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Abstract

The paper concerns the relation between the following two quantities.
e Holder condition number of an eigenvalue A of a square complex matrix.

e The rate of growth of the diameter and the area of the connected compo-
nent of the e—pseudospectrum containing A.
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1 Introduction

By A(A) we denote the spectrum of any A € C"*". We denote by || - || the 2-norm.
Let A be an eigenvalue of A of algebraic multiplicity m. For X € C™*™, sv(4 x)(X)
denotes the radius of the smallest circle centered at A containing m of the eigenvalues
of X counting multiplicities. The (Holder) condition number of the eigenvalue A of
order w > 0 is defined as

. SV(A,A)(X)
dy(AN) = 1 AA
cond,( ) a—1>%1+0<\|X7AHSE X — Al
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The index of an eigenvalue A of A, v = v(\), is the size of the largest Jordan block
associated with A. The limit that defines cond,, (A, ) is of interest just for w = 1/v.

On the other hand for € > 0, the e-pseudospectrum of A consists of the eigenvalues
of all matrices X within an e-neighborhood of A, i.e.,

A(A) = U A(X).
X e C’VLXH
X Al <e

For any complex matrix M we denote by o1(M) > o9(M) > - - - its singular values
arranged in decreasing order. It is well known that

A(A)={z€C: o,(zI —A) <e}.

The subset A.(A) of the complex plane is a compact set consisting of at most r (dis-
joint) connected components, one around each eigenvalue, where A(A) = {\q,..., A\ }.
Denote the connected component of A.(A) around the eigenvalue A by K, (g), and
consider the diameter §(¢) and the area a(e) of this component as a function of e.

We denote by 0K () the boundary of Ky (g). From [6, Proposition 2.6.5] we deduce

that
max |z — A
. z€0K x (€)
c= lim ,
0+ gl/v
where ¢ denotes the Holder condition number cond,/, (A4, ). Thus, calling p(e) :=
max;ecox, (e) |2 — Al, we see that lim._,o+ 51(—/52 = ¢. We extend this result to §(¢) and

a(e) instead of p(g) in Thoerems 4 and 7.
a(e)

Remark 1. When lim,_ o+ @ = 00 [resp. lim._g+ == = oo/, strictly speaking the
function §(e) [resp. a(e)] is not differentiable from the right-hand side at 0. However,
in this case we put 8’ (0) = oo [resp. a/ (0) = oo/ in order to grasp the geometric

meaning of the results.

The main results of the paper are as follows.

1. ¢/, (0) = 2cif v = 1. Otherwise ¢’, (0) = oo. Here ¢', denotes the right-derivative
of §. See Theorem 6.

2. a(0) =0if v =1, a/ (0) = wc? if v = 2. Otherwise a/,(0) = co. See

Theorem 9.

In Section 2, we work four examples of matrices A for which both the condition
number and the geometry of the e-pseudospetrum are known in detail; this let us
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corroborate our results. We demonstrate that an important result by Karow [6] let
us bound the e-pseudospectrum by lower and upper closed disks; see Section 3. By
the monotony of the diameter function, and its changes under a homotecy, we show
how to transfer these inequalities with respect to the inclusion relation between sets
to the diameters, in Section 4. In Section 5, we relate the first rigth-derivative of the
diameter at € = 0 with the condition number. In Section 6, the monotony of the area
function, and its changes under a homotecy, let us translate the bounds in Section 3
to numeric inequalities. In Section 7, we relate the first rigth-derivative of the area at
¢ = 0 with the condition number ¢; moreover we establish a relation between ¢ and
the second right-derivative a’{ (0) whenever this derivative exists. Finally, in Section
8 we formulate a conjecture about the semialgebraicity of the functions 6(g) and a(e);
if it were true, a de 'Hopital inverse rule would let us prove the existence of a’{ (0).

2 Examples

Next, we consider four examples where we compute the condition number of order
1/v of an eigenvalue A and the right-derivatives at £ = 0 of the diameter §(¢) and the
area a(e) of the connected component X (e).

