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Do Spanish regions converge? A time-series approach using fractional 
cointegration
Mariam Kamal and Josu Arteche

Department of Quantitative Methods, University of the Basque Country, Bilbao, Spain

ABSTRACT
This article investigates economic convergence in terms of real income per capita between the 
autonomous regions of Spain over the period 1955–2020. In order to converge, the series should 
be cointegrated. This necessary condition is checked using two testing strategies recently pro-
posed for fractional cointegration, finding no evidence of cointegration, which rules out the 
possibility of convergence between all or some of the Spanish regions. As an additional contribu-
tion, an extension of the critical values of Nielsen’s (2010) test of fractional cointegration is 
provided for a different number of variables and sample sizes from those originally provided by 
the author, fitting those considered in this article.
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I. Introduction

Economic convergence has been one of the main 
focal points of the empirical literature on economic 
growth. It implies that income gaps between coun-
tries/regions tend to disappear, hence involving 
convergence to a single steady state (equilibrium).

The European economy has become more inte-
grated in recent decades, with the states following 
a converging path due to economic, political, and 
institutional factors, such as, for example, the 
exchange rate mechanism in 1979, and the introduc-
tion of the euro in 2001. Numerous empirical studies 
have provided evidence of this integration in the 
European Union (Beckfield 2006; Caporaso and 
Pelowski 1971; Martin and Ross 2004). However, 
this integration among states can come together 
with economic disparities between the different 
regions, which may cause non-convergence within 
a country. This article analyses this possibility in 
Spain.

Several countries have typically employed regio-
nal policies to address structural disparities among 
their geographical areas. Spain, for example, began 
implementing regional policies in the early 1960s. 
However, since 1986, Spanish regional policies 
have undergone significant changes due to its 
inclusion in the European Union (EU), which has 

been particularly important in providing regional 
governments with opportunities to engage in 
European networks, facilitating the exchange of 
interests, knowledge, and values. As argued by 
Arregui (2020), Spain is likely to be one of the 
members where some state restructuring has 
taken place, both at national and regional level. 
This transformation has been influenced by both 
European integration and the decentralization of 
political power. These two processes have mutually 
reinforced each other, and Spain’s EU membership 
has solidified the role of Spanish Autonomous 
Communities in shaping and implementing poli-
cies in crucial areas such as environment, agricul-
ture, or fishing policies (Arregui 2020).

Spanish regions are divided into 17 Autonomous 
Communities. Some of these regions are richer than 
others due to their economic or sector specialization 
and disaggregation according to branches of activity. 
The income of each Autonomous Community 
depends on the economic specialization of that 
region, with some specializations generating low 
incomes, while others generate significantly higher 
incomes. Table 1 shows the high-sector heterogene-
ity presented by the different Spanish regional 
economies. These regions span from those experien-
cing substantial growth driven by tourism-related 
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activities (e.g. Balearic Islands, Canary Islands) to 
those where economic activity is still largely depen-
dent on primary sectors (e.g. Galicia, La Rioja, 
Murcia, Andalucía). This heterogeneity in the regio-
nal economic structures and sources of income gen-
erates regional disparities that may prevent 
convergence, as each region’s growth may be driven 
by different factors and industries.

The different ways of generating income among 
different regions have produced the current regio-
nal differences in productivity and income. Hence, 
it might be unsurprising to find disparities between 
the 17 Autonomous Communities. This prompts 
us to question whether economic convergence 
among the 17 Autonomous Communities could 
not occur, which is a question that drives the cur-
rent research. In addition, we also aim to determine 
whether some converging subgroups can be iden-
tified, for example, among developed or less devel-
oped regions, which may be used to define more 
efficient regional policies delimiting their geogra-
phical impact.

As a first example of this heterogeneity across 
the Spanish regions, Figure 1 shows the evolution 
of the cross-sectional standard deviations for all the 

logs of per capita income in the 17 Autonomous 
Communities in Spain from 1955 to 2020. The 
dispersion begins in 1955 at around 0.91 and rises 
and declines over time ending at around 0.94 in 
2020, confirming the absence of sigma 
convergence.

The large dispersion shown in the graph con-
firms our previous suspicion of possible heteroge-
neity and non-convergence. Note that the 
dispersions in the decade of 1970 and 2010 are 
the highest. However, the heterogeneity in Spain 
remains in the sample before and after these peaks, 
which may hinder regional convergence.

In the literature on economic growth, there are 
three main definitions of convergence: (i) beta con-
vergence, (ii) sigma convergence and (iii) stochas-
tic convergence based on time-series analysis. As 
the first two have several statistical problems (see 
Durlauf 2000; Friedman 1992; Quah 1993), we will 
focus on the time-series approach on cointegration, 
as suggested by Bernard and Durlauf (1995). The 
use of different techniques has usually led to dif-
ferent conclusions about the existence of conver-
gence (see, for example, Durlauf 2000). We follow 
a time-series approach to test for output 

Table 1. Characteristics and productive structures of the Spanish regions.
Andalucia Agri-food sector Transport and 

logistics sector
Extremadura Agri-food sector. Livestock 

farming Food Industry
Aragón Automotive industry 

Transport and logistics sector
Galicia Textile and automotive sector 

Agri-food sector
Asturias Metal and mining sector Madrid Biomedical and pharmaceutical companies 

Information and Communication Technology sector (ICT) 
Logistics and transportation 
Aerospace industry

Balearic Islands Tourism sector 
Food and catering industry 
Fashion industry

Murcia Agricultural sector 
Plastic sector

Canary Islands Tourism Sector 
Cultural industries 
Logistics sector

Navarre Automotive sector 
Biomedical cluster 
ICT sector

Cantabria Agri-food sector 
Automotive components 
Biotechnology and health

Basque Country Energy sector 
Automotive and aeronautic sector 
Maritime industry 
ICT sector 
Bio-health sector 
Service sector

Catalonia Biotechnology 
Petrochemical sector 
Automotive sector 
Agricultural sector

La Rioja Agri-food sector 
Footwear sector 
Automotive sector 
Service sector

Castilla-La Mancha Agri-food sector 
Wine production

Valencia Automotive and capital goods sector 
Agri-food sector 
ICT and services sector 
Chemical and pharmaceutical sector 
Plastic sector

Castilla-León Agri-food sector 
Chemical-Pharmaceutical sector
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convergence, paying particular attention to the 
analysis of cointegration, which provides a natural 
setting for testing relations between variables (see 
Bernard and Durlauf 1995, 1996; Durlauf 2000; 
Evans 1996; Quah 1993).

