This is the accepted manuscript of the article that appeared in final form in **Resuscitation** 162 : 198-204 (2021), which has been published in final form at <u>https://doi.org/10.1016/j.resuscitation.2021.03.001</u>. © 2021 Elsevier under CC BY-NC-ND license (<u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>)

Chest Stiffness Dynamics in Extended Continuous Compressions Cardiopulmonary Resuscitation

- 5
- 6 Authors:
- 7 James Knox Russell,^{a*} Digna M. González-Otero,^b Mikel Leturiondo,^c Sofía Ruiz de
- 8 Gauna,^c Jesus María Ruiz,^c Mohamud Ramzan Daya^a
- 9
- ¹⁰ ^aDepartment of Emergency Medicine, Oregon Health & Science University, Portland
- 11 OR 97239, USA
- 12 ^bBexen Cardio, Ermua, Bizkaia, Spain
- 13 ^cUniversity of the Basque Country, UPV/EHU, Bilbao, Bizkaia, Spain
- 14

1	F
	•
	~

16	* Corresponding author: Department of Emergency Medicine, Oregon Health and
17	Science University, 3181 SW Sam Jackson Park Road, Portland OR 97239-3098,
18	Mailcode: CDW-EM USA
19	email: <u>russejam@ohsu.edu</u>
20 21 22 23 24 25 26 27	Word count: abstract 236 (limit 250) paper 2997 (limit 3000) Keywords:
27	Cardiopulmonary resuscitation
29	CPR quality
30	Out-of-hospital cardiac arrest
31	Chest compressions
32	

33 Abstract

34 Aim of the study

To characterize the effects of extended duration continuous compressions
 cardiopulmonary resuscitation (CPR) on chest stiffness, and its association with
 adherence to CPR guidelines.

38 Methods

Records of force and acceleration were extracted from CPR monitors used during 39 attempts of resuscitation from out-of-hospital cardiac arrest. Cases of patients 40 receiving at least 1000 compressions were selected for analysis to focus on extended 41 CPR efforts. Stiffness was normalized per patient to their initial stiffness. Force 42 remaining at the end of compression was used to identify complete release. Non-43 parametric statistical methods were used throughout as underlying distributions of 44 all types of measurements were non-Gaussian. Averages are reported as median 45 46 (interquartile range).

47 **Results**

48	More than 1000 chest compressions were delivered in 471 of 703 cases. Rate of
49	change in normalized stiffness (S_n) was unrelated to patient age, sex or initial ECG
50	rhythm, and did not predict survival. Most (76%) chests became less stiff over the
51	course of resuscitation efforts. While the remainder (24%) exhibited increased
52	stiffness, overall S_{n} decreased monotonically, declining by 31% through 3500
53	compressions. Rate adherence did not show a consistent trend with S_n . Depth
54	adherence and complete release improved modestly with decreasing S_n .
55	Conclusion
56	Chest compressions during extended CPR reduced the stiffness of most patients'

57 chests, in the aggregate by 31% after 3500 compressions. This softening was

- associated with modestly improved adherence to depth and release guidelines, with
- 59 inconsistent relation to rate adherence to guidelines.

60 Introduction

61	Chest compression is an essential element of modern cardiopulmonary resuscitation
62	(CPR) practice. The American Heart Association (AHA) ¹ and the European
63	Resuscitation Council, ² regularly promulgate guidelines for its performance, including
64	recommendations for rate, depth, complete release and hands-on time, based on
65	consensus review of available evidence. Most evidence underlying these guidelines
66	comes from experimental studies and from clinical studies of the initial 5 — 10
67	minutes of efforts, ^{3,4} or without regard to time. ⁵ Adherence to guidelines has been
68	associated with improved patient outcomes. ⁶
68 69	associated with improved patient outcomes. ⁶ Continuous compression CPR, wherein interruptions in delivering compressions are
69	Continuous compression CPR, wherein interruptions in delivering compressions are
69 70	Continuous compression CPR, wherein interruptions in delivering compressions are minimized, is increasingly prevalent. Extended periods of CPR are increasingly
69 70 71	Continuous compression CPR, wherein interruptions in delivering compressions are minimized, is increasingly prevalent. Extended periods of CPR are increasingly common, ⁷ driven by data suggesting a minimum of 30 minutes for resuscitation

published on chest stiffness. We sought to characterize changes in chest stiffness over the course of extended CPR efforts and to assess its impact on adherence to recommended guidelines for chest compression. These observations may have implications as to whether chest compression guidelines may require adjustment over the course of extended resuscitation efforts.

