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It is known that under resonance conditions, a group of strongly interacting bosonic atoms,
trapped in a double-well potential, mimics a single particle, performing Rabi oscillations between
the wells. By implication, all atoms need to tunnel at roughly the same time, even though the Bose-
Hubbard Hamiltonian accounts only for one-atom-at-a-time transfers. We analyse the mechanism
of this collective behaviour, evaluate the Rabi frequencies in the process, and discuss the limitation
of this simple picture. In particular, it is shown that the small rapid oscillations superimposed on
the slow Rabi cycle, result from splitting the transferred cluster at the sudden onset of tunnelling,
and disappear if tunnelling is turned on gradually.
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I. INTRODUCTION

For a quantum particle, which can occupy several
quantum states with roughly the same energy, even a
small perturbation is capable of causing transitions be-
tween the states. If only a pair of states satisfies this
resonance condition, these transitions would, in general,
be in the form Rabi oscillations [1], moving the particle
periodically from one state to the other. A more interest-
ing case is the one where the resonance occurs between
many-body states of interacting particles, which corre-
spond to different spatial configurations of the system.
A direct matrix element may or may not connect a pair
of such states, say, |Ψ1〉 and |Ψ2〉. In the latter case the
system would need to reach the final state via a pathway,
passing through the states of the system, whose energies
can lie far from the resonance. The passage must be, in
some sense, rapid, since a measurement will almost al-
ways find the system either in |Ψ1〉, or in |Ψ2〉, and only
rarely detect it elsewhere.
Examples of collective behaviour can be found, for ex-
ample, in cold atom physics. In [2] the authors observed
coherent many-body Rabi oscillations in electronics tran-
sitions of interacting rubidium atoms. More relevant to
our analysis is the direct observation of correlated tun-
nelling of pairs of strongly interacting cold atoms, re-
ported in [3].

Recently developed laser techniques are capable of
trapping such atoms in quasi one-dimensional traps [4],
and the dynamics of interacting atomic systems has been
extensively studied both by solving the Schrödinger equa-
tion numerically (see, e.g. [5], [6], [7]), and by using a
simplified Bose-Hubbard model, as was done, for exam-
ple, in [3], [8], [9]. In [10], [11] and [12] experimental
and theoretical analysis of larger systems are presented,
and the contributions from higher bands are included. In
these systems, effects such as breathing are cradle modes
can be observed as a consequence of this high-bands con-
tributions, and tunnelling between wells as an effect of
the lower modes. Similar dynamics may also be ob-

served, for example, using mixtures of atoms, where dif-
ferent inter-species interaction regimes were studied [13],
or spin chains [14]. Other theoretical studies, with a large
number of particles, address the dynamics of a BEC in a
double-well using the Gross-Pitaevskii equations includ-
ing many-body interactions studying the self-trapping ef-
fect induced [15] or different regimes, from coherent oscil-
lations to their suppression when the number of bosons is
high [16]. Important experimental results have also been
obtained for BEC in double-well potentials, such as the
first realization of a single Josephson junction [17] or the
more recent [18] where the dynamical control of corre-
lated tunnelling processes of strongly interacting parti-
cles is presented.
The tunnelling frequencies for a symmetric trap were first
evaluated in [19], where the authors relied on the time in-
dependent perturbation theory of [20], in order to obtain
energy splitting between the resonant states. In their fol-
low up paper [21], the authors of [19] studied time evo-
lution of the average difference of the wells’ populations,
δn(t), for various initial conditions, and analysed the fre-
quency spectrum of quantum fluctuations, superimposed
on the Rabi cycle.
However, this is not the whole story, and certain aspects
of the collective tunnelling phenomenon require a further
discussion. In particular, in the Rabi oscillations one
would find all the transferred atoms in the same well,
at all times. This suggests that the atoms must tun-
nel together, almost instantaneously, or at least during a
time much shorter than the Rabi period [22]. Neither the
analysis of [19], [21], nor the form of the Bose-Hubbard
Hamiltonian, which contains only single atom transfer
terms, give an immediate clue as to how this may be
possible. A study of the mechanism of this rapid collec-
tive transfer, and identification of the relevant time scales
is the first of our aims.
Furthermore, the picture in which a cluster of trans-
ferred atoms behaves as a single particle, performing
Rabi oscillations, is only approximate, and deserves fur-
ther attention. The mean populations difference [19],
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[21], 〈δn(t)〉 =
∑N
n=0[p(n, t)− (N −n)(1− p(n, t)], where

p(n, t) are the probabilities for finding n out of N bosons
in the right well at a time t, is a rather crude averaged
quantity, and may not be best suited for such an anal-
ysis. Quantum fluctuations, evident in the 〈δn(t)〉 [21],
come from the directly measurable individual probabil-
ities pn(t). These, in turn, are absolute squares of the
sums of the probability amplitudes, corresponding to ele-
mentary processes, such as transfer of a single atom from
one well to the other. Identification of interfering scenar-
ios, responsible for the additional oscillatory patterns,
specific to many body Rabi oscillations, is the second
main subject of this paper.
Fortunately, with the tunnelling matrix element small,
and the Rabi period large, the required analysis can be
carried out already in the first non-vanishing order of the
time dependent perturbation theory. With its help, we
will show that the largest contribution to the probability
of the resonance transfer of n atoms will come from a
process, in which all n bosons ”jump” together, almost
instantly if compared to the Rabi period. We will also
demonstrate that the additional oscillations result from
the processes, in which one or more atoms are split from
the tunnelling cluster. This breakup of the cluster can
be related to a sudden onset of tunnelling at the start of
the experiment. Our prediction that the oscillations will
be quenched if tunnelling is turned on slowly, (compared
to the characteristic ”jump time”), can be subjected to
experimental verification.
The rest of the paper is organised as follows. In Sec-
tion II we formulate many-body resonance conditions for
atoms in an asymmetric trap. In Sec. III we use time-
dependent perturbation theory to analyse a rapid trans-
fer of a group of atoms along an indirect pathway, con-
necting the resonance states, and obtain expressions for
the Rabi frequencies. In Sec. IV we relate additional
oscillatory patterns, seen in the Rabi probabilities, to
sudden switching of the tunnelling. In Sec. V we briefly
consider a detuned regime, and Section VI contains our
conclusions. A further detailed discussion of the interfer-
ence mechanism of the transfer can be found in Appendix
A. Our findings are tested in the Appendix B on some of
the exactly solvable cases.

