
Acc
ep

ted
 m

an
us

cri
pt

Benchmarking DNN inference

performance on serverless

environments with MLPerf

U. Elordi

Vicomtech Foundation

Basque Research and Technology Alliance (BRTA)

L. Unzueta

Vicomtech Foundation

Basque Research and Technology Alliance (BRTA)

J. Goenetxea

Vicomtech Foundation

Basque Research and Technology Alliance (BRTA)

S. Sanchez-Carvallido

Vicomtech Foundation

Basque Research and Technology Alliance (BRTA)

I. Arganda-Carreras

University of the Basque Country (UPV/EHU)

Ikerbasque, Basque Foundation for Science

Donostia International Physics Center (DIPC)

O. Otaegui

Vicomtech Foundation

Basque Research and Technology Alliance (BRTA)

University of the Basque Country (UPV/EHU)

Abstract—Current computing requirements for high-scale inference of Deep Neural Networks

(DNNs) demand distributed execution environments. The advantages of serverless functions in

distributed computation offloading and automatic resource scalability make them a very suitable

environment for such a task. However, finding the optimal workload at minimum resource usage

requires extensive benchmarking analysis such as those of the MLPerf standard. However, due

to its monolithic nature, the MLPerf execution model collides with serverless function platforms.

To address this issue, we provide a novel decomposition methodology from the current MLPerf

benchmark to the serverless function execution model. Moreover, we have tested our approach

in Amazon Lambda to benchmark the processing capabilities of OpenCV and OpenVINO IE DNN

inference engines using Caffe, Tensorflow, and OpenVINO models for Computer Vision tasks.

Experimental results prove Amazon Lambda a suitable platform for DNN inference following our

proposed architecture.

 SERVERLESS COMPUTING is an emerging

cloud execution model whose resource scalability

is dynamically managed on-demand by the cloud

providers and billed only by usage time. A clear use

case of this execution model is the serverless

function paradigm. Under the scope of the Function

U. Elordi, L. Unzueta, J. Goenetxea, S. Sanchez-Carballido, I. Arganda-Carreras and O. Otaegui, "Benchmarking Deep
Neural Network Inference Performance on Serverless Environments With MLPerf," in IEEE Software, vol. 38, no. 1,
pp. 81-87, Jan.-Feb. 2021, https://doi.org/10.1109/MS.2020.3030199. © 2021 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Acc
ep

ted
 m

an
us

cri
pt

2

as a Service (FaaS), a serverless function

architecture offloads the computation into

functions, so developers can focus on the source

code without worrying about the resource

provisioning management.

In parallel, Machine Learning (ML) has strongly

gained momentum in recent years, thanks to the

emerging Deep Neural Networks (DNNs). DNN-

based Computer Vision (CV) and Neural Language

Processing (NLP) methods currently constitute the

basis of the most advanced ML-based applications.

The increasing popularity of such kind of

applications have brought newer specialized ML

hardware (e.g., TPUs, VPUs, referred as xPUs, in

general) and software tools to optimize the

inference of the computationally demanding

DNNs.

However, the produced myriad combinations of

ML hardware and software tools make the

assessment of ML system performance

challenging. Several attempts to solve this problem

have been made both by academic and industrial

organizations. In particular, the MLPerf Inference

benchmarking suite has currently become the “de-

facto” standard, driven by more than 30

organizations and more than 200 ML engineers and

practitioners [1]. Its first call for submissions

garnered more than 600 reproducible inference

performance measurements in October 2019, and

the obtained results were published in its webpage

for comparison.

The current version of MLPerf Inference

(version 0.5) was developed following a monolithic

design (i.e., single execution unit), which collides

with the nature of serverless function platforms.

Fortunately, the MLPerf community is open to

further revisions, as ML is still evolving, and newer

needs arise. The MLPerf community is very active

and their discussions are organized by topics and

working groups. However, the fitting of serverless

function platforms in MLPerf has not been

discussed yet in that forum, so we aim at opening

this possibility, explaining our insights and

experiences which have resulted in the presented

methodology, tested in Amazon Lambda, which is

a popular serverless computing platform.

Nevertheless, our approach is a FaaSified platform

for benchmarking ML and could also be considered

under the scope of alternative benchmarking suites.

