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1 Introduction

Given two matrices A,B ∈ Cm×n, we call matrix pencil the first order matrix
polynomial λB − A. For simplicity, we will denote the set of matrix pencils
of the form λB − A, with A,B ∈ Cm×n, by P[λ]m×n. We define the normal
rank of a pencil λB − A ∈ P[λ]m×n, and we denote it by nrank(λB − A), to
be the greatest order of the minors of λB − A that are different from the zero
polynomial. If m = n and nrank(λB − A) = n, the pencil λB − A ∈ P[λ]m×n

is said to be regular. Otherwise, the pencil is said to be singular.
Note by C(λ) the field of rational fractions in λ. If we consider λB −A as a

linear map from the vector space C(λ)n into C(λ)m, both over the field C(λ),
we have

nrank(λB −A) = dimC(λ) Im(λB −A),

(see [4]). We define the nullity of λB−A by ν(λB−A) := dimC(λ) Ker(λB−A).
From

n = dimC(λ) Ker(λB −A) + dimC(λ) Im(λB −A),

ν(λB −A) = n− nrank(λB −A).
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As usual we identify a matrix M ∈ Cm×n with the linear map x 7→ Mx from
Cn ≡ Cn×1 into Cm ≡ Cm×1. Let N be a subspace of Cn, we define M(N )
as the subspace of Cm formed by all matrix products Mx with x ∈ N . Van
Dooren proved that

dim(A(N ) +B(N )) ≥ dimN − ν(λB −A), (1)

where A(N ) + B(N ) is the sum of these subspaces of Cm. See [17, Equation
(2.16) on page 63 and in the line following (2.25 a) and (2.25 b) on page 65]. In
the case the equality holds in (1), the subspace N is called a reducing subspace
for the pencil (see [17]) or, equivalently, that N is a (λB−A)-reducing subspace.
Observe that if the pencil is regular then ν(λB − A) = 0. So, in this case N
is a reducing subspace if and only if dim(A(N ) + B(N )) = dimN . These
reducing subspaces are also called deflating subspaces for regular pencils (see
[16]). In order to simplify here on, we will denote by (λB−A)(N ) the subspace
A(N ) +B(N ).

We use the operator norm induced by the Euclidean norms on Cm and Cn,
also called the spectral norm,

‖M‖ := max
x∈Cn
‖x‖2=1

‖Mx‖2.

The gap between subspaces M and N (in Cn) is defined as

θ(M,N ) := ‖PM − PN ‖

where PM and PN are the orthogonal projectors on M and N , respectively.
Let λB − A ∈ P[λ]m×n a matrix pencil. A reducing subspace N of Cn for

(λB − A) is said to be stable if for every ε > 0 there exists a δ > 0 such that
every matrix pencil λB′ −A′ ∈ P[λ]m×n that satisfies

‖A′ −A‖+ ‖B′ −B‖ < δ

has a (λB′ − A′)-reducing subspace N ′ for which the inequality θ(N ′,N ) < ε
holds. In the same way, we will say that the subspace N of Cn is Lipschitz
stable if there exist K, ε > 0 such that every matrix pencil λB′−A′ ∈ P[λ]m×n

that satisfies ‖A′ −A‖+ ‖B′ −B‖ < ε has a (λB′ −A′)-reducing subspace N ′
for which the inequality

θ(N ′,N ) ≤ K(‖A′ −A‖+ ‖B′ −B‖)

holds. To simplify, we will often say that a subspace N is (λB − A)-stable to
mean that N is a (λB−A)-reducing subspace and is stable to perturbations in
the matrices B and A. For a clear motivation see Chapters 13 and 15 of [5].

A previous paper on this topic was published by the second and third au-
thors [7]. A characterization of the stability or Lipschitz stability of deflating
subspaces of a regular matrix pencil was already given there. In the current
paper, we address this stability problem for the case of reducing subspaces of
singular pencils. Before stating the main result of this paper, recall some prop-
erties of the pencils of matrices.

Two matrix pencils λB − A, λD − C ∈ P[λ]m×n are said to be strictly
equivalent if there exist invertible matrices P ∈ Cm×m, Q ∈ Cn×n such that
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λD − C = P (λB − A)Q. Remark that two strictly equivalent pencils have the
same normal rank. Hence a subspace N is (λB −A)-reducing if and only if the
subspace Q−1(N ) is (λD − C)-reducing. Set C := C ∪ {∞}. We will use the
notation ∞B −A := B. We will say that the element α ∈ C is an eigenvalue of
the pencil λB −A if

rank(αB −A) < nrank(λB −A).

An eigenvalue α of λB − A is finite if α ∈ C, and it is infinite if α = ∞. We
call spectrum of the pencil λB − A and we denote it by Λ(λB − A), the set of
its eigenvalues. It is a subset of C.

The well-known Kronecker canonical form for the strict equivalence of matrix
pencils is given in the following result.

Lemma 1 (Kronecker canonical form [4]). Given a matrix pencil λB − A ∈
P[λ]m×n, there always exist invertible matrices P ∈ Cm×m, Q ∈ Cn×n, such
that P (λB −A)Q has the formλBc −Ac O O

O λBr −Ar O
O O λBf −Af

 , (2)

where

λBc −Ac = (O(n1−t0)×(t0−t1),diag(Lr1 , Lr2 , . . . , Lrt1 )) ∈ P[λ](n1−t0)×n1 ; (3)

Lri := λ(Iri , O)− (O, Iri) ∈ P[λ]ri×(ri+1); and the pencil

λBr −Ar :=

(
λN − I O
O λI − J

)
∈ P[λ]n2×n2 , (4)

with a nilpotent matrix N , is regular; and, lastly,

λBf −Af :=

(
O(s0−s1)×(m3−s0)

diag(LT`1 , L
T
`2
, . . . , LT`s1

)

)
∈ P[λ]m3×(m3−s0). (5)

Remark 2. The sequences

(r1, r2, . . . , rt1 ,

t0−t1︷ ︸︸ ︷
0, . . . , 0), (`1, `2, . . . , `s1 ,

s0−s1︷ ︸︸ ︷
0, . . . , 0)

are the column minimal indices and the row minimal indices, respectively. The
elementary divisors of the matrices N and J , are called infinite elementary
divisors and finite elementary divisors, respectively, of the matrix pencil. Recall
that Λ(λB −A) denotes the spectrum of the pencil λB −A, then Λ(λB −A) =
Λ(λBr −Ar).

Thus, a complete system of invariants for the strict equivalence of two
matrix pencils is formed by the finite sequences of row and column minimal
indices and the system of elementary divisors (finite and infinite). For some
particular pencils some of these invariant can be absent. Strictly speaking it is
not the same the set of row minimal indices and the sequence of row minimal
indices. But from now on we will loosely speak and —for example— we will
say that a pencil has two row minimal indices to mean that the sequence of row
minimal indices has two terms, which might be equals.

3



Remark 3. Since t0 = ν(λB − A), where t0 is the number of column minimal
indices (see [4]), from (1) we deduce that for each subspace N of Cn,

dim(A(N ) +B(N )) ≥ dimN − t0.

Let X be a basis matrix of N . As dim(A(N ) + B(N )) = rank(AX,BX) we
have

rank(AX,BX) ≥ rank(X)− t0. (6)

As a consequence, the subspace N is (λB −A)-reducing if and only if

rank(AX,BX) = rank(X)− t0. (7)

Recall that a matrix pencil λB − A ∈ P[λ]m×n is said to be right regular if
nrank(λB − A) = n, or equivalently ν(λB − A) = 0, or equivalently, it has no
column minimal index. In an analogous way, we will say that a pencil λB−A is
left regular if λBT −AT is right regular, that is, if λB−A has no row minimal
index.

Another previous work on the topic of the stability of reducing subspaces was
the one by Demmel in [2]. He studied the stability of some reducing subspaces
for singular matrix pencils, but under additional conditions. We will explain it
briefly. Let λB − A be a singular pencil and let N be a reducing subspace for
this pencil. Then, according to our notations, there is no loss of generality if we
suppose that λB −A and N have the form

λB −A =


λBc −Ac O O O

O λB1
r −A1

r λB2
r −A2

r O
O O λB3

r −A3
r O

O O O λBf −Af

 ,

N =

〈
In1 O
O In2

O O
O O


〉
,

where the (m1×n1)-pencil λBc−Ac only has column minimal indices, λBf−Af
only has row minimal indices and the pencil(

λB1
r −A1

r λB2
r −A2

r

O λB3
r −A3

r

)
is regular, where λB1

r −A1
r is a pencil of size n2 × n2. In [2] it is supposed that

Λ(λB1
r −A1

r) ∩ Λ(λB3
r −A3

r) = ∅.

Under these hypotheses, in Theorem 6, page 26 of [2], some results are given
on the stability of the subspace N , but assuming also that the perturbed pencils
have reducing subspaces of the same dimension as N .

There is an ample literature on the use of reducing subspaces of matrix pen-
cils as a tool for factorizing rational matrices and for solving Riccati equations.
One can see many references in the book by Ionescu, Oarǎ and Weiss [10]. See
also [13].

With theses notations, the main result of the paper is the following.
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Theorem 4. Let λB−A ∈ P[λ]m×n be a singular matrix pencil. The following
assertions are true:
(1) If the pencil has row minimal indices, column minimal indices and eigenval-
ues, then no reducing subspace is stable.
(2) If the pencil has no row minimal index, then the unique stable and Lipschitz
stable reducing subspace is Cn.
(3) If the pencil has no column minimal index, then the unique stable and Lip-
schitz stable reducing subspace is {0}.
(4) If the pencil has column minimal indices and, at least, two row minimal
indices, then no reducing subspace is stable.
(5) If the pencil only has one row minimal index which is equal to zero, and
has no eigenvalues, then the only stable and Lipschitz stable reducing subspace
is Cn.
(6) If the pencil only has one row minimal index which is different than zero, has
not eigenvalues and has at least two column minimal indices, then no reducing
subspace is stable.
(7) If the pencil only has one row minimal index which is different than zero, and
has one column minimal index, which is equal to zero, and has not eigenvalues,
then the unique stable and Lipschitz stable reducing subspace is KerA.

The organization of this paper is the following. In Section 2 algebraic prop-
erties of the reducing subspaces of pencils of linear maps are established. In
Section 3, these properties are translated into terms of matrix pencils. In Sec-
tion 4 the problem of the stability of reducing subspaces is addressed by means
of converging sequences of matrix pencils and basis matrices of subspaces. In
Sections 5 to 9 the proof of Theorem 4 (Main Theorem) is developed. In Section
5 Assertions (1), (2) and (3) of the Theorem are proved. In Sections 6, 7, 8 and
9 Assertions (4), (5), (6) and (7), respectively, are proved.

2 Properties of the reducing subspaces of linear
map pencils

In this section we give a characterization of the reducing subspaces for pencils
of linear maps. Its proof will be made in the following section, translating these
results to the matrix pencils.

First, remark that the concepts of normal rank and reducing subspace can
be extended to the case of a pair of linear maps. Let U and V be vector spaces
over C and let A,B : U → V be linear maps. The normal rank of the pencil of
linear maps λB −A is defined by

nrank(λB −A) := max
z∈C

rank(zB −A),

where zB −A : U → V is a linear map for each z ∈ C. A pencil of linear maps
λB−A is said to be regular if dimU = dimV and the linear map zB−A : U → V
is invertible for every z ∈ C, except for at most a finite number of complex
numbers. Otherwise, we will say that the pencil is singular. For each x ∈ U we
define

(λB −A)(x) := B(x) + A(x).
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From this definition it is deduced that for every subspace N of U , (λB −
A)(N ) = B(N )+A(N ). Therefore, the subspaceN of U is said to be (λB−A)-
reducing if

dim(λB −A)(N ) = dimN −min
z∈C

dimC Ker(zB −A).