According to the time-series approach of 
Bernard and Durlauf, 1995, 1996), two series 
converge if the following conditions are satis-
fied: (i) The variables are cointegrated, (ii) the 
cointegrating vector is (1, −1), and (iii) the 
difference between the series is a stochastic vari-
able with zero mean. Based on these conditions, 
the notion of convergence can be divided into 
strong and weak convergence (defined as catch-
ing-up in the convergence literature). If condi-
tions (i) and (ii) are fulfilled, the series are 
cointegrated with cointegrating vector ½1; � 1], 
but the difference between them is a stochastic 
variable with a mean different from zero, which 
suggests that the deviation between the series is 
expected to decrease, but not to disappear. This 
is weak convergence, i.e. catching up, which 
refers to the situation in which narrowing of 
the differences between the variables is observed 
over time, but the convergence process has yet 
to be complete. If all conditions (i), (ii), and (iii) 
are fulfilled there is strong convergence because 
the difference between the variables vanishes. 
Therefore, if there is no cointegration, conver-
gence does not occur, neither weak nor strong.

The rest of the article is organized as follows. 
Section II provides a literature review on conver-
gence in Spain. Section III explains the methodol-
ogies used in our analysis. Section IV contains the 

data and presents the results, and finally, Section 5 
presents the conclusions.

II. Literature review

There are few studies that specifically examine out-
put convergence between Spanish regions. The 
majority of them use cross-regional analysis 
approaches to estimate beta convergence. 
Meanwhile, those using a time-series approach 
opt for unit root test as the Augmented Dickey 
Fuller test in a non-fractionally integrated context, 
which lacks the power and flexibility needed for 
a comprehensive analysis.

Some authors have found results indicating 
non-convergence in the Spanish regions in 
agreement with our results. Martínez-Argüelles 
and Rubiera-Morollón (1998), focusing solely on 
the service sector, identify distinct regional 
growth patterns within this sector using integer 
cointegration techniques. Cuadrado-Roura et al. 
(1999) investigate the evolution of regional dif-
ferences in Spain and use an analysis of beta and 
sigma convergence to conclude that the primary 
source of convergence in observed productivity 
is the alignment of regional sectorial structures. 
Lamo (2000) examines output convergence 
across Spanish regions using cross-sectional dis-
tribution dynamics. She finds no evidence of 
income convergence. Maza (2006) examines the 
phenomenon of regional convergence in per 
capita income in Spain and studies what factors 
influence migration patterns within these 
regions. Using a beta convergence analysis, he 

Figure 1. Cross sectional standard deviation of the log of per capita income.
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concludes that there is no convergence among 
Spanish regions because migrants tend to move 
towards regions with higher per capita income, 
inducing a slower pace of regional convergence 
in Spain. Arroyo et al. (2013) examine the pair-
wise convergence hypothesis among the 17 
Spanish regions using the Augmented Dickey 
and Fuller (1979) test for unit roots. The find-
ings reveal incomplete catching-up in many 
instances, with only four converging regions 
(Andalucia, Extremadura, Castilla-La Mancha, 
and Galicia) and just one (Baleares) converging 
with the European Union. Puente (2017) uses 
traditional growth regressions to analyse the 
existence of beta-convergence. The results indi-
cate that labour productivity convergence stands 
out as the primary driver in narrowing regional 
income disparities. On the contrary, labour mar-
ket variables such as employment and unem-
ployment, as well as total factor productivity, 
do not have a substantial impact on diminishing 
regional disparities during the period under 
analysis.

Other studies have focused on the convergence 
among provinces rather than Autonomous 
Communities. Dolado et al. (1994) examine the 
growth and disparities across Spanish provinces. 
They use traditional cross-regional analysis to 
estimate beta convergence, and find evidence of 
provincial convergence, although with some signs 
of instability in the speed of convergence during 
specific subperiods. Gardeazábal (1996) analyses 
the dynamic evolution of income distribution 
among Spanish provinces. Using Markov pro-
cesses, he concludes that per capita incomes 
among Spanish provinces converge towards equi-
librium. Villaverde (2005) examines the existence 
of beta convergence in labour productivity in the 
provinces of Spain. He concludes that Spanish 
provinces with low (high) relative productivity 
tend to be geographically close to each other, 
indicating a concentration of productivity. The 
convergence process does occur, but at a slightly 
slower pace than in the classical model, and there 
is a gap that separates the provinces from their 
steady state. Hierro and Maza (2010) investigate 
the role played by internal migration of foreign 
individuals in the income convergence of pro-
vinces in Spain between 1996 and 2005. Their 

results refute the hypothesis that internal migra-
tion of the foreign-born influences income con-
vergence. Montañés et al. (2018) investigate 
convergence between Spanish provinces, with 
a particular focus on the impact of the recent 
international crisis. Their results indicate the for-
mation of several convergence clubs, the patterns 
of which were altered by the 2007 crisis. Tapia and 
Galarraga (2020) investigate the empirical con-
nection between economic growth and inequality, 
quantifying the disparities between Spanish pro-
vinces for various reference years spanning from 
1860 to 1930 and concluding that the growth of 
income did not directly lead to a reduction in 
inequality.

This article analyses convergence in annual real 
output per capita of the 17 Autonomous 
Communities in Spain from 1955 to 2020. We 
contribute to the existing empirical literature in 
three main dimensions:

● We test cointegration in an economic framework 
of convergence that follows the Bernard and 
Durlauf (1995, 1996) definition of time-series 
convergence.

