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Abstract 

Hotelling´s T
2
 control chart is very efficient for detecting sudden changes in a process; 

however, it loses sensitivity to detect small and progressive changes and its performance 

decreases when the number of variables monitored at the same time is high. Because of 

this, conventional methods for variable reduction such as PCA were used, but they have 

difficulties in detecting the variability of the process when the correlation between 

variables is poor. 

We propose a Method for detection of Small and Sudden Deviations in the process 

(SSDM), applicable when the correlation between variables is low; which is typical in 

marine propulsion processes. 

First, fuel oil process variables of a marine diesel engine running, poorly correlated 

between them, were reduced through the analysis of correlations. 

Afterwards, the selected variables were monitored through Hotelling´s T
2
 control charts 

and sudden, out-of-range changes were detected. The variable that generated the 

deviation in the process was identified and the predictive variables were monitored 

through Cusum charts; the origin of small and progressive changes in the process below 

the alarm threshold set by the manufacturer was identified. 
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The proposed method (SSDM), based on the combination of (Hotelling´s T
2
 + Cusum), 

can be implemented in any type of process in marine propulsion in a satisfactory and 

economical way, helping in the identification of the origin of any type of deviation 

(small and sudden) in the process early enough to implement the right predictive 

actions.  

1. Introduction

Nowadays, in the industry, due to technological advances and complexity of the 

processes, there are many situations in which the monitoring of two or more variables is 

required [1]. 

Monitoring of redundant variables unnecessarily increases the costs of measurement [2] 

and hinders the interpretation by the user when there is a high number of signals to be 

monitored.  

Within the monitoring techniques, we can distinguish between computational and 

statistical. Computational techniques such as Artificial Neural Networks (ANN) have 

been used in the monitoring of different industrial processes [3]; i.e., energy efficiency 

with improved fuel consumption reduction on a marine diesel engine. 

In the statistical process control (SPC), the contributions have been made through the 

control chart of Shewart [4]. This methods monitors variables through independent 

control charts, ignoring the possible correlation or interaction between them, so when 

there is a variation in the process, several of these charts detect it at the same time, 

being complex to detect the exact cause of the failure and sometimes giving rise to false 

alarms. 

In an article published in January 2017 [5], in a 2-stroke marine diesel engine, for some 

specific working conditions, were monitored a small group of seven variables, 

corresponding to the cylinder lubrication process through Hotelling´s T
2
 control charts 

in combination with the technique Mason, Young and Tracy (MYT). 

In that work, the Hotelling´s T
2
 control chart, monitors in a multivariate way and 

effectively deviations are detected regarding the optimal working condition of the 

process; nevertheless, small and progressive change wasn´t detected due to the 

difficulties that these types of control chart have to detect these types of behaviours. 

Furthermore, the variables that generated the deviation in the process were identified 

through MYT decomposition; it facilitated the diagnosis of the change in the process. 

The problem comes when the size of the monitored variables begins to be moderately 

large, thus complicating the interpretation of the variable which caused the deviation in 

the process. 
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The MYT decomposition of the T
2
 statistic has been shown to be a great aid in the 

interpretation of signaling T
2
 values, but when the number of variables is greater than 

10, and the cause of signaling is not clear from the unique terms of decomposition, the 

possible combinations among them are increased exponentially and hide which variable 

is responsible for it. [6]. 

Although this problem has been noted by other authors e.g. [7], it fortunately has led to 

the development of computer programs that can rapidly produce the significant 

components of the decomposition for moderately large sets of variables.  

However, the question on how these computational methods will work when there are 

hundreds of thousands of variables has yet to be answered. 

Therefore, the efficient selection and reduction of the variables to monitor is a way to 

optimize the process, maximizing the efficiency and reducing the costs of measurement 

[8]. 

There are many factors influencing the capability of this procedure, and these include 

computer capacity, computer speed, the size of the data set, and the programming of an 

algorithm. 