CHALLENGES OF BENCHMARKING DNN

INFERENCE IN FAAS PLATFORMS

The FaaS platform workloading is managed by

function instances. Serverless function instances

are stateless (no dependency from function

execution state), include ephemeral storage (the

data is erased when the function instance finishes),

and they are executed in isolated containers.

Besides, each instance of the function contains an

allocated amount of memory (function memory)

and it is executed in CPU backend hardware [2].

Benchmarking DNN inference in FaaS platforms

must cope with the following challenges:

 How to deploy DNN models and their inference

engine: this includes choosing a suitable DNN

inference engine and loading and processing the

trained DNN models, considering the space and

memory constraints of serverless platforms.

 Cold starts: additional latencies that occur when

the serverless function is invoked for the first

time.

 Handling the performance results: considering

that the FaaS platforms are stateless with

ephemeral storage, how do we manage the

persistency of the measured results?

Zhang et al. [3] presented MArk, a general-

purpose ML inference serving system for optimal

DNN inference workloading, from GPUs to

serverless runtime, followed by a predictive

resource autoscaling algorithm. Romero et al.

proposed the INFaaS [4] inference serving system,

which automatically determines the model-variant,

hardware, and scaling configuration, based on user-

defined inference tasks and performance/accuracy

requirements for queries. However, these systems

do not tackle the goal of fair benchmarking across

the high variety of hardware and software

architectures for DNN inference, as MLPerf

Inference does.

ENABLING SERVERLESS RUNTIME IN

MLPERF

MLPerf Inference is designed to benchmark

common ML-based CV tasks (image classification

and object detection), and NLP tasks (translation).

To do so, its architecture contains the following

components:

Acc
ep

ted
 m

an
us

cri
pt

3

 System Under Test (SUT): it runs the DNN

inference and the performance measurements

are sent back to the Load Generator

(LoadGen).

 LoadGen: it feeds the SUT with the input data

and calculates all performance measurements

for benchmark calculation.

 Data set: to configure the input data to be ready

for the benchmark.

MLPerf (version 0.5) considers the following

scenarios, when feeding the SUT:

 Single stream: an inference query is sent and only

upon completion, the next query is sent.

 Multi stream: LoadGen sends a set of inferences

per query periodically (between 50 and 100 ms).

 Server: inputs arrive according to a Poisson

distribution.

 Offline: the complete input data set is sent in a

unique query.

Regarding the benchmarks, MLPerf Inference

has two divisions for submitting results: closed and

open. Strict rules govern the closed division, such

as using specific DNN model implementations, to

address the lack of a standard inference-

benchmarking workflow. The open division, on the

contrary, allows submitters to change the model

and demonstrate different performance and quality

targets.

These scenarios assume a monolithic design of

the system’s architecture. This means that the DNN

inference is processed in the same execution unit

(the targeted CPU, GPU or xPU), which is not

feasible in a serverless system. Thus, we propose a

new scenario, in which we execute a burst of

several instances with no time interval between

consecutive inference queries, and a FaaSified

platform for benchmarking ML.

FaaSification is the process of transforming

existing code into functions in conformance with

the programming conventions expected by the

target provider. According to [5], this process can

be classified in three levels depending on the

considered Atomic Unit (AU): shallow (AU:

functions or methods), medium (AU: lines of code)

and deep (AU: instructions).

Figure 1 depicts our FaaS benchmarking

architecture and the life cycle of the benchmarking

process, numbered from 1 to 11. The SUT is

designed following a shallow FaaSification

process, i.e., the AUs are functions and methods.

Figure 1. The proposed benchmarking FaaS architecture and life cycle.

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

LoadGen

SUT (FaaS backend)

OSS

Data set

7: Send queries

Worker
process

Worker
process

SUT (FaaS backend)

Ev
en

t
lis

te
n

er

3: Warmup
Worker
process

Worker
process
Function
instance

DNN inference Post-processing

Function instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

FaaS_Inferenc
e

FaaS_Inferenc
e

Worker
process

FaaS_Inferenc
e

FaaS_Inferenc
e

Function
instance

result0
result1

resultN

result2

OSS

1: Load 6: Start

8: Store

Ev
en

t
lis

te
n

er

Notification
service

4: Finish warmup
5: Notify finished state

10: Notify finished benchmark
9: Finish benchmark

11: Download results and calculate benchmark

Layer

IE Handler

Layer

Cold stage

Warm stage

2: Subscribe

Acc
ep

ted
 m

an
us

cri
pt

4

More specifically, our SUT implementation is

composed of two layers:

 Inference Engine (IE) layer: this layer

encompasses the software tools to infer trained

DNN models with ML task-related algorithms.

