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A B S T R A C T

Most of current computer vision-based advanced driver assistance systems (ADAS) perform detection and
tracking of objects quite successfully under regular conditions. However, under adverse weather and changing
lighting conditions, and in complex situations with many overlapping objects, these systems are not completely
reliable. The spectral reflectance of the different objects in a driving scene beyond the visible spectrum can
offer additional information to increase the reliability of these systems, especially under challenging driving
conditions. Furthermore, this information may be significant enough to develop vision systems that allow for
a better understanding and interpretation of the whole driving scene. In this work we explore the use of
snapshot, video-rate hyperspectral imaging (HSI) cameras in ADAS on the assumption that the near infrared
(NIR) spectral reflectance of different materials can help to better segment the objects in real driving scenarios.
To do this, we have used the HSI-Drive 1.1 dataset to perform various experiments on spectral classification
algorithms. However, the information retrieval of hyperspectral recordings in natural outdoor scenarios is
challenging, mainly because of deficient color constancy and other inherent shortcomings of current snapshot
HSI technology, which poses some limitations to the development of pure spectral classifiers. In consequence,
in this work we analyze to what extent the spatial features codified by standard, tiny fully convolutional
network (FCN) models can improve the performance of HSI segmentation systems for ADAS applications.
In order to be realistic from an engineering viewpoint, this research is focused on the development of
a feasible HSI segmentation system for ADAS, which implies considering implementation constraints and
latency specifications throughout the algorithmic development process. For this reason, it is of particular
importance to include the study of the raw image preprocessing stage into the data processing pipeline.
Accordingly, this paper describes the development and deployment of a complete machine learning-based
HSI segmentation system for ADAS, including the characterization of its performance on different embedded
computing platforms, including a single board computer, an embedded GPU SoC and a programmable system
on chip (PSoC) with embedded FPGA. We verify the superiority of the FPGA-PSoC over the GPU-SoC in terms
of energy consumption and, particularly, processing latency, and demonstrate that it is feasible to achieve
segmentation speeds within the range of ADAS industry specifications using standard development tools.
1. Introduction

Today, thanks to the availability of small-size, portable, snapshot
hyperspectral cameras, it is possible to set up HSI processing systems
on moving platforms. The use of drones for precision agriculture and
ecosystem monitoring is probably one of the most active and mature
application domains of this technology [1]. The research into how
hyperspectral information can be used to develop more capable and
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robust ADAS is, on the contrary, in its infancy. HSI provides rich
information about how materials reflect the light of different wave-
lengths (spectral reflection), and this can be used to identify and classify
surfaces and objects in a scene [2,3]. In fact, RGB images tend to
suffer from metamerism (two objects with different reflection spectra
but having the same color under a certain light source), so HSI can
help to resolve this phenomenon and become a powerful solution for
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object segmentation [4]. Thus, with the application of appropriate in-
formation processing techniques, HSI can help to enhance the accuracy
and robustness of current ADAS for object identification and tracking
and, eventually, can be used for scene understanding, which is a step
forward in the achievement of more capable and intelligent ADAS/ADS
(Autonomous Driving Systems) [5,6].

HSI segmentation of real driving scenes is, however, very challeng-
ing for a variety of reasons that are relative to both the lack of control
over the environment (lighting, weather, distance of objects etc.) and
the technology of portable snapshot HSI cameras, i.e. the use of spatial
mosaic and tiled spectral filters, the limited spectral range of CMOS
sensors and the lack of a photometer-based exposure-time setting. First,
acquiring HSI outdoors implies working with varying illumination and
environmental conditions and dealing with the presence of moving
objects and changing backgrounds, which strongly conditions the setup
of the acquisition system. In consequence, acquired images need to
undergo a time-consuming preprocessing stage to transform a 2D image
with radiance data into a 3D cube of reflectance values which, under
these variable conditions and changing camera setups, can hardly
guarantee the required robustness for the subsequent information pro-
cessing. Secondly, the spectral signatures of the different objects of
interest for ADAS/ADS in a driving scene may show a weak spectral
separability when acquired under the conditions described herein.
Thirdly, the extraction of additional spatial features that could help to
improve the segmentation of items with similar spectral reflectance is
problematic as a result of the enormous diversity of shapes, view angles,
distances and scales in an image. Finally, ADS/ADAS development
implies executing image processing and AI algorithms onboard and in
real-time (the latter meaning with a sufficiently low latency), and this
must be performed on resource constrained hardware platforms with
tight power consumption restrictions. This entails not only evaluating
the performance indexes (recall/precision) of the inferred classification
or segmentation maps but carefully analyzing the computational com-
plexity of the algorithms involved and how to efficiently implement
them on the target devices.

In this work, which is an extended version of [7], we describe
an ML approach based on FCN for the segmentation of HSI video
recorded in real driving conditions as part of a research project which
aims at exploring the applicability of small-size snapshot hyperspectral
sensor technology to the enhancement of vision-based ADAS. This is
a multidisciplinary work that includes investigating in an integrated
manner HSI processing techniques, machine learning and AI algorithms
and models, and processor and advanced SoC design techniques to
develop a functional real-time image segmentation system that can
realistically be implemented in an embedded processing system. We
present two application examples of the design of a HSI segmentation
system that could be applied to ADS/ADAS. These examples are used
throughout the paper to show the system development process, from
the algorithmic design, (i.e. ML model training and optimization), to
the final system prototyping and testing on different embedded process-
ing systems: embedded multicore microprocessors, an embedded GPU
SoC, and a PSoC with an embedded FPGA. The first, simpler example
aims at the segmentation of images by the pixelwise classification of
three categories: tarmac, road marks and ‘‘rest’’ or non-drivable areas,
which could be used to enhance automatic lane keeping and trajectory
planning systems for ADS. The second example incorporates two addi-
tional categories, vegetation and sky, to make a total of five different
categories to be classified, which extends the system’s ability for a
broader scene understanding. The aim was to evaluate, first, to what
extent deep convolutional segmentation models such as U-Net, which
perform successfully in image segmentation tasks in other application
fields, can help to overcome the limitations revealed in previous stages
of our research of purely spectral classifiers. The second aim was to
evaluate whether it is pertinent to try out the implementation of such
models into embedded processing platforms, considering the real-time
2