● We use semiparametric and nonparametric 
techniques, which have never been used 
before to analyse regional convergence, to 
test for fractional cointegration: the strate-
gies proposed by Robinson (2008), Hualde 
(2012) and Nielsen (2010). These fractional 
integration and cointegration techniques 
are used to avoid the low power of tradi-
tional unit root and cointegration tests 
against fractional alternatives and are 
more reliable to explore economic 
convergence.

● We complement Nielsen (2010) test with 
a new set of critical values of independent 
interest for practitioners. In particular, we 
provide critical values for up to 17 variables 
and three different sample sizes T = 66, T =  
150 and T = 1000 for two different values of 
the memory parameter of the original series: 
d = 1 and d = 1.4. The latter corresponds to 
the values found in the series analysed here, 
while the former (in the supplementary 
material) corresponds to the traditional 
unit root case.

4 M. KAMAL AND J. ARTECHE



III. Methodology

The methodology used in this article is based on 
the concepts of fractional integration and fractional 
cointegration.

Fractional integration and cointegration

The idea of fractional integration was introduced by 
Granger and Joyeux (1980), Granger (1980, 1981) 
and Hosking (1981) allowing a continuous transi-
tion from non-unit to unit root behaviours, offering 
a more flexible context for the modelling of long-run 
persistence. A time-series {yt; t ¼ 1; 2; 3; . . .g is 
(fractionally) integrated of order d, I dð Þ, if it 
satisfies: 

1 � Lð Þ
dyt ¼ ut; t ¼ 0;�1; . . . ; (1) 

where d is the memory parameter and uteI 0ð Þ, 
meaning that uthas a finite variance and a spectral 
density function f wð Þ, satisfying 0< f wð Þ<1. 
Ifd ¼ 0; yt ¼ ut and yt is short memory; if 
0< d< 1

2, yt is said to be long memory. Finally, if 
� 1

2 < d< 0; ytpresents anti-persistence. Also, if 
d< 0:5; yt is covariance stationary. However, 
a value d � 0:5 implies non-stationarity, but if 
d< 1; the series is mean reverting. In addition, if 
d ¼ 1, the series has a unit root. If d< 1 the effects 
of the shocks disappear in the long-run and if 
d � 1 the shocks persist indefinitely.

Note that ut in (1) may include some type of 
weak dependence in the form of, for example, 
a stationary and invertible autoregressive moving 
average (ARMA) process: 

Φ Lð Þut ¼ θ Lð Þεt; t ¼ 0;�1; . . . ; (2) 

where εt is an independent and identically distrib-
uted (iid) sequence. In this case; yt in (1) is an 
Auto-Regressive Fractionally Integrated Moving 
Average (ARFIMA) process: 

Φ Lð Þ 1 � Lð Þ
dyt ¼ θ Lð Þεt; t ¼ 0;�1; (3) 

Engle and Granger (1987) defined cointegration as 
follows: “A vector yt is said to be co-integrated of 
order d, b, denoted yt ~CI d; bð Þ, if the components of 
yt are I dð Þ and there exists a vector α �0ð Þ such that 
zt ¼ α0yt~I d � bð Þ; b> 0: The vector α is called the 

co-integrating vector and b denotes the degree of 
cointegration’’.

The original testing strategies proposed for 
cointegration were only suitable for bivariate set-
tings, and they thus could only identify one coin-
tegration vector. Johansen (1988, 1991, 1995) 
developed a maximum likelihood approach for 
testing cointegration in a multivariate setting, 
allowing for several relations and determining 
the rank of cointegration. Following these pio-
neering authors, other standard techniques were 
developed by Phillips and Ouliaris (1990), Harris 
(1997), Bierens (1997), and Breitung (2002), 
among others. The generalization of the tradi-
tional Johansen test to a fractional context was 
proposed by Johansen (2008) and Johansen and 
Nielsen (2010, 2012, 2014) with the fractionally 
cointegrated vector autoregressive (FCVAR) 
model.

Standard traditional cointegration is just one 
particular case of fractional cointegration where 
the memory parameters d and the degree of coin-
tegration b are restricted to be integer values. 
Fractional values of d and b allow more flexibility 
and are good alternatives because many economic 
series are known to exhibit non-stationary beha-
viours that may not be exactly I(1), and there is also 
no need to assume that the equilibrium relation is 
exactly I(0).

Testing for fractional cointegration

The strategy we follow is based on the estimation of 
the cointegration rank in a fractional setting using 
two different and flexible techniques with good 
asymptotic properties under mild conditions. 
First, the methodology proposed by Nielsen 
(2010) has the following advantages over other 
cointegration tests: (i) The test statistic is computed 
without prior knowledge of the order of integration 
of the series. (ii) Since the test is nonparametric, it 
does not require specification of a particular model 
and is invariant to short-run dynamics. This is 
important because mis-specified short-run 
dynamics may lead to inconsistent estimation and 
hence to erroneous inference regarding the cointe-
gration rank in other parametric techniques. (iii) 
The proposed test has good power for large and 
small samples.

APPLIED ECONOMICS 5



Second, the methodology offered by Hualde 
(2012), together with the testing strategy used by 
Robinson (2008), is characterized by the following 
benefits: (i) The testing strategies in Robinson 
(2008) do not require estimation of any cointegrat-
ing relations or prior selection of any tuning num-
bers beyond one bandwidth parameter. (ii) Hualde 
(2012) proposes a procedure to estimate the rank of 
cointegration in multivariate fractional series, and 
therefore this can be implemented together with 
the procedure in Robinson (2008) to infer the 
dimension of the possible cointegrating subspaces. 
(iii) The combination of both techniques allows for 
precise detection of the common trends.

Robinson (2008) and Hualde’s (2012) approaches
We first consider the test proposed by Robinson 
(2008) combined with the strategy in Hualde 
(2012). Hualde’s procedure has the advantage 
over other fractional cointegration approaches of 
providing an automatic method for inferring coin-
tegrating relationships without any prior informa-
tion about the variables. He defines the possibility 
of cointegration as a situation in which a linear 
combination of fractional processes is integrated 
of a strictly smaller order than the maximum 
order of the elements of the linear combination. 
For example, if one of the variables has an integra-
tion order that is strictly greater than the rest of the 
variables, then any linear combination with zero 
weight on this particular variable is considered to 
be a trivial cointegrating relation. Under this defi-
nition, the variables can have different integration 
orders. However, when all the variables have the 
same integration order, this definition coincides 
with that originally provided by Engle and 
Granger (1987).