II. TRAPPED ATOMS IN THE
BOSE-HUBBARD APPROXIMATION

We consider N strongly interacting identical bosons,
contained in an asymmetric double-well potential, as
shown in Fig.1. An experimental realisation of such a
system can be achieved, e.g., using 87Rb atoms (see, for
example [17]). The energy of the system is modelled by
the Bose-Hubbard Hamiltonian (we use ~ = 1)

Ĥ(t) = U(c+L)2(cL)2/2 + U(c+R)2(cR)2/2 + (1)

βc+RcR + Ω(c+LcR + c+RcL),

where c+L(cL) and c+R(cR) create (annihilate) a boson in
the left (right) state in Fig. 1.

In the first two terms in Eq.(1), we take U to describe
short range interactions between the bosons in the same
well, which is neglected for atoms placed on different sides
of the barrier, β is the difference between one-particle en-
ergies on the right and on the left, and Ω is the tunnelling
amplitude, which allows for a transfer of a particle be-
tween the wells. Note that both U and β can, in principle,
be positive or negative, although in what follows U, β > 0
will be considered.
It is convenient to describe the system by the number
of bosons populating the right well, 0 ≤ n ≤ N . If no
tunnelling is possible, Ω = 0, the eigenstates of Ĥ

|n〉 = (c+L)N−n(c+R)n|0〉/[n!(N − n)!]1/2 (2)

correspond to the energies

E(n) = U(n− ν)2 + E0(N, β), n = 0, 1, ..., N, (3)

where

ν ≡ (N − β/U)/2, and E0 ≡ U [N(N − 1)/2− ν2].(4)

The dependence of E(n) on n is quadratic and, since
E(n) = E(2ν − n), whenever the minimum of the
parabola, at n = ν is an integer, or half integer,

(N − β/U) = K, K = 1, 2, ... (5)

there are several pairs of doubly degenerate states. Fig. 2
shows the energy levels for an asymmetric potential with
N = 8 and β/U = 1, so the minimum energy corresponds
to ν = 3.5. We have degeneracy between several pairs of
states, for instance, between |1〉 and |6〉, that share the
same energy, E(1) = E(6). In general, for ν ≤ N/2 the
number of degenerate pairs is given by that of the integers
in the interval [0, ν), and for ν > N/2, by the number of
integers inside (ν/2, N ]. We note that if ν happens to be
an integer, there is an unpaired non-degenerate ground
state |n = ν〉, and E(ν) = E0.
Next we switch the tunnelling on, in such a manner that
the tunnelling matrix element in Eq.(1) will remain small,
compared to the interatomic interaction Ω/U << 1. The
perturbation will lift the degeneracy between the levels
|n〉 and |2ν − n〉, and introduce pairs of new eigenstates

|n±〉 = [|n〉 ± |2ν − n〉]/
√

2 (6)

with the energies

E(n±) ≡ E(n)± ωn = E(2ν − n)± ωn, (7)

with the splitting 2ωn small, compared to other energy
differences shown in Fig. 2.
If as a result, the atoms, initially prepared in the state
|Ψ(0)〉 = |n〉 with n atoms in the right well, will perform
collective Rabi oscillations between the states |n〉 and
|2ν − n〉, we expect their state at a time t to be given by

|Ψ(t)〉 ≈ [cos(ωnt)|n〉+ (8)

α sin(ωnt)|2ν − n〉] exp(−iE(n)t), |α| = 1.
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For a symmetric setup, the frequencies ωn were obtained
in [19] within time-independent perturbation theory, us-
ing a rather complicated procedure [20] for diagonalising
a tridiagonal matrix with degenerate eigenvalues. The
authors of [19] correctly note that the shortest way to
reach the state |N −n〉 from |n〉 is by ”moving one boson
per step”. There is, however, room for a further clarifica-
tion. In the approximation (8), the atoms will never be
observed in any other state |m〉, m 6= n, 2ν−n (or rather
the probability of such an observation will be negligibly
small). For example, in the case shown in Fig. 2, for
|Ψ(0)〉 = |1〉, counting atoms in the right well will almost
always give a result either 1, or 6. This suggests, and we
will show below that this suggestion is correct, that the 5
atoms making the difference, will need to tunnel, in some
sense, all at the same time. Next we demonstrate this by
using time-dependent perturbation theory, and obtain,
while we are at it, collective tunnelling frequencies for an
asymmetric trap (β 6= 0).
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FIG. 1. An asymmetric double-well potential supports two
single-particle levels, with an energy difference β. Tunnelling
across the barrier is described by the amplitude Ω in Eq.(1).

III. PERTURBATION THEORY AND THE
COLLECTIVE FREQUENCIES

Writing the wave function of the system as

|Ψ(t)〉 =

N∑
n=0

bn(t)|n〉, (9)

and introducing dimensionless time and energy,

τ ≡ Ut, En ≡ E(n)/U,

we obtain the equations for the coefficients bn(τ)

i∂τ bn =

N∑
m=0

(Enδnm + γn−1δn,m+1 + γnδn,m−1)bm (10)

where

γn ≡ U−1Ω[(n+ 1)(N − n)]1/2. (11)
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FIG. 2. Energy levels for strongly interacting bosonic atoms,
with N = 8 and β/U = 1, trapped in an asymmetric potential
well. Degeneracy between the states with n = 1 and n = 6
atoms in the right well is lifted by tunnelling, which causes
periodic transfer of M = 5 atoms between the wells. No
matrix element connects the levels directly, and the transition
has to follow the pathway shown by the arrows. In the strong
coupling limit, all five atoms tend to tunnel together.