requirements of the application.
To do so, we have trained and evaluated the segmentation al-
gorithms under study using a HSI database specifically created for
this purpose [8]. Various FCN variants have been used in order to
analyze their performance on the experimental data. However, in this
approach we have avoided complex, compound FCN models to keep
the model sizes under control. Moreover, the selected FCN model
hyperparameters have finally been optimized in order to achieve a good
trade-off between segmentation accuracy and model complexity to re-
duce computing time (FLOPS) and memory footprint (reduced number
of parameters). As stated before, small-size hyperspectral snapshot cam-
eras require quite a complex preprocessing pipeline to get the 3D cubes
containing spectral reflectance data from the recorded radiance raw
images. For an ADS/ADAS application, this preprocessing must be car-
ried out on-the-fly and on the onboard processing device. In addition,
we include an ablation study to observe the effect of those techniques
separately on each of the stages of the preprocessing. Finally, we have
conducted a comprehensive benchmarking to exhaustively characterize
the prototype performances in terms of latency, power and energy con-
sumption, both at the image preprocessing stage and at the inference
of the deployed network. Besides this, the benchmarking also considers
the comparison between the execution of the FCN models using only
the processing systems (microprocessors) with the combined execution
of the processing system and the dedicated coprocessors for AI infer-
ence (GPU and FPGA), which comprises a previous quantization of the
models. In fact, the effect of the quantization process is also addressed
to check how it affects the previously mentioned measurements as well
as the memory footprint and the segmentation accuracy

The main contributions of this paper are summarized as follows:

– The spectral data analysis and the development of HSI segmenta-
tion algorithms for scene understanding in ADAS are performed
on images obtained with a snapshot camera in real driving sce-
narios and under diverse lighting and weather conditions. This
guarantees that the results obtained are realistic and can be
extrapolated to an eventual real implementation based on this
same technology.

– Some inherent limitations of the spectral information obtained
from multispectral filter-array based HSI snapshot cameras are
identified and addressed in the development of HSI segmentation
algorithms.

– A lightweight FCN is developed for the efficient segmentation of
HSI images for scene understanding in ADAS. This improves the
performance of pure spectral classifiers while remaining simple
enough to be deployed successfully on an embedded computing
platform.

– Real HSI segmentation prototypes are implemented and their
performance characterized in terms of memory footprint, latency,
power and energy consumption by the deployment of the whole
processing pipeline on different commercial embedded heteroge-
neous computing platforms: an embedded multicore microproces-
sor, an embedded GPU SoC, and a PSoC with embedded FPGA.
This involves analyzing not only the FCN inference stage for
image segmentation but also the raw image preprocessing stage
that precedes the formation of the hyperspectral cubes.

The rest of the paper is organized as follows: Section 2 contains
the most relevant works regarding Deep Learning-based segmenta-
tion with either RGB or HSI in ADAS as well as articles where the
superiority of HSI over RGB is shown. In Section 3 we present the
experimentation setup, including an analysis of the database which
shows the implications of acquiring HSI images outdoors and in chal-
lenging environments. Some initial results with baseline spectral are
included too, where a comparison between segmentation with HSI or
pseudoRGB is included. Section 4 includes the FCN model development
for which a detailed hyperparameter tuning process has been carried
out. Besides this, it also covers the way in which the training has been

conducted and presents the segmentation results. Section 5 contains the
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deploying of both the FCN and the cube preprocessing algorithm on
the three embedded computing platforms whose performance is deeply
benchmarked in terms of latency, power and energy consumption, re-
source usage and accuracy. Section 6 concludes the paper and discusses
possible future work.

2. Related work

There is very limited prior work on ADAS segmentation in HSI,
so we first summarize related work on segmentation with HSI outside
ADAS and deep learning-based ADAS segmentation in RGB data.

2.1. Deep learning-based segmentation with RGB data in ADAS

Semantic segmentation of urban scenes has been attracting the at-
tention of researchers since the publication of widely known databases
such as KITTI Stereo and Flow Benchmark [9] (200 annotated training
images and 200 test images of urban environments), CamVid [10,11]
(700 cityscape images), Cityscapes [12] (5000 finely-annotated and 20
000 weakly-annotated images), although there are also other databases
that focus on other environments such as [13], which provides 1200 an-
notated images from highway scenarios. In most cases, these databases
are used to compare different models according to various metrics
that are usually focused on accuracy results without paying attention
to either network complexity or energy consumption, neglecting their
possible deployment in an embedded application.