80 Methods

81 Force and acceleration signals were extracted from CPR monitors attached to defibrillator/monitors (MRx[®] with Q-CPR[®], Philips Healthcare, Andover MA, USA) 82 83 used in adult cases of out-of-hospital cardiac arrest (OHCA) attended by a single emergency medical service agency (Tualatin Fire and Rescue (TVF&R), Tigard, 84 Oregon USA) from 2013 through 2017. During this time period, the TVF&R protocol 85 for called continuous chest compressions with interposed ventilations for each 2 86 minute cycle of CPR. Data were extracted from CPR process files collected from 87 episodes entered into the Resuscitation Outcomes Consortium Epidemiological 88 Cardiac Arrest Registry (ROC Epistry-Cardiac Arrest)¹⁰ approved by the Oregon 89

90	Health & Science University (OHSU) Institutional Review Board (IRB00001736). No
91	patient private data were required for this study. All TVF&R personnel had
92	completed training on the continuous compressions protocol by the end of 2012.
93	Responders had access to real-time feedback on rate, depth and release throughout
94	the study period. TVF&R responders are instructed to continue efforts in the field
95	until sustained return of spontaneous circulation (ROSC) has been achieved or 20
96	minutes of efforts have been expended. TVF&R allows providers to terminate
97	resuscitation efforts per protocol or following consultation with On-Line Medical
98	Control physicians.
99	Contextual information about patient characteristics (age, sex, initial rhythm) and
100	resuscitation outcomes (return of spontaneous circulation (ROSC), survival to
101	admission, survival to discharge, modified Rankin Scale (MRS)) were extracted from
102	prehospital care records and hospital medical records.

103	AHA guidelines introduced upper limits on recommended chest compression rate
104	and depth in 2015. These limits were included as part of the annual refreshed
105	training by TVF&R beginning in 2016.
106	We computed depth and velocity from acceleration ¹¹⁻¹⁴ and identified chest
107	compressions automatically where downward velocity crossed 25mm/s and force
108	subsequently exceeded 5 kg-f (49 N). We selected cases that included at least 1000
109	compressions. We calculated stiffness as the ratio of peak force to peak depth and
110	normalized stiffness (S_n) as the ratio of each patient's current stiffness to the median
111	stiffness during their first 100 compressions. Compressions for which the final
112	applied force exceeded 2.5 kg-f (24.5 N) were considered to exhibit incomplete
113	release by the CPR provider, as in Fried ¹⁵ .
114	Dependence of stiffness on number of compressions (count) and on patient
115	variables such as sex, age, initial rhythm and outcomes were analyzed with Kruskal-
116	Wallis ANOVA. Differences in counts were assessed with Fisher Exact tests. Trends

117 with count and with S_n quintiles were assessed with Jonckheere-Terpstra tests¹⁶. P-

118 values below 0.05 were considered statistically significant.

- 119 Signal processing and statistical analyses were performed with custom Matlab®
- 120 (Natick, MA, USA) programs, using version R2020b.
- 121 Summary statistics are reported as median (interquartile range), except as specified.

122 **Results**

- 123 Of 703 cases responded to between 1 January 2013 and 31 December 2017 in which
- 124 defibrillator/monitor recordings were acquired by TVF&R (cases where TVF&R
- 125 arrived first and applied its monitors), 471 were from adult patients that received at
- 126 least 1000 compressions (Fig. 1). Attended cases in which the first
- 127 defibrillator/monitor device was applied by another responding agency, and cases
- 128 with corrupted recordings were not included.
- 129 Patients in these cases were 66 (53 75) years of age, and 66% were males. The
- 130 first recorded ECG rhythm was shockable (VF/VT) in 27% of cases with recorded
- initial rhythm (n = 468), pulseless electrical activity in 26%, and asystole in 47%,

132	similar to the distribution of initial rhythms among all EMS treated non-traumatic
133	OHCA (24%, 21%, 42% respectively) reported from the ROC-Epistry Cardiac Arrest. ¹⁷
134	ROSC sustained until hospital arrival was achieved in the field in 35% of the 437
135	patients receiving extended CPR for which ROSC status was recorded (Table 1).
136	Patients with extended CPR are a relatively challenging group with regards to
137	outcomes. Of extended CPR patients with known disposition, 38% died in the field,
138	36% died in the emergency department, 21% died after hospital admission, and 5%
139	survived to hospital discharge, in contrast to 40%, 28%, 19% and 13% respectively of
140	the 688 adult cases of all lengths with recorded disposition. Of extended CPR
141	survivors, 76% had a favorable MRS (3 or better) at the time of hospital discharge
142	(Table 1). Most patients' chests decreased in stiffness (softened) over the course of
143	resuscitation efforts (360 of 471, 76%), while the remainder (111 of 471, 24%)
144	increased in stiffness. Patients whose chests softened were declared dead in the field
145	less often than those whose chests stiffened (32% vs 56%, p < 0.001), but there were
146	not significant differences between these subgroups with regards to survival to

147 hospital admission, survival to hospital discharge, or in favorable MRS among148 survivors.