 Handler layer: this layer manages the DNN

inference algorithm depending on the selected

DNN framework and the post-processing

operations to obtain the inference results.

For this FaaS architecture design we have relied

on MLPerf Inference’s components, but it could

also be considered under the scope of alternative

benchmarking suites, as any suite should contain

components like SUT, LoadGen and data set.

As shown in Figure 1, firstly, the LoadGen

configures the data set source from the Online

Storage Service (OSS) (step 1). Also, the LoadGen

is subscribed to a Notification Service (NS) to

handle the benchmarking life cycle (step 2). Next,

the warmup process executes few function

instances to avoid cold start delays during the

benchmarking process, and hence, changing the

state of the FaaS container to warm stage (step 3).

During the first function instance execution,

trained DNN models and software tools are

downloaded to the containers and then, these DNN

resources are loaded to be available for the next

warmed function instances. Finally, the LoadGen

receives the warmup finish notification from the

SUT (steps 4 and 5) and the system is ready to start

benchmarking.

For each input element from the data set, the

LoadGen uploads a .json file to the OSS (step 6).

This file, that contains the paths to the input data

set, is comprised of parameters such as database

input data references, the result delivering output

data, and benchmarking action commands. Next,

following the event-driven design of the FaaS

platforms [6][7], each uploading action triggers an

event automatically creating a function instance

(see event listener in Figure 1). At this point in the

benchmarking process, the SUT invokes several

function instances (one per query). So, each

function performs the inference and post-

processing tasks of the data coming from the OSS,

and measures the following output values:

 The start and end timestamps.

 The processing time (the function’s latency).

 The post-processing results of the function

for accuracy evaluation.

To preserve the FaaS data persistency, each

function instance saves the measured output values

in a separate file in the OSS (step 8). The last

function instance sends a finishing action message

to the LoadGen (step 9-10).

Finally, the LoadGen downloads all files with

the mentioned output values from OSS (step 11).

This information is organized into different lists to

calculate the inference latency, throughput, and

accuracy results. These are calculated like this:

 Latency: instead of using average latency as

the definitive metric, the 90th percentile of

the latency list is calculated. We do this to

reduce the impact of outliers.

 Throughput: the number of queries divided by

the total time. This total time refers to the

time difference between the maximum value

of end timestamp and the minimum value of

start timestamp.

 Accuracy calculation: the post-processing

results are compared with respect to the

ground truth data according to a measurement

protocol, which depends on the ML task.

IMPLEMENTATION AND EVALUATION

We tested our approach in Amazon Lambda,

with Amazon S3 to store the input and output data,

and Amazon Simple Notification Service (SNS) as

the NS. As mentioned above, we focused our

implementation and tests on CV tasks to benchmark

the processing capabilities of the DNN inference

engines of OpenCV [8] and OpenVINO Inference

Engine (IE) [9] using Caffe, Tensorflow, and

OpenVINO Intermediate Representation (IR)

models. In particular, we have taken the monolithic

MLPerf algorithm class and its functions as AUs,

and we manually deployed to a FaaS function,

supported by Amazon Lambda layers. We make the

source code available (https://github.com/

Vicomtech/serverless-mlperf) to enable a follow-

up discussion about the proposed design,

implementation and experiments with the MLPerf

and serverless computing communities.

https://github.com/Vicomtech/serverless-mlperf
https://github.com/Vicomtech/serverless-mlperf

Acc
ep

ted
 m

an
us

cri
pt

5

Figure 2. Inference latency results with OpenVINO IR (IR), Caffe (CF) and TensorFlow (TF) DNN models, and

OpenVINO IE (IE) and OpenCV (OCV) as inference engines.

To evaluate the feasibility of our

implementation, we benchmarked two DNN

models of the MLPerf closed division with the

following configuration:

 Data set: ImageNet [10] and COCO [11] (subset

of randomized 10K images per data set).

