×k is a unitary matrix such that
Z∗

1 M∗GMZ1 = diag(µ1, µ2, . . . , µk). Thus, from (13) and (22), we infer that H + tG is unitarily similar to(
αIk + t diag(µ1, . . . , µk) O

O Σ + tM∗
1 GM1

)
+ t2Z∗F (t)Z. (24)

For i = 1, 2, . . . , n, let us define

φi(t) := λi

(
αIk + t diag(µ1, . . . , µk) O

O Σ + tM∗
1 GM1

)
. (25)
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Hence, as ∥M1∥ = 1 and |µi| ≤ ∥G∥, applying Lemma 9 (a) we deduce that

λi

(
αIk O
O Σ

)
− ∥tG∥ ≤ φi(t) ≤ λi

(
αIk O
O Σ

)
+ ∥tG∥.

From (11) and (12) we have t0 ≤ 1/(4δ) = δ0/(4∥G∥); we see that for each i = 1, . . . , n

λi(H) − δ0/4 ≤ φi(t) ≤ λi(H) + δ0/4.

Consequently, 

{φ1(t), φ2(t), . . . , φi0(t)}⊂
[
λi0(H)− δ0

4 , λ1(H)+ δ0

4

]
,

{φi0+1(t), φi0+2(t), . . . , φi0+k(t)}⊂
[
α− δ0

4 , α+ δ0

4

]
,

{φi0+k+1(t), φi0+k+2(t), . . . , φn(t)}⊂
[
λn(H)− δ0

4 , λi0+k+1(H)+ δ0

4

]
.

(26)

Using again Lemma 9 (a), we deduce that

Λ(Σ + tM∗
1 GM1) ⊂ [λi0(H) − δ0/4, λ1(H) + δ0/4] ∪ [λn(H) − δ0/4, λi0+k+1(H) + δ0/4].

It is obvious that

φi(0) = λi(H) ∈


[λi0(H) − δ0/4, λ1(H) + δ0/4], if i ≤ i0,

[α − δ0/4, α + δ0/4], if i0 + 1 ≤ i ≤ i0 + k,

[λn(H) − δ0/4, λi0+k+1(H) + δ0/4], if i0 + k + 1 ≤ i.

Let us recall that the image from an interval by a continuous function from R to R is an interval. Therefore,
φ1([0, t0]),. . . ,φn([0, t0]) are intervals. This implies that for each j = 1, . . . , k

φi0+j([0, t0]) ⊂ [α − δ0/4, α + δ0/4].

Since

Λ
(

αIk + t diag(µ1, . . . , µk) O
O Σ + tM∗

1 GM1

)
= Λ

(
αIk + t diag(µ1, . . . , µk)

) ·
∪ Λ(Σ + tM∗

1 GM1),

we conclude that φi0+1(t), . . . , φi0+k(t) are the eigenvalues of

αIk + t diag(µ1, . . . , µk).

As t ≥ 0 and µ1 ≥ · · · ≥ µk, it follows that

φi0+j(t) = α + tµj , j = 1, . . . , k.

From this and using Lemma 9 (a) in (24), we find that for j = 1, . . . , k,

α + tµj − t2∥F (t)∥ ≤ λi0+j(H + tG) ≤ α + tµj + t2∥F (t)∥.

It suffices to use (23) to complete the proof in this case.

Case 2: k = n
If the Hermitian matrix H ∈ Cn×n has an eigenvalue α of multiplicity n, then for i = 1, . . . , n and t ≥ 0 we

have
λi(H + tG) = α + tλi(G).

2

As a consequence of this lemma, we have the following corollary on the behavior of the singular values of
A + tB when t → 0+. See [8, Lemma A.5].
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Corollary 11. Let A, B ∈ Cn×n. Let A have a positive singular value α of multiplicity k such that

α = σi0+1(A) = · · · = σi0+k(A).

Let us define

γ0 :=

 min
j /∈{i0+1,...,i0+k}

|σj(A) − α| if k < n

1 if k = n
γ := ∥B∥

γ0
,

s0 := (2γ + 4γ2)
(
∥A∥ + ∥B∥

)
, t0 := min

{
1
2 ,

1
4γ

}
.

Let U = [ui0+1, . . . , ui0+k], V = [vi0+1, . . . , vi0+k] ∈ Cn×k be matrices of orthonormal columns and such that
(ui0+j , vi0+j) is a pair of (left, right) singular vectors of A corresponding to σi0+1(A) for j = 1, . . . , k.

Then for each j = 1, 2, . . . , k the function

fj(t, B) :=


σi0+j(A + tB) − σi0+1(A) − tλj

(
U∗BV +V ∗B∗U

2
)

t2 if t ∈ (0, t0]
0 if t = 0

satisfies
|fj

(
t, B

)
| ≤ s0, t ∈ [0, t0]. (27)

PROOF
Case 1: k < n.
Let P := (U, U1), Q := (V, V1) ∈ Cn×n be unitary matrices such that

P ∗AQ = S :=
(

αIk O
O diag(σ1(A), . . . , σi0(A), σi0+k+1(A), . . . , σn(A))

)
.