149 Differences in chest compression rate and depth after introduction of upper limits in 150 2016 training were minor (Table 2), and results from all years have been pooled for 151 statistical analysis. Cases with extended CPR included 2051 (1490 - 2864) compressions. Patients 152 whose chests softened received more compressions (2158 (1509 - 3027)), 153 compared to patients whose chests stiffened (1886 (1434 - 2351), p < 0.001). For 154 155 all cases together, the 1000th compression occurred at the 11th (11 - 12) minute 156 after the beginning of recorded compressions, the 2000th at the 22nd (20 - 23), the 157 3000th at the 32nd (31 - 34) and the 3500th at the 37th (35 - 39). 158 Case-wise median compression rate was 113 (110 — 117) compressions/minute. 159 Case-wise median compression depth was 52 (46 - 57) mm. Complete release was 160 present in 96 (90 — 99)% of compressions and hands on time averaged 87 (82 —

163	compared to those that stiffened. Patients with chests that stiffened experienced
164	modestly higher hands-on time (89 (85 — 92)% vs 86 (80 — 90)%, p < 0.001) than
165	patients with chests that softened.
166	While males had higher initial stiffness values 0.98 (0.79 — 1.19) N/cm) than females
167	0.77 (0.66 — 0.92) N/cm), (p < 0.001), differences among age groups were not
168	statistically significant ($p = 0.56$). Rate of change in stiffness per 1000 compressions
169	was not significantly related to sex ($p = 0.55$) or age ($p = 0.89$), to presenting
170	rhythm (p = 0.95), or to survival to discharge (p = 0.19).
171	Normalized stiffness varied with chest compression count (p < 0.001). It decreased
172	monotonically through the first 3500 compressions by 36% (p_{trend} < 0.001, Fig. 2).
173	A series of compressions at 1, 10, 20, 30 and 40 minutes from a 68 year-old male
174	illustrates how compressions changed in the presence of pronounced softening.
175	Force applied by the CPR provider (in red) declined monotonically. Resulting depth

compressions with complete release between patients with chests that softened

162

(in blue) increased from 47 mm to 60 mm, yielding the measured decrease in S_n by
68% (Fig. 3).

178 Changes in adherence to 2015 AHA guidelines were associated with quintiles of S_n.

- 179 Rates less than 100 compressions per minute (cpm) remained between 25% and
- 180 33%, while rates exceeding 120 compressions per minute (cpm) remained at 9%.
- 181 Guideline adherent rates (>= 100 cpm, <= 120 cpm) were between 64% and 66% in

quintiles 2-5, though only 58% in the softest quintile (quintile 1) (p_{trend} = 0.03, Fig. 4,
top panel).

184 Depths of less than 50 mm increased from 40% in the 1st quintile to 52% in the 5th.

185 Depths exceeding 60 mm remained between 33% and 35% through the first 4

186 quintiles, declining to 30% stiffest quintile. Depth adherence with guidelines (50 - 60

187 mm) declined from 27% in the 1st (softest) quintile to 17% in the 5th (stiffest)

188 quintile (p_{trend} = 0.007, Fig. 4, middle panel).

- 189 Incidence of complete release decreased monotonically from 96% in the first quintile
- 190 to 87% in the fifth ($p_{trend} = 0.007$, Fig. 4, bottom panel).

191 Concurrent adherence to the recommendations for compression form — rate 192 between 100 and 120 cpm, depth between 50 and 60 mm, and complete release, 193 remained between 19% and 23% without a trend across S_n quintiles ($p_{trend} = 0.16$).

194 **Discussion**

195 Chest compression during CPR is a highly forceful intervention. Resuscitation protocols calling for extended CPR on site when ROSC is not achieved in the field, 196 197 up to 30 minutes or longer, are increasingly prevalent. During extended CPR, thousands of forceful compressions may be administered. Relatively little is known 198 199 about their cumulative effects on the chest's response to force. There is legitimate concern about harm produced by chest compressions¹⁸⁻²⁰ since rib and sternal 200 fractures are common during CPR.^{20,21} We sought to characterize changes in 201 202 patients' chest stiffness during extended CPR. We normalized stiffness (peak 203 force/peak depth), to median stiffness during the first 100 compressions in order to combine patients with differing stiffness at the outset of resuscitation efforts. 204

205	Measurements of force and acceleration during chest compressions are challenging.
206	They may be affected by orientation of the sensor, position of the subject and
207	position of the responder's hands on the sensor. ¹¹ Measurement of force is not
208	available in most CPR monitors. Force, combined with displacement, is required to
209	calculate stiffness. Estimation of displacement with an accelerometer requires
210	integrating the measured acceleration twice, requiring high-pass filtering to avoid
211	accumulation of any noise or measurement errors. ^{12,13} In the absence of a fixed
212	frame of reference, interpretation of this displacement as depth references
213	displacement to a local average minimum displacement whose location may be
214	shifting in response to compressions, ^{12,14} a problem common to all CPR depth
215	measurement derived from accelerometry. Interpretation of this depth as chest
216	compression depth ignores possible motion of the substrate, which is not known in
217	the absence of either a fixed reference frame (e.g. as available in the context of
218	mechanical CPR ²²) or measurement of motion of the substrate. ¹¹ Similarly,
219	interpretation of measured stiffness as chest stiffness may be confounded by
220	inclusion of a compliant substrate in the measurement, or by irregularities in the
	Page 15 of 33

