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Abstract

We characterize the stability of reducing subspaces of a rectangular
matrix pencil of complex matrices AB — A, except for the special case in
which the pencil has no eigenvalues and only has one row and one column
minimal indices and both are different from zero.
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1 Introduction

Given two matrices A, B € C™*", we call matriz pencil the first order matrix
polynomial AB — A. For simplicity, we will denote the set of matrix pencils
of the form AB — A, with A, B € C™*", by P[A]"*". We define the normal
rank of a pencil AB — A € P[A]™*", and we denote it by nrank(AB — A), to
be the greatest order of the minors of AB — A that are different from the zero
polynomial. If m = n and nrank(AB — A) = n, the pencil AB — A € P[\]™*"
is said to be regular. Otherwise, the pencil is said to be singular.

Note by C(A) the field of rational fractions in A. If we consider AB — A as a
linear map from the vector space C(A)™ into C(A\)™, both over the field C()\),
we have

nrank(AB — A) = dim¢(y) Im(AB — A),

(see [4]). We define the nullity of AB — A by v(AB — A) := dimg(y) Ker(AB — A).
From
n = dimg(y) Ker(AB — A) + dimg(y) Im(AB — A),

v(AB — A) =n — nrank(AB — A).
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As usual we identify a matrix M € C™*" with the linear map =z — Mz from
C" = C™*! into C™ = C™*!. Let N be a subspace of C", we define M(N')
as the subspace of C™ formed by all matrix products Mx with x € N. Van
Dooren proved that

dim(AN) + BW)) = dimN — v(AB — A), (1)

where A(N) + B(N) is the sum of these subspaces of C™. See [17, Equation
(2.16) on page 63 and in the line following (2.25 a) and (2.25 b) on page 65]. In
the case the equality holds in (1), the subspace A is called a reducing subspace
for the pencil (see [17]) or, equivalently, that N is a (AB — A)-reducing subspace.
Observe that if the pencil is regular then v(AB — A) = 0. So, in this case N
is a reducing subspace if and only if dim(A(N) + B(N)) = dimN. These
reducing subspaces are also called deflating subspaces for regular pencils (see
[16]). In order to simplify here on, we will denote by (AB — A)(N) the subspace
A(N) + B(N).

We use the operator norm induced by the Euclidean norms on C™ and C”,
also called the spectral norm,

M| := max [[Mz].
zeC

llzl2=1
The gap between subspaces M and N (in C") is defined as
(M, N) =[Py — Pyl

where Py and Py are the orthogonal projectors on M and N, respectively.

Let AB — A € P[A\]™*" a matrix pencil. A reducing subspace A/ of C" for
(AB — A) is said to be stable if for every € > 0 there exists a § > 0 such that
every matrix pencil AB’ — A" € P[A]™*™ that satisfies

|A"= Al +[|B" = B|| <6

has a (AB’ — A’)-reducing subspace N for which the inequality (N',N) < ¢
holds. In the same way, we will say that the subspace N of C" is Lipschitz
stable if there exist K, e > 0 such that every matrix pencil AB' — A’ € P[A]™*"
that satisfies |4’ — A|| + ||B’ — B|| < € has a (AB’ — A’)-reducing subspace N’
for which the inequality

N, N) < K(|A" = Al + || B' - BI))

holds. To simplify, we will often say that a subspace N is (AB — A)-stable to
mean that NV is a (AB — A)-reducing subspace and is stable to perturbations in
the matrices B and A. For a clear motivation see Chapters 13 and 15 of [5].

A previous paper on this topic was published by the second and third au-
thors [7]. A characterization of the stability or Lipschitz stability of deflating
subspaces of a regular matriz pencil was already given there. In the current
paper, we address this stability problem for the case of reducing subspaces of
singular pencils. Before stating the main result of this paper, recall some prop-
erties of the pencils of matrices.

Two matrix pencils AB — A;AD — C' € P[N™*" are said to be strictly
equivalent if there exist invertible matrices P € C™*™, Q € C"*" such that



AD — C = P(AB — A)Q. Remark that two strictly equivalent pencils have the
same normal rank. Hence a subspace A is (AB — A)-reducing if and only if the
subspace Q71(N) is (AD — C)-reducing. Set C := C U {oc}. We will use the
notation coB — A := B. We will say that the element o € C is an eigenvalue of
the pencil AB — A if

rank(aB — A) < nrank(AB — A).

An eigenvalue o of AB — A is finite if o € C, and it is infinite if @ = co. We
call spectrum of the pencil AB — A and we denote it by A(AB — A), the set of
its eigenvalues. It is a subset of C.

The well-known Kronecker canonical form for the strict equivalence of matrix
pencils is given in the following result.

Lemma 1 (Kronecker canonical form [4]). Given a matriz pencil A\AB — A €
PIA™*™, there always exist invertible matrices P € C™*™ Q € C" ", such
that P(AB — A)Q has the form

AB. — A, o) o)
o) AB, — A, 0] ; (2)
0] @) ABy — Ay

AB. — Ac = (O(n, —to)x (tg—t1)> di88(Lyy s Lyy - .., Ly, ) € PIA[ M —f0)xm 0 (3)
Ly, == \I,,,0) — (O, 1,) € PIN"*"*+ - and the pencil

(AN -1 0 naxng
A, — = (M0 ) epbn, (@

with a nilpotent matriz N, is reqular; and, lastly,

N O(SO—SI)X(mS—SO) mgzX(ms—so)
ABy = Ay = (diag(LeTl,LgTQ,...,LeT )| € P, (5)

s1
Remark 2. The sequences

to—t1 So—S1

—
(7“1,7‘2,...77',5170,...70), (gl,gg,...,fsl,o,...,())

are the column minimal indices and the row minimal indices, respectively. The
elementary divisors of the matrices N and J, are called infinite elementary
divisors and finite elementary divisors, respectively, of the matrix pencil. Recall
that A(AB — A) denotes the spectrum of the pencil AB — A, then A(AB — A) =
AB, — A,).

Thus, a complete system of invariants for the strict equivalence of two
matrix pencils is formed by the finite sequences of row and column minimal
indices and the system of elementary divisors (finite and infinite). For some
particular pencils some of these invariant can be absent. Strictly speaking it is
not the same the set of row minimal indices and the sequence of row minimal
indices. But from now on we will loosely speak and —for example— we will
say that a pencil has two row minimal indices to mean that the sequence of row
minimal indices has two terms, which might be equals.



Remark 3. Since tg = v(AB — A), where ¢; is the number of column minimal
indices (see [4]), from (1) we deduce that for each subspace N of C",

dim(AN) + B(N)) > dim N — ¢.

Let X be a basis matrix of M. As dim(A(N) + B(N)) = rank(AX, BX) we
have

rank(AX, BX) > rank(X) — to. (6)
As a consequence, the subspace A is (AB — A)-reducing if and only if
rank(AX, BX) = rank(X) — to. (7)

Recall that a matrix pencil AB — A € P[A]™*™ is said to be right regular if
nrank(AB — A) = n, or equivalently v(AB — A) = 0, or equivalently, it has no
column minimal index. In an analogous way, we will say that a pencil A\B — A is
left reqular if ABT — AT is right regular, that is, if A\B — A has no row minimal
index.

Another previous work on the topic of the stability of reducing subspaces was
the one by Demmel in [2]. He studied the stability of some reducing subspaces
for singular matriz pencils, but under additional conditions. We will explain it
briefly. Let AB — A be a singular pencil and let A/ be a reducing subspace for
this pencil. Then, according to our notations, there is no loss of generality if we
suppose that AB — A and A have the form

AB,—A, O 0 0
O  ABl—Al AB2-A2 O
AB=A=1 9 o  aBi-4 o |
0 0 O ABj— A
I, ©
o0 I,
0 o

where the (mq x nq)-pencil AB. — A, only has column minimal indices, A\By — Ay
only has row minimal indices and the pencil
ABL! — AL \B2 — A2
O AB2 — A3

is regular, where AB} — Al is a pencil of size na X ny. In [2] it is supposed that
AAB} — AH)NA\BE — A2) = 0.

Under these hypotheses, in Theorem 6, page 26 of [2], some results are given
on the stability of the subspace N, but assuming also that the perturbed pencils
have reducing subspaces of the same dimension as N.

There is an ample literature on the use of reducing subspaces of matrix pen-
cils as a tool for factorizing rational matrices and for solving Riccati equations.
One can see many references in the book by Ionescu, Oara and Weiss [10]. See
also [13].

With theses notations, the main result of the paper is the following.



Theorem 4. Let AB— A € P[A]™*™ be a singular matriz pencil. The following
assertions are true:

(1) If the pencil has row minimal indices, column minimal indices and eigenval-
ues, then no reducing subspace is stable.

(2) If the pencil has no row minimal index, then the unique stable and Lipschitz
stable reducing subspace is C™.

(3) If the pencil has no column minimal index, then the unique stable and Lip-
schitz stable reducing subspace is {0}.

(4) If the pencil has column minimal indices and, at least, two row minimal
indices, then no reducing subspace is stable.

(5) If the pencil only has one row minimal index which is equal to zero, and
has no eigenvalues, then the only stable and Lipschitz stable reducing subspace
is C™.

(6) If the pencil only has one row minimal index which is different than zero, has
not eigenvalues and has at least two column minimal indices, then no reducing
subspace is stable.

(7) If the pencil only has one row minimal index which is different than zero, and
has one column minimal index, which is equal to zero, and has not eigenvalues,
then the unique stable and Lipschitz stable reducing subspace is KerA.

The organization of this paper is the following. In Section 2 algebraic prop-
erties of the reducing subspaces of pencils of linear maps are established. In
Section 3, these properties are translated into terms of matrix pencils. In Sec-
tion 4 the problem of the stability of reducing subspaces is addressed by means
of converging sequences of matrix pencils and basis matrices of subspaces. In
Sections 5 to 9 the proof of Theorem 4 (Main Theorem) is developed. In Section
5 Assertions (1), (2) and (3) of the Theorem are proved. In Sections 6, 7, 8 and
9 Assertions (4), (5), (6) and (7), respectively, are proved.

2 Properties of the reducing subspaces of linear
map pencils

In this section we give a characterization of the reducing subspaces for pencils
of linear maps. Its proof will be made in the following section, translating these
results to the matrix pencils.

First, remark that the concepts of normal rank and reducing subspace can
be extended to the case of a pair of linear maps. Let & and V be vector spaces
over C and let A, B : U/ — V be linear maps. The normal rank of the pencil of
linear maps A\B — A is defined by

nrank(AB — A) := rgggrank(zB —A),
where zB — A : U4 — V is a linear map for each z € C. A pencil of linear maps
AB— A is said to be regularif dimUf = dim V and the linear map zB—A : U — V
is invertible for every z € C, except for at most a finite number of complex
numbers. Otherwise, we will say that the pencil is singular. For each x € U we
define
(AB — A)(z) := B(z) + A(z).



