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Abstract. This paper studies the influence that job placement may have
on scheduling performance, in the context of massively parallel comput-
ing systems. A simulation-based performance study is carried out, using
workloads extracted from real systems logs. The starting point is a par-
allel system built around a k-ary n-tree network and using well-known
scheduling algorithms (FCFS and backfilling). We incorporate an alloca-
tion policy that tries to assign to each job a contiguous network partition,
in order to improve communication performance. This policy results in
severe scheduling inefficiency due to increased system fragmentation. A
relaxed version of it, which we call quasi-contiguous allocation, reduces
this adverse effect. Experiments show that, in those cases where the ex-
ploitation of communication locality results in an effective reduction of
application execution time, the achieved gains more than compensates
the scheduling inefficiency, therefore resulting in better overall perfor-
mance.

1 Introduction

Supercomputer centres are usually designed to provide computational resources
to multiple users running a wide variety of applications. Users send jobs to a
scheduling queue, where they wait until the resources required by the job are
available. These jobs may vary from large parallel programs that need many pro-
cessors, to small sequential programs. The scheduler manages system resources,
taking into consideration different policies that may restrict its use in terms of
maximum number of processors or maximum execution time. Other restrictions
may be implemented such as user or group priorities, quotas, etc.

Generally, site performance is measured in terms of the utilization of the
system and the slowdown suffered by jobs while waiting in the queue until the
required resources become available. This is the reason why a variety of schedul-
ing policies [1] and allocation algorithms [2] [3] [4] have been developed aiming
to minimize the number of nodes that remain idle, and also the job waiting
times. Scheduling policies also decide the order in which jobs are allowed to
run. Scheduling decisions may be based on different variables, such as job size,
user priority or system status. Allocation algorithms map jobs onto available
resources (typically, processors). Locality-aware policies select resources taking
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into account network characteristics, such as its topology or the distance between
processors.

The most commonly used scheduling policies are FCFS (First-Come First-
Serve) and FCFS + backfilling, sometimes with variations. The FCFS discipline
imposes a strict order in the execution of jobs. These are arranged by their arrival
time and order violations are not permitted, even when resources to execute the
first job are not available but there are enough free resources to execute some
other (or others) in the queue. The main drawback of this policy is that it
produces severe system fragmentation because some processors can remain idle
during a long time due to the sequentially ordered execution of jobs. This time
could be used more effectively running less-demanding jobs, thus achieving a
performance improvement.

With the goal of minimizing the effect of this strictly sequential execution or-
der, several strategies have been developed [1], being backfilling the most widely
used due to its easy implementation and proven benefits. This policy is a variant
of FCFS, based on the idea of advancing jobs through the head of the queue.
If some queued jobs require a smaller amount of processors than the one at the
head, we can execute them until the resources required by the job at the head
become available. This way, utilization of resources is improved because both
network fragmentation and job waiting times decrease. The reader should note
that, throughout this paper, we will often use the word network to refer to the
complete parallel system.

Network fragmentation caused by scheduling algorithms is known as external
fragmentation [5]. But a different kind of fragmentation appears in topologies like
meshes or tori when the partitions reserved to jobs are organized as sub-meshes
or sub-tori; for example, to allocate a job composed by 4x3 processes, some
algorithms search for square sub-meshes, being 4x4 the smallest size that can be
used to run the job. In this case, four processors reserved for the job will never
be used. This effect is named internal fragmentation [5]. Some job allocation
algorithms try to minimize this effect. However, this work does not consider this
effect, because each parallel job will be assigned to the exact number of required
nodes.

