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Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients.
We present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric
heat currents can be induced in a linear system only if it is dynamically driven. The rectification can be further
enhanced, even achieving maximal performance, by detuning the oscillators of the driven network. Finally,
we demonstrate the feasibility of such driven harmonic network to work as a thermal transistor, quantifying its
efficiency through the dynamical amplification factor.

Rectifiers are physical systems capable of conduct-
ing energy asymmetrically —whether electric, magnetic,
thermal...— and are an essential building block in many tech-
nological applications. Although thermal rectifiers are cru-
cial components to manipulate heat currents and construct
phononic devices, so far no efficient and feasible thermal
diodes have been found. Such device, when connected to two
thermal baths at different temperatures, conducts heat asym-
metrically if the temperatures of the baths are interchanged.
This effect allows for an effective heat dissipation with a sup-
pressed backflow reaction.

To date, most theoretical proposals on classical heat recti-
fiers (see [1] and references therein) have been based either on
the use of inohomogenous materials [2—7] exploiting nonlin-
ear interactions, or doping the systems with impurities while
remaining in the linear regime [8]. Also, the feasibility of mi-
croscopic systems acting as thermal devices has been recently
addressed in, for instance, phononic refrigerators in the classi-
cal [9] and quantum [10] regimes, or heat rectifiers in diferent
platforms: quantum dots [11], nonlinear solid-state quantum
circuits [12], few-level systems [13, 14], or hybrid configura-
tions [15].

Here, we address analytically and in full generality heat
rectification in quantum systems under generic linear inter-
actions. To this aim, we assume a network of harmonic oscil-
lators coupled to two thermal reservoirs and investigate how
asymmetric heat fluxes can be induced in such setup. First,
we revisit the static scenario showing that linearity forbids
heat rectification, regardless of any asymmetry in the har-
monic network or in its coupling with the baths. Second, we
demonstrate that heat rectification in a linear quantum sys-
tem is possible if the system is periodically driven. This is
our main result. Such feature is a consequence of two facts:
(i) injecting/extracting work into/from a system by an exter-
nal agent is a useful resource to redistribute energy and (ii)
by periodically driven a system, new asymmetric heat trans-
port processes —that have no analog in static scenarios— are in-
duced. By using the Floquet formalism we identify precisely
the quantum processes leading to heat rectification. Finally,
we also demonstrate the suitability of driven harmonic net-

works as heat transistors.

FIG. 1. Sketch of a heat rectification setup where a system S with
linear interactions V (¢) is connected to two reservoirs at fixed tem-
peratures 77 and 7;. (Top) forward configuration, (bottom) reversed
configuration.

Consider a system S coupled to two reservoirs at fixed tem-
peratures 77 and 7>. In any out-of-equilibrium scenario, the
energy of the reservoirs is redistributed through the system in
the form of heat currents. The system S works as a heat rec-
tifier if the magnitude of the heat current depends on the sign
of the temperature gradient [16]. Such asymmetric heat cur-
rent is conventionally quantified by the rectification coefficient
[12, 13]:

|Q1 +Q1|
max(|01],[07])’

where Q; (QF) is the heat flowing into the system from the
first reservoir in the forward (reversed) configuration. For
T\ > T», forward and reversed configurations refer to, respec-
tively, negative and positive temperature gradients (see Fig. 1).
Notice that 0 < R(Q1, Q) < 2. The lower bound is achieved
for a system that conducts symmetrically: Q" = —Q;, while
the upper bound is saturated for heat fluxes that are indepen-
dent of the sign of the temperature gradient: Q; = Q}. A
system that blocks the heat flux in either configuration fulfills
R(01,0) = R(0,0}) = 1.

R(01,07) = (D



To provide exact closed expressions for the rectification
coefficient we consider the system S to be a network of
N linearly-coupled harmonic oscillators with time-dependent
Hamiltonian:
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Here, X = (x1,---,xy)" and P = (p1,---,pn)T are the vec-
tors of position and momentum operators of the network—
fulfilling the standard bosonic algebra [x;, p;] =i%6;;. The ma-
trix M = diag(my, - - - ,my) contains the masses of the oscilla-
tors of the network. The diagonal part of V(z) captures the os-
cillators self-energy, whereas its off-diagonal elements encode
the coupling between the positions of different oscillators. We
assume that the system S is coupled to a set of reservoirs, be-
ing Hg, the Hamiltonian of the reservoir ot. Each reservoir is
described by a collection of non-interacting bosonic modes L,
with Hamiltonian
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where Xo = ({xa,u})? and Py = ({pou})” are the reservoir
position and momentum vector operators respectively. The
masses and frequencies of the modes of the reservoir o are
given by My, = diag({mq , }) and Q¢ = diag({ ®q }) respec-
tively. The interaction Hamiltonian between the system S and
the reservoir o is

Hsr, = —X" CqXa, )

where the rectangular matrix Cy encodes the coupling be-
tween the system and the reservoir a. Couplings of the form
Hp = —X"Cq Py, that appear frequently in quantum optics,
can be treated with the same techniques we display here. The
total Hamiltonian is given by H = Hg(f) + Yo Hsr, + Yo Hry -