There are different statistics techniques reducing the variables to monitor such as the 

Principal Components Analysis (PCA). This technique is capable of reducing the 

variables space, generating uncorrelated principal components (PCs) [9]; however, 

monitoring through PCA, [10], has difficulties in detecting the variability of the process 

when the correlation between variables is low, like in main propulsion engines related 

processes. 

Yifei Wang, Xiandong Ma et al. [11], proposed an optimal sensor selection method 

based on principal components analysis (PCA) for condition monitoring of a distributed 

generation (DG) system oriented to wind turbines. The aim was to identify a set of 

variables from a huge amount of measurement data which could reduce the number of 

physical sensors installed for condition monitoring, while maintaining sufficient 

information to assess the system´s conditions.    

The results showed that under a faulty condition, the algorithm of selection reduced the 

dataset dimension and kept the vital functions associated with the fault in the retained 

dataset with a high accuracy. 

In the marine industry [12], the condition of the ship through satellite using PCA was 

monitored. The software developed for transmission using PCA reduces the amount of 

data sent via satellite, reducing time and cost of communications in case of transmission 

of all signals together. 

Vinicius Barroso Soares et al. [13], implemented a system of alarm management 

through the use of different correlation methods (Principal Component Analysis, 

Correlation Analysis and Cluster Analysis), in three natural gas processing plants, 
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getting to replace groups of alarms correlated by a more meaningful one, provided that 

the processes were linear. 

Other techniques for reduction of variables such as Partial Least Squares (PLS) were 

presented; José Carlos Vega-Vilca et al [14], compared the technical Principal 

Components Analysis (PCA) and Partial Least Squares (PLS) on a database of 252 

cases, 17 predictor variables and 1 dependent variable, with the aim of reducing the 

dimensionality.  

To select the best regression model, they used the predictive residual sum of squares 

(PRESS), determining that the best model for PCA was with 6 components and the 

regression PLS was with 7 components; For reasons of comparison, both models were 

estimated with 6 components, being the values PRESS for each of them 88.31 and 

266.54 respectively. These results showed that the PLS regression exceeded those of the 

PCA. 

These techniques of variables reduction can be combined with Hotelling´s T
2
 control 

charts to reduce the limitation that they have when the number of variables is high; S. 

Joe Qin [15], analyzed the use of Hotelling´s T
2
 control charts together with PCA and 

other methods of detection, identification and diagnosis of failures; Joyce M. F. Fonseca 

et al. [9], proposed a methodology based on the combination of PCA and Hotelling´s T
2
 

control charts, capable of dealing processes with multiple set points and non-stationary. 

The proposed methodology was implemented in a thermoelectric power plant, 

monitoring in real time to detect any changes in the operation conditions of critical units 

of the power plant, boiler and turbine-generator unit.   

Finally, the Hotelling´s T
2
 control charts and Principal Components Analysis (PCA), for 

monitoring and control of a multivariate normal process were proposed in metal 

industry [16]. 

The Hotelling´s T
2
 control charts detected when the process had deviations regarding 

the normal operation conditions, but didn´t identify the variables which were out of 

range or possible trends that might be in the process variables; but the control chart of 

PCA detected when the process was out of range and also showed the trend that made 

the process to be in that situation. 

As mentioned above, another feature of Hotelling´s T
2
 control charts, similar to 

Shewhart charts for univariate process control, is that they lose sensitivity to small 

changes, below 1.5 and progressive in the vector of averages of the process [17]. 

Thus, Aparisi F and Garcia JC [18] established a zone of attention as a way to increase 

the power of the chart to this type of behaviour; in low-speed machines, failures may 

develop slowly and they stay latent till some critical point of their development interval 

when it is too late to act preventively [19].  

In these cases, alternative procedures such as Cumulative Sum charts (Cusum) are 

widely recommended. This type of charts represent the cumulative sum of deviations, 
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which contains information of all the previous samples [20]; in this issue, during the 

process of elaboration of a piece for the automotive industry, Shewhart and Cusum 

control charts were compared, for a same magnitude in the process changes. While the 

Cusum charts detected changes successfully, Shewhart charts were not able to detect 

them, indicating that the process was in control. 

