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Abstract

The paper concerns the relation between the following two quantities.

• Hölder condition number of an eigenvalue λ of a square complex matrix.

• The rate of growth of the diameter and the area of the connected compo-

nent of the ε–pseudospectrum containing λ.
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1 Introduction

By Λ(A) we denote the spectrum of any A ∈ Cn×n. We denote by ‖ · ‖ the 2-norm.

Let λ be an eigenvalue of A of algebraic multiplicity m. For X ∈ Cn×n, sv(A,λ)(X)

denotes the radius of the smallest circle centered at λ containing m of the eigenvalues

of X counting multiplicities. The (Hölder) condition number of the eigenvalue λ of

order ω > 0 is defined as

condω(A, λ) := lim
ε→0+

max
0<‖X−A‖≤ε

sv(A,λ)(X)

‖X −A‖ω
.
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The index of an eigenvalue λ of A, ν = ν(λ), is the size of the largest Jordan block

associated with λ. The limit that defines condω(A, λ) is of interest just for ω = 1/ν.

On the other hand for ε ≥ 0, the ε-pseudospectrum of A consists of the eigenvalues

of all matrices X within an ε-neighborhood of A, i.e.,

Λε(A) :=
⋃

X ∈ Cn×n

‖X −A‖ ≤ ε

Λ(X).

For any complex matrix M we denote by σ1(M) ≥ σ2(M) ≥ · · · its singular values

arranged in decreasing order. It is well known that

Λε(A) = {z ∈ C : σn(zI −A) ≤ ε}.

The subset Λε(A) of the complex plane is a compact set consisting of at most r (dis-

joint) connected components, one around each eigenvalue, where Λ(A) = {λ1, . . . , λr}.
Denote the connected component of Λε(A) around the eigenvalue λ by Kλ(ε), and

consider the diameter δ(ε) and the area a(ε) of this component as a function of ε.

We denote by ∂Kλ(ε) the boundary of Kλ(ε). From [6, Proposition 2.6.5] we deduce

that

c = lim
ε→0+

max
z∈∂Kλ(ε)

|z − λ|

ε1/ν
,

where c denotes the Hölder condition number cond1/ν(A, λ). Thus, calling ρ(ε) :=

maxz∈∂Kλ(ε) |z − λ|, we see that limε→0+
ρ(ε)
ε1/ν

= c. We extend this result to δ(ε) and

a(ε) instead of ρ(ε) in Thoerems 4 and 7.

Remark 1. When limε→0+
δ(ε)
ε =∞ [resp. limε→0+

a(ε)
ε =∞], strictly speaking the

function δ(ε) [resp. a(ε)] is not differentiable from the right-hand side at 0. However,

in this case we put δ′+(0) = ∞ [resp. a′+(0) = ∞] in order to grasp the geometric

meaning of the results.

The main results of the paper are as follows.

1. δ′+(0) = 2c if ν = 1. Otherwise δ′+(0) =∞. Here δ′+ denotes the right-derivative

of δ. See Theorem 6.

2. a′+(0) = 0 if ν = 1, a′+(0) = πc2 if ν = 2. Otherwise a′+(0) = ∞. See

Theorem 9.

In Section 2, we work four examples of matrices A for which both the condition

number and the geometry of the ε-pseudospetrum are known in detail; this let us
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corroborate our results. We demonstrate that an important result by Karow [6] let

us bound the ε-pseudospectrum by lower and upper closed disks; see Section 3. By

the monotony of the diameter function, and its changes under a homotecy, we show

how to transfer these inequalities with respect to the inclusion relation between sets

to the diameters, in Section 4. In Section 5, we relate the first rigth-derivative of the

diameter at ε = 0 with the condition number. In Section 6, the monotony of the area

function, and its changes under a homotecy, let us translate the bounds in Section 3

to numeric inequalities. In Section 7, we relate the first rigth-derivative of the area at

ε = 0 with the condition number c; moreover we establish a relation between c and

the second right-derivative a′′+(0) whenever this derivative exists. Finally, in Section

8 we formulate a conjecture about the semialgebraicity of the functions δ(ε) and a(ε);

if it were true, a de l’Hôpital inverse rule would let us prove the existence of a′′+(0).

2 Examples

Next, we consider four examples where we compute the condition number of order

1/ν of an eigenvalue λ and the right-derivatives at ε = 0 of the diameter δ(ε) and the

area a(ε) of the connected component Kλ(ε).

