
1 

MODE II COHESIVE LAW EXTRAPOLATION PROCEDURE OF COMPOSITE 
BONDED JOINTS 

A. Arrese 1, I. Adarraga1, N. Insausti 1, J. Renart 2,3, C. Sarrado 2 

1 Materials + Technologies Group/ Mechanics of Materials, Faculty of Engineering of Gipuzkoa 
(UPV/EHU), San Sebastián, Spain 

2 AMADE, Polytechnic School (II), University of Girona, Carrer Universitat de Girona 
, 4, E-17003 Girona, Spain 

3 Serra Húnter Fellow, Generalitat de Catalunya, Spain 

Keywords: Adhesive joints; Cohesive law; J-Integral; Mode II, Eccentric-ENF test. 

ABSTRACT 

A novel extrapolation procedure to predict the mode II cohesive laws of adhesive joints is 

presented. At first, a recently proposed compliance based experimental method to extract mode 

II Cohesive Laws is extended to the eccentric end-notched flexure test EENF and generalized 

including the effect of the  bond line thickness and to this end, improved expressions for the 

compliance, J-Integral and shear displacement at the crack tip are derived. 

Assuming that every effect associated to the damage is included in the equivalent crack length, 

new expressions related to the Compliance (C0), J- Integral (J0) and crack tip shear displacement 

(∆0) are defined and invariant relations between J0-∆0 and ∆0- C0 are elicited for a given material 

system and test configuration. 

Finally, an extrapolation procedure is presented, based on the J0-∆0 and ∆0- C0 calibrated curves, 

which enables to estimate the cohesive laws for a wide range of adhesive to adherend ratio of a 

given material system by processing only the load –displacement curve. 
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107563, which has been published in final form at https://doi.org/10.1016/j.engfracmech.2021.107563. © 2021 Elsevier under CC BY-
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NOMENCLATURE 

Latin alphabet 

A, A0  cross sectional area of the specimen and the adherend, respectively 

at  initial crack tip position 

aie  equivalent initial crack tip position 

aie  equivalent initial crack length 

ae  equivalent crack length 

B  regression coefficients of the linear curve J0-∆0 

C   compliance 

C0   compliance factor 

d  actual span between left support and loading roller 

d0  initial span between left support and loading roller 

E1, E2, E3  longitudinal, in-plane and out-of-plane elastic moduli, respectively 

Ef  flexural modulus 

G12   in-plane shear modulus 

G13, G23  out-of-plane shear moduli 

g  glue line 

2h   the total thickness of the specimen 

I, I0  second moment of area of the specimen and the adherend, respectively 

J  J-integral value 

Jc  J-integral critical value 

J0   J-integral factor 

kp  penalty stiffness 

2L  actual span between supports 

2L0  initial span between supports 

m  regression coefficients of the linear curve J0-∆0 
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M  Bending moment 

P   applied load 

Q  shear force 

R   the support and loading roller radius 

t   adhesive thickness 

w  specimen width 

Greek  alphabet 

α  shape factor in the deformed configuration 

α0  shape factor in the non deformed configuration 

β  adhesive to adherent thickness ratio 

χ  specimens cross-sectional factor 

δ   load point displacement 

∆n ,∆t   opening and shear displacement at the crack tip, respectively 

∆0    crack tip shear displacement factor 

λ0, λ1, λ2 regression coefficients of the quadratic curve ∆0-C0 

θA, θB, θC  clockwise rotations at the load introduction points 

σ   cohesive normal stress 

τ   cohesive shear stress  

τ max  cohesive shear strength  

Ω1, Ω2, Ω3 coefficients of the displacement curve  

Acronyms 

BTBR Bending Theory with Bending Rotations 

CFRP  Carbon Fiber Reinforced Polymers 

CTSD Crack Tip Shear Displacement 

CZM Cohesive Zone Model 

DIC Digital Image Correlation 

DM Direct Method 
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EENF Eccentric End Notched Flexure 

ENF End Notched Flexure 

FPZ Fracture Process Zone 

LVDT Linear Variable Differential Transformer 

SD standard deviation  
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1. INTRODUCTION 1 

Adhesive bonding is extensively used in diverse industrial applications [1 2 3 4 -5] allowing a 2 

weight reduction and providing design flexibility in structures that require some joining 3 

technique. Adhesive bonding offers superior advantages over conventional mechanical fasteners 4 

such as higher specific strength, cheaper and faster joining technique, lower stress 5 

concentration, and better fatigue resistance. [6 7 -8].  6 

However, due to the lack of reliability that structural joints often suffer [9,10], adhesives have 7 

been widely used for reparation and maintenance operations of aeronautic components but the 8 

use of adhesive bonding in large primary structural parts is not feasible for the moment [11, 12]. 9 

The use of Cohesive Zone Models (CZM) to simulate the failure process of adhesive joints is 10 

increasing because of its versatility to analyze the fracture in a wide variety of materials and 11 

loading conditions. 12 

CZM, presented by Barenblatt [13] and Dugdale[14], represents a damage zone in the vicinities 13 

of the crack tip where the local fracture process is regarded as a gradual phenomenon. CZM 14 

relies on a traction separation law, assumed as a constitutive law of the material, which 15 

describes the material failure behavior [15].  16 

Adhesive joints are usually affected by a large scale Fracture Process Zone (FPZ) as a result of 17 

the size of the plastic and damaged region formed in the vicinities of the crack tip. In this 18 

situation, an accurate analysis of the FPZ performance is needed to precisely simulate the joint 19 

response [16], an experimental determination of the cohesive law being necessary.  20 

For this aim, there are different methods available in the literature which can be classified into 21 

two groups; the inverse and the direct methods. 22 

The inverse procedure consists of a parametric modeling to identify cohesive zone model 23 

parameters using the Finite Element Method. This iterative method relies on an optimization 24 

procedure which goal is to reach the best compromise between the simulation and the 25 

experimental measurements by iteratively varying cohesive zone model variables 26 

[17 18 19 20 21 22 23-24].  27 
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In the direct methods, the determination of the cohesive law is conducted based on the closed-28 

form expressions of the path independent J-integral to obtain the fracture toughness and by the 29 

experimental measurement of the crack tip displacement [23, 25, 26,27 28, 29, 30 ,31, -32] 30 

usually requiring high resolution equipments as linear variable differential transformer (LVDT) 31 

or Digital Image Correlation (DIC). 32 

In the present study, a recently proposed compliance based experimental method to extract 33 

mode II cohesive law [33] is extended for the eccentric end-notched flexure test (EENF) to 34 

check the possible advantages of the eccentric test configuration to avoid the influence of the 35 