221	orientation of the subject and the compressions with respect to the local
222	gravitational field. ¹¹ These problems are pronounced if CPR is performed on a
223	patient supported by a compliant mattress, ²³ relatively uncommon in pre-hospital
224	resuscitation efforts prior to transport, the setting in which our study data were
225	collected.
226	Measured chest stiffness itself may also be affected by position of the sensor on the
227	chest. Furthermore, we have no record of any compressions that may have been
228	delivered by bystanders prior to arrival of the EMS providers with force recording
229	monitors. Any such prior CPR may itself have induced some unmeasured change in
230	chest stiffness. These issues may contribute to the considerable variation in
231	measured stiffness we observed.
232	In our study final normalized stiffness was > 1 in 24% of patients, that is their chests
233	stiffened over the course of resuscitation efforts. Tomlinson et al ⁹ also found that
234	stiffness increased in 18% of their 39 patients over the course of the initial 1000
235	compressions. Whether a chest stiffens or softens may depend on the nature and

236	extent of thoracic injuries. Sternal fractures, combined with rib fractures, have been
237	associated with lower incidence of ROSC than for rib fractures alone. ²¹ Unfortunately
238	we have no information regarding thoracic injuries in our study subjects. We did not
239	identify any characteristics that could predict patients whose chests became stiffer as
240	opposed to those whose chests became softer. Patients whose chests became stiffer
241	received fewer compressions, were more frequently declared dead in the field, and
242	received higher hands-on-times. It is possible that CPR providers perceive futility of
243	resuscitation efforts in these patients earlier than in patients whose chests soften.
244	Better understanding of the differences between patients with stiffening as opposed
245	to softening chests must await further study and additional data on the nature and
246	extent of associated thoracic injuries.
247	Our measure of stiffness — peak force/peak depth in each compression — is
248	intuitive, but novel. It includes measurements from two separate moments, as the
249	peak of depth trails the peak of force (see Fig. 3 for examples). This approach avoids
250	requiring that compressions meet any particular depth target (as in Tomlinson et al ⁹ ,
251	Beesems et al ²²) and accommodates the lag in depth response to applied force
	Daga 17 of 22

252	attributable to the visco-elasticity of the chest. ^{24,25} In our dataset, peak depths
253	lagged peak forces by an median of 19 (13 — 27) ms. Our results are robust to
254	alternatives. For example, defining stiffness as the ratio of force to depth at the peak
255	of response (at peak compression velocity), or as the ratio of force to depth both
256	measured at the point of peak depth, provided essentially the same findings, with
257	monotonic decreases in normalized stiffness over 3500 compressions reaching 32%
258	and 41% respectively.
259	We found that despite the greater initial stiffness in males than in females, also
260	documented by Tomlinson et al ⁹ though not Beesems et al ²² , the rate of change in
261	normalized stiffness did not depend on patient sex, nor was it influenced by patient
262	age or initially recorded ECG rhythm, nor did it affect likelihood of survival. Analysis
263	of stiffness normalized per subject to their initial stiffness is also novel. In a study of
264	91 patients using an experimental monitor that also measured force, Tomlinson et
265	al ⁹ documented an average decline in stiffness, measured as the force required to
266	reach 25 mm depth, over the course of the initial 1000 compressions. This
267	observation is consistent with progressive softening, though without normalization
	Page 18 of 33

268	to initial stiffness it is not direct support for softening in individuals. At that time
269	(2004-5) the prevailing guideline for compression depth was 38 — 50 mm. Mean
270	compression depth was 42 mm, less than currently prevailing guidelines and than
271	our observed median of 51 mm, which may have resulted in less cumulative impact
272	on the subjects' chests. Despite differences in methods, their reported aggregate
273	mean reduction in stiffness over 1000 compressions of 6.2% (calculated from the
274	reported regression relation) was remarkably similar to our observation of mean
275	individual reduction in stiffness over the initial 1000 compressions (5%, averaging S_{n}
276	for compressions 990 - 1010), though substantially less than our observation of
277	median individual reduction in stiffness over the same interval (11%), reflecting the
278	sensitivity of analysis to assumed linearity. Our observations show that reduction in
279	stiffness continues as compressions continue to accumulate. Reduction in stiffness
280	increased monotonically through the first 3500 compressions to 36%.
281	Perhaps due to real-time feedback from the CPR monitor, reducing stiffness had
282	only modest impact on adherence to guidelines for chest compressions. Chest
283	compression during CPR is physically challenging and, despite real-time feedback,
	Page 19 of 33

