
A large reproducible benchmark of ontology-based
methods and word embeddings for word similarity

Juan J. Lastra-Dı́az 1a, Josu Goikoetxea 2b, Mohamed Ali Hadj Taieb 3c, Ana
Garcia-Serrano 4a, Mohamed Ben Aouicha 5c, Eneko Agirre 6b

aNLP & IR Research Group, ETSI de Informática (UNED)
Universidad Nacional de Educación a Distancia, Juan del Rosal 16, 28040 Madrid (Spain)

bIXA NLP group, Faculty of Informatics, UPV/EHU
Manuel Lardizabal 1 (20018), Donostia, Basque Country

cFaculty of Sciences of Sfax, Tunisia

Abstract

This work is a companion reproducibility paper of the experiments and results
introduced by Lastra-Dı́az et al. [44], which is based on the evaluation of a com-
panion reproducibility dataset with the HESML V1R4 library and the long-
term reproducibility tool called Reprozip. Human similarity and relatedness
judgements between concepts underlie most of cognitive capabilities, such as
categorisation, memory, decision-making and reasoning. For this reason, the re-
search on methods for the estimation of the degree of similarity and relatedness
between words and concepts has received a lot of attention in the fields of artifi-
cial intelligence and cognitive sciences. However, despite the huge research effort
done, there is a lack of a self-contained, reproducible and extensible collection of
benchmarks which being amenable to become a de facto standard for large scale
experimentation in this line of research. In order to bridge this reproducibility
gap, this work introduces a set of reproducible experiments on word similarity
and relatedness by providing a detailed reproducibility protocol together with
a set of software tools and a self-contained reproducibility dataset which allow
that all experiments and results in our aforementioned work to be reproduced
exactly. Our aforementioned primary work introduces the largest, detailed and
reproducible experimental survey on word similarity and relatedness reported
in the literature, which is based on the implementation of all evaluated meth-
ods into a same software platform. Our reproducible experiments evaluate most
of methods in the families of ontology-based semantic similarity measures and
word embedding models. Finally, we detail how to extend our experiments to
evaluate other unconsidered experimental setups.

Keywords:
Ontology-based semantic similarity measures, Word embeddings, Information
Content models, Reproducible benchmark, HESML, Reprozip

1jlastra@invi.uned.es (corresponding author)
2josu.goikoetxea@ehu.eus
3mohamedali.hadjtaieb@gmail.com
4agarcia@lsi.uned.es
5mohamed.benaouicha@fss.usf.tn
6e.agirre@ehu.eus

This is the accepted manuscript of the article that appeared in final form in Information Systems 96 : (2021) //
Article ID 101636, which has been published in final form at https://doi.org/10.1016/j.is.2020.101636. © 2020
Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction1

Human similarity and relatedness judgements between concepts underlie2

most of cognitive capabilities, such as categorisation, memory, decision-making3

and reasoning. Thus, the proposal of methods for the estimation of the de-4

gree of similarity and relatedness between words and concepts has been a very5

active line of research in the fields of Artificial Intelligence (AI), Natural Lan-6

guage Processing (NLP) and Information Retrieval (IR). For this reason, au-7

thors has been largely involved in this line of research during the last decade.8

For instance, we have proposed new ontology-based semantic similarity mea-9

sures [36, 39, 33, 34, 25, 24, 23, 22, 4, 3, 6], Information Content (IC) models10

[35, 37, 27, 26, 6], word embeddings [18, 20, 19, 21], distributional semantics11

measures [68, 1, 7], semantic measure libraries [43, 5], reproducibility resources12

[40, 45], word similarity benchmarks [1], reproducible experiments on word simi-13

larity based on WordNet [34, 41] and reproducible benchmarks between semantic14

measures libraries [34, 38].15

Main approaches on word similarity and relatedness proposed in the litera-16

ture can be categorised in two large families as follows: (1) Ontology-based se-17

mantic similarity Measures (OM), and (2) distributional measures whose most18

recent and successful methods are based on Word Embedding (WE) models.19

Precisely, our primary work [44] introduces a deep experimental study on both20

aforementioned families of methods encouraged by the recent advances in the21

family of WE models, which is based on the implementation and evaluation of22

all methods in a same software platform based on HESML V1R4 [42] and Word-23

Net 3.0 [50], as well as their subsequent recording with the Reprozip long-term24

reproducibility tool [13]. Before the publication of this work, the only large25

reproducible experimental surveys on word similarity reported in the literature26

were those introduced by Lastra-Dı́az and Garćıa-Serrano [36, 35, 37] in another27

reproducibility paper [43] belonging to this same reproducibility initiative [12],28

in which we also find other works such as those introduced by Wolke et al. [66]29

and Fariña et al. [14]. However, there is no neither joint reproducible bench-30

marks on word embeddings and ontology-based semantic similarity measures31

nor other ones evaluating the latest family of methods on so large count of32

datasets as those evaluated by our primary work [44].33

Reproducibility of methods and research results in the field of NLP has be-34

come a serious problem which severely hampers any research effort and the35

smooth integration of newcomers in the field, which is especially hard for most36

graduate students who start their scientific career in this aforementioned field.37

This reproducibility gap was already highlighted in a pioneering work by Ped-38

ersen [54], being subsequently confirmed by Fokkens et al. [16] by evaluating39

several works in the same line of research tackled herein. More recently, Branco40

et al. [9] introduce a call for reproducibility submissions in a known NLP jour-41

nal to bridge the aforementioned reproducibility gap. We subscribed to this42

reproducibility alarm by adopting as basic norm the detailed replication of all43

methods evaluated in our papers, as well as the warning on many contradictory44

or unreproducible results in a series of papers in this line of research, such as the45

works introduced by Lastra-Dı́az and Garćıa-Serrano [36, 35, 37], Lastra-Dı́az46

et al. [43] and our primary paper [44]. In a recent and valuable reproducibility47

2

study in the field of NLP, Wieling et al. [64, p.641] found that only a third part48

of the published works (36.2%) provided their source code; however, they found49

by evaluating a random sample of ten works that only a tenth part of the former50

group could be reproduced exactly. Thus, this later finding yields an alarming51

ratio of only a 3.62% of reproducible works in this aforementioend study. For52

all reasons above, we subscribe both the reproducible manifesto [53] for a repro-53

ducible science and reproducibility initiative lead by Information Systems [12],54

as well as the slow science manifesto7 for a reflective research. Finally, we make55

our own the words of Pedersen [54, p.470]: “we might one day only accept for56

publication articles that are accompanied by working software that allows for57

immediate and reliable reproduction of results”.58

The aim of this work is to introduce a detailed experimental setup based on59

a collection of publicly available software tools [42] and reproducibility resources60

[45, 46], which are provided as supplementary material, with the aim of exactly61

reproducing all experiments and results reported in our primary work [44].62

1.1. Main motivation63

Our first motivation is to introduce a self-contained and easily reproducible64

set of experiments on word similarity and relatedness which allow to reproduce65

all experiments, results and conclusions introduced by our primary work [44]66

exactly.67

A second motivation is the lack of a self-contained, reproducible and exten-68

sible collection of benchmarks on word similarity and relatedness which jointly69

evaluate the most recent methods on the families of ontology-based semantic70

similarity measures and word embedding models on a same software platform,71

and consequently, being amenable to become a de facto standard for large scale72

experimentation in this line of research. Despite the huge research effort done73

during the last decades, such as witnessed by the plethora of methods reviewed74

and evaluated in our primary work [44], there is still a lack of a fully auto-75

matic, reproducible and extensible collection of benchmarks which make the76

evaluation and development of word similarity and relatedness methods easier.77

In general, there is a lack of reproducibility resources in this line of research78

which was partially bridged by the introduction of several semantic measures79

libraries, such as SML [29], SISR [5] and the most recent HESML [43] which is80

the largest and efficient among them, in addition to provide self-contained and81

easily reproducible experiments by the first time. Likewise, the reproducible82

experiments and reproducibility datasets introduced by Lastra-Dı́az et al. [43]83

and Lastra-Dı́az and Garćıa-Serrano [40, 41, 38] respectively have allowed by84

the first time to reproduce a set of large experimental surveys on ontology-based85

semantic similarity measures based on WordNet [36, 35, 37] exactly. However,86

recent and fast advances in the family of word embedding models together with87

the active research on ontology-based methods have raised the need to carry-out88

joint evaluations of both families of methods in a large set of benchmarks to89

elucidate the state of the problem.90

7http://slow-science.org/

3

http://slow-science.org/

1.2. Definition of the problem and contributions91

This work tackles the problem of designing and implementing for the first92

time a self-contained and easily reproducible set of experiments on word similar-93

ity and relatedness of the families of ontology-based semantic similarity measures94

based on WordNet and word embeddings by providing a very detailed repro-95

ducibility protocol together with a set of software tools [42] and a companion96

reproducibility dataset [45] which is publicly available at [46]. In addition, we97

detail how our reproducible experiments could be extended for setting up and98

evaluating unconsidered experimental setups including other datasets, word em-99

beddings or ontology-based semantic similarity measures.100

The rest of the paper is structured as follows. Section 2 introduces HESML101

library [43] and Reprozip tool [12] which set the software platform originally102

used to run all experiments introduced herein and our long-term reproducibility103

platform respectively. Section 3 introduces the new reproducible experiments104

on word similarity whilst section 4 details how them can be extended or created105

new ones from scratch. Finally, we introduce our conclusions and future work.106

2. Background on HESML and Reprozip107

HESML [43] is a self-contained Java software library of semantic measures108

based on WordNet whose latest version, called HESML V1R4 [42], also supports109

the evaluation of pre-trained word embedding models, such as those introduced110

by Mikolov et al. [49], Pennington et al. [57], Schwartz et al. [61], Wieting111

et al. [65], Goikoetxea et al. [20], Bojanowski et al. [8], Agirre and Soroa [2],112