FPZ proximity to the load point position and is generalized to include the effect of the adhesive 36 

layer thickness when it is not negligible in comparison with the adherend thickness.  37 

Based on this generalized data reduction method, a new extrapolation procedure to predict the 38 

mode II cohesive laws of bonded joints is presented enabling to estimate the mode II cohesive 39 

laws for a wide range of adhesive to adherend ratio of a given material system and test 40 

configuration by processing only the load-displacement curve. 41 

In Section 2 novel mathematical expressions for the compliance (C),  J-Integral (J) and the 42 

crack tip shear displacement (∆t) are derived accounting for the eccentricity of the EENF test 43 

and the adhesive layer thickness. The determination of J and ∆t is carried out according to the 44 

equivalent crack length approach, for which only the load and displacement data provided by 45 

the test machine are required.  In Section 3 new expressions designated as C0, J0 and ∆0 are 46 

defined and invariant relations are elicited for a given material system and test configuration, 47 

providing an extrapolation procedure to estimate the cohesive laws. Experimental and numerical 48 

verifications are presented in Section 4 and 5 to provide both experimental and numerical 49 

evidences of the suitability of the proposed data reduction procedure to extract the cohesive law 50 

for different bond configurations. Once verified, the efficiency of the extrapolation procedure 51 

and the precision of the extracted cohesive laws are analyzed by comparing predicted cohesive 52 

laws with results obtained by the Direct Method (DM) [16]. In Section 6, a Monte Carlo 53 
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Method based sensitivity analysis is carried out to determine the robustness of the proposed data 54 

reduction method. Finally, in Section 7 summary and conclusions are presented. 55 

2. ANALYTIC APPROACH 56 

By evaluating the path independent J-integral introduced by Rice [34] locally around the 57 

cohesive zone, the J-integral becomes [25]:  58 

𝐽 = � 𝜎 𝑑∆𝑛
∆𝑛

0
+ � 𝜏 𝑑∆𝑡

∆𝑡

0
 (1) 

where σ and τ the cohesive normal and shear stress and ∆n and ∆t are the opening and shear 59 

displacement at the crack tip, respectively.  60 

For the Eccentric End Notched Flexure (EENF) test configuration in Fig. 1, where a specimen 61 

cracked at one end is loaded in eccentric three point bending, the cohesive shear stress τ is only 62 

function of  the crack tip shear displacement ∆t [35]: 63 

𝜏(∆𝑡) =
𝜕𝐽
𝜕∆𝑡

  (2) 

According to Eq (2) the determination of the cohesive shear stress distribution requires the 64 

monitorization of the J-Integral versus ∆t during the EENF test.  65 

For this purpose, a recently proposed experimental method [33] is further developed to account 66 

for the influence of adhesive layer thickness when it is not negligible in comparison with the 67 

adherend thickness and extended to include the effect of the eccentricity of the EENF.  68 

This method is a compliance based data reduction method that enables to determine both 69 

the J and ∆t using exclusively the load displacement data recorded during the test without any 70 

external measurement of the crack length and the displacement at the crack tip and including in 71 

addition to the span variation, shear and local deformation effects, the influence of thickness of 72 

the adhesive layer.  73 
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 74 

Figure 1: Schematic EENF specimen according to BTBR 75 

2.1. Equivalent Crack Length  76 

To obtain the equivalent crack length based on the compliance of the specimen, elastic behavior 77 

of the adherends is assumed during the whole fracture test process.   78 

The load application point displacement is determined applying Castigliano’s second theorem 79 

[36] including shear and bending effects and obtaining the derivatives of shear forces and 80 

bending moments by the unit load method. Thus, the compliance 𝐶 = 𝛿 𝑃⁄  can be expressed as: 81 

𝐶 =
12(1 − 𝛼)2

𝐸𝑓𝑤(2ℎ)3 
� 

1
𝜒

 
𝑎𝑒3

3
+ 𝛼2

(2𝐿)3

3
� +

6
5

(1 − 𝛼)
𝐺13𝑤(2ℎ) �

(1 − 𝛼) �
𝛽

1 − 𝛽
� 𝑎𝑒 + 𝛼(2𝐿)� (3) 

Where ae is the equivalent crack length, Ef is the flexural modulus; G13 is out-of-plane shear 82 

modulus,  𝛼 = 𝑑/2𝐿   is the shape factor accounting for the eccentricity of the EENF test in the 83 

deformed configuration, w the width and  𝛽 = 𝑡/2ℎ adhesive to adherent thickness ratio, where 84 

t adhesive thickness and 2h the total thickness of the specimen. Further details of the derivation 85 

of Eq (3) are provided in Appendix A. 86 

The 𝜒 factor can be computed as: 87 

𝜒 =
(1 − 𝛽)3

4 − (1 − 𝛽)3 
(4) 
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The actual span between supports 2L and the actual span between left support and loading roller 88 

d (Fig. 1), are determined taken into account the contact point shifting between the specimen 89 

and supports and loading rollers due to bending rotation [37].  According to Fig. 1, 2L and d are 90 

respectively: 91 

2𝐿 = 2𝐿0 �1 −
𝑅

2𝐿0
(|𝜃𝐴| + |𝜃𝐵|)�                 𝑑 = 𝛼(2𝐿) = 𝑑0 �1 −

𝑅
𝑑0

(|𝜃𝐴| − |𝜃𝐶|)� (5) 

where 2L0 the initial span between supports, d0 is the initial distance between left support and 92 

loading roller and R the support and loading roller radius. 93 

In order to evaluate the actual dimensions, the rotations at supports and loading point are 94 

determined applying Castigliano’s second theorem, being the derivatives obtained applying a 95 

unit bending moment at the point where the rotation is going to be determined. The bending 96 

rotations are: 97 

|𝜃𝐴| = (1 − 𝛼)𝑃 �
12

𝐸𝑓𝑤(2ℎ)3 
� 

1
𝜒
�
𝑎𝑒2

2
−

𝑎𝑒3

3(2𝐿)
� +

𝛼(2 − 𝛼)(2𝐿)2

6
� +

6
5𝐺13𝑤(2ℎ) �

𝛽
1 − 𝛽

� �
𝑎𝑒

(2𝐿)
�� 

 

|𝜃𝐵| = (1 − 𝛼)𝑃 �
12

𝐸𝑓𝑤(2ℎ)3 
� 

1
𝜒

 
𝑎𝑒3

3(2𝐿)
+
𝛼(1 + 𝛼)(2𝐿)2

6
� −

6
5𝐺13𝑤(2ℎ) �

𝛽
1 − 𝛽

� �
𝑎𝑒

(2𝐿)
�� 

 

|𝜃𝐶| = (1 − 𝛼)𝑃 �
12

𝐸𝑓𝑤(2ℎ)3 
�  

1
𝜒

 
𝑎𝑒3

3(2𝐿)
− 
𝛼(1 − 2𝛼)(2𝐿)2

3
� −

6
5𝐺13𝑤(2ℎ) �

𝛽
1 − 𝛽

� �
𝑎𝑒

(2𝐿)
�� 

 