To write the statements of the main theorems in this section, we need some
previous definitions and notations. Let Uk denote the Cartesian product U ×
· · · × U , k−times. Given a pair of linear maps A,B : U → V and α ∈ C, for
k = 1, 2, . . . , consider the linear maps

T k
λB−A : Uk → Vk+1, P k,α

λB−A,P
k,∞
λB−A : Uk → Vk

defined for x = (x1, x2, . . . , xk) ∈ Uk by means of

T k
λB−A(x) := (B(x1),−A(x1) + B(x2), . . . ,−A(xk−1) + B(xk),−A(xk)) , (8)

P k,α
λB−A(x) := ((αB−A)(x1),B(x1) + (αB−A)(x2), . . . ,B(xk−1) + (αB−A)(xk)) , (9)

P k,∞
λB−A(x) := (B(x1),−A(x1) + B(x2), . . . ,−A(xk−1) + B(xk)) . (10)

Given x = (x1, x2, . . . , xk) ∈ Uk, for i = 1, 2, . . . , k we define the projections
πki (x) = xi. Now, for every α ∈ C̄ := C ∪ {∞} and k = 1, 2, . . ., we define the
subspaces:

SkλB−A :=

k∑
i=1

πki

(
Ker(T k

λB−A)
)
, (11)

Sk,αλB−A :=

k∑
i=1

πki

(
Ker(P k,α

λB−A)
)
, (12)

DkλB−A := SkλB−A +
∑

α∈Λ(λB−A)

Sk,αλB−A. (13)

With these notations we obtain the first result in this section.

Theorem 5. Given two linear maps A,B : U → V, then (a) The subspaces
SnλB−A and DnλB−A are (λB −A)-reducing.
(b) For every (λB −A)-reducing subspace N we have SnλB−A ⊂ N ⊂ DnλB−A.

Remark 6. Theorem 5 will be proven by means of matrix pencils in Theo-
rems 12 and 20 in Section 3.

Proposition 7. To prove Theorem 5 there is no loss of generality if, instead
of the linear map pencil λB −A, we consider the linear map pencil λD −C =
P ◦(λB−A)◦Q (with P ,Q invertible transformations of V and U , respectively).

Proof. Consider the linear maps Q1 : Uk → Uk and P 1 : Vk+1 → Vk+1 defined
by

Q1(x1, . . . , xk) := (Q(x1), . . . ,Q(xk))

and
P 1(y1, . . . , yk+1) := (P (y1), . . . ,P (yk+1)).

6



From (8) we immediately deduce

T k
λD−C = P 1 ◦ T k

λB−A ◦Q1.

Therefore,

T k
λB−A(x) = 0⇔ P 1 ◦ T k

λB−A ◦Q1 ◦Q
−1
1 (x) = 0⇔ T k

λD−C ◦Q
−1
1 (x) = 0.

That is, Ker(T k
λD−C) = Q−1

1 (Ker(T k
λB−A)). , from (11) we infer that

SkλD−C = Q−1(SkλB−A). (14)

Using the same arguments from (9), (10) and (12), we obtain Sk,αλD−C = Q−1(Sk,αλB−A),
and substituing (14) in (13), we have

DkλD−C = Q−1(DkλB−A). (15)

As N is a (λB −A)-reducing subspace if and only if Q−1(N ) is (λD−C)-
reducing, from (14) and (15) we conclude that SnλB−A and DnλB−A are (λB−A)-
reducing if and only if SnλD−C and DnλD−C are (λD−C)-reducing. Moreover it

is clear that SnλB−A ⊂ N ⊂ DnλB−A if and only if SnλD−C ⊂ Q−1(N ) ⊂ DnλD−C .
2

For the second result we need some notations. Let K be a direct complement
of SnλB−A in DnλB−A and let πK : DnλB−A → K be the projection over K along
SnλB−A. That is, ImπK = K and KerπK = SnλB−A. Denote

HλB−A := (λB −A)(DnλB−A), MλB−A := (λB −A)(SnλB−A). (16)

Now, let L be a direct complement ofMλB−A inHλB−A and let πL : HλB−A →
L be the projection over L along MλB−A. With these notations, we have the
following result.

Theorem 8. Let A,B : U → V be linear maps. Then a subspace N of U is
(λB −A)-reducing if and only if the subspace πK(N ) of K is deflating for the
regular pencil

πL ◦ (λB −A) |K : K → L.

Remark 9. Theorem 8 will be proved in Theorem 20 in Section 3.

Proposition 10. The conclusions of Theorem 8 do not depend on the choice
of the subspaces K, L.

Proof. Let K1 be another direct complement of SnλB−A in DλB−A and let
πK1 : DλB−A → K1 be the projection over K1 along SnλB−A. In the same
manner, let L1 be another direct complement of MλB−A in HλB−A and let
πL1

: HλB−A → L1 be the projection over L1 along MλB−A. Then, (see [15,
Remark 2, p. 402]), there exist invertible linear maps

Q : K → K1, P : L → L1

such that

∀x ∈ K, x−Q(x) ∈ SnλB−A, ∀y ∈ L, y − P (y) ∈MλB−A, (17)
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and moreover,
πK1

= Q ◦ πK, πL1
= P ◦ πL. (18)

See first that the pencils πL◦(λB−A) |K and πL1
◦(λB−A) |K1

are strictly
equivalent. So, one is regular if and only if the other is. Observe that Q are P
are invertible, it suffices to see that P ◦πL◦(λB−A) |K = πL1

◦(λB−A) |K1
◦Q.

Given that πL1 = P ◦ πL by (18), it is sufficient to prove that

πL ◦ (λB −A) |K = πL ◦ (λB −A) |K1
◦Q. (19)

Let x ∈ K. Then, as Q(x) ∈ K1, to prove (19) it suffices to see that (πL ◦
(λB −A))(x−Q(x)) = 0. But given that, by (17) , x−Q(x) ∈ SnλB−A, from
the notations of (16) we see that (λB −A)(x −Q(x)) ∈ MλB−A. Therefore
(πL ◦ (λB −A))(x−Q(x)) = 0, which proves (19).

Now see that

(πL1 ◦ (λB −A))(πK1(N )) = (P ◦ πL ◦ (λB −A))(πK(N )). (20)

As by (18), we have

πK1
(N ) = Q(πK(N )) = πK(N ) + (Q− I)(πK(N )),

and πL1
= P ◦ πL, we deduce that

(πL1
◦ (λB −A))(πK1

(N )) = (P ◦ πL ◦ (λB −A))(πK(N ))
+ (P ◦ πL ◦ (λB −A))((Q− I)πK(N )).

(21)
Now, as (17) implies (Q−I)(πK(N )) ⊂ (Q−I)(K) ⊂ SnλB−A, from the notations
of (16) we obtain

(πL◦(λB−A))((Q−I)πK(N )) ⊂ (πL◦(λB−A))(SnλB−A) = πL(M(B,A)) = {0}.

This last expression together with (21) yields (20).
Finally, as πK1(N ) = Q(πK(N )) with Q invertible, we see that dim(πK1(N )) =

dim(πK(N )). This fact together with (20) implies

dim ((πL1
◦ (λB −A))(πK1

(N ))) = dim(πK1
(N ))

m
dim ((P ◦ πL ◦ (λB −A))(πK(N ))) = dim(πK(N )).

Consequently, πK(N ) is πL ◦ (λB − A) |K -deflating if and only if πK1(N ) is
πL1
◦ (λB −A) |K1

-deflating. 2

Proposition 11. In the conclusions of Theorem 8 there is no loss of generality
if we consider the strictly equivalent pencil λD −C = P ◦ (λB −A) ◦Q, with
invertible transformations P and Q of V and U , respectively.

Proof. Observe that from (14), (15) and (16) we obtain

HλD−C = P (HλB−A), MλD−C = P (MλB−A). (22)

Therefore, as DnλB−A = SnλB−A ⊕ K and HλB−A = MλB−A ⊕ L, from (14),
(15) and (22) we deduce that
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DnλD−C = SnλD−C ⊕Q−1(K), HλD−C =MλD−C ⊕ P (L). (23)

To prove the Proposition, see first that

πQ−1(K)(Q
−1(N )) = (Q−1 ◦ πK)(N ). (24)

Let x be a vector of N . Then, by 5(b), we see x = y + z with y ∈ SnλB−A
and z ∈ K. Hence πK(x) = πK(z) = z. On the other hand, as Q−1(x) =
Q−1(y) +Q−1(z), with Q−1(y) ∈ SnλD−C and Q−1(z) ∈ Q−1(K), we infer that

πQ−1(K)(Q
−1(x)) = πQ−1(K)(Q

−1(z)) = Q−1(z) = Q−1(πK(x)),

which proves (24).
Now consider the invertible linear maps

Q−1
1 := Q−1 |K : K → Q−1(K), P 1 := P |L : L → P (L).

With the notations of (16), see that

πP (L) ◦ P
∣∣HλB−A

= P 1 ◦ πL
∣∣HλB−A

. (25)

Let x = y + z be a vector of HλB−A with y ∈ MλB−A and z ∈ L. Then, as
πL(y) = 0 and πL(z) = z, we have

P 1(πL(x)) = P 1(πL(y)) + P 1(πL(z)) = P 1(z) = P (z). (26)

On the other hand, as y ∈ MλB−A, by (22), we see that P (y) ∈ MλD−C .
Therefore πP (L)(P (y)) = 0. Moreover, since z ∈ L, it follows P (z) ∈ P (L).
Hence πP (L)(P (z)) = P (z). Thus πP (L)(P (x)) = P (z). This equality together
with (26) proves (25).

Now see that

πP (L) ◦ (λD −C)
∣∣
Q−1(K) ◦Q−1

1 = P 1 ◦ πL ◦ (λB −A) |K . (27)

Let x ∈ K. Then, as Q−1
1 (x) = Q−1(x) ∈ Q−1(K), we have

(πP (L) ◦ (λD −C))(Q−1
1 (x)) =

(πP (L) ◦ P ◦ P−1 ◦ (λD −C) ◦Q−1)(x) =

(πP (L) ◦ P ◦ (λB −A))(x).

Therefore, using (25), we conclude that

(πP (L) ◦ (λD −C))(Q−1
1 (x)) = (P 1 ◦ πL ◦ (λB −A))(x).

Hence, the pencils πP (L) ◦ (λD −C)
∣∣
Q−1K and πL ◦ (λB −A) |K are strictly

equivalent. Therefore one is regular if and only if the other is too. Finally,
from (27) we have

(πP (L) ◦ (λD −C))(πQ−1(K)(Q
−1(N )) = (P 1 ◦ πL ◦ (λB −A))(πK(N )),

given that P 1 is invertible we deduce that the subspaces

(πP (L) ◦ (λD −C))(πQ−1(K)(Q
−1(N ))

and (πL ◦ (λB −A))(πK(N )) have the same dimension. Moreover, from (24)
we deduce that πQ−1(K)(Q

−1(N )) and πK(N ) have the same dimension, we

conclude that πQ−1(K)(Q
−1(N )) is πP (L) ◦ (λD − C)

∣∣
Q−1(K) -deflating if and

only if πK(N ) is πL ◦ (λB −A) |K -deflating. 2
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3 Properties of the reducing subspaces for ma-
trix pencils

In this section we formulate Theorems 5 and 8 in terms of matrix pencils. First
observe that if λB − A ∈ P[λ]m×n is a matrix representation of λB −A, then

T k
λB−A, P k,α

λB−A and P k,∞
λB−A, defined in (8), (9) and (10) respectively, have

the following matrix representations

T kλB−A :=



B O O · · · O O
−A B O · · · O O
O −A B · · · O O
...

...
...

. . .
...

...
O O O · · · −A B
O O O · · · O −A


∈ C(k+1)m×kn, (28)

for each α ∈ C,

P k,αλB−A :=


αB −A O · · · O O

B αB −A · · · O O
O B · · · O O
...

...
. . .

...
...

O O · · · B αB −A

 ∈ Ckm×kn, (29)

and finally

P k,∞λB−A :=


B O · · · O O
−A B · · · O O
O −A · · · O O
...

...
. . .

...
...

O O · · · −A B

 ∈ Ckm×kn. (30)

In the same way, as in (11), (12) and (13), we define the subspaces

SkλB−A :=

k∑
i=1

πki
(
Ker(T kλB−A)

)
, (31)

Sk,αλB−A :=

k∑
i=1

πki

(
Ker(P k,αλB−A)

)
, (32)

DkλB−A := SkλB−A +
∑

α∈Λ(λB−A)

Sk,αλB−A. (33)

With these notations, we have a first result.