First Example. Let A ∈ Cn×n be a normal matrix. Then the ε-pseudospectrum

of A is the union of the closed disks of radius ε centered at the eigenvalues of A. So,

for sufficiently small ε ≥ 0, we have

Kλ(ε) = D(λ, ε).

Therefore, ρ(ε) = ε, and since the eigenvalues of a normal matrix are semisimple (i.e.

of index 1),

cond1(A, λ) = lim
ε→0+

ε

ε
= 1.

The diameter of D(λ, ε) is 2ε. So, δ′(ε) = 2 and δ′+(0) = 2. If we denote by a(ε) the

area of this circle, a(ε) = πε2; hence a′(ε) = 2πε, a′′(ε) = 2π. Therefore, a′+(0) =

0, a′′+(0) = 2π.

Second Example. Let

J2(λ, d) =

[
λ d

0 λ

]
be like a Jordan block, with complex numbers λ, d and d 6= 0. Karow proved in [6,

Theorem 5.4.1, p. 74] that for each ε ≥ 0,

Λε(J2(λ, d))
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is a closed disk centered at λ and with radius r2(ε) = max{r > 0 |σ2
(
J2(r, |d|)

)
≤ ε}.

As

σ2
(
J2(r, |d|)

)
=

√
r2 +

|d|2
2
−
√
r2|d|2 +

|d|4
4
,

solving the equation in the unknown r

r2 +
|d|2

2
−
√
r2|d|2 +

|d|4
4

= ε2,

we find that r2(ε) =
√
ε2 + |d|ε. This result has also been proved by Cui et al. [4,

Proposition 2.1]. So, δ(ε) = 2
√
ε2 + |d|ε. Hence,

δ′(ε) =
2ε+ |d|√
ε2 + |d|ε

, which implies δ′+(0) =∞.

It is obvious that ν(λ) = 2. Let us remark that

lim
ε→0+

δ(ε)

ε1/2
= 2
√
|d|. (1)

Now, let us see that c := cond1/2

(
J2(λ, d), λ

)
=
√
|d|. We need some previous

considerations. For a general matrix A ∈ Cn×n, let Λ(A) = {λ1, . . . , λr}. Let

A =

r∑
j=1

(λjPj +Nj)

be the Jordan decomposition of A, where for each j ∈ {1, . . . , r}, Pj is the Riesz

projector onto the root subspace (or generalized eigenspace) Rλj (A) of λj and along

the sum of root subspaces associated with all eigenvalues of A different from λj ; and

Nj := (A−λjIn)Pj is the nilpotent matrix corresponding to λj . By [6, Theorem 5.4.4

(viii), p. 78], if νj := ν(λj) > 1, then

cond1/νj (A, λj) = ‖Nνj−1
j ‖1/νj . (2)

In our present example A = J2(λ, d) = λI2 +N , where

N =

[
0 d

0 0

]
,

thus, c = ‖N‖1/2 =
√
|d|. From (1), we have

lim
ε→0+

δ(ε)

ε1/2
= 2c.

The area a(ε) is given by π(ε2 + |d|ε). So, a′(ε) = π(2ε+ |d|); hence, a′+(0) = π|d| =
πc2. This concludes the Second Example.
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Before discussing the third example, we need to introduce a result on the pseu-

dospectra of nilpotent matrices of nilpotency index two. Here on, we denote by Ok
the k × k zero matrix.

Proposition 1 ([5], Theorem 3). Let us assume that q, r are nonnegative integers

such that n = 2q + r. Let N ∈ Cn×n be a matrix such that N2 = On, whose

nonzero singular values are σ1(N) ≥ · · · ≥ σq(N). Then there exists a unitary matrix

U ∈ Cn×n such that

U∗NU =

[
0 σ1(N)

0 0

]
⊕ · · · ⊕

[
0 σq(N)

0 0

]
⊕Or.

By the Second Example, or [4, Proposition 2.1] by Cui et al., the ε–pseudospectrum

of [
0 σi(N)

0 0

]
is D

(
0,
√
ε2 + εσi(N)

)
for i = 1, . . . , q. So, by [6, Propositions 5.2.3 and 5.2.4], we

have the following result.