(6) 

Thus, replacing the corrected dimensions from Eq. (5) into Eq (3), the equivalent crack length ae 98 

is determined through a numerical solution equating Eq. (3) to the experimental compliance 99 

value obtained directly from the experimental load displacement curve. Based on the 100 

compliance variation of the specimen as damage develops, ae can be estimated at any stage of 101 

the test where P and δ are evaluated.  102 

2.2.  J- Integral  103 

J is determined using the J-integral closed form expression for the EENF test presented by Stigh 104 

et al. [30].  105 

𝐽 =
𝑃
𝑤

[(1 − 𝛼)𝜃𝐴 − 𝜃𝐶 + 𝛼𝜃𝐵] (7) 
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where θA, θB, and θC are the clockwise rotations at the load introduction points and  𝛼 is the 106 

shape factor accounting for the eccentricity of the EENF test in the deformed configuration. 107 

Replacing bending rotations θA, θB, and θC obtained from Eq. (6) into Eq. (7) J can be computed 108 

as: 109 

𝐽 =
6𝑃2(1 − 𝛼)2

𝐸𝑓𝑤2(2ℎ)3 �
𝑎𝑒2

𝜒
� (8) 

Replacing the corrected dimensions from Eq. (5) and the equivalent crack length determined by 110 

Eq. (3) into Eq. (8), J is determined, obtaining the evolution of J during the test exclusively 111 

from experimental load-displacement data. 112 

2.3. Crack Tip Shear Displacement  113 

According to previous works [33, 38], every effect associated with the development of the FPZ, 114 

is included in the equivalent crack length as displayed in Fig 2.  115 

 116 

Figure 2: FPZ of an adhesive joint (a) CZM idea (b) and the equivalent crack length based 117 
system (c). 118 

 119 

Therefore, the shear displacement at the initial crack tip position ∆t  is obtained based on the 120 

hypothesis of the equivalent crack length system as shown in Fig 3. Where the black lines 121 

represent the cross sectional rotation of the upper and lower arm at the initial crack tip position. 122 

The CTSD is the distance/jump between those two lines after removal the rigid body rotation. 123 
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 124 

Figure 3: Initial crack tip shear displacement, where ∆ae is equivalent crack advance. 125 

  126 

Applying Castigliano’s second theorem, and a pair of unit forces in opposite directions at the 127 

initial crack tip to obtain the derivatives, the ∆t can be expressed as 128 

 129 

∆t=
12𝑃(1 − 𝛼)(1 + 𝛽)
𝐸𝑓𝑤(2ℎ)2(1 − 𝛽)3

[𝑎𝑒2 − 𝑎𝑡𝑒2] (9) 

with 130 

𝑎𝑡𝑒 = 𝑎𝑖 �1 −
𝑅
𝑎𝑡

|𝜃𝐴|� (10) 

where at the initial crack tip position,  R the radius of the supports roller, 𝛼 = 𝑑/2𝐿  the shape 131 

factor in the deformed configuration and θA the rotation at the left support determined  132 

according to Eq. (6) where the corrected dimensions and the effect of the adhesive layer 133 

thickness are included. 134 

 135 

3. COHESIVE LAW EXTRAPOLATION PROCEDURE  136 

In the following section, a methodology to extrapolate the cohesive law for a given material 137 

system and test configuration is presented.  138 

In previous section a method for extracting the mode II cohesive law including bondline 139 

thickness effect has been proposed. The method based on beam theory assumes that every effect 140 

associated to the damage development is included in the equivalent crack length obtained based 141 

on the compliance variation. 142 
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Analytical expression for the Compliance, the CTSD and J-Integral have been derived, all of 143 

them function of the adherends elastic properties (Ef and G13), the test configuration (R, d, 144 

and 2L), the specimens cross-sectional dimensions (2h, t and w), the applied load (P) and the 145 

equivalent crack length (ae).    146 

To be able to rearrange the Compliance, the CTSD and J-Integral expressions in a separable 147 

form as a multiplication of separate functions, it is necessary to define C-Cini whose expression 148 

has the following simplified form according to Eq (A10): 149 

𝐶−𝐶𝑖𝑛𝑖 = �
1

𝑤(2ℎ)3𝜒 
� �

4(1 − 𝛼)2

𝐸𝑓 
� �  𝑎𝑒3 − 𝑎𝑖𝑒

3� (11) 

where the first term is related to cross-sectional dimensions, the second term to the elastic 150 

properties of the adherends and the test configuration and finally the last term to the equivalent 151 

crack length. 152 

Rewriting both Eq (8) and Eq (9) in a separable form, they can be expressed as: 153 

𝐽 = [𝑃2] �
1

𝑤2(2ℎ)3𝜒
� �

6(1 − 𝛼)2

𝐸𝑓
� [𝑎𝑒2] (12) 

𝛥t = [𝑃] �
(1 + 𝛽)

𝑤(2ℎ)2(1 − 𝛽)3� �
12(1 − 𝛼)

𝐸𝑓
� [𝑎𝑒2 − 𝑎𝑡𝑒2] (13) 

For a given material system (Ef and G13) and test configuration (R, d, and 2L), factoring out of 154 

C-Cini , J and Δt  in Eq. (11), Eq. (12) and Eq. (13) respectively, the term related to the cross 155 

sectional dimensions and the applied load the following C0, J0 and ∆0  functions are defined: 156 

(𝐶 − 𝐶𝑖𝑛𝑖) = �
1

𝑤(2ℎ)3𝜒 
�  𝑪0(𝑎𝑒)      

                   
�⎯⎯⎯⎯�    𝑪0(𝑎𝑒) =

   4(1 − 𝛼0)2

𝐸𝑓
[𝑎𝑒3 − 𝑎𝑖𝑒3] 