From this definition it is deduced that for every subspace N of U, (AB —
A)(N) = B(N)+A(N). Therefore, the subspace N of U is said to be (\B— A)-
reducing if

dim(AB — A)(N) = dim N — min dimc Ker(zB — A).
zE
To write the statements of the main theorems in this section, we need some
previous definitions and notations. Let U* denote the Cartesian product U x

<o+ X U, k—times. Given a pair of linear maps A, B : i/ — V and a € C, for
k=1,2,..., consider the linear maps

k ok k1 ko koo gk k
Txp_a:U" =V, Pyg 5, Pyg 4:U =V

defined for x = (21,9, ...,2%) € U* by means of
TiBfA(x) = (B(x1)7 _A(xl) + B(‘T2)a RS _A(mkfl) + B(xk)v _A(xk)) ) (8)
PY5 4(2) = ((aB—A)(21), B(x1) + (aB—A)(22), ..., B(z 1) + (aB—A)(xx)), (9)
Ph () == (B(x1), —A(z1) + B(22), ..., —A(z_1) + B(x)) . (10)
Given x = (z1,22,...,2,) € UF, for i = 1,2,..., k we define the projections

7¥(z) = z;. Now, for every a € C := CU {oo} and k = 1,2,..., we define the

K3
subspaces:

k
SicB—A = Zﬂf (Ker(T];\B—A)) ) (11)

i=1

k

Ski_a = Yot (Ker(PR5_0)) (12)

i=1

k,
Dipa=8\p_a+ Z S\p-a- (13)
aeA(AB—A)

With these notations we obtain the first result in this section.

Theorem 5. Given two linear maps A, B : U — V, then (a) The subspaces
Sig_a and DYg_ 4 are (AB — A)-reducing.
(b) For every (AB — A)-reducing subspace N we have Sty 4, CN CDYg_ 4.

Remark 6. Theorem 5 will be proven by means of matrix pencils in Theo-
rems 12 and 20 in Section 3.

Proposition 7. To prove Theorem 5 there is no loss of generality if, instead
of the linear map pencil A\B — A, we consider the linear map pencil \D — C =
Po(AB—A)oQ (with P, Q invertible transformations of V and U, respectively).

Proof. Consider the linear maps Q, : U* — U* and Py : V¥+1 — VE+1 defined
by
Q:i(z1,...,2x) = (Q(z1),...,Q(xk))

and
Pi(yr,- s yk1) = (P(y1), - o, P(yr+1))-



From (8) we immediately deduce
T];D—C =P, °T§B—A °0Q;.
Therefore,
TiBfA(m) =0& Pyo TI;B—A °0Q; o0 Q1_1<93) =0= TI;DfC °© Ql_l(fﬂ) = 0.

That is, Ker(Th p_o) = Q7' (Ker(T55_4)). , from (11) we infer that

Sip_c=Q N (Syp_4a)- (14)

Using the same arguments from (9), (10) and (12), we obtain 81;}:(;70 = Q_l(ngfA),

and substituing (14) in (13), we have
Dip_c=Q '(Dip_a) (15)

As NV is a (AB — A)-reducing subspace if and only if Q ' (N) is (AD — C)-
reducing, from (14) and (15) we conclude that S{g_ 4, and DY g 4 are (AB—A)-
reducing if and only if S, and DYp_ o are (AD — C)-reducing. Moreover it
is clear that SY 4 CN C Dip_4 ifand only if S¢p o € Q'(N) C DYp_o-
a

For the second result we need some notations. Let K be a direct complement
of S{g_4 in DYp_ 4 and let g : DYp_ 4 — K be the projection over K along
SVp_a- That is, Immxg = K and Kerme = S{g_ 4. Denote

Hap-a = (B —A)(Dig_a), Mip-a:=(AB—A)(Sig_a). (16)

Now, let £ be a direct complement of Myg_ain Hyxg_a andlet 7. : Hap_a —
L be the projection over £ along Myp_a. With these notations, we have the
following result.

Theorem 8. Let A,B : U — V be linecar maps. Then a subspace N of U is
(AB — A)-reducing if and only if the subspace mic(N') of K is deflating for the
reqular pencil

7T£O(AB-A)|](: K= L.

Remark 9. Theorem 8 will be proved in Theorem 20 in Section 3.

Proposition 10. The conclusions of Theorem 8 do not depend on the choice
of the subspaces IC, L.

Proof. Let K; be another direct complement of Syg_, in Dyp_a and let
K, : Dxp—a — K1 be the projection over K; along S{g_,4. In the same
manner, let £; be another direct complement of Myp_4 in Hyxp_a and let
e, ¢ HaB—a — L1 be the projection over £q along Myp_a. Then, (see [15,
Remark 2, p. 402]), there exist invertible linear maps

QZK;—>K:1, PI£—>£1
such that

Ve e K,z —Q(zx) €S\g_a, YyeL,y—Ply) € Map_a, (17)



and moreover,
W)CIZQOTF;Q 7T[;1=PO7T[;. (18)
See first that the pencils 720 (AB—A) ¢ and 7z, o(AB—A) |, are strictly
equivalent. So, one is regular if and only if the other is. Observe that Q are P
are invertible, it suffices to see that Porgo(AB—A) |x = 7z, 0(AB—A) |k, Q.
Given that 7z, = P om, by (18), it is sufficient to prove that

meo(AB—A)|x =mc0(AB—A)|, Q. (19)

Let x € K. Then, as Q(x) € Ky, to prove (19) it suffices to see that (mz o
(AB — A))(z — Q(z)) = 0. But given that, by (17) , x — Q(x) € S{g_ 4, from
the notations of (16) we see that (AB — A)(z — Q(x)) € Myp_a. Therefore
(mg o (AB — A))(z — Q(x)) = 0, which proves (19).

Now see that

(72, 0 (AB = A))(7x, (N)) = (Pomgo(AB — A))(mc(N)).  (20)
As by (18), we have

e, (V) = Q(mec(N)) = i (N) +(Q — I)(mxc (N)),
and 7z, = P om,, we deduce that

(g, 0 (AB = A))(mx,(N)) = (Pomgo(AB— A))(me(N))

+ (Pomgo(AB - A))((Q - I)WIC(N))~( )
21

Now, as (17) implies (Q—1I)(mx(N)) C (Q—1I)(K) C SY¥g_ 4, from the notations

of (16) we obtain

(meo(AB—A))(Q-T)mr(N)) C (meo(AB—A))(S3p-a) = 7c(M(B, A)) = {0}.

This last expression together with (21) yields (20).
Finally, as mic, (M) = Q(mc(N)) with Q invertible, we see that dim(mx, (N)) =
dim(mc(N)). This fact together with (20) implies

dim (7, o (AB — A))(mx, (NV))) = dim(mx, (V)
dim ((Pomz o (AB — A))(mc(N))) = dim(mxc (N)).

Consequently, mc(N) is 7z o (AB — A) |-deflating if and only if mx, (N) is
7wz, © (AB — A) |k, -deflating. O

Proposition 11. In the conclusions of Theorem 8 there is no loss of generality
if we consider the strictly equivalent pencil \D — C = P o (AB — A) o Q, with
invertible transformations P and Q of V and U, respectively.

Proof. Observe that from (14), (15) and (16) we obtain
Hip-c = P(Ha-a), Mip-c = P(Mig-a). (22)

Therefore, as Dig_ 4, = Sig_ 4 ® K and Hap—a = Mig_a & L, from (14),
(15) and (22) we deduce that



"pec =S c®Q ' (K), Hip-c =Mrp_c®P(L). (23)
To prove the Proposition, see first that
o110 (@' (V)) = (Q7 o) (N). (24)
Let x be a vector of N. Then, by 5(b), we see z = y+ z with y € Sig_,
and z € K. Hence mx(z) = mx(z) = z. On the other hand, as Q '(z) =
Q '(y) + Q' (2), with Q '(y) € Sip_¢ and Q'(2) € Q(K), we infer that
Ta-10)(Q 1 (2) = To-110)( Q7 (2)) = Q71 (2) = Q' (mx(2)),

which proves (24).
Now consider the invertible linear maps

Q' =Q 'k:K=>Q ' (K), Pi:=Pl:L— PL).
With the notations of (16), see that

TPy © Plrssa = P1o7s 15 a - (25)

Let x = y 4+ 2z be a vector of Hap_a with y € Myp_a and z € L. Then, as
mc(y) =0 and 7z(z) = z, we have

Py(m(x)) = Pu(me(y)) + Pi(me(z) = Pi(z) = P(z2). (26)

On the other hand, as y € Myp_a, by (22), we see that P(y) € Myp_c-
Therefore mp(z)(P(y)) = 0. Moreover, since z € L, it follows P(z) € P(L).
Hence mp(£)(P(2)) = P(z). Thus 7mp(z)(P(x)) = P(z). This equality together
with (26) proves (25).

Now see that

7TP(£) o ()\D — C) ‘Q—I(K:) o Ql_l = P1 OTr O ()\B — A) |;(j . (27)
Let z € K. Then, as Q; *(z) = Q@ '(z) € Q' (K), we have

(mp(c) © (AD = C)(Q1 ' (2)) =
(mpeyo PoP™ o (AD = C)oQ ')(x) =
(WP(L) (¢] P o ()\B — A))(LL')
Therefore, using (25), we conclude that
(mp(ey o (AD = C))(Q1 ' () = (Promz 0 (AB — A))(a).

Hence, the pencils mp(z) o (AD — C) |Q*1}C and 7z o (AB — A) | are strictly
equivalent. Therefore one is regular if and only if the other is too. Finally,
from (27) we have

(mp(cy o (AD — C))(T"Q”(IC)(Qil(N)) = (Promgo(AB — A))(me(N)),
given that P, is invertible we deduce that the subspaces

(mp(c) © (AD — C))(mg-1(x)(Q ' (V)
and (7 o (AB — A))(mc(N)) have the same dimension. Moreover, from (24)
we deduce that qul(,c)(Qfl(./\/)) and 7 (N) have the same dimension, we
conclude that WQ—l(’C)(Q_l(N)) is Tpzy o (AD — C) |Q—1(IC) -deflating if and
only if mic(N) is mz o (AB — A) | -deflating. O



3 Properties of the reducing subspaces for ma-
trix pencils

In this section we formulate Theorems 5 and 8 in terms of matrix pencils. First
observe that if AB — A € P[A\]™*" is a matrix representation of AB — A, then
Tis_a, PSS 4 and P5p° . defined in (8), (9) and (10) respectively, have
the following matrix representations

B O O O O
-A B O O O
@) A B ... o) 0
TNp-a = . . . ) . e Clkt)mxkn, (28)
o O O —A B
O O O O —A
for each a € C,
aB — A O 9] 1o}
B aB— A 0] 1o}
P)]f’BafA = O B e O O c Ckakn7 (29)
0 O -+ B aB-A
and finally
B o ... O O
- A B ... O O
PféoiA = 0O -A .- O (@) c Ckmxkn. (30)
@) O ... —A B

In the same way, as in (11), (12) and (13), we define the subspaces

k
S]/\CB—A = Zﬁf (Ker(TfB—A)) ) (31)
i=1
k
k, k,
S\g 4= Zﬂf (Ker(P)\BO:A)) , (32)
i=1
k,«
Dip_ 4 =8\p_a+ Z SxB-a- (33)
aEA(AB—A)

With these notations, we have a first result.