Camacho-Collados et al. [11] and Mrkšić et al. [52]. HESML is a self-contained113

experimentation platform on word similarity and relatedness which is especially114

well suited to run large experimental surveys by supporting the execution of au-115

tomatic reproducible experiment files on word similarity based on a XML-based116

file format (*.exp). Despite the latest version of HESML only supports Word-117

Net, it could be easily extended to manage other ontologies by implementing118

the proper parsers as detailed by Lastra-Dı́az et al. [43]. HESML library has119

been completely developed in NetBeans 8 and Java 8, being distributed with120

three WordNet versions whilst HESMLclient is a complementary Java console121

program whose aim is to run word similarity experiments by calling HESML122

functionality. For a detailed introduction to HESML, we refer the reader to123

its introductory paper [43]. Table 1 shows a summary of technical and legal124

information of the latest HESML version used in our experiments.125

On the other hand, ReproZip is a virtualization tool introduced by Chirigati126

et al. [13], whose aim is to warrant the exact replication of experimental results127

onto different systems from that originally used in their creation. Reprozip128

captures all the program dependencies and is able to reproduce the packaged129

experiments on any host platform, regardless of the hardware and software con-130

figuration used in their creation. Thus, ReproZip warrants the reproduction131

of the experiments introduced herein in the long term. Other valuable feature132

of Reprozip is that it allows to modify the input files of any Reprozip package133

with the aim of evaluating a set of experiments using originally unconsidered134

methods, configuration parameters or datasets. Reprozip supports main virtu-135

alization platforms as Docker and VirtualBox; however, our preferred option is136

Docker. For a comparison of these two types of virtualization platforms, we137

4

HESML software library Description

Current code version. V1R4

Legal Code License. Creative Commons By-NC-SA 4.0

Permanent code repository

used for this version.

http://dx.doi.org/10.17632/t87s78dg78.4

GitHub repository https://github.com/jjlastra/HESML.git

Software code languages

and tools.

Java 8, Java SE DevKit 8, NetBeans 8.0 or higher

Compilation requirements

and operating systems.

Java SE Dev Kit 8, NetBeans 8.0 or higher and

any Java-compliant operating system.

Documentation and

source code examples

Sample source code in the HESMLclient program.

Community forum

for questions.

hesml+subscribe@googlegroups.com,

hesml+unsubscribe@googlegroups.com

Table 1: Technical and legal information of the latest version of the HESML software library
[43] used in our experiments.

Reprozip tool Description

Current version 1.0.16

Web site https://www.reprozip.org

Supported platforms Linux, Windows and MacOS

Table 2: Technical and access information of Reprozip long-term reproducibility tool [12].

refer the reader to the survey introduced by Merkel [48], in which the author138

introduces Docker and compares it with classic Virtual Machines (VM) such139

as VirtualBox. Finally, Reprozip also simplifies the generation, packaging and140

execution of Docker-based experiments. For all reasons above, we encourage141

the research community to use Reprozip as a long-term reproducibility backup.142

Table 2 shows a summary of technical and access information of the Reprozip143

reproducibility tool.144

3. The Reproducible Experiments on word similarity145

The aim of this section is to introduce a set of detailed experimental setups146

in order to replicate the methods and experiments introduced by our primary147

work [44] exactly. Section 3.1 details the experimental setup for the implemen-148

tation of our experiments in our primary work [44], then section 3.2 details the149

minimal system requirements for the testing platforms with the aim of running150

our reproducible experiments. Likewise, section 3.2 reports the running times151

obtained by the authors and reviewers in the evaluation of our reproducible152

experiments in different testing platforms. Section 3.3 details the procedure153

for obtaining and compiling HESML source code, as well as running its pre-154

compiled jar files. We note that it is unneeded to compile the HESML source155

code to run the experiments because the HESML distribution already includes156

pre-compiled versions of the HESMLclient program with the latest HESML ver-157

sion. Next, section 3.4 introduces the method to run our experiments which are158

based on the running of HESMLclient program whilst section 3.5 introduces159

5

http://dx.doi.org/10.17632/t87s78dg78.4
https://github.com/jjlastra/HESML.git
https://www.reprozip.org

our long-term reproducibility method based on Reprozip. Finally, section 3.6160

introduces the automated data analysis carried-out to process the raw similar-161

ity values generated by our experiments and computing all evaluation metrics162

reported in our aforementioned primary work [44], as well as a report in HTML163

file format showing all data tables generated from our raw data.164

3.1. Experimental setup in our primary paper165

All experiments carried-out in our primary paper [44] were implemented in166

HESML V1R4 [42] by running HESMLclient program with a reproducible ex-167

periment file in XML-based (*.exp) file format which encodes the evaluation of168

all semantic measures in all datasets as listed in table 4. Experimental setup169

and software platform used to implement all our experiments is detailed in [44,170

figure 3]. HESML V1R4 implements all ontology-based semantic similarity mea-171

sures based on WordNet 3.0 as well as the evaluation of all pre-trained word172

embedding models evaluated in our benchmarks. In addition, execution of our173

experiments was recorded into a long-term reproducibility Reprozip file, called174

“WN ontology measures vs embeddings.rpz”, which is part of our companion re-175

producibility dataset [45], being publicly available at [46]. Our aforementioned176

Reprozip file can be reproduced in any Reprozip compliant platform8 as detailed177

in section 3.5. Thus, all our methods, experiments and results can be repro-178

duced using two different software platforms and methods as detailed in table 3.179

First reproducibility method is based on the execution of HESMLclient program180

whilst second one is based on the execution of the aforementioned Reprozip file.181

Sotware used Supported reproducibility methods

HESMLclient [42]

You should download HESML V1R4 [42] and a supplemen-
tary ZIP file containing the collection of pre-trained word
embedding files (WordEmbeddings.zip [46]), and then run-
ning HESMLclient with the reproducible file as input, as
detailed in section 3.4.

ReproUnzip [13]
You should download our supplementary Reprozip file [46]
and setting up and running Reprounzip as detailed in sec-
tion 3.5.

Table 3: Our two methods to reproduce all experiments and results introduced by our primary
work [44]. HESMLclient method is that originally used to run our experiments in our primary
work, whilst ReproUnzip provides a long-term reproducibility method regardless the original
testing platform used to run our experiments.

The two reproducibility methods cited in table 3 were introduced in the182

introductory HESML paper [43] which introduces a detailed protocol to repro-183

duce all experiments, results, data tables and figures reported in three papers184

previously introduced by Lastra-Dı́az and Garćıa-Serrano [35, 36, 37], as well185

as the benchmarks between semantic measures libraries reported in [43]. All186

experiments detailed herein were originally implemented on an UBUNTU 16.04187

8https://www.reprozip.org/

6

https://www.reprozip.org/

virtual computer with 8 Gb of RAM and 100 Gb of disk space called UBUNTU-188

base1 as detailed in table 5. However, it could be reproduced in any Java 8 or189

Reprounzip compliant platform by using any of the two aforementioned meth-190

ods above, which includes most Linux-based, MacOS-based and Windows-based191

platforms. For this reason, our experiments have been successfully reproduced192

using both HESMLclient and ReproUnzip methods (see figure 1) in all testing193

platforms detailed in table 5 with the running times reported in table 6.194

Figure 1 shows the three reproducibility workflows introduced herein which195

are defined by the selection of one of the two reproducibility methods shown in196

table 3 with a specific testing platform. HESML distribution includes the pre-197

compiled version of HESML V1R4 and HESMLclient .jar files, thus any reader198

interested in reproducing our experiments can directly follow the setup instruc-199

tions in tables 7 and 8, and subsequently running the experiments as detailed200

in tables 10 and 11. On the other hand, table 4 shows the full collection of re-201

producible experiments encoded by the “benchmark survey.exp” file (see figure202

2), as well as the corresponding raw output files that are generated during its203

execution whose subsequent processing allows to reproduce the results reported204

in our primary paper [44] exactly, as detailed in section 3.6.205

Word similarity and relatedness benchmarks reproduced herein [44]