𝐽 = [𝑃2] �
1

𝑤2(2ℎ)3𝜒
�  𝑱0(𝑎𝑒)      

                   
�⎯⎯⎯⎯�       𝑱0(𝑎𝑒) =

6(1 − 𝛼0)2

𝐸𝑓
𝑎𝑒2          

𝛥𝑡 = [𝑃] �
(1 + 𝛽)

𝑤(2ℎ)2(1 − 𝛽)3�  𝜟0(𝑎𝑒)  
                   
�⎯⎯⎯⎯�     𝜟0(𝑎𝑒) =  

12(1 − 𝛼0)
𝐸𝑓

[𝑎𝑒2 − 𝑎𝑡𝑒2]  

(14) 

 157 

where it is assumed that the effect of span reduction due to contact point shifting affects 158 

similarly to all the specimens for a given test configuration α =α0=d0/(2L0). 159 
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According to the polynomial expressions of J0 and ∆0 with respect to ae, Eq (14) suggests that 160 

the J0-∆0 follows a linear relationship: 161 

𝑱𝟎 = 𝑚 𝜟𝟎 + 𝐵 (15) 

where m and B are regression coefficients determined from least squares fitting, that according 162 

Eq (14) can be obtained as: 163 

𝑚 =
(1 − 𝛼0)

2
            𝐵 =  

6(1 − 𝛼0)2

𝐸𝑓
 𝑎𝑡𝑒2 (16) 

On the other hand, Eq (14) also suggests that ∆0-C0 can be fitted to a second order polynomial 164 

derived from a Maclaurin series expansion of a function type of (x+a)2/3: 165 

𝜟𝟎 = 𝜆2𝑪02 + 𝜆1𝑪0 + 𝜆0 
(17) 

where λ2, λ1 and λ0 are regression coefficients and have the following form: 166 

𝜆0 =
12(1 − 𝛼0)

𝐸𝑓
 (𝑎𝑖𝑒2 − 𝑎𝑡𝑒2)          𝜆1 =  

2
(1 − 𝛼0)𝑎𝑖𝑒

          𝜆2 =  −
𝐸𝑓

12(1 − 𝛼0)3  𝑎𝑖𝑒4
 (18) 

According to Eq (14-18), all regression coefficients depend solely on the material properties and 167 

the test configuration and do not depend on cross sectional dimensions, hence it can be set that 168 

the J0-∆0 and ∆0-C0 curves are unique/ invariant for a given material system and test 169 

configuration i.e. the invariant nature of the J0-∆0 and ∆0-C0 curves allows considering these 170 

curves as a property of the material system and test configuration. This fact leads to the 171 

following interesting result: 172 

      If J0-∆0 and ∆0-C0 curves are calibrated for a given material system and test configuration, 173 

then it would be possible to extrapolate the J and ∆t and consequently the cohesive law for 174 

different adherend and adhesive thicknesses of the same material system and test configuration 175 

by monitoring only the load-displacement curve. 176 

3.1. Calibration of J0-∆0 and ∆0-C0 curves 177 

The starting point of the calibration procedure is the simultaneous record of load versus loading 178 

point displacement, J- integral and CTSD of a single specimen test.   179 
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Initially each value of C-Cini, CTSD and J -Integral corresponding to each experimental record 180 

are factorized where i refers to the ith loading point as shown in Fig 4. Thereafter, thought the 181 

functions expressed in Eq (15) and Eq (17) the factorized data can be fitted determining the 182 

regression constants m, B, λ2, λ1 and λ0.  183 

Thus, following the flow diagram shown in fig 4, the J0-∆0 and ∆0-C0 curves can be calibrated 184 

using a single specimen test data. 185 

 186 

 187 
 188 

Figure 4. Flow diagram of J0-∆0 and ∆0-C0 curve extraction. 189 
 190 

3.2. Extrapolation procedure 191 

Once calibrated the J0-∆0 and ∆0-C0 curves for a given material system and test configuration,   192 

the J- integral and CTSD can be evaluated at all the loading points for other specimens of the 193 

same material system and test configuration varying the adhesive and adherent thicknesses by 194 

processing only the load-displacement curve. 195 

The extrapolation procedure is shown in the flow diagram in Fig (5). 196 

Initially each value of C-Cini corresponding to each experimental record is factorized where i 197 

refer to the ith loading point. According to the ∆0-C0 curve a ∆0i value corresponding to each C0i 198 

value can be obtained, and consequently using the J0-∆0 curve a J0i value corresponding to each 199 

∆0i. . Knowing the values of ∆0i and J0i for each ith loading point, the J-integral versus CTSD 200 
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curve is obtained by Eq (14) and according to Eq (2) the corresponding cohesive law by 201 

numerical differentiation. 202 

  203 

 204 
Figure 5. Flow diagram to extrapolate the Cohesive Law. 205 

 206 

The extrapolation procedure presented above permits determining the cohesive law for a given 207 

material system varying the adhesive and adherent thicknesses by processing only the load-208 

displacement curve, calibrating previously the J0-∆0 and ∆0-C0 curves using a single specimen 209 

test data. 210 

4. VERIFICATION OF THE PROPOSED METHOD   211 

4.1. Numerical  212 

A two dimensional finite element analysis (FEA) was conducted to examine the suitability 213 

of the proposed data reduction procedure to extract the cohesive law for different EENF test 214 
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configurations, and on the way, to check the advantages of the eccentric test configuration due 215 

to the wider path length for the development of the fracture process zone ensuring the stable 216 

propagation of the crack [39]. 217 

In the considered EENF specimen configuration the support span is 2L = 120 mm; the width is 218 

w= 25 mm, the total thickness 2h=3.2 mm; the adhesive thickness t= 0.2mm and the elastic 219 

properties corresponding to the adherends and the adhesive are shown on Table 1. 220 

Table 1. Properties of T800S/M21 UD [40, 41] adherend and FM-300M [42] adhesive  221 

E11 134.7 GPa Gadh 1016MPa       

E22=E33 7.7 GPa τmax 47.5MPa 

G12=G13 4.2 GPa JII 7.9N/mm 

G23 2.8 GPa   

ν12=ν13 0.34   

ν23 0.4   

 222 
 223 

The model was developed in ABAQUS using four-node 2D plane strain elements (CPE4) 224 

for the adherends and finite thickness four-node cohesive elements (COH2D4) to model the 225 

adhesive fracture behavior. Concerning the mesh size, 0.2-mm-long cohesive elements were 226 

used to ensure enough elements within the FPZ and the thickness of the cohesive elements was 227 

that of the adhesive layer. Regarding the adherends, 0.2-mm-long 8 elements through the 228 

thickness were used. The effect of loading and supporting rollers has not been taken into 229 

account in the model. 230 

Three test configurations were compared varying the location of the loading point to α=0.5 231 