In fact, when analyzing the architectures that report remarkable
results in the Cityscapes database, it can be seen that most of them
contain tens of millions of parameters and require billions of floating
point operations (GFLOPS) at inference. For instance, Deeplab [14], a
deep convolutional neural network which includes atrous convolution
for dense feature extraction and field-of-view enlargement, contains
tens of millions of parameters. SwiftNet [15], another deep convo-
lutional encoder–decoder network which is based on an interleaved
pyramid fusion model, contains, depending on the configuration, from
2.4M to 24.7M parameters and performs from 41 to 218 GFLOPs
when run on an NVIDIA GTX 1080Ti GPU. STDC [16], a convolutional
model which features various short-term dense concatenate modules
(STDC) to fuse outputs from convolutions with different receptive
fields and ends with a fully connected layer, contains, depending
on the architecture, from 8.44M to 813M parameters and performs
from 0.01 to 1.45 GFLOPS when run on an NVIDIA GTX 1080Ti.
Finally, TinyHMSeg [17] is an encoder–decoder network which instan-
tiates MobileNetV2 as the lightweight backbone and step-wisely reuses
the intermediate feature maps, downsamples them and feeds them to
medium- and low-resolution branches. Unlike those mentioned above,
TinyHMSeg is the only one that aims to achieve high performance
results while remaining lightweight; it contains 0.7M parameters and
performs 3 GFLOPs when run on an NVIDIA GTX 1080Ti for real-time
applications.

Finally, it should be noted that there is a line of research discussed
in [18] that promotes precisely latency-aware, real-time video seg-
mentation for which it seeks to leverage the temporal correlation of
consecutive frames in a video to improve the next-frame prediction and
reduce computation burden and latency.

2.2. RGB versus HSI for image segmentation

The hyperspectral reflectance data of different material surfaces
outside the visible spectrum can provide very valuable information
to improve intelligent vision tasks and, particularly, for image seg-
mentation. Outside ADAS, HSI is being applied in various fields such
as remote sensing for geoscience applications, food assessment and
biomedical image analysis. With regards to remote sensing, in [19],
to identify tree species in mixed-conifer forests, high spatial resolution
airborne hyperspectral imagery and a convolutional neural network are
3

used. The most relevant aspect of this article is that the authors show
that the HSI CNN model outperformed the RGB CNN model by 23%
on average, taking into account all metrics and species. This indicates
that the additional spectral information provided by HSI is essential
for increasing model performance. In the field of food assessment,
in [20], they show the greater potential of HSI compared with con-
ventional RGB imaging for predicting L-value of mushrooms, a method
for mushroom quality grading. Finally, concerning biomedical image
analysis, especially interesting is the work presented in [21] where
they compare five deep learning models, varying both the spatial (from
pixel-based segmentation to image-based segmentation) and spectral
(RGB, domain-specific tissue parameter images (TPI) and HSI) granu-
larities. They show that unprocessed HSI data (not TPI) offers a huge
benefit compared to RGB or TPI data for organ segmentation, although
this superiority is reduced when using more complex networks such as
FCNs, which take advantage not only of the richness of the spectral
signature of the materials but also of the spatial properties of the
images.

2.3. Deep learning-based segmentation with HSI data in ADAS

The main hypothesis of this line of research is that spectral informa-
tion beyond the visible range can improve the accuracy and robustness
of current RGB-based ADAS for object identification and tracking and,
eventually, can be used for scene understanding. Leaving aside the
studies carried out with thermal cameras (far infrared), there is not
much previous work published in the field [22]. Nevertheless, there
are some researchers that have started to explore the applicability of
HSI cameras to the field of ADS. In [23], a hyperspectral image dataset
for road segmentation in urban and rural scenes is introduced and
in [7] the authors explore the use of FCNs to segment HSI applied to
ADAS. The underlying idea is that the incorporation of richer spectral
information can provide a distinct spectral fingerprint for each entity
in the image, helping to achieve more precise and robust detection
systems.

In the study conducted by [2], the authors characterize the reflec-
tion of a wide variety of road objects, such as a work zone signaling
cone, a road reflector, an asphalt pavement, a dark blue fleece sweater,
a tyre and an exhaust pipe in the 350 to 2450 nm range using a
spectroradiometer. They show that there is a great difference among
the spectral signatures of all the measured materials and remark that
the zone of greatest reflectance is between 750 and 1550 nm (NIR-
SWIR bands). In the same way, in [5] they evaluate the relevance
of four different spectral bands: RGB, NIR, SWIR and LWIR when
detecting and recognizing pedestrians, vehicles, traffic signs and lanes
both in outdoor natural conditions and in an artificial fog tunnel.
They conclude that, overall, the NIR band is the most useful spectral
band followed by SWIR, RGB and LWIR. Another work which follows
the same line is [3], where the authors generate realistic spectral
radiance data of synthetic scenes in the VIS and NIR spectral range
and assess the benefits of VIS-NIR imaging in their synthetic images
using exemplary night time and daylight traffic scenes. Their results for
daylight scenes confirm the benefits of using the additional information
provided by the NIR spectral band for metamerism resolution, although
they acknowledge that the nighttime scene results are not conclusive
and more models of artificial light sources should be added to the
database. In [24], based on the uniqueness of the spectral signature
of different materials, the authors propose a pixel-wise labeling process
aided by hyperspectral imaging which can, to a great extent, reduce the
manual labeling process. Another paper that deals with the metamerism
phenomenon is [4], where they introduce their hyperspectral dataset
for semantic segmentation of cityscapes and remark that metamerism is
particularly challenging in these scenes because they contain too many
classes, complex lighting and spatial structures. They perform tSNE
visualization of RGB and HSI data, and show that HSI images have a

stronger separability. One of the earliest studies in this regard, although
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Fig. 1. Ground truth image (a) and its corresponding false-color visible image (b) of an urban scenario as an example of the weak labeling methodology followed to develop the
HSI-Drive dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
not specifically aimed at ADAS, draws interesting conclusions regarding
the ability of images taken with hyperspectral cameras to detect people
in urban environments [25]. Quite interestingly, one of the outcomes
of the work is the finding that the use of the VNIR spectrum (up to
1000 nm) offers similar results to using the full spectrum of the used
sensor (up to 2500 nm). This is very relevant to the present proposal,
since current CMOS sensor-based low-cost HSI snapshot cameras do not
offer spectrometric information beyond 1000 nm.

