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Abstract

Background : Capnography has been proposed as a method for monitoring the ventilation rate

during cardiopulmonary resuscitation (CPR). A high incidence (above 70%) of capnograms

distorted by chest compression induced oscillations has been previously reported in out-of-hospital

(OOH) CPR. The aim of the study was to better characterize the chest compression artefact and to

evaluate its influence on the performance of a capnogram-based ventilation detector during OOH

CPR.

Methods: Data from the MRx monitor-defibrillator were extracted from OOH cardiac arrest

episodes. For each episode, presence of chest compression artefact was annotated in the capnogram.

Concurrent compression depth and transthoracic impedance signals were used to identify chest

compressions and to annotate ventilations, respectively. We designed a capnogram-based

ventilation detection algorithm and tested its performance with clean and distorted episodes.

Results: Data were collected from 232 episodes comprising 52 654 ventilations, with a mean (±SD)

of 227 (± 118) per episode. Overall, 42% of the capnograms were distorted. Presence of chest

compression artefact degraded algorithm performance in terms of ventilation detection, estimation

of ventilation rate, and the ability to detect hyperventilation.

Conclusion: Capnogram-based ventilation detection during CPR using our algorithm was

compromised by the presence of chest compression artefact. In particular, artefact spanning from

the plateau to the baseline strongly degraded ventilation detection, and caused a high number of

false hyperventilation alarms. Further research is needed to reduce the impact of chest compression

artefact on capnographic ventilation monitoring.
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1. Introduction1

Capnography is now considered a standard of care in advanced cardiopulmonary resuscitation2

(CPR)1–3. As emphasized in current resuscitation guidelines, advantages of capnography during3

CPR include assessment of the correct placement of the endotracheal tube4, monitoring quality of4

chest compressions5,6, early identification of restoration of spontaneous circulation (ROSC)7, and5

determination of patient prognosis3,8,9.6

Another important role of capnography during CPR is ventilation rate monitoring to prevent7

inadvertent hyperventilation8. Guidelines recommend ventilating the lungs at approximately 108

breaths per minute. However, excessive ventilation rates are common in resuscitation. In a clinical9

observational study, Aufherheide et al. reported ventilation rates of 30 breaths per minute or10

more as a norm10. Subsequent clinical studies have also confirmed the tendency to ventilate with11

such high rates11,12. One animal study revealed that similar excessive ventilation rates increased12

intrathoracic pressures and decreased coronary perfusion pressures and survival rates13. Another13

animal study by Gazmuri et al. reported no adverse hemodynamic effects during CPR after14

increasing ventilation rate and tidal volume over the recommended values, although they observed15

a decrease in end-tidal CO2 values14.16

Current guidelines recommend using capnography during CPR to monitor ventilation rate and17

avoid hyperventilation. Visual inspection of the capnogram allows tracking respiratory cycles,18

since the onset of each ventilation causes a downstroke in the capnography waveform. Automated19

measurement of ventilation rate and algorithms for hyperventilation detection using capnography20

were first explored by Edelson et al. in 201015, as an alternative to customary algorithms based21

on the transthoracic impedance recorded through defibrillation pads16.22

Quality of the recorded capnogram is essential for a reliable analysis, either visual or automated.23

However, a clean capnogram, in which the different phases of the respiratory cycle are identifiable24

(inspiratory downstroke, inspiratory baseline, expiratory upstroke, and alveolar plateau, where25

end-tidal CO2 value is measured) cannot always be observed during CPR. Sources of artefact26

include issues related to the capnography device (occlusion in the CO2 circuit, leaking) as well as27

the ongoing resuscitation efforts1,17,18. In this study, we focused on analysing the artefact induced28

on the capnogram by chest compressions during CPR. This artefact appears in the form of fast29

oscillations at different rates and with varying amplitude superimposed on the capnogram. This30



phenomenon has received little attention in the literature to date. An abstract presented at the31

2010 American Heart Association Resuscitation Science Symposium reported chest compression32

artefact presence in greater than 70% of capnograms in a sample of 210 out-of-hospital (OOH)33

cardiac arrest episodes19. To our knowledge there are no published studies that systematically34

analyse the morphology of this artefact. We hypothesized that chest compression artefact may35

impede a reliable analysis of the capnogram, compromising its application for ventilation rate36

monitoring.37

The purpose of this study was three-fold. First, we identified capnograms distorted by chest38

compression artefact in a large dataset of OOH cardiac arrest episodes in order to confirm the39

high incidence of this artefact during CPR. Second, we characterized the morphology of chest40

compression artefact. Third, we assessed the impact of chest compression artefact on the reliability41

of automated capnogram-based guidance of ventilation rate.42

2. Materials and Methods43

2.1. Data collection44

Data were extracted from a database of 691 OOH episodes collected between 2011 and45