First Example. Let A € C™*™ be a normal matrix. Then the e-pseudospectrum
of A is the union of the closed disks of radius ¢ centered at the eigenvalues of A. So,
for sufficiently small € > 0, we have

Ka(e) =D(Ne).

Therefore, p(e) = €, and since the eigenvalues of a normal matrix are semisimple (i.e.
of index 1),

cond; (A, \) = lirgl+ Z =1
e—

The diameter of D(A, ¢) is 2¢. So, §'(¢) = 2 and §,(0) = 2. If we denote by a(e) the
area of this circle, a(e) = we?; hence d'(g) = 27e,a”(¢) = 2m. Therefore, a/, (0) =
0,a’[(0) = 2m.

Second Example. Let

rxa =4

0 A

be like a Jordan block, with complex numbers A, d and d # 0. Karow proved in [6,
Theorem 5.4.1, p. 74] that for each ¢ > 0,

AE(J2(>‘7 d))
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is a closed disk centered at A and with radius ro(e) = max{r > 0] o2 (J2(r,|d|)) < e}.

As
d|? dl4
o2 (Ja(r |d])) = \/7”2 + % —\/r2d|* + L 4| ;

solving the equation in the unknown r

d|? d|*
r2+%—\/r2\d|2+%:52,

we find that ro(e) = /&2 + |d|e. This result has also been proved by Cui et al. [4,
Proposition 2.1]. So, d(g) = 24/¢? + |d|e. Hence,

2e + |d|
Ve + ldle’

It is obvious that v(A) = 2. Let us remark that

m 2E) o (1)

0+ g1/2

§(e) =

which implies &', (0) = oo.

Now, let us see that ¢ := condy o (J2(A,d),\) = +/|d]. We need some previous
considerations. For a general matrix A € C"*", let A(A) = {A1,...,Ar}. Let

A=) (NP +N))

j=1

be the Jordan decomposition of A, where for each j € {1,...,r}, P; is the Riesz
projector onto the root subspace (or generalized eigenspace) Ry, (A) of \; and along
the sum of root subspaces associated with all eigenvalues of A different from A;; and
Nj := (A—\;I,,)P; is the nilpotent matrix corresponding to A;. By [6, Theorem 5.4.4
(viii), p. 78], if v; ;== v(A;) > 1, then

condy /,,, (A, Aj) = [N 1M/, (2)

In our present example A = Jy(\,d) = Al + N, where

0 d
veloa]

thus, ¢ = || N||*/? = \/[d]. From (1), we have
4(e)

—= = 2c.
0+ g1/2

The area a(e) is given by m(e? + |d[e). So, a(¢) = 7(2¢ + |d|); hence, a/, (0) = 7|d| =
mc?. This concludes the Second Example.
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Before discussing the third example, we need to introduce a result on the pseu-
dospectra of nilpotent matrices of nilpotency index two. Here on, we denote by Oy
the k& X k zero matrix.

Proposition 1 ([5], Theorem 3). Let us assume that q,r are nonnegative integers
such that n = 2q +r. Let N € C" ™ be a matriz such that N> = O,, whose
nonzero singular values are o1(N) > --- > 04(N). Then there exists a unitary matriz
U € C™*™ such that

=9 M a0 [0 w60,

By the Second Example, or [4, Proposition 2.1] by Cui et al., the e—pseudospectrum

{ 0 o;(N) }

of

0 0

is @(O, \/e2 +60'7;(N)) for i = 1,...,q9. So, by [6, Propositions 5.2.3 and 5.2.4], we
have the following result.

Proposition 2. Under the hypotheses of Proposition 1 for e > 0,
Ac(N) =UL,D(0,1/e2 +e0;(N)) UD(0,¢)

=D(0,/e2 +e01(N)). (3)

We will also need that for any o € C, A € C"*"™ and ¢ > 0,

Ac(al, + A) = a + A(A). (4)

Third Example. This example is a small generalization of the second one. Let A
be any n-by-n complex matrix with a unique eigenvalue A. Moreover, let us assume
that v(A) = 2. Let N := A — Al,,; thus, A = A[,, + N is the Jordan decomposition
of A. Hence, by (2), ¢ = condy j5(A, \) = |N||/? = /o1(A — AL,). By Proposition 2
and (4) we see that for £ > 0,

A(A) = D(\, Ve +eo1(A - AIL)).