Under the natural assumption that the system is initially un-
correlated from the reservoirs i.e., p(t9) = ps(to) Q¢ Pr, (0)>
the equations of motion for {X,} and {P,} can be solved
leading to the quantum Langeving equation that describes the
steady state of system [17, 18]:

MX +V ()X —x(t)*X = B(1), (5)

where % denotes the convolution. More details of the deriva-
tion are given in the Supplemental Material. The susceptibility
matrix X (t) acts as a damping source, whereas the noise vec-
tor B(t) as an external force. Their explicit expressions are

x(1)=0(t)Y. Ca(MaQq) ' sin(Qat)C, (6)

B(1) = lim Y Ce[sin(Qq(r —10))Xa(f0)+

f)—>—o°
+ (Mo Qq) " cos(Qq(t —10))Pa(to)],  (7)
with 0(¢) being the Heaviside step function. The dissipation

kernel 1(¢), widely used in the literature, is related to the sus-
ceptibility: x(¢) = 6(¢)n(¢r). We also introduce the spectral
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density J(®) = Yo Jo(®) = 1/2Y4 Co(MgQ4q) ' Ag(@)CL,
where Ag v (0) = Ouy (0 — g ). We further assume that
all oscillators of the network are at most coupled to one reser-
voir. Therefore, the support of each Jy (®) is in an orthogonal
subspace. One can think of Jy(®) as a measure of the num-
ber of modes in reservoir o whose frequencies lie between @
and o + dw. With the help of the spectral density it is easy
to see x(t) = 0(¢)2 f, dwJ(w)sin(wr). By extending J(m)
to negative frequencies, as J(—®) = —J(®), it follows that
Imy (@) = mJ(®), which is a compact form of the fluctuation-
dissipation theorem [19]. In what follows, we further as-
sume that pg, (fo) = exp(—Hgr, /ksTw)/trlexp(—Hg, /kpTu)]
is a thermal state at temperature Ty,.

Let us now review the thermodynamical quantitites of in-
terest. For a general open quantum system, a consistent defi-
nition for heat an work was presented in [20]. The work rate is
given by W = (d,H) where (---) denotes the average over the
total density matrix p . If we assume that only Hg(t) varies
with time, W = (d,Hs(t)). The heat current from the reser-
voir  to the system S is given by O, = —d (Hg,,) /dt. Notice
that these definitions of heat currents and work rate are com-
pletely general and not limited to any specific model. Alterna-
tively, one can define the heat rate as Qg = i/([Hsr,,H]) =
i/h([Hsg,,Hs]). Although in general both definitions do not
coincide, for time-averaged linear systems at the steady-state
it is easy to show that Qq = Q/, (see [10]). The energy of the
system S changes at rate:

d i d ) .
G (#9) = 2 (e 1)+ 35 ) = £ 0a+ W, ®)

which has the form of the first law of thermodynamics.

We first revisit the static network, where V(f) = Vp en-
codes a completely general time-independent linear interac-
tion between the nodes of the network and, therefore, W = 0.
Since in steady state d(Hy)/dt = 0, the first law reduces to
Yo Oo = 0. The steady-state solution for X can be found using
the Green’s function technique [21], leading to the following
expression for the heat currents

0u= Y [ doT(@) (ra(@) -ng(@),  ©

pra’R
where nq(®) = (exp(hw/kpTy) —1)~! is the thermal occu-
pation number, 75 () = homtr [Ja(a))Go(a))Jﬁ (w)Gg(w)]
is the transfer and Go(w) =

-1 . . .
(—0*M+Vo+x(w)) is the static Green’s function
in spectral domain. Notice that, for the static case,
Toﬁ(a)) = 7'130a(a)) is a temperature-independent symmetric

static heat matrix,

o
matrix. Particularly, in a scenario with two reservoirs, the

forward and reversed currents necessarily fulfill Q; = —Q7,
hence R(Q1,0}) = 0. This is true for any interaction Vj
or any specific form of the spectral densities J,(®). This
seemingly surprising result can be explained by focusing
on the normal-mode picture: A network of N-interacting
oscillators can be mapped onto a system of N-independent



oscillators—that is, the normal-mode representation. Each
independent oscillator transfers heat symmetrically due to its
invariance under reflection symmetry.

Is it possible to attain asymmetric heat fluxes within har-
monic systems? The answer is positive, but it requires ex-
ploring time-dependent systems. To this aim, we consider a
periodic driving potential; V (¢t 4+ 7) = V(¢) with T being the
period. Then, for the periodically driven system, all the terms
in Eq. (8) are time-dependent. However, in the steady state the
averages over a period must remain constant and consequently
the first law reads 0 =Y, O + W, where for any O(t), its time
average over a period is O := 7~! [/"Fd'O(t"). The existence
of the steady state is not guaranteed in time-driven systems,
for certain range of parameters, instabilities appear even in the
case of a single oscillator. Assuming it exists and following
[10, 22, 23], we use the Floquet theory of periodic differential
equations to solve the dynamics of the system.