284	adherence is limited. ^{26,27} Guidelines changed during the period of this study, with
285	the addition of upper limits on recommended rate and depth of compressions, but
286	this change did not appear to affect performance meaningfully. Regardless of S_n
287	quintile, adherence to rate recommendations of 100 to 120 compressions per
288	minute remained between 58 and 66%. Adherence to recommendations for depth of
289	between 50 and 60 mm is evidently more challenging. Softening of chests led to
290	somewhat deeper compressions, on average. Tomlinson et al ⁹ also noted deeper
291	compressions in softer chests on average. The reduction in compressions that were
292	too shallow resulted in increase of adherence to the depth recommendation from
293	17% in the stiffest (5th) quintile of S_n to 27% in the softest (1st) quintile. Complete
294	release improved from 87% in the stiffest quintile to 96% in the softest quintile.
295	Overall, concurrent adherence with all three recommendations, regarding rate, depth
296	and release, remained modest (19 — 23%) throughout. This compression-by-
297	compression assessment of adherence is not directly comparable to other reports
298	using case-wise averages and omitting release ²⁶ or assessing a single parameter ²⁷

but is consistent overall with the disappointing levels of adherence reported in theseother analyses.

301	Most CPR monitors provide feedback only on rate. One other technology does
302	provide feedback on depth, but no other device provides feedback on release,
303	infeasible without a force sensor. Without additional studies that measure all three
304	of these factors, it is difficult to interpret the degree of adherence to all three
305	recommendations that we observed other than to acknowledge that this appears to
306	be quite challenging during manual CPR. Nonetheless, it is somewhat reassuring to
307	learn that instead of degrading adherence, chest softening if anything enhances it a
308	little. There is no basis in our observations to suggest that guidelines need to be
309	adapted to the duration of CPR efforts.
310	Limitations
311	Our data is from a single EMS service. Guidelines for chest compression changed
312	during the study period. We have no data on the duration and quality of any

313 bystander CPR that preceded our data, which were acquired after EMS arrival. We

also lack data on possible thoracic injuries the subjects may have sustained, the
substrate for compressions or the precise positions of rescuers hands. Depth was
estimated from a single accelerometer, with no fixed reference point.

317 Conclusions

318 Chest stiffness during extended CPR decreases monotonically through at least the 319 first 3500 compressions. Its impacts on adherence to guideline recommendations are 320 modest, moderately improving adherence to depth and release targets without 321 consistently affecting adherence to rate recommendations or overall adherence. 322 Adaptation of guidelines to duration of CPR on the basis of changing chest stiffness 323 does not appear to be warranted.

324 **Conflicts of interest:**

Author Digna María González-Otero is employed by Bexen Cardio, a Spanish medical
device manufacturer. Bexen Cardio had no role in study funding, or study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

328 The other co-authors declare no conflict of interest.

329 Acknowledgements

- 330 We appreciate the contributions of Dana Zive and Erik Alonso to development of
- the database. Our thanks also to the staff of TVF&R and their dedication to
- 332 supporting research in emergency medicine.
- 333 Authors Sofía Ruiz de Gauna, Jesus María Ruiz and Mikel Leturiondo received
- 334 research support from the Basque Government through the grant IT1087-16 (for
- 335 research groups).

336	Authors Sofía Ruiz de Gauna and Jesus María Ruiz received research support from
337	the Basque Government through the grant 2019222053 (for health research), and
338	Mikel Leturiondo through the predoctoral grant PRE-2019-2-0251.
339	Authors Sofía Ruiz de Gauna, Jesus María Ruiz, and Mikel Leturiondo, received
340	research support from the Spanish Ministry of Science, Innovation and Universities
341	through the grant RTI2018-094396-B-I00 and Digna María González-Otero from the
342	program Torres Quevedo PTQ-16-08201.
343	Authors James Knox Russell and Mohamud Ramzan Daya received no funding for
344	this work.
345	The funders had no role in study design, data collection and analysis, decision to

346 publish, or preparation of the manuscript.

References

349	1. Kleinman ME, Brennan EE, Goldberger ZD, Swor RA, Terry M, Bobrow BJ, et al. Part 5:
350	adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart
351	Association guidelines update for cardiopulmonary resuscitation and emergency
352	cardiovascular care. Circulation. 2015;132:S414–35
353	
354	2. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European resuscitation
355	council guidelines for resuscitation 2015: section 3. Adult advanced life support.
356	Resuscitation. 2015;95:100–47.
357	
358	3. Idris AH, Guffey D, Pepe PE, Brown SP, Brooks SC, Callaway CW, et al. Chest compression
359	rates and survival following out-of-hospital cardiac arrest. Crit Care Med. 2015;43:840–8.