So, 6(g) = 24/e2 + o1 (A — A,,), a(e) = w(e? + €01 (A — AL,)). Therefore,

5/(6) B 2€+0'1(A—)\In)

= , which implies &', (0) = oo,
Ver+eoi(A—A,) P +0)

and

d' () = m(2e + 01(A — M,)), which implies @/, (0) = mo1(A — X],,) = mc?.
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Fourth Example. Let A1, s be two different complex numbers. Let A € C2*2
whose eigenvalues are \; and A\g. Let us define

d(A) := \/tr(A* A) — M2 — [ A\2]2.

The number d(A) is the departure from normality of A. In [6, Proposition 5.5.3, p.
80] was proved that for each € > 0,

A (A) = D(A1,e) UD(Ag,e) UMy, 2, (d(A), €) (5)
where
Mo (de) i ={2€C: (]2 = M =) (]2 — Xof* = &%) <2d*}, d>0. (6)

Let us consider Figure 1 that shows the e-pseudospectrum for the values of ¢ =
1.00,1.50, 1.75 of the matrix

—-1-3i 3

Ay = .
! 0 1+2i

So, A1 = —1-3i, A = 142, [[A1|lr = /| -1 =3P+ 32+ [1 +2i2 =10+ 9+ 5 =
V24, Thus, d(A;) = 24— 10 -5=+9=3.

Figure 1: Pseudospectra of A; for ¢ = 1.00,1.50,1.75

We see that for sufficiently small values of ¢ the e—pseudospectrum of A; has two
connected components. Let us fix our attention on € = 1.50. The figure contains a
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straight line that passes by A1 and 2. This line intersects the boundary dA.(4;)
at the points z1, 29, 23, 24. If we consider the eigenvalue Ao, the diameter §(g) of the
connected component Xy, (¢) is equal to the distance between z3 and z4. From (5)
and (6), we can deduce that

1
i(e) = T <\/11652 + 116v/38¢ + 841 — \/11652 — 116/38¢ + 841>

Hence, differentiating () with respect to ¢ and evaluating at € = 0, we have

0%

On the other hand, let us compute the condition number of the eigenvalue Ay = 1+ 2i,

comt ) =1+ (A0 Y2 g (B T R

Let us remark that

5/(0) =2 COIldl(_Al7 )\2)

Instead of making a special reasoning for the matrix A;, we are going to find a
general expression for the diameter §(g) of Ky,(g) for any matrix A € C?*? with
eigenvalues A; and As. By (6), the boundary 9A.(A) is formed by quasi-Cassini
ovals with foci the points A\; and As. In fact, the set A.(A) is symmetric about the
straight line that joints A; and Ay. This is a consequence of (5) and (6). Moreover,
0(g) = |z4 — 23] = |22 — z1]. Later we will need the condition numbers of A\; and Ay of
order 1. These numbers are equal. In fact, by [6, Proposition 5.5.8, p. 83], we have

2
condy (4, \;) = \/1 + (ASZ(_A;1> , k=12 (7)

Thus, let € > 0 be such that A.(A) has two connected components. Now, we compute
the intersection points z1, 29, 23, 24 of the line z(t) := (1 — t)A; + tA2,t € R with the
curve A (A). By (6), this curve is given by the equation

(12 = M2 = €2) (2 = Aof? — €2) — £2d(A)? = 0. 8)

For determining the values of the parameter ¢ that correspond to the points 21, 22, 23
and z4 we substitute z(t) into (8),

A= Ao Mt — 2 A1 — X' 4 (|1 — Aol — 22 A1 — Ao?) £
+2% A1 — X2t — €2 A1 — Ao|? + et — £2d(A)? = 0.
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For simplicity, we write 6 := |\ — Ag|,
04t —20%° + (0" — 2%0%) 12 + 2707 — 20 + &* — £2d(A)* = 0.