We denote by G(z,t’) the Green’s function associated to
Eq. (5). Even though G(z,#') is not necessarily periodic,
one can define P(t,0) = [ df'G(t,7')e®¢~") which obeys
P(t+1,0) = P(t,®). Thus, one can Fourier expand

V() =Y Vet (10)
=Y Av(@)e e, (11)
k

being @, = 27/ 1. By substituting into Eq. (5), it follows that

)+ Y ViAij(0) =
70

Gy (0 — kay)Ar(@ Sol. (12

With this at hand, we proceed to find the steady state averaged
work rate and heat currents. They read as follows

W= Z/daﬂa ( (@) + ;) (13)

Ou=— [ doTufo) (na<w>+) + (14)

where, Tyg(®) is now the dynamical heat-transfer matrix,
whose off-diagonal elements are given by

Tap(@ Zhw kag)rkg (), (15)

being r’&ﬁ (0) = mtr[Jo (@ — ko)A (@) Jp (a))A}:(a))] the pro-
Zﬁ 72305(0)) is

cess rate, while 7o (@) =

To(@) = = Y hkayztr [J(w fka)d)Ak(w)Ja(w)AZ(w)} .
k

(16)

Eq. (13) allows to define local work rates We. in such a way
that Y, Wo = W. We remark that for a periodically driven

w1
Go (w + jwd)
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o(V;
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FIG. 2. Diagrams representing the lowest order processes of en-
ergy exchange between reservoirs o and 8 appearing in Eq. (18)
and Eq. (19). Notice that there is a correspondence between the sym-
metry of the diagrams and the symmetry property of the matrix they
represent.

network Tgp(®) # Tpe(®), and therefore the system is no
longer a symmetric heat conductor. This is the key difference
between the static and driven scenarios and the cornerstone of
this work. Let us explore the fundamental processes leading to
such asymmetric heat exchange. For simplicity, let each reser-
voir be coupled to one and only one network node. Therefore,
the spectral densities Jo (@) become rank-one matrices, and

rh g (0) = o (0 — kog)|Ar(0) o Tp (@), (17)

where Jo (@), Jg(@) are scalar functions. The rate of a certain
process depends, not only on the starting and ending reservoir
modes, but also on the term |Ax(®) 5 |*—which accounts for
the network conductivity for a process of exchanging k en-
ergy quanta with the driving source. Self-consistently solving
Eq. (12) yields

Ap() = Go(w)+
+Y Go(w)V;Go(w+ jog)V_;Go(@) +0(V}),  (18)
J#0

Ar(@) = —Go(w — kay)ViGo(w) +O(V}), k#0  (19)

These are perturbative expansions in terms of the strength of
the driving potential. Therefore, A¢(®) can be interpreted as
the fundamental processes responsible of the heat transport.
Such expansions can be seen as a combination of free evolu-
tion with interactions with the periodic driving, the later caus-
ing a sudden change of the propagation frequency. This idea
is depicted in the diagrams in Fig. 2. Since the fundamental
processes involved in the Ao(®) are symmetric, the rate ful-
fills r;, ﬁ( )= rg o (®). However, A (®) contains asymmetric

processes, and therefore, a priori r* 8 () # 7% (o) for k #0.

Notice that, particularizing this result to the case of two
reservoirs can lead to a non-zero rectification coefficient,
R(Q1,07). The numerator of Eq.(1), is given by the absolute



value of
él +Q_T = _Wl —VTV1r+
/Rda) [T31(®) — Tia(@)] (n1 (@) + ma(@) +1).  (20)

Heat rectification in periodically driven systems is based on
two facts: (i) the work injected into the system is a useful re-
source to redistribute energy and (ii) periodically driven sys-
tems exhibit new asymmetric energy exchange processes that
have no analog in static systems. To better illustrate the two
sources of asymmetry, we consider a network of 2 oscilla-
tors with frequencies @; and @, and equal masses (M = 1),
coupled to identical reservoirs (x(®) = ¥(w)1) and weakly
driven by V(1) = Vy + 2V) cos(wyt) at frequency @,. Its ex-
pression in matrix form is

2
©F + co+2vy cos(wyt) co
V)= 1! 21
( ) ( co (1)22 o ) ( )

where cq is the coupling constant between the oscillators, vy
is the strength of the driving acting on the first oscillator. The
normal mode frequencies of Vj are v1272 = (l)lz +co+A2F
(c3 +A%/4)'/2 where A = 0} — @} is the detuning between
the oscillators. Under these conditions, the Green’s function
Go(w) is given by

cos(29) + sin(ze) sin 9(c0s9 __sin 9(c0§9

_ Lo " Lo L (o Ly(o

G()((D) - (sineclose . si2119c059 1sin 6 4 cos [°) ) ’ 22)
Li(0) L () Li(o) ' L)

where L;j(®) = v’ — @* — inJ(®) and tan(20) = —2¢o/A.
For Ohmic reservoirs, the spectral density is J(@) =
- 12ywA? /(w? + A?) where ¥ is the dissipation strength,
and A a high-frequency cutoff. Accordingly, using
fluctuation-dissipation and Kramers-Kronig relations, one ob-
tains 7 (@) = 2yA?/(Agq — i) [24].