(corresponding to an ENF test), α=0.6 and α=0.7. The fracture behavior of the adhesive layer 232 

was modeled by the input cohesive laws shown in Table 2 with an initial penalty stiffness 233 

of 𝐾𝑝 = 𝐺𝑎𝑑ℎ
𝑡

= 5080𝑁/𝑚𝑚3 [42].  234 

The following input cohesive laws have been used: 235 

 236 
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Table 2. Cohesive laws used in the finite element analyses. 237 

Bilinear Tabular with a  
exponential Softening 

Jc (N/mm) τmax (MPa) kp (N/mm3) Jc (N/mm) τmax (MPa) kp (N/mm3) 
7.9 47.5 5080 7.9 47.5 5080 

  

 238 

The initial crack length was set to 42 mm for the ENF configuration, to 47 mm for the 239 

EENF (α=0,6) configuration and to 52 mm for the EENF (α=0,7) configuration in order to 240 

ensure a stable propagation according to [39], being the minimum value of the initial crack 241 

length determined by  𝑎𝑚𝑖𝑛 = 2𝐿0�
1
6
� 𝑑0
2𝐿0
�
23
.  242 

4.2. Experimental   243 

T800S/M21 carbon/epoxy unidirectional prepreg were used to manufacture the specimens. The 244 

CFRP laminates were manufactured in advance and then secondary bonded using FM-300 245 

epoxy adhesive film. Each specimen was prepared with an initial 60mm long crack by using a 246 

teflon insert.  247 

Concerning specimen dimensions the length was 250 mm and the width w=25 mm for all of 248 

them. The different adherend and adhesive thicknesses tested are shown in Table 3. The support 249 

and loading roller diameters of the test setup are 2R = 9.95 mm. The elastic properties of the 250 

adherends are E11=134.7GPa, E22= E33=7.7GPa and G12=G13= 4.2GPa [40]. 251 

Table 3. Specimen configurations being g the position of the insert [16] 252 
 253 

Specimen 2h (mm) Layup t (mm) 

A1T1 3.12 ± 0.06 [0]8 / g / [0]8 0.21 ± 0.02 

A2T1 4.60 ± 0.08 [0]12 / g / [0]12 0.21 ± 0.02 

A2T2 4.80 ± 0.10 [0]12 / g / [0]12 0.37 ± 0.01 

A3T1 6.05 ± 0.23 [0]16 / g / [0]16 0.21 ± 0.02 

 254 
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ENF tests were carried out based on AITM 1.0006 [43], being d0=L0. All the tests were carried 255 

out for a support span of 2L0=120 mm and an initial crack length of 35 mm to have sufficient 256 

space for the full  development of the FPZ before the damaged zone reaches the loading point of 257 

the specimen.  258 

The ENF tests were run under displacement control in a servohydraulic MTS 858 testing 259 

machine using a 5 kN load cell. The displacement rate was varied from 0.5 mm/min to 260 

2.0mm/min according to [43] in order to get a constant strain rate for each specimen thickness 261 

and low enough to ensure quasi-static crack growth. A load cell of 5 kN was used to measure 262 

the load and the displacement refers to the crosshead displacement of the testing machine.  263 

The specimens were painted with a random black on white speckle pattern in one edge to 264 

measure the displacement at the crack tip using a Digital Image Correlation (DIC) system. 265 

Three inclinometers were installed at load introduction points (points A, B and C in Fig. 1). 266 

The synchronization of all systems was carried out by using a common displacement channel.  267 

 268 

4.3. Data reduction Methods 269 

The cohesive laws were obtained by the three different data reduction schemes compared in this 270 

work: the Direct Method, the BTBR method and extrapolation procedure. 271 

1) Direct method (DM) [16]: J is obtained substituting into Eq. (7) the measured rotations 272 

at loading introduction points and the α = 1/2 shape factor. The crack tip shear displacement 273 

is monitored by DIC system at the initial crack tip. Finally, the cohesive law is determined 274 

by numerical differentiation according to Eq (2). It is assumed that the monitoring of 275 

rotations and displacement is performed while the FPZ is being developed [44]. 276 

2) BTBR method: The load-displacement curve is registered and J is determined 277 

replacing in Eq (8) the equivalent crack length determined by Eq (3) and the corrected 278 

dimension obtained in Eq. (5). The crack tip shear displacement ∆t is determined from Eq 279 

(9). Finally, to avoid excessive noise of experimental data, relation J- ∆t is written as a 280 

logistic function [23, 38] and the cohesive law is determined according to Eq (2). 281 
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3) Extrapolation procedure:  282 

a. Calibration: The J0-∆0 and ∆0-C0 curves are calibrated according to the flow chart 283 

presented in Fig 4.  284 

b. Extrapolation. The J and ∆t for each specimen can be extrapolated according the flow 285 

diagram shown in Fig 5. Finally, the cohesive law is obtained according to Eq (2).   286 

The input requirements of the different methods compared in this work are shown in Table 3. It 287 

must be noticed that in the present study, the input data used in the calibration procedure (J and 288 

∆t ) is obtained by the BTBR method. 289 

Table 4. Inputs required by the data reduction schemes compared in this work: Direct Method, 290 
BTBR method and the Extrapolation procedure. 291 

 292 

 Direct Method BTBR 
Extrapolation Procedure 

Calibration Extrapolation 

Dimensions w w, 2h, t, d0, 2L0 w, 2h, t, d0, 2L0 w, 2h, t 
Elastic Properties None Ef  and G13 Ef  and G13 None 

Measurements during the test P, θA , θB , θC , Δt P and δ P and δ P and δ 

 293 

5. RESULTS  294 

5.1. Numerical Results 295 

Fig. 6 shows the load displacement curves corresponding to the three tested configurations. As 296 

it can be seen, in the ENF test, the load reaches a maximum value and it remains practically 297 

constant, while in the case of the eccentric configurations, the load reaches a maximum value 298 

and subsequently drops while the displacement progresses. 299 
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Figure 6. Load displacement curves for the ENF α=0.5, EENF α=0.6 and EENF α=0.7 301 
tests, respectively for the tabular input cohesive law on the left and the bilinear input cohesive 302 

law on the right. 303 
 304 

Fig. 7 shows the stress profile along the crack path in ENF α=0.5, EENF α=0.6 and 305 