Another initial hypothesis of this research consists of the assumption
that deep-learning algorithms developed for image segmentation in the
field of ADAS will take advantage of hyperspectral data, either to get
lighter network models for the same task (since the input information is
richer, it is expected that the more informative HSI images will require
a less complex processing pipeline and so, they will be more suitable
for embedded applications) or by improving the performance obtained
with RGB images. [26] is a paper that focuses exactly on analyzing
these two aspects for a video-surveillance system. They show that while
using a pixel-wise classification neural network, the error rate decreases
by 30% when using RGB-NIR data together compared to using RGB data
alone. In addition, they take into account the hard power constraints of
embedded platforms and train the RGB-NIR data on two convolutional
networks with smaller computational effort, getting the same error
rate as the RGB-only pixel-wise neural network, while decreasing the
computational load by 300%. A pioneering research group in the
investigation of the use of HSI in ADS is the Active Vision Group (AGAS)
of the University of Koblenz–Landau. They have published various pa-
pers on this topic, reporting interesting results on image segmentation
and terrain classification applied to images combining VIS and NIR
spectrum information from HSI snapshot cameras. In [27] the authors
satisfactorily combine a 16-band image in the visible spectrum with
a 25-band image in the NIR spectrum obtaining promising results and
improve the performance of a method which only relies on a RGB image
and a 1-band NIR image. In [28], the work is focused on extracting
robust spatial and spectral features for snapshot hyperspectral data
which are invariant to illumination changes and then train a per-
pixel classification network. In [29], the authors propose a snapshot
hyperspectral scene analysis pipeline which combines a per-pixel classi-
fication with context-aware, fully connected, conditional random fields
leading to a more accurate pixel-level classification performance. Of
special interest is [6], where the authors use a deep autoencoder with
additional regularization terms to learn the latent space of the input
hyperspectral snapshot data and obtain a reduced feature set which,
when trained with deep learning methods, outperforms the RGB data
networks.

In summary, prior work on semantic segmentation with real HSI
data from snapshot cameras in ADAS is scarce and, in general, little
attention has been paid to the realistic deployment of these system
and to their characterization in terms of processing performance. This
includes analyzing not only the segmentation process itself, but also
the data acquisition and the raw image preprocessing stages. There
4

are some works that use synthetic databases that are not capable of
accurately reproducing the complex illumination of real traffic sce-
narios [3]. Many papers are aimed at detecting or identifying road
objects but not at performing semantic segmentation of images for
scene understanding [2,5]. The few works that combine real data with
image segmentation tasks do not address the problem of analyzing how
these systems can be realistically deployed on a resource and power
constrained embedded computing platform while keeping processing
latency values in the range of what is acceptable for ADAS [4,6,27–29].

3. Experimental setup

3.1. The dataset

As is reported in [8], there are very few HSI datasets aimed at
developing ADAS and ADS applications. In [8], the authors present a
dataset named HSI-Drive, which was specifically conceived to provide
the research community with data obtained at real driving scenarios
with a small size, portable, snapshot hyperspectral camera capable
of recording 25-band HSI at video rates. The current version of the
dataset, i.e. HSI Drive v1.1, contains 276 manually labeled images
recorded while driving a car in urban, road and highway scenarios
under diverse weather (sunny, cloudy, rainy and foggy) and lighting
(dawn, midday, sunset) conditions. The recordings were performed
during Spring (121 images) and Summer (155 images). The recording
setup included a single Photonfocus camera featuring an Imec 25-
band VIS-NIR (535 nm−975 nm) mosaic spectral filter over a CMOSIS
CMV200 image wafer sensor. The resolution of the raw images was
1088 × 2048 pixels with 5 μm × 5 μm size. However, as the spectral
bands were extracted from a mosaic formed by 5 × 5 pixel window
Fabri-Perot filters, the output resolution of the HSI cubes was actually
reduced to 216 × 409 × 25 [30]. Indeed, the use of this technology
implies performing an image preprocessing stage prior to the processing
pipeline to get the spectral cubes from the recorded radiance raw
images, an issue that is thoroughly addressed in Section 5.2 of this
paper.

The original labeling of the scene images in the dataset comprises
10 different classes related mostly to the expected differences in the
surface reflectance signatures of various materials: metal, vegetation,
concrete, tarmac etc. Available ground truth masks however are not
fully dense, since the labeling method was aimed at favoring the
accuracy in the spectral information provided for each class by reducing
spectral mixing. This means, for instance, that contour pixels of many
items and the surfaces on the background that cannot be precisely
distinguished have not been labeled (Fig. 1). While this method of
labeling is not an issue for non-convolutional ML models, it may have
some adverse effects on the performance of CNN-based segmentation
models. In fact, the training of convolutional neural networks with
‘‘weak supervision’’ on sparsely labeled datasets is a line of research
itself (see for instance [31] and references therein).
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Table 1
Jeffreys-Matsushita (JM) interclass distances which range from 0 (null separability) to 2.0 (perfect separability).