In Fig. 3 (top) we show the rectification coefficient versus
the driving frequency w, and the coupling constant c(. Notice
that the driven network reaches R(Q1,Q}) = 1 indicating that
the heat flux Q; is completely suppressed in one of the con-
figurations. In fact, such system even attains R(Q1 , Q{ )>1,a
regime only possible when the network conducts heat against
thermal gradient in one of the configurations. The regions
with non-zero rectification correspond to driving frequencies
of wy = v;x v, fori,j=1,2 such that w; > 0.

To study explicitly the asymmetry of the dynamical heat
transfef matrix, we define the static quasi-currents Qa =
Wy + Qo where the contribution of the work has been explic-
itly singled out. Notice that they reduce to the static currents
in Eq. (9) as the driving is turned off. Moreover, they fulfill
the static first law Q; +Q, = 0. In this case, it is also possi-
ble to define the rectification coefficient R(Q1,Q}), which is
proportional to

Q1 +Qf| = ‘/Rdwml(w)—’flz(w)] (n1 (@) +m(@)+1)|.
(23)
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FIG. 3. (Color online) Rectification coefficient as a function of the
driving frequency and the coupling constant for: (top) using the full
current O ; (bottom) using the static quasi-current Q. Black dashed
lines lie at frequencies @y = v; £ v; for i, j = 1,2. The parameters are
set to: @) = 2wy, @ = @y, Ty = 1.2T» = 1.2hay /kp, vi = 0.1a¢,
7=0.01lwy, and A = 10a@y.

From Eq. (23), and the same scenario with N = 2, it fol-
lows that highly asymmetric heat transport requires that
|Go(0) — k(l)d)zlGo((D)n |2 and |G()(CO — ka)d)uGo(a))12|2 are
large compared to the static heat currents and different from
each other. Inspection of Eq. (22) indicates that only for
®; = v, £ v| both conditions are simultaneously fulfilled.
Eq. (22) also suggests that asymmetric transport can be fur-
ther enhanced in detuned systems through the parameter 0.
More details are given in the Supplemental Material.

In Fig. 3 (bottom) we show the R(Q;,Q7) versus the driv-
ing frequency w, and the coupling constant cy. In comparison
with Fig. 3 (top), we no longer observe the regions of high
rectification corresponding to @; = 2vy,2v,. This implies
that, even though the energy of reservoir 1 is kept constant
and energy is being injected into the system, no asymmetry
of the dynamical heat transfer matrix is achieved. In accor-
dance with the previous discussion, highly asymmetric heat
transport occurs at the nearby of @w; = v, &= v; independently
of the driving strength v;.

Interestingly, R(Q1,Q}) # 0 is a necessary condition for
the suitability of a detuned driven network to exhibit negative
differential thermal resistance, a key property to build thermal
transistors [25]. Thermal transistors have the capacity to ma-
nipulate heat currents flowing through the system using a third
energy source that we denote by E. The dynamical amplifica-
tion factor A is defined as [13, 25]

40
Ag = £ (24)
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FIG. 4. (Top) Scheme of a thermal bipolar transistor: (left) static
with & = T3; (right) dynamic with £ = w;. (Bottom) |Ag| versus
wy for ¢g = 0.2(03 and same parameters as Fig. 3. The shadowed
area represents the region without transistor effect; (inset) dQ¢ /0 0y
versus @y.

and measures the ability of the system to amplify a change
in the third energy source. To implement this change we
use a control parameter &, while keeping everything else
constant. Again we compare the performance of static and
driven harmonic networks. For the static case, we consider
E(E) = 03(T3), the heat current coming from a third reservoir
at temperature 73, while for the driven one E£(§) =W (@), the
average input work of a periodic driving of frequency w;, (see
Fig. 4). Notice that the first law constraints the values of the
dynamical amplification factors to A4; +.45+ 1 =0. A system
is a good thermal transistor if | A¢| > 1. From Eq. (9) follows
that for the static harmonic network, |Ay| < 1 is always ful-
filled. However, as shown in the bottom panel of Fig. 4, this
is no longer true for the driven network.

In summary, using the fact that open-system dynamics
can be profoundly modified by a time-periodic perturbation,
we have demonstrated heat rectification in quantum linear
systems; an effect strictly forbidden in the static case. We
have derived analytical expressions for the steady-state heat
currents and identified the fundamental processes leading to
the asymmetry of the dynamical heat transfer matrix. Such
asymmetry has a key role in the feasibility of periodically
driven harmonic networks as, for instance, heat transistors.
The formalism used here may find applications in other prob-
lems involving spatial symmetry breaking in open systems by
a time-periodic perturbation.

We thank N. Freitas and G. Muga for useful discus-
sions. We acknowledge financial support from the Span-
ish MINECO (AEI/FEDER EU): FIS2016-80681-P, FIS2016-
80773-P, FIS2015-67161-P; Severo Ochoa SEV-2015-0522.
Generalitat de Catalunya: CIRIT (2017-SGR-966, 2017-
SGR-1381), CERCA Program and FI-2018-B01134, Fun-

dacié Privada Cellex and Basque Government (Grant No.
IT986-16).

[1] N. Li, J. Ren, L. Wang, G. Zhang, P. Hinggi, and B. Li, Rev.
Mod. Phys. 84, 1045 (2012).

