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HSI-Drive: A Dataset for the Research of Hyperspectral Image 
Processing Applied to Autonomous Driving Systems 

K. Basterretxea1, V. Martı́nez2, J. Echanobe2, J. Gutiérrez-Zaballa2, I. del Campo2

Abstract— We present a structured dataset for the research and development of automated driving systems (ADS) sup- ported 
by hyperspectral imaging (HSI). The dataset contains per-pixel manually annotated images selected from videos recorded in real 
driving conditions that have been organized according to four environment parameters: season, daytime, road type, and weather 
conditions. The  aim  is  to  provide  high data diversity  and  facilitate  the  automatic  generation  of data subsets for the evaluation 
of machine learning (ML) techniques applied to the research of ADS in different driving scenarios and environmental conditions. 
The video sequences have been captured with a small-size 25-band VNIR (Visible- NearInfraRed)  snapshot  hyperspectral  camera  
mounted  on  a driving automobile. The current selection of classes for image annotation is aimed to provide reliable data for the 
spectral analysis of the items in the scenes; it is thus based on material surface reflectance patterns (spectral signatures). It is 
foreseen that future versions of the dataset will also incorporate alternative dense semantic labeling of the annotated images. The 
first version of the dataset, named HSI-Drive v1.0, is publicly available for download3. 
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I. INTRODUCTION

In the field of autonomous driving and advanced driving assistance systems (ADS and ADAS), perceiving the sur- rounding 
environment and extracting meaningful information is a key task. The majority of current image-based object analysis systems 
for ADS rely on RGB imaging for object detection and tracking [1]. Although state of the art object tracking systems have 
evolved considerably, there still re- main certain robustness issues related to changing weather and illumination conditions, 
as well as to challenging driv- ing scenarios with rapid changes in target appearance and multiple occlusions between different 
objects [1], [2]. In ADS, robustness of image analysis is critical, since unreliable systems may produce risky driving situations 
and possibly even fatal accidents. 

The use of hyperspectral sensors can help to improve scene understanding and object tracking system robustness, since they 
provide richer information about materials than conventional cameras. This extra information can be used   to better separate 
objects and backgrounds, improve object-tracking robustness and enhance the performance of image segmentation algorithms. 
HSI is already being widely applied in some areas such as remote sensing in geoscience and, more recently, in precision 
agriculture, medical imaging and others [3]. However, the use of HSI in application areas that require autonomy of operation 
and easy integration in moving platforms has been limited by traditional scanning sensor setup requirements and also by 
restrictions in the processing power of the accompanying computing hardware. To-day, with the advent of new small-size 
snapshot cameras that can provide hyperspectral images at the video rates [4], it is possible to setup a HSI system in almost 
any moving platform, and particularly in ground vehicles. Consequently, how to efficiently process hyperspectral information 
onboard a moving platform is currently an active research topic. 

This new HSI technology has begun to attract the attention of some ADS researchers due to its application potential and 
downward price trends. However, it is still necessary to carry out a concerted research effort to transfer and adapt this 
technology to the development of more efficient ADS. One of the key resources necessary for the development of HSI- 
based algorithms for ADS is undoubtedly the availability of specific datasets containing video sequences and annotated 
images acquired with modern snapshot HSI cameras. Due   to the present shortage of such a resource, the Digital Electronics 
Design Group (GDED) of the University of the Basque Country, currently involved in the research of the edge processing 
of HSI with low latency requirements, has started to develop of an extensive, structured database of hyperspectral images 
acquired with a VNIR small-size snapshot camera. In this paper, we describe the state of development of this project and the 
details of the first version of this dataset, the HSI-Drive v1.0, which is already publicly available for researchers in the field 
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II. RELATED WORK 

A. Multispectral and hyperspectral imaging in ADS 
In order to increase the robustness of ADS systems in changing environmental conditions, some researchers have proposed 

the additional use of images taken outside the visible spectrum. Since light with longer wavelengths is scattered to a lesser 
extent, the information received at infrared frequencies has different characteristics from that   of the visible ones, and also 
provides greater range under various conditions. In the field of computer vision for ADS several studies have already 
explored the use of both near infrared (NIR) [5], [6] and far-infrared (FIR) images [7]- [10]. The use of the FIR spectrum 
has been mainly applied to the detection of pedestrians, since it fundamentally obtains information on the temperature of 
objects. Its detractors, however, allege that these systems turn out to be inefficient in general, since in summer the temperature 
differences with the environment are small, and in winter the use of thick layers of clothing does not allow such differences 
to be detected [5]. 