Neither FCFS nor backfilling are allocation algorithms, as they do not take
into account the placement of job processes onto network nodes. In a parallel
system, application processes (running on network nodes) communicate inter-
changing messages. Depending on the communication pattern of the application,
and the way processes are mapped onto the network, severe delays may appear
due to network contention; delays that result in longer execution times. If we
have several parallel jobs running in the same network, each of them located ran-
domly, communication locality inside each job will not be exploited; and what is
more, messages from different applications will compete for network resources,
greatly increasing network contention. An effective exploitation of locality re-
sults in smaller communication overheads, which reflects in lower running times.
Note that searching for this locality is expensive in terms of scheduling time,
because jobs cannot be scheduled until contiguous resources are available (and
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allocated), so that network fragmentation increases. In order to avoid this ef-
fect, we propose the utilization of quasi-contiguous allocation schemes in which
some restrictions of the purely-contiguous policy are relaxed, allowing the non-
contiguous allocation of part of the required network nodes. This way network
occupancy can be increased, at the cost of some penalty in terms of application
run times.

A trade-off has to be found between the gains attainable via exploitation of
locality and the negative effects of increasing fragmentation. This is precisely the
focus of this paper. We study only the placement in k-ary n-tree topologies [6],
but the tools and methodology presented here could be extended to other topolo-
gies such as meshes or tori. Our final goal is to demonstrate that the introduction
of locality-aware policies in the schedulers may provide important performance
improvements in systems with multiple users and different applications.

The rest of the paper is organized as follows. In Section 2 we discuss some
previous work on scheduling and allocation policies, describing in Section 3 those
used in this paper. The simulation environment and the workloads used for the
experiments are described in Section 4. Section 5 analyze a few preliminary
experiments that provide evidence of the pros and cons of consecutive allocation
schemes. These experiments are further elaborated in Section 6, that focuses on
the search of a trade-off between application speedup and scheduling slowdown.
Section 7 closes the paper with some conclusions and future lines of research.

2 Related Work

Extensive research has been conducted in the area of parallel job scheduling.
Most works are focused on the search of new scheduling policies that minimize
job waiting times, and on allocation algorithms that minimize network fragmen-
tation. In [1] authors analyze a large variety of scheduling strategies; however,
none of them take into account virtual topologies of applications (the logical way
of arranging processes to exploit communication locality) or network topology.

To our knowledge, only [5] describes a performance study of parallel applica-
tions taking into account locality-aware allocation schemes. The starting point
of this job is the fact that, in schedulers optimized for machines with certain
network topologies (they focus on meshes and tori), allocation was always done
in terms of sub-meshes (or sub-tori). This policy optimizes communication in
terms of locality and non-interference, but causes severe fragmentation, both in-
ternal and external. Authors do not use scheduling with backfilling, a technique
that would partly reduce this undesirable effect. However, they test a collection
of allocation strategies that sacrifice contiguity in order to increase occupancy.
They claim that the effect on application performance attributable to the partial
loss of contiguity is low, and more than compensated by the overall improvement
in system utilization.

A more recent paper [7] evaluates the positive impact that locality-aware
allocations have on applications performance, but focused on three particular
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applications, running on supercomputers connected by 3-D interconnection net-
works.

Part of our experiments corroborates the conclusions of the cited papers.
However, our work differs from them in several important aspects. Previous
research work shows that, depending on the communication pattern of the ap-
plication, contiguous allocation provides remarkable performance improvements
[8]. Therefore, we do not make extensive use of non-contiguity to increase net-
work utilization; instead, we incorporate backfilling scheduling policy into the
scheduler. Additionally, we focus on k-ary n-trees, instead of meshes or tori.

A review of schedulers in use in current supercomputers, such as Maui, Sun
Grid Engine, PBS Pro and SLURM, shows that they do not implement contigu-
ous allocation strategies. Some of them provide methods for the system adminis-
trator to develop their own strategies but, in practice, this is rarely done. To our
knowledge, the only current scheduler that tries to maintain locality is the one
used by the BlueGene family supercomputers [9]. This scheduler puts tasks from
the same application in one or more midplanes of 8x4x4 nodes which decreases
network contention and allows to exploit locality. In contrast, the scheduling
strategy used on Cray XT3/XT4 systems (also a custom-made 3D tori) simply
gets the first available compute processors [10].