Theorem 12. Given the matrix pencil λB−A ∈ P[λ]m×n in the form (2), we
have

SnλB−A =

〈 (
In1

O

) 〉
, DnλB−A =

〈 (
In1+n2

O

) 〉
.

To prove this theorem we need the following result that can be seen in [9,
Teorema 1.7, p. 99], [12, Corollary 3.2] and [11, Section 5].
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Lemma 13. Given the pencil λD − C ∈ P[λ]m×n, let cj be the number of
column minimal indices ≥ j for j = 0, 1, 2, . . .. Then, for k = 1, 2, . . . , we have

dim Ker(T kλD−C) = kc0 −
k∑
i=1

ci. (34)

Moreover, given α ∈ C, if mα is the multiplicity of α as an eigenvalue of λD−C
and t0 is the number of column minimal indices of the pencil, then for k ≥ n
we have

dim Ker(P k,αλD−C) = mα + kt0, (35)

The proof of Theorem 12 is going to be structured in several lemmas. The
first one is the following.

Lemma 14. Assume that the pencil λD − C ∈ P[λ]m×n is in the form

λD − C =

(
λD1 − C1 O

O λD2 − C2

)
,

with λD1−C1 ∈ P[λ]p×q and λD2−C2 ∈ P[λ]r×s. Then, for k = 1, 2, . . . , and
α ∈ C

SkλD−C =

(
SkλD1−C1

O

)
⊕
(

O
SkλD2−C2

)
, Sk,αλD−C =

(
SkαλD1−C1

O

)
⊕
(

O
SkαλD2−C2

)
.

Remark 15. By the above lemma, it follows

DkλD−C =

(
DkλD1−C1

O

)
⊕
(

O
DkλD2−C2

)
Proof. Let

x := (yT1 , z
T
1 , y

T
2 , z

T
2 , . . . , y

T
k , z

T
k )T ∈ Ckn×1,

where, for i = 1, 2, . . . , k, yi ∈ Cq×1 and zi ∈ Cs×1. Denote

y := (yT1 , y
T
2 , . . . , y

T
k )T ∈ Ckq×1, z := (zT1 , z

T
2 , . . . , z

T
k )T ∈ Cks×1.

From (28), it follows that T kλD−Cx = 0 if and only if T kλD1−C1
y = 0 and

T kλD2−C2
z = 0. Therefore

Ker(T kλD−C) = {(yT1 , 0, yT2 , 0, . . . , yTk , 0)T , (0, zT1 , 0, z
T
2 , . . . , 0, z

T
k )T },

where

(yT1 , y
T
2 , . . . , y

T
k )T ∈ Ker(T kλD1−C1

) and (zT1 , z
T
2 , . . . , z

T
k )T ∈ Ker(T kλD2−C2

).

Hence, from (31), we obtain

SkλD−C =

(
SkλD1−C1

O

)
⊕
(

O
SkλD2−C2

)
.

Using the same arguments as in (29), (30) and (32) the decomposition for Sk,αλD−C
can be proved. 2

Reasoning in an analogous way, we can prove the following result.
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Lemma 16. Suppose that λD − C = (O, λD1 − C1) ∈ P[λ]m×n, where O ∈
Cm×q. Then, for k = 1, 2, . . . , and α ∈ C, we have

SkλD−C =

〈 (
Iq
O

) 〉
⊕
(

O
SkλD1−C1

)
, Sk,αλD−C =

〈 (
Iq
O

) 〉
⊕
(

O

Sk,αλD1−C1

)
.

Lemma 17. Suppose that λD − C = λ[Ip, O]− [O, Ip] ∈ P[λ]p×(p+1). Then

SkλD−C =

{
{0} if k < p+ 1

Cp+1 if k ≥ p+ 1.

Proof. Let cj be the number of column minimal indices ≥ j. For λD − C we
have c0 = c1 = · · · = cp = 1 and cp+1 = 0. Thus, by (34), we deduce that
dim Ker(T kλD−C) = 0 for k = 1, 2 . . . , p. Hence SkλD−C = {0}. Denoting by ei
the i−th vector of the canonical basis of Cp+1, we see that

T p+1
λD−C(eTp+1, e

T
p , . . . , e

T
1 )T = 0.

Therefore
Cp+1 =< (e1, e2, . . . , ep+1) >⊂ Sp+1

λD−C ⊂ Cp+1,

that is Sp+1
λD−C = Cp+1. To conclude the proof it suffices to remark that Sp+1

λD−C ⊂
Sp+rλD−C ⊂ Cp+1 for r = 2, 3, . . .. 2

Lemma 18. Let λD−C ∈ P[λ]p×p be a regular pencil. Then, for k = 1, 2, . . .,
we have SkλD−C = {0}. Moreover, with the notations in (32), for k ≥ p∑

α∈Λ(λD−C)

Sk,αλD−C = Cp.

Proof. First, as the pencil λD − C has no column minimal indices, from (34)
we infer that dim Ker(T kλD−C) = 0. Hence SkλD−C = {0}.

On the other hand, because λD−C is regular, from Lemma 1, we can assume
that

λD − C = diag(λD1 − C1, λD2 − C2, . . . , λDh − Ch),

λDi−Ci ∈ P[λ]pi×pi being a regular pencil with only one eigenvalue αi. There-
fore, applying Lemma 14, for each α ∈ C̄ we have

Sk,αλD−C =


Sk,αλD1−C1

O
...
O

⊕


O

Sk,αλD2−C2

...
O

⊕ · · · ⊕


O
O
...

Sk,αλDh−Ch

 . (36)

Now, as the pencil λDi−Ci ∈ P[λ]pi×pi is regular and αi is its only eigenvalue,
then its multiplicity is pi. Hence, from (35) we deduce that for k ≥ pi

dim Ker(P k,αiλDi−Ci) = pi.

Consequently, there exists a basis matrix of Ker(P k,αλDi−Ci) of the form

X = (XT
1 , X

T
2 , . . . , X

T
k )T ∈ Ckpi×pi , where Xi ∈ Cpi×pi ,

with rank(X) = pi. Therefore rank(X1, X2, . . . , Xk) = pi, and from (32) we see

that Sk,αiλDi−Ci = Cpi . The proof is completed by taking these results into (36).
2
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Lemma 19. Suppose that the pencil λD − C ∈ P[λ]p×q only has row minimal
indices. Then using the notations of (33), for k = 1, 2, . . . , we have

DkλD−C = {0}.

Proof. It suffices to prove that SkλD−C = {0} and Sk,αλD−C = {0} for each

k = 1, 2 . . . , and α ∈ C. First of all, as the pencil λD − C has no col-
umn minimal indices, from (34) we deduce that dim Ker(T kλD−C) = 0. Hence

SkλD−C = {0}. Analogously, as λD − C has no eigenvalues, from (35) we see

that dim Ker(P k,αλD−C) = 0, that is Sk,αλD−C = {0}. 2

We are now ready to prove Theorem 12.

Proof of Theorem 12.
First, as λB−A is in the form (2), applying Lemmas 14, 18 and 19 we have

SnλB−A =

SnλBc−AcO
O

⊕
 O
SnλBr−Ar

O

⊕
 O

O
SnλBf−Af

 =

SnλBc−AcO
O

 .

Now, by Lemmas 16 and 17 we deduce that SnλBc−Ac = Cn1 .
On the other hand, denoting by λB1−A1 := diag(λBr −Ar, λBf −Af ), by

Lemmas 14 and 19 we infer that

Sn,αλB1−A1
=

(
Sn,αλBr−Ar

O

)
⊕
(

O
Sn,αλBf−Af

)
=

(
Sn,αλBr−Ar

O

)
.

Therefore, as Λ(λB −A) = Λ(λBr −Ar), by Lemma 18 we have∑
α∈Λ(λB−A)

Sn,αλBr−Ar =
∑

α∈Λ(λBr−Ar)

Sn,αλBr−Ar = Cn2 .

This last expression together with SnλBc−Ac = Cn1 prove the theorem. 2

Taking into account Theorem 12, Propositions 7, 10 and 11, Theorems 5
and 8 can be reformulated in the following way.

Theorem 20. Let λB − A ∈ P[λ]m×n be a matrix pencil in the form (2). Let
N be a subspace of Cn. Then N is (λB−A)-reducing if and only if there exists
a matrix X ∈ Cn2×q of full column rank such that

N =

〈In1
O

O X
O O

〉 (37)

and the subspace 〈X〉 is deflating for the pencil λBr −Ar.

To prove this theorem we need several previous results. The first one is a
direct consequence of Theorems 2.3, 2.4 and Corollary 2.1 of [17].

Lemma 21. Let λD − C ∈ P[λ]p×q be a pencil. If this pencil only has column
minimal indices, then its unique reducing subspace is Cq. If this pencil only has
row minimal indices, then its unique reducing subspace is {0}.
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Lemma 22. Let Ac, Bc ∈ C(n1−t0)×n1 be matrices in the form (3) and let
Af , Bf ∈ Cm3×(m3−s0) be matrices in the form (5). Then there exist matrices
Q ∈ Cn1×n1 and P ∈ Cm3×m3 such that

Bc = AcQ, Bf = PAf .

Moreover, given a finite subset Λ1 of C, we can assume that P and Q satisfy
one of the following conditions:
a) Λ(P ) ∩ Λ(Q) = ∅ and Λ1 ∩

(
Λ(P ) ∪ Λ(P−1) ∪ Λ(Q) ∪ Λ(Q−1)

)
= ∅.

b) 0 ∈ Λ(Q).
c) Λ1 ∩ Λ(Q) 6= ∅.
d) 0 ∈ Λ(P ) and Λ1 ∩ Λ(Q) 6= ∅.

Proof. It suffices to observe that

(Iri , O) = (O, Iri)

(
O α
Iri O

)
, and

(
Ilj
O

)
=

(
O Ilj
β O

)(
O
Ilj

)
for any α, β ∈ C. 2

We are already in conditions to prove Theorem 20.

Proof of Theorem 20
Let N ∈ Cn be a subspace (λB − A)-reducing of dimension p and let Y ∈

Cn×p be a basis matrix of N . Decomposing Y according to the decomposition
of the pencil given in (2) we have

Y =


p1 p2 p3

n1 Y11 O O
n2 Y21 Y22 O
n3 Y31 Y32 Y33

, where rank(Yii) = pi, i = 1, 2, 3. (38)

As the subspace N is (λB−A)-reducing and t0 is the number of column min-
imal indices of the pencil, from (7) we have rank(AY,BY ) = p− t0. Therefore,
operating according to (2) and (38) we get

rank

AcY11 O O BcY11 O O
ArY21 ArY22 O BrY21 BrY22 O
AfY31 AfY32 AfY33 BfY31 BfY32 BfY33

 = p1 + p2 + p3 − t0.

(39)
Now, as the pencil λBc−Ac has the same column minimal indices as the pencil
λB−A and λBr −Ar and λBf −Af have no column minimal indices, from (6)
we deduce that rank(AcY11, BcY11) ≥ p1 − t0, rank(ArY22, BrY22) ≥ p2 and
rank(AfY33, BfY33) ≥ p3. Taking these three inequalities into (39) we see that

p1 + p2 + p3 − t0 = rank(AY,BY )
≥ rank(AcY11, BcY11) + rank(ArY22, BrY22) + rank(AfY33, BfY33)
≥ p1 + p2 + p3 − t0.

rank(AcY11, BcY11) = p1−t0, rank(ArY22, BrY22) = p2, rank(AfY33, BfY33) = p3,
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that is, the subspaces 〈Y11〉, 〈Y22〉 and 〈Y33〉 are reducing for the pencils λBc−Ac,
λBr−Ar and λBf−Af , respectively. Therefore, applying Lemma 21 we deduce
that 〈Y11〉 = Cn1 and Y33 = O. Hence we can assume that Y11 = In1

. Moreover,
since λBr−Ar is a regular pencil, denotingX := Y22, it follows that the subspace
〈X〉 is (λBr −Ar)-deflating. Therefore (38) and (39) are transformed into

Y =


n1 p2

n1 In1
O

n2 Y21 X
n3 Y31 Y32

, (40)

with 〈X〉 a (λBr −Ar)-deflating subspace and

rank

 Ac O Bc O
ArY21 ArX BrY21 BrX
AfY31 AfY32 BfY31 BfY32

 = n1 + p2 − t0. (41)

Now observe that, since rank(Ac) = n1− t0, from (41) and (6) we infer that

rank

(
ArX BrX
AfY32 BfY32

)
= p2. (42)

Moreover, as 〈X〉 is (λBr −Ar)-deflating, we can assume that

λBr−Ar=


λN1−Iq1 λN3 O O

O λN2−I O O
O O λIq2−J1 −J3

O O O λI−J2

 and X =


Iq1 O
O O
O Iq2
O O

 , (43)

with nilpotent matrices N1, N2. Hence, partitioning Y32 = (Z,H) with Z ∈
Cm3×q1 , from (42) we see that

rank

 Iq1 O N1 O
O J1 O Iq2
AfZ AfH BfZ BfH

 = p2 = q1 + q2.