Road Road M. Veg. P. Met. Sky Conc. Ped. Unp. Met. Glass

Road 1.92 1.83 1.65 1.98 1.44 1.84 1.42 1.49
Road marks 1.92 1.79 1.63 1.87 1.68 1.92 1.92 1.93
Vegetation 1.83 1.79 1.44 1.96 1.64 1.81 1.73 1.81
Painted metal 1.65 1.63 1.44 1.91 1.48 1.70 1.35 1.48
Sky 1.98 1.87 1.96 1.91 1.97 1.98 1.98 1.80
Concrete 1.44 1.68 1.64 1.48 1.97 1.74 1.62 1.68
Pedestrian 1.84 1.92 1.81 1.70 1.98 1.74 1.79 1.66
Unpainted metal 1.42 1.92 1.73 1.35 1.98 1.62 1.79 1.38
Glass 1.49 1.93 1.81 1.48 1.80 1.68 1.66 1.38

Mean 1.73 1.80 1.78 1.63 1.96 1.69 1.82 1.68 1.71
Fig. 2. Pearson Correlation Coefficients among the 25 spectral bands (a) and spectral signature of some of the representative classes (b) of the HSI-Drive 1.1 dataset.
Regarding the spectral characteristics of the data, in [7] the authors
provide spectral separability figures of all 10 classes calculated on all
available data in the HSI-Drive v1.1 dataset. In particular, they use
the Jeffreys-Matsushita (JM) index, which ranges from 0 (null sepa-
rability) to 2.0 (perfect separability) as the preferred criterion, which
is relevant in this work since this index provides an estimation of the
probability of a correct prediction to happen [32]. As can be observed
in Table 1, which we reproduce here for clarity, the separability of
some of the class pairs such as Road/Road Marks (1.92), Road/Sky
(1.98) or Road Marks/Unpainted Metal (1.92) is promisingly high,
while class-pairs such as Road/Concrete (1.44), Road Marks/Painted
Metal (1.63) and Painted Metal/Unpainted Metal (1.35) show low
separability indexes. In general, JM index values below 1.9 imply that
designing classification algorithms based on pure spectral reflectance
data may be challenging or infeasible, and that more meaningful and
relevant features should be extracted from the raw data to achieve good
performance in an image segmentation task.

Beyond possible similarities of the ‘‘real’’ physical spectral re-
flectance footprints of different material surfaces in the spectral range
of the sensor, low separability indexes between categories in the dataset
can be a consequence of three main factors: redundant information in
the spectral dimension, high variability within the same category due to
changing lighting and different camera set-ups, and the inherent tech-
nological limitations of mosaic-filters to accurately separate the spectral
radiance that enters the sensor. Examples of this are the presence of
crosstalks, the variability produced by different light beam angles of
incidence and the spectral mixing produced in the demosaicing process.

The aforementioned limitations associated with snapshot technol-
ogy lead to a correlation matrix (Fig. 2(a)) which shows a strong
Pearson Correlation Coefficient among the bands.

In order to determine the existing intraclass variability, we have
used our own spectral library. This library consists of 10 images (one
for each class) which have been taken on the same day, at the same
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time and with the same camera configuration. The objective is to
ascertain what the properties of the materials are in the most controlled
conditions as possible (while still acquiring them outdoors with the
snapshot hyperspectral camera). Fig. 3 shows the maximum intrinsic
intraclass Pearson Correlation Coefficients of two representative classes
of the dataset. It can be seen that although Painted Metal is quite
homogeneous, the dispersion of Road Marks is heavily affected by the
nature of the materials.

Finally, Fig. 2(b) displays the area covered by the mean ±1std of the
spectral signatures of the same two classes, using more than 250,000
pixels for each class. The Figure confirms that interclass variance is high
and results in a wide overlapping among spectral signatures which, on
the other hand, is something common in other HSI datasets (see [33]
for instance).

Despite the issues described above and the challenges posed by the
use of data acquired in real outdoor driving scenarios, as mentioned in
Section 2, there are numerous works that confirm the benefits of using
HSI in combination (or not) with RGB over using only RGB images for
image segmentation. Since the camera used to develop the dataset does
not cover the entire visible spectral range, it is not possible to generate
equivalent RGB images to perform a proper comparison of classification
performance to standard RGB. It is possible however to select the
three most informative bands out of the original 25 in the dataset
and generate pseudoRGB images to perform meaningful comparative
analyses. In particular, we used the orthogonal space projection method
proposed in [34] to identify the most informative spectral bands from
every image in the dataset and then selected the most frequent (mode)
values, which happened to be the triplet (8, 21, 24) in the mosaic
filter. Applying a t-Distributed Stochastic Neighbor Embedding (t-SNE)
algorithm [35], it is possible to map the data on a 2D to graphically
visualize the separability of the classes. Fig. 4(a) shows the result of
applying the t-SNE to the pseudoRGB images, while in Fig. 4(b), the
results when using all 25 bands are shown. It can be seen that when
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Fig. 3. Intraclass Pearson Correlation Coefficients for the 25 bands of two representative classes of the dataset: Road Marks (a) and Painted Metal (b).
Fig. 4. Comparison of t-SNE output when using either the 3 most representative channels (a) or the full 25 channels (b).
using all bands, the data representation is not only free of overlapping
among classes, but is also more compact, as clusters of the same class
are closer together. The contribution of the hyperspectral information
compared to pseudoRGB data is further analyzed in Section 3.3 by
evaluating the performance of baseline spectral classifiers.

3.2. Data partitioning and application examples

In order to investigate the potential performance of segmenta-
tion systems based on the training of ML models with this dataset,
throughout this work we use two application examples that can be
employed in the development of ADAS/ADS. The first example focuses
on segmenting images into three classes: road (tarmac), road marks
and non-drivable areas, the latter including the remaining classes in
the labeled masks. This low-complexity segmentation example would
be aimed at developing a system for the discrimination of drivable
and non-drivable zones, together with a lane-keeping aid for ADAS or
even a trajectory planning system for ADS. In the second example, two
additional classes have been added to the model training (vegetation
and sky), which show quite satisfactory spectral separability indexes
(see Table 1) and add relevant information for a scene understanding
application. The exploration of more complex segmentation models
including all 10 classes in the dataset has also been investigated and
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some segmented images are shown in Section 4. However, the re-
sults obtained are irregular and inconclusive, and will require further
research.