Dataset Raw output files generated by our experiments

MC28 [51] raw similarity values MC28 dataset.csv

RG65 [60] raw similarity values RG65 dataset.csv

PSfull [58] raw similarity values PSfull dataset.csv

Agirre201 [1] raw similarity values Agirre201 lowercase dataset.csv

SimLex665 [30] raw similarity values SimLex665 dataset.csv

MTurk771 [28] raw similarity values MTurk771 dataset.csv

MTurk287/235 [59] raw similarity values MTurk287-235 dataset.csv

WS353Rel [15] raw similarity values WS353Rel dataset.csv

Rel122 [63] raw similarity values Rel122 dataset.csv

WS353Full [15] raw similarity values WS353Full dataset.csv

SimLex111 [30] raw similarity values SimLex111 dataset.csv

SimLex222 [30] raw similarity values SimLex222 dataset.csv

SimLex999 [30] raw similarity values SimLex999 dataset.csv

SimVerb3500 [17] raw similarity values SimVerb3500 dataset.csv

MEN [10] raw similarity values MEN dataset.csv

YP130 [67] raw similarity values YP130 dataset.csv

RW2034 [47] raw similarity values RareWords2034 dataset.csv

RW1401 [47] raw similarity values RareWords1401 dataset.csv

SCWS [32] raw similarity values SCWS1994 dataset.csv

Table 4: Collection of raw output files generated by the execution of the “bench-
mark survey.exp” reproducible experiment file by any of the two aforementioned reproducibil-
ity methods. Each raw output file contains the raw similarity or relatedness values returned
for each word pair by each semantic measure. These raw output files are subsequently pro-
cessed by a R-language script to produce the final data tables shown in our primary paper
[44], as detailed in section 3.6. For further details on the datasets above, we refer the reader
to our primary paper [44, table 3].

HESML V1R4 distribution [42] contains all source files and pre-compiled206

versions of the HESML-V1R4.jar library and HESMLclient.jar Java console207

7

Start

HESML or

ReproUnzip

method?

Windows

or Linux

system?

ReproUnzip setup

for UBUNTU

(see table 12)

ReproUnzip-based

experiments

setup & running

(see table 13)

Recovery of

raw output data

(see table 14)

HESML setup

for UBUNTU

(see table 8)

HESMLclient

experiments

run on UBUNTU

(see table 11)

HESML setup

for Windows

(see table 7)

HESMLclient

experiments

run on Windows

(see table 10)

Raw similarity &

relatedness data files

(see table 4)

Post-processing

&

report generation

(see table 15)

Final data files

(see table 16)

HTML report

(see primary

paper [44])

Spreadsheet

software

default

Web browser

Do values

match our

results in [44]?

End

HESML

method

ReproUnzip-based method

extracts

Linux-based system

produces

is processed by

produces produces

Windows-based

system

produces

is opened into
to be loaded

into any

check check

Figure 1: Reproducibility workflows using either HESMLclient or ReproUnzip programs to run
the reproducible experiments introduced herein. The three workflows detailed above produce
the same raw and processed data files, as well as a collection of HTML pages which reproduce
all data tables reported by our primary paper [44].8

program. Thus, it is enough to download its official distribution from Mende-208

ley [42] or GitHub9 in order to run our experiments. However, for the sake of209

completeness, section 3.3 introduces the detailed steps to obtain and compile210

HESML V1R4. Finally, we introduce a companion reproducibility dataset [45],211

being publicly available at [46]. This aforementioned reproducibility dataset212

gathers into a common repository all data files required to reproduce our exper-213

iments with the aim of providing a consolidated and permanent version of these214

files, and thus avoiding the tedious work of gathering all these stuff as well as215

any risk of alteration or unavailability of them in the future.216

Testing platform Type Operating Sys. Configuration Tested by

Ubuntu-base1 Virtual Ubuntu 16.04 1 Core Intel E5-2640-v2
CPU @2 GHz, 8 Gb RAM,

100 Gb SSD disk

Authors

Ubuntu-base2 Virtual Ubuntu 16.04 2 Intel Core Xeon E5 2699-

v4 CPU @2.2 GHz, 8 Gb

RAM, 100 Gb SSD disk

Authors

Ubuntu-base3 Virtual Ubuntu 16.04 1 Core Intel E5-2640-v2

CPU @2 GHz, 8 Gb RAM,

200 Gb SSD disk

Authors

Ubuntu-base4 Virtual Ubuntu 16.04 2 Intel Core Xeon E5 2699-

v4 CPU @2.2 GHz, 8 Gb

RAM, 200 Gb SSD disk

Authors

Windows-base1 Laptop Windows 10x64 1 Intel Core i7-5500U CPU
@2.4GHz, 16 Gb RAM,

100 Gb SSD disk

Authors

XXXX-rev1 — — — *Reviewer 1

XXXX-rev2 — — — *Reviewer 2

XXXX-rev3 — — — *Reviewer 3

Table 5: Testing platforms successfully used to reproduce our experiments. Virtual com-
puters are cloud-based servers rented to clouding.io which are based on the OpenStack
virtualization platform [62]. Ubuntu-base1 and Ubuntu-base2, as well as as Ubuntu-base3
and Ubuntu-base4, differ only in the disk space demanded by Reprounzip. On the other
hand, Ubuntu-base1 and Ubuntu-base2 differ from Ubuntu-base3 and Ubuntu-base4 in that
these two later platforms use a more modern CPU that the former ones, which were used in
the implementation of our original experiments in [44]. For this reason, the experiments re-
produced on Ubuntu-base3 and Ubuntu-base4 configurations report lower running times than
the former ones as shown in table 6. (*) We will include the testing platforms evaluated by
the reviewers.

3.2. System requirements and performance evaluation217

Table 5 shows the testing platforms in which we have successfully reproduced218

the experiments detailed herein, whilst table 6 shows their running times in the219

completion of all experiments for each aforementioned reproducibility method220

and testing platform. The configuration of these platforms sets the minimal221

system requirements to reproduce our experiments. Unlike the execution of our222

experiments using HESMLclient program on the UBUNTU-based computers223

9https://github.com/jjlastra/HESML.git

9

clouding.io
https://github.com/jjlastra/HESML.git

detailed in table 5, the execution using Reprounzip demands more disk space224

because it needs to setup a docker container to run the experiments. For this225

reason, UBUNTU-Reprounzip platforms shown in table 5 are based on a mini-226

mal overall disk space of 200 Gb with the aim of setting up UBUNTU, Docker227

and the resources required by our Reprozip package.228

Run Testing platform Method Running time Tested by

1 Ubuntu-base1 HESMLclient 17581 min ≈ 12.2 days Authors

2 Ubuntu-base3 ReproUnzip 18109 min ≈ 12.6 days Authors

3 Ubuntu-base2 HESMLclient 9622 min ≈ 6.68 days Authors

4 Ubuntu-base4 ReproUnzip 11732 min ≈ 8.15 days Authors

5 Windows-base1 HESMLclient 10 days Authors

6 Ubuntu-base2 HESMLclient 10201 min ≈ 7.08 days Authors

7 *Reviewer 1

8 *Reviewer 2

9 *Reviewer 3

Table 6: Running times obtained on different testing platforms for the execution of all bench-
marks by using HESMLclient program with the ’benchmark survey.exp’ experiment file, or by
running ReproUnzip program with the “WN ontology measures vs embeddings.rpz” file. (*)
We will include the performance reported by the reviewers.

3.3. Obtaining and compiling HESML229

Table 1 shows the technical information required to obtain and compile the230

HESML source code and run the experiments detailed in table 4. HESML V1R4231

distribution includes compiled versions of HESML library and the HESMLclient232

program, thus this later program could be directly used without the need of com-233

piling the source code in NetBeans. There are two different ways of obtaining234

the HESML source code as follows: (1) by downloading the latest HESML ver-235

sion from the permanent Mendeley Data link [42]; or (2) by downloading it from236

its GitHub repository detailed in table 1. Once the HESML source code has237

been downloaded and extracted onto your hard drive, the project will have the238

folder structure shown in figure 2 and detailed below:239

HESML is the main software library folder containing the NetBeans project240

and HESML source code. Below this folder you find the dist folder241

which contains the HESML-V1R4.jar distribution file generated during242

the compilation, whilst HESMLclient folder contains the source code of the243

HESMLclient console application. The main aim of the HESMLclient.jar244

application is to provide a collection of sample functions in order to show245

the HESML functionality, as well as running any (*.exp) reproducible ex-246

periment file.247

PedersenICmodels folder contains the full WordNet-InfoContent-3.0 collec-248

tion of WordNet-based frequency files created by Ted Pedersen [55]. The249

file names denote the corpus used to build each file. The readme file de-250

tails the method used to build the frequency files, which is also detailed251

in [56].252

10

HESML Library/

HESML/

HESMLclient/

PedersenICmodels/

ReproducibleExperiments/

AI paper [37]/

EAAI paper [36]/

Embeddings vs OntologyMeasures paper [44]/

benchmark survey.exp

RawOutputFiles/

ProcessedOutputFiles/

KBS paper [35]/

Post-scripts/

embeddings vs ontomeasures final tables.R

RawOutputFiles/

All paper tables.exp [36, 35, 37]

WordNetBasedExperiments.xsd

WordEmbeddings/*

WN Datasets/

WordNet-2.1/

WordNet-3.0/

WordNet-3.1/

Figure 2: Directory structure of the HESML library once it has been extracted onto disk.
The reproducible experiment file and the post-processing R-language script used to reproduce
and generate our final data tables respectively are shown in dashed-line boxes in grey, whilst
XML-based experiment file format is detailed by XML-schema file shown in unfilled dashed-
line box. (*) WordEmbeddings folder contains the pre-trained files for all word embedding
models used in our experiments; however, this folder is neither included by the HESML
V1R4 [42] distribution nor HESML V1R4 release at GitHub repository because its large size.
Thus, you must download the “WordEmbeddings.zip” file [46] and extract it onto the main
HESML Library directory to retrieve this folder and its content.