A probability to find n atoms in the right well is, there-
fore, given by

p(n) = |bn(t)|2. (12)

Equations (10) can be solved analytically only for N ≤ 3
in general, and for N ≤ 7 if the potential is symmetric, as
discussed in Appendix B. In order to evaluate the Rabi
frequencies for an arbitrary N , we note that since no ma-
trix element connects the states |n〉 and |2ν−n〉 directly,
and the latter can only be reached from the former via
2(ν − n) intermediate steps, shown in Fig. 2.
For simplicity, we first consider the symmetric potential,
β = 0, assume, for the moment, that the γs depend on
time, let the system start with n bosons in the right well,
and employ the time-dependent perturbation theory. To
the leading approximation, the transition amplitude be-
tween the states |n〉 and |N−n〉 is given by (M ≡ N−2n,
n ≤ N/2)

An,N−n(τ) ≡ 〈N − n| exp[−i
∫ τ

0

H(τ ′)dτ ′]|n〉 = (13)

(−i)M
∫ τ

0

dτM ...

∫ τ3

0

dτ2

∫ τ2

0

dτ1 ×

exp[−iEN−n(τ − τM )]γN−n−1(τM )

× exp[−iEN−n−1(τM − τM−1)]...

×γn+1(τ2) exp[−iEn+1(τ2 − τ1)]

×γn(τ1) exp(−iEnτ1) +O(ΩM+1/UM+1).
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This expression has the standard interpretation [23]: the
first of the N − 2n atoms jumps into the right well at
t1, the second at t2, and so on. The transition ampli-
tude is then found by summing over all tj , leaving the
precise moments of jumps indeterminate. Perturbative
treatment will limit us to times much shorter that the
Rabi period, yet as we will see below, it captures the es-
sential features of the collective transfer mechanism.
Next we demonstrate that for Ω/U << 1, and Ω(t) slowly
varying compared to the inverse of the separations be-
tween the system’s levels in Fig.2, the sum is dominated
by the process in which all N−2n atoms jump roughly at
the same time. Returning to the original unscaled time
variable, t, we have

An,N−n(T ) = (−i)M exp[−iE(N − n)T ] (14)

×
∫ T

0

dtMWN−n−1(tM ) exp[i∆M tM ]...

×
∫ t3

0

dt2Wn+1(t2) exp[i∆2t2]

×
∫ t2

0

dt1Wn(t1) exp(i∆1t1) +O(ΩM+1/UM+1)

where ∆m is the energy, separating two adjacent states,

∆m ≡ E(n+m)− E(n+m− 1) (15)

= U [1− 2(n+m)−N ],

and Wn(t) ≡ γnU = Ω(t)[(n+ 1)(N −n)]1/2 is the scaled
tunnelling amplitude. Thus, we have to evaluate M oscil-
latory integrals. Oscillations of exp(i∆nt) become more
rapid as U increases, so that, for a large U/Ω, the main
contributions to the integrals will come from the end-
points (for details see Appendix A). For example, we may
write ∫ t2

0

dt1Wn(t1) exp(i∆1t1) = (16)

[Wn(t2) exp(i∆1t2)−Wn(0)]/i∆1 +O(Ω/U).

Here the first term corresponds to the first particle jump-
ing at the same time as the second, t1 = t2. The second
term clearly corresponds to the first jump occurring at
t1 = 0, i.e., immediately after the tunnelling is switched
on. Jumps at 0 < t1 < t2 are suppressed, for large
U/Ω, due to destructive interference. Continuing in the
same vein, we obtain a total of 2M terms ranging from
all particles jumping at t = 0 to all particles jumping
at the same time. In the case of an exact resonance,∑M
m=1 ∆m = 0, the contribution from all fully coordi-

nated jumps between t = 0 and t = T is readily seen to
be

i(−1)M
∫ T

0

dt

M−1∏
j=0

Wn+j(t)× (17)

[∆1(∆1 + ∆2)....(∆1 + ∆2 + ...+ ∆M−1)]−1.

Note that since the amplitude results from the interfer-
ence between all t’s, the exact moment in which the col-
lective transfer takes place remains indeterminate, much
like the number of the slit chosen by an electron in
Young’s double-slit experiment. Returning to the case
of constant Ω, we, therefore, obtain

An,N−n(T ) = i(−1)MT
ΩM

UM−1
exp[−iE(N − n)T ]× (18)

(n+ 1)...(N − n)

(En+1 − En)....(EN−n−1 − En)
+R,

where the remainder R contains the terms corresponding
to, at least, one atom jumping immediately after tun-
nelling is turned on. In the next Section we will demon-
strate that R will vanish if tunnelling is switched on suf-
ficiently slowly.
For a sufficiently small T , Eq.(8) predicts

An,N−n(T ) = αωnT. (19)

Comparing Eq.(19) with Eq.(18), and evaluating the
products, yields

ωn =
ΩN−2n

UN−2n−1
(N − n)!

n![(N − 2n− 1)!]2
, α = (−1)ni, (20)

which agrees with the result obtained by a different
method in [19]. A calculation for an asymmetric well
can be done in exactly the same way, and here we will
only quote the final result. As discussed in Sec. II,
the resonances between many-body states occur provided
ν = 1/2, 1, ..., N/2. The Rabi frequency for a process
in which the atoms start in a state |n〉, and 2(ν − n),
[0 ≤ n ≤ ν−1 if ν is an integer, and 0 ≤ n ≤ ν−1/2, if ν
is odd] where the atoms are transferred simultaneously,
is given by [ν ≡ (N − β/U)/2]

ωn =
Ω2(ν−n)

U2(ν−n−1/2)[2(ν − n)− 1]!2

√
(N − n)!(2ν − n)!

n!(N + n− 2ν)!
. (21)

For an asymmetric well, the leading probabilities p(n),
to find n atoms in the right well, after switching the tun-
nelling on at t = 0, are shown in Fig.3, together with the
Rabi oscillations at the frequency (21). Superimposed
upon the Rabi oscillations, there are much faster oscil-
lations (see inset), which will be discussed in the next
Section.