 Performance metrics: latency and throughput.

 DNN models: we used MobileNetV1 and

SSDMobileNetV1 for image classification and

object detection respectively, with 32 Floating

Point (FP) precision in Caffe, TensorFlow and

OpenVINO IR formats.

 FaaS memory configurations: 768MB, 1536MB,

2240MB, 3008MB.

The baseline to compare these results with

monolithic implementations would be the results

published in MLPerf’s webpage.

Figure 2 depicts the latency time for different

function memory configurations, from 768MB to

3GB. We observed that increasing the allocated

memory for each function instance the latency

improves in both benchmarked models, especially

in ranges between 768-1536MB. This performance

improvement is between 2.12-2.20X times larger

for MobileNetV1 and 1.58-2.55X for

SSDMobileNetV1. This confirms the observations

of Maissen et al. [2] about the latency reduction

when the allocated memory is increased, and

therefore, the CPU power increases linearly.

Moreover, OpenVINO IR models achieve the

best performance results. This is because the

OpenVINO IE DNN inference engine operations

are optimized for Intel parallelization and

vectorization instructions such as AVX, SSE2 or

SSE4, and currently Amazon Lambda processors

rely on Intel hardware [2].

As expected, since SSDMobileNetV1 has more

parameters and layers than MobileNetV1, its

latency is higher. While in MobileNetV1 the

performance of Caffe and TF models is quite

similar, in SSDMobileNet the reduction of the

latency with the Caffe model is between 1.33 and

1.98X compared to TF.

Figure 3. Inference throughput results with OpenVINO

IR (IR), Caffe (CF) and TensorFlow (TF) DNN

models, and OpenVINO IE (IE) and OpenCV (OCV)

as inference engines.

Nevertheless, the inference throughput values

calculated in Figure 3 reveal that the inference

latency time does not have any influence in the

Acc
ep

ted
 m

an
us

cri
pt

6

throughput values. We believe the variations in

inference throughput depend on the AWS cloud

provider scheduling resources.

CONCLUSION

The increasing need to deploy ML tasks at high

scale demands optimal execution models such as

serverless functions. However, finding an efficient

DNN inference workload using minimum resources

requires an important benchmarking analysis.

Throughout our benchmarking evaluation of DNN

inference efficiency, we have observed that the

amount of the allocated memory for each function

instance plays an important role in inference

latency time reduction, especially when the

configured memory is between 768MB and

1536MB.

Also, the OpenVINO IE DNN inference engine

and OpenVINO IR model optimizations contribute to

reduce the inference latency in Amazon Lambda

hardware. However, these latency results do not

influence the inference throughput results. We

hypothesize that this occurs due to the cloud

provider scheduling capabilities. However, we

believe that 51-83 QPS values make Amazon

Lambda a suitable platform for DNN inference.

The design space is still very large –different

serverless environments, different benchmarks (in

addition to MLPerf), different hardware targets

(CPUs, GPUs, xPUs, etc) – and requires further

investigation. Therefore, we expect to expand these

benchmarking evaluations to the most popular

serverless function platforms. We will also explore

how to benchmark more complex ML systems that

consider a computing continuum formed by mobile,

edge, and cloud resources [12], relying on

standards such as MLPerf.

ACKNOWLEDGEMENT

This work has been partially supported by the

program ELKARTEK 2019 of the Basque

Government under project AUTOLIB.

 REFERENCES
1. MLPerf Inference benchmark v0.5. [Online]. Available:

https://github.com/mlperf/inference (URL)
2. P. Maissen, P. Felber, P. Kropf, and V. Schiavoni,

“FaaSdom: A benchmark suite for serverless
computing,” Proceedings of the 14th ACM International

Conference on Distributed and Event-Based Systems
(DEBS '20), pp. 73-84, 2020. (conference proceedings)

3. C. Zhang, M. Yu, and W. Wang, “MArk: Exploiting cloud
services for cost-effective, SLO-aware machine learning
inference serving,” Proc. USENIX Ann. Technical Conf.
(USENIX ATC), 2019. (conference proceedings)

4. F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis,
“INFaaS: A model-less inference serving system,” arXiv
preprint arXiv:1905.13348, 2019. (PrePrint)

