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Abstract—Current computing requirements for high-scale inference of Deep Neural Networks

(DNNs) demand distributed execution environments. The advantages of serverless functions in

distributed computation offloading and automatic resource scalability make them a very suitable 

environment for such a task. However, finding the optimal workload at minimum resource usage

requires extensive benchmarking analysis such as those of the MLPerf standard. However, due

to its monolithic nature, the MLPerf execution model collides with serverless function platforms. 

To address this issue, we provide a novel decomposition methodology from the current MLPerf

benchmark to the serverless function execution model. Moreover, we have tested our approach

in Amazon Lambda to benchmark the processing capabilities of OpenCV and OpenVINO IE DNN

inference engines using Caffe, Tensorflow, and OpenVINO models for Computer Vision tasks. 

Experimental results prove Amazon Lambda a suitable platform for DNN inference following our

proposed architecture.

 SERVERLESS COMPUTING is an emerging 

cloud execution model whose resource scalability 

is dynamically managed on-demand by the cloud 

providers and billed only by usage time. A clear use 

case of this execution model is the serverless 

function paradigm. Under the scope of the Function 
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as a Service (FaaS), a serverless function 

architecture offloads the computation into 

functions, so developers can focus on the source 

code without worrying about the resource 

provisioning management. 

In parallel, Machine Learning (ML) has strongly 

gained momentum in recent years, thanks to the 

emerging Deep Neural Networks (DNNs). DNN-

based Computer Vision (CV) and Neural Language 

Processing (NLP) methods currently constitute the 

basis of the most advanced ML-based applications. 

The increasing popularity of such kind of 

applications have brought newer specialized ML 

hardware (e.g., TPUs, VPUs, referred as xPUs, in 

general) and software tools to optimize the 

inference of the computationally demanding 

DNNs. 

However, the produced myriad combinations of

ML hardware and software tools make the

assessment of ML system performance

challenging. Several attempts to solve this problem

have been made both by academic and industrial

organizations. In particular, the MLPerf Inference

benchmarking suite has currently become the “de-

facto” standard, driven by more than 30

organizations and more than 200 ML engineers and

practitioners [1]. Its first call for submissions

garnered more than 600 reproducible inference

performance measurements in October 2019, and

the obtained results were published in its webpage

for comparison.

The current version of MLPerf Inference

(version 0.5) was developed following a monolithic

design (i.e., single execution unit), which collides

with the nature of serverless function platforms.

Fortunately, the MLPerf community is open to

further revisions, as ML is still evolving, and newer

needs arise. The MLPerf community is very active

and their discussions are organized by topics and 

working groups. However, the fitting of serverless

function platforms in MLPerf has not been

discussed yet in that forum, so we aim at opening

this possibility, explaining our insights and

experiences which have resulted in the presented

methodology, tested in Amazon Lambda, which is

a popular serverless computing platform. 

Nevertheless, our approach is a FaaSified platform

for benchmarking ML and could also be considered

under the scope of alternative benchmarking suites.

CHALLENGES OF BENCHMARKING DNN 

INFERENCE IN FAAS PLATFORMS 

The FaaS platform workloading is managed by 

function instances. Serverless function instances 

are stateless (no dependency from function 

execution state), include ephemeral storage (the 

data is erased when the function instance finishes), 

and they are executed in isolated containers. 

Besides, each instance of the function contains an 

allocated amount of memory (function memory) 

and it is executed in CPU backend hardware [2]. 

Benchmarking DNN inference in FaaS platforms 

must cope with the following challenges: 

 How to deploy DNN models and their inference

engine: this includes choosing a suitable DNN

inference engine and loading and processing the

trained DNN models, considering the space and

memory constraints of serverless platforms.

 Cold starts: additional latencies that occur when

the serverless function is invoked for the first

time.

 Handling the performance results: considering

that the FaaS platforms are stateless with

ephemeral storage, how do we manage the

persistency of the measured results?

Zhang et al. [3] presented MArk, a general-

purpose ML inference serving system for optimal 

DNN inference workloading, from GPUs to 

serverless runtime, followed by a predictive 

resource autoscaling algorithm. Romero et al. 

proposed the INFaaS [4] inference serving system, 

which automatically determines the model-variant, 

hardware, and scaling configuration, based on user-

defined inference tasks and performance/accuracy 

requirements for queries. However, these systems 

do not tackle the goal of fair benchmarking across 

the high variety of hardware and software 

architectures for DNN inference, as MLPerf 

Inference does. 

ENABLING SERVERLESS RUNTIME IN 

MLPERF 

MLPerf Inference is designed to benchmark 

common ML-based CV tasks (image classification 

and object detection), and NLP tasks (translation). 