IV. SUDDEN VS. ADIABATIC SWITCHING ON
OF THE TUNNELLING

These small rapid oscillations are much more pro-
nounced in a system containing just N = 2 atoms, as
shown in Fig. 4a. We have already used perturbation
theory to obtain slow Rabi frequencies ωn, and next we
will try to use it in order to explore the origin of these
additional oscillatory patterns.
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FIG. 3. The leading probabilities p(2) and p(5), for collective
transfer of M = 3 out of N = 8 atoms, and β/U = 1 (c.f.
Fig.2), and Ω/U = 0.1, obtained by numerical integration of
Eqs.(10), Also shown by a dashed line is the Rabi approxima-
tion p(2) = sin2(ω2t), with ω2 given by Eq.(21). Remaining
probabilities p(m), m 6= 2, 5 are too small to be shown on the
same scale. The inset gives a more detailed view of the rapid
oscillations superimposed on the Rabi probabilities.

To the leading order in Ω, the amplitude to find one atom
in each well is given by Eq.(32), and we have (from (3),
E(0) = U , and E(1) = 0)

A0,1(T ) ≈ (22)

−i
√

2Ω

∫ T

0

dt exp[−iE(1)(T − t)] exp[−iE(0)t]

=
2
√

2Ω

U
exp(−iUT/2) sin(iUT/2),

so that the corresponding probability rapidly oscillates,

p(1) ≈ 8Ω2/U2 sin2(iUT/2). (23)

As discussed in Appendix A, by turning the tunnelling
on gradually, we can avoid splitting the 2-atom cluster at
t = 0, and quench the oscillations. This can be checked
directly, e.g., by choosing

Ω(t) = Ω[1− exp(−Γt)], (24)

where 1/Γ is the characteristic switching time, over which
the tunnelling matrix element is brought to its stationary
value. Evaluation of the integral in Eq.(22) gives

A0,1(T ) ≈
√

2Ω{exp(−iUT )/U − (25)

exp[−i(U − iΓ)T ]/(U − iΓ)− 1/U + 1/(U − iΓ)}.

For Γ/U << 1, and ΓT >> 1, this reduces to

A0,1(T ) ≈
√

2Ω/U{exp(−iUT ), and p(1) ≈ 2Ω2/U2. (26)

Oscillations of p(1) disappear, and its largest value is
reduced by a factor of four. The rapid oscillations also
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FIG. 4. a) All three probabilities, p(0), p(1) and p(2), for a
coherent transfer of M = 2 out of N = 2 atoms, and Ω/U =
0.1, β/U = 0, with the tunnelling switched on suddenly at
t = 0. Also shown by a dashed line is the Rabi approximation
p(0) = sin2(ω0t), with ω0 given by Eq.(20). b) Same as a) but
with the tunnelling switched on gradually, with Γ in Eq.(24)
chosen so that γ/U = 0.1

disappear from the amplitude to find 2 atoms in the right
well. This, as described in Appendix A, can be written
as a sum of three terms,

A0,2(T ) ≈ A(I)
0,2(T ) +A

(II)
0,2 (T ) +A

(III)
0,2 (T ) = (27)

i
2Ω2

U
exp(−iUT )T − 2Ω2

U2
+

2Ω2

U2
exp(−iUT ),

related to the three scenarios shown in Fig.5. The first
term corresponds to both atoms being transferred to-
gether at some unspecified time between t = 0 and t = T .
The second term comes from the process in which one of
the atoms jumps immediately, at t = 0, while the second
one is transferred later. The third term is the amplitude
for both atoms jumping together at t = 0 (see Appendix
A). With tunnelling switched on gradually from zero we,
therefore, have

A0,1(T ) ≈ A(I)
0,2(T ), and p(1) ≈ 4Ω4T 2/U2. (28)

What has been said so far should apply to times much
shorter than the large Rabi period, TRabi = 2π/ω0,
1/U << T << TRabi, and we still need to check that this
analysis remains correct for much longer times, shown
in Fig. 4. We note first that the exact amplitude [cf.
Eq.(47)] has a form, similar to A0,2 in Eq.(22)

A0,1(T ) = −2
√

2Ω

κU
exp(−iUT/2) sin(iκUT/2), (29)
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FIG. 5. Three ways to transfer M = 2 out of N = 2 atoms
from the left to the right well. (I) both atoms are transferred
at the same time t > 0; (II) the first atom jumps at t = 0,
and the remaining one is transferred together at some t′, (III)
all atoms are transferred at t = 0, when the tunnelling is
switched on, The second and third processes are quenched if
the tunnelling matrix element Ω(t) is switched on slowly from
zero.

where κ =
√

1 + 16Ω2/U2. The amplitude remains
small, ∼ Ω, at all times, since the system never stays
in the one-atom-in-each-well configuration for long. We
can, therefore, expect that, in the slow switching-on
regime, the probability p(1) would reduce to

p(1) =
2Ω2

√
U2 + 16Ω2

, (30)

and the oscillations will be eliminated also from p(0)
and p(2), which depend on p(1), through the condition
p(0)+p(1)+p(2) = 1. The ultimate proof consists in solv-
ing numerically Eqs.(45) with an Ω(t) given in Eq.(24).
The results are shown in Fig.4b. The Rabi oscillations,
delayed until Ω reaches its final magnitude, lack the rapid
oscillations seen in Fig. 4a, while p(1) does indeed have
a constant value given by (30). This approach can be
extended, with similar results, to more than two atoms.
Before giving our conclusions, we briefly discuss detuned
Rabi oscillations.