These Cusum charts [21], also have been used to detect possible defects in the 

downwind main bearing; the method was fast and reliable, and offered an estimate on 

the development of the wear as a function of time. 

Therefore, Hotelling´s T
2
 control charts lose sensitivity to detect small and progressive 

changes in the process and they have difficulties in identifying the variable responsible 

for the change when the number of monitored variables is greater than 10. 

On the other hand, revised reduction of variables methods such as PCA have difficulties 

to perform this task, when the correlation between variables is low. 

Thus, we propose a new Method for detection of Small and Sudden Deviations in the 

process (SSDM), applicable when the correlation between variables is low; which is 

typical in marine propulsion processes. 

First through the analysis of correlations between variables, we implemented a 

methodology to reduce the number of monitored variables, poorly correlated between 

them, of fuel process of a typical low-speed diesel engine running installed on a tanker 

ship and thus to improve the limitation that has MYT decomposition when the size of 

the monitored variables is large. 

Afterwards, the selected variables were monitored through the Hotelling´s T
2
 control 

chart, for some specific working conditions and through MYT decomposition; the 

variable that caused the out of range state with respect to the normal mode operation of 

the ship was identified.  

In addition, the technique Hotelling´s T
2
 was combined with univariate Cusum charts, 

to detect those variables which can generate small and progressive deviations in the 

process, typical in process where there are thermal exchanges, and cannot be detected 

through (Hotelling + MYT) control charts. 

The main difference with current literature lies in the use of a new method called SSDM 

based on the combination of techniques (Hotelling´s T
2
 + Cusum) in the main engine of 

a ship in seagoing conditions, offering reliable results and at the same time an economic 

and easy implementation.  

2. Material and Methods

2.1 Machine study 
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The machine of study was the propulsion engine of a typical low-speed diesel engine, 

which is frequently installed in tanker ships and bulkarriers as the main engine. The 

basic technical details of the engine are listed in Table 1. 

 

Manufacture MAN B&W 

Type 6S70ME-C8 

Cycle 

Low-speed 

2 stroke 

Nominal speed 91 r.p.m. 

Rate power 19620 kW 

Number of cylinders 6 

Stroke 2800 mm 

Bore 700 mm 

Table 1. Technical details of engine studied. 

 

The engine was installed on a Suez Max Crude Carrier with the characteristics listed in 

Table 2. This ship normally carries out regular voyages, between Western Africa, and 

Northern Europe where she is discharged. 

 

Name of Ship Confidential 

Shipyard Build Confidential 

Year Built 2012 

Type of Ship Crude Oil Tanker 

Class Suez Max 

Length Overall 274.20 m. 

Extreme Breadth 48.04 m. 

Draught 17 m. 

Gross Tonnage 81.187 

Net Tonnage 51.148 

Table 2. Ship´s specifications. 

 

In the fuel oil system [22], the fuel from the service tank is led to an electrically driven 

supply pump by means of which a pressure of approximately 4 bar can be maintained in 

the low pressure part of the fuel circulating system.  

 

From here the fuel oil is led to an electrically-driven circulating pump, which pumps it 

through a heater and a full flow filter situated immediately before the inlet to the engine. 

This system is shown in Figure 1. 



7 

Figure 1 – Fuel Oil System 

The fuel injection is performed by the electronically-controlled pressure booster located 

on the Hydraulic Cylinder Unit (HCU). 

The Cylinder Control Unit (CCU) of the Engine Control System calculated the timing 

of the fuel injection and the exhaust valve activation, in accordance with the commands 

received from the Engine Control Unit (ECU). 

To ensure ample filling of the HCU, the capacity of the electrically-driven circulating 

pump is higher than the amount of fuel consumed by the diesel engine. Surplus fuel oil 

is recirculated from the engine through the venting box. 

2.2 Application of method 

2.2.1. Step 1 – Data acquisition 

The main engine has two monitoring systems and data acquisition: on one hand the 

CoCos EDS, a surveillance and diagnosis control system created by the engine 

manufacturer M.A.N.; and on the other hand the Integrated Automation System (IAS), 

where the thermodynamic process data are collected. 