2016 by Tualatin Valley Fire & Rescue (TVF&R), an advanced life support first response46

Emergency Medical Services (EMS) agency serving eleven incorporated cities (about 1 015 km2) in47

Oregon, USA. Episodes were collected as part of the Resuscitation Outcomes Consortium (ROC)48

Epidemiological Cardiac Arrest Registry. The data collection for the ROC Epistry was approved by49

the Oregon Health & Science University (OHSU) Institutional Review Board (ID: IRB00001736).50

No patient private data was required for this study.51

Episodes were recorded with Heartstart MRx monitor-defibrillators (Philips, USA), equipped52

with real-time CPR feedback technology (Q-CPR). Capnography was acquired using sidestream53

technology (Microstream, Oridion Systems Ltd, Israel). Ventilation was provided with a54

bag-valve-mask or an advanced airway. The choices for the latter were the endotracheal tube55

or the King LT-D (supraglottic). Defibrillator signals used in the study were the capnogram,56

the compression depth (CD) signal measured by the Q-CPR chest pad, and the transthoracic57

impedance (TI) signal acquired from defibrillation pads.58



Episodes with at least 20 min of continuous and simultaneous signals, and with a minimum of59

500 chest compressions were included in the study, which yielded a total of 301 episodes.60

2.2. Data annotation61

Signals were reviewed and annotated using a custom-made Matlab (Mathworks, USA) program.62

Intervals with unreliable raw TI signal or capnogram caused by disconnections or excessive noise63

were discarded. For each episode, capnograms were time-shifted to compensate for the delay with64

respect to CD and TI signals.65

Three biomedical engineers with experience in the analysis of OOH defibrillator signals66

participated in the annotation process. They reviewed one third of the cases jointly, and defined67

the annotation rules for identifying capnograms distorted by chest compression artefact, and for68

annotating ventilations using the TI signal. The rest of episodes were randomly split in three parts,69

each of them examined by a single reviewer. At the end of this process, the three experts joined70

again to solve by consensus undecided annotations.71

Experts annotated intervals in which capnograms were distorted by chest compression artefact,72

with the support of the CD signal. Episodes were classified as distorted if evident chest compression73

artefact appeared during more than one minute of the chest compression time. In addition, they74

annotated the location of the artefact with respect to the respiratory phase (e.g. appearing mainly75

on the expiratory phase or on the inspiratory phase).76

Ventilations were manually annotated using the low frequency component of the TI signal.77

A low-pass filter was applied to the raw TI signal to suppress fast oscillations caused by chest78

compressions and enhance slow fluctuations caused by ventilations. Figure 1 (top panel) shows the79

raw TI signal in grey with the low frequency TI component superimposed in blue. Each ventilation80

was annotated at the instant corresponding to a rise in each TI fluctuation (marked with a vertical81

dashed red line in Figure 1). The capnogram is depicted in the bottom panel to visually confirm82

the presence of ventilations. The resulting annotations were used as our gold standard to test the83

performance of the automated capnogram-based ventilation detection algorithm.84

2.3. Automated capnogram-based ventilation detection algorithm85

The algorithm used in this study processes the capnogram, and was designed following a86

finite-state-machine model. Figure 2 shows the flow chart of the algorithm (top) and the definition87



of the main parameters of the algorithm (bottom). Basically, the algorithm searches for an abrupt88

upstroke in the capnogram, tiup, which is detected when the amplitude of the capnogram exceeds89

a fixed threshold, Thamp (mmHg). Then, the algorithm searches for an abrupt downstroke, tidw,90

detected when the capnogram goes below the same threshold, Thamp. To detect a ventilation, the91

duration of the interval Dex = tidw − tiup and the duration of the interval Din = ti+1
up − tidw must92

exceed thresholds Thex and Thin, respectively. If both conditions are satisfied, the ventilation is93

annotated at the instant when the inspiratory downstroke occurs, tidw.94

To account for observed double ventilation effects (Figure 2, bottom right), the algorithm95

discards any ventilation for which the interval Din is below Thin, and searches for the next96

downstroke and upstroke until Din exceeds Thin.97

2.4. Data analysis98

Ventilation detector performance was evaluated in terms of its sensitivity (Se) and positive99

predictive value (PPV). Se was defined as the proportion of annotated ventilations detected by100

the algorithm. PPV was the proportion of detections that were indeed annotated ventilations. We101

allowed a tolerance of ±0.5 s between the detection and the annotation instant. The algorithm was102

trained with a subset of clean (non-distorted) episodes applying the criterion of maximum Se while103

assuring a PPV > 98%.104

In order to assess the influence of the artefact in the estimation of ventilation rate, we computed,105

for each episode, ventilation rate value per minute, updated every 10 s. These ventilation rate106

measurements were computed using the gold standard (annotated ventilations) and using the107

ventilations detected by our algorithm.108

We also computed hyperventilation alarms from the ventilation rate per minute measurements.109