Let us define
B1 := P ∗BQ =

(
U∗BV U∗BV1
U∗

1 BV U∗
1 BV1

)
.

Note that for every t ∈ [0, ∞) the singular values of A + tB are those of S + tB1, or equivalently, by Lemma 7,
the nonnegative eigenvalues of (

O S + tB1
(S + tB1)∗ O

)
,

which is unitarily similar to (
S O
O −S

)
+ t

(
1
2 (B1 + B∗

1) 1
2 (B∗

1 − B1)
1
2 (B1 − B∗

1) − 1
2 (B1 + B∗

1)

)
,

where the unitary matrix of passage is 1√
2

(
In In

In −In

)
. We end the proof by applying Lemma 10 to the pair of

Hermitian matrices

H :=
(

S O

O −S

)
and G :=

(
1
2 (B1 + B∗

1) 1
2 (B∗

1 − B1)
1
2 (B1 − B∗

1) − 1
2 (B1 + B∗

1)

)
.

It is obvious that for each j = 1, . . . , k
λi0+j(H) = α.

Let us denote by Ok×k and O(n−k)×k the zero matrices of sizes k × k and (n − k) × k, respectively. Following
from the definition of S the columns of

M :=


Ik

O(n−k)×k

Ok×k

O(n−k)×k

 ∈ C2n×k
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are orthonormal eigenvectors of H associated with the eigenvalue α. Besides, following from the definition of G
and B1, we infer that

G =


k n − k k n − k

k (V ∗B∗U + U∗BV )/2 ∗ ∗ ∗
n − k ∗ ∗ ∗ ∗
k ∗ ∗ ∗ ∗
n − k ∗ ∗ ∗ ∗

;

hence,
M∗GM = 1

2(U∗BV + V ∗B∗U).

Therefore, for t ∈ (0, s0] and j = 1, . . . , k we see that∣∣∣∣∣∣
λi0+j(H + tG) − λi0+1(H) − tλj

(
U∗BV +V ∗B∗U

2

)
t2

∣∣∣∣∣∣ ≤ s0.

But λi0+j(H + tG) = σi0+j(A + tB), which completes the proof.

Case 2: k = n. We have
α = σ1(A) = · · · = σn(A).

The proof is trivial.
2

Remark 12. In Corollary 11 the value of λj

(
U∗BV +V ∗B∗U

2
)

depends only on B, and is independent of the
matrices U and V chosen. In fact, from (27) we can deduce that λj

(
U∗BV +V ∗B∗U

2
)

is the value of the right
derivative of the function

t 7→ σi0+j(A + tB)

at t = 0.

We are in a position to prove Theorem 4.

PROOF of Theorem 4
Let C := {(x, y) ∈ R2 : x2 + y2 = 1} denote the unit circumference. From notation (3), for (x, y) ∈ R2 we

write
Φ(x, y) := (x + yi)I5 − Tb (28)

for short. We apply Corollary 11 to the matrices A := Φ(1/(b2 − 1), 0) and B := (x + yi)I5, where (x, y) ∈ C.
From (3) and (28), we have the matrix

Φ(1/(b2 − 1), 0) =



b2

b2 − 1 b b2 b3 b4

0 b2

b2 − 1 b b2 b3

0 0 b2

b2 − 1 b b2

0 0 0 b2

b2 − 1 b

0 0 0 0 b2

b2 − 1


,

whose singular values are b6/(b2−1) (simple) and b/(b2−1) (of multiplicity 4). Observe that ∥B∥ = ∥(x+yi)I5∥ =
1, i0 = 1 and k = 4. From notations in Corollary 11, we have

γ0 = b6 − b

b2 − 1 , γ = b2 − 1
b6 − b

.

Since b ≥ 4, we have

γ = b2 − 1
b6 − b

≤ b2

b6 − b
≤ b2

b6/2 = 2
b4 .
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An easy computation shows that ∥A∥ = ∥Φ(1/(b2 − 1), 0)∥ = b6/(b2 − 1). Therefore,

(2γ + 4γ2)(∥A∥ + ∥B∥) ≤ 4(b4 + 4)(b6 + b2 − 1)
b8(b2 − 1) ≤ 4(b4 + b4)(b6 + b2)

b8b2/2 = 16(b4 + 1)
b4 ≤ 17,

min
{

1
2 ,

1
4γ

}
= min

{
1
2 ,

b4

8

}
= 1

2 .