Our study only focused on the laden condition due to the high variability in the ballast 

condition, monitoring the behaviour of fuel oil process in the main engine during its 

voyage from Africa to Europe. 

The fuel oil process of the main engine, was defined by p=11 variables: Engine Load, 

Fuel Index, Turbocharger speed Rpm  (they were measured in the local control), Fuel 

Plunge Stroke (it is the average of the value of all the injectors), Scavenge air cooler air 

inlet temperature (it was measured from inlet of intercooler), Exhaust gas temperature at 

turbine inlet (it was measured from inlet of turbocharger), P (scav) (air pressure inlet 

combustion chamber), Estimate Effective Power (measured at the shaft), Compression 

Pressure (Pcom) and Maximum Pressure (Pmax) (they were the average of the value of 
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all the cylinders, measured in the combustion chamber) and SFOC (fuel oil consumed 

by the engine) measured in a brake. For the selection of these, we have had the 

collaboration of the ship’s engineers, and the manufacturer’s data. 

Data acquisition was performed under the following conditions: Speed over ground 

(SOG)  between 12 and 14 knots with less than 18% slip, an average temperature of sea 

water of 20 ° C, average ambient temperature of 30 ° C and average temperature of the 

engine room of 37 ° C.  

Four samples were taken daily, from all the selected variables, during 1 voyage which 

obtained a total of n=47 valid samples following the criteria previously mentioned. 

The minimum, maximum, mean and standard deviations values of each are listed in 

Table 3.  Each variable was identified with a correlative numbering. 

No.  Variables Unit 
Min. 
Value  

Max. 
Value  

Means 
(µ) 

Standard 
Deviations 
(σ) 

1 Engine Load % 54 61 56.85 1.546 

2 Fuel Index % 62.6 70.6 65.136 1.7644 

3 Fuel plunger stroke  mA 2.58 2.77 2.662 0.0358 

4 
Scavenge air cooler air inlet 

temperature °C 142 160 149.21 4.287 

5 
Exhaust gas temperature at turbine 

inlet °C 354 407 372.63 15.306 

6 Turbocharger speed  r.p.m. 10366 11202 10818.84 185.504 

7 P (scav) Bar 1.57 1.96 1.834 0.1093 

8 Estimate Effective Power kW 10318 10909 10540.11 130.761 

9 Compression Pressure, Pcom  Bar 110.18 129.7 123.832 5.6346 

10 Maximum Pressure, Pmax Bar 138.43 142.47 140.739 1.0883 

11 SFOC g/kWh 154.28 164.01 158,511 2,042 

Table 3. Means, standard deviations, maximum and minimum values. 

There was a problem of lost data. The available data sampling period on board was too 

slow, therefore, it was necessary the use of interpolation technique to get the samples 

needed to implement the method; if these periods had been shorter, i.e, one sample,  

every half hour, the adjusted R
2
 coefficients would had been higher, thereby increasing 

the reliability of the method.  

Furthermore, to create the preliminary database, n=599 samples were generated of each 

variable through cubic spline interpolation [23].   

With this, the number of samples needed to validate the study was achieved.The 

minimum sample size follows the equation (2) according to the number of variables, p 

[24]: 

                     
       

 
       (2) 
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2.2.2. Step 2 Variable selection  

With the samples generated in the preliminary database, a Pearson correlation analysis 

was performed [25], among the 11 variables in which fuel process was defined, listed in 

table 4.  