Results were obtained for hyperventilation thresholds set at 10, 15, and 20 min−1. Then, we tested110

the ability of our algorithm to correctly detect hyperventilation. In this case, Se was defined as111

the proportion of annotated hyperventilation alarms that were given by the algorithm, and PPV112

as the proportion of hyperventilation alarms given that were indeed annotated.113

Data were reported as mean (±SD) if they passed Lilliefors normality test, and as median114

(IQR) otherwise. Distribution of Se and PPV per record, and distributions of the percent error in115

the estimation of ventilation rate were depicted with boxplots.116

Finally, the morphology of the artefact was characterized by the spectral analysis of clean and117



distorted capnograms. We computed the power spectral density (PSD) of the capnogram and118

located the frequency components associated with the artefact. We used the chest compression119

rate derived from the CD signal as reference.120

3. Results121

From the original dataset of 301 episodes, 69 were discarded (23%) due to unreliable capnogram122

or TI signals. Reasons for elimination were: permanent signal disconnection or saturation,123

capnogram below 5 mmHg along the entire episode or without variations associated to respiratory124

cycles, and failure to observe ventilation waves in the filtered TI signal. Thirty-two episodes125

out of 69 were discarded due to unreliable capnogram, 20 to unreliable TI signal, and 17 due to126

unreliability of both signals. Overall, unrealiable capnograms were found in 16.3% of the episodes127

included in the study. The remaining 232 episodes had a mean duration of 31 (±9.5) min, with a128

mean of 2301 (±1230) annotated chest compressions per episode.129

Ninety-eight episodes (42%) were annotated as distorted. We classified the artefact into three130

types: observed primarily in the expiratory plateau of the capnogram (type I), in the baseline131

(type II), and spanning from the plateau to the baseline (type III). Figure 3A shows examples of132

capnogram intervals observed during chest compressions.133

We conducted an spectral analysis to characterize the waveform nature of the chest compression134

artefact. This is illustrated in Figure 3B, which depicts an interval of corrupted capnogram (top),135

the concurrent CD signal (middle) and the PSD of the capnogram. A primary peak is clearly136

observed at 1.94 Hz, with no peaks at frequencies multiple of this fundamental frequency, i.e.137

no harmonic components. This value corresponds to the fundamental frequency of the artefact,138

fart, and matches the average compression rate in that interval (fart · 60 = 116 compressions per139

minute). This proves that the artefact is mainly sinusoidal and that it is directly caused by chest140

compressions during CPR.141

Table 1 shows the incidence of each artefact type in relation to the airway system used in each142

case. Type I artefact was annotated in 48% of the distorted episodes, type II in 21%, and type III143

in 31% of the episodes. Artefact did not appear in the episodes where bag-valve-mask was used.144

However, all types of artefact appeared in every advanced airway type, although the incidence was145

higher for supraglottic cases. Incidence of type III artefact (plateau to baseline) was more prevalent146



in endotracheal intubation, and incidence of type I (plateau) was more prevalent in supraglottic.147

A total number of 52 654 ventilations were annotated, with a mean of 227 (± 118) ventilations148

per episode. Clean episodes comprised 30 814 ventilations, and distorted episodes 21 840149

ventilations (Type I: 10 119, Type II: 5 228, and Type III: 6 493).150

The ventilation detection algorithm was trained with a subset of 30 clean episodes. Optimal151

values for algorithm parameters Thex and Thin were achieved for a Se/PPV of 99.8/99.0%.152

Figure 4A shows the performance results of the ventilation detector algorithm using the test153

subset. Boxplots depict the distribution of the Se and PPV calculated per episode. For the154

whole test subset, median (IQR) Se was 99.4 (97.8 – 100)%, and PPV was 98.6 (96.4 – 99.5)%. For155

the distorted test subset, Se was 97.4 (90.3 – 99.3)%, and PPV was 95.6 (85.9 – 98.3)%. For type III156

episodes, Se decreased to 85.2 (59.2 – 92.7)%, and PPV to 76.9 (47.0 – 90.5)%. Figure 4B shows the157

distribution of the percent error in the estimation of the ventilation rate. For the clean episodes,158

median error was -0.6 (-1.9 – 0.0)%. For the distorted test subset, error was -6.1 (-16.9 – 1.2)%. For159

type III episodes, error was -18.8 (-39.1 – 6.7)%.160

Table 2 shows the algorithm performance in the detection of hyperventilation alarms.161