3 Scheduling and Placement Policies

We have used simulation to carry out an analysis of the impact that contiguous
and quasi-contiguous allocation strategies have on scheduling performance. Our
simulator implements two different scheduling policies (FCFS with and without
backfilling), as well as three allocation algorithms (non-contiguous, contiguous,
and quasi-contiguous) implemented for k-ary n-trees. The workloads used to
feed the simulations have been obtained from actual supercomputers. They are
available at the Parallel Workload Archive [11].

The details of the scheduling algorithms used in the experiments are as fol-
lows:

1. FCFS: In this policy, jobs are processed in strict order of arrival and exe-
cuted when there are enough available resources. The scheduling process is
stopped until this condition is reached, even if there are enough free resources
that could be allocated to other waiting jobs.

2. Backfilling: This strategy permits the advance of jobs, even when they are
not at the head of the queue, in such a way that network utilization in-
creases, but without delaying the execution of the jobs that arrived first.
The mechanism works as follows. A reservation for the first job in the queue
is done, if enough resources are not currently available; the reservation time
is computed taking into account the estimated termination times of cur-
rently running jobs. Other waiting jobs demanding fewer resources may be
allowed to run while the first one is waiting. When the time of the reser-
vation is reached, the waiting job has to run; if at that point resources are
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not available, some running, advanced jobs must be killed, because other-
wise the reservation would be violated. This way, the starvation of the first
job is avoided. Reservations are computed using a parameter called User
Estimated Runtime, which represents an user-provided estimation of the job
execution time [12]. In some cases the scheduling system itself may provide
this value, based on estimations made over the historical system logs [13].

Other scheduling methods have been proposed in the literature, such as SJF
(Shortest Jobs First [1]) which selects the jobs to be executed by their size instead
of their arrival time, and several variations of backfilling (see [1]). However, the
most commonly used algorithm in production systems is the EASY backfilling
[1], also known as aggressive backfilling. EASY performs reservations only over
the first job in the queue. This is the policy that we use in this study.
Regarding the allocation algorithms, the following are included in the study:

1. Non-contiguous: This policy performs a search of free nodes making a
sequential search over them, ignoring the locality. This is the most used
technique in commercial systems, like the Cray XT3/XT4 systems, that
simply gets the first available compute processors [10]. This scheme provides
a flat vision of the network, ignoring its topological characteristics and the
virtual topologies of scheduled applications [4]. Note that in the long run it
behaves as a random allocation of resources.

2. Contiguous: In this scheme job processes are allocated to nodes maintain-
ing them as close as possible. To minimize the distance between processes
(nodes) in a k-ary n-tree, we have defined the concept of level of a job. This
level is related to the number of stages in the tree (n), and the number of
ports per switch (k up and k down) [6]. Stage 1 corresponds to switches
at the bottom of the tree, i.e., those directly connected to compute nodes.
Small jobs of less than k£ nodes can be allocated to a collection of nodes
attached to the same stage-1 switch, without requiring communication in-
volving switches in upper stages of the tree. These are level-1 jobs. However,
jobs larger than &k will require the utilization of switches at stages 2, 3, etc.
In general, up to k* nodes can be allocated using stage-i switches.

3. Quasi-contiguous: This algorithm is a relaxed version of the previous one.
It searches nodes that are contiguously allocated but, if the required number
of free nodes is not found at the job level, it searches for the remaining nodes
using switches one level above; contiguity is partly kept. The threshold of
required-but-not-found free nodes that triggers the search on a higher level is
a parameter provided to the algorithm, and the value providing best results
is highly dependent on the size and type of the jobs that are executed in the
systems. This parameter, which we call ¢qct (quasi-contiguity threshold) is
actually a percentage of tasks allowed to be allocated using one extra level
of the tree. Using this equation

i
mazjcy = [% X sizej-‘ . (1)
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the algorithm computes max;cs, the maximum number of tasks of job J
allowed to be allocated using switches at the next level.