11

ReproducibleExperiments folder contains one subfolder for each paper in-253

troduced by Lastra-Dı́az and Garćıa-Serrano [35, 36, 37] and our pri-254

mary paper [44] reproduced herein. Likewise, the aforementioned folder255

also contains a XML-schema file called “WordNetBasedExperiments.xsd”,256

which describes the syntax of all XML-based experiment files (*.exp),257

and the All paper tables.exp file with the definition of all the reproducible258

experiments corresponding to the three aforementioned papers of Lastra-259

Dı́az and Garćıa-Serrano. All (*.exp) files have been created with the260

XML Spy editor. In addition, this folder contains the RawOutputFiles261

subfolder with all the raw output files of the three aforementioned papers262

[35, 36, 37].263

Post-scripts folder contains a set of post-processing R scripts which process264

the raw output files generated by all reproducible experiments to generate265

all final data tables and figures reported in our papers exactly.266

WN datasets folder contains a collection of (*.csv) data files with fields sep-267

arated by semicolon which correspond to the word similarity benchmarks268

shown in table 4, whilst WordNet-2.1, WordNet-3.0 and WordNet-3.1269

contain the database files of three different versions of WordNet.270

Embeddings vs OntologyMeasures paper folder contains the reproducible271

experiment file “benchmark survey.exp” encoding all benchmarks intro-272

duced herein and detailed in table 4. In addition, this folder contains273

a subfolder called “RawOutputFiles” containing all raw output similar-274

ity files generated by our experiments. The R-language script file called275

“embeddings vs ontomeasures final tables.R” generates all files in “Pro-276

cessedOutputFiles” subfolder.277

Tables 7 and 8 show a detailed step-by-step procedure to set up our repro-278

ducible experiments based on HESML on any Windows or Linux-based system279

respectively. HESML distribution includes pre-compiled versions of HESML-280

client program and HESML library; thus, you could skip the compilation step281

for running our experiments. However, for the sake of completeness, we briefly282

detail the compilation steps in table 9.283

12

Step Windows-based setup instructions for HESMLclient experiments

(1) Install Java 8 runtime or higher in your workstation.

(2) Open a PowerShell console (Windows 7 and higher) in any directory.

(3) Create a working directory and move to it as follows:

$ mkdir REPRODIR
$ cd REPRODIR

(4) Download and extract latest HESML version from its GitHub repository (see
URL below) using either any Web browser or PowerShell as detailed below:

$ powershell -command “& { iwr https://github.com/jjlastra/HESML/

archive/master.zip }”
$ Expand-Archive ./master.zip .

(5) Download the WordEmbeddings.zip file from our Dataverse repository [46, see
URL below] and extract it onto HESML root directory using either any Web
browser or PowerShell as detailed below:

$ cd HESMLmaster/HESML LIBRARY
$ mkdir WordEmbeddings
$ cd WordEmbeddings
$ powershell -command “& { iwr https://doi.org/10.21950/

wordembeddings.zip }”
$ Expand-Archive ./wordembeddings.zip .

Table 7: Detailed instructions for downloading HESML V1R4 onto a Windows-based system
from its GitHub repository.

Step Linux-based setup instructions for HESMLclient experiments

(1) Install Java 8 and Java SE Dev Kit 8 or higher as follows:
$ sudo apt-get update
$ sudo apt-get -y install default-jdk

(2) Install UNZIP program as follows:
$ sudo apt-get update
$ sudo apt-get -y install unzip

(3) Create a working directory and move to it as follows:
$ mkdir REPRODIR
$ cd REPRODIR

(4) Download the latest HESML version from GitHub (see URL below) as
follows:

$ wget https://github.com/jjlastra/HESML/archive/master.zip

(5) Extract master.zip file onto your working directory as follows:
$ unzip master.zip

(6) Download the WordEmbeddings.zip file from our Dataverse repository
[46, see URL below] and extract it onto HESML root directory as de-
tailed below.

$ cd HESMLmaster/HESML LIBRARY
$ wget https://doi.org/10.21950/wordembeddings.zip

$ unzip wordembeddings.zip -d WordEmbeddings

Table 8: Detailed instructions for downloading HESML V1R4 from its GitHub repository
onto a Linux-based system.

13

https://github.com/jjlastra/HESML/archive/master.zip
https://github.com/jjlastra/HESML/archive/master.zip
https://doi.org/10.21950/wordembeddings.zip
https://doi.org/10.21950/wordembeddings.zip
https://github.com/jjlastra/HESML/archive/master.zip
https://doi.org/10.21950/wordembeddings.zip

Step Detailed instructions to compile HESML

(1) Follow the step-by-step procedures to download HESML source code as de-
tailed in tables 7 and 8 for Windows or Linux-based systems respectively.

(2) Install Java SE Dev Kit 8 and NetBeans 8.0.2 or higher in your workstation.

(3) Launch NetBeans IDE and open the HESML and HESMLclient projects con-
tained in the HESML root folder as shown in table 2. NetBeans automatically
detects the presence of a nbproject subfolder with the project files.

(4) Select HESML and HESMLclient projects in the project treeview respectively.
Then, invoke the “Clean and Build project (Shift + F11)” command in order
to compile both projects.

Table 9: Detailed instructions for compiling HESML onto any Windows or Linux-based sys-
tem. We recall that the compilation of HESML is unneeded to run all experiments introduced
herein.

3.4. Running the experiments with HESMLclient284

Once you have downloaded and extracted the HESML V1R4 library onto285

your hard drive as detailed in section 3.3, you are ready to run the reproducible286

experiments by following the steps detailed in tables 10 and 11 for testing plat-287

forms based on Windows and Linux respectively. However, before to run the288

experiments, you must download the WordEmbeddings.zip file [46] and extract289

it onto the main HESML Library directory as detailed in step 5 of table 7 for290

Windows, and step 6 of table 8 for the Linux-based case. This later ZIP file291

contains all pre-trained word embedding files; however, it is not included in292

current HESML distribution because of its large size and the space limitations293

of GitHub and Mendeley repositories. We note that the original HESMLclient294

source code is defined to fetch the required input files from the folder structure295

of HESML as shown in figure 2.296

Step HESMLclient running instructions on any Windows-based system

(1) Open a command console in the HESMLclient directory as shown in figure 2.

$ cd REPRODIR/HESML Library/HESMLclient

(2) Run the following command with the reproducible experiment file:

$ java -jar -Xms4096m dist/HESMLclient.jar ../ReproducibleExperi-
ments/Embeddings vs OntologyMeasures paper/benchmark survey.exp

(3) Command in step 2 above will generate all raw output files listed in table

4 onto ../ReproducibleExperiments/Embeddings vs OntologyMeasures paper

folder (see figure 2).

Table 10: Detailed instructions for running our experiments with the HESMLClient program
on any testing platform based on Windows.

14

Step HESMLclient running instructions on any Linux-based system

(1) Open a Linux command console in the HESMLclient directory (see figure 2).

user@server$ cd REPRODIR/HESML Library/HESMLclient

(2) We create a “screen” session and run HESMLclient in background. Note that
HESMLclient execution could take up to two weeks (see table 6).

user@server$ screen -S REPROEXPS

user@screen$ java -jar -Xms4096m dist/HESMLclient.jar
../ReproducibleExperiments/Embeddings vs OntologyMeasures paper/benchmark survey.exp

(3) We detach from “screen” before to close the server main console

user@screen$ CTRL+a, d

(4) We reattach to the screen console to check the completion of HESMLclient

user@server$ screen -r REPROEXPS

(5) We destroy the “screen” console once finished HESMLclient execution

user@server$ screen -X -S REPROEXPS quit

(6) Second command in step (2) above will generate all raw

output files listed in table 4 onto ../ReproducibleExperi-

ments/Embeddings vs OntologyMeasures paper folder (see figure 2).

Table 11: Detailed instructions for running our experiments with the HESMLClient program
on any testing platform based on Linux.