Proposition 2. Under the hypotheses of Proposition 1 for ε ≥ 0,

Λε(N) =
⋃q
i=1 D

(
0,
√
ε2 + εσi(N)

)
∪D(0, ε)

= D
(
0,
√
ε2 + εσ1(N)

)
. (3)

We will also need that for any α ∈ C, A ∈ Cn×n and ε ≥ 0,

Λε(αIn +A) = α+ Λε(A). (4)

Third Example. This example is a small generalization of the second one. Let A

be any n-by-n complex matrix with a unique eigenvalue λ. Moreover, let us assume

that ν(λ) = 2. Let N := A − λIn; thus, A = λIn + N is the Jordan decomposition

of A. Hence, by (2), c = cond1/2(A, λ) = ‖N‖1/2 =
√
σ1(A− λIn). By Proposition 2

and (4) we see that for ε ≥ 0,

Λε(A) = D
(
λ,
√
ε2 + εσ1(A− λIn)

)
.

So, δ(ε) = 2
√
ε2 + εσ1(A− λIn), a(ε) = π

(
ε2 + εσ1(A− λIn)

)
. Therefore,

δ′(ε) =
2ε+ σ1(A− λIn)√
ε2 + εσ1(A− λIn)

, which implies δ′+(0) =∞,

and

a′(ε) = π
(
2ε+ σ1(A− λIn)

)
, which implies a′+(0) = π σ1(A− λIn) = πc2.
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Fourth Example. Let λ1, λ2 be two different complex numbers. Let A ∈ C2×2

whose eigenvalues are λ1 and λ2. Let us define

d(A) :=
√

tr(A∗A)− |λ1|2 − |λ2|2.

The number d(A) is the departure from normality of A. In [6, Proposition 5.5.3, p.

80] was proved that for each ε > 0,

Λε(A) = D(λ1, ε) ∪D(λ2, ε) ∪Mλ1,λ2
(d(A), ε) (5)

where

Mλ1,λ2(d, ε) :=
{
z ∈ C :

(
|z − λ1|2 − ε2

)(
|z − λ2|2 − ε2

)
≤ ε2d2

}
, d ≥ 0. (6)

Let us consider Figure 1 that shows the ε-pseudospectrum for the values of ε =

1.00, 1.50, 1.75 of the matrix

A1 :=

[
−1− 3i 3

0 1 + 2i

]
.

So, λ1 = −1−3i, λ2 = 1+2i, ‖A1‖F =
√
| − 1− 3i|2 + 32 + |1 + 2i|2 =

√
10 + 9 + 5 =√

24. Thus, d(A1) =
√

24− 10− 5 =
√

9 = 3.

−4 −2 0 2 4
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−2

−1

0

1

2

3

4

z
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z
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1

λ
2
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4
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1

Figure 1: Pseudospectra of A1 for ε = 1.00, 1.50, 1.75

We see that for sufficiently small values of ε the ε–pseudospectrum of A1 has two

connected components. Let us fix our attention on ε = 1.50. The figure contains a
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straight line that passes by λ1 and λ2. This line intersects the boundary ∂Λε(A1)

at the points z1, z2, z3, z4. If we consider the eigenvalue λ2, the diameter δ(ε) of the

connected component Kλ2(ε) is equal to the distance between z3 and z4. From (5)

and (6), we can deduce that

δ(ε) =
1√
116

(√
116ε2 + 116

√
38ε+ 841−

√
116ε2 − 116

√
38ε+ 841

)
Hence, differentiating δ(ε) with respect to ε and evaluating at ε = 0, we have

δ′(0) = 2

√
38

29
.

On the other hand, let us compute the condition number of the eigenvalue λ2 = 1+2i,

cond1(A1, λ2) =

√
1 +

(
d(A1)

|λ2 − λ1|

)2

=

√
1 +

(
3√
29

)2

=

√
1 +

9

29
=

√
38

29
.

Let us remark that

δ′(0) = 2 cond1(A1, λ2).