A more recent study analyzes the fusion of images in RGB, NIR, MIR (medium frequency infrared) and FIR for the 
detection and classification of objects by mounting a sys- tem of four cameras on a cart to simulate a driving situation [11]. 
The study shows that the combined information from the four cameras allows better differentiation of the different types of 
objects for which the system (YOLO) is trained. In [12] the authors describe a lighter CNN (Convolutional Neu- ral Network) 
architecture for the real-time semantic image segmentation of street scenes acquired with a combination of RGB and thermal 
images. They show that the segmentation accuracy is increased by adding thermal information and that the algorithm can 
produce outputs with low latency for ADS when processed on high-end GPUs. All the above- mentioned works generally 
propose making use of multiple cameras with different sensitivity spectra to add “visual” information complementary to that 
of the visible spectrum. The applied detection and segmentation algorithms, however, remain identical or very similar to the 
techniques applied    to visible imaging, which makes such complex processing pipelines even heavier to compute. 

More recently, some researchers have started to explore the applicability of HSI cameras to the field of autonomous driving. 
The underlying idea is that the incorporation of richer spectral information can provide a distinct spectral fin- gerprint for each 
entity in the image. In addition to increasing the robustness of the detection systems, this approach could potentially allow for 
the application of lighter algorithms than those used for visible images (more  information  =  less processing). One of the 
earliest studies in this regard, although not specifically directed at ADS, draws interesting conclusions regarding the ability 
of images taken with hyperspectral cameras to detect people in urban environments [13]. In this work, a hyperspectral camera 
(225 bands in a 400 to 2500 nm range) is used to determine the capability of the system by analyzing the spectral separability. 
Basically the work concludes that the system is indeed capable of signifi- cantly improving the discrimination capacity in 
comparison with the simple use of the RGB bands, but more interestingly, it also concludes that the use of the VNIR spectrum 
(up to 1000 nm) offers similar results to using the full spectrum (up to 2500nm). This is very relevant to the present proposal 
since most current low-cost HSI snapshot cameras do not offer spectrometric information beyond 1000 nm. An active research 
group in the investigation of the use of HSI in ADS is the Active Vision Group (AGAS) of the University of Koblenz-Landau. 
They have published some papers on this topic reporting interesting results on image segmentation and terrain classification 
applied to images combining VIS and NIR spectrum information from low-cost snapshot cameras [14]-[16]. Apart from a 
few very recent foundational works [17], [20], little has been published on this specific topic. 

B. HSI datasets for ADS research 
At the time of the launch of this project there was only one HSI dataset specifically designed for ADS development: the 

Hyko dataset created by the above mentioned AGAS group. In the meantime, as far as we are aware, two more datasets have 
been reported. 

Hyko1: In 2017 Winkens et al. [18] presented Hyko, an annotated HSI dataset collected with both XIMEA VIS (470 to 
630 nm) and NIR (600 to 975 nm) snapshot cameras mounted on a moving car. Hyko1 contains 233,  25-band NIR images 
and 280, 15-band VIS images for terrain clas- sification. Annotation masks were generated by per-pixel labeling with five 
classes: “undefined”, “drivable”, “rough”, “obstacle” and “sky”. 

Hyko2: Contains 78, 25-band NIR images and corre- sponding annotated masks with semantic classes for urban scenes 
(11 classes) and masks with spectral reflectance labels (9 classes). It also contains 163 15-band VIS images and corresponding 
annotated masks with dense drivability labels (5 classes) and masks with spectral reflectance labels. 