Theorem 12. Given the matriz pencil AB — A € P[A™*™ in the form (2), we

have
n In1 7n I’ﬂl ng
sta={ () )0 Poa=(("5") )

To prove this theorem we need the following result that can be seen in [9,
Teorema 1.7, p. 99], [12, Corollary 3.2] and [11, Section 5].

10



Lemma 13. Given the pencil A\D — C' € P[N"™*", let ¢; be the number of

column minimal indices > j for 7 =0,1,2,.... Then, for k=1,2,..., we have
k
dim Ker(T§, o) = keo — Z Ci. (34)

=1

Moreover, given a € C, if mq, is the multiplicity of a as an eigenvalue of A\D —C'
and tog is the number of column minimal indices of the pencil, then for k > n
we have

dim Ker(Pyy o) = ma + kto, (35)

The proof of Theorem 12 is going to be structured in several lemmas. The
first one is the following.

Lemma 14. Assume that the pencil A\D — C € P[A]™*™ is in the form

AD, - Cy 0 >

ADC< O  ADy—Cy

with ADy — Cy € P[AP*? and ADy — Cy € P[N]"*®. Then, fork =1,2,..., and
acC

Skp,_ 0 o Ska,_ 0
S\p-c = ( My Cl) ® (SQ“D » ) . S\pc= ( Py Cl) ® (S% . ) .

Remark 15. By the above lemma, it follows
Dk @)

(T T . T T T _T\T knx1
= (Y1 ,21 Y3, 25 5y Yps 25 ) €C ,

where, for i = 1,2,...,k, y; € C?! and z; € C**!. Denote

Proof. Let

T T T\T kgx1 T T T\T ksx1
y::(y17y27"'7yk) G(qu7 Z::(217227~~'azk) G(CSX'

From (28), it follows that T¥, ,x = 0 if and only if T)’\“Drcly = 0 and
T/{“Dz_czz = 0. Therefore

Ker(T;foc) = {(le, 0, yg7 0,... ,y,{, O)T7 (0, zf, 0, z§7 ...,0, z,{)T},
where
(yf7 ygv s 7yg)T € Ker(T)lflecl) and (Zfa Zg7 ceey zg)T € Ker(T§D27C’2)'

Hence, from (31), we obtain

Sk @
o= (%9)e(5)

Using the same arguments as in (29), (30) and (32) the decomposition for Sl/\cba_c
can be proved. O

Reasoning in an analogous way, we can prove the following result.
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Lemma 16. Suppose that \D — C = (O,ADy — C1) € P[\]™*", where O €
C™*4, Then, fork=1,2,..., and a € C, we have

I 0] I 0
sto-c=( (8) )2 (o) 0= (8) )= 5..)
AD-C 19 Sl,\chfcl AD-C 9] S§b1_01
Lemma 17. Suppose that A\D — C = \[I,,,0] — [0, I,] € P\]P*®PTV. Then

Sk _ {0y fk<p+1
APTCT et k> p L

Proof. Let c; be the number of column minimal indices > j. For AD — C' we
have ¢ = ¢4 = --- = ¢, = 1 and ¢,11 = 0. Thus, by (34), we deduce that
dimKer(T§, ) =0 for k = 1,2...,p. Hence S, ~ = {0}. Denoting by e;
the i—th vector of the canonical basis of CP*!, we see that

p+1 (T T TNT _
T)\D_C(eerhep yoese1 )t =0.
Therefore
CPH =< (e1,e2,...,epp1) >C SUET o c CPFL
that is SU5' . = CPTL. To conclude the proof it suffices to remark that SY5' ., €
St o cCrtlfor r =23, .. O

Lemma 18. Let AD — C € P[A\P*P be a regular pencil. Then, for k=1,2,...,
we have S, o = {0}. Moreover, with the notations in (32), for k > p

k,
Z Sy, =CP.
a€A(AD-C)

Proof. First, as the pencil AD — C has no column minimal indices, from (34)
we infer that dim Ker(TF,_~) = 0. Hence S¥, = {0}.
On the other hand, because AD —C'is regular, from Lemma 1, we can assume
that
AD—-C = dlag()\Dl - Cl, )\DQ — CQ, ey AD}L - Ch),

AD; — C; € P[AJPi*Pi being a regular pencil with only one eigenvalue «;. There-
fore, applying Lemma 14, for each oo € C we have

k,«
S/\leCl Sk70? g
SNo_o = W leal L [0 (36)
0 O S5 e,

Now, as the pencil AD; — C; € P[\JPi*Pi is regular and «; is its only eigenvalue,
then its multiplicity is p;. Hence, from (35) we deduce that for k > p;

. ko
dim Ker(Py5"_ ) = pi-
Consequently, there exists a basis matrix of Kelr(P;\C b._c,) of the form
X =(x7{,xF, ..., XxT € CPP*Pi | where X; € CPi*Pi,

with rank(X) = p;. Therefore rank(Xy, Xo,..., X)) = p;, and from (32) we see
that ng‘:f_ci = CPi. The proof is completed by taking these results into (36).
O
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Lemma 19. Suppose that the pencil A\D — C' € P[A]P*? only has row minimal
indices. Then using the notations of (33), for k=1,2,..., we have

Dip o ={0}.

Proof. It suffices to prove that S¥, ~ = {0} and SI;BX,C = {0} for each
E =1,2..., and a € C. First of all, as the pencil AD — C has no col-
umn minimal indices, from (34) we deduce that dimKer(T%,_~) = 0. Hence
Skp_c = {0}. Analogously, as AD — C has no eigenvalues, from (35) we see
that dim Ker(Py;S ) = 0, that is S}35_ . = {0}. ]

We are now ready to prove Theorem 12.

Proof of Theorem 12.
First, as AB — A is in the form (2), applying Lemmas 14, 18 and 19 we have

S3B, - A, o % S\B, -,
S\p-a = o | SB.—a, | o = o
0 O S¥p,-a, 0

Now, by Lemmas 16 and 17 we deduce that S{p 4 = C"'.
On the other hand, denoting by ABy — Ay := diag(AB, — A,,ABy — Ay), by
Lemmas 14 and 19 we infer that

Sn,a 0] Sn,a
Sn,()( — AB,A,) EB ( n,o > — ( AB,A,) .
ABi=da ( o S\By-A, 0O

Therefore, as A(AB — A) = A(AB, — A,.), by Lemma 18 we have
Y. SEoa = ), S =0
a€A(AB—A) a€EA(AB,.—A,)
This last expression together with STz _ 4, = C"* prove the theorem. O

Taking into account Theorem 12, Propositions 7, 10 and 11, Theorems 5
and 8 can be reformulated in the following way.

Theorem 20. Let AB — A € P[A]™*™ be a matriz pencil in the form (2). Let
N be a subspace of C™. Then N is (AB — A)-reducing if and only if there exists
a matrix X € C™*? of full column rank such that

I, O
N=< 0O X > (37)
0o o

and the subspace (X) is deflating for the pencil A\B, — A,..

To prove this theorem we need several previous results. The first one is a
direct consequence of Theorems 2.3, 2.4 and Corollary 2.1 of [17].

Lemma 21. Let AD — C € P[AJP*? be a pencil. If this pencil only has column
minimal indices, then its unique reducing subspace is C4. If this pencil only has
row minimal indices, then its unique reducing subspace is {0}.

13



Lemma 22. Let A, B, € Cm~t)xn pe matrices in the form (3) and let
Ay, By € Cmex(ma=s0) be matrices in the form (5). Then there exist matrices
Qe Cm*™ gnd P € C™3*™3 guch that

B.=A.Q, Bj=PA;.

Moreover, given a finite subset A1 of C, we can assume that P and Q satisfy
one of the following conditions:

a) A(P)NAQ) =0 and Ay N (A(P) UAP HUAQ)U A(Q_l)) = ().

b) 0€ A(Q).

c) A1 NAQ) # 0.

d) 0e€ A(P) and A1 NA(Q) # 0.

Proof. It suffices to observe that

(1:,,0) = (0.1,,) (IO 8>a and (I(l)) - <§ ?)) (I?>

for any «, 8 € C. O
We are already in conditions to prove Theorem 20.

Proof of Theorem 20

Let A/ € C" be a subspace (AB — A)-reducing of dimension p and let Y €
C™*P be a basis matrix of N. Decomposing Y according to the decomposition
of the pencil given in (2) we have

b1 P2 D3
ni1 Y11 O 0]
Y=mno| Yar Yoo O |, where rank(Y;)=p;,i=1,2,3. (38)

n3 \ Ya1 Yz Ya3

As the subspace N is (AB— A)-reducing and ¢ is the number of column min-
imal indices of the pencil, from (7) we have rank(AY, BY) = p — to. Therefore,
operating according to (2) and (38) we get

A1 (0] (0] B.Y11 O (0]
rank | A.Ya;  ApYa O  B.Yo B.Yy 0 =p1+p2 +p3—to.
ApY3r AfYsy AyYss ByYs BypYss ByYas (
39)
Now, as the pencil AB. — A, has the same column minimal indices as the pencil
AB — A and AB, — A, and ABy — Ay have no column minimal indices, from (6)
we deduce that rank(A.Y11, B:Y11) > p1 — to, rank(A, Yoo, B, Y23) > py and
rank(AfYs3, ByYs3) > ps. Taking these three inequalities into (39) we see that

rank(AY, BY)
rank(AcYu, chll) + rank(ArYgg, BTYQQ) —+ rank(Angg, Bngg)
p1 +p2 +p3 —to.

p1+p2+p3—to

VIVl

rank(A Y11, BcY11) = p1—to, rank(A, Y2y, B, Yas) = p2, rank(AfYss, BfYs3) = ps,
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that is, the subspaces (Y11), (Y22) and (Y33) are reducing for the pencils AB.— A,
AB,— A, and ABy — Ay, respectively. Therefore, applying Lemma 21 we deduce
that (Y1;) = C™ and Y33 = O. Hence we can assume that Y1, = I,,. Moreover,
since AB,.— A, is a regular pencil, denoting X := Y5, it follows that the subspace
(X) is (AB, — A,)-deflating. Therefore (38) and (39) are transformed into

ny  p2
n1 Inl O

Y = N9 }/21 X y (40)
n3 \ Ya1  Yao

with (X) a (AB, — A,)-deflating subspace and
Ac O B, @)
rank [ A, Y5 A. X B,Yy B, X =n; + p2 — to. (41)
ApY3 AfYsy ByYsy BjYs