EENF α=0.7 tests for the tabular (left) and bilinear (right) input cohesive laws. The stress 306 

distribution ahead of the crack tip corresponding to the ENF test, shown in Fig. 7a, reveals that 307 

the plateau response of the load displacement curve can be due to the proximity of the fracture 308 

process zone to the local compression at load application point, hindering the development of 309 

the FPZ.  According to Fig. 7b and Fig. 7c, changing the load application point to α=0.6 and 310 

α=0.7, ensuring the stable crack propagation requirements with the initial crack length, provides 311 

a wider path to fully develop the fracture process zone, without preparing any special equipment 312 

or specimen.  313 

  314 

  315 

  316 

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

Pa
)

a ini=42 mm

Load application point
d= 60mm

ENF α= 0.5

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

Pa
)

a ini=42 mm

Load application point
d= 60mm

Load application point
d= 72mm

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

Pa
)

a ini=47 mm

EENF α= 0.6

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

Pa
)

Load application point
d= 72mm

a ini=47 mm

EENF α= 0.6

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

P
a)

Load application point
d= 84mm

a ini=52 mm

EENF α= 0.7

Load application point
d= 84mm

a ini=52 mm

EENF α= 0.7

-30

-20

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

St
re

ss
 (M

Pa
)



 

  17 

 317 

Figure 7. Stress distribution along the (a) ENF, (b) EENF0.6 and (c) EENF0.7 specimens, 318 
respectively for the tabular input cohesive law on the left and the bilinear input cohesive law on 319 

the right. 320 
 321 

Is worth noting that the eccentricity of the load application increases the shear stress in the 322 

untracked region, to ensure that the untracked region remains elastic it is verified that the shear 323 

stress does not exceed  τmax = 47.5 MPa for all the analyzed cases. It is also ensured that the 324 

maximum adherend bending stresses not exceed the longitudinal compressive strength of 325 

T800S/M21 UD  [45]. 326 

Applying the generalized BTBR to the load-displacements curves obtained for each virtual test 327 

shown in Fig 6, results in Fig 8 show that the generalized BTBR method works properly for the 328 

eccentric ENF test configurations and that is sensitive enough to detect the problems on the full 329 

development of the fracture process zone observed in the current ENF test. 330 

 331 

  332 

Figure 8. Cohesive laws  for  ENF, EENF 0.6 and EENF 0.7 specimens, respectively for 333 
the tabular input cohesive law on the left and the bilinear input cohesive law on the right.. 334 

  335 

5.2. Experimental Results 336 

The results of seven ENF experimental tests performed are presented, corresponding to two 337 

A1T1 specimens, two A2T2 specimens, two A2T1 specimens and one A3T1 specimen. 338 

Four different specimen configurations have been tested combining two adhesive thicknesses 339 

and three adherend thicknesses obtaining different Experimental Load-Displacement responses 340 
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aiming to demonstrate the suitability of the proposed methods in a wide range of specimen 341 

configurations.   342 

The experimental load displacement curves are presented in Fig. 9.   343 

 344 

Figure 9: Experimental Load-Displacement curves [16]. 345 

5.2.1. Direct method vs. BTBR method 346 

First of all, the J-∆ curves and the cohesive laws determined by the generalized BTBR and 347 

DM are compared in Figs. 10-16 to verify the precision of the proposed new model. Results 348 

neglecting the thickness of the cohesive layer are also included, to evaluate the need of 349 

including the effect of the thickness of the adhesive layer in the model for the correct prediction 350 

of the cohesive law. 351 

  

Figure 10: J-∆t curves and Cohesive Laws for the tested specimen A1T1 09 
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Figure 11: J-∆t curves and Cohesive Laws for the tested specimen A1T1 10 

  

Figure 12: J-∆t curves and Cohesive Laws for the tested specimen A2T1 09 

  

Figure 13: J-∆t curves and Cohesive Laws for the tested specimen A2T1 04 

  

Figure 14: J-∆t curves and Cohesive Laws for the tested specimen A2T2 03 
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Figure 15: J-∆t curves and Cohesive Laws for the tested specimen A2T2 04 

  

Figure 16: J-∆t curves and Cohesive Laws for the tested specimen A3T1 

According to Figs. 10-16, the generalized BTBR method can predict both the form and the 352 

maximum stress corresponding to each of the tested configurations accurately; being the results 353 

obtained by the DM and generalized BTBR method well correlated.        354 

The agreement at the initial penalty stiffness and the shape of the cohesive law determined by 355 

both methods is excellent for all the tested specimens; however there is a shift in some of the 356 

cohesive laws that may be due to the inaccuracy in the determination of the crack tip shear 357 

displacement by the generalized BTBR approach. It also noticeable that the fracture toughness 358 

predicted by generalized BTBR method is slightly higher for all the tested configurations.  359 

It should be noted that results obtained by the original BTBR method neglecting the effect of 360 

the adhesive layer thickness reveals high inaccuracies on the predicted initial penalty stiffness 361 

and the maximum stresses. Those errors increase with the adhesive thickness versus adherend 362 

thickness ratio, being higher for the A1T1 and A2T2 specimen configurations. 363 
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On the other hand, it is noticeable in Figs. 10-16 that, for all specimens except A2T1 09 and 366 

A3T1, the tractions in the cohesive laws tend to a non-zero steady value, preventing 367 

the corresponding J-∆ curves from reaching the plateau, an effect that is also noticed in the 368 

plateau response exhibited by those specimens in the load-displacement curves shown in Fig.9. 369 

This behavior denotes the proximity of the fracture process zone to the local compression at the 370 

load application point which hinders the complete development of the FPZ. 371 

 According to the numerical results, this effect could have been avoided by the eccentric 372 

configuration of the ENF test, which provides a wider path for the FPZ development without the 373 

need for drastic changes to the test configuration just moving the load application point. In any 374 

case, it would be necessary to control both the maximum shear stress and the maximum bending 375 

stresses to ensure the elastic behavior of the un-cracked region. 376 

5.2.2. Extrapolation procedure 377 

Once validated the generalized BTBR model and consequently the novel expressions derived 378 

for the Compliance, J-Integral and Crack Tip Shear displacement including the bond line 379 

thickness effect, the suitability of the extrapolation procedure proposed in the present study is 380 

analyzed in this section.  381 

Applying the flow chart presented in Fig. 4 to the experimental data corresponding to the ENF 382 

tests of specimens A1T1-09, A2T1-09, A3T1 and A2T2-04, J0-∆0 and ∆0-C0 curves 383 

corresponding to each specimen are shown in Fig. 17 and Fig. 18, respectively. 384 