V. DETUNED RABI OSCILLATIONS

At the exact resonance, E(n) = E(2ν−n) Rabi oscilla-
tions between the corresponding states |n〉 and |2ν − n〉,
ν = (N−β/U)/2, can be described by an effective Hamil-
tonian, acting in a reduced two-dimensional Hilbert
space, Ĥeff = ωnσx, with σx denoting the Pauli matrix.
In a slightly asymmetric well, with β replaced by β+δβ,

the two levels are detuned by ∆E , |∆E| = |2δβ(n−ν)| and
the effective Hamiltonian acquires an additional term,
proportional to σz, Ĥ

eff = ωnσx + ∆Eσz/2. Here, as in

the general case, the probabilities are given by the formu-
lae, known for detuned Rabi oscillations. In particular,
starting with n atoms in the right well we should have

P (2ν − n) = 1− P (n) ≈ (31)

ω2
n

ω2
n + δβ2(ν − n)2

sin2
[√

ω2
n + δβ2(ν − n)2t

]
,

P (m) << 1, for m 6= n, 2ν − n

where ν and ωn are given by Eqs.(3) and (21), respec-
tively. Detuned oscillations forN = 5, n = 0, in a slightly
perturbed symmetric potential are shown in Fig. 6.
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0.6

0.8

1

0 0.25 0.5 0.75
pr

ob
ab

ili
tie

s

!'
0
t /2"

p(0)

p(5)
p(1)x10

p(4)x10

FIG. 6. Four leading probabilities, obtained by numerical
integration of Eqs.(10) [p(1) an p(4), (dots) are magnified
for better viewing], for coherent transfer of all M = N = 5
atoms in a slightly asymmetric double-well, β/U = 0, δβ/U =
4 ∗ 10−6, and Ω/U = 0.1. The frequency of the detuned Rabi

oscillations (dashed), ω′ =
√
ω2
n + δβ2(ν − n)2 is very close

to ω0.

VI. CONCLUSIONS AND DISCUSSION

In summary, we show that a system of strongly in-
teracting bosonic atoms in a not necessarily symmetric
double-well potential is capable of performing collective
Rabi oscillations of a frequency ωn given by Eq.(21). This
will happen provided the resonance condition (5) is sat-
isfied for the many body states containing n and n+M
atoms in one of the wells. The frequencies of the Rabi
oscillations are easily predicted with the help of time-
dependent perturbation theory, which recovers the result
obtained in [19] for the symmetric case. The physical
picture is the one in which all M atoms are transferred
together, as a single cluster, from one well to another,
during a short period of time δt ∼ U−1, while the precise
moment of the transfer remains indeterminate, in accor-
dance with the uncertainty principle.
This is achieved through destructive interference between
other scenarios. Compared to the observation time, typ-
ically of the order of the large Rabi period, the rapid
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transfer appears to be almost instantaneous. Accord-
ingly, an observation made in either well will almost cer-
tainly find there either n, or n+M atoms, with all other
counts occurring only rarely. While it is difficult to probe
directly the duration of the collective transfer, a less di-
rect proof of this transfer mechanism is available. While
the behaviour of the group of M atoms is broadly sim-
ilar to that of a single particle, the composite nature of
the group can be probed if tunnelling is switched on sud-
denly. If so, the immediate transfer of individual atoms,
or smaller groups of atoms, will result in a rapid oscil-
latory pattern, superimposed on the much slower Rabi
cycle. An analysis of the transition amplitude in Ap-
pendix A, as well as numerical results shown in Fig.4,
show that these oscillations disappear, if tunnelling is
turned on slowly, compared to δt, and no splitting of
the transferred group of atoms occurs at the start of the
evolution. For example, the one-atom-in-each well prob-
ability p(1), shown in Fig. 4, ceases to oscillate, and
assumes a constant value in the adiabatic limit. This jus-
tifies the approximation of the integral in Eq.(33), and of
all other oscillatory integrals in Appendix A, by a sum of
end point contributions, and leaves the transition ampli-
tude dominated by the apparently simultaneous transfer
of all atoms. We note that the spectrum of these rapid
oscillations typically contains combinations of all internal
frequencies of the system, and does not lend itself to a
simple analysis, except in the case M = N = 2, discussed
in Sec. IV.
Finally, we expect the present theory, which treats col-

lective tunnelling beyond the single-cluster picture, to
find applications in experimental studies of such subtle
aspects of the phenomenon, as quantum fluctuations in
the observed averages, or the system’s response to tem-
poral variations of its parameters.
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VII. APPENDIX A. OSCILLATORY
INTEGRALS AND THE TRANSITION

AMPLITUDE

To illustrate the use of oscillatory integrals, discussed
in Sec. III, we first consider a transition between states
|1〉 and |2〉, with the energies E1 and E2, caused by a

time-dependent perturbation Ŵ (t) = W (t)[|2〉〈1|+ h.c.].
If the system is in |1〉 at t = 0, the amplitude for finding

it in |2〉 at t = T , to the leading order in Ŵ (t), is given

by

A = −i
∫ T

0

exp[−iE2(T − t)]W (t) exp(−iE1t)dt (32)

≡ −iT exp(−iE2T )

∫ 1

0

W (τ) exp[iT∆τ ]W (t)]dτ,

where τ ≡ t∆. If the observation time is large, T∆ >> 1,
and W (t) varies slowly, compared to δt ∼ 1/∆ = 1/|E2−
E1|, the main contributions to the integral comes from
the incomplete oscillations at the endpoints, i.e., from
the regions around 0 and T , of a width ∼ δt.