The proposal by Hualde (2012) is based on an 
estimator of the cointegrating rank, r, obtained by 
applying sequentially the procedure discussed in 
his Theorem 1, which we rewrite here:

Theorem 1 (Hualde 2012). yt has cointegrating 
rank r 2 1; . . . ; p � 1f g where p is the number of 
variables in the vector yt, if (i) and (ii) are satisfied, 
where: (i) There exists a p � rð Þ dimensional sub-
vector of yt, denoted as y bð Þt, whose individual 

components are common trends, denoted as CT. 
(ii) All subvectors of yt of dimension larger than 
p � r containing y bð Þt cointegrate.

The procedure to estimate the rank of cointegra-
tion r is based on the following steps. First, the 
estimates of the integration orders (memory para-
meters), d̂i; i ¼ 1; . . . ; p are obtained to define the 
CT as the series with the highest order of integra-
tion. Then, the following hypothesis is tested: 

H j1;...;jkð Þ : yj1t; yj2t; . . . ; yjkt are not cointegrated
� �

;

against �H j1;...;jkð Þ : H j1;...;jkð Þ is not true;

where j1 . . . ; jk 2 1; . . . ; pf g; k � p; is sequentially 
tested. In order to estimate the memory para-
meters, the univariate local Whittle estimator d̂i, 
proposed by Robinson (1995a) is used. Next, the 
hypotheses are tested using the statistic X* pro-
posed by Robinson (2008), defined as:  

X� ¼ ms�ð~dÞ2= p2tr R̂�AR̂�A
� �

� p
n o

(4) 

where
m is the bandwidth 

s� ~d
� �
¼ tr Ĝ� ~d

� �� 1
Ĥ� ~d
� �� �

Ĝ� dð Þ ¼
1
m

Xm

j¼1
Iy λj
� �

λ2d
j 

Ĥ� dð Þ ¼
1
m

Xm

j¼1
vjIy λj
� �

λ2d
j 

vj ¼ log j �
1
m

Xm

i¼1
log i 

R̂� ¼ D̂1=2Ĝ� ~d
� �

D̂� 1=2 

D̂ ¼ diag ĝ11; . . . ; ĝpp

n o
, where ĝii is the ith diago-

nal element of Ĝ� ~d
� �

A ¼ diag a1; . . . ; ap
� �

6 M. KAMAL AND J. ARTECHE



where Iy λj
� �

is the periodogram matrix of y al 

frequency λj, ~d ¼
Pp

i¼1
aid̂i and the ai are arbitrarily 

chosen weights satisfying that 
Pp

i¼1
ai ¼ 1: For 

instance, Robinson (2008) takes ai;1=p, so the 
arithmetic mean of the d̂i is used. Another option 
is using aj ¼ 1; ai ¼ 0; i�j some j. In our case, we 
use the first option as recommended by Robinson 
(2008).

Under the null hypothesis of non-cointegration 
and stationarity of the series, which implies that all 
the memory parameters are smaller than 0.5, 

X� !d X2
1 as T !1: (5) 

The methodology to estimate the cointegration 
rank r is characterized by the following steps:
Step 1. Estimate the individual integration orders, 
di, by d̂i; i ¼ 1; . . . ; p. Then choose a possible CT 
yc1t as the variable with the highest estimated order, 
such that c1 2 1; . . . ; pf g. Next, reorder the vari-
ables in yt so that ypt ¼ yc1t in the new ordering. 
Finally, given the possible CT i.e. ypt, we test the 
following hypotheses:

H 1ð Þ : [
p� 1

i¼1
Hp;i versus �H 1ð Þ : \

p� 1

i¼1
�Hp;i Note that 

H 1ð Þ means non-cointegration in pairs of each 
variable with the CT, and  �H(1) means that H 1ð Þ
is not true. The process ends if H 1ð Þ is rejected, and 
so it is concluded that r̂ ¼ p � 1. Otherwise, it is 
not rejected, and the process continues to Step 2. 
Consequently, following Theorem 1, the hypoth-
eses are equivalent to r< p � 1 and r ¼ p � 1 
respectively.

Step 2. If H 1ð Þ is not rejected, choose a second 
possible CT as the variable with the smallest statistic 
X* i.e. yc2t; c2 2 1; . . . ; p � 1f g. There will be two 
possible CTs altogether. These CTs are denoted as 
yptand yc2t respectively. Then, we reorder again the 
variables so that ypt ¼ yc1t and yp� 1;t ¼ yc2t in the 
new ordering. Finally, given the possible CTs, i.e. 
ypt; yp� 1;t, we test the following hypotheses: 

H 2ð Þ : [
p� 2

i¼1
Hp;p� 1;i versus �H 2ð Þ : \

p� 2

i¼1
�Hp;p� 1;i. Note 

that H 2ð Þ means non-cointegration for any set of 
three variables containing the CTs ypt; yp� 1;t, and 

�Hð2) means that H 2ð Þ is not true. Then, the hypoth-
eses are equivalent to r< p � 2 and r ¼ p � 2 
respectively and the process ends if H 2ð Þ is rejected.

Step k (for k ¼ 2; . . . ; p � 1). If H k � 1ð Þ is not 
rejected, chooseck. Sort the variables so that 
ypt ¼ yc1t; . . . ; yp� kþ2;t ¼ yck� 1;t and choose the pos-
sible CTs, as previously.