Now, from Lemma 22 there exists a matrix P such that Bf = PAf , and thus,

q1 + q2 = rank

 Iq1 O N1 O
O J1 O Iq2
AfZ P−1BfH PAfZ BfH


= rank

 Iq1 O O O
O O O Iq2
AfZ P−1BfH −BfHJ1 PAfZ −AfZN1 BfH

 .

Therefore P−1BfH − BfHJ1 = O and PAfZ − AfZN1 = O. Choosing P in
such a way that Λ(J1) ∩

(
Λ(P ) ∪ Λ(P−1)

)
= ∅, (Lema 22), we conclude that

BfH = O and AfZ = O, that is, H and Z are null matrices, and hence Y32 = O.

On the other hand, since rank(ArX,BrX) = p2, from (41) we deduce that

rank

(
Ac Bc

AfY31 BfY31

)
= n1 − t0,
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hence, by Lemma 22 there exist invertible matrices P and Q such that Bc =
AcQ, Bf = PAf and Λ(P ) ∩ Λ(Q) = ∅. As a consequence,

n1 − t0 = rank

(
Ac AcQ

AfY31 PAfY31

)
= rank

(
Ac O

AfY31 PAfY31 −AfY31Q

)
.

Therefore, since rank(Ac) = n1 − t0, we have PAfY31 −AfY31Q = O. Now, as
Λ(P ) ∩ Λ(Q) = ∅, we see that AfY31 = O, and hence Y31 = O.

To conclude the proof it suffices to prove that we can choose Y21 = O.
Partitioning Y21 according to (43),

Y21 =


O
V
O
W

 ,

as Y31 and Y32 are zero matrices, from (40), (41) and (43) we deduce that

rank


Ac O O Bc O O
O Iq1 O N3V N1 O
V O O N2V O O
J3W O J1 O O Iq2
J2W O O W O O

 = n1 + q1 + q2 − t0.

Therefore, as by Lemma 22 we have Bc = AcQ for some matrix Q, then

n1 − t0 = rank

 Ac AcQ
V N2V
J2W W

 = rank

 Ac O
V N2V − V Q
J2W W − J2WQ

 .

Hence, as rank(Ac) = n1 − t0 we have N2V − V Q = O and W − J2WQ = O.
Or equivalently WQ−1 − J2W = O. Choosing Q in such a way that Λ(J2) ∩
(Λ(Q)∪Λ(Q−1)) = ∅, we deduce that V and W are null matrices and therefore
Y21 = O. The converse is immediate. 2

4 Properties of the stability

In this section we give some auxiliary results about the stability of reducing
subspaces. First, observe that from (7), if X is a basis matrix of the subspace
N , then N is (λB −A)-reducing if and only if rank(AX,BX) = rank(X)− t0.
This definition enables us to make a reformulation of the concept of stability
and Lipschitz stability of a reducing subspace in terms of limits of sequences
of matrices. To do so, we will use the following result on the convergence of a
sequence of subspaces that one deduces straightforwardly from ([1], Section 1.5,
p. 29–31), ([5], Theorem 13.5.1) and ([3], Theorem I-2-6).

Proposition 23. Let N be a p-dimensional subspace of Cn and let {Nq}∞q=1 be
a sequence of subspaces of Cn that converges to N in the gap metric. Then, for
each X ∈ Cn×p, basis matrix of N , there exist a sequence of matrices {Xq}∞q=1

converging to X, two positive constants K1, K2, and a positive integer q0, such
that for q ≥ q0, Xq is a basis matrix of Nq, and

K1‖Xq −X‖ ≤ θ(Nq,N ) ≤ K2‖Xq −X‖.
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From Proposition 23, we can reformulate the concept of stable and Lipschitz
stable subspace in terms of the convergence of sequences of matrices. The result
is the following.

Proposition 24. Let λB − A ∈ P[λ]m×n be a matrix pencil and let N be a
(λB − A)-reducing subspace such that dimN = p. Then N is (λB − A)-stable
if and only if for every basis matrix X ∈ Cn×p of N , and for every sequence of
matrix pencils λBq −Aq → λB−A, there exist a sequence of matrices Xq → X
and a positive integer q0, such that for q ≥ q0: Xq is a matrix of rank p and the
subspace 〈Xq〉 is (λBq −Aq)-reducing.

Moreover, N is (λB−A)-Lipschitz stable if and only if there exist a constant
K > 0 and a positive integer q0 such that for q ≥ q0

‖Xq −X‖ ≤ K(‖Aq −A‖+ ‖Bq −B‖).

In addition, if X =
(
Ip
0

)
, then for q ≥ q0 we can choose Xq =

(
Ip
Yq

)
, where

Yq → 0.

We will see some results that will simplify the statements of Theorem 4 and
some proofs. The first is the following, which can be proved from Proposition 24
and using the techniques employed in the proof of Proposition 3.3 of [18].

Proposition 25. Let λB −A ∈ P[λ]m×n be a matrix pencil and let λD − C ∈
P[λ]m×n be a pencil strictly equivalent to λB − A; that is to say, λD − C =
P (λB − A)Q with P ∈ Cm×m and Q ∈ Cn×n invertible matrices. Let N be a
(λB − A)-reducing subspace. Then, N is (λB − A)-stable (or Lipschitz stable)
if and only if Q−1N is (λB −A)-stable (or Lipschitz stable).

Remark 26. As a consequence of this Proposition, when studying the stability
(or Lipschitz stability) of a reducing subspace, no generality is lost if we consider
another strictly equivalent pencil and the corresponding transformed subspace.

To prove the following result we need some previous notations. Given a
matrix pencil λB − A ∈ P[λ]m×n, we denote by CS(λB − A) the set of all
sequences of matrix pencils that converge to λB − A. Let C̃S(λB − A) be a
subset of CS(λB − A). We will say that a set G ⊂ C̃S(λB − A) is a Lipschitz
generator subset of C̃S(λB −A) if for every sequence

{(Aq, Bq)}∞q=1 ∈ C̃S(λB −A),

there exist sequences

{(λBq −Aq)}∞q=1 ∈ G and {(Pq, Qq)}∞q=1 converging to (Im, In),

and there exist a positive integer number q0 and a constant K > 0, that depends
on the preceding sequences, such that for q ≥ q0,{

λBq −Aq = Pq(λBq −Aq)Qq,
max{‖Pq − Im‖, ‖Qq − Im‖} ≤ K(‖Aq −A‖+ ‖Bq −B‖).

With the preceding notation we have the following proposition, whose demon-
stration is similar to that one of Proposition 3.5 of [8] using Proposition 25.

17



Proposition 27. Let λB − A ∈ P[λ]m×n be a matrix pencil, and let N be a
(λB −A)−reducing subspace and X a basis matrix of N . Let C̃S(λB −A) be a
subset of CS(λB−A) and G a Lipschitz generator subset of C̃S(λB−A). Then
the assertions below are equivalent.

(i) For every sequence {(λBq−Aq)}∞q=1 ∈ C̃S(λB−A), there exist a sequence
of matrices Xq → X, a constant K1 > 0 and a positive integer q1, such
that for q ≥ q1, the subspace 〈Xq〉 is (λBq −Aq)−reducing, and

‖Xq −X‖ ≤ K1(‖Aq −A‖+ ‖Bq −B‖).

(ii) For every sequence {(λBq−Aq)}∞q=1 ∈ G, there exist a sequence of matrices

Xq → X, a constant K2 > 0 and a positive integer q2, such that for q ≥ q2,
the subspace

〈
Xq

〉
is (λBq −Aq)−reducing, and

‖Xq −X‖ ≤ K2(‖Aq −A‖+ ‖Bq −B‖).

In addition, if G1 is a Lipschitz generator subset of G then G1 is a Lipschitz
generator subset of C̃S(λB −A).

Remark 28. In the above results, the existence of a positive integer q0 is
required in such a way that the results are true for q ≥ q0. To simplify, without
loss of generality, we will assume hereafter that q0 = 1.

5 Proof of Theorem 4. Assertions (1), (2) and
(3).

To prove Assertions (1), (2) and (3) of Theorem 4, we need some lemmas. Let
λB−A be a pencil in the form (2) and let N be a subspace (λB−A)-reducing,
which, by Theorem 20 can be put in the form (37).

Lemma 29. With the previous notations, if the subspace N is (λB−A)-stable,
then 〈X〉 is (λBr −Ar)-stable subspace.

Proof. Consider an arbitrary sequence of matrix pencils λBqr −Aqr converging
to λBr −Ar as q →∞. From now on we will summarize this with the notation
Sq → L to mean that Sq is a sequence of mathematical objects converging to
the limit L when q →∞. Then

λBq −Aq :=

λBc −Ac 0 0
0 λBqr −Aqr 0
0 0 λBf −Af

→ λB −A.

Now, as N is a subspace (λB − A)-stable, there exists a sequence of subspaces
Nq → N such that Nq is a (λBq − Aq)-reducing subspace for every q. By the
form of λBq − Aq, from Theorem 20 we know that there exists a sequence of
matrices Xq → X where

Nq =

〈In1
O

O Xq

O O

〉 ,
〈Xq〉 being a (λBqr−Aqr)-deflating subspace. Hence the subspace 〈Xq〉 is (λBr−
Ar)-stable. 2
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Remark 30. Observe that by [5, Theorem 14.3.1, p. 429] and [7], if 〈X〉 is
(λBr − Ar)-stable, then 〈X〉 is isolated; that is, there exists a neighbourhood
of the subspace 〈X〉 such that the unique (λBr −Ar)-deflating subspace that is
in this neighbourhood is 〈X〉 itself.

Lemma 31. Consider a pencil λB − A ∈ P[λ]m×n and a (λB − A)-reducing
subspace N , both in the form

λB −A =

( n1 n2

m1 λD − C O
m2 O λF − E

)
, N =

〈(
X
O

)〉
, (44)

with X ∈ Cn1×p a matrix of rank p, the pencil λD − C is left regular and
the pencil λF − E only has row minimal indices. Then the subspace 〈X〉 is
(λD − C)-reducing. Moreover, if the subspace N is (λB − A)-stable, then 〈X〉
is (λD − C)-stable.

Proof. As λD − C is left regular and λF − E only has row minimal indices,
it follows that ν(λB −A) = ν(λD − C). Hence, as N is (λB −A)-reducing we
have dim(A(N )+B(N )) = p−ν(λD−C). Therefore, from (44) we deduce that
rank(CX,DX) = rank(X)− ν(λD − C), that is, 〈X〉 is (λD − C)-reducing.

Consider now an arbitrary sequence λDq−Cq → λD−C. Then the sequence

λBq −Aq =

(
λDq − Cq O

O λF − E

)
→ λB −A, (45)

and moreover, as λF − E only has row minimal indices,

ν(λBq −Aq) = ν(λDq − Cq). (46)

Now then, as N is (λB−A)-stable, there exists a sequence of subspaces Nq → N
such that Nq is (λBq −Aq)-reducing for every q. Due to the form of λBq −Aq,
given in (45), from Theorem 20 we see that there exists a sequence of matrices
Xq → X such that for every q

Nq =

〈(
Xq

O

)〉
. (47)

Therefore, because Nq is a (λBq − Aq)-reducing subspace, from (46) it follows
that dim(Aq(Nq) + Bq(Nq)) = p − ν(λDq − Cq). That is, from (45), (46)
and (47), we infer that

rank(Xq)−ν(λDq−Cq) = p−ν(λDq−Cq) = rank

(
CqXq DqXq

O O

)
= rank(CqXq, DqXq).