Hyperspectral City v1.0: In 2019 You et al. [19] pre- sented Hyperspectral City, a dataset and benchmark for  urban 
autonomous driving scenes. Images were captured with a LightGene camera sensor, which provides 129 spectral channels in 
the 450 to 950 nm range. This high spatial and spectral resolution sensor produces cubes larger than 1GB. All images were 
taken over three days in June in varied urban settings and lighting conditions. Car driving speed was in the range of 20-50 
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Km/h with the camera working at 1 fps. The dataset contains a 367-image training dataset and a 58- image testing dataset, 
but only 300 images have been labeled. Annotation is focused on semantic segmentation with 10 classes, using coarse 
labeling for the training set and fine labeling for the testing set. 

HSI Road: In 2020 Lu et al. [20] presented HSI road, a HIS dataset for road segmentation. It comprises images taken both 
in urban and rural scenes. It contains 3,799 scenes with RGB and NIR bands as well as their respective annotation masks. 
NIR images were captured with a 15-band Ximea  camera (ranging from 680 to 960 nm). Image annotation has been created 
manually by polygon labeling tools. Only two classes are available: ”background” and ”road”. 

III. THE HSI-DRIVE DATASET 

A. System Setup 
The recording system setup for this project was extremely simple, consisting of just one Photonfocus MV1- D2048x1088-

HS02-96-G2 camera that incorporates an Imec 25-band VNIR sensor. As depicted in Fig. 1, the camera was mounted on a 
sucker holder on the front hood of the vehicle and connected to a laptop inside the car through an Ethernet cable. The 
Photonfocus MV1 camera is a small-  size snapshot camera with a GigEVision interface that can run at up to 42fps depending 
on its configuration. The Imec sensor is a 25-band VIS-NIR (600nm-975nm) multispectral sensor based on a CMOSIS 
CMV200 image wafer sensor with 5µmx5µm pixel size and 2048x1088 resolution. The spectral bands are obtained by a 
mosaic of Fabri-Perot filters that produce 2D images with 5x5 pixel windows.  

 

      
Fig. 1: The Photonfocus camera mounted on the front hood of the vehicle (top) and the recording laptop inside the car (bottom). 

 
The selected optics was an Edmund Optics 16mm C Series VIS-NIR fixed focal length lens. Since the sensor dimension is 

11.2 mm x 5.8 mm (2/3” format), this lens gives us a 30.9º FOV. To maximize depth of  field  and  avoid excessive vignetting 
we have set the aperture to f/8. Since the Photonfocus camera does not adjust the exposure time automatically, recordings 
have been done by setting two different exposure times depending on light conditions: 10ms for bright light conditions and  
20ms for dull days and early morning/sunset recordings. No longer exposure times have been used due to the appearance of 
phantom effects in fast-moving objects. A 12bit resolution has been used for raw binary information coding, while the camera  
throughput has been limited to 11fps to avoid excessive memory consumption. 

B. Raw Image Processing 
HSI snapshot mosaic cameras produce 2D gray-level images that must be transformed into hyperspectral cubes through a 

sequence of image preprocessing stages. The ap- plied preprocessing pipeline comprises raw image cropping, reflectance 
calculation, band extraction, spatial filtering, band alignment and band normalization. 

After the cropping and framing of the raw image, a reflectance signal is computed from the captured radiance values for 
a reliable comparison of the images’ spectra. The reflectance is calculated  as  a  normalized  radiance,  taking a white 
reference frame that is assumed to represent the maximal response. Besides the white balancing, a bias cor- rection to 
eliminate static noise is carried out by previously subtracting a dark reference frame from both the image frame and the white 
reference frame used for the normalization: 

 

𝜌𝜌 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜏𝜏1) −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟 (𝜏𝜏1)

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 (𝜏𝜏0) −  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟 (𝜏𝜏0)
𝜏𝜏1
𝜏𝜏0
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In this stage, the target image is split into 25 images with spatial resolution 409x216. Next, a median filter using a window 
size of 3x3 pixels is applied to every band frame. We have included this optional filtering stage since we have observed a 
definite positive effect on spectral separability and pixel classification indexes. 