Now observe that, since rank(A.) = ny —to, from (41) and (6) we infer that

A X BX\
rank (Afosg ny32> = po. (42)

Moreover, as (X) is (AB, — A, )-deflating, we can assume that

AN1—I,,  ANs 0 0 I, O
| 0  AN~T O 0 o o
ABT_AT— O O )\IqQ*Jl 7J3 and X - O qu ’ (43)

0 0 0 A—J; 0O O

with nilpotent matrices N7, No. Hence, partitioning Y3 = (Z,H) with Z €
Cmsxa | from (42) we see that

I, O N O
rank | O Ji O Iq, =p2=q + qo.
A;Z AgH BiZ ByH

Now, from Lemma 22 there exists a matrix P such that By = PAy, and thus,

I, 0] Ny O
g +q = rank| O J1 O 14,
AfZ P_leH PAfZ BfH

I, O 0 O

= rank | O 0 0 I,

ArZ P_leH— ByHJ, PAyZ -A;ZN, ByH
Therefore P_leH —ByHJ; = O and PA;Z — A;yZN; = O. Choosing P in

such a way that A(J1) N (A(P)UA(P™Y)) = 0, (Lema 22), we conclude that
BfH = Oand AyZ = O, that is, H and Z are null matrices, and hence Y33 = O.

On the other hand, since rank(A, X, B, X) = py, from (41) we deduce that

rank( Ae Be >n —t
AfYsy ByYs; 1o
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hence, by Lemma 22 there exist invertible matrices P and @ such that B, =
AcQ, By = PAy and A(P) N A(Q) = 0. As a consequence,

Ac A.Q = rank Ac 0
ApYs1 PAfYs; ) AfYsr PAfYs — AfY5Q)
Therefore, since rank(A.) = ny — to, we have PA;Y3; — A;Y31Q = O. Now, as
A(P)NA(Q) = 0, we see that ArY3; = O, and hence Y3, = O.

To conclude the proof it suffices to prove that we can choose Y3, = O.
Partitioning Y21 according to (43),

ni — to = rank (

@)
Vv
Yao=1|4|:
w
as Y31 and Y32 are zero matrices, from (40), (41) and (43) we deduce that
A. O O B. O O
O I, O N3V N O
rank \% O O NV O O |=n+q+gs—to.

W O L O 0 I,
LW 0 O W 0 O

Therefore, as by Lemma 22 we have B, = A.Q for some matrix @, then

Ae AQ A O
ni—to=rank | V NV | =rank| V NV —VQ
oW W W W —JLWQ

Hence, as rank(A.) = n; — tg we have NoV —VQ = O and W — J,WQ = O.
Or equivalently WQ~! — Jo,W = O. Choosing @ in such a way that A(J) N
(A(Q)UA(Q™1)) = 0, we deduce that V and W are null matrices and therefore
Y51 = O. The converse is immediate. O

4 Properties of the stability

In this section we give some auxiliary results about the stability of reducing
subspaces. First, observe that from (7), if X is a basis matrix of the subspace
N, then N is (AB — A)-reducing if and only if rank(AX, BX) = rank(X) — ¢o.
This definition enables us to make a reformulation of the concept of stability
and Lipschitz stability of a reducing subspace in terms of limits of sequences
of matrices. To do so, we will use the following result on the convergence of a
sequence of subspaces that one deduces straightforwardly from ([1], Section 1.5,
p. 29-31), (5], Theorem 13.5.1) and ([3], Theorem I-2-6).

Proposition 23. Let N be a p-dimensional subspace of C* and let {Nq}cq’il be
a sequence of subspaces of C™ that converges to N in the gap metric. Then, for
each X € C"*P, basis matriz of N', there exist a sequence of matrices {X,}92,
converging to X, two positive constants K1, Ks, and a positive integer qq, such
that for q > qo, X4 is a basis matriz of Ny, and

K[ Xg = X[ < 0N, N) < Ko X — X|.
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From Proposition 23, we can reformulate the concept of stable and Lipschitz
stable subspace in terms of the convergence of sequences of matrices. The result
is the following.

Proposition 24. Let AB — A € P[\|"™*™ be a matriz pencil and let N be a
(AB — A)-reducing subspace such that dim N = p. Then N is (AB — A)-stable
if and only if for every basis matriz X € C"*P of N, and for every sequence of
matric pencils A\By — Aq — AB — A, there exist a sequence of matrices Xg — X
and a positive integer qo, such that for ¢ > qo: X4 is a matriz of rank p and the
subspace (X4) is (ABy — Ay)-reducing.

Moreover, N is (\B— A)-Lipschitz stable if and only if there exist a constant
K > 0 and a positive integer qo such that for ¢ > qq

1Xq = X|| < K([|Ag = Al + [|1Bg = BI])-

In addition, if X = (I(')P), then for g > qo we can choose X, = (}Ifc’]), where
Y, — 0.

We will see some results that will simplify the statements of Theorem 4 and
some proofs. The first is the following, which can be proved from Proposition 24
and using the techniques employed in the proof of Proposition 3.3 of [18].

Proposition 25. Let AB — A € P[A]"™*™ be a matriz pencil and let A\D — C €
PIA™ ™ be a pencil strictly equivalent to AB — A; that is to say, A\D — C =
P(AB — A)Q with P € C™*™ and Q € C"*™ invertible matrices. Let N be a
(AB — A)-reducing subspace. Then, N is (AB — A)-stable (or Lipschitz stable)
if and only if Q7N is (AB — A)-stable (or Lipschitz stable).

Remark 26. As a consequence of this Proposition, when studying the stability
(or Lipschitz stability) of a reducing subspace, no generality is lost if we consider
another strictly equivalent pencil and the corresponding transformed subspace.

To prove the following result we need some previous notations. Given a
matrix pencil AB — A € P[A]"™*", we denote by CS(AB — A) the set of all
sequences of matrix pencils that converge to A\B — A. Let C~S()\B — A) be a
subset of CS(AB — A). We will say that a set G C CS(AB — A) is a Lipschitz
generator subset of CS(AB — A) if for every sequence

{(Ay, By}, € CS(\B — A),

q=1
there exist sequences
{()‘Eq - Zq)};il € G and {(F,, Qq)}EL converging to (I, In),

and there exist a positive integer number gg and a constant K > 0, that depends
on the preceding sequences, such that for ¢ > qo,

{ ABg — Aq = Pq()‘Eq - Zq)qu
max{|| Py — L], [|Qq — Imll} < K([|Aq — All + || By — Bl]).

With the preceding notation we have the following proposition, whose demon-
stration is similar to that one of Proposition 3.5 of [8] using Proposition 25.
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Proposition 27. Let AB — A € P]A\]™*" be a matriz pencil, and let N be a
(AB — A)—reducing subspace and X a basis matriz of N'. Let CS(AB — A) be a
subset of CS(AB — A) and G a Lipschitz generator subset of CS(AB — A). Then
the assertions below are equivalent.

(1) For every sequence {(AB,—Aq)}72, € CS(AB — A), there exist a sequence
of matrices Xg — X, a constant K1 > 0 and a positive integer g1, such
that for ¢ > q1, the subspace (X,) is (ABy — Aq)—reducing, and

1Xq = X < K1 ([|Ag = All + 1By — BI)-

(ii) For every sequence {(A\Bq—Aq)}e2, € G, there exist a sequence of matrices

X,—»X,a constant K3 > 0 and a positive integer gz, such that for ¢ > gz,
the subspace (X ) is (\Bq — Aq)—reducing, and

1Xq = X|| < Ks(||4q — All + [[Bg — BI)-

In addition, if G1 is_a Lipschitz generator subset of G then Gy is a Lipschitz
generator subset of CS(AB — A).

Remark 28. In the above results, the existence of a positive integer ¢ is
required in such a way that the results are true for ¢ > qo. To simplify, without
loss of generality, we will assume hereafter that gg = 1.

5 Proof of Theorem 4. Assertions (1), (2) and
(3)-

To prove Assertions (1), (2) and (3) of Theorem 4, we need some lemmas. Let
AB — A be a pencil in the form (2) and let N be a subspace (AB — A)-reducing,
which, by Theorem 20 can be put in the form (37).

Lemma 29. With the previous notations, if the subspace N is (AB — A)-stable,
then (X) is (AB, — A,)-stable subspace.

Proof. Consider an arbitrary sequence of matrix pencils ABI — A converging
to AB, — A, as ¢ — oo. From now on we will summarize this with the notation
Sy — L to mean that S, is a sequence of mathematical objects converging to
the limit L when ¢ — co. Then

AB. — A, 0 0
AB, — Ay = 0 ABY — A 0 — AB — A.
0 0 ABj — Ay

Now, as A is a subspace (AB — A)-stable, there exists a sequence of subspaces
N, = N such that NV, is a (AB, — A,)-reducing subspace for every ¢q. By the
form of AB; — Ay, from Theorem 20 we know that there exists a sequence of

matrices Xy — X where
I,, O
Nq:< 5 x, >
O O

(Xgq) being a (ABZ — A?)-deflating subspace. Hence the subspace (X;) is (AB, —
A,)-stable. O
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Remark 30. Observe that by [5, Theorem 14.3.1, p. 429] and [7], if (X) is
(AB, — A,)-stable, then (X) is isolated; that is, there exists a neighbourhood
of the subspace (X) such that the unique (AB, — A, )-deflating subspace that is
in this neighbourhood is (X) itself.