 

 

Variable identification number 

1 2 3 4 5 6 7 8 9 10 11 

V
ar

ia
b
le

 i
d
en

ti
fi

ca
ti

o
n

 n
u
m

b
er

 

1 1.000 0.880 0.750 0.245 0.114 0.171 0.096 0.415 0.012 0.047 0.277 

2 0.880 1.000 0.769 0.373 0.125 0.282 0.156 0.358 0.046 -0.340 0.262 

3 0.750 0.769 1.000 0.181 0.101 0.119 0.067 0.494 -0.025 0.142 0.384 

4 0.245 0.373 0.181 1.000 0.160 0.790 0.414 0.409 0.235 -0.313 0.340 

5 0.114 0.125 0.101 0.160 1.000 -0.392 -0.792 -0.061 -0.900 -0.693 -0.377 

6 0.171 0.282 0.119 0.790 -0.392 1.000 0.857 0.494 0.739 0.115 0.623 

7 0.096 0.156 0.067 0.414 -0.792 0.857 1.000 0.404 0.975 0.457 0.648 

8 0.415 0.358 0.494 0.409 -0.061 0.494 0.404 1.000 0.286 0.318 0.843 

9 0.012 0.046 -0.025 0.235 -0.900 0.739 0.975 0.286 1.000 0.563 0.570 

10 0.047 -0.034 0.142 -0.313 -0.693 0.115 0.457 0.318 0.563 1.000 0.439 

11 0.277 0.262 0.384 0.340 -0.377 0.623 0.648 0.843 0.570 0.439 1.000 

Table 4. Correlation between variables. 

The process was monitored by the minimum number of variables, (p=3 variables: Fuel 

Index, Exhaust gas temperature at turbine inlet and Turbocharger speed), following the 

criteria: the selected variables have one correlation between them less than 0.49 and the 

selected variables had a correlation with at least one of the unselected variables equal to 

or higher than 0.49. 

Finally, through SPSS software, it was found the adjustment of models among the three 

selected variables and their predictive variables using a multivarible regression analysis, 

obtaining the following coefficients of determination R
2
 adjusted, 0.8, 0.95 and 0.96 for 

each model respectively.  

Conventional methods for variable reduction such as PCA were not efficient; with two 

principal components represented only the 81% of the process. Five principal 

components were required to represent 96% of the process. 
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2.2.3 Step 3 – Purging process  

To create the historical data set (HDS), n=599 samples from the preliminary database 

were monitored with mean and standard deviation , following a normal distribution, 

Np (,) estimated for the multivariate process, through the Hotelling´s T
2
 control chart 

[26], following the equation (3). 

                                (3) 

Where:   

   = (              )´  

Mean vector,    = (65.095  372.43  10821.55)  

Inverse covariance matrix:  

S
-1

= 
                    

                   
                      

  

Depending on the circumstances, the T
2
 statistic can be described by three different 

probability functions: the Beta, the F and the chi-square distributions. 

When (μ, σ) are estimated, the Beta distribution is used in the purging process of a 

Phase I operation, whereas the F distribution is used in the development of the control 

process in a Phase II operation. When (μ, σ) are known, the chi-square has applications 

in both Phase I and Phase II operations [6]. 

 

During the purging process, the atypical observations of the process, obtained in the 

generation the preliminary database, were detected and eliminated in order to avoid 

possible errors in results. 
 

For the calculation of the UCL (Upper Control Limit), we used the β distribution with 

α=0.05, for type I errors [27].  

The UCL was determined by the following equation (4): 

     
      

 
  

   
 

 
           

      (4) 

Where:   

 n: Size of data set,  

p: Number of variables. 

                    , is the upper    , quantile of the beta distribution,    

                



  

11 
 

If the value of T
2
, which was monitored for an observation, exceeded the UCL, 

observation was purged from the preliminary data. 

With the remaining observations, we calculated new estimates of the mean vector and 

covariance matrix. Again, we removed all detected outliers and repeated the process 

until a homogeneous set of observations was obtained. The final set of data was the 

HDS, the normal operation of the process, formed by 307 samples. The algorithms 

necessary to carry out the process of purged, are developed by using Labview software. 

In Table 5, the detected outliers are represented in each step until the HDS was 

obtained.  

 

No. of Observations UCL No. outliers detected 

599 7.783 24 

575 7.782 31 

544 7.78 48 

496 7.777 13 

483 7.776 7 

476 7.775 8 

468 7.774 5 

463 7.774 5 

458 7.774 2 

456 7.773 7 

449 7.773 12 

437 7.772 12 

425 7.77 24 

401 7.768 17 

384 7.766 14 

370 7.764 14 

356 7.762 11 

345 7.76 14 

331 7.758 13 

318 7.755 8 

310 7.754 2 

308 7.753 1 

307 7.753 0 

Table 5.  Steps to get the HDS. 