Finally, test the following hypothesis:
H(k): ∪p-k

i-1 Hp,p-1,. . .,p-k+1,i versus —H(k): ∩p-k
i-1 

—Hp, 

p-1,. . .,p-k,i and if there is cointegration, the esti-
mation will be r̂ ¼ p � k. However, if we reach 
the last step k ¼ p � 1 this means that r̂ ¼ 0 
and H ið Þ; i ¼ 1; 2; 3; . . . ; p � 1; are not rejected:
The testing procedure based on the statistic X* has 
low power with small sample sizes, which can sig-
nificantly influence the results obtained when ana-
lysing the possibility of cointegration in the 
Spanish regions. To complement the results 
obtained we also consider the test proposed by 
Nielsen (2010), which has higher power for small 
samples (see Nielsen’s Monte Carlo).

Nielsen’s (2010) approach and critical values 
extension
The test statistic is defined as follows: 

Λ p;r d1ð Þ ¼ T2d1
Xp� r

j¼1
#j; r ¼ 0; . . . ; p � 1 (6) 

where #j; j ¼ 1; . . . ; p; are the eigenvalues of 

#BT � ATj j ¼ 0, for AT ¼
PT

t¼1
ZtZt

0;BT ¼
PT

t¼1
~Zt ~Zt

0, 

BT ¼
PT

t¼1
~Zt ~Z

0

t, ~Zt ¼ Δ� d1
1 Zt with 

d1 > 0; t ¼ 1; 2; . . . ;T; and Zt is the p-vector of 
time series under analysis (perhaps after extracting 
deterministic terms), which is fractionally inte-
grated of order d, where d is a vector containing 
the individual orders of integration of the elements 
in Zt; which possibly differ from each other. Note 
that (6) defines a family of tests indexed by the 
fractional integration parameter, d1. Nielsen 
(2010) argues in favour of using d1 = 0.1 based on 
an asymptotic local power analysis and on simula-
tions. For this reason, we use this value in the 
empirical application. Large values of Λp;r0 d1ð Þ are 
associated with the rejection of the null hypothesis 
H0 : r ¼ r0 versusH1 : r> r0:
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Nielsen’s procedure has the advantage of not 
requiring knowledge of the fractional integration 
and cointegration orders d and b as long as the 
series are non-stationary, implying memory para-
meters greater than 0.5. However, its asymptotic 
distribution is non-standard, but Nielsen (2010) 
simulated critical values for p < 8 variables with 
a sample size of 1000 observations to facilitate its 
application. We complement Nielsen’s (2010) 
tables by providing more critical values to cover 
up to 17 variables for all models and three different 
sample sizes.

The observed time series Ytf g
T
t¼1considered by 

Nielsen (2010) are generated by 

Yt ¼ α
0

δt þ Zt; t ¼ 1; 2; . . . (7) 

where δt may contain deterministic terms. Three 
different cases are analysed: δt ¼ 0 when there are 
no deterministic terms, δt ¼ 1 when there is a non- 
zero mean, and δt ¼ 1; t½ �0 when there is 
a deterministic trend. The critical values in Nielsen 
(2010) are here extended for these three cases up to 
17 variables, sample sizes T = 1000, 150 and 66, and 
two different values of the memory parameter of the 
original series d = 1 and d = 1.4, the latter corre-
sponding to the values found in the series here 
analysed. All tables are based on 100,000 replica-
tions. Tables 2, 3 and 4 show these new critical values 
for a memory parameter equal to d = 1.4. Tables 24, 
25 and 26 in the Supplementary Material show the 
same set of critical values for d = 1, which are of 
independent interest for practitioners.

IV. Empirical analysis

Preliminary analysis of the variables

The data analysed are the logarithms of the annual 
real GDP per capita (constant 2010 €) of the 17 
Autonomous Communities in Spain (omitting the 
autonomous cities) in thousands of euros from 1955 
to 2020 for a total of T = 66 observations. In order to 
apply the semiparametric cointegration analysis by 
Robinson (2008), the series are differenced to obtain 
growth rates that are stationary, whereas for the non-
parametric cointegration analysis by Nielsen (2010), 
the series are raw series (non-stationary). The 

variables in logarithms are denoted by the name of 
the Autonomous Community, and the growth rates 
are denoted by the abbreviation of these Autonomous 
Communities (in parenthesis the notation of the 
growth rates): Andalucia (andal), Aragon (ara), 
Asturias (ast), Balearic Islands (bal), Canary Islands 
(can), Cantabria (cant), Catalonia (cat), Castilla- 
LaMancha (clm), Castilla-Leon (cyl), Extremadura 
(ext), Galicia (gal), Madrid (mad), Murcia (mur), 
Navarre (nav), Basque Country (pv), Rioja (rio) and 
Valencia (val). All data were provided by FEDEA 
(Foundation for the Study of Applied Economics) 
and INE (Spanish National Statistics Institute). 
Figures 2 and 3 show these series.

To shed more light on the persistence of the series, 
the Exact Local Whittle (ELW) estimator proposed by 
Shimotsu, et al., 2005, which is consistent and asymp-
totically normal for any value of d, was applied. The 
ELW estimates and their 95% confidence intervals are 
shown in Table 5. They confirm the non-stationarity 
of the series, which is a requirement for the applic-
ability of Nielsen’s procedure. Note also that a value 
of d = 1.4 is not rejected for any of the series, falling 
within all the confidence intervals, which justifies the 
use of this value in the construction of the statistic for 
Nielsen’s test.

The estimation of the memory parameter of the 
growth rates, required for the application of 
Robinson’s (2008) test is, however, obtained using 
the Local Whittle (LW) estimator of Robinson 
(Robinson 1995) as suggested in Robinson (2008), 
which is consistent for d < 1 and asymptotically 
normal for d < 0.75. All the LW estimates, shown 
in Table 6, are between 0.2 and 0.5, indicating that 
the growth rate series can be considered station-
ary (d< 0:5Þ.

Robinson (2008) and Hualde (2012) cointegration 
results

In order to analyse the robustness of the results to 
the selection of the bandwidth, the entire analysis 
has been implemented using three different 
bandwidths, m = 18, m = 23 and m = 28. 
According to the results of the LW estimated mem-
ory parameters, the possible CT in Step 1 (variable 
with the largest estimated d) is Murcia (mur) for all 
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Table 2. Simulated critical values for large sample (T = 1000).