Hence 〈Xq〉 is (λDq−Cq)-reducing for every q. Lastly, as Xq → X we have 〈X〉
is (λD − C)-stable. 2

Lemma 32. Consider a pencil λB − A ∈ P[λ]m×n and a (λB − A)-reducing
subspace N , both in the form

λB −A =

( n1 n2

m1 λD − C O
m2 O λF − E

)
, N =

〈(
In1

O
O X

)〉
, (48)
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with X ∈ Cn2×p a matrix of rank p, the pencil λD − C is left regular and the
pencil λF − E is right regular. Then the subspace 〈X〉 is (λF − E)-reducing.
Moreover, if the subspace N is (λB−A)-stable we have 〈X〉 is (λF −E)-stable.

Proof. Observe first that ν(λB − A) = ν(λD − C) = n1 −m1. Thus, as N is
(λB − A)-reducing, it follows that dim(A(N ) + B(N )) = p + m1, and hence,
from (48), we see that

rank

(
C O D O
O EX O FX

)
= p+m1.

Therefore, as rank(C,D) = m1 and ν(λF − E) = 0, we have rank(EX,FX) =
p = rank(X)− ν(λF − E), that is, 〈X〉 is (λF − E)-reducing.

Consider now an arbitrary sequence λFq−Eq → λF −E. Then the sequence

λBq −Aq =

(
λD − C O

O λFq − Eq

)
→ λB −A, (49)

and moreover, as λFq − Eq is right regular,

ν(λBq −Aq) = ν(λD − C) = n1 −m1. (50)

Now, given that N is (λB−A)-stable, from (48) we deduce that there exist two
sequences of matrices, Xq → X and Yq → O, such that for every q the subspace

Nq =

〈(
In1 O
Yq Xq

)〉
. (51)

is (λBq −Aq)-reducing. Therefore, from (49) and (51) we infer that

p+m1 = rank

(
C O D O

EqYq EqXq FqYq FqXq

)
≥ rank(C,D)+rank(EqXq, FqXq).

Now, as rank(C,D) = m1 and ν(λFq − Eq) = 0 we have

rank(EqXq, FqXq) = p = rank(Xq)− ν(λFq − Eq),

therfore 〈Xq〉 is (λFq − Eq)-reducing for every q. Finally, since Xq → X, it
follows that 〈X〉 is (λF − E)-stable. 2

Lemma 33. Suppose that the matrix pencil λB − A ∈ P[λ]m×n has no row
minimal indices. Then the unique (λB −A)-stable subspace is Cn.

Proof. Let N be a (λB − A)-stable subspace. Given that the pencil has no
row minimal indices, from Remark 26, (2) and Theorem 20 we can assume that
λB −A and N are in the form

λB −A =

( n1 n2

m1 λBc −Ac O
n2 O λBr −Ar

)
, N =

〈 ( n1 p

n1 In1 O
n2 O X

)〉
, (52)

where λBc − Ac is a pencil with only column minimal indices, λBr − Ar is
a regular pencil, X is a matrix of rank p and 〈X〉 is a (λBr − Ar)-deflating
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subspace. Thus by [7] we can assume that

λBr−Ar=


λN1−Ip1 λN3 O O

O λN2−Ir1 O O
O O λIp2−J1 −J3

O O O λIr2−J2

 , X=


Ip1 O
O O
O Ip2
O O

 ,

(53)
with N1, N2 and N3 nilpotent matrices and p1 + p2 = p.

Consider now two arbitrary sequences of matrices Eq → O ∈ Cq2×n1 and
Fq → O ∈ Cq1×n1 . As the sequence

λBq −Aq =


λBc −Ac O O O O

O λN1 − Ip1 λN3 O O
λFq O λN2 − Ir1 O O
O O O λIp2 − J1 −J3

Eq O O O λIr2 − J2


(54)

converges to λB − A and the subspace N is (λB − A)-stable, it follows that
there exist sequences of matrices Yq, Zq, Uq, Vq,Wq, Hq of adequate sizes, all of
them converging to O, such that for every q the subspace

Nq =

〈
In1

O O
O Ip1 O
Yq Uq Wq

O O Ip2
Zq Vq Hq


〉

(55)

is (λBq−Aq)-reducing, that is dim(Aq(Nq)+Bq(Nq)) = dim(Nq)−ν(λBq−Aq).
But as the pencil λB −A has no row minimal indices, we have ν(λBq −Aq) =
ν(λB−A) = n1−m1. Therefore dim(Aq(Nq)+Bq(Nq)) = n1 +p+(n1−m1) =
m1 + p. Thus from (54) and (55) we conclude that

rank



n1 p1 p1 n1 p2 p2

m1 Ac O O Bc O O
p1 O Ip1 O N3Yq N1 +N3Uq N3Wq

r1 Yq Uq Wq Fq +N2Yq N2Uq N2Wq

p2 J3Zq J3Vq J1 + J3Hq O O Ip2
r2 Eq + J2Zq J2Vq J2Hq Zq Vq Hq

 = m1+p.

(56)
Since rank(Ac) = rank(Bc) = m1, from (56) we see that

rank


Ip1 O N1 +N3Uq N3Wq

Uq Wq N2Uq N2Wq

J3Vq J1 + J3Hq O Ip2
J2Vq J2Hq Vq Hq

 = p.

Consequently, from (53), the subspace Mq generated by the columns of the
matrix

Xq =


Ip1 O
Uq Wq

O Ip2
Vq Hq


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is (λBr −Ar)-stable. Hence, by Remark 30 we infer that 〈Xq〉 = 〈X〉 for every
q, and therefore the matrices of the sequences Uq, Vq,Wq, Hq are all zero. So,
from (56) we deduce that

rank


n1 n1

m1 Ac Bc
r1 Yq Fq +N2Yq
r2 Eq + J2Zq Zq

 = m1. (57)

At this point, note that to prove the lemma it suffices to verify that r1 = r2 =
0. For the sake of contradiction, assume first that r1 > 0, then as rank(Ac) =
rank(Bc) = m1, from (57) we deduce that

rank

(
Ac Bc
Yq Fq +N2Yq

)
= m1. (58)

Now, by Lemma 22 there exists a matrix Q ∈ Cn1×n1 with 0 ∈ Λ(Q) such
that Bc = AcQ. Then from (58) we immediately obtain

m1 = rank(Ac) = rank

(
Ac AcQ
Yq Fq +N2Yq

)
= rank

(
Ac O
Yq Fq +N2Yq − YqQ

)
,

and hence Fq + N2Yq − YqQ = O. In conclusion, if it were true that r1 > 0,
we would have proved that for every sequence of matrices Fq → O there exits a
sequence of matrices Yq → O such that for each q it satisfies Fq +N2Yq−YqQ =
O, with Λ(N2) ∩ Λ(Q) 6= ∅, which is impossible. Therefore, r1 = 0.

If it were true that r2 > 0, as by Lemma 22 there exists a matrix Q ∈ Cn1×n1

with Λ(J2) ∩ Λ(Q) 6= ∅, so that Ac = BcQ, applying the previous reasoning we
would lead to a contradiction. Thus r2 = 0. 2

Lemma 34. Given a matrix pencil λB −A ∈ P[λ]m×n, suppose that it has no
column minimal indices. Then the unique (λB −A)-stable subspace is {0}.

Proof. Let N be a (λB−A)-stable subspace. We can now proceed analogously
to the proof of the previous lemma. So, we can assume that λB−A and N are
in the form

λB −A =

( n2 n3

n2 λBr −Ar O
m3 O λBf −Af

)
, N =

〈 ( p

n2 X
n3 O

)〉
, (59)

where λBr −Ar is a regular pencil and 〈X〉 is a (λBr −Ar)-deflating subspace,
both in the form (53). Moreover, λBf−Af is a pencil that only has row minimal
indices.

Now consider two arbitrary sequences of matrices Eq → O ∈ Cm3×p2 and
Fq → O ∈ Cm3×p1 . As the sequence

λBq −Aq =


λN1 − Ip1 λN3 O O O

O λN2 − Ir1 O O O
O O λIp2 − J1 −J3 O
O O O λIr2 − J2 O
λFq O −Eq O λBf −Af

 ,

(60)

22



converges to λB−A and the subspaceN is (λB−A)-stable, there exist sequences
of matrices Yq, Zq, Uq, Vq,Wq, Hq, of adequate sizes, that converge to O, such
that for every q the subspace

Nq =

〈
Ip1 O
Uq Wq

O Ip2
Vq Hq

Yq Zq


〉

(61)

is (λBq−Aq)-reducing; that is dim(Aq(Nq)+Bq(Nq)) = dim(Nq)−ν(λBq−Aq).
But as the pencil λB −A has no column minimal indices, then ν(λBq −Aq) =
ν(λB − A) = 0. Therefore dim(AqNq + BqNq) = p. Thus from (60) and (61)
we see that

rank



p1 p2 p1 p2

p1 Ip1 O N1 +N3Uq N3Wq

r1 Uq Wq N2Uq N2Wq

p2 J3Vq J1 + J3Hq O Ip2
r2 J2Vq J2Hq Vq Hq

m3 AfYq Eq +AfZq Fq +BfYq BfZq

 = p. (62)

Now, as the sequences Yq, Zq, Uq, Vq,Wq, Hq converge to O, from (62)

rank


Ip1 O N1 +N3Uq N3Wq

Uq Wq N2Uq N2Wq

J3Vq J1 + J3Hq O Ip2
J2Vq J2Hq Vq Hq

 = p;

that implies for (53) that the subspace Mq generated by the matrix

Xq =


Ip1 O
Uq Wq

O Ip2
Vq Hq


is (λBr −Ar)-deflating. Hence, like in the previous lemma, all the terms of the
sequences of matrices Uq, Vq,Wq, Hq are O. Thus from (62) we infer that

rank


p1 p2 p1 p2

p1 Ip1 O N1 O
p2 O J1 O Ip2
m3 AfYq Eq +AfZq Fq +BfYq BfZq

 = p;

that is

Fq +BfYq −AfYqN1 = O, Eq +AfZq −BfZqJ1 = O. (63)

Now, by Lemma 22 there exist matrices P,Q ∈ Cm3×m3 with 0 ∈ Λ(P ) and
Λ(J2) ∩ Λ(Q) 6= ∅ such that Bf = PAf and Af = QBf . Then we immediately
see from (63) that for every pair of sequences of matrices Eq, Fq → O there are
sequences Yq, Zq → O that satisfy

Fq + PAfYq −AfYqN1 = O, Eq +QBfZq −BfZqJ1 = O,
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for every q. This contradicts to the choice of P andQ. Consequently p1 = p2 = 0
and therefore N = {0}. 2

We are now ready to prove Assertions (1) (2) and (3) of Theorem 4.
Proof Theorem 4: Assertions (1), (2) and (3).

First, note that Assertions (2) and (3) follow straightforward from Lem-
mas 33 and 34, respectively.

Second, to prove Assertion (1), by Remark 28, we can assume that λB−A is
in the form given in (2), with n1, n2,m3 nonzero . Let N be a (λB−A)-reducing
subspace. Then, by Theorem 20, we can assume that

N =

〈 
n1 p

n1 In1
O

n2 O X
m3 O O

〉 ,
where rank(X) = p. Suppose that N is (λB − A)-stable. Hence, as the pencil
diag(λBc −Ac, λBr −Ar) is left regular and the pencil λBf −Af only has row
minimal indices, applying Lemma 31, we deduce that the subspace〈(

In1
O

O X

)〉
is diag(λBc −Ac, λBr −Ar)-stable. Therefore, by Lemma 33 we have X = In2

.
On the other hand, applying Lemma 32 to the pencils λBc−Ac (left regular)

and diag(λBr − Ar, λBf − Af ) (right regular), since N is (λB − A)-reducing,

we see that the subspace generated by the columns of the matrix
(
In2

O

)
is

diag(λBr −Ar, λBf −Af )-stable, which contradicts Lemma 34. 2

6 Proof of Theorem 4: Assertion (4).

In this section we prove Assertion (4) of Theorem 4. Therefore in all the section
we will assume that the pencil λB − A has row minimal indices, at least two
column minimal indices, and no eigenvalues. The following result will allow us
to simplify the proofs.