With the command solve of MAPLE 13 we find the roots of this equation in t
obtaining

t %f %\/02+452+45\/m
s i%i %Wu%L%W
ts = 3 + g\ 0% + 4% — 4=/ + (A
= 5+ 5p\/0? 462 +4e /B T A(A

where t1 < 0 <ty < % <tz <1<ty Hence, z3 = z(t3) and z4 = z(t4). So,

1 1
5(e) = |24 — 23] = 5\/92 +4e? +4e+/02 + d(A)? — 5\/192 +4e? — 4e/0%2 + d(A)2.

Therefore,

2e 4+ /02 +d(A 0% + d(A)?
V02 +4e +4€«/92 TdA \/92 +4e? — e P (AR

2\/192 d(A
& ( + =2 1+

By (7), we have ¢, (0) = 2 cond, (A )\2

d'(e) =

Remark 2. As discussed in the introduction, we will see that the results in these
examples are not casual. In fact, we will prove that the condition number of A of
order 1/v is related with the functions § and a.

3 Bounds by closed disks

From Theorems 2.6.6 and 5.4.4 of Karow [6] we infer the following theorem.

Theorem 3. Let A be an eigenvalue of A € C"*™ of index v. For each n € (0,1]
there exists an €, > 0 such that for every e € (0,¢&,],

DX, (1=me)"e) € Ka(e) € DN, (1 +n)e) ) 9)

¢ being the condition number of X of order 1/v.
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From (9) we deduce that
D(0, (1 =m)e) " e) € Ka(e) = A € D(O, (1 +m)e) ")

Considering the homotecy

z
Z —, z €C,
el/v

Wwe see j< )\
c A(g) =

D(O’ (1 - 77)1/”0) el/v

C D(0, (L+n)"e). (10)

4 Bounds by diameters

Since the diameter function is monotone increasing with respect to C, by (10),

o) 2¢(1+n)'/". (11)

2e(1 )/ < 570 <

Thus, we arrive at the following theorem.

Theorem 4. Let v be the index of A, and let ¢ be the condition number of A of order
1/v. Then

o(e) _
Jim 7 =2, (12)
Proof. Let us define the functions
filn) =11 —n)', (13)
fa(n) =1+t —1, (14)

where 1 € [0,1]. If v = 1, then

filn) =1-1+n=n,
fa(n) =14n—1=nmn;
so, fi(n) = f2(n) on [0,1].
If v > 2, we will deduce that fo(n) < f1(n). This last inequality is equivalent to
(1 + 77)1/1/ -1 S 1- (1 - 77)1/”’ V’? € [05 1]
= [+ + A=t <2, e o]

Let us define
gln) =@+ + 1=, nelo1].
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Then
g = L[ m) = ().

Since 2% := e*"* when o < 0 the function x — x is decreasing in (0, c0); therefore,
x — x'/*~1 is decreasing in (0,00). Hence, if 0 < 7 < 1, we see that 1 —n < 1 +n;
what implies

(L=t > 1+t

Thus, ¢’'(n) < 0. So, g is decreasing on [0, 1]. Therefore, g(n) < ¢g(0) = 2. That is,
f2(n) < fa(n).

Given that 2c—2cfi(n) = 2¢(1—n)'" and 2c+2cfa(n) = 2c¢(1+n)Y¥, by (11),
we have
(€)

el/v —

[«

2¢ —2cf1(n) <

For every v > 1, fa(n) < fi(n) for n € [0,1]. Then,

2c —2cfi(n) < jffz < 2c+2cfi(n)
= —aenn) < X ae <aep)
or
)
855’2 — 2¢| < 2¢f1(n).

But lim, ¢+ fi(n) = 0 and f1(n) > 0 for n > 0. Thus for a fixed 79 > 0 there exists
an 1, > 0 such that 2cfi(n;) < no. For this n;, there is an €, > 0 such that for all
€€ (076771)3

o(e
65—/3 - 20‘ < 2c¢f1(n) < no.