3.5. Running the ReproZip experiments297

The ReproZip10 program was used for recording and packaging the running298

of the HESMLclient program with all the reproducible experiments defined by299

the “benchmark survey.exp” file into the “WN ontology measures vs embeddings.rpz”300

file, which is publicly available at our UNED Dataverse repository [46]. This301

later Reprozip file was generated by running Reprozip on the Ubuntu-base1302

workstation detailed in table 5; however, in order to run ReproUnzip based on303

Docker as detailed below is needed to set up an Ubuntu-Reprounzip platform304

(see table 5). Because the execution of the experiments takes long time, and305

Reprounzip with Docker cannot be executed in background mode without any306

output console, we will setup and use “screen” program on Linux.307

In order to set up and run the reproducible experiments introduced herein,308

you need to use ReproUnzip. ReproUnzip can be used with two different virtu-309

alization platforms: (1) Vagrant + VirtualBox, or (2) Docker. However, because310

of its simple setup and computational efficiency, our preferred ReproUnzip con-311

figuration is that based on Docker. For instance, in order to setup ReproUnzip312

based on Docker for Ubuntu, you should follow the detailed steps shown in table313

12, despite several steps possibly being unnecessary depending on your starting314

configuration. Once ReproUnzip and Docker have been successfully installed,315

table 13 shows the detailed instructions to set up and run the reproducible316

experiments. Those readers who prefer to use ReproUnzip with VirtualBox317

instead of Docker can consult the ReproZip installation page11.318

The running of the reproducible experiments based on Docker for Ubuntu319

tooks approximately one week in a modern virtual computer as detailed in320

table 6. Once the running is completed, you should follow the instructions321

10https://www.reprozip.org/
11 https://reprozip.readthedocs.io/en/1.0.x/install.html

15

https://www.reprozip.org/
https://reprozip.readthedocs.io/en/1.0.x/install.html

Step Detailed setup instructions for ReproUnzip on any Linux-based system

Steps (1-4) below install Reprounzip and all its dependencies.

(1) $ sudo apt-get update

(2) $ sudo apt-get -y install libffi-dev libssl-dev openssl openssh-server

(3) $ sudo apt-get -y install libsqlite3-dev python-dev python-pip screen

(4) $ sudo pip install reprounzip[all]

Steps (5-11) below install latest version of Docker CE whilst step 11 checks its in-
stallation. For further details, we refer the reader to the official Docker setup page:
https://docs.docker.com/install/linux/docker-ce/ubuntu/

(5) $ sudo apt-get -y install apt-transport-https ca-certificates

(6) $ sudo apt-get -y install curl gnupg-agent software-properties-common

(7) $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

(8) $ sudo add-apt-repository “deb [arch=amd64] https://download.docker.com/

linux/ubuntu $(lsb release -cs) stable”

(9) $ sudo apt-get update

(10) $ sudo apt-get -y install docker-ce docker-ce-cli containerd.io

(11) $ sudo docker run hello-world

Table 12: Detailed instructions on installing ReproUnzip with Docker for Ubuntu. Despite
that steps above could look tedious, we prefer that readers are aware of all packages being
installed instead of running a single setup script hiding this information.

shown in table 14 to retrieve the raw output files from the Docker container,322

as listed in table 4. Finally, table 6 reports a sample of software platforms in323

which the Reprozip-based experiments introduced herein have been successfully324

reproduced.325

3.6. Processing of the raw output files326

The running of the “benchmark survey.exp” experiment file generates the327

collection of comma-separated files (*.csv) listed in table 4, whose values are328

separated by a semicolon. All raw output files are saved in the same folder as329

their corresponding input reproducible experiment file.330

Raw output similarity files generated by our experiments must be processed331

in order to compute the Pearson, Spearman and Harmonic score metrics match-332

ing the tables shown in our primary paper [44]. We provide a R-language script333

called “embeddings vs ontomeasures final tables.R” with the aim of automating334

this post-processing. Latest version of the aforementioned post-processing script335

should be obtained from HESML GitHub distribution, as detailed in tables 7336

and 8, or from our companion reproducibility dataset [46]. This aforementioned337

script includes the source code of the mat.sort function provided by the Bio-338

PhysConnectoR package [31], which is no longer available in CRAN server.339

In order to carry-out the aforementioned post-processing, you should setup340

the well-known R statistical program12 in your workstation and follow the steps341

12https://www.r-project.org/

16

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu
https://download.docker.com/linux/ubuntu
https://www.r-project.org/

Step Detailed setup and running instructions for our Reprozip-based experiments

(1) Setup the Reprounzip program onto any supported platform (Linux, Windows and

MacOS) by following the step-by-step guide detailed in table 12 (see ReproZip instal-

lation page for further information).

(2) Move to the home directory and create a working directory as follows
$ cd /home
$ mkdir REPROEXPS
$ cd REPROEXPS

(3) Download the WN ontology measures vs embeddings.rpz (12.4 Gb) from its repository

[46]. For instance, you can execute the command below. The download of this file

could takes several minutes.

$ wget https://doi.org/10.21950/wn_ontology_measures_vs_embeddings.rpz

(4) Next, we must setup the docker container as detailed below which could take up to

45 minutes depending of your testing platform. Thus, we recommend to create a

“screen” session to run in background both setup and running of the Reprozip-based

experiment. You can detach from “screen” console by pressing “Ctrl+a,d”.

user@server$ screen -S REPROUNZIP

user@server$ reprounzip docker setup

wn ontology measures vs embeddings.rpz docker folder

(5) Next, we will run the Reprozip-based experiment. Note that Reprounzip execution
could take up to two weeks depending on your hardware setup (see table 6). We
strongly recommend to keep open the screen console to run the experiment in back-
ground as detailed below.

user@screen$ reprounzip docker run docker folder

- We detach from “screen” before to close the server main console

user@screen$ CTRL+a, d

- We reattach to the screen console to check the completion of Reprounzip

user@server$ screen -r REPROUNZIP

- We destroy the “screen” console once finished Reprounzip execution

user@server$ screen -X -S REPROUNZIP quit

Table 13: Detailed instructions on how to reproduce the packaged experiments once Reproun-
zip has been installed. We use screen program with the aim of allowing the execution of
Reprounzip in background whilst main program console is detached and closed.

detailed in table 15. Then, you need to install the “knitr” and “readr” packages342

using the functionality provided for this task by R program. Table 16 shows the343

output files which are generated from the raw output files listed in table 4 by344

running our aforementioned post-processing script, as well as their correspond-345

ing data tables in our primary paper [44]. In addition, our post-processing script346

generates a collection of HTML files which contain all data tables reported in347

our primary paper [44].348

Finally, raw data files and processed data files shown in tables 4 and 16349

respectively could be loaded into any spreadsheet software to carry-out any350

further data analysis or confirming the reproducibility of the experiments and351

results reported by our primary paper [44].352

17

https://doi.org/10.21950/wn_ontology_measures_vs_embeddings.rpz

Step Recovering the output files generated by our Reprozip-based experiments

1 user@server$ reprounzip showfiles docker folder

2 user@server$ sudo reprounzip docker download −−all docker folder

Table 14: Detailed instruction to recover the output files generated by our Reprozip-based
experiments. The first instruction shows a list with the output files generated by the exper-
iments, whilst the second one extracts all the output files from the container and downloads
them onto the current folder. You should obtain all raw output files listed in table 4.

Step Detailed post-processing instructions based on a R-language script

(1) Launch the R statistical program and install knitr and readr packages.

(2) Launch the R statistical program (you could also use R-Studio).

(3) Select the menu option “File->Open script”. Then, load the R-language script

file called embeddings vs ontomeasures final tables.R contained in the folder

shown in figure 2. Latest version of the aforementioned script should be ob-

tained from HESML GitHub distribution or our companion reproducibility

dataset [46].

(4) Edit the rootDir, inputDir and outputDir variables at the beginning of the

script in order to set the directory which contains the raw output files onto your

hard drive, as well as the directory in which will be saved the final assembled

data tables as reported in our primary paper [44]. IMPORTANT NOTE:

inputDir and outputDir variables should end with slash ’/’ symbol.

(5) Select the menu option “Edit->Run all”. The final assembled data tables

will be saved in the output directories defined above, as detailed in table 16.

In addition, the aforementioned R script creates a and opens a collection of

HTML files which show all data tables in our primary paper [44] and detailed

in table 16.

Table 15: Detailed instructions for the post-processing of the raw output files generated by our
experiments. R-language script computes all Pearson, Spearman and Harmonic score metrics
and generates a HTML report file reproducing all data tables reported by our primary paper
Lastra-Dı́az et al. [44].