Instead of making a special reasoning for the matrix A1, we are going to find a

general expression for the diameter δ(ε) of Kλ2(ε) for any matrix A ∈ C2×2 with

eigenvalues λ1 and λ2. By (6), the boundary ∂Λε(A) is formed by quasi-Cassini

ovals with foci the points λ1 and λ2. In fact, the set Λε(A) is symmetric about the

straight line that joints λ1 and λ2. This is a consequence of (5) and (6). Moreover,

δ(ε) = |z4− z3| = |z2− z1|. Later we will need the condition numbers of λ1 and λ2 of

order 1. These numbers are equal. In fact, by [6, Proposition 5.5.8, p. 83], we have

cond1(A, λk) =

√
1 +

(
d(A)

|λ2 − λ1|

)2

, k = 1, 2. (7)

Thus, let ε ≥ 0 be such that Λε(A) has two connected components. Now, we compute

the intersection points z1, z2, z3, z4 of the line z(t) := (1− t)λ1 + tλ2, t ∈ R with the

curve ∂Λε(A). By (6), this curve is given by the equation(
|z − λ1|2 − ε2

)(
|z − λ2|2 − ε2

)
− ε2d(A)2 = 0. (8)

For determining the values of the parameter t that correspond to the points z1, z2, z3
and z4 we substitute z(t) into (8),

|λ1 − λ2|4t4 − 2 |λ1 − λ2|4t3 +
(
|λ1 − λ2|4 − 2 ε2|λ1 − λ2|2

)
t2

+2 ε2|λ1 − λ2|2t− ε2|λ1 − λ2|2 + ε4 − ε2d(A)2 = 0.
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For simplicity, we write θ := |λ1 − λ2|,

θ4t4 − 2 θ4t3 +
(
θ4 − 2 ε2θ2

)
t2 + 2 ε2θ2t− ε2θ2 + ε4 − ε2d(A)2 = 0.

With the command solve of Maple 13 we find the roots of this equation in t

obtaining

t1 =
1

2
− 1

2θ

√
θ2 + 4ε2 + 4ε

√
θ2 + d(A)2

t2 =
1

2
− 1

2θ

√
θ2 + 4ε2 − 4ε

√
θ2 + d(A)2

t3 =
1

2
+

1

2θ

√
θ2 + 4ε2 − 4ε

√
θ2 + d(A)2

t4 =
1

2
+

1

2θ

√
θ2 + 4ε2 + 4ε

√
θ2 + d(A)2

where t1 < 0 < t2 <
1
2 < t3 < 1 < t4. Hence, z3 = z(t3) and z4 = z(t4). So,

δ(ε) = |z4 − z3| =
1

2

√
θ2 + 4ε2 + 4ε

√
θ2 + d(A)2 − 1

2

√
θ2 + 4ε2 − 4ε

√
θ2 + d(A)2.

Therefore,

δ′(ε) =
2ε+

√
θ2 + d(A)2√

θ2 + 4ε2 + 4ε
√
θ2 + d(A)2

−
2ε−

√
θ2 + d(A)2√

θ2 + 4ε2 − 4ε
√
θ2 + d(A)2

,

δ′+(0) =
2
√
θ2 + d(A)2√

θ2
= 2

√
1 +

(
d(A)

θ

)2

.

By (7), we have δ′+(0) = 2 cond1(A, λ2).

Remark 2. As discussed in the introduction, we will see that the results in these

examples are not casual. In fact, we will prove that the condition number of λ of

order 1/ν is related with the functions δ and a.

3 Bounds by closed disks

From Theorems 2.6.6 and 5.4.4 of Karow [6] we infer the following theorem.

Theorem 3. Let λ be an eigenvalue of A ∈ Cn×n of index ν. For each η ∈ (0, 1]

there exists an εη > 0 such that for every ε ∈ (0, εη],

D
(
λ,
(
(1− η)ε

)1/ν
c
)
⊂ Kλ(ε) ⊂ D

(
λ,
(
(1 + η)ε

)1/ν
c
)

(9)

c being the condition number of λ of order 1/ν.
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From (9) we deduce that

D
(
0,
(
(1− η)ε

)1/ν
c
)
⊂ Kλ(ε)− λ ⊂ D

(
0,
(
(1 + η)ε

)1/ν
c
)

Considering the homotecy

z 7→ z

ε1/ν
, z ∈ C,

we see

D
(
0, (1− η)1/νc

)
⊂ Kλ(ε)− λ

ε1/ν
⊂ D

(
0, (1 + η)1/νc

)
. (10)

4 Bounds by diameters

Since the diameter function is monotone increasing with respect to ⊂, by (10),

2c(1− η)1/ν ≤ δ(ε)

ε1/ν
≤ 2c(1 + η)1/ν . (11)

Thus, we arrive at the following theorem.