361	4. Stiell IG, Brown SP, Nichol G, Cheskes S, Vaillancourt C, Callaway CW, et al. What is the
362	optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of
363	adult patients? Circulation. 2014;130:1962–70.
364	
365	5. Vadeboncoeur T, Stolz U, Panchal A, Silver A, Venuti M, Tobin J, et al. Chest compression
366	depth and survival in out-of-hospital cardiac arrest. Resuscitation. 2014;85:182–8.
367	
368	6. Nas J, te Grotenhuis R, Bonnes JL, Furlaneto JM, van Royen N, Smeets JLRM, et al. Meta-
369	Analysis Comparing Cardiac Arrest Outcomes Before and After Resuscitation Guideline
370	Updates. The American Journal of Cardiology. 2020;125:618–29.
371	
372	7. Nagao K, Nonogi H, Yonemoto N, Gaieski DF, Ito N, Takayama M, et al. Duration of
373	Prehospital Resuscitation Efforts After Out-of-Hospital Cardiac Arrest. Circulation.
374	2016;133: 1386-96
375	8. Reynolds JC, Grunau BE, Rittenberger JC, Sawyer KN, Kurz MC, Callaway CW. Association
376	Between Duration of Resuscitation and Favorable Outcome After Out-of-Hospital Cardiac

377	Arrest: Implications for Prolonging or Terminating Resuscitation. Circulation.
378	2016;134:2084–94.
379	
380	9. Tomlinson AE, Nysaether J, Kramer-Johansen J, Steen PA, Dorph E. Compression force–
381	depth relationship during out-of-hospital cardiopulmonary resuscitation. Resuscitation.
382	2007;72:364–70.
383	
384	10. Morrison LJ, Nichol G, Rea TD, Christenson J, Callaway CW, Stephens S, et al. Rationale,
385	development and implementation of the Resuscitation Outcomes Consortium Epistry-
386	Cardiac Arrest. Resuscitation. 2008;78:161–9.
387	
388	11. Aase SO, Myklebust H. Compression depth estimation for CPR quality assessment using
389	DSP on accelerometer signals. IEEE Trans Biomed Eng. 2002;49:263–8.
390	
391	12. Babbs CF, Kemeny AE, Quan W, Freeman G. A new paradigm for human resuscitation
392	research using intelligent devices. Resuscitation. 2008;77:306–15.
393	

394	13. Ruiz de Gauna S, González-Otero DM, Ruiz J, Russell JK. Feedback on the Rate and
395	Depth of Chest Compressions during Cardiopulmonary Resuscitation Using Only
396	Accelerometers. PLoS ONE. 2016;11(3):e0150139.
397	
398	14. Russell JK, González-Otero DM, Ruiz de Gauna S, Daya M, Ruiz J. Can chest compression
399	release rate or recoil velocity identify rescuer leaning in out-of-hospital cardiopulmonary
400	resuscitation? Resuscitation. 2018;130:133–7.
401	
402	15. Fried DA, Leary M, Smith DA, Sutton RM, Niles D, Herzberg DL, et al. The prevalence of
403	chest compression leaning during in-hospital cardiopulmonary resuscitation.
404	Resuscitation. 2011;82:1019–24.
405	
406	16. Cardillo G. (2008) Jonckheere-Terpstra test: A nonparametric Test for Trend,
407	http://www.mathworks.com/matlabcentral/fileexchange/22159

408

409	17. Rea TD, Cook AJ, Stiell IG, Powell J, Bigham B, Callaway CW, et al. Predicting survival
410	after out-of-hospital cardiac arrest: role of the Utstein data elements. Ann Emerg Med.
411	2010 Mar;55(3):249–57.
412	
413	18. Beom JH, You JS, Kim MJ, Seung MK, Park YS, Chung HS, et al. Investigation of
414	complications secondary to chest compressions before and after the 2010
415	cardiopulmonary resuscitation guideline changes by using multi-detector computed
416	tomography: a retrospective study. Scand J Trauma Resusc Emerg Med. 2017;25:8.
417	
418	19. Hellevuo H, Sainio M, Nevalainen R, Huhtala H, Olkkola KT, Tenhunen J, et al. Deeper
419	chest compression - more complications for cardiac arrest patients? Resuscitation.
420	2013;84:760–5.
421	
422	20. Azeli Y, Barbería E, Jiménez-Herrera M, Ameijide A, Axelsson C, Bardaj A. Serious injuries
423	secondary to cardiopulmonary resuscitation: incidence and associated factors.
424	Emergencias. 2019;31:327–34.
425	

Page 29 of 33

426	21. Kashiwagi Y, Sasakawa T, Tampo A, Kawata D, Nishiura T, Kokita N, et al. Computed
427	tomography findings of complications resulting from cardiopulmonary. Resuscitation.
428	2015;88:86–91.
429	
430	22. Beesems SG, Hardig BM, Nilsson A, Koster RW. Force and depth of mechanical chest
431	compressions and their relation to chest height and gender in an out-of-hospital setting.
432	Resuscitation. 2015;91:67–72.
433	
434	23. Noordergraaf GJ, Paulussen IW, Venema A, van Berkom PF, Woerlee PH, Scheffer GJ, et
435	al. The impact of compliant surfaces on in-hospital chest compressions: effects of
436	common mattresses and a backboard. Resuscitation. 200;546–52.
437	
438	24. Bankman IN, Gruben KG, Halperin HR, Popel AS, Guerci AD, Tsitlik JE. Identification of
439	dynamic mechanical parameters of the human chest during manual cardiopulmonary
440	resuscitation. IEEE Trans Biomed Eng. 1990;37:211–7.
441	