After the preprocessing, the presence of the filter mosaic pattern is removed (demosaicing) by a processing that in- cludes 
a band extraction step followed by a band alignment (translation to center) performed by bilinear interpolation. Finally, it 
must be mentioned that we have not applied a spectral correction stage to the processing pipeline as we have not observed 
any improvement in the separability of the spectral signatures. 

C. Itineraries and Dataset Organization 
One of the main objectives of the creation of this database was to provide images of the maximum diversity regarding 

types of roads, light conditions and weather conditions. Thus, the database has been structured according to four main 
parameters: season of the year, time of day, weather condi- tions and type of road. The dataset contains videos recorded 
while driving along three road types: urban streets and roads, country and interurban roads, and highways. Driving outings 
have been scheduled for the four year seasons of the year and for three different times of day -dawn, full daylight and sunset- 
and under four weather conditions: sunny, cloudy, rainy/wet, and foggy. Images under heavy rain, ice or snow conditions 
have not been yet included. 

Each image in the database is linked to four files: 
• The binary raw file obtained from the camera (.bin). 
• A Matlab Level 5 file containing a three-dimensional matrix for a 25- band hyperspectral cube obtained from the raw 

file (.mat). 
• A Portable Networks Graphics (PNG) file containing a false color RGB image (.png). 
• A PNG file containing the annotated image mask or ground-truth image (.png). 

In addition, the dataset includes tarball (.tar) files containing raw video sequences of approximately 20 seconds from which 
the annotated images were extracted. 

D. Image Annotation 
This first version of the dataset (HSI-Drive v1.0) contains 276 annotated images from recordings taken during spring and 

summer. The total count of labeled pixels is 16,825,858. Version v1.1, incorporating images taken during fall and winter, 
will be released by the end of 2021. This dataset is aimed at the development of detection systems that directly rely on the 
separability of the spectral signature of materials and the features derived from  spectral  information,  thus  the labeling for 
the image annotation has been performed according to material surface reflectances as follows: 

• Class1 (1): Road 
• Class2 (2): Road marks 
• Class3 (3): Vegetation 
• Class4 (4): Painted Metal 
• Class5 (5): Sky 
• Class6 (6): Concrete/Stone/Brick 
• Class7 (7): Pedestrian/Cyclist 
• Class8 (8): Water 
• Class9 (9): Unpainted metal 
• Class10 (10): Glass/Transparent plastic 

 

Fig. 2: False RGB image example (left) and ground-truth (right) 
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TABLE I: Number of labeled pixels in the experimental image subset 
 

label 1 2 3 4 5 
#pixels 3,482,617 174,315 1,330,837 91,002 247,256 
label 6 7 8 9 10 

#pixels 383,955 30,162 1,327 29,495 32,134 

 
As a result, in an eventual HSI-supported ADS, the detec- tion of painted metal surfaces should focus the vision system on 

vehicles, road signs, traffic light poles etc. Unpainted metal detection should focus systems on guardrails, metallic fences, 
lighting poles etc. Per-pixel image annotation has been performed manually using simple polygon labelling tools. The 
annotation procedure has been very conservative, selecting only the areas that clearly belong to each class,   and leaving the 
edges and large areas of the background unlabeled, as illustrated in Fig. 2. This approach is aimed at maximizing ML  
algorithms  based  on  spectral  features to the detriment of techniques that rely on spatial features. However, it is planned that 
future new versions of the dataset will also include dense semantic annotation files. 

IV. ANALYSIS OF SEPARABILITY 

Spectral separability indexes provide information about how well a classification system could potentially differentiate the 
hyperspectral signature of the ten different item cat- egories or classes used for annotation. We have selected the 121 images 
of the dataset recorded in spring for this analysis. The distribution of labeled pixels per class contained in this data subset is 
shown in Table I. Due to an insufficient amount of data pertaining to Class8 (water), this class was removed. Various criteria 
to evaluate the separability of classes can be found in the literature. For remote-sensing appli cations, in particular, the 
Transformed Divergence and the JeffreysMatusita distance [21] are the most used metrics. We computed both indexes for 
the spring subset and verified the correlation of obtained values. Since the JM index estimates the probability of correct 
classification, in the following we will refer to this metric. Given 2 classes i, j the distance JM is defined by the following 
equation: 