A ≈ −∆−1[W (T ) exp(−E1T )W (0) exp(−iE2T )]. (33)

Now the amplitude A has lost all the information about
the overall behaviour of W (t), and depends only on its
initial value at t = 0, and its current value at t = T . The
short time it takes for the system to ”jump” is, clearly ∼
δt. Moreover, if W (t) is gradually switched on from zero,
the likelihood of finding the system in |2〉, will depend
only on the perturbation’s current value W (T ).

A. Even number of atoms

Next in complexity is the case in which two atoms are
transferred via a third state. For simplicity, we consider
a symmetric well, β = 0, and start transferring an even
number of atoms M = N = 2K, so that the minimum of
the parabola in Fig. 2 is at an integer value of n. The
transfer takes two steps, and the corresponding second-
order amplitude is given by

A ≈ (−i)2 exp(−iE3T )

∫ T

0

dt2

∫ t2

0

dt1 × (34)

exp(i∆2t2)W2(t2) exp(i∆1t1)W1(t1),

where, as before, ∆i = Ei+1−Ei, the resonance condition
reads E1 = E3, and the ”jump time” is δt ∼ 1/(E2−E1).
The diagram in Fig.7 helps to visualise the structure of
the double integral in Eq.(34). Every integral, containing
an exponential exp(iΦt), splits into contributions from its
endpoints. An exception is the second integral in the left
branch, where the phase Φ = ∆1 + ∆2 = 0 vanishes, and
the integration has to be carried out over the whole in-
terval 0 ≤ t2 ≤ T . This process, in which both atoms are
transferred together at an unspecified moment t2, con-
tributes to the amplitude in Eq.(34) an amount

A(I) ≈ i∆−11 exp(−iE3T )

∫ T

0

dt2W2(t2)W1(t1). (35)

There is also a process, in which the first atom jumps at
t = 0, and is followed by the second one at t = T Its
contribution is

A(II) ≈ −∆−21 exp(−iE2T )W2(T )W1(0). (36)

(Note that the phase is E2t, since the system continues
in the state E2, until the second jump at t = T ). Finally,
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it is possible for both atoms to jump at t = 0, and we
have

A(III) ≈ ∆−21 exp(−iE3T )W2(0)W1(0), (37)

so that A = A(I) +A(II) +A(III). We note that if W1(t)
is switched on from zero, slowly compared to the jump
time δt, the last two terms vanish, and the amplitude
is fully determined by collective transfer of two atoms,
A = A(I) at an unspecified time t2. The scheme in Fig.
7 is easily extended to collective transfer of more than
two atoms, M > 2 provided N remains even. In general,
such an amplitude is seen to be dominated by nearly in-
stantaneous transfer of M -atom cluster, if Wi(t) varies
slowly, compared to δt = 1/min{∆m}. With the obser-
vation times typically of order of the large Rabi period
TRabi ∼W−M , the pictures should hold in most practical
cases.

dt1 e
i 1t1 W10

t2 (t1)...

W1(t2 )e
i 1t2

i 1

dt2W10

T
(t2 )W2(t2 )
i 1

W1(0)W2(0)
(i)2 1 2

W1(0)
i 1

dt2 e
i 2t2 W20

T
(t2 )...

W1(0)W2(T)e
i 2T

(i)2 1 2

FIG. 7. A diagram illustrating evaluation of the double inte-
gral in Eq. (34). Every integral, containing a rapidly oscillat-
ing exponential exp(iΦt), is split into the contributions from
its lower and upper limits. This does not, however, happen
in the last step of the left branch, where Φ = ∆1 + ∆2 = 0,
and the integration is over 0 ≤ t3 ≤ T .

B. Odd number of atoms

Although Eq.(13) is valid for any N , the situation for
M = 2K + 1, K = 1, 2, ..., is slightly different, since
now the two lowest states in Fig. 2, through which the
system has to pass, are also in resonance. Thus, we have
an integral

A = (−i)3 exp(−iE4T )

∫ T

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 × (38)

exp(i∆3t3)W3(t3) exp(i∆2t2)W2(t2) exp(i∆1t1)W1(t1),

where ∆2 = 0, and ∆1 + ∆3 = 0. Four possible pro-
cesses, which contribute to the amplitude (38) are shown
in Fig.9. The left branch on the diagram in Fig.7 corre-
sponds, as before, to all atoms jumping at the same, yet

0

0,002

0,004

0,006

0,008

0,01

0 0,1 0,2 0,3 0,4 0,5

!T

N=2, 
M=2
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n 
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itu

de

FIG. 8. Transmission of M = 2 out of N = 2 atoms. The
exact (solid), and the second order (dots) amplitudes, given
by Eqs.(48) and (34), respectively, coincide to graphical ac-

curacy. Also shown by dashed lines is A(I) in Eq.(35). As
in Eqs.(45), we use E1 = E3 = 0, E2 = −U ,constant values
W1 = W2 =

√
2Ω, and Ω/U = 0.01.

unspecified, time, for which we have,

A(I) = −i exp(−iE4T )∆−21 × (39)∫ T

0

W1(t3)W2(t3)W3(t3)dt3.

The process in which the first two atoms jump at t = 0,
and the third at t = T , contributes

A(II) = i exp(−iE3T )∆−21 ∆−13 × (40)

W1(0)W2(0)W3(T ),

while all three atoms jumping at t = 0 add

A(III) = −i exp(−iE4T )∆−21 ∆−13 × (41)

W1(0)W2(0)W3(0).

Finally, it is possible for the first atom to jump at t = 0,
for the second one to jump at some 0 ≤ t2 ≤ T , and for
the third one to complete the transition at t = T . The
amplitude for this is

A(IV ) = −i exp(−iE4T )∆−11 ∆−13 × (42)

W1(0)W3(T ) exp(i∆3T )

∫ T

0

W2(t2)dt2.