Theorem 4. Let ν be the index of λ, and let c be the condition number of λ of order

1/ν. Then

lim
ε→0+

δ(ε)

ε1/ν
= 2c. (12)

Proof. Let us define the functions

f1(η) := 1− (1− η)1/ν , (13)

f2(η) := (1 + η)1/ν − 1, (14)

where η ∈ [0, 1]. If ν = 1, then

f1(η) := 1− 1 + η = η,

f2(η) := 1 + η − 1 = η;

so, f1(η) = f2(η) on [0, 1].

If ν ≥ 2, we will deduce that f2(η) ≤ f1(η). This last inequality is equivalent to

(1 + η)1/ν − 1 ≤ 1− (1− η)1/ν , ∀η ∈ [0, 1]

⇐⇒ (1 + η)1/ν + (1− η)1/ν ≤ 2, ∀η ∈ [0, 1].

Let us define

g(η) := (1 + η)1/ν + (1− η)1/ν , η ∈ [0, 1].
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Then

g′(η) =
1

ν

[
(1 + η)1/ν−1 − (1− η)1/ν−1

]
.

Since xα := eα ln x, when α < 0 the function x 7→ xα is decreasing in (0,∞); therefore,

x 7→ x1/ν−1 is decreasing in (0,∞). Hence, if 0 < η < 1, we see that 1 − η < 1 + η;

what implies

(1− η)1/ν−1 > (1 + η)1/ν−1.

Thus, g′(η) < 0. So, g is decreasing on [0, 1]. Therefore, g(η) < g(0) = 2. That is,

f2(η) ≤ f1(η).

Given that 2c−2cf1(η) = 2c(1−η)1/ν and 2c+ 2cf2(η) = 2c(1 +η)1/ν , by (11),

we have

2c− 2cf1(η) ≤ δ(ε)

ε1/ν
≤ 2c+ 2cf2(η).

For every ν ≥ 1, f2(η) ≤ f1(η) for η ∈ [0, 1]. Then,

2c− 2cf1(η) ≤ δ(ε)

ε1/ν
≤ 2c+ 2cf1(η)

⇐⇒ −2cf1(η) ≤ δ(ε)

ε1/ν
− 2c ≤ 2cf1(η),

or ∣∣∣∣ δ(ε)ε1/ν
− 2c

∣∣∣∣ ≤ 2cf1(η).

But limη→0+ f1(η) = 0 and f1(η) > 0 for η > 0. Thus for a fixed η0 > 0 there exists

an η1 > 0 such that 2cf1(η1) < η0. For this η1, there is an εη1 > 0 such that for all

ε ∈ (0, εη1), ∣∣∣∣ δ(ε)ε1/ν
− 2c

∣∣∣∣ ≤ 2cf1(η) < η0.

So, there exists the limit

lim
ε→0+

δ(ε)

ε1/ν

and it is equal to 2c.

5 Derivatives of the diameter

In this section we relate the right-derivative of the diameter δ at 0 with the condition

number of the eigenvalue λ, when ν = 1. First, we have the following lemma.
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Lemma 5. Let A ∈ Cn×n and λ be an eigenvalue of A of index ν. Let δ(ε) be the

diameter of the connected component of Λε(A) that contains λ. Let c be the condition

number of λ of order 1/ν. Then, there exists the limit

lim
ε→0+

δ(ε)

ε

and it is equal to {
2c if ν = 1,

∞ if ν ≥ 2.

Proof. If ν = 1, Theorem 4 implies

lim
ε→0+

δ(ε)

ε
= 2c.

If ν ≥ 2, from the same Theorem,

δ(ε)

ε
=
δ(ε)

ε1/ν
1

ε1−1/ν
→ 2c · ∞,

when ε→ 0+.

From this lemma the next theorem follows immediately.

Theorem 6. Let A ∈ Cn×n and λ be an eigenvalue of A of index ν. Let δ(ε) be the

diameter of the connected component of Λε(A) that contains λ. Let c be the condition

number of λ of order 1/ν. Then,

lim
ε→0+

δ(ε)

ε
=

{
2c if ν = 1,

∞ if ν ≥ 2.

Therefore, δ′+(0) = 2c if ν = 1.

6 Bounds by areas

Since the area function is monotone increasing with respect to ⊂, by (10),

πc2(1− η)2/ν ≤ a(ε)

ε2/ν
≤ πc2(1 + η)2/ν , (15)

where a(ε) := area or Lebesgue measure of Kλ(ε). Thus, we arrive at the following

theorem.