5. J. Spillner, C. Mateos, and D. A. Monge, “FaaSter, better,
cheaper: The prospect of serverless scientific
computing and HPC,” Proc. CARLA 2017,
Communications in Computer and Information Science,
vol 796., pp. 154–168, 2018. (conference proceedings)

6. I. Baldini, P. Castro, K. Chang, et al., “Serverless
computing: Current trends and open problems,”
Research Advances in Cloud Computing, pp. 1–20,
2017. (journal)

7. G. McGrath, and P. Brenner, “Serverless computing:
Design, implementation, and performance,” Proc. IEEE
Int. Conf. Distributed Computing Systems Workshops
(ICDCSW), pp. 405–410, 2017. (conference
proceedings)

8. Intel, OpenCV [Online]. Available: https://opencv.org/
(URL)

9. Intel, OpenVINO Toolkit - Deep Learning Deployment
Toolkit repository. [Online]. Available:
https://github.com/openvinotoolkit/openvino (URL)

10. J. Deng, W. Dong, R. Socher, et al., "ImageNet: A large-
scale hierarchical image database," Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pp.
248-255, 2009. (conference proceedings)

11. T.-Y. Lin, M. Maire, S. Belongie, et al., "Microsoft
COCO: Common objects in context," Proc. European
Conf. Computer Vision (ECCV), pp. 740-755, 2014.
(conference proceedings)

12. L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and
G. Quattrocchi, “A unified model for the mobile-edge-
cloud continuum,” ACM Transactions on Internet
Technology, vol. 19, no. 2, pp. 1–21, 2019. (journal)

Unai Elordi is a researcher at

Vicomtech Foundation, Basque

Research and Technology Alliance

(BRTA), Donostia-San Sebastian,

Spain. His research interests include

the optimization of deep neural

networks in edge to cloud environments. Unai received a

master’s degree in computational engineering and

intelligent systems from the Basque Country University

(EHU/UPV), Donostia-San Sebastian, Spain. Contact him

at uelordi@vicomtech.org.

Luis Unzueta is a senior researcher

at Vicomtech Foundation, Basque

Research and Technology Alliance

(BRTA), Donostia-San Sebastian,

Spain. His research interests include

video-surveillance systems and

mailto:tcauthor@def.com

Acc
ep

ted
 m

an
us

cri
pt

7

human-computer interaction. Luis received a Ph.D. in

mechanical engineering from Tecnun, University of

Navarra, Donostia-San Sebastian, Spain. Contact him at

lunzueta@vicomtech.org.

Jon Goenetxea is a researcher at

Vicomtech Foundation, Basque

Research and Technology Alliance

(BRTA), Donostia-San Sebastian,

Spain. His research interests

include CV and computer graphics.

Jon received a master’s degree in

software engineering from the Basque Country University

(EHU/UPV), Donostia-San Sebastian, Spain. Contact him

at jgoenetxea@vicomtech.org.

Sergio Sanchez-Carvallido is a

researcher at Vicomtech

Foundation, Basque Research and

Technology Alliance (BRTA),

Donostia-San Sebastian, Spain. His

research interests include machine

learning and the deployment of

architectural design of cloud services. Sergio received a

Ph.D in material science and engineering from Carlos III

University of Madrid. Contact him at

ssanchez@vicomtech.org.

Ignacio Arganda-Carreras is an

Ikerbasque Research Fellow at the

University of the Basque Country

(UPV/EHU), Donostia-San

Sebastian, Spain; Ikerbasque,

Basque Foundation for Science,

Bilbao, Spain, and Donostia International Physics Center

(DIPC), Donostia-San Sebastian, Spain. His research

interests include computer vision and bioimage analysis.

Ignacio received a Ph.D. in computer science and

electrical engineering from the Universidad Autonoma de

Madrid, Madrid, Spain. Contact him at

ignacio.arganda@ehu.eus.

Oihana Otaegui is in charge of the

ITS and Engineering department of

Vicomtech Foundation, Basque

Research and Technology Alliance

(BRTA), Donostia-San Sebastian,

Spain, and external professor at the

University of Basque Country (UPV/EHU). Her research

interests include complex digital signal processing,

computer vision and machine learning techniques. Oihana

received her Ph.D. in electronic engineering from Tecnun,

University of Navarra, Spain. Contact her at

ootaegui@vicomtech.org.