4. Extending and reusing our reproducible experiments353

Our reproducible experiments are based on the XML-based HESML ex-354

periment file format (*.exp) whose specification is detailed by the “WordNet-355

BasedExperiments.xsd” schema file distributed with HESML library as shown356

in figure 2. Both *.exp experiment files and *.xsd schema file were created with357

XML Spy editor. Next paragraphs provide a detailed description of the main358

objects encoded by the HESML XML-based experiment file format and how359

they could be used to create new experiments from scratch as those introduced360

herein.361

HESML XML-based experiment file format. Figure 3 shows a sample file which362

has been extracted from the “benchmark survey.exp” file encoding all repro-363

ducible experiments introduced herein. WordNetBasedExperiments is the root364

node which contains the collection of word similarity or relatedness benchmarks365

to be evaluated, whilst SingleDatasetSimilarityValuesExperiment encodes a spe-366

cific word similarity benchmark defined by a dataset, an output directory and a367

collection of WordNet-based similarity measures and pre-trained word embed-368

18

File# Post-processing output files saved at “outputDir” directory In primary paper [44]

1 table Pearson SimDatasets.csv table 4 (full precision)

2 table Pearson SimDatasets rounded.csv table 4

3 table Spearman SimDatasets.csv table 5 (full precision)

4 table Spearman SimDatasets rounded.csv table 5

5 table Pearson RelDatasets.csv table 6 (full precision)

6 table Pearson RelDatasets rounded.csv table 6

7 table Spearman RelDatasets.csv table 7 (full precision)

8 table Spearman RelDatasets rounded.csv table 7

9 table joined allEmbeddings similarity.csv table 8 (full precision)

10 table joined allEmbeddings similarity rounded.csv table 8

11 table joined allEmbeddings relatedness.csv table 9 (full precision)

12 table joined allEmbeddings relatedness rounded.csv table 9

13 table pvalues AttractReppel allembeddings similarity.csv table A.1

14 table pvalues Paragramws allembeddings relatedness.csv table A.2

15 table AvgMeasures Pearson SimDatasets.csv table A.3 (full precision)

16 table AvgMeasures Pearson SimDatasets rounded.csv table A.3

17 table AvgMeasures Spearman SimDatasets.csv table A.4 (full precision)

18 table AvgMeasures Spearman SimDatasets rounded.csv table A.4

19 table AvgMeasures Pearson RelDatasets.csv table A.5 (full precision)

20 table AvgMeasures Pearson RelDatasets rounded.csv table A.5

21 table AvgMeasures Spearman RelDatasets.csv table A.6 (full precision)

22 table AvgMeasures Spearman RelDatasets rounded.csv table A.6

Table 16: Collection of processed output files generated by the execution of the “embed-
dings vs ontomeasures final tables.R” script file onto the outputDir directory and their cor-
responding tables in our primary work [44].

ding models. SimilarityMeasures nodes encode ontology-based semantic simi-369

larity measures based on WordNet which could require a further Information370

Content (IC) model for its implementation, being declared below the Word-371

NetMeasures node. Likewise, RawWordVectorFiles encodes the collection of372

pre-trained word embedding files to be evaluated in the same dataset. Both373

SimilarityMeasures and RawWordVectorFiles could be declared independently,374

and they could contain an unlimited number of methods to be evaluated. Latest375

HESML version supports three different pre-trained word embeddings file for-376

mats which are defined by the EmbVectorFiles, UKBVectorFiles and NasariVec-377

torFiles nodes. Raw output files which are generated by SingleDatasetSimilar-378

ityValuesExperiment procedures contain a matrix of values encoding the raw379

similarity value reported by each method for each word pair in the similarity380

dataset being evaluated.381

19

XML-based HESML experiment file sample

<WordNetBasedExperiments>

<SingleDatasetSimilarityValuesExperiment>

<OutputFileName>raw_similarity_values_MC28_dataset.csv</OutputFileName>

<DatasetDirectory>../WN_Datasets</DatasetDirectory>

<DatasetFileName>Miller_Charles_28_dataset.csv</DatasetFileName>

<WordNetMeasures>

<WordNetDatabaseFileName>data.noun</WordNetDatabaseFileName>

<WordNetDatabaseDirectory>../Wordnet-3.0/dict</WordNetDatabaseDirectory>

<SimilarityMeasures>

<SpecificSimilarityMeasure>

<MeasureType>JiangConrath</MeasureType>

<IntrinsicICModel>Sanchez2011</IntrinsicICModel>

</SpecificSimilarityMeasure>

<SpecificSimilarityMeasure>

<MeasureType>Rada</MeasureType>

</SpecificSimilarityMeasure>

</SimilarityMeasures>

</WordNetMeasures>

<RawWordVectorFiles>

<EmbVectorFiles>

<VectorFile>../WordEmbeddings/attract-reppel.emb</VectorFile>

</EmbVectorFiles>

<UKBVectorFiles>

<VectorFile>../WordEmbeddings/wordnet-ukb.ppv</VectorFile>

</UKBVectorFiles>

<NasariVectorFiles>

<NasariVectorFile>

<SensesFile>../WordEmbeddings/nasari/en_wordsenses_BN.txt</SensesFile>

<VectorFile>../WordEmbeddings/nasari/nasari-unified</VectorFile>

</NasariVectorFile>

</NasariVectorFiles>

</RawWordVectorFiles>

</SingleDatasetSimilarityValuesExperiment>

</WordNetBasedExperiments>

Figure 3: XML source code above shows an example of a HESML reproducible experiment
on word similarity and relatedness. Source code above has been extracted from the “bench-
mark survey.exp” file which encodes all experiments reported in our primary paper [44].

20

Extending or modifying our experiments. Anyone could use our main aforemen-382

tioned experiment file as a template to create new experiments from scratch383

by evaluating other sets of available ontology-based semantic similarity mea-384

sures based on WordNet, pre-trained word embedding models or word similar-385

ity datasets not considered herein. For instance, any reader could evaluate any386

ontology-based methods by declaring it in any SimilarityMeasures node when-387

ever this method have been previously implemented in HESML and its keyname388

being specified by the SimilarityMeasureType enumeration in the “WordNet-389

BasedExperiments.xsd” schema file. Likewise, currently supported IC models390

are specified by the IntrinsicICModelType enumeration in the aforementioned391

XML schema file. On the other hand, any reader could evaluate any uncon-392

sidered pre-trained word embedding model by declaring a new method in the393

RawWordVectorFiles, whenever its corresponding pre-trained model being pro-394

vided in any of the three file formats which are currently supported, otherwise395

there would be needed to extend HESML to support a new pre-trained word396

embedding file format. Finally, any reader could define any new benchmark397

considering a different set of word similarity datasets by declaring further Sin-398

gleDatasetSimilarityValuesExperiment nodes with their corresponding dataset399

files in comma-separated file format. For a detailed list of the methods currently400

implemented by HESML V1R4, we refer the readers to its release notes [42].401

5. Conclusions and future work402

This work introduces for the first time a large set of reproducible experi-403

ments on word similarity and relatedness including most methods in the fami-404

lies of ontology-based semantic similarity measures based on WordNet and word405

embedding models. This aforementioned set of experiments allow that all ex-406

periments and results introduced by Lastra-Dı́az et al. [44] to be reproduced407

exactly. Likewise, our reproducible experiments could be easily extended or408

modified to create new benchmarks from scratch which evaluate a different set409

of methods and word similarity and relatedness datasets from those considered410

herein. For this reason, we hope that this set of reproducible benchmarks to be-411

come into a de facto standard experimentation platform for any future research412

on word similarity and relatedness.413

As forthcoming activities, we plan the study and proposal of new distribu-414

tional similarity and relatedness measures, as well as their use in the definition415

of sentence and short-text similarity measures.416

Acknowledgements417

We are grateful of Fernando González and Juan Corrales for setting up our418

UNED Dataverse dataset, Yuanyuan Cai for answering kindly our questions419

to replicate their IC-based similarity measures and IC models in HESML, and420

http://clouding.io for their technical support to set up our experimental421

platform. We are also very thankful to José Camacho-Collados for providing422

the weighting overlap source code which we have integrated into HESML for423

measuring the similarity between the NASARI vectors. This work has been424

partially supported by the Spanish project VEMODALEN (TIN2015-71785-R),425

21

http://clouding.io

the Basque Government (type A IT1343-19), BBVA BigKnowledge bigknowl-426

edge project and the Spanish Research Agency LIHLITH project (PCIN-2017-427

118 / AEI) in the framework of EU ERA-Net CHIST-ERA.428

References429

[1] Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.,430

2009. A Study on Similarity and Relatedness Using Distributional and431

WordNet-based Approaches. In: Proc. of Human Language Technolo-432

gies: The 2009 Annual Conf. of the North American Chapter of the433

Association for Computational Linguistics. NAACL ’09. ACL, Strouds-434

burg, PA, USA, pp. 19–27.435

[2] Agirre, E., Soroa, A., 2009. Personalizing pagerank for word sense disam-436

biguation. In: Proc. of the 12th Conf. of the European Chapter of the437

Association for Computational Linguistics. ACL, pp. 33–41.438

[3] Ben Aouicha, M., Hadj Taieb, M. A., Nov. 2015. G2WS: Gloss-based Word-439

Net and Wiktionary semantic Similarity measure. In: 2015 IEEE/ACS440

12th International Conference of Computer Systems and Applications441

(AICCSA). pp. 1–7.442

[4] Ben Aouicha, M., Hadj Taieb, M. A., 2016. Computing semantic similarity443

between biomedical concepts using new information content approach.444

Journal of Biomedical Informatics 59, 258–275.445

[5] Ben Aouicha, M., Hadj Taieb, M. A., Ben Hamadou, A., Nov. 2016. SISR:446

System for integrating semantic relatedness and similarity measures.447

Soft Computing, 1–25.448

[6] Ben Aouicha, M., Hadj Taieb, M. A., Ben Hamadou, A., Mar.449

2016. Taxonomy-based information content and wordnet-wiktionary-450

wikipedia glosses for semantic relatedness. Applied Intelligence, 1–37.451

[7] Ben Aouicha, M., Hadj Taieb, M. A., Beyaoui, S., Aug. 2016. Distributional452