Lemma 31. Consider a pencil \B — A € P[\]"™*™ and a (AB — A)-reducing
subspace N, both in the form

ni n2

AB- A= <ADO_C AFO_E>, N:<<)O(>>, (44)

with X € C™*P q matriz of rank p, the pencil AD — C is left reqular and

the pencil A\F — E only has row minimal indices. Then the subspace (X) is
(AD — C)-reducing. Moreover, if the subspace N is (AB — A)-stable, then (X)
is (AD — C)-stable.
Proof. As AD — C is left regular and AF' — E only has row minimal indices,
it follows that v(AB — A) = v(AD — C). Hence, as N is (AB — A)-reducing we
have dim(A(N)+ B(N)) = p—v(AD —C). Therefore, from (44) we deduce that
rank(CX, DX) = rank(X) — v(AD — C), that is, (X) is (AD — C)-reducing.
Consider now an arbitrary sequence AD,—C; — AD—C'". Then the sequence

AB, — A, = <ADqO_ G 22 E> AB - A, (45)

and moreover, as A\F' — E only has row minimal indices,
v(ABy — Ay) = v(AD, — Cy). (46)

Now then, as NV is (AB— A)-stable, there exists a sequence of subspaces Ny — N
such that N, is (AB, — A,)-reducing for every ¢. Due to the form of AB, — A,,
given in (45), from Theorem 20 we see that there exists a sequence of matrices

X4 — X such that for every ¢
X
N, = <<O>> (47)

Therefore, because N is a (ABy — A,)-reducing subspace, from (46) it follows
that dim(Aq(Ny) + By(Ng)) = p — v(ADy — Cy). That is, from (45), (46)
and (47), we infer that

CoXq DyXy

rank(Xy)—v(ADy—Cy) = p—v(ADy;—C,) = rank < o 0

) = rank(Cy Xy, Dy X,).
Hence (X,) is (AD, — Cy)-reducing for every ¢. Lastly, as X, — X we have (X)
is (AD — C)-stable. O

Lemma 32. Consider a pencil \B — A € P[\|"*" and a (AB — A)-reducing
subspace N, both in the form

ny n2
o (AD-C 0 /(L. ©
ABAW( 0 )\F—E)’ N<(o X)> (48)
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with X € C™*P g matriz of rank p, the pencil A\D — C 1is left reqular and the
pencil \F — E is right reqular. Then the subspace (X) is (\F — E)-reducing.
Moreover, if the subspace N is (AB — A)-stable we have (X) is (A\F — E)-stable.

Proof. Observe first that v(AB — A) = v(AD — C) = ny — my. Thus, as N is
(AB — A)-reducing, it follows that dim(A(N) + B(N)) = p + my, and hence,
from (48), we see that

L(C O D OoN_ .
S \o Ex o Fx) " PT™M

Therefore, as rank(C, D) = m; and v(AF — E) = 0, we have rank(EX,FX) =
p =rank(X) — v(AF — E), that is, (X) is (AF — E)-reducing.
Consider now an arbitrary sequence A\F, — F; — AF' — E. Then the sequence

AD—-C O
AB, — Ay = < o AFq_Eq> — AB — A, (49)

and moreover, as AF, — I is right regular,
v(ABy — Ay) =v(AD - C) =nq —my. (50)

Now, given that N is (AB — A)-stable, from (48) we deduce that there exist two
sequences of matrices, X, = X and Y; — O, such that for every ¢ the subspace

I,, O
=3 %)) 2
is (ABy — Aq)-reducing. Therefore, from (49) and (51) we infer that

C O D 0

p+m1 = rank <EqY:1 Equ Fq}/q Fqu

) > rank(C, D)+rank(E, X, FyXg).

Now, as rank(C, D) = m, and v(AF; — E,;) = 0 we have
rank(E,X,, F,X,) = p =rank(X,) — v(\F, — E,),

therfore (X,) is (AFy — Ey)-reducing for every ¢. Finally, since X, — X, it
follows that (X) is (AF — E)-stable. O

Lemma 33. Suppose that the matriz pencil A\B — A € P[A\]™ "™ has no row
minimal indices. Then the unique (AB — A)-stable subspace is C™.

Proof. Let N be a (AB — A)-stable subspace. Given that the pencil has no
row minimal indices, from Remark 26, (2) and Theorem 20 we can assume that
AB — A and N are in the form

ni N9 ni p
oy )\BC—AC 0] o ny Inl O
AB—A=,, ( O AB. -4, ) N‘<n2(0 X>> (52)

where AB. — A, is a pencil with only column minimal indices, A\B, — A, is
a regular pencil, X is a matrix of rank p and (X) is a (AB, — A,)-deflating
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subspace. Thus by [7] we can assume that

AN =L, AN 0 0 L, O
| o7 am-1, o 0 o o

AB—Ar= g o A,-1n -5 |'*T|lo 1,
0 0 0 A,—Js o 0

(53)

with N, Ny and N3 nilpotent matrices and p; 4+ p2 = p.
Consider now two arbitrary sequences of matrices £, — O € C%*"1 and
F, — O € C1"*™ . As the sequence

AB. — A, 9, 0 0 0
9, ANy — I, AN 0 0
AB,— A, = | )R, 0 ANy — I, 0 0
0 0 0 AL, —Ji  —Js
E, 9, 9, o A, — Jo

(54)
converges to AB — A and the subspace A is (AB — A)-stable, it follows that
there exist sequences of matrices Yy, Z4, Uy, Vg, Wy, Hy of adequate sizes, all of
them converging to O, such that for every ¢ the subspace

I, O O
o I, O
Nq—< Y, U, W, > (55)
0O 0 I,
Zq ‘/(I Hq

is (ABy— Ay)-reducing, that is dim (A, (N,)+By(Ny)) = dim(N,) —v(AB, —4,).
But as the pencil AB — A has no row minimal indices, we have v(AB; — 4,) =
v(AB—A) = ny —my. Therefore dim(A,(Ny)+ By(Ny)) = n1+p+(ni—mq) =
mq + p. Thus from (54) and (55) we conclude that

ny h h ni D2 D2
my A @) @) B, ) o)
1 (@) Ip1 0] NgYZI Ny + Nqu Nqu
rank 7, Y, U, W,  F,+NoY,  NoU,  NoW, | =mitp.
P2 J3Z, SV, Ji+ J3H, O @] I,
ry \E,+hZ, SV, JH, Z, v, H,
(56)
Since rank(A.) = rank(B.) = my, from (56) we see that
I, 0] N1+ NsU, NsW,
U, W, NoU, NoW,
rank | v+ T, 0" L, | =
LV,  JH, v,  H,

Consequently, from (53), the subspace M, generated by the columns of the
matrix

I,, O
— Uq Wq

Xq B O IP2
Ve Hy



is (AB, — A, )-stable. Hence, by Remark 30 we infer that (X,) = (X)) for every
g, and therefore the matrices of the sequences Uy, V,, W,, H, are all zero. So,
from (56) we deduce that

ny ny
mq Ac BC

rank 71 Y, Fy+ NoY, | =mg. (57)
9 Eq + JQZq Zq

At this point, note that to prove the lemma it suffices to verify that r = ro =
0. For the sake of contradiction, assume first that r; > 0, then as rank(4.) =
rank(B;) = mq, from (57) we deduce that

Ac B, _
rank (Yq F, + Nng> =mj. (58)

Now, by Lemma 22 there exists a matrix @ € C"*™ with 0 € A(Q) such
that B, = A.Q. Then from (58) we immediately obtain

B B AC ACQ _ AC o
my = rank(Ac) - rank <Yq Fq —+ Nzyvq) - rank <Yq Fq + N2qu - KIQ) 7

and hence F; + NoY, — Y,Q = O. In conclusion, if it were true that r; > 0,
we would have proved that for every sequence of matrices F; — O there exits a
sequence of matrices Y; — O such that for each g it satisfies Fy, + NoY, = Y,Q =
O, with A(Ny) N A(Q) # 0, which is impossible. Therefore, r; = 0.

If it were true that ro > 0, as by Lemma 22 there exists a matrix Q € C™ <™
with A(J2) NA(Q) # 0, so that A, = B.Q, applying the previous reasoning we
would lead to a contradiction. Thus ro = 0. O

Lemma 34. Given a matriz pencil A\B — A € P[A\]™*"™, suppose that it has no
column minimal indices. Then the unique (AB — A)-stable subspace is {0}.

Proof. Let N be a (AB — A)-stable subspace. We can now proceed analogously
to the proof of the previous lemma. So, we can assume that A\B — A and A are
in the form

o ns

p
_ N2 /\B,-—AT O o na X
)\B_A_mg,( O )\Bf*Af )7 N_<n3 <0)>7 (59)

where A\B,. — A, is a regular pencil and (X) is a (AB, — A,.)-deflating subspace,
both in the form (53). Moreover, ABy— Ay is a pencil that only has row minimal
indices.

Now consider two arbitrary sequences of matrices £, — O € C™3*P2 and
F, — O € Cms*P1_ As the sequence

ANy — I, AN 9, 9, 9,
0 AN, — I, 9, 9, 9,
AB, — A, = 0 9, My, —Jy  —Js 9, :
9, 0 0 Ay, — J 0
AF, 0 ~E, 0 ABj — Aj
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converges to AB— A and the subspace N is (AB— A)-stable, there exist sequences
of matrices Y;, Z,, Ug, Vg, Wy, Hy, of adequate sizes, that converge to O, such
that for every ¢ the subspace

I, O
U, Wy

Ng= O I, (61)
Vo Hy

Yo 7,

we see that

P P2 P b2
P1 Ipl O N1+ Nqu Ng,Wq
1 Uq Wq NQUq NQWq
rank po | J3V, Ji+ J3H, ) I, =p. (62)
) JQ‘/q JQHq ‘/q Hq

ms \AgYy Eq+AsZ, Fy,+ BsY, BsZ,

Now, as the sequences Yy, Z,, Uy, V,, Wy, Hy converge to O, from (62)

I, 0 Ny + NsU, NsW,
U, W, MU, NW,|
rank T3V, Ty + J3H, O I, =D;
J2Vq o J2Hy Vq Hy

that implies for (53) that the subspace M, generated by the matrix

I, O
— Uq Wq

Xq B O I D2
Ve Hy

is (AB, — A,)-deflating. Hence, like in the previous lemma, all the terms of the
sequences of matrices Uy, Vg, Wy, Hy are O. Thus from (62) we infer that

4! D2 P P2
P1 Ip1 O N1 O
rank po 0] J1 0] I, =p;

ms \ AgYy Eq+AfZq Fy+ ByY, ByZ,
that is
Fy+ BfY,— AjY,Ny =0,  E,+A;Z,—B;Z,1=0.  (63)

Now, by Lemma 22 there exist matrices P,Q € C™#*™3 with 0 € A(P) and
A(J2) N A(Q) # 0 such that By = PAy and Ay = QBy. Then we immediately
see from (63) that for every pair of sequences of matrices E4, Fy — O there are
sequences Yy, Z, — O that satisfy

F,+ PA;Y,— A;Y,N; =0,  E,+QB;Z,— BsZsJ, = O,
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for every q. This contradicts to the choice of P and ). Consequently p; = ps =0
and therefore N' = {0}. 0

We are now ready to prove Assertions (1) (2) and (3) of Theorem 4.
Proof Theorem 4: Assertions (1), (2) and (3).

First, note that Assertions (2) and (3) follow straightforward from Lem-
mas 33 and 34, respectively.