To do so, its architecture contains the following 

components: 
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 System Under Test (SUT): it runs the DNN

inference and the performance measurements

are sent back to the Load Generator

(LoadGen).

 LoadGen: it feeds the SUT with the input data

and calculates all performance measurements

for benchmark calculation.

 Data set: to configure the input data to be ready

for the benchmark.

MLPerf (version 0.5) considers the following 

scenarios, when feeding the SUT: 

 Single stream: an inference query is sent and only

upon completion, the next query is sent.

 Multi stream: LoadGen sends a set of inferences

per query periodically (between 50 and 100 ms).

 Server: inputs arrive according to a Poisson

distribution.

 Offline: the complete input data set is sent in a

unique query.

Regarding the benchmarks, MLPerf Inference 

has two divisions for submitting results: closed and 

open. Strict rules govern the closed division, such 

as using specific DNN model implementations, to 

address the lack of a standard inference-

benchmarking workflow. The open division, on the 

contrary, allows submitters to change the model 

and demonstrate different performance and quality 

targets. 

These scenarios assume a monolithic design of 

the system’s architecture. This means that the DNN 

inference is processed in the same execution unit 

(the targeted CPU, GPU or xPU), which is not 

feasible in a serverless system. Thus, we propose a 

new scenario, in which we execute a burst of 

several instances with no time interval between 

consecutive inference queries, and a FaaSified 

platform for benchmarking ML. 

FaaSification is the process of transforming 

existing code into functions in conformance with 

the programming conventions expected by the 

target provider. According to [5], this process can 

be classified in three levels depending on the 

considered Atomic Unit (AU): shallow (AU: 

functions or methods), medium (AU: lines of code) 

and deep (AU: instructions). 

Figure 1 depicts our FaaS benchmarking 

architecture and the life cycle of the benchmarking 

process, numbered from 1 to 11. The SUT is 

designed following a shallow FaaSification 

process, i.e., the AUs are functions and methods. 

Figure 1. The proposed benchmarking FaaS architecture and life cycle. 
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More specifically, our SUT implementation is 

composed of two layers: 

 Inference Engine (IE) layer: this layer

encompasses the software tools to infer trained

DNN models with ML task-related algorithms.

 Handler layer: this layer manages the DNN

inference algorithm depending on the selected

DNN framework and the post-processing

operations to obtain the inference results.

For this FaaS architecture design we have relied 

on MLPerf Inference’s components, but it could 

also be considered under the scope of alternative 

benchmarking suites, as any suite should contain 

components like SUT, LoadGen and data set. 

As shown in Figure 1, firstly, the LoadGen 

configures the data set source from the Online 

Storage Service (OSS) (step 1). Also, the LoadGen 

is subscribed to a Notification Service (NS) to 

handle the benchmarking life cycle (step 2). Next, 

the warmup process executes few function 

instances to avoid cold start delays during the 

benchmarking process, and hence, changing the 

state of the FaaS container to warm stage (step 3). 

During the first function instance execution, 

trained DNN models and software tools are 

downloaded to the containers and then, these DNN 

resources are loaded to be available for the next 

warmed function instances. Finally, the LoadGen 

receives the warmup finish notification from the 

SUT (steps 4 and 5) and the system is ready to start 

benchmarking. 

For each input element from the data set, the 

LoadGen uploads a .json file to the OSS (step 6). 

This file, that contains the paths to the input data 

set, is comprised of parameters such as database 

input data references, the result delivering output 

data, and benchmarking action commands. Next, 

following the event-driven design of the FaaS 

platforms [6][7], each uploading action triggers an 

event automatically creating a function instance 

(see event listener in Figure 1). At this point in the 

benchmarking process, the SUT invokes several 

function instances (one per query). So, each 

function performs the inference and post-

processing tasks of the data coming from the OSS, 

and measures the following output values: 

 The start and end timestamps.

 The processing time (the function’s latency).

 The post-processing results of the function

for accuracy evaluation.

To preserve the FaaS data persistency, each 

function instance saves the measured output values 

in a separate file in the OSS (step 8). The last 

function instance sends a finishing action message 

to the LoadGen (step 9-10). 

Finally, the LoadGen downloads all files with 

the mentioned output values from OSS (step 11). 

This information is organized into different lists to 

calculate the inference latency, throughput, and 

accuracy results. These are calculated like this: 

 Latency: instead of using average latency as

the definitive metric, the 90th percentile of

the latency list is calculated. We do this to

reduce the impact of outliers.

 Throughput: the number of queries divided by

the total time. This total time refers to the

time difference between the maximum value

of end timestamp and the minimum value of

start timestamp.

 Accuracy calculation: the post-processing

results are compared with respect to the

ground truth data according to a measurement

protocol, which depends on the ML task.