semantics study using the co-occurrence computed from collaborative453

resources and WordNet. In: 2016 International Symposium on INnova-454

tions in Intelligent SysTems and Applications (INISTA). pp. 1–8.455

[8] Bojanowski, P., Grave, E., Joulin, A., Mikolov, T., Jul. 2016. Enriching456

Word Vectors with Subword Information. arXiv:1607.04606.457

[9] Branco, A., Cohen, K. B., Vossen, P., Ide, N., Calzolari, N., Mar. 2017.458

Replicability and reproducibility of research results for human language459

technology: introducing an LRE special section. Language Resources460

and Evaluation 51 (1), 1–5.461

[10] Bruni, E., Tran, N.-K., Baroni, M., 2014. Multimodal Distributional Se-462

mantics. Journal of Artificial Intelligence Research 49 (1), 1–47.463

[11] Camacho-Collados, J., Pilehvar, M. T., Navigli, R., 2016. Nasari: Integrat-464

ing explicit knowledge and corpus statistics for a multilingual represen-465

tation of concepts and entities. Artif. Intell. 240, 36–64.466

22

[12] Chirigati, F., Capone, R., Rampin, R., Freire, J., Shasha, D., Mar. 2016.467

A collaborative approach to computational reproducibility. Information468

Systems 59, 95–97.469

[13] Chirigati, F., Rampin, R., Shasha, D., Freire, J., 2016. ReproZip: compu-470

tational reproducibility with ease. In: Proc. of the ACM Intl. Conf. on471

Management of Data (SIGMOD). Vol. 16. pp. 2085–2088.472

[14] Fariña, A., Mart́ınez-Prieto, M. A., Claude, F., Navarro, G., Lastra-Dı́az,473

J. J., Prezza, N., Seco, D., Apr. 2019. On the reproducibility of experi-474

ments of indexing repetitive document collections. Information systems475

83, 181–194.476

[15] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman,477

G., Ruppin., E., 2002. Placing search in context: the concept revisited.478

ACM Trans. on Information Systems 20 (1), 116–131.479

[16] Fokkens, A., Van Erp, M., Postma, M., Pedersen, T., Vossen, P., Freire, N.,480

Aug. 2013. Offspring from Reproduction Problems: What Replication481

Failure Teaches Us. In: Proceedings of the 51st Annual Meeting of the482

Association for Computational Linguistics. ACL, Sofia, Bulgaria, pp.483

1691–1701.484

[17] Gerz, D., Vulić, I., Hill, F., Reichart, R., Korhonen, A., Nov. 2016.485

SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity. In:486

Proc. of EMNLP. Austin, Texas, pp. 2173–2182.487

[18] Goikoetxea, J., Agirre, E., Soroa, A., 2014. Exploring the Use of Word488

Embeddings and Random Walks on Wikipedia for the CogAlex Shared489

Task. Proc. of the 4th Workshop on Cognitive Aspects of the Lexicon,490

31–34.491

[19] Goikoetxea, J., Agirre, E., Soroa, A., 2016. Single or Multiple? Combining492

Word Representations Independently Learned from Text and WordNet.493

In: Proc. of AAAI. pp. 2608–2614.494

[20] Goikoetxea, J., Soroa, A., Agirre, E., 2015. Random Walks and Neural495

Network Language Models on Knowledge Bases. In: Proc. of HLT-496

NAACL. pp. 1434–1439.497

[21] Goikoetxea, J., Soroa, A., Agirre, E., Jul. 2018. Bilingual Embeddings with498

Random Walks over Multilingual Wordnets. Knowledge-Based Systems499

150 (15), 218–230.500

[22] Hadj Taieb, M. A., Ben Aouicha, M., Ben Hamadou, A., Nov. 2014. A new501

semantic relatedness measurement using WordNet features. Knowledge502

and Information Systems 41 (2), 467–497.503

[23] Hadj Taieb, M. A., Ben Aouicha, M., Ben Hamadou, A., Nov. 2014.504

Ontology-based approach for measuring semantic similarity. Engineer-505

ing Applications of Artificial Intelligence 36, 238–261.506

23

[24] Hadj Taieb, M. A., Ben Aouicha, M., Bourouis, Y., Jun. 2015. FM3S:507

Features-Based Measure of Sentences Semantic Similarity. In: Onieva,508

E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (Eds.), Proceed-509

ings of the 10th International Conference on Hybrid Artificial Intelligent510

Systems (HAIS 2015). Vol. 9121 of LNCS. Springer, Bilbao, Spain, pp.511

515–529.512

[25] Hadj Taieb, M. A., Ben Aouicha, M., Tmar, M., Ben Hamadou, A., 2012.513

New WordNet-based semantic relatedness measurement. In: GWC 2012514

6th International Global Wordnet Conference. academia.edu, p. 126.515

[26] Hadj Taieb, M. A., Ben Aouicha, M., Tmar, M., Ben Hamadou, A., Nov.516

2012. Wikipedia Category Graph and New Intrinsic Information Con-517

tent Metric for Word Semantic Relatedness Measuring. In: Proc. of the518

Third International Conference on Data and Knowledge Engineering519

(ICDKE). Lecture Notes in Computer Science. Springer Berlin Heidel-520

berg, Wuyishan, Fujian, China, pp. 128–140.521

[27] Hadj Taieb, M. A., Ben Aouicha, M., Tmar, M., Hamadou, A. B., 2011.522

New information content metric and nominalization relation for a new523

WordNet-based method to measure the semantic relatedness. In: Cy-524

bernetic Intelligent Systems (CIS), 2011 IEEE 10th International Con-525

ference on. pp. 51–58.526

[28] Halawi, G., Dror, G., Gabrilovich, E., Koren, Y., 2012. Large-scale Learn-527

ing of Word Relatedness with Constraints. In: Proc. of ACM SIGKDD.528

ACM, New York, NY, USA, pp. 1406–1414.529

[29] Harispe, S., Ranwez, S., Janaqi, S., Montmain, J., Mar. 2014. The semantic530

measures library and toolkit: fast computation of semantic similarity531

and relatedness using biomedical ontologies. Bioinformatics 30 (5), 740–532

742.533

[30] Hill, F., Reichart, R., Korhonen, A., Dec. 2015. SimLex-999: Evaluating534

Semantic Models with (Genuine) Similarity Estimation. Computational535

Linguistics 41 (4), 665–695.536

[31] Hoffgaard, F., Weil, P., Hamacher, K., Apr. 2010. BioPhysConnectoR: Con-537

necting sequence information and biophysical models. BMC bioinfor-538

matics 11, 199.539

[32] Huang, E. H., Socher, R., Manning, C. D., Ng, A. Y., 2012. Improving Word540

Representations via Global Context and Multiple Word Prototypes. In:541

Proc. of the Annual Meeting of the ACL. Vol. 1. pp. 873–882.542

[33] Lastra-Dı́az, J. J., Sep. 2014. Intrinsic Semantic Spaces for the representa-543

tion of documents and semantic annotated data. Master’s thesis, Uni-544

versidad Nacional de Educación a Distancia (UNED). Department of545

Computer Languages and Systems, http://e-spacio.uned.es/fez/546

view/bibliuned:master-ETSIInformatica-LSI-Jlastra.547

[34] Lastra-Dı́az, J. J., Sep. 2017. Recent Advances in Ontology-based Se-548

mantic Similarity Measures and Information Content Models based549

24

http://e-spacio.uned.es/fez/view/bibliuned:master-ETSIInformatica-LSI-Jlastra
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSIInformatica-LSI-Jlastra
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSIInformatica-LSI-Jlastra

on WordNet. Ph.D. thesis, Universidad Nacional de Educación a Dis-550

tancia (UNED), http://e-spacio.uned.es/fez/view/tesisuned:551

ED-Pg-SisInt-Jjlastra.552

[35] Lastra-Dı́az, J. J., Garćıa-Serrano, A., Nov. 2015. A new family of in-553

formation content models with an experimental survey on WordNet.554

Knowledge-Based Systems 89, 509–526.555

[36] Lastra-Dı́az, J. J., Garćıa-Serrano, A., Nov. 2015. A novel family of IC-556