 
2.2.4. Step 5 – Control Procedure 

In this step, was tested to see if a new entry of data generated a signal, with respect to 

the historical data set (HDS). 
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Due to the amount of monitored variables being small, the statistic T
2
 Hotelling was 

used. Out of the different proposed methods in the literature to determine what were the 

variables that caused the out of range state of the process, the MYT decomposition was 

selected [28].  

The new entry of data, corresponded to samples acquired during one voyage in laden 

condition, obtaining a total of 13 samples, listed in table 6, after having analysed them 

according to the criteria of the normal condition of the operation.  

 

Obs. 

No. 

Fuel 

index 

(%) 

Exhaust gas 

temperature   

(°C) 

Turbocharger 

speed (r.p.m.) 

1 64.70 373 10992 

2 66.30 373 11052 

3 64.50 372 10960 

4 68.40 378 11260 

5 66.30 375 11076 

6 65.70 381 11159 

7 69.00 369 10987 

8 66.90 370 11048 

9 64.70 369 10906 

10 69.50 369 11139 

11 65.40 368 11154 

12 64.30 369 11070 

13 65.90 352 10141 

Table 6. New data entry 

The values T
2
, for new data entry, were calculated, according to the following equation 

(5).  

                                   (5) 

Where: 

   and    , the mean vector and inverse covariance matrix are obtained from the HDS 

and   , new data entry.                      

   = (              )´  

 

For the calculation of the UCL (Upper Control Limit), we used the F distribution with 

α=0.05, for type II errors [29].The level of α can be variable, making more or less strict 

the method. The chosen alpha level is normally used in industrial processes and it 

depends on conditions of operation of the ship. 

The UCL was determined by the following equation (6): 
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                    (6) 

Where p, is the number of variables, n, is the size of the HDS and               , is 

the    , quantile of            . 

The values of T
2 

which exceeded the UCL were declared as signals and thus concluded 

that the observation was out of range with respect to the mode of normal operation of 

the process. 

Once the T
2 

statistical detected samples which were out of range in the process from 

normal operating conditions, the MYT decomposition was used[30, 31], to identify the 

variables with more weight, responsible for the out of range state for each sample.  

 

The general decomposition for “p” variables of the Hotelling´s T
2
 statistic, follow the 

equation: 

     
       

         
           

                
    

              
 

   

   
  (7)  

The final T
2 

value,  
 , is Hotelling´s statistic for the first variable. It reduces to the 

square of the univariate t statistic for the initial variable:
 

  
  

        
 

  
          (8) 

Where,    and S1 is the mean and standard deviation of variable X1. 

The statistic           
  is the p

th
 component of the vector    adjusted by the estimates of 

the mean and standard deviation of the conditional distribution of  XP given X1, X2, …, 

Xp-1. It is given by 

          
  

                  

          
          (9) 

Where: 

          =            
     

         , 

   is the sample mean of n observations on the p
th
 variable,      

     
   is a (p-1) – 

dimensional vector estimating the regression coefficients of the p
th

 variable regressed on 

the first p-1 variables,  

           
     

      
  

     
   and S =   

      

   
   

  . 
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2.2.5. Step 5 – Control of predictive variables. 

Finally the univariate Cusum technique was used [32], for each of the predictive 

variables of the variable detected using MYT, and so, to detect if any of them was 

responsible for the out of range state of the process.  

The tabular Cusum, calculated the deviations of each value with respect to the target 

value µ0, distinguishing between deviations positive C
+ 

and negative C
-
. The statistics 

C
+
 and C

-
 have a form, 

  
                         

          (10) 

  
                          

          (11) 

Where the starting values are C0
+
 = C0

-
 = 0 

The reference value K, is often chosen about halfway between the target µ0 and the out 

of range value of the mean µ1 (15 % about µ0), that we are interested in detecting 

quickly.  