�

p � r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CV�;p� r 1:4; 0:1ð Þ for δt ¼ 0

0.10 1.55 3.18 5.00 6.95 9.01 11.16 13.38 15.68 18.04 20.45 22.92 25.44 28.00 30.61 33.26 35.94 38.66

0.05 1.65 3.27 5.10 7.05 9.11 11.26 13.49 15.79 18.16 20.57 23.04 25.56 28.12 30.74 33.38 36.07 38.79
0.01 1.83 3.46 5.28 7.24 9.31 11.47 13.71 16.00 18.37 20.79 23.26 25.79 28.36 30.98 33.63 36.31 39.04

CV�;p� r 1:4; 0:1ð Þ for δt= 1

0.10 1.71 3.46 5.34 7.33 9.42 11.58 13.82 16.13 18.49 20.91 23.39 25.91 28.47 31.09 33.73 36.42 39.14

0.05 1.79 3.54 5.43 7.43 9.52 11.68 13.93 16.23 18.61 21.03 23.50 26.03 28.60 31.21 33.86 36.55 39.27
0.01 1.93 3.71 5.60 7.61 9.71 11.88 14.14 16.44 18.82 21.25 23.72 26.26 28.83 31.45 34.10 36.79 39.51

CV�;p� r 1:4; 0:1ð Þ for δt = [1, t]

0.10 1.94 3.85 5.83 7.89 10.03 12.24 14.51 16.83 19.22 21.65 23.13 26.66 29.23 31.84 34.49 31.18 39.90

0.05 2.01 3.93 5.92 7.99 10.13 12.34 14.61 16.94 19.33 21.77 24.25 26.78 29.36 31.97 34.62 37.31 40.03
0.01 2.13 4.08 6.09 8.17 10.32 12.53 14.82 17.15 19.55 21.99 24.47 27.01 29.58 32.21 34.87 37.55 40.27

NOTE: The simulated critical values are based on 100,000 replications for up to 17 series.

Table 3. Simulated critical values for small sample size (T = 150).

p � r

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CV�;p� r 1:4; d1ð Þ for δt ¼ 0

0.10 1.53 3.06 4.75 6.55 8.43 10.40 12.42 14.49 16.61 18.77 20.97 23.20 25.45 27.76 30.08 32.43 34.81

0.05 1.61 3.14 4.83 6.63 8.51 10.47 12.50 14.57 16.69 18.85 21.05 23.28 25.55 27.84 30.17 32.51 34.89
0.01 1.74 3.31 4.99 6.79 8.67 10.63 12.66 14.72 16.84 19.01 21.21 23.43 25.70 28.00 30.33 32.65 35.03

CV�;p� r 1:4; d1ð Þ for δt ¼ 1

0.10 1.75 3.47 5.28 7.18 9.13 11.15 13.23 15.34 17.50 19.71 21.94 24.20 26.51 28.83 31.18 33.55 35.95
0.05 1.80 3.53 5.36 7.25 9.21 11.23 13.30 15.42 17.58 19.79 22.01 24.29 26.58 28.91 31.26 33.63 36.03
0.01 1.91 3.67 5.49 7.39 9.34 11.37 13.45 15.58 17.74 19.94 22.16 24.43 26.73 29.05 31.40 33.77 36.17

CV�;p� r 1:4; d1ð Þ for δt = [1, t]

0.10 1.91 3.77 5.69 7.67 9.70 11.77 13.89 16.06 18.26 20.49 22.76 25.06 27.39 29.74 32.11 34.50 36.92
0.05 1.96 3.83 5.77 7.74 9.77 11.85 13.97 16.14 18.34 20.58 22.84 25.13 27.46 29.82 32.18 34.58 37.00
0.01 2.05 3.95 5.90 7.88 9.91 12.00 14.11 16.29 18.49 20.73 22.99 25.29 27.61 29.96 32.33 34.72 37.14

NOTE: The simulated critical values are based on 100,000 replications for up to 17 series.

Table 4. Simulated critical values for small sample size (T = 66).

p � r

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CV�;p� r 1:4; 0:1ð Þ for δt ¼ 0

0.10 1.53 3.04 4.71 6.49 8.35 10.27 12.25 14.27 16.33 18.43 20.56 22.71 24.90 27.11 29.33 31.58 33.85
0.05 1.60 3.12 4.78 6.57 8.43 10.34 12.33 14.34 16.40 18.51 20.62 22.78 24.97 27.17 29.40 31.65 33.91

0.01 1.74 3.30 4.95 6.72 8.58 10.49 12.46 14.49 16.53 18.63 20.76 22.91 25.09 27.29 29.51 31.76 34.04
CV�;p� r 1:4; 0:1ð Þ for δt ¼ 1

0.10 1.74 3.44 5.23 7.10 9.03 11.00 13.03 15.10 17.19 19.33 21.49 23.68 25.89 28.11 30.37 32.64 34.92
0.05 1.80 3.51 5.30 7.17 9.10 11.07 13.10 15.17 17.26 19.40 21.56 23.74 25.95 28.17 30.42 32.69 34.99

0.01 1.91 3.66 5.44 7.31 9.24 11.20 13.24 15.30 17.40 19.52 21.66 23.86 26.06 28.29 30.54 32.81 35.09
CV�;p� r 1:4; 0:1ð Þ for δt = [1, t]’

0.10 1.89 3.74 5.62 7.57 9.56 11.58 13.66 15.76 17.89 20.05 22.24 24.45 26.68 28.93 31.20 33.48 35.78
0.05 1.94 3.80 5.69 7.64 9.63 11.65 13.73 15.82 17.95 20.11 22.30 24.51 26.74 28.99 31.25 33.54 35.84

0.01 2.02 3.92 5.82 7.76 9.75 11.77 13.85 15.96 18.07 20.24 22.42 24.62 26.85 29.10 31.37 33.66 35.95

NOTE: The simulated critical values are based on 100,000 replications for up to 17 series.
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the bandwidths. In subsequent steps, i.e. 2, 3, . . . , 
p-1 = 16, the possible CTs are chosen as the series 
with the smallest statistic X* for each particular 
bandwidth.