In order to perform an ML training on this dataset, the 276 available
images have been divided into training, validation and testing subsets.
The selection of images has not been aleatory but conducted following
a data-diversity criterion. The generated subsets contain 162 images for
training, 57 for validation and 57 for testing, preserving class propor-
tionality in all three subsets. As for the metrics used in the evaluation
of the performance tests, these have been Recall (R), Precision (P), and
Intersection over union (IoU), which is an equivalent for the IoU for
object detection. As Eqs. (1)–(3) show, recall accounts for the false
negatives (FN) and true positives (TP), precision takes into account the
false positives (FP) and the true positives too and IoU combines both
aspects:

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
𝑊𝑅 =

𝑛
∑

𝑖=1
𝑤𝑖𝑅𝑖 (1)

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
𝑊𝑃 =

𝑛
∑

𝑖=1
𝑤𝑖𝑃𝑖 (2)

𝐼𝑜𝑈𝑖 =
𝑇𝑃𝑖 𝑊 𝐼𝑜𝑈 =

𝑛
∑

𝑤𝑖𝐼𝑜𝑈𝑖 (3)

𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖 𝑖=1
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Table 2
Frequency of each of the classes in the train/val and test subsets for the 3-class and 5-class experiments.

Total 3-class experiment 5-class experiment

Road Marks No Dri. Road Marks Veg. Sky Other

Train Num. pixels 13 343 314 7 947 254 450 703 4 945 627 7 947 254 450 703 3 127 191 568 411 1 250 025
% 100 59.56 3.38 37.06 59.56 3.38 23.44 4.26 9.37

Total Road Marks No Dri. Road Marks Veg. Sky Other

Test Num. pixels 3 514 081 2 067 379 99 426 1 347 276 2 067 379 99 426 820 804 163 127 363 345
% 100 58.83 2.83 38.34 58.83 2.83 23.36 4.64 10.34
where 𝑖 is the class index such that, for example, 𝐹𝑁𝑖 accounts for
the pixels that have been predicted as not belonging to class i, but are
actually part of class i. As a consequence of the dataset being heavily
imbalanced (Table 2), a correct interpretation of the indexes requires
not only a representation of the global metrics, but also the mean values
and, more specifically, the weighted scores of performance indexes.
Accordingly, weighting factors related to the inverse of the frequency
of the classes in the dataset have been added to the final calculation of
the indexes.

3.3. Reference baseline spectral classifiers

In a first approach to the problem, baseline neural classifiers were
trained relying only on spectral data. The results obtained, in addi-
tion to exposing the foreseeable limitations of segmentation based on
pure, non-processed spectral features, will be useful for assessing fairly
the performance results of the convolutional models presented in the
following sections.

We trained medium-depth, fully connected ANNs with three hidden
layers to perform image segmentation on the per-pixel classification ba-
sis. First, spectral reflectance values were normalized through division
by the sum of the reflectance at all 25 wavelengths to alleviate the
adverse effects of differing illumination at the image level. The models
featured Hyperbolic Tangent activation functions at every layer and in-
cluded an input z-score normalization layer and a Softmax output layer.
Due to large dataset size and memory limits in the NVIDIA GFORCE
RTX-3090 used for training (24 GB), the optimization was performed by
an Adam (Adaptive Moment estimation) algorithm with 220 mini-batch
size, data shuffling at every epoch and a limit of 300 epochs. Selected
network parameter settings corresponded to the best cross-entropy loss
value in the validation set. Due to severe class imbalance in the training
dataset, various techniques such as under-sampling to the smallest class
dataset size, data augmentation by SMOTE algorithm, weighting of the
loss function and changing to a Focal Loss function were tried out.
None of these techniques produced entirely satisfactory results, we thus
applied a combination of techniques by generating some synthetic data
to reduce class imbalance. Then, a weighted, focal loss function was
set, based on data frequency. Nevertheless, the weights were finally
manually adjusted until satisfactory results were achieved.

After various attempts, ic-25-100-100-c ANN models, where ic
stands for the number of input channels and c for the number of
classes to be categorized, showed good performance, while adding
more nodes/parameters did not produce any accuracy improvements.
Table 3 sums up the results obtained for the two example applications
under study. While performance figures are generally acceptable, when
per image indexes are analyzed, there is a lack of robustness in the
predictions. In particular, the precision of minority classes tends to
be low, with a high rate of false positives in some images, which is
reflected in the lower weighted scores. Figs. 10 and 11 show produced
segmentation for three example images in the testing set, one for
each type of driving scenario: urban, road and highway. As can be
seen, produced segmented images are overall correct, producing inter-
pretable scenarios, but the lack of precision, which produces incorrectly
classified pixel infiltration, mostly from the majority class into minority
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class segments, is noticeable.
Fig. 5. Overall, average and weighted IoU (%) as a function of the number of spectral
channels.

The same experiment was performed using pseudoRGB images gen-
erated with the three most VNIR informative bands for each application
example. After various training setting adjustments, obtained best re-
sults are summed up in Table 3. As can be observed, the classifiers are
unable to generate meaningful results, thus confirming, as expected, the
impossibility of designing an image segmentation system based only on
spectral reflectance data with just three channels, and demonstrating
the superiority of HSI in this task. Additionally, the ANN model has
been iteratively trained for an increasing number of spectral band
data in the input vectors, ranging from just 1 band to all 25 bands.
Fig. 5 shows obtained performance scores on the testing set for the
first segmentation example (3 classes). It can be noted that, despite
the strong spectral cross-correlation of bands, the accuracy of the
classifier improves as more spectral information is provided to the input
which, in principle, discourages performing spectral channel selection
to reduce complexity.