The amplitude for the fifth process in Fig.9 vanishes,

since it involves
∫ 0

0
W (t2)dt2 = 0, and the full amplitude

is the sum of four terms A = A(I)+A(II)+A(III)+A(IV ).
Typically, all Wi are of the same order of magnitude,
W1 ∼ W2 ∼ W3 ∼ W , and in the strong interaction
limit, Wδt << 1, the second and the third terms, which
contain an extra factor of ∆−13 , can be omitted. For all

Wi chosen to be constant, both A(I) and A(IV ) grow lin-
early with time,

A(I) ∼ T, A(IV ) ∼ T exp(i∆3T ), (43)
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as shown in the inset of Fig.10. However, A(IV ) rapidly
oscillates, compared to the large Rabi period, and can
be omitted, when the Rabi frequency is calculated from
the rate of change of A. Although not immediately seen
from Eq.(42), this becomes clear from the graphs in the
main panel of Fig. 10. The oscillations do not increase
proportional to time, and the linear growth of the ampli-
tude is determined, as one would expect, only by collec-
tive transfer of all three atoms. As before, switching tun-
nelling on slowly from zero, helps avoiding the splitting of
the tunnelling cluster, and eliminates A(II), A(III), and
A(IV ), all proportional to W1(0). The diagram in Fig.9
can be extended to the transfer of more than three atoms,
by adding integrations and branches, as appropriate. In
general, the amplitude would contain the leading term,
describing nearly simultaneous transfer of all M atoms,
as well as the additional sub-amplitudes, if the cluster is
split at t = 0 by sudden onset of tunnelling.

dt1 e
i!1t1 W10

t2" (t1)... W1(t2 )e
i!1t2

i!1

W1(t3)W2(t3)e
i!1t3

(i!1 )
2

dt2W20

t3! (t2 )...

dt3 e
i!3t3 W30

T
" (t3)...

!
W1(0)W2(0)
(i"1 )

2

!
W1(0)
i"1

!"#$% !"##$% !"###$% !"#&$%

FIG. 9. Same as Fig. 7, except for the triple integral in
Eq.(38). The phase of the integrand vanishes in the last step
of the left branch, due to the resonance condition ∆1+∆3 = 0,
and in the second step of the right branch, since ∆2 = 0. In
the right branch, the contribution from t3 = 0 vanishes, as
marked by a cross.

VIII. APPENDIX B. EXACTLY SOLVABLE
CASES

To write down a formal analytic solution to Eqs.(10),
we need to diagonalise the Hamiltonian matrix Hmn ≡
〈m|Ĥ|n〉, m,n = 0, 1, ..., N . Since algebraic equations
have analytical solutions up to the fourth order, this can
be done for no more than N = 3 atoms, in the case of a
general asymmetric well.
For a symmetric well, β = 0, a solution can be found
for up to N = 6 atoms. Additional symmetry of Hmn,
Hmn = HN−m,N−n requires that its eigenvectors an ≡

-8 10-4

-6 10-4

-4 10-4

-2 10-4

0

0 1 2 3 4 5

-1 10-4

-5 10-5

0

5 10-5

1 10-4
0 0.1 0.2 0.3 0.4 0.5

B
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sit
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!T
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M=3

FIG. 10. Transmission of M = 3 out of N = 3 atoms. Shown
are the exact amplitude in Eq.(55) (solid) and A(I) in Eq.(39)
(dashed). In the inset, he exact (solid) , and the second or-
der amplitude in Eq.(38) (dashed) are shown to coincide to
graphical accuracy. As in Eqs.(51), we use E1 = E4 = 0,
E2 = E3 = −2U , constant values W1 = W3 =

√
3Ω, and

W2 = 2Ω, and Ω/U = 0.01.

(an0 , a
n
1 , ..., a

n
N ) have a definite parity,

anm = αanN−m, α = ±1. (44)

This, in turn, allows us to reduce the size of the matrix
we need to diagonalise in order to obtain the eigenvalues
of Hmn, and an analytical solution can, in principle, be
obtained for N ≤ 7. Below we analyse the N = 2 and
N = 3 cases, assuming β = 0.

A. The two-particle case (N = 2)

For N = 2, we write An,N−n(t) = exp(−iUt)bn(t),
where bn(t) satisfy

i∂tb0 =
√

2Ωb1 (45)

i∂tb1 =
√

2Ωb0 − Ub1 +
√

2Ωb2

i∂tb2 =
√

2Ωb1

with the initial condition bi(t = 0) = δi0, i = 0, 1, 2.
This is equivalent to a second order equation for b1

∂ttb1 − iU∂tb1 + 4Ω2b1 = 0 (46)

with the initial condition b1(0) = 0, ∂tb1(0) = −
√

2iΩ.
The corresponding solution is

b1(t) =
−
√

2Ω

ε1 − ε2
[exp(iε1t)− exp(iε2t)] (47)
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where. ε1,2 = U/2±
√
U2/4 + 4Ω2. For two other coeffi-

cients we then have

b2(t) = −
√

2iΩ

∫ t

0

b1(s)ds =
2Ω2

(ε1 − ε2)
× (48)

[exp(iε1t)/ε1 − exp(iε2t)/ε2] +
2Ω2

ε1ε2

and

b0(t) = 1 + b2(t).

Returning to the strong interaction case, Ω/U << 1, we
note then that

ε1 − ε2 ≈ ε1 ≈ U, ε2 ≈ −4Ω2/U, ε1ε2 ≈ −4Ω2. (49)

With this we have

b0 = exp(−iω0t) cos(ω0t), (50)

b2 = −i exp(−iω0t) sin(ω0t),

ω0 = 2Ω2/U,

which agrees with Eq.(20).
For the condensate prepared initially with one boson in
each well we must change the initial condition for b1(0)
to b1(0) = 1, ∂τ b1(0) = iU. Hence we have

b1(t) =
U − ε2
ε1 − ε2

exp(iε1t) +
ε1 − U
ε1 − ε2

exp(iε2t)

and b0(t) = b2(t) = −i
√

2Ω
∫ t
0
b1(s)ds. It is readily seen

that in the strong interaction limit Ω/U << 1, when
the energy separation from the two states corresponding
to two bosons in the same well grows as U , the system
stays in its ground state |1〉. Indeed, rapid oscillations of
b1(t) ≈ exp(−iUt), guarantee that both b0(t) and b2(t)
remain of order of Ω/U).