The utilization of additional stages of the tree may increase network con-
tention, so we try to keep it under control by reducing the number of mes-
sages traversing high-level switches. To do so, we maintain the maximum
possible number of nodes under switches belonging to the same level; actu-
ally, in favorable conditions this algorithm behaves exactly like the purely
contiguous one. However, as some tasks can be assigned to non-contiguous
portions of the network, external fragmentation is reduced.

The contiguous algorithm starts computing the level to which the job belongs,
and the size of this level (level  size, the number of compute nodes below a single
switch located at that level, which is the maximum size of a job that can be
contiguously allocated below that level). After this preliminary step, the search
of free nodes is performed, in groups of level size nodes following a first fit
allocation scheme, because this way all the allocated nodes would be contiguous,
that is, connected by the same switch or switches at the required level. If the
complete tree is traversed but the necessary number of nodes has not been found,
the job cannot be allocated. For example, in a 4-ary 3-tree topology, if we need
to allocate a 4-node job, we have to find a completely empty stage-1 switch. For
a 6-node job (level-2) we need to find 6 free nodes that are connected using only
stage-1 and stage-2 switches.

The quasi-contiguous algorithm requires two steps. Firstly, it performs a
search for contiguous partitions as we stated before. If not found, because there
are not enough free nodes at the job level, and the percentage of non-allocated
jobs is below the gct threshold, the search continues in the level above. For
example, in a 4-ary 3-tree topology, if we need to allocate a 4-node job, we start
searching for completely empty stage-1 switches but, if none is available, another
search is performed using stage-2 switches.

In Figure 1 we represent some simple allocation examples in a 4-ary 3-tree
topology. We can observe how Job 1, of size 4, can be allocated into a single
stage-1 switch; this is a contiguous allocation. The level of Job 2, of size 6, is 2;
this means that it is allocated to two stage-1 switches that directly connected
via switches at stage 2. Therefore, allocation of Job 2 is also contiguous. Job 3
is quasi-contiguously allocated because it should be a level-1 job (size is 4) but
it requires the utilization of stage-2 switches.

4 Description of the Workloads

As we stated before, in this work we evaluate the performance of schedulers
using logs of workloads extracted from real systems that are available from the
PWA (Parallel Workload Archive, [11]). These logs have information about the
system as described in the SWF format (Standard Workload Format) [14]. In
this study we have used mainly the following fields:

1. Arrival Time: The timestamp at which a job arrives to the system queue.
Logs are sorted by this field.
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Allocation examples in a 4-ary 3-tree
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Fig. 1. Top: a 4-ary 3-tree; compute nodes are not represented for the sake of clarity.
Bottom: a section of the network, with some examples of allocated jobs.

2. Execution Time: The interval of time that the job was running in the
system. In order to simulate the improvement of performance due to the ex-
ploitation of communication locality, we scale this field by applying a speed-
up factor.

3. Processors: Number of processors required by the job.

4. User Estimated Runtime: This information is used only by the backfilling
scheduling policy and represents the time that the user estimates that the
job will need to finish.

5. Status: This field represents the status of a job. Jobs can fail, or be cancelled
by the user or by the system, before or after they started the execution. Some
studies do not include in the simulations those jobs that were not successfully
completed (failure or cancelation), but we consider important all the jobs
because they stayed in the queues, delaying the execution of other jobs.

In our experiments, all times are measured in minutes. We only use workloads
that provide User Estimated Runtime information, because of the need of this
parameter to perform a backfilling scheduling policy.
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In [15], the authors suggest a metric that measures the load managed by the
scheduler. Selecting workloads with different values of this metric allows us to
check our proposals on different scenarios. The load is computed as follows:

. Sstze; X runtime,;
load = (ZJGJ ! ]> (2)

P x (Tend - Tsta'r‘t)

where P is the number of processors, T¢,q4 is the last termination time and Tsq¢
is the last arrival time of the first 1% of the jobs. This 1% of firstly arrived jobs
and the jobs that terminate after the last arrival are removed, in order to reduce
warmup and cooldown effects.