Lemma 35. Let λB −A ∈ P[λ]m×n be a pencil without eigenvalues and let N
be a (λB −A)−reducing subspace, which are given by

λB −A =

( n1 n2

m1 λD − C 0
n2 0 λF − E

)
, N =

〈 ( p1 p2

n1 X 0
n2 0 Y

)〉
,

where X, Y are matrices of full column rank. Let M := 〈X〉. Then if N is
(λB −A)−stable it follows that M is (λD − C)−stable.

Proof. Note that as the pencil λF −E has no eigenvalues, from (31) and (33)
we see that DkλB−A = SkλB−A. Hence by Theorem 20 we infer that

〈Y 〉 = DnλF−E = SnλF−E . (64)
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Consider now an arbitrary sequence λDq − Cq → λD − C. Then as the
sequence

λBq −Aq =

(
λDq − Cq 0

0 λF − E

)
converges to λB−A and N is (λB−A)−stable, there exist sequences Xq → X,
Yq → Y , Zq → 0, Vq → 0, such that for every q the subspace

Nq :=

〈(
Xq Zq
Vq Yq

)〉
(65)

is (λBq − Aq)−reducing. Therefore, by Theorem 20, Nq ⊂ DnλBq−Aq . Now

applying Lemma 14 and (64), we obtain

Nq ⊂ DnλBq−Aq =

(
DnλDq−Cq

O

)
⊕
(

O
DnλF−E

)
⊂
(
In1

O

)
⊕
〈(

O
Y

)〉
=

〈(
In1 O
O Y

)〉
.

For this reason from (65) there exist matrices of adequate sizes Qi, i = 1, 2, 3, 4,
such that (

Xq Zq
Vq Yq

)
=

(
In1 O
O Y

)(
Q1 Q2

Q3 Q4

)
.

Observe that Yq = Y Q4. Moreover, as Yq → Y and Y is of full column rank, we
deduce thatQ4 is invertible. Hence, as Vq = Y Q3, it follows that Vq = YqQ

−1
4 Q3.

Thus, in (65), if we subtract to the first column the second one multiplied by
Q−1

4 Q3 we obtain

Nq =

〈(
Xq − ZqQ−1

4 Q3 Zq
O Y Q4

)〉
=

〈(
Xq − ZqQ−1

4 Q3 ZqQ
−1
4

O Y

)〉
. (66)

In the same way, from Theorem 20, Lemma 14 and (64) we obtain

Nq ⊃ SnλBq−Aq =

(
SnλDq−Cq

O

)
⊕
(

O
SnλF−E

)
=

(
SnλDq−Cq

O

)
⊕
〈(

O
Y

)〉
⊃
〈(

O
Y

)〉
.

From (66) we deduce that there exist matrices of adequate sizes P1, P2 such that(
O
Y

)
=

(
Xq − ZqQ−1

4 Q3 ZqQ
−1
4

O Y

)(
P1

P2

)
.

Hence P2 = Ip2 and ZqQ
−1
4 = −(Xq −ZqQ−1

4 Q3)P1. Therefore denoting X̃q :=
Xq − ZqQ−1

4 Q3 → X, from (66) we see that

Nq =

〈(
X̃q O
O Y

)〉
.

Finally, as Nq is (λB −A)−reducing

rank

(
CqX̃q O DqX̃q O
O EY O FY

)
= p1 + p2− ν(λDq −Cq)− ν(λF −E). (67)

But given that 〈Y 〉 is a (λF−E)−reducing subspace, it follows that rank(EY, FY ) =
p2 − ν(λF − E). Thus from (67) we conclude that rank(CqX̃q, DqX̃q) = p1 −
ν(λDq−Cq); that is the subspace

〈
X̃q

〉
is (λDq−Cq)−reducing. Consequently

M is (λD − C)−stable. 2
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Remark 36. Assume that λB −A ∈ P[λ]m×n is a pencil without eigenvalues,
and has the form

λB −A =

(
λD − C O

O λF − E

)
,

where λD − C is a pencil with only two row minimal indices and one column
minimal index. Then, by Theorem 20 and Lemma 14 the unique reducing
subspace for λB −A is

N =

(
SnλD−C
O

)
⊕
(

O
SnλF−E

)
.

Now, if we had proved that the subspace SnλD−C were not (λD−C)−stable,
then, by Lemma 35, we would have proved that N cannot be (λB−A)−stable.
Therefore, from here to the end of the section, we will assume that the pencil
λB − A only has two row minimal indices and one column minimal index.
Moreover, by Remark 26, we can assume that λB−A is in the canonical form (2).

We prove Assertion (4) of Theorem 4. For do that, consider three cases:
(a) two row minimal indices equal to zero; (b) one row minimal index equal to
zero and another row minimal index which is different than zero; (c) two row
minimal indices which are different than zero.

6.1 Two row minimal indices which are equal to zero

Distinguish two subcases: one column minimal index which is equal to zero and
one column minimal index which is different than zero.

One column minimal index which is equal to zero. In this case we have

λB −A = λ

(
0
0

)
−
(

0
0

)
∈ P[λ]2×1, N = C.

Take the sequence

λBq −Aq = λ

(
1/q
0

)
−
(

0
1/q

)
→ λB −A.

As λBq − Aq only has a row minimal index equal to 1, from Theorem 20 we
infer that Nq = {0} is its unique reducing subspace. Hence, as Nq → {0} we
have that N is not (λB −A)−stable.

One column minimal index which is different than zero. Denoting by D :=
(Ik, 0), C := (0, Ik) ∈ Ck×(k+1), we have

λB −A = λ

DO
O

−
CO
O

 ∈ P[λ](k+2)×(k+1), N = Ck+1.

Consider the sequence

λBq −Aq = λ

Ik 0
0 1/q
0 0

−
 0 Ik

0 0
1/q 0

→ λB −A.

Note that ν(λBq−Aq) = 0. Hence N is (λB−A)−stable if and only if for every
q the subspace Ck+1 is (λBq − Aq)−reducing; that is, rank(Aq, Bq) = k + 1.
Which is a contradiction, because rank(Aq, Bq) = k + 2.
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6.2 One row minimal index which is equal to zero and
another which is different than zero

As in the previous subsection, we consider two subcases: one column minimal
index which is equal to zero and one column minimal index which is different
than zero.

One column minimal index which is equal to zero. Denoting byD := (Ik, 0)T , C :=
(0, Ik)T ∈ C(k+1)×k, we have

λB −A = λ

0 0
0 0
0 D

−
0 0

0 0
0 C

 ∈ P[λ](k+2)×(k+1), N =

〈(
1
0

)〉
.

Consider the sequence

λBq −Aq = λ

1/q 0
0 0
0 D

−
 0 0

1/q 0
0 C

→ λB −A.

Note that ν(λBq − Aq) = 0. Suppose that N is (λB − A)−stable. Then, by
Proposition 24, there exists a sequence Xq → 0 ∈ Ck×1 such that for every q the
subspace generated by the columns of the matrix

(
1
Xq

)
is (λBq−Aq)−reducing;

that is

rank

 0 1/q
1/q 0
CXq DYq

 = 1,

which is a contradiction since the rank of this matrix is 2.

One column minimal index which is different than zero. Let D := (Ik, 0), C :=
(0, Ik) ∈ Ck×(k+1), F := (Il, 0)T , E := (0, Il) ∈ C(l+1)×l. We have

λB −A = λ

D 0
0 0
0 F

−
C 0

0 0
0 E

 ∈ P[λ](k+l+2)×(k+l+1), N =

〈(
Ik+1

0

)〉
.

Taking the sequences of matrices

aq = (0, · · · , 0, 1/q) ∈ C1×(k+1), bq =


1/q 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ C(l+1)×(k+1),

we see that

λBq −Aq = λ

D 0
aq 0
0 F

−
C 0

0 0
bq E

→ λB −A.

Observe that ν(λBq − Aq) ≤ ν(Bq) = 0. Suppose that N is (λB − A)−stable.
Then, by Proposition 24, there exists a sequence of matrices Xq → 0 ∈ C(k+1)×l
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such that for every q the subspace generated by the columns of the matrix(
Ik+1

Xq

)
is (λBq −Aq)−reducing. That is, for every q

k + 1 = rank

 C D
0 aq

bq + EXq FXq

 = rank


0 Ik Ik 0
0 0 0 1/q

1/q 0 ? ?
? ? ? ?


≥ rank

 0 Ik 0
0 0 1/q

1/q 0 ?

 = k + 2,

which is a contradiction. Therefore N is not (λB −A)−stable.

6.3 Two row minimal indices which are different than zero

Analogously, we will distinguish two subcases: one column minimal index which
is equal to zero and one column minimal index which is different than zero.

One column minimal index which is equal to zero. Define

D :=

(
Ik
0

)
, C :=

(
0
Ik

)
∈ C(k+1)×k, F :=

(
Il
0

)
, E :=

(
0
Il

)
∈ C(l+1)×l.

Then in this subcase we have

λB −A =

(
0 λD − C 0
0 0 λF − E

)
∈ P[λ](k+l)×(k+l+3), N =

〈1
0
0

〉 .
Taking the sequences of matrices

aq = (1/q, 0, · · · , 0)T ∈ C(k+1)×1, bq = (0, · · · , 0, 1/q)T ∈ C(l+1)×1,

we infer that

λBq −Aq =

(
aq λD − C 0
bq 0 λF − E

)
→ λB −A.

Moreover, ν(λBq − Aq) = ν(Aq) = 0. Assume that N is (λB − A)−stable.
Then, by Proposition 24, there exist sequences of matrices Xq → 0 ∈ Ck×q and
Yq → 0 ∈ Cl×1 such that for every q the subspace〈 1

Xq

Yq

〉

is (λBq −Aq)−reducing. That is, for every q

rank

(
aq + CXq DXq

EYq bq + FYq

)
= 1. (68)

Define
Xq := (xq1, x

q
2, · · · , x

q
k)T , Yq := (yq1, y

q
2, · · · , y

q
l )
T ,
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from (68) we conclude that

rank

(
1/q xq1 · · · xqk−1 xqk 0 yq1 · · · yql−1 yql
xq1 xq2 · · · xqk 0 yq1 yq2 · · · yql 1/q

)
= 1.

Now, it is immediate to see that this implies xqi = yqj = 0. Hence

rank

(
1/q 0
0 1/q

)
= 1,

which is a contradiction.

One column minimal index which is different than zero
Denote D := (In, 0), C := (0, In) ∈ Cn×(n+1) and

F :=

(
Im
0

)
, E :=

(
0
Im

)
∈ C(m+1)×m, H :=

(
Ip
0

)
, G :=

(
0
Ip

)
∈ C(p+1)×p.

We have

λB−A =

λD − C 0 0
0 λF − E 0
0 0 λH −G

 ∈ P[λ](n+m+p+2)×(n+m+p+1), N =

〈In+1

0
0

〉 .
Define the sequences of matrices

aq :=


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 1/q

 ∈ C(m+1)×(n+1), bq :=


1/q 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ C(p+1)×(n+1).

Then

λBq −Aq = λ

D 0 0
aq F 0
0 0 H

−
C 0 0

0 E 0
bq 0 G

→ λB −A.

Moreover, as ν(Aq) = 0 we see that ν(λBq − Aq) = 0. Hence if N is (λB −
A)−stable, by Proposition 24, there exist sequences of matrices Xq → 0 ∈
Cm×(n+1) and Yq → 0 ∈ Cl×(n+1) such that for every q the subspace

Nq :=

〈In+1

Xq

Yq

〉

is (λBq −Aq)−reducing. That is, for every q

rank

 C D
EXq aq + FXq

bq +GYq HYq

 = n+ 1. (69)

Now, as ν(Aq) = 0, from (69) we deduce that

rank

 C
EXq

bq +GYq

 = n+ 1. (70)
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From Lemma 22, it follows that

D = C

(
0 1
In 0

)
,

then from (69) and (70), we have D
aq + FXq

HYq

 =

 C
EXq

bq +GYq

( 0 1
In 0

)
,

hence

aq + FXq = EXq

(
0 1
In 0

)
. (71)

Let Xq := (xij)0≤i≤n, 0≤j≤n. With this notation, from (71) we infer that
x00 x01 · · · x0n−1 x0n

x10 x11 · · · x1n−1 x1n

...
...