[2] C. W. Chang, D. Okawa, A. Majumdar,
and A. Zettl, Science 314, 1121 (20006),
http://science.sciencemag.org/content/314/5802/1121.full.pdf.

[3] G. Benenti, G. Casati, C. Mejia-Monasterio, and M. Peyrard,
“From thermal rectifiers to thermoelectric devices,” (Springer
International Publishing, Cham, 2016) pp. 365-407.

[4] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88,
094302 (2002).

[5] P.J. van Zwol, L. Ranno, and J. Chevrier, Phys. Rev. Lett. 108,
234301 (2012).

[6] Peyrard, M., Europhys. Lett. 76, 49 (2006).

[7] Y.-Y. Liu, W.-X. Zhou, L.-M. Tang, and K.-Q. Chen, Applied
Physics Letters 105, 203111 (2014).

[8] Pons, M., Cui, Y. Y., Ruschhaupt, A., Simén, M. A., and Muga,
J. G, EPL 119, 64001 (2017).

[9] L. Arrachea, E. R. Mucciolo, C. Chamon, and R. B.
Capaz, Physical Review B - Condensed Matter and Ma-
terials  Physics (2012), 10.1103/PhysRevB.86.125424,
arXiv:arXiv:1203.2561v2.

[10] N. Freitas and J. P. Paz, Physical Review E 95 (2017),
10.1103/PhysRevE.95.012146, arXiv:1607.04234.

[11] R. Scheibner, M. Knig, D. Reuter, A. D. Wieck, C. Gould,
H. Buhmann, and L. W. Molenkamp, New Journal of Physics
10, 083016 (2008).

[12] T. Ruokola, T. Ojanen,
144306 (2009).

[13] K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-
Miranda, Physical Review Letters 116 (2016), 10.1103/Phys-
RevLett.116.200601, arXiv:1602.04175.

[14] C. Wang, D. Xu, H. Liu, and X. Gao, arXiv e-prints (2018),
arXiv:1806.04794 [quant-ph].

[15] L.-A. Wu, C. X. Yu, and D. Segal, Phys. Rev. E 80, 041103
(2009).

[16] N. A. Roberts and D. G. Walker, International Journal of Ther-
mal Sciences (2011), 10.1016/j.ijthermalsci.2010.12.004.

[17] H. Grabert, U. Weiss, and P. Talkner, Zeitschrift fiir Physik B
Condensed Matter 55, 87 (1984).

[18] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (2007) pp. 1-656.

[19] R. Kubo, Reports on Progress in Physics 29, 255 (1966).

[20] M. Esposito, K. Lindenberg, and C. Van Den Broeck, New
Journal of Physics (2010), 10.1088/1367-2630/12/1/013013,
arXiv:0908.1125.

[21] A. Dhar and D. Roy, Journal of Statistical Physics 125, 805
(2006), arXiv:0606465 [cond-mat].

[22] R. Alicki, D. A. Lidar, and P. Zanardi, Phys. Rev. A 73, 052311
(2006).

[23] N. Freitas and J. P. Paz, Physical Review A 97 (2018),
10.1103/PhysRevA.97.032104, arXiv:1710.11554.

[24] J. O. Gonzalez, L. A. Correa, G. Nocerino, J. P. Palao,
D. Alonso, and G. Adesso, Open Systems & Information Dy-
namics 24, 1740010 (2017).

[25] B. Li, L. Wang, and G. Casati, Applied Physics Letters 88
(2006), 10.1063/1.2191730, arXiv:0410172 [cond-mat].

and A.-P. Jauho, Phys. Rev. B 79,



Quantum Langevin Equation

The Heisenberg equation of motion for any observable O reads as
O =i/h[H,0]+ 9,0, (25)

with H = Hg + Y, Hsr,, + Y. Hr, being the total Hamiltonian. By means of the bosonic algebra, and by using Eqs. (2-4) of the
main text, one finds the equations of motion for the system and reservoir degrees of freedom:

Xo =My ' Py, (26)

Py = —MaQ2 Xy +CIX, (27)

X=M'pP (28)

P=-V()X+) CuXa. (29)
o

By taking the time derivative of Eq. (26), and combining with Eq. (27), we end up with a second order differential equation
for the position quadrature operator of the bath . Under the initial condition p(ty) = ps(to) @4 Pr, (f0), the solution of this
equation yields:

t
Xo (1) :COS(Qa([*IO))Xa(IO)+(MaQa)_lSin(Qa(I*IO))Pa([O)JF dt/(MaQa)_lsin (Qa(t*[,))ch(t/)a (30)
fo
where Xy (fp) and Py(tp) are the initial conditions. In the same manner, by taking the time derivative of Eq. (28), and by
substituting Egs. (29) and (30) into it we arrive at:

MX+V()X =Y tdz’Ca (Mo Q0q) " sin(Qq (1 —1)CeX (1) = Y. Co (€08 (Que(t —10)) Xt (t0) + (Mo Q) ™" sin (Qa(t — 10)) Po(t0))

€Y

Since we are only interested in the steady-state behavior, we take the limit 7y — —co. Thus, we find the quantum Langevin
equation:

MX +V ()X — x(t)xX = B(t), (32)

with the susceptibility matrix y(¢) and the noise vector B(¢) given by Eq. (6) and Eq. (7) of the main text, respectively.