4. FCNs for HSI image segmentation

It is well known that incorporating spatial information to the spec-
tral data in HSI can be an effective means to overcome the limits of
the spectral imaging technology for image segmentation. The use of
convolutional filters with tunable parameters in CNNs to extract spatial
information has shown excellent performance in many applications. In
particular, FCNs are neural computing architectures specifically aimed
at image segmentation. However, when convolutional models are de-
signed and trained with disregard for the computational constraints
imposed by the target processing devices and the requirements of the
application (power, latency), the results obtained may prove to be
impractical. In this section we describe the development of an FCN
that enhances the accuracy and robustness of the spectral classifiers
while keeping model architecture in the range of tens of thousands of

parameters for efficient embedded processing.
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Table 3
Evaluation of the ANN on the 3-classes (above-top) and 5-classes (above) test datasets in terms of recall, precision and IoU (Intersection over
Union).

25 channels pseudoRGB

Recall Precision IoU Recall Precision IoU

Road 89.39 92.91 83.67 81.70 78.37 66.66
Road marks 48.88 29.66 22.64 04.47 19.93 03.79
Non-drivable 90.34 89.42 81.62 67.94 68.48 51.75
Overall 88.61 89.78 81.16 74.24 72.92 59.17
Mean 76.21 70.66 62.64 51.37 55.59 40.73
Weighted 53.35 36.30 29.13 11.95 25.63 09.64

Road 85.71 94.18 81.39 59.91 87.22 55.07
Road marks 54.34 26.85 21.91 38.80 08.32 07.36
Vegetation 95.05 90.29 86.24 75.95 77.45 62.20
Sky 96.05 82.76 80.36 69.21 30.27 26.68
Other 56.72 54.52 38.50 24.85 19.97 12.45
Overall 84.49 86.74 76.35 59.87 73.11 49.66
Mean 95.85 69.719 68.84 53.75 44.65 32.75
Weighted 70.16 52.45 46.55 48.64 22.32 18.12
Fig. 6. Architecture of the modified U-Net.
4.1. Model development

U-Net is an FCN-based architecture intended for accurate image
segmentation. This model is of the type encoder–decoder, which means
that after an encoding stage, there is a decoding or ‘‘deconvolution’’
up-sampling stage that re-projects the extracted characteristics, and
recovers the original image resolution to directly produce segmentation
maps. Intermediate skip connections enable the fusion of low- and
high-level features. U-Net was originally intended for biological image
segmentation [36] but has been successfully used in other segmentation
tasks, such as precision agriculture [31], food quality assessment [37]
and aerial city recognition [38]. The idea of using an FCN to process
HSI is to combine the intrinsic spectral characteristics of the different
classes with the spatial relationships extracted by the convolution
operations.

We have tailored the original architecture of U-Net to the unique
characteristics of the dataset (see Fig. 6, made with PlotNeuralNet soft-
ware [39]) by including batch-normalization layers after convolutional
filters, adding a dropout layer before the decoder, adapting the padding
of the convolutional filters and modifying the network depth and the
number of filters in the initial convolutional block. Besides this, we
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have also customized some training-related parameters which will be
discussed when the training procedure is described.

In addition to what has been explained in the previous paragraph,
to get the best trade-off between segmentation performance and com-
putational complexity, a hyperparameter optimization process has been
carried out by programming a grid search of the optimum combination
of a set of model hyperparameters. The optimization performance has
been evaluated by calculating the segmentation accuracy on a subset
of 45 images selected from all possible environments and weather
conditions. After an initial evaluation of the model’s performance, the
selected set of analyzed hyperparameters included: the size of the
input image patches [64 × 64, 128 × 128], the encoder depth [2,
3, 4] and the number of filters in the first convolutional block [8,
16, 32]. Additionally, the optimization procedure also included the
influence of two parameters related to the training process: the initial
learning rate of the optimization algorithm (Adam) and the stride of the
patch creation process. Regarding the initial learning rate, we opted
for varying it in decreasing powers of 10 from 10−1 to 10−4. As for
the stride, we have opted for training the FCN with patches and not
with the full resolution image so as to, on the one hand, have a lighter
neural network and, on the other hand, benefit from the fact that as
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Fig. 7. Example of the stride selection effect in the overlapping matrix index using 18
(3 × 6) patches.

some of the patches overlap in certain pixels, there is more information
to correctly predict the class to which those pixels belong. How the
patches overlap depends both on the starting position of the initial
patch (upper left side of the image in our case) and on the value
given to the horizontal and vertical strides. We have decided that the
areas where we want the segmentation to be as accurate as possible
(and consequently locate the most overlapping patches) should be the
central area of the image (a centrosymmetric overlapping scheme as
Fig. 7 shows) and accordingly set the vertical and horizontal stride
values.

The overlapping matrix is defined in Eq. (4), which is simply the
sum of the patch masks (binary matrices of the same size as the input
image containing ones where the patch is defined and zeros everywhere
else).

𝑂𝐼 =
𝑁
∑

𝑛=1
𝑝𝑚𝑖 ∈ R3 (4)

where 𝑁 is the number of patches and 𝑝𝑚𝑖 is the patch mask associated
to patch number 𝑖. The results from the hyperparameter tuning process
are gathered in Tables 4 and 5. It can be seen that using a larger
128 patch-size tends to produce a lower validation error than when
using the smaller 64 patch-size. With regard to the number of initial
filters and the encoder depth there is not a clear pattern and the results
depend on the particular combination of different parameter values.