From the workloads available at the PWA, we have selected these three:

1. HPC2N (High Performance Computing Center North). This is a
system located in Sweden, with 240 compute nodes. It uses the Maui sched-
uler. The workload log contains information of 527,371 jobs. Load: 0.62.

2. LLNL Thunder (Lawrence Livermore National Laboratory). This
is a Linux cluster composed by 4008 processors in which the nodes are con-
nected by a Quadrics network. The scheduler used in this system is Slurm.
The log is composed by 128,662 job records. Load: 0.76.

3. SDSC BLUE(San Diego Supercomputer Center). This system is an
IBM SP located in San Diego, with 1152 processors. The scheduler in use
is Catalina, developed at SDSC, and performs backfilling. The log contains
information of 243,314 jobs. Load: 0.86.

We have simulated these workloads in k-ary n-trees adapted to the system
size. For the first workload we have simulated a 4-ary 4-tree with 256 nodes.
For the other two we have used a 4-ary 6-tree with 4096 nodes. The number of
nodes of the topologies does not match with the nodes of the workloads, so we
have considered that the extra processors are not installed and they are ignored
in the simulation.

5 Costs and Benefits of Contiguous Allocation Policies

Parallel applications performance depends on many factors, such as communi-
cations patterns, distance between the application tasks, network contention,
etc. The first one is an application-dependent characteristic, but the others are
affected by the way the application is allocated.

A contiguous allocation strategy reduces the distance between the applica-
tion tasks, to accelerate the interchange of messages and to reduce network
utilization. An important, additional effect is that interference with other run-
ning applications is also reduced. This interference, that causes contention for
network resources, may result in severe performance drops. Therefore, the con-
tiguous allocation of a job improves the overall performance of the system, not
only of that job.
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In [8], the authors evaluate the possible benefits of contiguity for a collection
of parallel applications. These benefits are highly dependent on the communica-
tion patterns of the applications. However, as we will show, the search of contigu-
ity can be very expensive in terms of scheduling time. The execution of jobs may
be delayed for a long time, until the required resource are available, the external
fragmentation increases and the overall system utilization suffers. To minimize
these negative effects we have introduced the concept of quasi-contiguity, a re-
laxed version of the contiguous allocation scheme that is expected to be less
harmful in terms of scheduling time, while providing the same (or nearly the
same) benefits in terms of application acceleration.

In order to validate the benefits of a contiguous and quasi-contiguous alloca-
tion policy, we have carried out several simulations using the INSEE simulator
[16]. This tool does not simulate a scheduling algorithm, just the execution of a
message-passing application on a multicomputer connected via an interconnec-
tion network. To feed this simulator we need traces of the messages interchanged
by the communicating tasks. We have obtained these traces using a selection of
the well-known NAS Parallel Benchmarks (NPB [17]). INSEE performs a de-
tailed simulation of the interchange of the messages through the network, con-
sidering network characteristics (topology, routing algorithm) and application
behavior (causality among messages). The output is a prediction of the time
that would be required to process all the messages in the application, in the
right order, and including causal relationships. Therefore, it only measures the
communication costs, assuming infinite-speed CPUs. When using actual ma-
chines, a good portion of the time (ideally, most of the time) would be devoted
to CPU processing, and the impact of accelerated communications in overall
execution time would be smaller.

The simulated topology is a 4-ary 4-tree, with 256 nodes. Instead of one
application, we simulate the simultaneous execution of sixteen instances (jobs)
of the same application (actually, trace), each one of size sixteen. The sixteen
jobs have been allocated onto the network using three strategies:

1. Contiguous: Each job is allocated onto four level-2 switches, so the com-
munications between tasks of the same job never need links or switches at
level 3.

2. Quasi-Contiguous: In this strategy, we allow a partial non-contiguous al-
location of the job tasks. The four experiments performed allow the non
contiguous allocation of 1, 2, 3 or 4 tasks of each job, respectively.