𝐽𝐽𝐽𝐽𝑖𝑖,𝑗𝑗 = �2�1 − 𝑒𝑒−𝐵𝐵𝑖𝑖,𝑗𝑗��1/2
 

where Bij is the Bhattacharya distance which is defined by 
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with µi and µj , and Σi and Σj being the mean vectors and the covariance matrices of classes i and j respectively, and Σ = Σi+Σj  
The JM index is bounded between 0, complete overlapping of classes, and 2, complete separability. More specifically, a 

value between 0 and 1 indicates very poor separability; a value between 1.0 and 1.9 means moderate separability (i.e., the two 
signatures are separable, to some extent) and a value between 1.9 and 2.0 implies good separability. 

Table II shows the JM distance e for every pair of classes. The last row shows the mean value for each class. Thus, for 
example, if we pay attention to the mean values, classes 5 (Sky) and 1 (Road) are the ones with the best separability from the 
rest of classes, showing values close to 2.0. In contrast classes 9 (Unpainted metal) and 4 (Painted Metal) are the most 
overlapped between them and with the rest of classes in average. The rest of the classes present intermediate values. 

 
TABLE II: JM distance for each pair of classes 

 
 1 2 3 4 5 6 7 9 10 

1  1.95 1.96 1.91 2.00 1.45 1.84 1.93 1.71 
2 1.95  1.88 1.27 1.93 1.77 1.80 1.64 1.73 
3 1.96 1.88  1.58 2.00 1.72 1.35 1.64 1.78 
4 1.91 1.27 1.58  1.95 1.36 1.28 0.90 1.23 
5 2.00 1.93 2.00 1.95  1.99 2.00 1.99 1.97 
6 1.45 1.77 1.72 1.36 1.99  1.36 1.28 1.13 
7 1.84 1.80 1.35 1.28 2.00 1.36  1.32 1.43 
9 

10 
1.93 
1.71 

1.43 
1.73 

1.71 
1.78 

0.92 
1.23 

1.98 
1.97 

1.55 
1.13 

1.55 
1.43 

 
1.26 

1.64 

Mean 1.84 1.75 1.74 1.44 1.98 1.51 1.55 1.50 1.53 
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V. CLASSIFICATION EXPERIMENTS 

Some basic pixelwise classification experiments were car- ried out on 62 images randomly selected form the experimental 
spring subset (3,778,485 labeled pixels in total). Only original spectral signatures were used as inputs and no band selection 
neither feature extraction procedures were applied. Obviously, segmentation results can be eventually improved by using the 
more sophisticated machine learning schemes that incorporate combined spectral-spatial feature extraction techniques or by 
essaying deep learning models. However, such analysis is beyond the  scope  of  this  paper  and will be addressed in future 
publications. The intention of this preliminary experimentation was to show the discrimination capacity of baseline ML models 
such as simple shallow ANN (Artificial Neural Networks) with low computational cost. With this aim, in the following 
subsections we show some results obtained from four different classification experiments performed when training shallow 
ANN classifiers. 

A. Experimental setup 
After some preliminary analysis, an ANN topology with two hidden layers (25-L1-L2-m) was selected as the base model 

for the classifiers, where L1 and L2 are the number of neurons in the first and second hidden layers respectively and m is the 
number of different classes to be categorized at each experiment. For each experiment, several networks were trained by means 
of the Levenberg-Marquardt backpropagation algorithm to maximize the classification’s overall accuracy (OA) in the 
validation set. Both OA and the average accuracy (AA) of pixel classification were adopted as performance metrics. Training 
sets were created including randomly selected 50,000 pixels, when available, from each class selected for classification at 
each experiment. Of these, 10,000 pixels were used for the validation set to prevent overfitting. When insufficient data were 
available for a certain class, the corresponding training subset was reduced: 25,000 pixels for Class7, and 12,000 pixels for 
both class9 and Class10. This means that, out of the 3,778,485 pixels in the experimental dataset, a maximum of 340,000 
were used for training (10%), while the rest of available data were used for testing: this is quite a challenging setup. 