Theorem 7. Let ν be the index of λ, and let c be the condition number of λ of order

1/ν. Then

lim
ε→0+

a(ε)

ε2/ν
= πc2. (16)
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Proof. Let us define the functions

ϕ1(η) := 1− (1− η)2/ν , (17)

ϕ2(η) := (1 + η)2/ν − 1. (18)

If ν = 1, then

ϕ1(η) = 1− (1− η)2 = 2η − η2,
ϕ2(η) = (1 + η)2 − 1 = 2η + η2;

it is obvious that ϕ1(η) ≤ ϕ2(η) when 0 ≤ η.

If ν = 2, then

ϕ1(η) = 1− (1− η) = η = (1 + η)− 1 = ϕ2(η).

If ν ≥ 3, we will see that

ϕ2(η) ≤ ϕ1(η), η ∈ [0, 1],

or, equivalently,

(1 + η)2/ν − 1 ≤ 1− (1− η)2/ν , η ∈ [0, 1]

⇐⇒ (1 + η)2/ν + (1− η)2/ν ≤ 2, η ∈ [0, 1].

Let us define

ψ(η) := (1 + η)2/ν + (1− η)2/ν , η ∈ [0, 1].

Then

ψ′(η) =
2

ν

[
(1 + η)2/ν−1 − (1− η)2/ν−1

]
.

As the function x 7→ x2/ν−1 is decreasing in (0,∞), if 0 < η < 1, then 1− η < 1 + η

implies (1− η)2/ν−1 > (1 + η)2/ν−1 and ψ′(η) < 0. In consequence, ψ is decreasing in

[0, 1]. Thus, for η ∈ (0, 1], ψ(η) < ψ(0) = 2. Accordingly,

ϕ2(η) ≤ ϕ1(η), η ∈ [0, 1].

By (17) and (18),

(1− η)2/ν = 1− ϕ1(η),

(1 + η)2/ν = 1 + ϕ2(η).

Inequalities (15) imply

πc2 − πc2ϕ1(η) ≤ a(ε)

ε2/ν
≤ πc2 + πc2ϕ2(η). (19)
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The ν ≤ 2 case. Since ϕ1(η) ≤ ϕ2(η) in [0, 1],

−πc2ϕ2(η) ≤ −πc2ϕ1(η).

Hence, by (19),

πc2 − πc2ϕ2(η) ≤ a(ε)

ε2/ν
≤ πc2 + πc2ϕ2(η); (20)

which is equivalent to ∣∣∣∣a(ε)

ε2/ν
− πc2

∣∣∣∣ ≤ πc2ϕ2(η).

Bearing

lim
η→0+

πc2ϕ2(η) = 0

in mind, we deduce that for a fixed η0 > 0 there exists an η1 > 0 such that πc2ϕ2(η1) <

η0. For this η1 there is an εη1 > 0 such that for ε ∈ (0, εη1 ],∣∣∣∣a(ε)

ε2/ν
− πc2

∣∣∣∣ ≤ πc2ϕ2(η1) < η0.

This proves that there exists the limit

lim
ε→0+

a(ε)

ε2/ν

and it is equal to πc2.

The ν ≥ 3 case. As ϕ2(η) ≤ ϕ1(η) in [0, 1], from (19) we deduce that

πc2 − πc2ϕ1(η) ≤ a(ε)

ε2/ν
≤ πc2 + πc2ϕ1(η)

and, as ϕ1(η) > 0 if η > 0 and

lim
η→0+

ϕ1(η) = 0,

by a reasoning analogous to the former one we infer that there exists the limit

lim
ε→0+

a(ε)

ε2/ν
= πc2.

7 Derivatives of the area

In this Section we establish the relation between the first and second right-derivatives

of a at 0 and the condition number of the eigenvalue λ of order 1/ν, when ν = 1 or

2. First, we prove the following lemma.
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Lemma 8. Let A ∈ Cn×n and λ be an eigenvalue of A of index ν. Let a(ε) be the

area of the connected component of Λε(A) that contains λ. Let c be the condition

number of λ of order 1/ν. Then, there exists the limit

lim
ε→0+

a(ε)

ε

and it is equal to 
0 if ν = 1,

πc2 if ν = 2,

∞ if ν ≥ 3.

Proof. First, let us suppose that ν = 1. Then Theorem 7 implies

lim
ε→0+

a(ε)

ε2
= πc2.