. . .
...

...
xm0 xm1 · · · xmn−1 xmn

0 0 · · · 0 1/q

 =


0 0 · · · 0 0
x00 x01 · · · x0n−1 x0n

...
...

. . .
...

...
xm−1,0 xm−1,1 · · · xm−1,n−1 xm−1,n

xm0 xm1 · · · xmn−1 xmn

 .

Now, it is immediate to see that xij = 0, which implies 1/q = 0. A contradiction.

7 Proof of Theorem 4: Assertion (5)

In this section we prove Assertion (5) of Theorem 4. That is, if the pencil
λB−A ∈ P[λ]m×n, without eigenvalues, only has one row minimal index which
is equal to zero, then the unique reducing subspace — by Theorem 20 it is
Cn— is (λB−A)-stable. To prove this result we will consider two cases: in the
first one we will assume that all column minimal indices are equal to zero; in
the second one we will assume that there is at least a column minimal index is
different than zero.

7.1 All column minimal indices are equal to zero.

In this case we have λB − A = λ0 − 0 ∈ P[λ]1×n. Now consider a sequence
λBq − Aq → λB − A. Then we have two possible subcases: ν(λBq − Aq) = n
or ν(λBq − Aq) = n − 1. For the first subcase, ν(λBq − Aq) = n, we obtain
λBq−Aq = λ0− 0, and it is clear that the subspace Cn is (λBq−Aq)-reducing.
On the other hand, if ν(λBq − Aq) = n − 1, then either rank(Aq) = 1 or
rank(Bq) = 1. Therefore

1 ≥ rank(AqIn, BqIn) ≥ max{rank(Aq), rank(Bq)} = 1⇒ rank(AqIn, BqIn) = 1,

hence Cn is (λBq −Aq)−reducing, and so Cn is (λB −A)-stable.
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7.2 At least a column minimal index is is different than
zero.

To simplify the exposition, in this case, suppose that λB − A ∈ P[λ](m+1)×n.
Now, as this pencil only has one row minimal index which is equal to zero and
at least a nonzero column minimal index, then this pencil is strictly equivalent
to a pencil of the form

λ

(
Im 0
0 0

)
−
(
E F
0 0

)
, (72)

with (E,F ) ∈ Cm×m × Cm×p a controllable pair and n = m + p. Hence, by
Remark 26, to study the stability of the subspace Cn there is no loss of generality
if we suppose that λB −A is in the form (72).

Now let λBq − Aq be a sequence that converges to λB − A. Then, since
nrank(λB−A) = m, we have nrank(λBq −Aq) = m+ 1 or m. That is, we have
two subcases: ν(λBq −Aq) = n−m− 1 or ν(λBq −Aq) = n−m. We analyze
them separately.

Subcase ν(λBq−Aq) = n−m−1. As in this case nrank(λBq−Aq) = m+1 then
this pencil is left regular; that is, it has no row minimal indices and, therefore,
by Theorem 20, Cn = DnλBq−Aq is a (λBq −Aq)-reducing subspace.

Subcase ν(λBq −Aq) = n−m⇔ nrank(λBq −Aq) = m.

To analyze this other subcase we need the following result.

Lemma 37. Consider the matrix pencil

λD − C = λ

(
Im 0
α 0

)
−
(
G H
0 0

)
∈ P[λ](m+1)×(m+p),

with (G,H) ∈ Cm×m×Cm×p a controllable pair. Assume that nrank(λD−C) =
m. Then α = 0.

Proof. Let r1, r2, . . . , rh be the sequence of nonzero column minimal indices
of λD − C. Then ([5], Theorem 6.2.5, p. 196) there exist invertible matrices
P ∈ Cm×m, Q ∈ Cp×p and a matrix R ∈ Cp×m such that

P (G,H)

(
P−1 0
R Q

)
= (G,H),

with G = (diag(G1, . . . , Gh) and H = (diag(H1 . . . , Hs), 0), where

Gi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Cri×ri , Hi =


0
0
...
0
1

 ∈ Cri×1.

Hence, as (
P 0
0 1

)
(λD − C)

(
P−1 0
R Q

)
=

(
λIm −G −H
λαP−1 0

)
,
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to prove the lemma we can assume that (G,H) = (G,H). Denote α :=
(a1, a2, · · · , ah) with ai ∈ C1×ri . Then, because nrank(λD − C) = m, we have

nrank


λIr1 −G1 −H1 0 0 · · · 0 0

0 0 Ir2 −G2 −H2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Irh −Gh −Hh

a1 0 a2 0 . . . ah 0

 = m.

(73)
Now, as

(λIri −Gi,−Hi) =


λ −1 0 . . . 0 0
0 λ −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ −1

 ,

if we denote by ai := (bi1, bi2, . . . , biri), making transformations by columns in
the matrix of (73), we deduce that

nrank


0 −Ir1 0 0 · · · 0 0
0 0 0 −Ir2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 −Irh
p1(λ) ? p2(λ) ? . . . ph(λ) ?

 = r1+r2+· · ·+rh = m,

with pi(λ) = bi1 + bi2λ + · · · + biriλ
ri−1. Therefore pi(λ) = 0, or equivalently

α = 0. 2

Consider now a sequence λBq − Aq → λB − A. From (72), we can assume
that for every q,

λBq −Aq = λ

(
Iqm βq
αq δq

)
−
(
Eq Fq
ηq θq

)
.

Now, as m = nrank(λBq − Aq) ≥ rank(Aq) ≥ rank(Eq, Fq) ≥ rank(E,F ) = m,
it is immediate to see that there exists a sequence of matrices

Pq =

(
Im 0
ξq 1

)
→ Im+1,

such that for every q

PqAq =

(
Eq Fq
0 0

)
.

Hence, by Proposition 27, it suffices to consider sequences of the form Pq(λBq−
Aq) to study the stability of the subspace Cn, that is,

λBq −Aq = λ

(
Iqm βq
αq δq

)
−
(
Eq Fq
0 0

)
→ λB −A. (74)

On the other hand, as the sequence of matrices

Qq =

(
(Iqm)−1 −(Iqm)−1βq

0 1

)
→ Im+1,
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by Proposition 27 it is sufficient to consider sequences of the form (λBq−Aq)Qq;
that is, from (74),

λBq −Aq = λ

(
Im 0
αq δq

)
−
(
Eq Fq
0 0

)
→ λB −A.

But, since m = nrank(λBq −Aq) ≥ rank(Bq) ≥ m, we have δq = 0, for every q.
,

λBq −Aq = λ

(
Im 0
αq 0

)
−
(
Eq Fq
0 0

)
.

Now, since (Eq, Fq) is controllable and nrank(λB − A) = m, by Lemma 37 it
follows that αq = 0 for every q. Hence, it suffices to consider sequences of the
form

λBq −Aq = λ

(
Im 0
0 0

)
−
(
Eq Fq
0 0

)
.

Finally, as rank(AqIn, BqIn) = m = n− ν(λBq − Aq), then the subspace Cn is
(λBq −Aq)-reducing and, , Cn is (λB −A)-stable.

8 Proof of Assertion (6) of Theorem 4

In this section we will prove that if the pencil λB −A ∈ P[λ]m×n has only one
row minimal index which is different than zero, at least two column minimal
indices and no eigenvalues, then it has not any stable reducing subspace. First
note that from Lemma 35, in an analogous way as in Remark 36, we can assume
that λB − A only has two column minimal indices. Hence we consider three
subcases: (a) two column minimal indices which are equal to zero; (b) one
column minimal index which is equal to zero and another column minimal index
which is different than zero; (c) both column minimal indices which are different
than zero.

8.1 Two column minimal indices which are equal to zero

Denote D :=
(
Ik
0

)
, C :=

(
0
Ik

)
∈ C(k+1)×k, in this case we can assume that the

pencil λB −A and the unique reducing subspace N are of the form

λB −A = λ(0, D)− (0, C) ∈ P[λ](k+1)×(2+k), N =

〈(
I2
0

)〉
,

respectively.
Consider the sequences of matrices

aq =


1/q 0
0 0
...

...
0 0

 , bq =


0 0
...

...
0 0
0 1/q

 ∈ C(k+1)×2,

the sequence λBq −Aq = λ(bq, D)− (aq, C) converges to λB −A and moreover
ν(λBq −Aq) = 1. Now, if N is (λB −A)-stable, by Proposition 24 there exists
a sequence of matrices Xq → 0 ∈ Ck×2 such that for every q the subspace

33



Nq =
〈(

I2
Xq

)〉
is (λBq − Aq)-reducing; that is, dim(Aq(Nq) + Bq(Nq)) = 1.

Therefore, if we define Xq := (xqij)1≤i≤k,j=1,2 so that Nq can be (λBq − Aq)-
reducing, it must be satisfied

rank


1/q 0 xq11 xq12

xq11 xq12 xq21 xq22
...

...
...

...
xqk−1,1 xqk−1,2 xqk1 xqk2

xqk1 xqk2 0 1/q

 = 1.

Hence xqij = 0. Thus, we conclude that rank
(

1/q 0
0 1/q

)
= 1, which is a contra-

diction. In conclusion, N is not (λB −A)-stable.

8.2 One column minimal index which is equal to zero and
another column minimal index which is different than
zero

Define λD − C := λ[In, 0]− [0, In] and λF − E := λ
(
Im
0

)
−
(

0
Im

)
, in this case

it follows that the pencil λB −A and its unique reducing subspace N have the
form

λB −A =

(
0 λD − C 0
0 0 λF − E

)
, N =

〈1 0
0 In+1

0 0

〉 ,
respectively.

Consider the sequences

aq =

1/q
...
0

 ∈ C(m+1)×1, bq =

0 · · · 0 0
...

. . . 0 0
0 · · · 0 1/q

 ∈ C(m+1)×(n+1).

Then

λBq −Aq = λ

(
0 D 0
0 bq F

)
−
(

0 C 0
aq 0 E

)
→ λB −A,

and moreover ν(λBq − Aq) = 1. Hence, if N is (λB − A)-stable, there exist
sequences of matrices Xq → 0 ∈ Cm×1 and Yq → 0 ∈ Cm×(n+1) such that the
subspace

Nq :=

〈 1 0
0 In+1

Xq Yq

〉 ,
is (λBq −Aq)-reducing; that is, dim(Aq(Nq) +Bq(Nq)) = n+ 1. Thus

rank

(
0 C 0 D

aq + EXq EYq FXq bq + FYq

)
= n+ 1. (75)

Define Xq := (xq1, x
q
2, . . . , x

q
m)T . Then as rankC = n, from (75) we have

1 ≥ rank(aq + EXq) = rank

(
1/q xq1 · · · xqm−1 xqm
xq1 xq2 · · · xqm 0

)T
.
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Therefore xqi = 0 and Xq = 0. Now, denote by Y qn+1 := (yq1, y
q
2, . . . , y

q
m)T the

last column of Yq. As rankD = n, from (75) we see that

1 ≥ rank(aq, bq + FY qn+1) = rank

(
1/q 0 · · · 0 0
yq1 yq2 · · · yqm 1/q

)T
,

which is a contradiction. Thus, N = Cn+1 is not (λB −A)-stable.

8.3 Two column minimal indices which are different than
zero.

Define λD − C := λ[In, 0]− [0, In], λF − E := λ[Ip, 0]− [0, Ip] and λH −G :=
λ
(
Im
0

)
−
(

0
Im

)
, in this case we infer that the pencil λB − A and its unique

reducing subspace N have the form

λB −A =

λD − C 0 0
0 λF − E 0
0 0 λH −G

 , N =

〈In+1 0
0 Ip+1

0 0

〉 ,
respectively.

Consider the sequences

aq =


1/q 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

 ∈ C(m+1)×(n+1), bq =

0 · · · 0 0
...

. . . 0 0
0 · · · 0 1/q

 ∈ C(m+1)×(p+1).