B. Experiment 1: drivable/no-drivable 
In the first experiment the labels were grouped to train   the ANNs with only three classes: “road”, “road marks” and 

“other”. This system acts therefore as a sort of drivable region detector that could be enhanced with lane departure and 
trajectory generator capabilities. The training set for this experiment contained 150,000 out of 3,778,485 pixels, i.e., only 4% 
of available data. The obtained classification figures for this and the subsequent experiments are summed up in table III. As 
expected from the separability measures shown in Table II, high classification accuracy is achieved for both Class1 (road) 
and Class2 (road marks). Figure 4 shows the pixelwise segmentation of three example images for highway, road and urban 
scenes. To enhance image segmentation a two-stage spatial regularization (SR) algorithm was applied to the ANN output: 
first, the pixels classified with a low confidence (ANN output values below 0.8) were re-labeled as ”don’t know”, and then 
the SR process assigned a new label to those pixels by a majority voting criterion over 5x5 pixel windows. As can be seen, 
although the obtained results are generally correct, the vehicles on the road and urban scenes present many misclassified 
pixels belonging to the ”road marks” category. This is due to the highly reflective surfaces of the car bodies painted in white. 

C. Experiment 2: drivable/road signals-vehicles 
In the second experiment the target categories to be detected were “road”, “road-marks”, “painted-metal” and “other”. 

This system should provide information to perform not only as a lane tracking system, but also to focus the system on image 
areas that potentially contain vehicles, road signals and other painted metallic surfaces. The training set for this experiment 
contained 200,000 pixels, i.e. 5.3% of available data. In the example highway and road test scenes, the system correctly 
detects road signals and the presence   of vehicles, although there are some misclassified pixels in the background (see Fig.5). 
However, in the more complex urban scene practically all the background (except the sky) has been classified as painted 
metal. This is not surprising since, according to the figures in Table II, the separability of class4 with some of the rest of 
the classes is quite poor. 

D. Experiment 3: drivable/road signals-vehicles/pedestrians 
In this experiment, the pixels labeled as “pedes- trian/cyclist” are incorporated into the training set as a sepa- rate class. 

Thus, the resulting ADS could add a focus on any people at sight to the capacities described in Experiment 2. The training 
set for this experiment contained 225,000 pixels 
i.e. 6% of available data. The obtained classification figures are summed up in Table III. Accuracy values are not so good 
for Class4 and Class7. These results are consistent, indeed, with the figures in the separability tables. As can be observed in 
the sample images in Fig. 6, highway and road scenes show some additional false positives for the ”pedestrian”. In the urban 
scene, pedestrians are quite efficiently segmented, but here again the segmentation of the image background is faulty. 
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E. Experiment 4: all classes 
The last experiment explored the potential of these simple classifiers to produce a complete segmentation of the images 

comprising all categories used in the labeled image dataset (except for the ”water” class, as explained above). As shown in 
Table III, there are some  classes  with  testing  accura- cies of over 90% (”road”,”vegetation”,  and  ”sky”)  while the classes 
”road marks”, ”painted metal”, ”concrete-stone” and ”pedestrian” show accuracy figures under 90%. Two classes, 
”unpainted metal” and ”glass/transparent plastic”, have accuracy figures under 80%. However, it must be taken into account 
that these are precisely the two classes that contribute the least amount of data to the training set. In Fig. 7 we see qualitatively 
quite acceptable image segmentation for the highway and road scenes. In the urban scenes, road, road marks and items in the 
foreground are quite correctly detected. Nevertheless, the buildings in the background are misclassified, although the sky 
and the receding vehicle are correctly detected. 