442	25. Gruben KG, Guerci AD, Halperin HR, Popel AS, Tsitlik JE. Sternal force-displacement
443	relationship during cardiopulmonary resuscitation. J Biomech Eng. 1993;115:195–201.
444	
445	26. Cheskes S, Schmicker RH, Rea T, Morrison LJ, Grunau B, Drennan IR, et al. The
446	association between AHA CPR quality guideline compliance and clinical outcomes from
447	out-of-hospital cardiac arrest. Resuscitation. 2017l;116:39–45.
448	
449	27. Kampmeier T-G, Lukas R-P, Steffler C, Sauerland C, Weber TP, Van Aken H, et al. Chest
450	compression depth after change in CPR guidelines-Improved but not sufficient.

```
451 Resuscitation. 2014;85:503-8.
```

Figure Legends

Figure 1: Emergency responses with activation of defibrillator/monitors by Tualatin

Valley Fire & Rescue, 2013 - 2017

Figure 2: Chest stiffness normalized (S_n) to median of stiffness in initial 100 compressions) by minutes of CPR

Figure 3: Softening in a 68 year old male. The patient presented with ventricular fibrillation, received 43 minutes of CPR in a single series including 8 defibrillation shocks prior to transport, and expired in Emergency Department.

Figure 4: Adherence by Moulding Quintile:

Rate (top panel): The proportion of compressions adherent to the recommended rate limits of between 100 and 120 compressions/minute (in red) peaks at the center, in the 3rd quintile at 66%, declining in both directions, reaching a minimum in the 1st quintile of 58%.

Depth (middle panel): The proportion of compressions adherent to the recommended depth limits of between 50 and 60 mm (in red) peaks in the 1st (softest) quintile at 27%, declining monotonically to 17% in the 5th (stiffest) quintile.

Complete release (bottom panel): The proportion of compressions adhering to the guidance for complete release, assessed as leaving < 2.5 kg-f (24 N) on the chest, peaks at 96% in the 1st (softest) quintile, declining monotonically to 87% in the 5th (stiffest) quintile.

Table 1: Patient characteristics and disposition of cases with extended CPR (> 1000 compressions)

Characteristic	Observed value	
Age, y median (IQR)	66 (53 - 75)	
Sex n (%)		
Male	312 (66)	
Female	159 (34)	
Presenting ECG rhythm n(%*)		
shockable (VF/VT)	125 (27)	
pulseless electrical activity	122 (26)	
asystole	221 (47)	
not recorded	3	
Return of spontaneous circulation (ROSC) n (%*)	154 (35)	
Disposition n (%*)		
died in field	176 (38)	
died in emergency department	168 (36)	
died after hospital admission	98 (21)	
discharged alive	24 (5)	
unknown	8	
Modified Rankin Score (of discharged alive) n (%*)		
1	2 (12)	
2	3 (18)	

3	8 (47)
4	4 (24)
5	0
unknown	4

* (of known)

Table 2: Extended CPR case characteristics forperformance metrics and stiffness

Characteristic	median	median	median
	(IQR)	(IQR)	(IQR)
	2013-5	2016-7	all years
n	280	191	471
Duration of initial CPR series (minutes)	20	20	20
	(14 — 29)	(15 — 26)	(15 — 28)
Compressions	1985	2155	2051
	(1485 — 2817)	(1511 — 2999)	(1490 — 2864)
Compression rate (cpm)	113	114	113
	(109 — 117)	(111 — 117)	(110 — 117)
Compression depth (mm)	51	52	52
	(45 — 57)	(46 — 58)	(46 — 57)
Compression force (N)	419	419	419
	(356 — 498)	(361 — 476)	(358 — 492)
Complete release (%)	96%	97%	96%
	(88 — 99)	(93 — 99)	(90 — 99)

Hands on time (%)	86	88	87
	(81 — 90)	(83 — 91)	(82 — 90)
S _n decrease (%)	28	26	23
	(2 — 45)	(2 — 44)	(2 — 44)