To understand how Hualde’s (2012) proce-
dure works, we will describe in more detail 
some of its steps. Step 1 checks for cointegra-
tion, two by two. For instance, for a bandwidth 

Figure 2. Time-series plot of all log real GDP variables.

Figure 3. Time-series plots of the GDP growth rate.
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m ¼ 18, the results indicate that murt is the 
possible common trend. Therefore, according 
to this choice of bandwidth, the first step in 
this procedure is to test:

H 1ð Þ : Hmur;andal [Hmur;ara [Hmur;ast [Hmur;bal

[Hmur;cant [Hmur;cat [Hmur;clm [Hmur;cyl [Hmur;ext

[Hmur;gal [Hmur;mad [Hmur;can [Hmur;nav

[Hmur;pv [Hmur;rio [Hmur;val;

against 

�H 1ð Þ : �Hmur;andal \ �Hmur;ara \ �Hmur;ast \ �Hmur;bal

\ �Hmur;cant \ �Hmur;cat \ �Hmur;clm \ �Hmur;cyl \ �Hmur;ext

\ �Hmur;gal \ �Hmur;mad \ �Hmur;can \ �Hmur;nav

\ �Hmur;pv \ �Hmur;rio \ �Hmur;val 

where for 

at ¼ andalt; arat; astt; balt; cantt; catt; clmt; cylt;
extt; galt;madt; cant; navt; pvt; riot; valt 

(all variables without the CT) 

Hmur;a : murt; at are not cointegrated 

�Hmur;a : Hmur;ais not true 

The above hypotheses are equivalent to H 1ð Þ : r< 16 
and �H 1ð Þ : r ¼ 16. According to Hualde’s (2012) 
procedure, if murt is a true CT, then r < 16 if and 
only if H 1ð Þholds, and r = 16 if and only if �H 1ð Þ holds. 

The process ends when H kð Þ for k ¼ 1; 2; . . . ; 16 is 
rejected. In this case, the process continues to Step 2 
because the null hypothesis of no cointegration can-
not be rejected for any pair of variables and for any 
bandwidth choice because none of the X* statistics are 
greater than the critical value of the χ1

2, that is, 3.84 at 
5% level of significance (see Table 7). The second 
possible CT is chosen as the series leading to the 
smallest X* statistics obtained in Step 1 (see also 
Table 7), that isriot(La Rioja). The null hypothesis of 
no cointegration is not rejected in either of the steps. 
The last step tests if there is any long-run relationship 
between the 17 variables, i.e., the hypotheses are 
equivalent to r< 1 and r ¼ 1 that is:

H 16ð Þ : Hcan;cyl;pv;rio;cant;ext;gal;cat;clm;bal;andal;val;ast;ara;nav;mad;mur 

against 

H 16ð Þ : Hcan;cyl;pv;rio;cant;ext;gal;cat;clm;bal;andal;val;ast;ara;nav;mad;mur 

where

Hcan;cyl;pv;rio;cant;ext;gal;cat;clm;bal;andal;val;ast;ara;nav;mad;mur :

cant; cylt; pvt; riot; cantt; extt; galt; catt; clmt; balt; andalt;
valt; astt; arat; navt;madt;murt are not cointegrated:

�Hcan;cyl;pv;rio;cant;ext;gal;cat;clm;bal;andal;val;ast;ara;nav;mad;mur :

Hcan;cyl;pv;rio;cant;ext;gal;cat;clm;bal;andal;val;ast;ara;nav;mad;mur 

is not true.

Table 5. ELW estimates in the original series.

Exact Local Whittle IC in []

Series\bandwidth m = 18 m = 23 m = 28

Andalucia 1.41 [1.17; 1.64] 1.40 [1.19; 1.60] 1.40 [1.28; 1.58]
Aragon 1.31 [1.07; 1.54] 1.25 [1.04; 1.45] 1.27 [1.08; 1.45]

Asturias 1.26 [1.02; 1.49] 1.23 [1.02; 1.43] 1.27 [1.08; 1.45]
Balearic Islands 1.34 [1.10;1.57] 1.32 [1.11; 1.52] 1.32 [1.13; 1.50]

Canary Islands 1.33 [1.09; 1.56] 1.25 [1.04; 1.45] 1.28 [1.09; 1.46]
Cantabria 1.30 [1.06; 1.53] 1.28 [1.07; 1.48] 1.32 [1.13; 1.50]

Catalonia 1.32 [1.08; 1.55] 1.29 [1.08; 1.49] 1.32 [1.13; 1.50]
Castilla-LaMancha 1.41 [1.17; 1.64] 1.31 [1.10; 1.51] 1.33 [1.14; 1.51]
Castilla-León 1.31 [1.07; 1.54] 1.26 [1.05; 1.46] 1.29 [1.10; 1.47]

Extremadura 1.36 [1.12; 1.59] 1.27 [1.06; 1.47] 1.34 [1.15; 1.52]
Galicia 1.36 [1.12; 1.59] 1.27 [1.06; 1.47] 1.33 [1.14; 1.51]

Madrid 1.29 [1.05; 1.52] 1.28 [1.07; 1.48] 1.31 [1.12; 1.49]
Murcia 1.35 [1.11; 1.58] 1.34 [1.13; 1.54] 1.36 [1.17; 1.54]

Navarre 1.29 [1.05; 1.52] 1.29 [1.08; 1.49] 1.31 [1.12; 1.49]
País Vasco 1.30 [1.06; 1.53] 1.31 [1.10; 1.51] 1.35 [1.16; 1.53]

Rioja 1.30 [1.06; 1.53] 1.34 [1.13; 1.54] 1.35 [1.16; 1.53]
Valencia 1.32 [1.08; 1.55] 1.29 [1.08; 1.49] 1.33 [1.14; 1.51]

Table 6. LW estimates in growth rate.