So, there exists the limit
1)
lim ()

0+ gl/v

and it is equal to 2¢. O

5 Derivatives of the diameter

In this section we relate the right-derivative of the diameter ¢ at 0 with the condition
number of the eigenvalue A\, when v = 1. First, we have the following lemma.
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Lemma 5. Let A € C"*™ and X\ be an eigenvalue of A of index v. Let §(¢) be the
diameter of the connected component of A:(A) that contains X. Let ¢ be the condition
number of X of order 1/v. Then, there exists the limit

lim —5(6)
e—0t €
and it is equal to
2¢ if v=1,
oo if v>2.
Proof. If v = 1, Theorem 4 implies
lim @ = 2c.
e—0t €
If v > 2, from the same Theorem,
o) d(e) 1
e - el/v gl-1/v — 2¢- 00,

when ¢ — 0F. O

From this lemma the next theorem follows immediately.

Theorem 6. Let A € C**™ and X\ be an eigenvalue of A of index v. Let 0(g) be the
diameter of the connected component of A:(A) that contains X. Let ¢ be the condition
number of A of order 1/v. Then,

i(e) _ {20 if v=1,

lim —=~ .
em0+ € o if v>2.

Therefore, 8’ (0) = 2c if v = 1.

6 Bounds by areas

Since the area function is monotone increasing with respect to C, by (10),

w1 =l < S <me4 P, (15)

where a(e) := area or Lebesgue measure of X (g). Thus, we arrive at the following
theorem.

Theorem 7. Let v be the index of A\, and let ¢ be the condition number of A of order
1/v. Then

ae) _ 5
Jim 70 =mc”. (16)
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Proof. Let us define the functions

ei(n) =1—(1—n?", (17)
@a(n) = 1+n)*" -1 (18)

If v =1, then
p1(n) =1-(1—n)*=2n—1n7°
pa(n) = (1+n)?—1=2+n%
it is obvious that ¢1(n) < pa(n) when 0 < 7.

If v = 2, then

pi(m)=1-1=n)=n=1+n)—1=p2(n).

If v > 3, we will see that

p2(n) < p1(n), ne0,1],

or, equivalently,
(1I+m)*"=1<1-(1—=n*", nel01]

= A+ +a-n¥r<2, nelo1].
Let us define
G(n) = L+ + (1 =n)*", nel01]
Then
W) =2 [ = =]

As the function = — z2/*~! is decreasing in (0,00),if 0 < < 1,then 1 —n <1+7
implies (1 —7)%/*=1 > (1+7)?~" and ¢ (n) < 0. In consequence, ¢ is decreasing in
[0,1]. Thus, for n € (0,1],%(n) < ¥(0) = 2. Accordingly,

p2(n) < w1(n), nel0,1].
By (17) and (18),

(1=n)?" =1—p1(n),
(1+n)¥" =1+ @a(n).

Inequalities (15) imply

al\&
7 — xorn) < 8 < 7 4 rga(n). (19)
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The v < 2 case. Since p1(n) < ¢a(n) in [0, 1],

—m?pa(n) < = p1(n).

Hence, by (19),

ale
mc? — me*pa(n) < 5§/2 < wc® 4w pa(n); (20)
which is equivalent to
a(e) 2 2
=27y ¢ < wefpa(n).

Bearing

lim mc? =0

O ©2(n)
in mind, we deduce that for a fixed 19 > 0 there exists an n; > 0 such that wc2pa(n;) <
no. For this n; there is an €,, > 0 such that for € € (0,¢,,],

a(e)

2/ < wcPpa(m) < mo.

77'('62

This proves that there exists the limit

_a(e)
1
a—1>I(r)l+ g2/v

and it is equal to mc?.