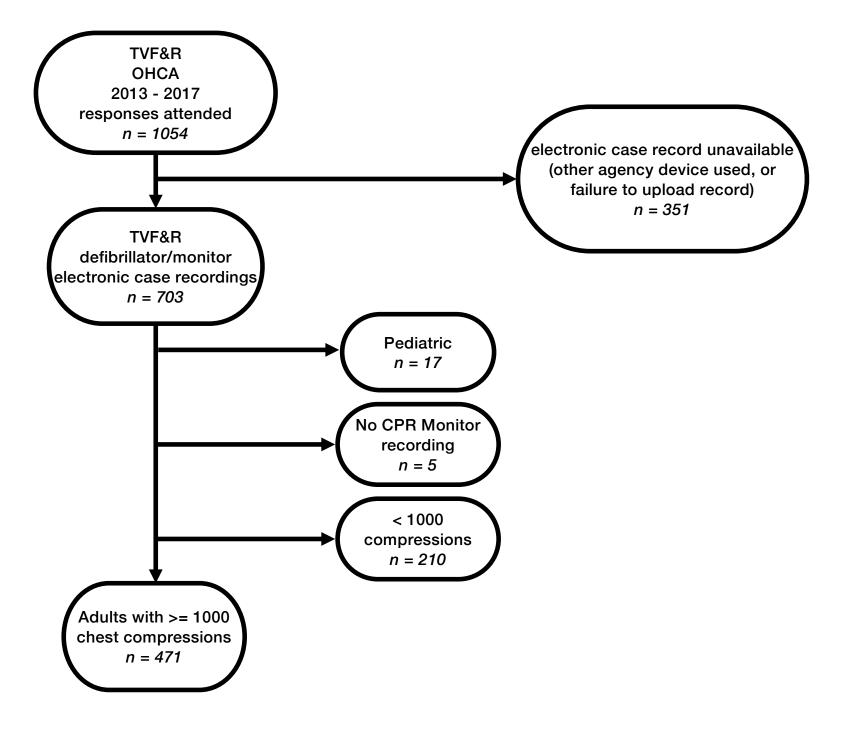
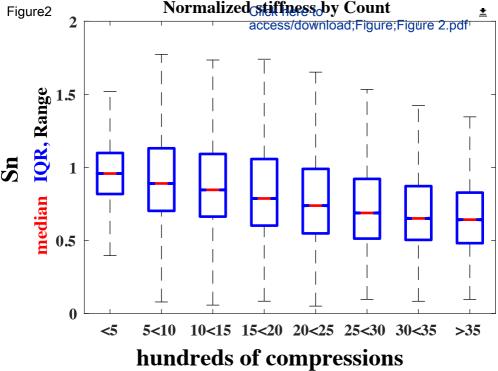
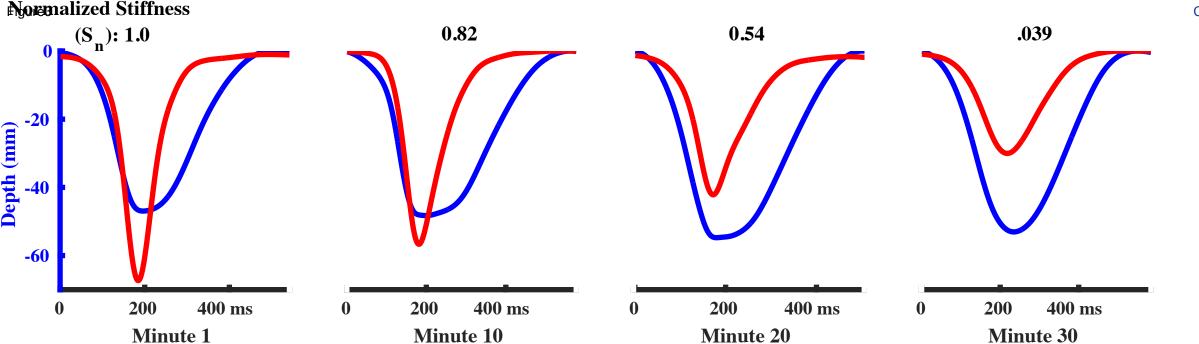
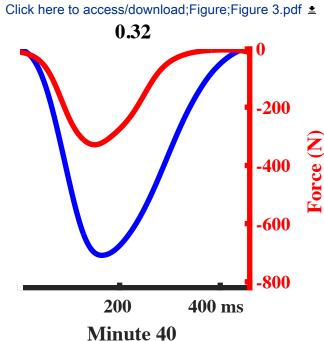
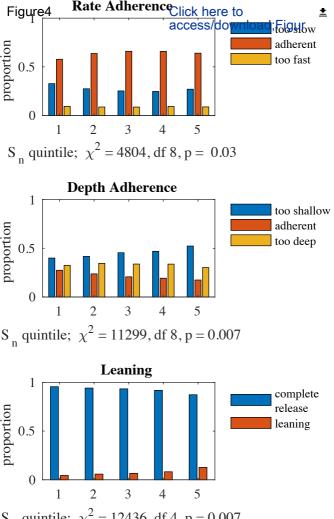






Figure1

 S_n quintile; $\chi^2 = 12436$, df 4, p = 0.007

Author Digna María González-Otero is employed by Bexen Cardio, a Spanish medical device manufacturer.

Bexen Cardio had no role in study funding, or study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The other co-authors declare no conflict of interest.

James Knox Russell: Conceptualization; Methodology; Software; Formal analysis; Investigation; Resources; Data curation; Writing - original draft; Visualization.

Digna María González-Otero: Software; Data curation; Writing - review & editing; Visualization. Mikel Leturiondo: Software; Data curation; Writing - review & editing, Visualization.

Sofía Ruiz de Gauna: Resources; Writing - review & editing; Supervision; Funding acquisition; Project administration.

Jesus María Ruiz: Resources; Methodology; Software; Funding acquisition.

Mohamud Ramzan Daya: Resources; Writing - review & editing; Supervision.