Then

λBq −Aq = λ

D 0 0
0 F 0
0 bq H

−
C 0 0

0 E 0
aq 0 G

→ λB −A,

and moreover, ν(λBq − Aq) = 1. Hence, if N is (λB − A)-stable, there exist
sequences of matrices Xq → 0 ∈ Cm×(n+1) and Yq → 0 ∈ Cm×(p+1) such that
the subspace

Nq :=

〈In+1 0
0 Ip+1

Xq Yq

〉

is (λBq −Aq)-reducing; that is, dim(Aq(Nq) +Bq(Nq)) = n+ p+ 1. Therefore

rank

 C 0 D 0
0 E 0 F

aq +GXq GYq HXq bq +HYq

 = n+ p+ 1.

Denote by Xq = (xij) and Yq = (ykl), from the previous equality it follows that

rank



0 In 0 0 In 0 0 0
0 0 0 Ip 0 0 Ip 0

1/q 0 · · · 0 0 0 · · · 0 x11 · · ·x1n x1,n+1 y11 · · · y1p y1,p+1

x11 x12 · · ·x1,n+1 y11 y12 · · · y1,p+1 x21 · · ·x2n x2,n+1 y21 · · · y2p y2,p+1

...
...

...
...

...
...

...
...

xm1 xm2 · · ·xm,n+1 ym1 ym2 · · · ym,p+1 0 · · · 0 0 0 · · · 0 1/q


= n+p+1.
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Observe now that, choosing the submatrix formed by the n + p + 2 first
columns, we deduce immediately that yi1 = 0 for i = 1, 2, . . . ,m. In the same
way, with the n+ p+ 2 last columns we see that xi,n+1 = 0 for i = 1, 2, . . . ,m.
Hence with the entries 1 corresponding to the places (n, n+ 1) and (n+ 1, 2n+
p+4) we can reduce the previous matrix to one on the same form, but reducing
the sizes from n to n − 1 and from p to p − 1, and whose rank is n + p − 1.
Following this process we reach the case where at least one column minimal
index is equal to zero, which is already solved in Subsections 8.1 and 8.2.

9 Proof of Assertion (7) of Theorem 4

In this section we will analyze the case of a matrix pencil with only one row
minimal index which is different than zero, and one column minimal index which
is equal to zero. Previously we will introduce some auxiliary results. We begin
by stating some bounds about the maximum modulus of a root of a polynomial,
that can be seen in [14], Section 8, pp. 243–247.

Lemma 38. Let f(z) = a0 +a1z+ · · ·+an−1z
n−1 +zn be a polynomial of degree

n with coefficients in C distinct from the polynomial zn. Denote

α := max
0≤k≤n−1

((
n

k

)−1

|ak|

)1/(n−k)

.

Assume that zn is a root of maximum modulus of f(z). Then

(21/n − 1)α < |zn| ≤ (21/n − 1)−1α.

In order to prove Lemma 41, we need the following two lemmas. The first
one, Lemma 39, is deduced immediately from (34).

Lemma 39. Consider the matrix pencil λB − A ∈ P[λ]m×n and the matrix
T kλB−A defined in (28). Then

(i) If ν(T kλB−A) = 0, then λB − A has not any column minimal indices
≤ k − 1.

(ii) If λB −A = λ(Ik, 0)− (0, Ik) ∈ P[λ]k×(k+1), then

ν(T pλB−A) =

{
0 if p ≤ k
1 if p ≥ k + 1.

The second one, Lemma 40, can be seen in [5], Theorem 13.5.1, p. 406.

Lemma 40. Let F ∈ Cp×q and let X ∈ Cq×r be a basis matrix of KerF .
Consider a sequence Fq → F such that, for every q, ν(Fq) = ν(F ). Then there
exist a sequence Xq → X and a positive constant K1 such that, for every q, Xq

is a basis matrix of KerFq and

‖Xq −X‖ ≤ K1‖Fq − F‖.
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Based on these results we will prove the following lemma.

Lemma 41. Consider the pencil λB − A = λ(Ik, 0) − (0, Ik) ∈ P[λ]k×(k+1).
Then for each sequence λBq−Aq → λB−A there exist two sequences of matrices
Pq → Ik and Qk → Ik+1 such that, for every q, we have P−1

q (λBq − Aq)Qq =
λB −A; moreover, there exists a constant K > 0 that satisfies

max{‖Pq − Ik‖, ‖Qq − Ik+1‖} ≤ K(‖Aq −A‖+ ‖Bq −B‖).

Proof. Note first that by Lemma 39, ν(T k+1
λB−A) = 1. Denote by {e1, e1, . . . , ek+1}

the vectors of the canonical basis of Ck+1, it is clear that

Ker(T k+1
λB−A) =

〈
ek+1

ek
...
e1


〉
. (76)

Now consider a sequence λBq − Aq → λB − A. Since nrank(λBq − Aq) = k, it
follows that the pencil λBq−Aq has at least a column minimal index. Moreover,
for every p we have ν(T pλBq−Aq ) ≤ ν(T pλB−A), by Lemma 39, it follows that the
pencil λBq − Aq has not any column minimal indices < k. That is, it has
one column minimal index which is equal to k; hence ν(T k+1

λBq−Aq ) = ν(T k+1
λB−A).

Since T k+1
λBq−Aq → T k+1

λB−A and for every q the matrices T k+1
λBq−Aq have the same

nullity, it follows from (76) and Lemma 40 that there exists a basis matrix of
the subspace Ker(T k+1

λBq−Aq )
xqk+1

xqk
...
xq1

 converging to


ek+1

ek
...
e1


such that ‖xqi − ei‖ ≤ K1(‖Aq −A‖+ ‖Bq −B‖). Now let

Pq := (Aqx
q
2, · · · , Aqx

q
k+1), Qq := (xq1, · · · , x

q
k+1).

It is obvious that P−1
q (λBq−Aq)Qq = λB−A and ‖Qq−Ik+1‖ ≤ K1(‖Aq−A‖+

‖Bq−B‖). It suffices to demonstrate that ‖Pq−Ik‖ ≤ K2(‖Aq−A‖+‖Bq−B‖)
to conclude the proof of the lemma.

In fact, denoting by (f1, f2, . . . , fk) the canonical basis of Ck, it follows that

‖Pq − Ik‖ ≤
k+1∑
i=2

‖Aqxqi − fi−1‖ =

k+1∑
i=2

‖Aqxqi −Aei‖.

Now

‖Aqxqi −Aei‖ ≤ ‖Aqxqi −Aqei‖+ ‖Aqei −Aei‖ ≤ ‖Aq‖‖xqi − ei‖+ ‖Aq −A‖‖ei‖
≤ (‖Aq −A‖+ ‖A‖)‖xqi − ei‖+ ‖Aq −A‖ ≤ K2(‖Aq −A‖+ ‖Bq −B‖),

2

With these previous results we are ready to prove Assertion (7) of Theorem 4.

Proof of Assertion (7) of Theorem 4
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Define D :=
(
In
0

)
and C :=

(
0
In

)
, both matrices of C(n+1)×n. Hence,

λB −A = λ(0, D)− (0, C) ∈ P[λ](n+1)×(n+1).

The unique reducing subspace of λB−A is N = 〈e1〉, with e1 the first canonical
vector of Cn+1. Note that ν(λB − A) = 1. Now consider a sequence (λBq −
Aq) → (λB − A). Then, by Lemma 40 and by Proposition 27, when studying
the Lipschitz stability of the subspace N , no generality is lost if we only consider
sequences of the form λBq−Aq = λ(εq, D)−(δq, C). Operating with the columns
of D, by Proposition 27, we can assume that

λBq −Aq = λ

(
0 In
aq 0

)
−
(

bq 0
Hq In

)
, (77)

with Hq = (cq1, c
q
2, . . . , c

q
n)T ∈ Cn.

Note that making row operations it is immediate to see that

det(λBq −Aq) = aqλ
n+1 −

n∑
i=1

cqiλ
i − bq.

Therefore, ν(λBq−Aq) = 1 if and only if aq = bq = cqi = 0, which is equivalent to
λBq−Aq = λB−A. For this case, it is clear that Nq = N is a reducing subspace
for λBq − Aq. Thus, from here on, we will assume that ν(λBq − Aq) = 0. In
order to prove that N is Lipschitz stable, it suffices to find sequences of complex
numbers xqi , i = 1, 2, . . . , n, such that for every q, the subspace

Nq :=

〈
1
xq1
xq2
...
xqn


〉

is (λBq−Aq)−reducing; that is, since ν(λBq−Aq) = 0, it follows that dimAq(Nq)+
Bq(Nq) = 1 holds. Or, which is the same, from (77)

rank



bq xq1
cq1 + xq1 xq2
cq2 + xq2 xq3

...
...

cqn−1 + xqn−1 xqn
cqn + xqn aq


= 1, (78)

and, moreover, that there exists a constant K > 0 such that,

|xqi | ≤ K(‖Bq −B‖+ ‖Aq −A‖), i = 1, 2, . . . , n. (79)

Note first that if aq = 0, it suffices to take xqi = 0 for each i. On the other
hand, if bq = 0, it is sufficient to choose xqi = −cqi for each i. Hence, we will
assume that aqbq 6= 0. In order for (78) to hold, since aq 6= 0, we search for the
xqi in such a way that the first column is proportional to the second one. Note
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that the proportionality factor is bq1/x
q
1. Now, doing operations in (78), by a

induction process it is proved that

xqk =

(xq1)k +

k−1∑
i=1

cqi b
i−1
q (xq1)k−i

bk−1
q

, k = 2, 3, . . . , n, (80)

and for xq1 we have

(xq1)n+1 +

n∑
i=1

cqi b
i−1
q (xq1)n−i+1 − aqbnq = 0. (81)

Consider the polynomial

fq(z) := zn+1 +

n∑
i=1

cqi b
i−1
q zn−i+1 − aqbnq .

We find a bound for the maximum modulus of its roots. Define Bkn+1 :=(
n+1
k

)−1/(n−k+1)
, by Lemma 38,

α = max{B0
n+1 | aqbnq |1/(n+1), B1

n+1 | cqnbn−1
q |1/n, . . . ,

. . . , | Bkn+1 | c
q
n−k+1b

n−k
q |1/(n−k+1), . . . , Bnn+1 | c

q
1 |}.

(82)

After that, we choose xq1 as one of the roots of f(z) that have maximum modulus.
By Lemma 38 and (82) it is clear that xq1 satisfies (79).

Let k ∈ {2, 3, . . . , n}. Then, combining (80) and (81) we infer that

xqk = −

n∑
i=k

cqi b
i−1
q (xq1)n−i+1 − aqbnq

bk−1
q (xq1)n+1−k

= −
n∑
i=k

cqi b
i−k
q

(xq1)i−k
+

aqb
n−k+1
q

(xq1)n−k+1
. (83)

In order to conclude this case, it suffices to see that each summand of (83) is
bounded by K(‖Bq −B‖+ ‖Aq −A‖), for a positive constant K.

First, by Lemma 38 and (82) it follows that there exists a positive constant
L such that |xq1|−1 ≤ L|aqbnq |−1/(n+1). Therefore,∣∣∣∣∣ aqbn−k+1

q

(xq1)n−k+1

∣∣∣∣∣ ≤ L
∣∣∣∣∣ aqb

n−k+1
q

(aqbnq )(n−k+1)/(n+1)

∣∣∣∣∣ = L
∣∣∣ak/(n+1)
q b(n−k+1)/(n+1)

q

∣∣∣ ≤ K(‖Bq−B‖+‖Aq−A‖).

Second, following Lemma 38 and (82) again, we see that there exists a positive
constant Li such that |xq1|−1 ≤ Li|cqi bi−1

q |−1/i. Thus,∣∣∣∣∣ c
q
i b
i−k
q

(xq1)i−k

∣∣∣∣∣ ≤ Li
∣∣∣∣∣ cqi b

i−k
q

(cqi b
i−1
q )(i−k)/i

∣∣∣∣∣ = Li

∣∣∣(cqi )k/ib(i−k)/i
q

∣∣∣ ≤ K(‖Bq−B‖+‖Aq−A‖).

2
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[3] J. Ferrer, M.I. Garćıa, F. Puerta: Differentiable families of subspaces, Li-
near Algebra Appl., 199 (1994) 229–252.
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