The v > 3 case. As p2(n) < ¢1(n) in [0, 1], from (19) we deduce that

and, as p1(n) > 0if n > 0 and

lim ¢;(n) =0,

n—0t
by a reasoning analogous to the former one we infer that there exists the limit

li a(e)_ 2

=mc. 0
e0+ g2/v

7 Derivatives of the area

In this Section we establish the relation between the first and second right-derivatives
of a at 0 and the condition number of the eigenvalue A of order 1/v, when v = 1 or
2. First, we prove the following lemma.
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Lemma 8. Let A € C"*™ and X be an eigenvalue of A of index v. Let a(e) be the
area of the connected component of A:(A) that contains A. Let ¢ be the condition
number of X of order 1/v. Then, there exists the limit

and it is equal to

lim ii) = mc?.
e—0t €

Hence,

e—0+ e—0+ &2

lim A gy 46 (hm e) (hm “(5)> =0-7c® = 0.

Second, let us assume now that v = 2. From Theorem 7,

e—0t €

Finally, when v > 3, it is obvious, by Theorem 7 and

TC O B

e—0t € o+ g2/v w=2)/v’
that
a(e
lim (e) =o00.0
e—0t+ €

Theorem 9. Let A € C"*™ and A be an eigenvalue of A of index v. Let a(e) be
the area of the connected component A (A) that contains X. Then, there ezists the
right-derivative of a at 0, a,(0), and

Proof. By Lemma 8 we deduce that
ifv=1,
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if v =2,

0= 1y 2O
if v > 3,

a (0) = 6l_i)ré1+ M =o00.0

Theorem 10. Let A € C"*" and \ be a semisimple eigenvalue. Let a(e) be the area
of the connected component A (A) that contains \. Let us assume that there exists
a’l (0). Then

a’(0) = 2mc?.

Proof. Let us define the function

_ Jal(e) ife>0,
Ale) = {a(—s) if e <0.

By 9, as v = 1, there exists A’(0) and A’(0) = 0. If we suppose that there exists the
derivative A”(0), then

47(0) — 1y AC) = 2400) + A(e),

e—0 g2

But, the existence of this limit does not imply the existence of A”(0). See [1, Exercise
5-20.].

When € > 0, A(e) = a(e), A(—¢) = a(—(—¢)) = a(e); therefore, A(e) + A(—¢) =
2a(e).

When € < 0, A(e) = a(—¢), A(—¢) = a(—¢); hence, A(e) + A(—¢) = 2a(—¢).
Then, by Theorem 7,

lim A(e) —2A(0) + A(—¢) ~ lim 2a(e)
0+ g2 es0+ g2

= 27‘('62,

lim Ae) —2A(0) + A(—¢) ~ lim 2a(—¢) . 2a(B)

= = 21c?.
€0~ e? e—0- (—€)2  poor B2

Consequently, there exists the limit

1 AE) = 24(0) + A(=)

e—0 e2

and is equal to 2rc?. So, A”(0) = 2rc?, and /[ (0) = 2mc®. O
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8 Conjecture

Let A be a semisimple eigenvalue of a matrix A € C"*". We need the definition of a
semialgebraic set S C R™ and of a semialgebraic function f : S — R. These concepts
can be seen in [6, Chapter 3, p. 39]. A classical reference is [2, Chapter 2, p. 23].

Conjecture 11. The functions d,a: [0,00) — R are semialgebraic.

The following theorem is proved in [3, Lemma 3.1 (ii)]

Theorem 12 (de 'Hoépital inverse rule). If f,g: [0,00) — R are semialgebraic func-
tions, f(0) = g(0) = 0, and there is an €9 > 0 such that ¢'() > 0 for e € (0,¢9),
then

If Conjecture 11 were true, then

> a(e) ae) _ (e
5

mc® = lim — = lim = lim
e—0t+ € e—0t+ 2e e—0+

Thus, the derivative a’/ (0) would exist and it would be equal to 2mc? because a’j (0) =
lim,_,o+ a”’(e).

As the area of a region can be expressed by means of a line integral, and taking
into account that a parametric integral is differentiable with respect to the parameter
when the integrand is, the derivatives a’(¢) and a” (¢) exist for sufficiently small € > 0.
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