3. Non-Contiguous: Tasks of each job are distributed along all the switches
at level 4 (the maximum level of this tree). This means that intra-job com-
munications do use level-4 switches, and also that messages of different jobs
compete for network resources.

Figure 2 shows the results of the INSEE simulations in terms of execution time.
The benefits of contiguous allocation strategies are clear: non-contiguously al-
located applications run between 2 and 3 times slower. Regarding the quasi-
contiguous allocation, we can appreciate that performance is always good, in
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Fig. 2. Execution time for different allocation policies simulating the traces of some
NAS Parallel Benchmarks in a 4-ary 4-tree topology. Values are normalized, so that 1
represents the contiguous allocation.

some cases, quite close to that obtained with purely contiguous allocation. These
results confirm our expectations: a good allocation strategy can substantially re-
duce the execution time of a set of applications sharing a parallel computer.

Now we will asses the real cost of contiguity on scheduling. Using the schedul-
ing simulator with the selected workloads (those from the PWA), we measure
application waiting time for FCFS and backfilling scheduling algorithms, for
purely contiguous allocation and quasi-contiguous allocation for four values of
get: 10, 20, 30 and 40%. Results are plotted in Figure 3. Note that values are
relative to those obtained with the same workload and scheduling using non-
contiguous allocation. Results are devastating: waiting times can be up to 100
times worse if contiguity is a requirement. Values are better for quasi-contiguity,
but still bad. However, note that we have not taken into consideration the ac-
celeration that jobs experience due to better allocation. We explore this issue in
the next section.
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Fig. 3. Cost of contiguous and quasi-contiguous allocation, in terms of waiting time.
A value of 1 would represent the average job waiting time for the non-contiguous
allocation with the same scheduling policy.

6 Tradding Off Costs and Benefits of Contiguous
Allocation

In this section we carry out a collection of experiments to evaluate in more de-
tail the effect that contiguous allocation may have on scheduling performance. In
these experiments we consider that contiguous allocation is able to accelerate the
execution of parallel jobs. However, the actual values of attainable speed-ups are
not available to us — they depend strongly on the communication characteristics
of the applications, something that requires an exhaustive knowledge of each and
all the applications included in the workload logs. We do not have that knowl-
edge. For this reason, we introduce speed-up as a parameter of the simulation.
With this setup we are able to know to what extent a certain level of appli-
cation speed-up compensates the performance drop introduced by a restrictive
allocation policy.

We have studied several combinations of scheduling and allocation policies.
We evaluate them in terms of these two measurements:

1. Job waiting time. The time jobs spent in the queue.
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2. Job total time. All the time spent in the system, which includes the time
waiting at the queue and the execution time.

As stated before, when using contiguous and quasi-contiguous allocation, a
speed-up factor has been applied to reduce the execution time. Note again that
applying a speed-up factor to a running time improves not only the application
finish time, but also reduces the time that the jobs uses network resources;
because of this, the scheduling performance is increased too. In the simulations
we use the workloads from the PWA described in Section 4.

The quasi-contiguous strategy has been evaluated with four values of gct.
Results are depicted in Figures 4, 5, 6 and 7. Note that, as the range of values
is very wide, we have used a logarithmic scale in the Y axis of all figures. We
represent the averages of total time (waiting plus running) and, in some cases,
waiting time alone. In each graph we can see six lines, one per allocation policy.
Tested speed-up factors range from 0 to 50. When this factor is 0 it means that,
although the scheduler seeks contiguity, using it does not accelerate program
execution. In all other cases we accelerate the execution times reported in the
logs using the indicated speed-up factors (a value of 50 means that the appli-
cation runs a 50% faster with that allocation scheme). Obviously, we cannot
assume any acceleration with non-contiguous allocation, and for this reason the
corresponding line is flat.