Hence,

lim
ε→0+

a(ε)

ε
= lim
ε→0+

ε
a(ε)

ε2
=

(
lim
ε→0+

ε

)(
lim
ε→0+

a(ε)

ε2

)
= 0 · πc2 = 0.

Second, let us assume now that ν = 2. From Theorem 7,

lim
ε→0+

a(ε)

ε
= πc2.

Finally, when ν ≥ 3, it is obvious, by Theorem 7 and

lim
ε→0+

a(ε)

ε
= lim
ε→0+

a(ε)

ε2/ν
· 1

ε(ν−2)/ν
,

that

lim
ε→0+

a(ε)

ε
=∞.

Theorem 9. Let A ∈ Cn×n and λ be an eigenvalue of A of index ν. Let a(ε) be

the area of the connected component Λε(A) that contains λ. Then, there exists the

right-derivative of a at 0, a′+(0), and

a′+(0) =


0 if ν = 1,

πc2 if ν = 2,

∞ if ν ≥ 3.

Proof. By Lemma 8 we deduce that

if ν = 1,

a′+(0) = lim
ε→0+

a(ε)− a(0)

ε
= lim
ε→0+

a(ε)

ε
= 0;
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if ν = 2,

a′+(0) = lim
ε→0+

a(ε)− a(0)

ε
= πc2;

if ν ≥ 3,

a′+(0) = lim
ε→0+

a(ε)− a(0)

ε
=∞.

Theorem 10. Let A ∈ Cn×n and λ be a semisimple eigenvalue. Let a(ε) be the area

of the connected component Λε(A) that contains λ. Let us assume that there exists

a′′+(0). Then

a′′+(0) = 2πc2.

Proof. Let us define the function

A(ε) :=

{
a(ε) if ε ≥ 0,

a(−ε) if ε < 0.

By 9, as ν = 1, there exists A′(0) and A′(0) = 0. If we suppose that there exists the

derivative A′′(0), then

A′′(0) = lim
ε→0

A(ε)− 2A(0) +A(−ε)
ε2

.

But, the existence of this limit does not imply the existence of A′′(0). See [1, Exercise

5–20.].

When ε > 0, A(ε) = a(ε), A(−ε) = a(−(−ε)) = a(ε); therefore, A(ε) + A(−ε) =

2a(ε).

When ε < 0, A(ε) = a(−ε), A(−ε) = a(−ε); hence, A(ε) +A(−ε) = 2a(−ε).

Then, by Theorem 7,

lim
ε→0+

A(ε)− 2A(0) +A(−ε)
ε2

= lim
ε→0+

2a(ε)

ε2
= 2πc2,

lim
ε→0−

A(ε)− 2A(0) +A(−ε)
ε2

= lim
ε→0−

2a(−ε)
(−ε)2

= lim
β→0+

2a(β)

β2
= 2πc2.

Consequently, there exists the limit

lim
ε→0

A(ε)− 2A(0) +A(−ε)
ε2

and is equal to 2πc2. So, A′′(0) = 2πc2, and a′′+(0) = 2πc2.
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8 Conjecture

Let λ be a semisimple eigenvalue of a matrix A ∈ Cn×n. We need the definition of a

semialgebraic set S ⊂ Rn and of a semialgebraic function f : S → R. These concepts

can be seen in [6, Chapter 3, p. 39]. A classical reference is [2, Chapter 2, p. 23].

Conjecture 11. The functions δ, a : [0,∞)→ R are semialgebraic.

The following theorem is proved in [3, Lemma 3.1 (ii)]

Theorem 12 (de l’Hôpital inverse rule). If f, g : [0,∞)→ R are semialgebraic func-

tions, f(0) = g(0) = 0, and there is an ε0 > 0 such that g′(ε) > 0 for ε ∈ (0, ε0),

then

lim
ε→0+

f(ε)

g(ε)
= ` ∈ R =⇒ lim

ε→0+

f ′(ε)

g′(ε)
= `.

If Conjecture 11 were true, then

πc2 = lim
ε→0+

a(ε)

ε2
= lim
ε→0+

a′(ε)

2ε
= lim
ε→0+

a′′(ε)

2
.

Thus, the derivative a′′+(0) would exist and it would be equal to 2πc2 because a′′+(0) =

limε→0+ a
′′(ε).

As the area of a region can be expressed by means of a line integral, and taking

into account that a parametric integral is differentiable with respect to the parameter

when the integrand is, the derivatives a′(ε) and a′′(ε) exist for sufficiently small ε > 0.
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