Hyperventilation was accurately detected regardless of the hyperventilation threshold in the162

clean episodes. Performance decreased in the distorted group, particularly with respect to PPV.163

Detection of hyperventilation was particularly compromised in the presence of type III artefact.164

4. Discussion165

Monitoring ventilation rate is one of the recommended uses of capnography waveform during166

CPR. However, the presence of high-frequency oscillations in the capnogram during chest167

compressions may compromise the interpretation of the signal.168

Our findings demonstrated the impact of this artefact on the reliability of capnogram guided169

ventilation monitoring. Detection of ventilations was accurate for clean episodes (Se and PPV were170

above 95% for all episodes), but algorithm performance significantly decreased when artefact was171

present. For some of the cases Se and PPV were well below 80%, and errors in the measurement172

of ventilation rate were as high as 50%. This means that, with such a degree of distortion,173

reliable ventilation rate guidance would not be feasible for those patients. These poor results174

were mainly attributable to type III artefact, annotated in 31% of the distorted episodes (13% of175



all episodes). Oscillations disturbing the capnogram from the plateau to the baseline impeded the176

reliable detection of CO2 concentration changes associated to a true ventilation.177

Ventilation rates above the recommended 10 breaths per minute were common in our database,178

with a 56.4% of annotated hyperventilation alerts. Regardless the established hyperventilation179

threshold, sensitivity for alarm detection was high for clean and also for distorted cases in general.180

However, the presence of artefact caused an increase in the number of false hyperventilation alarms,181

and this was especially noticeable for type III cases. This shows the tendency of the algorithm to182

overestimate ventilation rate, as the presence of artefact caused many false ventilation detections.183

The incidence and nature of the artefact has not been studied in the literature. To our184

knowledge, only one prior study has examined the impact of chest compression artefact on the185

capnogram during OOH CPR19. In this study only published as a conference abstract, Idris186

et al. reported that 73% (154/210) of the episodes were disturbed by oscillations due to chest187

compressions. In our study, we found a lower incidence (42%) of corrupted capnograms for a188

similar number of OOH records (232 vs. 210). This difference could be partly explained by189

different annotation criteria for corrupted episodes. Nevertheless, characterization and analysis of190

potential effects of such artefact on the interpretation of the capnogram are warranted.191

We quantitatively confirmed the pure sine wave nature of the chest compression artefact, with192

a frequency matching the chest compression rate. This suggests that the artefact is directly193

caused by chest compressions during CPR. We consider that chest compressions cause incidental194

ventilations of sufficient volume to alter the CO2 concentration sensed by the capnography device,195

distorting the capnnogram. Few studies have documented low ventilation volumes incidental to196

chest compressios20,21. These volumes were lower than the anatomical dead space, and therefore197

generated limited gas exchange. Additionally, in our study artefact appeared when advanced198

airway was used, and was more predominant for supraglottic (King LT-D). However, the most199

compromising type III artefact was more pronounced with endotracheal intubation. Differences in200

the seal position and the cuff size might explain this, but more studies are necessary to interpret201

these findings.202

One of the hypothesis we will explore in further research is that automatic ventilation detection203

would improve if the artefact could be successfully removed from the capnogram. Designing filtering204

approaches for this aim will be our next step, exploring different alternatives. We will focus on the205



preservation of the capnogram waveform after filtering in order to allow the clinical interpretation206

of the signal.207

Our study has several limitations. First, almost a quarter of episodes were discarded due to208

poor signal quality. Unreliable capnogram represented the 10% of the study dataset. Recordings209

of unreliable capnograms would limit its use to determine ventilation rate. In addition, our210

gold standard for ventilation detection was derived from the TI signal, and the annotation of211