Let us now pay attention to Figure 4, where the LLNL workload is studied
in detail. In all scheduling-allocation combinations, results with speed-up=0 are
as appalling as described in the previous section. However, when this value in-
creases (that is, when applications really run faster when allocated contiguous
resources) the picture changes. At speed-up values between 5% - 30% the con-
tiguous and quasi-contiguous approaches show their potential. It is clear that the
quasi-contiguous strategies prove beneficial at lower speed-ups than the purely
contiguous. Also, note that if the scheduler uses backfilling, global system effi-
ciency is higher (the workload is processed faster), and the thresholds at which
contiguity is advantageous are lower.

Figure 5 shows the results of the same experiments, but from a different per-
spective. Only waiting times are shown. A direct comparison with the previous
figure help us to determine which part of the total time is spent in the queue,
and which part is running time. For the cases with small speed-ups, most of the
time is waiting time. When applying a speed-up factor running time is reduced
accordingly, but waiting time is also reduced.

In Figures 6 and 7 we have summarized results for workloads HPC2N and
SDSC. To be succinct, and because the qualitative analysis performed with
LLNL is still valid, we only show results of total times for the FCFS and back-
filling. For the SDSC workload, the threshold at which contiguous and non-
contiguous allocation starts being beneficial falls between 15% and 25% (higher
than that of LLNL). Similar, although slightly lower, values required by HPC2N
are between 10% and 25%.

In all figures, we can see the benefits of using the quasi-contiguous policy. The
scheduler performs better and, as described in the previous section, the expected
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Fig. 4. Results of the experiments with the LLNL workload for FCFS and backfilling
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Fig. 6. Results of the experiments with the SDSC workloads for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Total Time (Wait Time +

Execution Time) at different speed-ups. The scale of the Y axis is logarithmic.
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Fig. 7. Results of the experiments with the HPC2N workload for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Total Time (Wait Time +
Execution Time) at different speed-ups. The scale of the Y axis is logarithmic.
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speed-ups would be only slightly lower that those attainable with contiguous
allocation. We have to remark that the implementation of this strategy tries
always to find first a contiguous allocation, and only uses non-contiguous nodes
as the last alternative. Therefore, if we estimate that we can obtain a certain
speed-up when using a given value of gct, we will actually obtain better speed-
ups, because in some cases the scheduler will obtain a contiguous allocation for
the jobs.

7 Conclusions and Future Work

Most current supercomputing sites are built around parallel systems shared be-
tween different users and applications. The optimal use of resources is a complex
task, due to the heterogeneity in user and application demands: some users run
short sequential applications, while others launch applications that use many
nodes and need weeks to be completed.

Supercomputers are expensive to build and maintain, so that conscious ad-
ministrators try to keep utilization as high as possible. However, the efficient use
of a parallel computer cannot be measured only by the lack of unused nodes.
Other utilization characteristics, although not that evident, may improve the
general system performance.

In this paper we have studied the impact on performance of allocation and
scheduling policies. We compared two scheduling techniques combined with three
allocation algorithms in a k-ary n-tree network topology. Allocation algorithms
that search for contiguous resources have an elevated cost in terms of system
fragmentation, but also are able to accelerate the execution of applications. With
the quasi-contiguous allocation, this acceleration is slightly penalized but the
scheduling performance is significantly improved.

Experiments with actual workloads demonstrate that the cost of contigu-
ous allocation is very high, but when the improvement of run time experienced
by jobs is around 20-30%, this cost is compensated. Using relaxed versions of
the contiguous allocation strategy (which we have called quasi-contiguous) this
threshold lowers significantly, in such a way that in some cases speed-ups around
10% are enough to provide improvements in terms of scheduling efficiency.

This study has focused only in tree-based networks; the next step will be a
performance study for other topologies (in particular, for k-ary n-cubes). We
have provided application acceleration as a simulation parameter, although we
know that the real acceleration depends heavily on the communication pattern
of the applications, and on the way processes are mapped onto network nodes.
For this reason, we plan to perform more complex simulations, in which the
actual interchanges of messages are considered; to that end, we plan to integrate
INSEE [16] into the scheduling simulator.

Finally, we plan to implement our allocation techniques into a real (com-
mercial or free) scheduler in order to make real measurements in production
environments.
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