So, we can choose
s0 := 17, t0 := 1

2 . (29)

Let U = [u1, u2, u3, u4], V = [v1, v2, v3, v4] ∈ C5×4 be matrices with orthonormal columns such that (ui, vi)
is a pair of (left, right) singular vectors of Φ(1/(b2 − 1), 0) associated with the singular value b/(b2 − 1) for
i = 1, 2, 3, 4. For every (x, y) ∈ C, let H(x, y) be the Hermitian matrix defined by

H(x, y) := 1
2
(
(x + yi)U∗V + (x − yi)V ∗U

)
. (30)

According to Remark 12, we have λ4
(
H(x, y)

)
depends only on (x, y) and not on U and V . By Corollary 11

there exist t0 > 0 and s0 > 0, given in (29), such that the function f : [0, t0] × C → R defined by

f(t, (x, y)) :=


σmin

(
Φ(1/(b2 − 1) + tx, ty)

)
− σmin

(
Φ(1/(b2 − 1), 0)

)
− tλ4

(
H(x, y)

)
t2 if t > 0

0 if t = 0

satisfies the inequality
|f(t, (x, y))| ≤ s0 = 17, (t, (x, y)) ∈ [0, t0] × C. (31)

In order to prove that the function
(x, y) 7→ σmin

(
Φ(x, y)

)
from R2 in R has a local maximum at (1/(b2 −1), 0), we need to find a global upper bound a of λ4

(
H(x, y)

)
when

(x, y) runs over C and such that a satisfies at + s0t2 ≤ 0 for t > 0 small enough. To this end, computations
made with the Derive and Maple programs lead us to choose the matrices U and V as follows: first, let us
define the matrices

U1 :=



0 0
0 0

0 b2 + 1√
b6 + 2b4 + 2b2 + 1

1√
b2 + 1

−b3
√

b6 + 2b4 + 2b2 + 1

−b√
b2 + 1

−b2
√

b6 + 2b4 + 2b2 + 1


, V1 :=



0 0
0 0

0 b(b2 + 1)√
b6 + 2b4 + 2b2 + 1

b√
b2 + 1

−1√
b6 + 2b4 + 2b2 + 1

−1√
b2 + 1

−b√
b6 + 2b4 + 2b2 + 1


.

Write U1 = [u1, u2],V1 = [v1, v2]. Note that u1, u2 (resp. v1, v2) are orthonormal vectors; moreover, (ui, vi),
i = 1, 2, is a pair of (left, right) singular vectors of Φ(1/(b2 − 1), 0) associated with the singular value b/(b2 − 1).
Second, let us choose pairs (ui, vi), i = 3, 4, of singular vectors of Φ(1/(b2 − 1), 0) associated with b/(b2 − 1),
such that U := [u1, u2, u3, u4] and V := [v1, v2, v3, v4] satisfy U∗U = I4 and V ∗V = I4. Substituting these
matrices into (30) we have H(x, y). It is easy to see that

H1(x, y) := 1
2
(
(x + yi)U∗

1 V1 + (x − yi)V ∗
1 U1

)
∈ C2×2

is a principal submatrix of H(x, y). Since x2 + y2 = 1, the characteristic polynomial det(λI2 − H1(x, y)) of
H1(x, y) is given by

λ2 − 3bx(b2 + 1)
b4 + b2 + 1 λ − b4 − 2b2(6x2 + 1) + 1

4(b4 + b2 + 1) .
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Computing the roots of det(λI2 − H1(x, y)) = 0 with respect to λ, we find that the least root is

3bx(b2 + 1) − (b2 − 1)
√

b4 + b2 + 1 − 3b2x2

2(b4 + b2 + 1) .

This expression, as a function of x, is increasing on [−1, 1]. Thus its maximum is attained at x = 1 and has a
value of

− b2 − 4b + 1
2(b2 − b + 1) ≤ − 1

26 for all b ≥ 4.

Therefore, using Lemma 9 (b), we conclude that

λ4
(
H(x, y)

)
≤ λ2

(
H1(x, y)

)
≤ −1/26 (32)

for every (x, y) ∈ C. So, a = −1/26.
Note that for every (t, (x, y)) ∈ [0, t0] × C

σmin
(
Φ(1/(b2 − 1) + tx, ty)

)
− σmin

(
Φ(1/(b2 − 1), 0)

)
= tλ4

(
H(x, y)

)
+ t2f(t, (x, y)) ≤ −(1/26)t + 17t2.

The roots of −(1/26)t + 17t2 = 0 are 0 and 1/442. Since t0 = 1/2 > 1/442, we must restrain the interval of
variation of t to ensure that

σmin
(
Φ(1/(b2 − 1) + tx, ty)

)
− σmin

(
Φ(1/(b2 − 1), 0)

)
≤ 0.

Therefore, let us choose for example t1 := 1/500. In this way, for every (X, Y ) ∈ D
(
(1/(b2 − 1), 0), t1

)
, open

disk of centre (1/(b2 − 1), 0) and radius t1, we have

σmin
(
Φ(X, Y )

)
≤ σmin

(
Φ(1/(b2 − 1), 0)

)
.

Hence, the function
(x, y) 7→ σmin

(
Φ(x, y)

)
has a strict local maximum at (1/(b2 − 1), 0) and its value is b/(b2 − 1). 2

6 Conclusions
We have determined both the ε-level and the coordinates of the holes of a strict ε-pseudospectrum of n × n
matrices of type

Db :=


−1 −b −b2 · · · −bn−1

0 −1 −b · · · −bn−2

...
...

...
. . .

...
0 0 0 · · · −1


where b > 2 +

√
3 for n = 3 and b ≥ 4 for n = 5. The determined value of ε is equal to b

b2−1 and coincides with
a strict local maximum of the function (x, y) 7→ σmin

(
(x + yi)In − Db

)
, attained at

( 1
b2−1 , 0

)
.
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