Second, to prove Assertion (1), by Remark 28, we can assume that AB— A is
in the form given in (2), with n1, ng, mg nonzero . Let A be a (AB— A)-reducing
subspace. Then, by Theorem 20, we can assume that

ny p
ni1 Inl o

N = < no O X > s
ms O O

where rank(X) = p. Suppose that N is (AB — A)-stable. Hence, as the pencil
diag(AB. — A., AB, — A,) is left regular and the pencil ABy — Ay only has row
minimal indices, applying Lemma 31, we deduce that the subspace

(& %)

is diag(AB. — A, AB,. — A,.)-stable. Therefore, by Lemma 33 we have X = I,,,.
On the other hand, applying Lemma 32 to the pencils AB. — A, (left regular)
and diag(AB, — A,, A\By — Ay) (right regular), since N is (AB — A)-reducing,

we see that the subspace generated by the columns of the matrix (I(")?) is
diag(AB, — A, A\By — Ay)-stable, which contradicts Lemma 34. O

6 Proof of Theorem 4: Assertion (4).

In this section we prove Assertion (4) of Theorem 4. Therefore in all the section
we will assume that the pencil AB — A has row minimal indices, at least two
column minimal indices, and no eigenvalues. The following result will allow us
to simplify the proofs.

Lemma 35. Let AB — A € P[\|™*" be a pencil without eigenvalues and let N
be a (AB — A)—reducing subspace, which are given by

ni no P1 P2
g D —-C 0 o ni1 X 0
AB-A=, ( 0 AF—E)’ N_<n2(0 Y)>

where X, Y are matrices of full column rank. Let M := (X). Then if N is
(AB — A)—stable it follows that M is (AD — C)—stable.

Proof. Note that as the pencil \F' — FE has no eigenvalues, from (31) and (33)
we see that D’)\“BiA = S’)foA. Hence by Theorem 20 we infer that

<Y> = 7)\1F7E = S;\LFfE' (64)
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Consider now an arbitrary sequence ADy, — C; — AD — C. Then as the
sequence

AD, - C. 0
’\B‘IA‘1< 0 )\F—E)

converges to AB — A and NV is (AB — A)—stable, there exist sequences X, — X,
Y, =Y, Z,—0,V, =0, such that for every ¢ the subspace

o (G 8))

is (ABy — Ag)—reducing. Therefore, by Theorem 20, Ny C DYp _, . Now
applying Lemma 14 and (64), we obtain

N, C Dy 4 = (DQDO‘J‘C")@(D;S_E) < (Ig>@< (}o/ >> - <<Ig 10/)> |

For this reason from (65) there exist matrices of adequate sizes Q;, i = 1,2, 3,4,

such that
<Xq Zq> _ (Im O> (Q1 Qz)
Vo Y O Y)\Qs Qi)
Observe that Y, = Y'Q4. Moreover, as Y; — Y and Y is of full column rank, we
deduce that Q4 is invertible. Hence, as V; = Y @3, it follows that V, = YqQZng.

Thus, in (65), if we subtract to the first column the second one multiplied by
Qleg we obtain

Nq:<<Xq—ZéQ21Q3 Y%4>>:<(Xq—zéczmg qu21>>, (66)

In the same way, from Theorem 20, Lemma 14 and (64) we obtain

N2 8,0, = (R )e(g0 ) = (Fege)e((7))2((7))-

From (66) we deduce that there exist matrices of adequate sizes Py, P2 such that

)= (e 20 ()
Y 0] Y P

Hence P, = I,,, and Zqul =—(X,— Zqung)Pl. Therefore denoting X'q =
X, — Z,Q;'Q3 — X, from (66) we see that

(5 7))

Finally, as AV is (AB — A)—reducing

c,X, O DX, O
rank( O EY O FY

> =p1+p2 —v(ADy —Cy) —v(AF — E). (67)

But given that (Y') is a (A\F'—E)—reducing subspace, it follows that rank(EY, F'Y') =
p2 — V(AF — E). Thus from (67) we conclude that rank(CyX,, D, X,) = p1 —

v(AD, — C,); that is the subspace <)~(q> is (AD4 — Cy)—reducing. Consequently
M is (AD — C)—stable. O
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Remark 36. Assume that AB — A € P[A\]™*" is a pencil without eigenvalues,
and has the form

ABA()\D—C 0 )

0] AF—FE

where A\D — C' is a pencil with only two row minimal indices and one column
minimal index. Then, by Theorem 20 and Lemma 14 the unique reducing
subspace for A\B — A is

Sy 0
- (%57)e(c5.)
( 0 S/\F—E

Now, if we had proved that the subspace S}, were not (AD — C')—stable,
then, by Lemma 35, we would have proved that A/ cannot be (AB — A)—stable.
Therefore, from here to the end of the section, we will assume that the pencil
AB — A only has two row minimal indices and one column minimal index.
Moreover, by Remark 26, we can assume that AB— A is in the canonical form (2).

We prove Assertion (4) of Theorem 4. For do that, consider three cases:
(a) two row minimal indices equal to zero; (b) one row minimal index equal to
zero and another row minimal index which is different than zero; (¢) two row
minimal indices which are different than zero.

6.1 Two row minimal indices which are equal to zero

Distinguish two subcases: one column minimal index which is equal to zero and
one column minimal index which is different than zero.

One column minimal index which is equal to zero. In this case we have

AB— A=) (8) - <8) e P21, N =C.

Take the sequence

AB, — Ay = A (léq) - (12(1) — AB— A.

As AB, — A, only has a row minimal index equal to 1, from Theorem 20 we
infer that N, = {0} is its unique reducing subspace. Hence, as N; — {0} we
have that N is not (AB — A)—stable.

One column minimal index which is different than zero. Denoting by D :=
(I}, 0),C = (0,I;;) € C***+D we have

D C
AB—A=X[0| - |0]| epNEDxEHD " A= CFFL
(0] 0]
Consider the sequence
I, O 0 Iy
AB;—A;=X|0 1/¢g]—-| 0 0] —=AB—-A
0 O 1/¢ 0

Note that v(AB;—A4) = 0. Hence N is (AB — A)—stable if and only if for every
q the subspace Ck*! is (AB, — A,)—reducing; that is, rank(A,, By) = k + 1.
Which is a contradiction, because rank(A,, B,) = k + 2.
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6.2 One row minimal index which is equal to zero and
another which is different than zero

As in the previous subsection, we consider two subcases: one column minimal

index which is equal to zero and one column minimal index which is different
than zero.

One column minimal index which is equal to zero. Denoting by D := (I},0)T,C :=
(0, Ix)T € CHr+xk e have

0 0 0 0 )
AB—A=X[0 0] —[0 0] eppk+DxttD) N:<(O>>.
0 D 0 C

Consider the sequence

/¢ 0 0 0
AB,— A, =X 0 0]—-(1/¢g 0] 5AB-A
0 D 0 C

Note that v(AB; — A;) = 0. Suppose that N is (AB — A)—stable. Then, by
Proposition 24, there exists a sequence X, — 0 € C**1 such that for every ¢ the
subspace generated by the columns of the matrix ( )%q ) is (ABy — A4)—reducing;

that is
0 1/q
rank [ 1/q 0 =1,
CX, DY,

which is a contradiction since the rank of this matrix is 2.

One column minimal index which is different than zero. Let D = (Ij,0),C =
(0,1;) € Ck*G+D)  p .= (1,007 E := (0, I;) € CUHD*L We have

D 0 c 0

AB—A=X[0 0|—-[0 O0]¢€ '])[)\](k+l+2)><(k+l+1), N = <(Ik+1>> .
0 F 0 FE 0
Taking the sequences of matrices
/g 0 -~ 0
0 0o --- 0
ag = (0,---,0,1/q) € (C1><(k+1)7 by = . ' | e C(l+1)><(k+1)7
0 0 0
we see that
D 0 cC 0
ABy—Ag=Xlag 0| —[0 0] —=2B-A
0 F b, E

Observe that v(AB, — A,) < v(B,) = 0. Suppose that N is (AB — A)—stable.
Then, by Proposition 24, there exists a sequence of matrices X, — 0 € Clk+1)xl
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such that for every ¢ the subspace generated by the columns of the matrix
(") is (AB, — A,)~reducing. That is, for every g

by (0
k +1 =rank 0 ag | =rank Vg 0 « *q
b, + EX, FX,
* ok Kk k
0 Iy O
>rank [ 0 0 1/q| =k+2,
1/¢ 0 *

which is a contradiction. Therefore A is not (AB — A)—stable.

6.3 Two row minimal indices which are different than zero

Analogously, we will distinguish two subcases: one column minimal index which
is equal to zero and one column minimal index which is different than zero.

One column minimal index which is equal to zero. Define

— (1k (0 ktD)xk . (D _ (0 (1+1)x1
D'_<O)’C'_(Ik.>€(c , F= 0 B = I eC .

Then in this subcase we have

1
(0 AD-C 0 (k+1)x (k+143) _
AB‘A—<o 0 )\F—E)EPP\] » N= 8 '

Taking the sequences of matrices
aq = (l/q7 0,--- 7O)T c (C(k:+1)><17 bq — (O7 ce 0, 1/q)T c C(H»l)xl7
we infer that

4 _(aq AD-C 0 _
AB, Aq(bq 0 \F—E — AB - A

Moreover, v(AB, — A,) = v(A,;) = 0. Assume that N is (AB — A)—stable.
Then, by Proposition 24, there exist sequences of matrices X, — 0 € Ck*4 and
Y,—»0¢ C™1 such that for every ¢ the subspace

()

is (ABy — A4)—reducing. That is, for every ¢

ag +CX, DX, -
rank< EY, b+ FY,) = 1. (68)

Define
Xq = (xtlzvng o 7$Z)Ta Y, = (yf,yg, T >qu)T7
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from (68) we conclude that

1/q xq e :I/.q_ xq) 0 yq e yq_ yq
rank( Cot w0t gl i 1jg) T
Ty X L Y1 Y2 Yi /q

Now, it is immediate to see that this implies z{ = y{ = 0. Hence
/g 0 _
rank ( 0 1/q> =1,

One column minimal index which is different than zero

Denote D := (I,,,0),C := (0,1,) € C**(+1) and

L I, o 0 (m+1)xm o IIJ - 0 (p+1)xp
F'—<o>’E'_<Im)€C , H = 0 ,G = I, eC .

which is a contradiction.