 385 
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 386 
Figure 17.  J0-∆0 curves A1T1-09, A2T1-09, A3T1 and A2T2-04. 387 

 388 

 389 
Figure 18. ∆0-C0 curves corresponding to A1T1-09, A2T1-09, A3T1 and A2T2-04. 390 

 391 
 392 

According to Fig. 17 and Fig. 18, it can be validated experimentally that J0-∆0 and ∆0-C0 curves 393 

are invariant for a given material system and test configuration.  394 

Therefore, if J0-∆0 and ∆0-C0 relationships are obtained from a single specimen test and fitted to 395 

Eq. (14) and Eq. (15), being the input data the P-δ curve, J and ∆t and according to the flow 396 

chart shown in Fig. 4, the Cohesive Law for different adherent and adhesive thicknesses of the 397 

same material system and test configuration can be extrapolated according the flow diagram 398 

presented in Fig. 5, being the input data de load-displacement curve and the cross sectional 399 

dimensions. 400 
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Thus, extracting the J0-∆0 and ∆0-C0 curves form specimen A1T1 data, from the flow chart in 402 

Fig. 4 and applying the procedure presented in Fig. 5, the Cohesive Law for the specimens 403 

A1T1-09, A2T1-09, A3T1 and A2T2-04 are show on in Fig. 19 compared with the cohesive 404 

laws determined by the generalized BTBR method and  DM method. 405 

 406 

 407 

 408 
 409 

Figure 19. Extrapolated Cohesive Laws for A1T1, A2T1, A3T1 and A2T2 specimens. 410 

 411 
According to Fig. 19, the extrapolation procedure presented above enables to estimate the 412 

cohesive law for a given material system varying the adhesive and adherent thicknesses by 413 

processing only the load-displacement curve, calibrating previously the J0-∆0 and ∆0-C0 curves 414 

using a single specimen test data. 415 

6. SENSITIVITY ANALYSIS 416 
  417 
In this section, a Monte Carlo Method based sensitivity analysis is carried out to describe 418 

the impact of the input parameter uncertainties in the estimation of the fracture properties of the 419 
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study we focus on the variability of the applied load, the initial specimen dimensions and the 421 

mechanical properties of the adherends.  422 

 423 

Each variable is sampled using the corresponding probability density function. The elastic 424 

properties are assumed to follow a normal distribution and are sampled by a Normal 425 

Distribution-1 (mean; SD: standard deviation) function, while the load cell, caliper and 426 

micrometer probability density functions are assumed to follow a uniform distribution and are 427 

sampled by Uniform Distribution-1 (mean; bound).  428 

The used testing data and corresponding uncertainties are given in Table 5: 429 

Table 5. Mean values and uncertainties of the applied load, the initial specimen dimensions and 430 
the mechanical properties of the adherends. 431 

 432 
Test Data Units Bounds  Test Data  Units  SD 

P N ± 0.005P  Ef MPa 0.05 Ef 

2L mm ± 0.2     G MPa 0.05 G 

ai mm ± 0.2        

b mm ± 0.03        

2h mm ± 0.002      

 433 

The uncertainty bounds reported in Table 5 correspond to typical values of uncertainty of 434 

the measuring devices or typical values of dispersion of results in the elastic properties. 435 

At each iteration, random values of J, Δt and τ are generated replacing the sampled input 436 

variables in the BTBR method following the procedure presented in Section 4.3.   437 

After 100 iterations, the mean value and standard uncertainty associated to the J, Δt and 438 

τ are presented in Fig 20 assuming they follow a normal distribution. 439 

 440 
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Figure 20. Mean value and standard uncertainty of the fracture toughness, crack tip shear 441 

displacement and cohesive law, respectively, using the proposed BTBR method, for the A2T109 442 

specimen 443 

 444 

If the uncertainties (CV%) associated to the facture toughness and the crack tip shear 445 

displacement are compared (Fig 21), it is noticeable that the uncertainty corresponding to J-446 

Integral is much lower than that of Δt. It can be stated too, that at the initial states of the test, 447 

where the crack tip shear displacement is a small quantity (Δt < 5 micras), the uncertainty tends 448 

to infinity, which makes this interval not useful for the determination of the cohesive law. 449 
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 451 

 452 

Figure 21. Uncertainties (CV%) associated to the facture toughness and the crack tip shear 453 

displacement, for the A2T109 specimen 454 

As the cohesive stresses are determined according to Eq (2) by numerical differentiation, it 455 

can be concluded that the main source of the uncertainty corresponding to the cohesive stresses 456 

comes from the crack tip shear displacement.   457 

  458 
7. SUMMARY AND CONCLUSIONS  459 

A novel extrapolation method to predict the mode II cohesive laws of bonded joints is presented 460 

that enables to estimate the mode II cohesive laws for a wide range of adhesive to adherend 461 

ratio of a given material system and test configuration.  462 

For that purpose, improved expressions for the compliance, J Integral and the crack tip shear 463 

displacement are derived generalizing and extending the original BTBR method for the EENF 464 

test and to take into account the effect of the adhesive layer thickness, when it is not negligible 465 

in comparison with the adherend thickness.  466 

Assuming that every effect associated to the damage is included in the equivalent crack length, 467 

new factorized expressions for the Compliance (C0), J- Integral (J0) and crack tip shear 468 

displacement (∆0) are defined and based on the invariant relations between J0-∆0 and ∆0- C0 for 469 

a given material system and test configuration, an extrapolation procedure is presented which 470 

enables to estimate the mode II cohesive laws for a wide range of adhesive to adherend ratio of 471 

a given material system by processing only the load –displacement curve. 472 
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The advantages of the Eccentric ENF test configuration due to the extended crack propagation 473 

path and the suitability of the proposed new analytical expression and data reduction scheme to 474 

extract the cohesive laws in an eccentric test configuration have been numerically confirmed.  475 