Fluctuation-Dissipation Relation

In the main text we proved a version of the fluctuation-dissipation theorem, namely Imy (@) = nJ(®), that is state indepen-
dent. In our analysis, however, we are dealing with thermal reservoirs. In particular, in many of our calculations, we need to
find the bath correlation functions at thermal equilibrium. Thus, here, we present a proof of the thermal version of fluctuation-
dissipation theorem, that enables us to calculate the bath correlation functions. To this aim, let the thermal equilibrium density
matrix of the reservoirs be pg, (fo) = exp(—Hg, /kgTw)/tr[exp(—Hgr, /ksTw)]. For such thermal state, all first order moments
vanish. Moreover, the second order quadrature moments read as:

_ _1 h _ hQ
<Xa (IO)XoTc (t0)> = (MuQq) ! <Pa (Z‘O)Pg (f0)> (MaQ0q) l= E(Maga) "coth (ZkB; > (33)
o
« 1A
(Xa(to)PL (t0)) = (Pa(to) X (1)) = 5 (34)
Looking back to the definition of the noise vector Eq. (7) of the main text, it follows that
n _ nQ .
(B()B" (")) = > ;’Ca (Mg Qq)™! <cos(Qa (t—1'))coth (ZkB;a) +isin(Qq (f — t’)) cl. (35)

By introducing the spectral density to the last expression, it can be written as
(B(t)B" (') = hZ/ dwJy(w)cos(o(t —1"))(2nq (@) +1) +ihZ/ doJy(o)sin(o(t —1))
o /0 a 70

NSt

v(@e—1")+in(t—1)], (36)



where v(t —1') and n(t —1t') are, respectively, the noise and damping kernels. In the spectral domain—that is, by taking the
Fourier transform f(r) — f(®) = [~ dt f(¢) " of both sides—the above equation reads

(B(w)B" (') =hnd(0+ ') [v(®)+in(w)], (37)

with v(0) =27 o Jo (@) (2ng(@)+1) and n(w) =27Y., Jo(®). By substituting in Eq. (37), we obtain the desired fluctuation-
dissipation relation

(B(0)B" (0)) = 8(0+ ) (27)*1 Y Ja(®) (na(®) + 1). (38)

Thermodynamic Quantities and the Covariance Matrix

Suppose that the steady state covariance matrix is given, the question is, how W and Q, can be calculated. Let us represent
the covariance matrix in four blocks

y — (GXX GXP> , (39)

Opx  Opp

with, oxx = (XXT), oxp = (XPT + (PXT)T)/2 and opp = (PPT). Furthermore, by using the definition of local heat currents
that we introduced in the main text—i.e., Q¢ = i/%{[Hsr, , Hs]), one can verify that

(PTM™'CaXa) + (XECEM'P)). (40)

| =

Qa =
Recall our assumption that each oscillator is at most coupled to one reservoir. We denote by Il the projector onto the space of

the oscillator that is coupled to the bath ¢. Thus, from Eq. (40) and using Eq. (29) it follows that

. 1 d _ —
Qo= Etr {HadIGPPM 1} tur [Hav(t)GXPM 1} ) @D

where we have used the property of the bilinear product <‘I’1TM‘P2> =tr [M T <‘P1‘I’g >] where W and W, are vector operators
and M a scalar matrix. The work rate is easily calculated through W = tr [%V(I)GXX} .

Static Heat Currents

For a static network V (¢) =V}, and therefore W = 0. Moreover, in the steady state the covariance matrix must be constant,
and in particular dopp/df = 0. On this account, the first term of (41) vanishes, hence the static local heat currents read as

O = tr [TIgVooxpM '] . (42)

It remains to substitute for oxp. To this aim, we note that in the spectral domain, the steady state solution is given by X () =
Go(®)B(®). We also benefit from the fluctuation-dissipation relation, to arrive at

Qo = —/R (;:)Zhwnlm{tr [HaVOGo(a))v((o)Gg(a))} },

_ %/Rda)ha)lm{tr [Havoco(w)Jﬁ(w)Gg(w)]} <nﬁ(w)+ ;) :
=1 [Ty (mp(@)+3), @)

The equation of motion for Go(®) can be rearranged as VoGo(®) = 1 + @*MGy(®) + x(®)Go(®). For B # , the only non-
zero contribution to the currents is given by the term proportional to the susceptibility. Using Imy (@) = nJ(®) we obtain



Top(@) = homtr[Jo(©)Go(0)Jp(®)Gj()] for B # a. The conservation equation ¥, Oy = 0 translates into ¥z Top(@) =0

and therefore we can compute T2, (®) = — Y5+a 7'0[3 (). Using this result into Eq. (43), one gets

prtinin ) i o)
ﬁ; [ 40T (@) (na(@) ~ g (@)) “

which is the expression shown in the main text.