  
        

 
            (12) 

The decision interval H, was determined by the following equation (13): 

                (13) 

Where σ is the standard deviation of the process in control and h=5. The chosen h level 

is normally used in industrial processes. 

If Ci
+
 or Ci

-
 exceeds the decision interval H, the process is considered to be out of range. 

The Average Run Length (ARL) was calculated according to the ARL approximation 

given by Siegmund [33]. For a one-sided Cusum (Ci
+
 or Ci

-
) with parameters h and k, 

Siegmund´s approximation has a form: 

    
                

            (14) 

For  ≠0, where         for the upper one-sided Cusum Ci
+
,          for the 

lower one-sided Cusum Ci
-
, b = h + 1.166, and            ) / σ 

The quantity   , represents the shift in the mean, in units of σ, for which the ARL is to 

be calculated. Therefore, if   = 0, we consider an ARL0 of 48, corresponding to the 

samples obtained during one day; whereas if   ≠0, we calculate the value of ARL1 

corresponding to a shift of size   . 

The ARL of the two one-sided statistics of Cusum, ARL
+
 y ARL

-
, was determined by 

the following equation (15): 

 

   
 

 

     
 

               (15) 
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3- Results 

 

3.1 Application of Hotelling´s T
2
 statistical. 

In this step, T
2
 values were calculated according to the Eq. (5), for each one of the 13 

new observations, and they were monitored in a control chart, according to Figure 2. 

with a upper control limit previously calculated, according to the expression Eq. (6), 

valued in UCL= 7.9808. 

 

 
Figure 2. Control Chart 

The control chart shows that there are values of T
2
 above the UCL which indicates that, 

in that interval of time, the process had a deviation from its normal operation mode. 

This situation does not mean that the engine is failing, but that the process has moved 

from normal operating conditions, and if this trend is repeated in time, corrective 

actions should be taken to prevent a malfunction in the process. 

In the next stage, we identified which were the variables that had produced the out of 

range state for each observation. 

3.2 Decomposition MYT 

In this stage, using the MYT decomposition technique, each T
2
 value was decomposed 

for each one of the signals to detect which was the variable which had contributed more 

strongly to the out of range state of the process. The unconditional terms were 

calculated following the Eq. (8), and the conditional terms were calculated following the 

Eq. (9), the decomposition is listed in table 7. This shows that the main variable that 
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caused the deviation from its normal operating mode was the Turbocharger speed 

variable.  
 

 

Observations Variables 

1 Exhaust gas temperature 

4 Turbocharger speed 

5 Turbocharger speed 

6 
Exhaust gas temperature and Turbocharger 

speed. 

7 Fuel Index 

8 Turbocharger speed 

10 Fuel Index 

11 Turbocharger speed 

12 Turbocharger speed 

13 Turbocharger speed 

Table 7. Decomposition MYT 

3.3 Application of Cumulative sum  

In this stage, it was monitored the predictive variables of the Turbocharger speed 

variable, using the Cusum charts, to detect if any of them was responsible of the out of 

range state of the process.  

The mean, standard deviation values of each predictive variable in control are listed in 

Table 8. 

 

Variables Unit Means(µ) 

Standard 
Deviations 
(σ) 

Scavenge air cooler air inlet 

temperature °C 147.35 2.24 

P (scav) Bar 1.84 0.1 

Estimate Effective Power kW 10542.36 103.63 

Compression Pressure, Pcom Bar 124.8 5.38 

SFOC g/kWh 158.58 1.7 

Table 8. Mean and standard deviation of predictive variables. 

61 observations for each of the variables were monitored; the first 48 observations 

corresponded to the ARL0 and the following 13 were new input data. 

Figures 3a, 3b, 3c, 3d, 3e, show Cusum charts for each of the variables. It was noted 

that the only variable that exceeded its decision interval was the SFOC variable, where 
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at sample 50 is C50
+
 = 10.8. Since this is the first period at which Ci

+
 > H=8.5, we would 

conclude that the variable was out of range in this point. 