IMPLEMENTATION AND EVALUATION 

We tested our approach in Amazon Lambda, 

with Amazon S3 to store the input and output data, 

and Amazon Simple Notification Service (SNS) as 

the NS. As mentioned above, we focused our 

implementation and tests on CV tasks to benchmark 

the processing capabilities of the DNN inference 

engines of OpenCV [8] and OpenVINO Inference 

Engine (IE) [9] using Caffe, Tensorflow, and 

OpenVINO Intermediate Representation (IR) 

models. In particular, we have taken the monolithic 

MLPerf algorithm class and its functions as AUs, 

and we manually deployed to a FaaS function, 

supported by Amazon Lambda layers. We make the 

source code available (https://github.com/ 

Vicomtech/serverless-mlperf) to enable a follow-

up discussion about the proposed design, 

implementation and experiments with the MLPerf 

and serverless computing communities.

https://github.com/Vicomtech/serverless-mlperf
https://github.com/Vicomtech/serverless-mlperf
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Figure 2. Inference latency results with OpenVINO IR (IR), Caffe (CF) and TensorFlow (TF) DNN models, and 

OpenVINO IE (IE) and OpenCV (OCV) as inference engines. 

To evaluate the feasibility of our 

implementation, we benchmarked two DNN 

models of the MLPerf closed division with the 

following configuration: 

 Data set: ImageNet [10] and COCO [11] (subset

of randomized 10K images per data set).

 Performance metrics: latency and throughput.

 DNN models: we used MobileNetV1 and

SSDMobileNetV1 for image classification and

object detection respectively, with 32 Floating

Point (FP) precision in Caffe, TensorFlow and

OpenVINO IR formats.

 FaaS memory configurations: 768MB, 1536MB,

2240MB, 3008MB.

The baseline to compare these results with 

monolithic implementations would be the results 

published in MLPerf’s webpage. 

Figure 2 depicts the latency time for different 

function memory configurations, from 768MB to 

3GB. We observed that increasing the allocated 

memory for each function instance the latency 

improves in both benchmarked models, especially 

in ranges between 768-1536MB. This performance 

improvement is between 2.12-2.20X times larger 

for MobileNetV1 and 1.58-2.55X for 

SSDMobileNetV1. This confirms the observations 

of Maissen et al. [2] about the latency reduction 

when the allocated memory is increased, and 

therefore, the CPU power increases linearly. 

Moreover, OpenVINO IR models achieve the 

best performance results. This is because the 

OpenVINO IE DNN inference engine operations 

are optimized for Intel parallelization and 

vectorization instructions such as AVX, SSE2 or 

SSE4, and currently Amazon Lambda processors 

rely on Intel hardware [2]. 

As expected, since SSDMobileNetV1 has more 

parameters and layers than MobileNetV1, its 

latency is higher. While in MobileNetV1 the 

performance of Caffe and TF models is quite 

similar, in SSDMobileNet the reduction of the 

latency with the Caffe model is between 1.33 and 

1.98X compared to TF. 

Figure 3. Inference throughput results with OpenVINO 

IR (IR), Caffe (CF) and TensorFlow (TF) DNN 

models, and OpenVINO IE (IE) and OpenCV (OCV) 

as inference engines. 

Nevertheless, the inference throughput values 

calculated in Figure 3 reveal that the inference 

latency time does not have any influence in the 
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throughput values. We believe the variations in 

inference throughput depend on the AWS cloud 

provider scheduling resources. 

CONCLUSION 

The increasing need to deploy ML tasks at high 

scale demands optimal execution models such as 

serverless functions. However, finding an efficient 

DNN inference workload using minimum resources 

requires an important benchmarking analysis. 

Throughout our benchmarking evaluation of DNN 

inference efficiency, we have observed that the 

amount of the allocated memory for each function 

instance plays an important role in inference 

latency time reduction, especially when the 

configured memory is between 768MB and 

1536MB. 

Also, the OpenVINO IE DNN inference engine 

and OpenVINO IR model optimizations contribute to 

reduce the inference latency in Amazon Lambda 

hardware. However, these latency results do not 

influence the inference throughput results. We 

hypothesize that this occurs due to the cloud 

provider scheduling capabilities. However, we 

believe that 51-83 QPS values make Amazon 

Lambda a suitable platform for DNN inference. 

The design space is still very large –different 

serverless environments, different benchmarks (in 

addition to MLPerf), different hardware targets 

(CPUs, GPUs, xPUs, etc) – and requires further 

investigation. Therefore, we expect to expand these 

benchmarking evaluations to the most popular 

serverless function platforms. We will also explore 

how to benchmark more complex ML systems that 

consider a computing continuum formed by mobile, 

edge, and cloud resources [12], relying on 

standards such as MLPerf. 
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