We have
AD—-C 0 0 I
AB—A = 0 AN -E 0 € PA|(rHmEpt2)x(ndmiptl) A7 = < 0 > :
0 0 MH — G 0
Define the sequences of matrices
0 --- 0 0 1/¢ 0 - 0
. . . 0 0 ---
ag = : .. : : € (C(’m+1)><(’n+1)7 bq — . ) ) c C(p+1)><(n+1).
0O -~ 0 0 Do T
Then
D 0 0 cC 0 0
ABg—Ag=X|lag F 0)—-|0 E 0| —=AB-A
0 0 H b, 0 G

Moreover, as v(A,) = 0 we see that v(AB; — A;) = 0. Hence if N is (AB —
A)—stable, by Proposition 24, there exist sequences of matrices X, — 0 €
Cm*(+1) and Y, — 0 € C*(*+1) such that for every g the subspace

In+1
Ny = Xq
Y,

is (ABy — A4)—reducing. That is, for every ¢

C D
rank |  EX, ag+FX, | =n+1. (69)
by +GY,  HY,

Now, as v(A,) = 0, from (69) we deduce that

C
rank EX, =n-+1 (70)
by + GY,
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From Lemma 22, it follows that

then from (69) and (70), we have

D C 01
ag +FX, | = EX, (I O>’
HY, by + GYy "
hence
0 1
ag+ FX,=FEX, (I 0) . (71)

Let X := (ij)o<i<n,0<j<n. With this notation, from (71) we infer that

Too  To1 0 Ton—-1 Ton 0 0 e 0 0

1o Z11 ° Tin-1 Tin Z0oo Zo1 e ZTon—1 Lon

Tm0o Tmil e Tmn—1 Tmn Tm—-1,0 Tm-—-1,1 *°° Tm—1,n—1 Tm—1,n
0 0 T 0 1/(] Tmo Tml ce Tmn—1 Tmn

Now, it is immediate to see that z;; = 0, which implies 1/¢ = 0. A contradiction.

7 Proof of Theorem 4: Assertion (5)

In this section we prove Assertion (5) of Theorem 4. That is, if the pencil
AB — A € P[A]™*™, without eigenvalues, only has one row minimal index which
is equal to zero, then the unique reducing subspace — by Theorem 20 it is
C"—is (AB — A)-stable. To prove this result we will consider two cases: in the
first one we will assume that all column minimal indices are equal to zero; in
the second one we will assume that there is at least a column minimal index is
different than zero.

7.1 All column minimal indices are equal to zero.

In this case we have AB — A = A0 — 0 € P[A\]'*". Now consider a sequence
AB, — A; = AB — A. Then we have two possible subcases: v(AB; — A;) =n
or v(AB; — A;) = n — 1. For the first subcase, v(AB, — A;) = n, we obtain
AB; — A, = X0—0, and it is clear that the subspace C™ is (AB, — A,)-reducing.
On the other hand, if ¥(AB; — Ay) = n — 1, then either rank(4,) = 1 or
rank(B,) = 1. Therefore

1 > rank(A41,, Byl,) > max{rank(A,),rank(B,)} = 1 = rank(A,L,, ByI,) =1,

hence C" is (AB, — A,;)—reducing, and so C" is (AB — A)-stable.
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7.2 At least a column minimal index is is different than
zero.

To simplify the exposition, in this case, suppose that AB — A € P[\|(mF1)xn,
Now, as this pencil only has one row minimal index which is equal to zero and

at least a nonzero column minimal index, then this pencil is strictly equivalent

to a pencil of the form
I, O E F
A(0 o)‘(o o)’ (72)

with (E, F) € C™*™ x C™*P a controllable pair and n = m + p. Hence, by
Remark 26, to study the stability of the subspace C™ there is no loss of generality
if we suppose that AB — A is in the form (72).

Now let AB; — A, be a sequence that converges to AB — A. Then, since
nrank(AB — A) = m, we have nrank(AB, — A;) = m +1 or m. That is, we have
two subcases: ¥(ABy — Ay) =n—m —1or v(AB; — A;) =n —m. We analyze
them separately.

Subcase v(ABy—A,) = n—m—1. As in this case nrank(AB; — A4,) = m+1 then
this pencil is left regular; that is, it has no row minimal indices and, therefore,
by Theorem 20, C" = Dip,—a, isa (ABy — Ay)-reducing subspace.

Subcase v(AB; — Ay) = n —m < nrank(AB, — A,) = m.
To analyze this other subcase we need the following result.

Lemma 37. Consider the matriz pencil

1, 0 G H
N _ m _ (m+1) % (m+p)
AD C_)\<a 0> (0 O)epm ,

with (G, H) € C™*™ x C™*P g controllable pair. Assume that nrank(AD—C) =
m. Then a = 0.

Proof. Let rq,rs,...,7, be the sequence of nonzero column minimal indices
of AD — C. Then ([5], Theorem 6.2.5, p. 196) there exist invertible matrices
P eCm™™ @ e CP*P and a matrix R € CP*™ such that

P(G, H) (PRI g) — (@, H),

with G = (diag(G1,...,Gy) and H = (diag(H; ..., H,),0), where

010 0 0
0 01 0 0
Gi=|: : : - |leCm H=|:|eC”.
0 00 1 0
0 00 0 1

Hence, as

(£ Yoo-o(y (s )



to prove the lemma we can assume that (G,H) = (G,H). Denote a :=

(a1, a9, -+ ,ap) with a; € C1*"i. Then, because nrank(AD — C) = m, we have
A, — Gy —H 0 0 - 0 0
0 0 I,-Gy —Hy - 0 0
nrank . = m.
0 0 0 0 I, —Gn —Hy
a 0 as 0 ap 0
(73)
Now, as
A =1 0 0 O
0o X -1 0 O
()\I’I‘L - Gia _Hi) = ’
0 O 0O ... A -1
if we denote by a; := (b1, bi2, - . ., bir, ), making transformations by columns in
the matrix of (73), we deduce that
0 —-I, 0 0 - 0 0
0 0 0 I, - 0 0
nrank = ri4rot-- 41, =M,
o 0 0 0 .. 0 ~I,
p1(N) *  pa(N) * oo pr(A) *
with p;(A) = bi1 + bigA + - -+ + by, \"i 7L, Therefore p;(\) = 0, or equivalently
a=0. O

Consider now a sequence A\B, — A; — AB — A. From (72), we can assume
that for every g,

o N (1h B\ (Ey Fy
Ay = A= (e )= (B ).

Now, as m = nrank(AB, — A,) > rank(A4,) > rank(E,, F,) > rank(E, F) = m,
it is immediate to see that there exists a sequence of matrices

I, O
Pq = (g: 1> — Im+17

E, F,
= (B 5.
Hence, by Proposition 27, it suffices to consider sequences of the form P,(AB, —
A,) to study the stability of the subspace C™, that is,

_ — I’rqn B‘I _ Eq Fq _
AB, Aq—)\(aq §q> (0 o) = AB- A (74)

On the other hand, as the sequence of matrices

-1 _ -1
Qq — <(Ign0) (Ignl) ﬁQ) — Im—o—la

such that for every ¢
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by Proposition 27 it is sufficient to consider sequences of the form (ABy;—Aq)Qqg;
that is, from (74),

. (L. 0\ (E, F, -
AB, Aq—)\<aq 5q> (0 0>—>/\B A

But, since m = nrank(AB, — A,) > rank(B,) > m, we have §, = 0, for every q.
(L. O\ (E, F,
g (0 (B )

Now, since (Eqy, F) is controllable and nrank(AB — A) = m, by Lemma 37 it
follows that ay = 0 for every g. Hence, it suffices to consider sequences of the

form
_(I. 0\ (E, F,
(i O) (5 B,
Finally, as rank(A4I,, ByI,) = m = n — v(AB; — A,), then the subspace C" is
(ABy — Ay)-reducing and, , C" is (AB — A)-stable.

Y

8 Proof of Assertion (6) of Theorem 4

In this section we will prove that if the pencil AB — A € P[A]™*™ has only one
row minimal index which is different than zero, at least two column minimal
indices and no eigenvalues, then it has not any stable reducing subspace. First
note that from Lemma 35, in an analogous way as in Remark 36, we can assume
that AB — A only has two column minimal indices. Hence we consider three
subcases: (a) two column minimal indices which are equal to zero; (b) one
column minimal index which is equal to zero and another column minimal index
which is different than zero; (c) both column minimal indices which are different
than zero.

8.1 Two column minimal indices which are equal to zero

Denote D := (I(;C) ,C = (I?c) e Ck+1xk in this case we can assume that the
pencil AB — A and the unique reducing subspace N are of the form

AB — A= \0,D) - (0,C) € PINKFDXEHR) A7 = <<I()2)> 7

respectively.
Consider the sequences of matrices

1/q¢ 0 0 0
0 0 . .

ag=| b=l | e CTT
0 0 0 1/q

the sequence AB; — Ay = A(bg, D) — (aq, C') converges to AB — A and moreover
v(AB, — A,) = 1. Now, if N is (AB — A)-stable, by Proposition 24 there exists
a sequence of matrices X, — 0 € CF*2 such that for every ¢ the subspace
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N, = <()z()> is (AB, — A,)-reducing; that is, dim(4,4(N;) + By(N)) = 1.
Therefore, if we define X, := (2{;)1<i<k,j=1,2 so that N can be (AB; — A,)
reducing, it must be satisfied

q q
1/q 0 L1 T2
q q q q
T11 Li2 To1  Ta2

rank =1.

q q q q
Tr11 Tg-12 Tr1 Tio

T Tiho 0 1/q
Hence :ng = 0. Thus, we conclude that rank (1éq 1(/)q> = 1, which is a contra-

diction. In conclusion, N is not (AB — A)-stable.

8.2 One column minimal index which is equal to zero and
another column minimal index which is different than
Zero

Define AD — C := A[I,,,0] — [0,I,] and AF — E := A (%) — (2 ), in this case
it follows that the pencil AB — A and its unique reducing subspace A/ have the

form
0 AD-C 0 L0
)\B—A:(O 0 /\F—E>’Nz< 0 Int >7
0 0
respectively.
Consider the sequences
1/q 0 0 0
an = . c (C(m+1)><1 b, — c (c(m+1)><(n+1)
a : » Uq : -0 0 :
0 0 -~ 0 1/q
Then

0 D 0 0 C 0
/\Bq—Aq—)\<0 b, F)-(aq 0 E>—>)\B—A,

and moreover v(ABy; — Ay) = 1. Hence, if N is (AB — A)-stable, there exist
sequences of matrices X, — 0 € C™*! and Y, — 0 € C™*(+1) guch that the

subspace
1 0
Nq = < 0 In+1 > )
Xy Y

is (AB, — Ag)-reducing; that is, dim(A,(N,) + By(N,)) = n + 1. Thus

0 C 0 D
rank(aq+EXq EY, FX, bq+FYq)_n+l' (75)

Define X, := (z1,2%,...,24,)T. Then as rank C = n, from (75) we have
T
1/q ¥ - 28 | ad
> = m ™)
1 > rank(aq, + EX,) = rank (xlll Y 0
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Therefore 2! = 0 and X, = 0. Now, denote by Y,". | := (y{,v4,...,y4,)" the
last column of Y,. As rank D = n, from (75) we see that

T
/g 0 -~ 0 0

1 > rank(ay, by, + FY,! rank( ) ,
= ramk(ag, by +) yiovs o uh 1/g

which is a contradiction. Thus, N'= C"*! is not (AB — A)-stable.