However, the tabular Cusum also indicates when the shift probably occurred. The first 

consecutive sample in which Ci
+
 > 0 first exceed the value of H, was the period 49, C49

+
 

= 5.36, thus indicating that the mismatch in the variable could have started in the sample 

49. 

 

 

Figure 3a - Scavenge air cooler air inlet temperature (ARL1=1.23). 
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Figure 3b - P (scav) (ARL1=4.29) 

 

 

Figure 3c - Estimate Effective Power (ARL1=0.79) 
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Figure 3d - Pcom (ARL1=3.37) 

Figure 3e - SFOC (ARL1=0.87) 
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4-Discussion 

The fuel oil process of a 2-stroke marine diesel engine was monitored by only three 

variables with low correlation between them, through a combination of univariate and 

multivariate techniques (Hotelling´s T
2
 + Cusum). 

Hotelling´s T
2
 control charts performance decreased as it increased the number of 

variables to be monitored. It was chosen the minimum number of variables to be 

monitored, p=3, from among the 11 variables representing the entire process through a 

multivariate regression analysis, ensuring fitting models between variables and their 

predictive variables, with coefficients of determination R
2
 adjusted higher than 0.8. 

Multivariate charts detected observations out of range with respect to the optimal 

conditions of the process; in the table 9, there is the chronology of the out of range 

observations, with its respective T
2
 values. 

Date Observations T2 

25/08/2016 1 8.042 

28/08/2016 4 30.395 

29/08/2016 5 9.294 

30/08/2016 6 21.884 

31/08/2016 7 16.745 

01/09/2016 8 8.489 

03/09/2016 10 31.785 

04/09/2016 11 37.641 

05/09/2016 12 21.212 

06/09/2016 13 221.034 

   Table 9. Chronology of Observations. 

Observations that were above the limit of control were decomposed, identifying the 

variable turbocharger speed as the main variable that originated the out of range state of 

the multivariate process. 

Hotelling´s T
2
 Technique has the advantage that effectively detects high and sudden 

changes in the process but can’t detect small and progressive changes.  

For this reason, the predictive variables in the variable turbocharger speed were 

monitored through Cusum charts, to try to detect small and progressive changes in the 

process that had not been detected by means of multivariate charts. 

It was established a decision interval, less than the one marked by the manufacturer, 

15% over the average value of each variable in optimal condition operation. The SFOC 

variable exceeded the threshold and was detected when it began to deviate from its 

normal condition before the established threshold. 
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The cleaning of the intercooler, for service reasons, only was made with chemical 

products, the last cleaning in depth had been 6 months ago; this situation generated a 

progressive fouling in the intercooler. In order to maintain the speed of the vessel a 

small deviation in the SFOC variable was caused. 

 

5- Conclusions 

The proposed methodology for reduction of variables, through the analysis of 

correlations between variables, was capable to reduce the number of variables, poorly 

correlated between them, of fuel process of a running marine diesel engine; 

conventional methods for variable reduction such as PCA was shown that were not 

efficient when the correlation between variables was poor. 

Through proposed methodology of monitoring of variables SSDM based on the 

combination of (Hotelling T
2
 + Cusum) charts, high and sudden and also small and 

progressive deviations in the process were detected.  

The value of the differential pressure in the intercooler was not enough to overcome the 

threshold set by the manufacturer; a small deviation in the SFOC variable was 

generated. Without this identification, they would have had to wait for the value of the 

differential pressure was above the threshold set by the manufacturer, resulting in a 

higher fouling of the intercooler and an increase of the SFOC variable. 

Many processes involved in the operation of a marine diesel engine have decay small 

and progressively in addition to suddenly, for this reason, this method has the advantage 

that is can be customized for any type of engines because it is capable of detecting any 

type of deviation (small and sudden) in the process; this can be performed in a simple 

and economical way, at the request of the shipowner, depending on the operational 

conditions of the ship. 

In future work, the effectiveness of the method using Multivariate Cusum Charts 

(MCusum) in this type of process could be studied. 
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