Periodically Driven Heat Currents and Work Rate

Let us consider the integrodifferential super-operator £,[M] = M(d/d¢)>B + V (t)B — x(¢) x W associated to the homoge-
neous quantum Langevin equation. The equation of motion of the Green’s function is given by £,[G(r,t')] = 18(t —¢'). If
the potential is T—periodic, that is V(t 4+ 7) = V(¢), and L,[G(t,1')] = 18(t — ') then L,[|G(t’ + 7,6+ 7)] = 16(t — 1) and
therefore G(¢,t') = G(t + 7,¢ + 7) in the steady state by uniqueness of the solution. Now, we define the periodic func-
tion P(t,®) = €' [, dr'e 9" G(1,1'). Tt is easy to see that P(t 4+ T,0) = P(t,®). Since L, is a linear superoperator, we
have [pdr'exp(—iwt’)L,[G(t,1")] = L[exp(—iwt)P(t,®)] and using Eq. (11) of the main text, we have Y, £;[exp(—i(® —
kaw,)1)|Ar(@) = Lexp(—imt). It follows

Zle)k@ﬁ?mﬂ+ZV#UMmﬂ+ﬂwmwyMM Ar(w) =1, (45)
v 7

and projecting on kth element of the Fourier expansion, one arrives at

Gal (0) — k(l)d)Ak((O) + Z VjAk,j((J)) = 51(70]1. (46)
J#0

We can use now the amplitudes {A;(®)} to compute the steady state solution for

/mGtt Z/ “ilo—koa)ig (0)B(w), (47)
m/Gtt ZﬂZ/Z (0 — kar)e @0 4, ()B(w). (48)

The covariance matrix X can be computed also using A (®) and it turns out to be T—periodic. Let us take for instance

oxpM ' =Y {iZ/Rdwh(a)—ka)d)Aj(a))Ja(a))A,f(a)) (na(a)) + ;)] Al—Koat (49)
Jk Lo

We now take the average over a period of the heat currents in Eq. (41). Notice that since opp is T—periodic, the average of its
derivative over a period vanishes. Then, Qu =tr [HaV(t)prM *1] and using Eq. (13) of the main text and Eq. (49) leads to

1

HaZVjAkj(w)Jﬁ(w)AZ(w)] } (ml@)+3).
J

(50)

Qo = —%/Rdw’faﬁ(a)) (nﬁ(w)+;> = —%Adw;h(w—kwd)lm{tr

From Eq. (46) follows Y ; ViA;_j = & o1 + (a) — koyg)*MA (@) + x (0 — kwy)Ax (@) which can be used to compute Top () =
Y (o —koy)mtr {Ja(a) —kawy)Ar(@)Jg(w)A ( )] for B # . The diagonal terms can be computed using T (®) = Tge (@) +
Y5 Tpa(®) where T is given by Eq. (16) of the main text, since Yp X jholm{tr[lgVi;A;(®)Ja(®)A k(a))}} = 0. Finally,

iédﬂ%@ﬂ( >+§:/dw{ma ( a(®)+ ;>—7@am(@um+;>y (51)

B#o:



and using the first law

W= —;QT(X :%’/Rda);nﬁ(w) (nﬁ(a))+;) :%"/Rdaﬂ}(a)) (nﬁ(a))—k;), (52)

which are the expressions given in the main text.

Equivalence of the Heat Currents

The amount of heat from the bath & to the system S is equal to the energy lost by that reservoir, i.e. AQy = —((Hg,), —
(HRq),)- Then, the heat current can be cast as

O = —tr [Hr, p(t)] — tr[Hr,p(t)] = tr[(Hs + Hsr, )P ()] = Qo — 8 Qur, (53)

where, tr[H (¢)p(¢)] = 0 has been used, and §Qy is the difference between the two definitions of the heat currents mentioned in
the main text. Equivalently, 0}, = —i/h ([HSRa,HRaD and Q¢ = i/h ([Hsr,,Hs]). Then,

) ) i
800 =00 — 0y = <[HSR,17HS +Hg,]) = ~ ([H,Hsr,]) (54)
Using the Heisenberg equation of motion for Hgg, on the RHS of Eq.(4), it follows
i d d .
804 = T (XTCoXqo) = T (X (P+V(1)X)). (55)

We are interested in T-periodic time-dependent couplings. Using Eq. (47) and Eq. (48) we see that, at the steady state

(XTT1,P) :Z{—Z /R dwh(o — kog)?tr {HQMAﬁc(a))Jﬁ(a))A;,(w)} (ng(w )+1/2)} i(k=K)oqt. (56)
kK B

(X"Mev(n)X) =Y { / dwhtr HaVAk( )Jg(@)A], (@ )} (ng(@ )+1/2)} (Hk=K)egt (57)
Jk,K

and, therefore, the right-hand-side of Eq. (55) is the time-derivative of a 7-periodic function, whose contribution over a period
averages to zero.