8.3 Two column minimal indices which are different than
zero.

Define AD — C' := \[I,,,0] — [0, I,], A\F' — E := A[1,,,0] — [0, 1] and \H — G :=
A (IM) — (I(,)n ), in this case we infer that the pencil AB — A and its unique

0
reducing subspace A have the form
AD-C 0 0 I,v1 O
AB— A= 0 AP —F 0 ,N=< 0 It >,
0 0 AH -G 0 0
respectively.

Consider the sequences

/g 0. 0 0 --- 0 0
0O 0--- 0
aqg = : : . 0 c C(7n+1)><(n+1), bq — 0 0 c (C(m-‘rl)X(P-‘rl).
0O O0-- 0 0 - 0 1/q
Then
D 0 0 c 0 0
ABy—A;=2|0 F 0| -0 E 0] —=AB-A4,
0 b, H ag 0 G

and moreover, v(AB, — A,) = 1. Hence, if N is (AB — A)-stable, there exist
sequences of matrices X, — 0 € C™*(+1) and Y, — 0 € C™*(P+1) such that

the subspace
Insi 0O
Nq = < 0 Ip+1 >
Xg Y
is (ABy — Ay)-reducing; that is, dim(A,(Ny) + By(N,)) = n + p + 1. Therefore

C 0 D 0
rank 0 E 0 F =n+p+1.
a, +GX, GY, HX, b+ HY,

Denote by X, = (z;;) and Y; = (y), from the previous equality it follows that

0 In 0 0 In 0 0 0
0 0 0 I, 0 0 I, 0
1/q 0---0 0 0---0 Tl Tln  Tindbl Y11 Ylp  Yl,ptl
rank | z1; T12 XT1,n41 Y11 Y12 Ylp+l T2l T2m T2l Y21 Y2p  Y2pil | = ntptl
Iml Tm2 " Tmn+l Yml Ym2 ' Ym,p+1 0---0 0 0---0 1/q
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Observe now that, choosing the submatrix formed by the n + p + 2 first
columns, we deduce immediately that y;1 = 0 for ¢ = 1,2,...,m. In the same
way, with the n + p 4 2 last columns we see that z; ,4+1 =0 fori=1,2,...,m.
Hence with the entries 1 corresponding to the places (n,n+1) and (n+ 1,2n+
p+4) we can reduce the previous matrix to one on the same form, but reducing
the sizes from n to n — 1 and from p to p — 1, and whose rank is n + p — 1.
Following this process we reach the case where at least one column minimal
index is equal to zero, which is already solved in Subsections 8.1 and 8.2.

9 Proof of Assertion (7) of Theorem 4

In this section we will analyze the case of a matrix pencil with only one row
minimal index which is different than zero, and one column minimal index which
is equal to zero. Previously we will introduce some auxiliary results. We begin
by stating some bounds about the maximum modulus of a root of a polynomial,
that can be seen in [14], Section 8, pp. 243-247.

Lemma 38. Let f(2) = ap+aiz+---+a,_12" "1 +2" be a polynomial of degree
n with coefficients in C distinct from the polynomial z™. Denote

1 1/(n—k)
:= max n |a|
o 0<k<n—1 k k '

Assume that z,, is a Toot of mazimum modulus of f(z). Then
2" — D < |z, < (2Y" = 1) a.

In order to prove Lemma 41, we need the following two lemmas. The first
one, Lemma 39, is deduced immediately from (34).

Lemma 39. Consider the matriz pencil AB — A € P[A]™*" and the matrix
TFs_ 4 defined in (28). Then
(1) If v(Tkgz_4) = 0, then AB — A has not any column minimal indices
<k-1.
(ii) If \B — A = \(Ix,0) — (0, 1) € P\J***+D) then

0 ifp<k

. )=
V(TNp-4) {1 ifp>k+1.

The second one, Lemma 40, can be seen in [5], Theorem 13.5.1, p. 406.

Lemma 40. Let F € CP*? and let X € CI*" be a basis matriz of KerF'.
Consider a sequence Fy — F' such that, for every q, v(Fy) = v(F). Then there
exist a sequence Xq — X and a positive constant K such that, for every q, X,
is a basis matriz of KerF, and

[Xq = X|| < Ku||[Fy — F|.
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Based on these results we will prove the following lemma.

Lemma 41. Consider the pencil \B — A = \(I},,0) — (0,1;) € P[NF**+1),
Then for each sequence AB;— A, — AB— A there exist two sequences of matrices
P, — I, and Qr — Ip+1 such that, for every q, we have Pq_l()\Bq —A,)Q, =
AB — A; moreover, there exists a constant K > 0 that satisfies

max{|[Py — I, |Qq — Txall} < K([[Ag — All + [[Bg — B)).-

Proof. Note first that by Lemma 39, I/(ngiA) = 1. Denote by {e1,e1,...,ext1}
the vectors of the canonical basis of Ck¥*1, it is clear that

€L+1
R+l N _ €k
Ker(Ty4~ 4) = : - (76)
€1

Now consider a sequence A\B, — A, — AB — A. Since nrank(AB, — A,) = k, it
follows that the pencil AB;— A4 has at least a column minimal index. Moreover,
for every p we have Z/(T)I\)Bq_Aq) <v(TYp_4), by Lemma 39, it follows that the
pencil AB; — A, has not any column minimal indices < k. That is, it has
. . Lo . k+1 _ k+1
one coh;m? mlmmalkmldex which is equal to k; hence V(I;Aqu_Aq) =v(Ty5E~ 4)-
: + + ; +
Since T By—A, Tyg- 4 and for every g the matrices T By—A, have the same
nullity, it follows from (76) and Lemma 40 that there exists a basis matrix of

the subspace Ker(TfEIlf Aq)

q
Lhy1 Ch+1
x ek
converging to

z§ el
such that [|zf — ;]| < K1(||Aq — Al| + || By — Bl|). Now let
Py = (Agzd,--- ’Aqu-H)’ Qq = (21, ,xZ+1).

It is obvious that P, ' (AB;—A4)Qq = AB—A and [|Qq— 41| < Ki([|Aq—All+
||B,— Bl|). It suffices to demonstrate that || P, —Ix|| < Ka(||A,— A+ B;—Bll)
to conclude the proof of the lemma.

In fact, denoting by (f1, f2, ..., fx) the canonical basis of C¥, it follows that

k+1 k+1
1Py = Iell <) N Aga? = fisall = D | Aga! — Aeif.
i=2 i=2
Now
[Agz{ — Ae;|| < [|[Aga] — Ages|| + [[Ages — Aes|| < [[Agll[|=f — eill + (| Ag — Alllles|

<
< (I[Ag = All+ [AID N2 — eill + [14g — All < Ka([|Ag = All + [ By — BID,

O
With these previous results we are ready to prove Assertion (7) of Theorem 4.

Proof of Assertion (7) of Theorem 4
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Define D := (%») and C := (), both matrices of C+1xn Hence,

AB—A=X0,D)-(0,C) € 'P[A](nJrl)x(nJrl)'

The unique reducing subspace of A\B — A is N = (e1), with e; the first canonical
vector of C"*1. Note that v(AB — A) = 1. Now consider a sequence (AB, —
A;) = (AB — A). Then, by Lemma 40 and by Proposition 27, when studying
the Lipschitz stability of the subspace A/, no generality is lost if we only consider
sequences of the form AB,— A, = A(eq, D)—(d4, C). Operating with the columns
of D, by Proposition 27, we can assume that

(0L by | 0
ABqu)\<aq O><Hq In)’ (77)

with H, = (cf,ci,...,c2)T e C™.
Note that making row operations it is immediate to see that

det(ABy — Ag) = agh" ™! = "IN — b,

=1

Therefore, v(AB,—A4,) = 1 if and only if a, = b, = ¢! = 0, which is equivalent to
AB,—A, = AB—A. For this case, it is clear that A; = N is a reducing subspace
for ABy — A4. Thus, from here on, we will assume that ¥(AB; — 4,) = 0. In
order to prove that A is Lipschitz stable, it suffices to find sequences of complex

numbers 7, i = 1,2,...,n, such that for every ¢, the subspace
1
i
(1)
x‘q

n

is (AB,—A,)—reducing; that is, since v(AB;—A4,) = 0, it follows that dim A, (N,)+
B,(Ng) =1 holds. Or, which is the same, from (77)

bg m‘f
et + zd
q q q
Cy + x5 T3
rank i =1 (78)

q q q

Cn—1 +xn—1 L,
q q

ch + T Qq

and, moreover, that there exists a constant K > 0 such that,
|z{| < K(||Bq — Bl + |4 — All), i =1,2,....n. (79)

Note first that if a, = 0, it suffices to take z] = 0 for each 7. On the other
hand, if b, = 0, it is sufficient to choose z! = —¢! for each i. Hence, we will
assume that azby # 0. In order for (78) to hold, since aq # 0, we search for the
x! in such a way that the first column is proportional to the second one. Note
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that the proportionality factor is by /z{. Now, doing operations in (78), by a
induction process it is proved that

(z1) —I—X:cqbZ Y

bkl

and for z¢ we have
n+1 + Zcqbz 1 n i+1 aqb;’; 0. (81)
Consider the polynomial
n
fq(z) == 2"+ Z cgbfflznfwl — agby.

We find a bound for the maximum modulus of its roots. Define BE ; :=
("H)_l/(n_kﬂ), by Lemma 38,

k
a= maX{Bn_H | agby [V D) B, |cqb” ! |1/” s (82)
o Bn+1 | Cn k+1b3 F |1/(n kH) By | C1 I}

After that, we choose z{ as one of the roots of f(z) that have maximum modulus.

By Lemma 38 and (82) it is clear that z satisfies (79).
Let k € {2,3,...,n}. Then, combining (80) and (81) we infer that

E qbz 1 n i+1 7Cqu2L -
n Cqbz—k a bn—k+1
! qbg

=— L 4 . 83)
by () 2 e

i=

W»Q

In order to conclude this case, it suffices to see that each summand of (83) is
bounded by K(||By — B|| + |44 — A]|), for a positive constant K.

First, by Lemma 38 and (82) it follows that there exists a positive constant
L such that |z]|7 < L|agb?|~/("*1. Therefore,
aqbg—k—i-l bn—k+1

(aqb;r;)(n k+1)/(n+1)

@)

Second, following Lemma 38 and (82) again, we see that there exists a positive
constant L; such that 2|71 < L;|cfbi=*|7/%. Thus,

by " i " Y
a | op | GPa | p | ayR/ipli-R/i] < _ Al
G| < B = Bt 0 < KO1B-BI+HIA-AD
m
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