 
TABLE III: Architecture and performance evaluation of the ANN classifiers: 
model hyperparameters, total number of adjustable parameters, and test 
accuracy figures for each experiment (Acc.0 applies to the ”other” class) 

 
 Exp.1 Exp.2 Exp.3 Exp.4 

ANN 25-25-300-3 25-25-300-4 25-25-300-5 25-25-300-9 
#params 9.4K 9.7K 10K 11.2K 
Acc.1 % 95.83 94.34 93.37 91.71 
Acc.2 % 93.86 91.49 90.56 87.64 
Acc.3 % NA NA NA 94.37 
Acc.4 % NA 91.16 88.87 84.13 
Acc.5 % NA NA NA 98.81 
Acc.6 % NA NA NA 84.14 
Acc.7 % NA NA 84.91 82.48 
Acc.9 % NA NA NA 72.08 

Acc.10 % NA NA NA 73.34 
Acc.0 % 94.10 90.28 88.04 NA 
OA % 95.15 92.79 91.36 92.16 
AA % 94.60 91.82 89.16 85.41 

 

VI. CONCLUDING REMARKS 

The use of HSI sensors in ADS is expected to grow substantially in the following years. The incorporation of hyperspectral 
information will make it possible to improve the accuracy and robustness of these systems as well as, eventually, reduce the 
computational burden of current image processing pipelines. To meet these objectives it will be necessary, however, to deepen 
the research on the HSI processing applied to ADS. The HSI-Drive dataset has been created with the desire to contribute to 
the research in this field. Unlike other recently reported similar datasets, HSI- drive has been designed to provide a structured 
image dataset of wide diversity in terms of driving scenarios, lighting conditions, and weather conditions. Current annotation 
of images has been focused on the spectral reflectance characteristics of various material surfaces relevant to the development 
of ADS. In this work, we show that even a simple perpixel processing of pure spectral information obtained in the NIR 
spectrum can produce quite accurate image segmentation with baseline neural classifiers. The use of more sophisticated 
algorithms that incorporate feature extraction stages, together with spatial/contextual information should enhance system 
performance. The HSI-drive dataset will evolve in the years to come. A larger version of the dataset that will incorporate new 
hyperspectral videos and annotated images corresponding to the winter and fall seasons is currently under development and 
is expected to be ready by the end of the year. We also plan to add dense semantic labeling of images in the future. 
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F. Timm, W. Wiesbeck, and K. Dietmayer, ”Deep Multi-Modal Ob- ject Detection and Semantic Segmentation for Autonomous Driving: Datasets, 
Methods, and Challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1341-1360, March 2021. 

[2] E. Yurtsever, J. Lambert, A. Carballo and K. Takeda, ”A Survey of Au- tonomous Driving: Common Practices and Emerging Technologies,” IEEE 
Access, vol. 8, pp. 58443-58469, March 2020. 

[3] M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, ”Modern Trends in Hyperspectral Image Analysis: A Review,” IEEE Access, vol. 6, 
pp. 14118-14129, March 2018. 

[4] M. West, J. Grossmann, and C. Galvan, ”Comercial Snapshot Spectral Imaging: The Art of the Possible”, Mitre Technical report, Mitre Corporation, 
September 2018. 

[5] P. Govardhan and U. C. Pati, “ NIR image based pedestrian detection in night vision with cascade classification and validation,” in Proc.  Int. Conf. 
on Advanced Communication Control and Computing Tech- nologies, Tamilnadu, India, 2014, pp. 1435-1438. 

[6] M. Velte, ”Semantic image segmentation combining visible and near infrared channels with depth information.” Ph.D. dissertation, Bonn- Rhein-Sieg 
University of Applied Sciences, 2015. 

[7] E. S. Jeon, J.-S. Choi, J. H. Lee, K. Y. Shin, Y. G. Kim, T. T. Le, and 
K. R. Park, “Human detection based on the generation of a background image by using a far-infrared light camera,” Sensors vol. 15, no. 3, pp.6763–
6788, March 2015. 
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Fig. 3: False color example images generated from HSI cubes: a highway scene (left), a road scene (centre), and an urban 
scene (right) 

 

 
 

 
Fig. 4: Image segmentation examples for experiment 1: ground-truth images (top) and segmented images (bottom) 

 

 

 
Fig. 5: Image segmentation examples for experiment 2: ground-truth images (top) and segmented images (bottom) 
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Fig. 6: Image segmentation examples for experiment 3: ground-truth images (top) and segmented images 
(bottom) 

 

 

Fig. 7: Image segmentation examples for experiment 4: ground-truth images (top) and segmented images 
(bottom) 

 