A Static Work Reservoir

Heat rectification in dynamical systems its a consequence of two facts: (i) the work injected/extracted into/from the system is
a useful resource to redistribute energy and (ii) periodically driven systems exhibit new energy exchange processes that have no
analog in static systems. Notice, that (i) can be also achieved by introducing a third work-reservoir that provides the energy while
keeping the set up static. Let us denote 73 and n3(®) the temperature and thermal occupation number of such work reservoir.
The static currents (Eq. (9) of the manuscript) in direct and reversed configuration read

01 = [ d0T(@)(n (@) ~m(@) + [ doTH()m(@) (). 9)
07 = [ doTh(0)(na(0) =m (@) + [ doTh (@) (o) n(@)). 59

We now single out the current of the third reservoir and denote it by
Wi 0= [ 0T (@)(m(0) —m (@) + [ doTh(0)nm()-m(). (60)

The first law can be now written as Q1 + Q> +W = 0. Again, we can think about the local contributions to reservoir & = 1,2
as Wy = [rdoT,(0)(n3(0) —ng(®)). Itis clear, that R(Q1,Q}) < [W) +W/| # 0 under the interchange T; <> T>. However,
there is no genuine asymmetric transport happening in the sense that T3 (@) = T3 (w) for a static system (as explained in the
manuscript). By defining Qg := Qg + W, we only take into account the genuine contributions to the rectification, such that, in
the static case R(Qq, Q%) = 0. With this intuition, we use R(Qq,Q},) as a measure of the asymmetric transport in the driven
network that is present exclusively due to periodic forcing.
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Static Green’s Function for N =2

We now give a method to obtain an analytic expression for the static Green’s function Go(w) for the scenario of N = 2.
Namely, we assume a homogeneous network of two oscillators with m; = m = 1 and coupled to identical reservoirs, in such a
way that ¥ (@) = 7 (®)1 where ¥ (w) is a scalar function. Then, the Green’s function can be written as

Go(®) = (—0*1+Vy— Z(w)1) . (61)

Since Vj is a symmetric real matrix, there exists a set {u,}f’: , of eigenmodes such that Vou; = vizui, where v; are the normal mode
frequencies and therefore, Vo = Y; vizuiuiT. Moreover, 1 can be also resolved in any basis, in particular 1 = ¥, u;u! . Hence

Go(w) =),

i

T
uju;

vi—w?—Re{f(0)} —inf(w)

(62)

We further assume that for large enough cutoff Ag, Re{}(®)} is only shifting the position of the normal modes by a constant
amount, which can be compensated by renormalizing the Hamiltonian with the counterterm [18]. Hence, from now on, we
disregard Re{¥(®)}. The normal mode vectors u; are real, orthogonal and normalized to one, and therefore can be parametrized
with an angle 6 such that u; = (sin(0),cos(6)) and uy = (cos(0),—sin(6)). The angle 6 is determined as a function of the

system parameters as tan(20) = —2c(/ (@3 — @?). Then, for arbitrary normal modes
0032(9) sin2(6) . ( 1 1 )
G(]((J)) _ V%*wzfinf(w) + vgfwzfinf(w) SIH(Q)COS(G) vlszzfinf(a)) - vlszzfinf(w) 63)

sin(0)cos(H) ( 1 1 ) sin?(6) y_ cos’(6)

vi—el-in/(o) vi-o’—inf(w) vi—o?—inf(®) ' vi-w?-iri(o)

Main Contributions to Rectification

The driven harmonic network under consideration is very general and, therefore, it is rather complicated to picture the rectifi-
cation coefficient as a function of the network parameters. Here, we propose to take advantage of the peaked structure of Go(®)
obtained above, and consider only the the principal contributions to the asymmetric transport in frequency domain. We start
using Eq. (19) of the main text to write

751((1)) — 7’12((0) = Zh(w —k(i)d).]((i) —kwd)J(w)nv% (‘Go(w —ka)d)zlGo(a))11|2 — |G0((J) —k(x)d)llGo((D)lz‘z) . (64)
k

Therefore, highly asymmetric heat transport can only occur when |Go(® — k@, )21 Go(®@)11]* and |Go (@ — k@y)11Go(®)12|* are
large compared with the static transport. We have seen that the Green’s function Go(®) is peaked at @ = +v;. Hence, the
principal contributions to the asymmetric transport will occur when we hit the resonances of both Green’s functions at once, that
is, when kw,; = +v; £ v;. However, notice that when i = j we are evaluating |Go(V;)21Go(Vi)11 > = |Go(Vi)11Go(Vi)12)*> = 0 and
consequently rectification will be small. Therefore, only at kw; = £v; £ v; with i # j the asymmetric heat transport is expected
to be large. In the particular, if we go back to the case of N = 2, the positive driving frequencies at which one expects large
rectification are @w; = v, + vy.

Harmonic Bipolar Transistors

Let us consider a static bipolar thermal transistor where the third energy source is provided by a third reservoir, that is E = Q3.
The control parameter is chosen to be T3, the temperature of the third bath. If we keep the rest of the variables constant, we have

dQi _ 90:/9T;

— = . (65)
dQo;  003/dTs
We already know the dependence of such currents in 73, given in Eq. (9) of the main text. Then, we can easily compute
904 ' (0) 9n3(o)
= — =]
0T; /R da)7;3 0T; 3 (66)
905 _ ) O ) 9m(@) _
- = [ do (7 @)+ T () o =l (67)

Since n3(®) increases monotonically with T3, we have 15, I3 > 0. Therefore, for oo = 1,2 we have |Ay| < 1 regardless of any
other system parameter.
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