based similarity measures with a detailed experimental survey on Word-557

Net. Eng. App. of Artif. Intell. 46, 140–153.558

[37] Lastra-Dı́az, J. J., Garćıa-Serrano, A., Jul. 2016. A refinement of559

the well-founded Information Content models with a very de-560

tailed experimental survey on WordNet. Tech. Rep. TR-2016-561

01, UNED, http://e-spacio.uned.es/fez/view/bibliuned:562

DptoLSI-ETSI-Informes-Jlastra-refinement.563

[38] Lastra-Dı́az, J. J., Garćıa-Serrano, A., Nov. 2016. HESML vs SML: scal-564

ability and performance benchmarks between the HESML V1R2 and565

SML 0.9 semantic measures libraries. Mendeley Data, v1, http://doi.566

org/10.17632/5hg3z85wf4.1.567

[39] Lastra Dı́az, J. J., Garćıa Serrano, A., Jun. 2016. System and method568

for the indexing and retrieval of semantically annotated data using an569

ontology-based information retrieval model. United States Patent and570

Trademark Office (USPTO) application US2016/0179945 A1.571

[40] Lastra-Dı́az, J. J., Garćıa-Serrano, A., 2016. WNSimRep: a framework and572

replication dataset for ontology-based semantic similarity measures and573

information content models. Mendeley Data v1, http://doi.org/10.574

17632/mpr2m8pycs.1.575

[41] Lastra-Dı́az, J. J., Garćıa-Serrano, A., 2016. WordNet-based word similar-576

ity reproducible experiments based on HESML V1R1 and ReproZip.577

Mendeley Data, v1, http://doi.org/10.17632/65pxgskhz9.1.578

[42] Lastra-Dı́az, J. J., Garćıa Serrano, A., 2018. HESML V1R4 Java software579

library of ontology-based semantic similarity measures and information580

content models. Mendeley Data, v4, http://dx.doi.org/10.17632/581

t87s78dg78.4.582

[43] Lastra-Dı́az, J. J., Garćıa-Serrano, A., Batet, M., Fernández, M., Chiri-583

gati, F., Jun. 2017. HESML: a scalable ontology-based semantic sim-584

ilarity measures library with a set of reproducible experiments and a585

replication dataset. Information Systems 66, 97–118.586

[44] Lastra-Dı́az, J. J., Goikoetxea, J., Hadj Taieb, M. A., Garćıa-Serrano, A.,587

Ben Aouicha, M., Agirre, E., Oct. 2019. A reproducible survey on word588

embeddings and ontology-based methods for word similarity: linear589

combinations outperform the state of the art. Engineering Applications590

of Artificial Intelligence 85, 645–665.591

25

http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-SisInt-Jjlastra
http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-SisInt-Jjlastra
http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-SisInt-Jjlastra
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement
http://doi.org/10.17632/5hg3z85wf4.1
http://doi.org/10.17632/5hg3z85wf4.1
http://doi.org/10.17632/5hg3z85wf4.1
http://doi.org/10.17632/mpr2m8pycs.1
http://doi.org/10.17632/mpr2m8pycs.1
http://doi.org/10.17632/mpr2m8pycs.1
http://doi.org/10.17632/65pxgskhz9.1
http://dx.doi.org/10.17632/t87s78dg78.4
http://dx.doi.org/10.17632/t87s78dg78.4
http://dx.doi.org/10.17632/t87s78dg78.4

[45] Lastra-Dı́az, J. J., Goikoetxea, J., Hadj Taieb, M. A., Garćıa-Serrano, A.,592

Ben Aouicha, M., Agirre, E., Aug. 2019. Reproducibility dataset for593

a large experimental survey on word embeddings and ontology-based594

methods for word similarity. Data in Brief.595

[46] Lastra-Dı́az, J. J., Goikoetxea, J., Hadj Taieb, M. A., Garćıa-Serrano, A.,596

Ben Aouicha, M., Agirre, E., 2019. Word similarity benchmarks of re-597

cent word embedding models and ontology-based semantic similarity598

measures. e-cienciaDatos, v1, http://dx.doi.org/10.21950/AQ1CVX.599

[47] Luong, T., Socher, R., Manning, C. D., 2013. Better word representations600

with recursive neural networks for morphology. In: Proc. of CoNLL.601

pp. 104–113.602

[48] Merkel, D., Mar. 2014. Docker: Lightweight Linux Containers for Consis-603

tent Development and Deployment. Linux Journal 2014 (239), Article604

No. 2.605

[49] Mikolov, T., Chen, K., Corrado, G., Dean, J., May 2013. Efficient Estima-606

tion of Word Representations in Vector Space. arXiv:1301.3781.607

[50] Miller, G. A., 1995. WordNet: A Lexical Database for English. Communi-608

cations of the ACM 38 (11), 39–41.609

[51] Miller, G. A., Charles, W. G., 1991. Contextual correlates of semantic610

similarity. Language and cognitive processes 6 (1), 1–28.611

[52] Mrkšić, N., Vulić, I., Séaghdha, D. Ó., Leviant, I., Reichart, R., Gašić,612

M., Korhonen, A., Young, S., 2017. Semantic Specialisation of Dis-613

tributional Word Vector Spaces using Monolingual and Cross-Lingual614

Constraints. Trans. of the ACL 5, 309–324.615

[53] Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers,616

C. D., du Sert, N. P., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J.,617

Ioannidis, J. P. A., Jan. 2017. A manifesto for reproducible science.618

Nature Human Behaviour 1, 0021.619

[54] Pedersen, T., 2008. Empiricism Is Not a Matter of Faith. Computational620

Linguistics 34 (3), 465–470.621

[55] Pedersen, T., 2008. WordNet-InfoContent-3.0.tar dataset reposi-622

tory. https://www.researchgate.net/publication/273885902_623

WordNet-InfoContent-3.0.tar.624

[56] Pedersen, T., Nov. 2013. Measuring the Similarity and Relatedness of Con-625

cepts: a MICAI 2013 Tutorial.626

[57] Pennington, J., Socher, R., Manning, C. D., 2014. Glove: Global vectors627

for word representation. Proc. of EMNLP 12, 1532–1543.628

[58] Pirró, G., Nov. 2009. A semantic similarity metric combining features and629

intrinsic information content. Data & Knowledge Engineering 68 (11),630

1289–1308.631

26

http://dx.doi.org/10.21950/AQ1CVX
https://www.researchgate.net/publication/273885902_WordNet-InfoContent-3.0.tar
https://www.researchgate.net/publication/273885902_WordNet-InfoContent-3.0.tar
https://www.researchgate.net/publication/273885902_WordNet-InfoContent-3.0.tar

[59] Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S., Mar. 2011. A632

word at a time: computing word relatedness using temporal semantic633

analysis. In: Proc. of the Intl. Conf. on WWW. ACM, pp. 337–346.634

[60] Rubenstein, H., Goodenough, J. B., Oct. 1965. Contextual Correlates of635

Synonymy. Communications of the ACM 8 (10), 627–633.636

[61] Schwartz, R., Reichart, R., Rappoport, A., 2015. Symmetric pattern based637

word embeddings for improved word similarity prediction. In: Proc. of638

the Conf. on Computational Natural Language Learning. pp. 258–267.639

[62] Sefraoui, O., Aissaoui, M., Eleuldj, M., 2012. OpenStack: toward an open-640

source solution for cloud computing. International Journal of Computer641

Applications in Technology 55 (3), 38–42.642

[63] Szumlanski, S. R., Gomez, F., Sims, V. K., Aug. 2013. A New Set of643

Norms for Semantic Relatedness Measures. In: Proc. of the 51st Annual644

Meeting of the Association for Computational Linguistics (ACL’2013).645

Vol. 2. aclweb.org, Sofia, Bulgaria, pp. 890–895.646

[64] Wieling, M., Rawee, J., van Noord, G., Dec. 2018. Reproducibility in Com-647

putational Linguistics: Are We Willing to Share? Computational Lin-648

guistics 44 (4), 641–649.649

[65] Wieting, J., Bansal, M., Gimpel, K., Livescu, K., Roth, D., 2015. From650

Paraphrase Database to Compositional Paraphrase Model and Back.651

Trans. of the ACL 3, 345–358.652

[66] Wolke, A., Bichler, M., Chirigati, F., Steeves, V., Jul. 2016. Reproducible653

experiments on dynamic resource allocation in cloud data centers. In-654

formation Systems 59, 98–101.655

[67] Yang, D., Powers, D. M., 2006. Verb similarity on the taxonomy of Word-656

Net. In: Proc. of the 3th Intl. WordNet Conf. (GWC). pp. 121–128.657

[68] Yeh, E., Ramage, D., Manning, C. D., Agirre, E., Soroa, A., 2009. Wiki-658

Walk: Random Walks on Wikipedia for Semantic Relatedness. In: Proc.659

of the 2009 Workshop on Graph-based Methods for Natural Language660

Processing. TextGraphs-4. ACL, Stroudsburg, PA, USA, pp. 41–49.661

27

	Introduction
	Main motivation
	Definition of the problem and contributions

	Background on HESML and Reprozip
	The Reproducible Experiments on word similarity
	Experimental setup in our primary paper
	System requirements and performance evaluation
	Obtaining and compiling HESML
	Running the experiments with HESMLclient
	Running the ReproZip experiments
	Processing of the raw output files

	Extending and reusing our reproducible experiments
	Conclusions and future work