Local Whittle

m:18 m:23 m:28

Andal 0.491 0.448 0.337

Ara 0.394 0.339 0.268
Ast 0.361 0.319 0.274

Bal 0.341 0.323 0.218
Can 0.432 0.332 0.259
Cant 0.397 0.378 0.310

Cat 0.448 0.410 0.326
Clm 0.496 0.383 0.323

Cyl 0.389 0.310 0.270
Ext 0.355 0.345 0.260

Gal 0.436 0.357 0.296
Mad 0.418 0.383 0.288

Mur 0.497 0.454 0.373
Nav 0.380 0.385 0.314
PV 0.429 0.414 0.357

Rio 0.346 0.316 0.281
Val 0.447 0.387 0.311
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The results of the test in this step for various band-
widths are shown in Table 8. There is no evidence of 
cointegration for any of the bandwidths considered. 
Therefore, there is no long-run relationship between 
any of the 17 Autonomous Communities of Spain, 
implying that the growth rates of the output in these 
regions do not converge and there does not exist any 
group of regions converging. Full details of all the steps 
in the procedure can be found in Tables 10 to 23 in the 
supplementary material of this article. To further sup-
port this conclusion, the nonparametric method pro-
posed by Nielsen (2010) is also implemented.

Nielsen’s (2010) cointegration results

Unlike the cointegration test proposed by 
Robinson (2008), the procedure in Nielsen (2010) 
begins with H0 : r ¼ r0 versusH1 : r> r0 and the 
testing sequence ends when the null hypothesis is 
not rejected. The variance ratio rank test is based 
on the statistic Λp;r 0:1ð Þ, defined in the previous 
section, for p = 1 to 17 and applied to the detrended 

non-stationary series. Denoting CV�;p� r d; 0:1ð Þ, the 
critical values, where d represents the memory 
parameter of the series, the null hypothesis is 
rejected if Λp;r 0:1ð Þ>CV�;p� r d; 0:1ð Þ. In that case, 
the procedure continues to the next step.

The results of this variance ratio test applied to our 
sample are shown in Table 9, which shows the variance 
ratio test statistics for the case of constant and trend 
(selected in view of the behaviour of the series in 
Figure 2). Comparing the statistics with the critical 
values obtained with δt = 1 in Table 4, we have that 
Λ17;0 0:1ð Þ ¼ 34:96<CV0:05;17 1:4; 0:1ð Þ ¼ 34:99, 
concluding that the null hypothesis r ¼ 0 cannot be 
rejected at 5% significance level. This result indicates no 
cointegration among the per capita gross domestic pro-
duct of the Autonomous Communities in Spain, rein-
forcing the lack of convergence found with the strategy 
designed by Hualde (2012) and Robinson (2008).

V. Conclusions

In this work, we have tested for the existence of 
convergence of real per capita GDP in 17 Spanish 

Table 7. Cointegration rank test, step I.

Variables\m m:18 m:23 m:28

Step 1

Andal 2.63 2.44 1.47
Ara 1.58 0.879 0.24

Ast 0.81 1.20 0.35
Bal 1.30 0.622 0.06

Can 1.06 1.23 0.62
Cant 1.03 1.75 0.85
Cat 1.57 1.32 0.86

Clm 2.32 1.88 1.29
Cyl 0.48 0.242 0.16

Ext 0.91 0.111 0.046
Gal 1.51 1.42 1.32

Mad 1.69 2.26 1.56
Mur CT CT CT
Nav 1.58 1.52 0.73

Pv 0.39 1.21 0.61
Rio 0.12 0.00 0.24

Val 1.49 1.79 1.19

Note: The series are the growth rate per capita.

Table 8. Cointegration rank test, step XVI.

Variables\m m:18 m:23 m:28

Step 16

Andal CT CT CT
Ara CT CT CT

Ast CT 0.092 0.0014
Bal CT CT CT

Can CT CT CT
Cant CT CT CT
Cat CT CT CT

Clm 0.0019 CT CT
Cyl CT CT CT

Ext CT CT CT
Gal CT CT CT

Mad CT CT CT
Mur CT CT CT
Nav CT CT CT

Pv CT CT CT
Rio CT CT CT

Val CT CT CT

Table 9. Variance ratio cointegration rank test.

p � r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1.50 3.10 4.82 6.59 8.46 10.38 12.35 14.38 16.47 18.66 20.88 23.14 25.43 27.75 30.09 32.50 34.96

Panel reports the variance ratio cointegration test statistic Λp;r 0:1ð Þ.

12 M. KAMAL AND J. ARTECHE



Autonomous Communities from 1955 to 2020, 
applying advanced and up-to-date time-series 
methods in a context of fractional integration and 
cointegration. Our analyses yielded no evidence of 
long-run equilibrium relationships, thus ruling out 
the possibility of convergence according to the 
definitions of Bernard and Durlauf (1995). The 
results are robust, confirmed with different techni-
ques used to test for cointegration, and are also 
consistent with a cross-sectional analysis based on 
sigma-convergence.

Our empirical findings provide us with an 
important insight into this framework: There 
is no overall economic convergence between 
the Spanish Autonomous Communities, and 
no convergent subgroup of regions has been 
identified. The complete lack of convergence 
among the 17 Autonomous Communities 
could be explained by the persistent economic 
differences between them, which the conver-
gence process has not been able to offset in 
the period analysed. This may be due to the 
existence of heterogeneous economic struc-
tures, different levels of human capital, and 
regional differences in the quality of institu-
tions, among other factors that affect the 
growth rates of the regions differently. The 
different economic structures, mentioned in 
the Introduction, lead to disparities in the eco-
nomic growth. Some regions rely more heavily 
on certain economic sectors, such agriculture 
that experience slower economic growth. On 
the other hand, regions with high concentra-
tion of industries with high levels of innovation 
and technological advancement may grow fas-
ter than those based on traditional sectors with 
lower productivity levels.

The absence of economic convergence can 
have substantial consequences, including 
inequalities in access to employment, educa-
tion, and public services, as well as political 
and social tensions. Consequently, it represents 
a challenge that Spanish governments need to 
address through regional development policies 
and other measures aimed at promoting eco-
nomic convergence and reducing disparities 
across regions, implementing policies that 
address the specific needs and challenges of 
each Autonomous Community.
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