TI fluctuations caused by ventilations is not straightforward during CPR. We had to discard212

several episodes because of unreliable TI signal (noisy, disconnections) and for those included in213

the study, filtering was needed to remove the artefact due to chest compressions from the TI214

signal. Unfortunately, no other reference signal (such as airway pressure or volume) was available215

to be used as an alternative gold standard. The inability to control for tidal volume was thus a216

clear limitation of the study. Another limitation is that ventilations corresponding with capnogram217

amplitudes below the algorithm amplitude threshold (3 mmHg) could not be detected. However, in218

our data that was rarely observed. Finally, data came from a single EMS system and so results may219

not be generalizable. Further studies are needed to clarify our findings with other EMS agencies220

and monitor-defibrillators.221

5. Conclusions222

The important role of capnography waveform in ventilation rate monitoring and223

hyperventilation prevention during CPR is compromised by the high-incidence of chest compression224

artefact. Among the different locations in which it may present, artefact spanning from the225

plateau to the baseline strongly affected ventilation detection, and caused a high number of false226

hyperventilation alarms. Further research could explore filtering techniques to suppress chest227

compression artefact in order to improve ventilation monitoring for corrupted capnograms.228
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Figure Legends284

Figure 1 Example of ventilations annotated using the low frequency component285

of the TI signal (top panel, blue line). This signal was obtained286

after low pass filtering the raw TI signal (top panel, grey line). Each287

ventilation was identified at the instant corresponding to a rise in each288

TI fluctuation (vertical dashed red lines). The capnogram (bottom289

panel) is depicted with the annotations to visually confirm ventilations290

at the instants where CO2 concentration rapid decays to zero.291

Figure 2 Flow chart of the ventilation detector (top). Main parameters292

of the algorithm (bottom). Capnogram ascents and descents293

crossing the shadowed area (amplitude threshold) are depicted with294

dashed/dotted lines. Downward arrow marks the position of the295

detected ventilation.296

Figure 3 (A) Examples of chest compression artefact observed in OOH297

capnograms during chest compressions: clean capnogram; Type I298

artefact, located in the plateau; Type II, located in the baseline;299

Type III, spanning from the plateau to the baseline. (B)300

Spectral characterization of chest compression artefact in a distorted301

capnogram (top). CD signal, with average chest compression rate302

of 116 compressions per minute (middle). PSD of the distorted303

capnogram (bottom): the observed single peak corresponds to the304

fundamental frequency of the artefact, i.e. a sine wave superimposed305

to the lower frequency capnogram waveform.306

Figure 4 (A) Performance of the ventilation detector algorithm. (B)307

Distribution of the error in the estimation of ventilation rate. Results308

are provided globally and for the different subgroups. The boxes show309

the median and IQR and the whisker shows the last datum within the310

±1.5 IQR. Outliers are represented by dots.311

12



Table Legends312

Table 1 Distribution of episodes according to artefact classification and type of313

ventilation.314

Table 2 Algorithm performance (Se and PPV) in the detection of315

hyperventilation alarms; n (total) is the number of ventilation316

rate per minute measurements annotated in the test subset, and n is317

the number of annotated ventilation rate per minute measurements318

above the hyperventilation threshold.319

17



Episodes
Ventilation type

BVM ETT SGA NA Total

Total 7 149 73 3 232

Clean 7 90 35 2 134

Distorted 0 59 (39.6%)a 38 (52.1%)a 1 98 (42.2%)a

Type I 0 19 (32.2%)b 28 (73.7%)b 0 47 (47.9%)b

Type II 0 15 (25.4%)b 6 (15.8%)b 0 21 (21.4%)b

Type III 0 25 (42.4%)b 4 (10.5%)b 1 30 (30.7%)b

BVM: bag-valve-mask; ETT: endotracheal tube; SGA: supraglottic airway.
NA not available
a Referred to the total number of episodes in the category (column)
b Referred to the total number of distorted episodes in the category (column)

Table 1: Distribution of episodes according to artefact classification and type of ventilation.



Group
n

(total)
Alarms (>10 min−1) Alarms (>15 min−1) Alarms (>20 min−1)

n Se(%) PPV(%) n Se(%) PPV (%) n Se(%) PPV(%)

Total 31 760 17 901 99.1 92.6 8 966 98.1 87.2 3 567 95.1 86.8

Clean 17 413 10 511 99.7 98.0 5 710 99.5 96.8 2 502 97.7 95.1

Distorted 14 347 7 390 98.2 85.8 3 256 95.7 73.9 1 065 88.8 70.9

Type I 7 167 3 398 98.9 90.8 1 275 95.9 79.5 431 88.4 82.5

Type II 2 826 1 837 99.8 96.6 1 120 99.2 92.1 355 97.2 86.0

Type III 4 354 2 155 95.5 72.1 861 90.9 53.2 279 78.9 46.6

Table 2: Algorithm performance (Se and PPV) in the detection of hyperventilation alarms; n (total) is the number of
ventilation rate per minute measurements annotated in the test subset, and n is the number of annotated ventilation
rate per minute measurements above the hyperventilation threshold.
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