B. The three-particle case (N = 3)

For three bosons, N = 3, in a symmetric well, β = 0,
to evaluate bn = exp(2iUt)An,N−n, we need to solve

i∂tb0 =
√

3Ωb1 (51)

i∂tb1 =
√

3Ωb0 − 2Ub1 + 2Ωb2

i∂tb2 = 2Ωb1 − 2Ub2 +
√

3Ωb3

i∂tb3 =
√

3Ωb2.

This is equivalent to

i∂tb0 =
√

3Ωb1 (52)

∂ttb
± + 2iU±∂tb

± + 3Ω2b± = 0

i∂tb3 =
√

3Ωb2.

where

b± ≡ b1 ± b2 and U± ≡ ±Ω− U (53)

which are solved with appropriate initial conditions dis-
cussed below.
Initially, no particles in the right well (n = 0): bn(0) =
δn0, n = 0, 1, ..3. Introducing (subscripts 1 and 2 cor-
respond to the + and − signs of the square root)

ε±1,2 = [U±]±
√

(U±)2 + 3Ω2 (54)

we have

b0 = −3

2
Ω2

{
exp(iε+1 t)

ε+1 (ε+1 − ε
+
2 )
− exp(iε+2 t)

ε+2 (ε+1 − ε
+
2 )

+
exp(iε−1 t)

ε−1 (ε−1 − ε
−
2 )
− exp(iε−2 t)

ε−2 (ε−1 − ε
−
2 )

}
b1 = −

√
3

2
Ω

{
exp(iε+1 t)− exp(iε+2 t)

ε+1 − ε
+
2

+
exp(iε−1 t)− exp(iε−2 t)

ε−1 − ε
−
2

}
b2 = −

√
3

2
Ω

{
exp(iε+1 t)− exp(iε+2 t)

ε+1 − ε
+
2

− exp(iε−1 t)− exp(iε−2 t)

ε−1 − ε
−
2

}
b3 = −3

2
Ω2

{
exp(iε+1 t)

ε+1 (ε+1 − ε
+
2 )
− exp(iε+2 t)

ε+2 (ε+1 − ε
+
2 )

− exp(iε−1 t)

ε−1 (ε−1 − ε
−
2 )

+
exp(iε−2 t)

ε−2 (ε−1 − ε
−
2 )

}
In the strong interaction limit Ω/U << 1 we have

ε±1 − ε
±
2 ≈ ε

±
1 ≈ 2U, e±2 ≈ −3Ω2/2U ∓ 3Ω3/2U2 (55)

so that

b0(t) ≈ − exp(−3iΩ2t/2U) cos(3Ω3t/2U2), (56)

b3(t) ≈ i exp(−3iΩ2t/2U) sin(3Ω3t/2U2),

b1(t) ≈ b2(t) = o(Ω/U)

in accordance with ω0 ≈ 3Ω3/2U2, predicted by Eq.(20).
Initially, one particle in the right well (n = 1):

bn(0) = δn1, n = 0, 1, ..3.

Solving Eqs.(51) with this initial condition we have

b0 = −
√

3Ω

2
× (57){

− ε+2 + 2U+

ε+1 (ε+1 − ε
+
2 )

exp(iε+1 t) +
ε+1 + 2U+

ε+2 (ε+1 − ε
+
2 )

exp(iε+2 t)

− ε−2 + 2U−

ε−1 (ε−1 − ε
−
2 )

exp(iε−1 t) +
ε−1 + 2U−

ε−2 (ε−1 − ε
−
2 )

exp(iε−2 t)

}
,

b1 = −1

2

{
− ε+2 + 2U+

ε+1 − ε
+
2

exp(iε+1 t) +
ε+1 + 2U+

ε+1 − ε
+
2

exp(iε+2 t)

−ε
−
2 + 2U−

ε−1 − ε
−
2

exp(iε−1 t) +
ε−1 + 2U−

ε−1 − ε
−
2

exp(iε−2 t)

}
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b2 = −1

2

{
− ε+2 + 2U+

ε+1 − ε
+
2

exp(iε+1 t) +
ε+1 + 2U+

ε+1 − ε
+
2

exp(iε+2 t)

+
ε−2 + 2U−

ε−1 − ε
−
2

exp(iε−1 t)−
ε−1 + 2U−

ε−1 − ε
−
2

exp(iε−2 t)

}
b3 = −

√
3Ω

2
×{

− ε+2 + 2U+

ε+1 (ε+1 − ε
+
2 )

exp(iε+1 t) +
ε+1 + 2U+

ε+2 (ε+1 − ε
+
2 )

exp(iε+2 t)

+
ε−2 + 2U−

ε−1 (ε−1 − ε
−
2 )

exp(iε−1 t)−
ε−1 + 2U−

ε−2 (ε−1 − ε
−
2 )

exp(iε−2 t)

}
.

(Note that the expressions for b0 and b3 do not contain
the time-independent terms obtained in integrating b1

and b2. Since the hamiltonian matrix has four non-zero
eigenvalues, b0 and b3 cannot contain an additional zero
frequency.) In the strong interaction limit Ω/U << 1 we
have

b1(t) ≈ − exp(2iUt) cos(2Ωt), (58)

b2(t) ≈ −i exp(2iUt) sin(2Ωt),

b0(t) ≈ b3(t) = O(Ω/U),

in accordance with ω1 ≈ 2Ω, obtained from Eq.(20).
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