On the other hand, the validity of the developed compliance, J- Integral and the crack tip shear 476 

displacement expressions have been verified experimentally for four different specimen 477 

configurations, combining two adhesive thicknesses and three adherend thicknesses, by 478 

comparing results obtained by the original and generalized BTBR method with those obtained 479 

by the Direct Method. Results reveal the need of including the influence of the thickness of the 480 

adhesive line in the data reduction scheme to obtain accurate results, especially in those cases 481 

where the adhesive thickness versus adherend thickness ratio is higher. 482 

Moreover, the suitability of the extrapolation procedure and the precision of the extracted 483 

cohesive laws have been confirmed experimentally by comparing predicted cohesive laws with 484 

results obtained by the Direct Method. 485 

Finally, a sensitivity analysis has been performed to evaluate the reliability of the proposed 486 

BTBR method.  Applying a Monte Carlo simulation, the standard uncertainties corresponding to 487 

the fracture toughness, the crack tip shear displacement and the cohesive law have been 488 

estimated. It has been concluded that the main uncertainty source on the determination of the 489 

cohesive law is the crack tip shear displacement.   490 

 491 
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APPENDIX A 498 

The displacement of the loading point is determined applying the Engesser–Castigliano’s 499 

theorem [36], which in the case of shear and bending is given by 500 
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being the derivatives obtained applying a vertical unit load at the middle point of the specimen, 501 

the middle point displacement  can be expressed as: 502 

𝛿 = 𝑃(Ω1𝑎𝑒3 + Ω2𝑎𝑒 + Ω3) (A1) 

where ae is equivalent crack length and Ω1, Ω 2 and Ω3 parameters are : 503 
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 504 

Designing as α = d/2L the shape factor accounting for the eccentricity of the EENF test in the 505 

deformed configuration. 506 

Thus, the compliance at the load application point can be expressed as: 507 
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The second moment of areas and the cross sectional areas are 508 
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Defining  β = t/2h  as the adhesive to adherent thickness ratio: 509 
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 510 
Where χ factor can be computed as: 511 

𝜒 =
(1 − 𝛽)3

4 − (1 − 𝛽)3 
(A6) 

Rewriting Eq (A4) : 512 
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According to Eq (A7) an initial compliance Cini can be defined as the compliance corresponding 513 

to the initial equivalent crack length aie, consequently C-Cini can be determined as 514 
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Rewriting the above expression, it yields to: 515 
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  is negligible for all the tested configurations, C-Cini can be 516 

expressed as: 517 
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	Figure 2: FPZ of an adhesive joint (a) CZM idea (b) and the equivalent crack length based system (c).
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	The following input cohesive laws have been used:
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	4.2. Experimental

	T800S/M21 carbon/epoxy unidirectional prepreg were used to manufacture the specimens. The CFRP laminates were manufactured in advance and then secondary bonded using FM-300 epoxy adhesive film. Each specimen was prepared with an initial 60mm long crac...
	Concerning specimen dimensions the length was 250 mm and the width w=25 mm for all of them. The different adherend and adhesive thicknesses tested are shown in Table 3. The support and loading roller diameters of the test setup are 2R = 9.95 mm. The e...
	Table 3. Specimen configurations being g the position of the insert [16]
	ENF tests were carried out based on AITM 1.0006 [42F ], being d0=L0. All the tests were carried out for a support span of 2L0=120 mm and an initial crack length of 35 mm to have sufficient space for the full  development of the FPZ before the damaged ...
	The ENF tests were run under displacement control in a servohydraulic MTS 858 testing machine using a 5 kN load cell. The displacement rate was varied from 0.5 mm/min to 2.0mm/min according to [43] in order to get a constant strain rate for each speci...
	The specimens were painted with a random black on white speckle pattern in one edge to measure the displacement at the crack tip using a Digital Image Correlation (DIC) system.
	Three inclinometers were installed at load introduction points (points A, B and C in Fig. 1).
	4.3. Data reduction Methods

	The cohesive laws were obtained by the three different data reduction schemes compared in this work: the Direct Method, the BTBR method and extrapolation procedure.
	1) Direct method (DM) [16]: J is obtained substituting into Eq. (7) the measured rotations at loading introduction points and the = 1/2 shape factor. The crack tip shear displacement is monitored by DIC system at the initial crack tip. Finally, the ...
	2) BTBR method: The load-displacement curve is registered and J is determined replacing in Eq (8) the equivalent crack length determined by Eq (3) and the corrected dimension obtained in Eq. (5). The crack tip shear displacementt is determined from ...
	3) Extrapolation procedure:
	a. Calibration: The J0-0 and 0-C0 curves are calibrated according to the flow chart presented in Fig 4.
	b. Extrapolation. The J and t for each specimen can be extrapolated according the flow diagram shown in Fig 5. Finally, the cohesive law is obtained according to Eq (2).
	The input requirements of the different methods compared in this work are shown in Table 3. It must be noticed that in the present study, the input data used in the calibration procedure (J and t ) is obtained by the BTBR method.
	Table 4. Inputs required by the data reduction schemes compared in this work: Direct Method, BTBR method and the Extrapolation procedure.
	5. RESULTS
	5.1. Numerical Results

	Fig. 6 shows the load displacement curves corresponding to the three tested configurations. As it can be seen, in the ENF test, the load reaches a maximum value and it remains practically constant, while in the case of the eccentric configurations, th...
	/ /
	Fig. 7 shows the stress profile along the crack path in ENF =0.5, EENF =0.6 and EENF=0.7 tests for the tabular (left) and bilinear (right) input cohesive laws. The stress distribution ahead of the crack tip corresponding to the ENF test, shown in ...
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	/ /
	/ /
	Is worth noting that the eccentricity of the load application increases the shear stress in the untracked region, to ensure that the untracked region remains elastic it is verified that the shear stress does not exceed max = 47.5 MPa for all the ana...
	Applying the generalized BTBR to the load-displacements curves obtained for each virtual test shown in Fig 6, results in Fig 8 show that the generalized BTBR method works properly for the eccentric ENF test configurations and that is sensitive enough ...
	/ /
	5.2. Experimental Results

	The results of seven ENF experimental tests performed are presented, corresponding to two A1T1 specimens, two A2T2 specimens, two A2T1 specimens and one A3T1 specimen.
	The experimental load displacement curves are presented in Fig. 9.
	/
	Figure 9: Experimental Load-Displacement curves [16].
	5.2.1. Direct method vs. BTBR method

	It should be noted that results obtained by the original BTBR method neglecting the effect of the adhesive layer thickness reveals high inaccuracies on the predicted initial penalty stiffness and the maximum stresses. Those errors increase with the ad...
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