In order to establish a numerical criterion for the selection of the
best model, we have evaluated two metrics that give an insight into
the memory footprint and the computing complexity of the model
architecture: the total number of parameters (NP) and the number
of floating point operations (FLOPS). Both metrics depend on some
other variables that were frozen as we did not take them into account
in the hyperparameter tuning study. More explicitly, the number of
parameters, as shown in Eq. (5), is a function of the encoder depth (𝑒𝑑),
the initial number of filters (𝑖𝑓 ), the convolution/up-convolution kernel
sizes (𝑐𝑘𝑠, 𝑢𝑐𝑘𝑠), the number of classes to be predicted (𝑐) and the
number of input image channels (𝑖𝑐). The number of FLOPS (Eq. (6))
depends on the preceding parameters as well as on the input image
spatial dimensions (𝑖𝑑) and other architectural choices such as the
strides of the convolution/deconvolution and pooling layers.

𝑁𝑃 = 𝑓 (𝑒𝑑, 𝑖𝑓 , 𝑐𝑘𝑠, 𝑢𝑐𝑘𝑠, 𝑐, 𝑖𝑐)||
|𝑐𝑘𝑠=3,𝑢𝑐𝑘𝑠=2,𝑐=3∕5,𝑖𝑐=25

(5)

𝐹𝐿𝑂𝑃𝑆 = 𝑓 (𝑒𝑑, 𝑖𝑓 , 𝑐𝑘𝑠, 𝑢𝑐𝑘𝑠, 𝑐, 𝑖𝑐, 𝑖𝑑)||
|𝑐𝑘𝑠=3,𝑢𝑐𝑘𝑠=2,𝑐=3∕5,𝑖𝑐=25,𝑖𝑑=128

(6)

Fig. 8 shows the evaluation of the NP and FLOPS in the range of the
hyperparameters under analysis. It can be seen, on the one hand, that
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Fig. 8. Variation in the number of FLOPS and parameters as a function of (𝑒𝑑, 𝑖𝑓 ).

Fig. 9. Best validation accuracy in terms of encoder depth and initial number of filters.

the NP is almost quadrupled as we increase either the encoder depth or
the initial number of filters. On the other hand, the number of FLOPS
significantly increases with the initial number of filters, and not quite
with the growth of the encoder depth.

Fig. 9 depicts the highest achieved validation accuracy for each pair
(𝑒𝑑, 𝑖𝑓 ) after training. Increasing 𝑒𝑑 slightly improves the validation
accuracy regardless of the initial number of filters.

All in all, combining the information extracted from both graphics,
we selected the combination (𝑖𝑑, 𝑒𝑑, 𝑖𝑓 ) = (128, 2, 8) as the architecture
with the best trade-off between model complexity and classification
performance. Not only does it perform very similarly to the other
architectures in terms of segmentation, but choosing a higher number
of initial filters would considerably increase the memory footprint
and the number of FLOPS (without improving precision/recall), and
increasing the model depth would significantly increase the ratio of
memory accesses with respect to the number of FLOPS (overshadowing
the minor increase in precision/recall).

We can now compare the U-Net and the baseline ANN in terms
of model size and computational complexity (MACS, Multiply and
Accumulate operations or FLOPS) as it is reflected on Table 6: while the
ANN has only 13,653 parameters and performs 1,206,000,000 FLOPS
(27,093 FLOPS per pixel) during inference, U-Net model has 31,707
parameters (320 of them are non-trainable) and needs 4,678,200,00
FLOPS (259,900,000 FLOPS per patch) to produce an output. The
difference between the FLOPS ratio (3.879x) and the parameters ratio
(2.3x) affects the time needed to make the forward pass, which will be
assessed in the next section.

4.2. Segmentation results

Having first selected the best model architecture, we have trained
U-Net on the complete training set. The training has been performed
on a NVIDIA GeForce RTX 3090-24 GB GPU with an Adam optimizer
(0.9 gradient decay factor and 0.999 squared gradient decay factor), a
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Table 4
Hyperparameter analysis for the following configurations: patch size, 64; initial number of filters, 8, 16, 32; encoder depth, 2, 3, 4 and initial learning
rate, 0.1, 0.01, 0.001 and 0.0001.

Initial num. of filt. 8 16 32

Img. size
Enc. depth 2 3 4 2 3 4 2 3 4

64 0,100
maxValidationAccuracy 90.55 90.48 92.74 91.11 90.97 93.29 92.56 94.49 94.52
minValidationLoss 0.28 0.35 0.23 0.24 0.28 0.20 0.25 0.17 0.20

maxTrainingAccuracy 94.34 94.66 96.08 95.58 94.42 96.52 94.97 96.17 97.35
minTrainingLoss 0.21 0.17 0.13 0.16 0.14 0.11 0.15 0.12 0.07

0,01
maxValidationAccuracy 94.65 96.67 96.48 94.79 96.41 96.34 94.94 96.32 94.80
minValidationLoss 0.16 0.13 0.16 0.18 0.14 0.12 0.17 0.14 0.20

maxTrainingAccuracy 97.50 98.64 98.66 96.70 99.16 98.88 97.67 98.95 97.97
minTrainingLoss 0.08 0.04 0.04 0.10 0.03 0.04 0.06 0.03 0.06

0,001
maxValidationAccuracy 93.69 95.09 95.40 95.69 97.12 96.02 96.31 96.99 95.89
minValidationLoss 0.21 0.17 0.20 0.19 0.13 0.16 0.16 0.14 0.17

maxTrainingAccuracy 95.10 98.01 98.85 98.22 99.08 99.40 98.23 98.73 99.23
minTrainingLoss 0.15 0.06 0.06 0.06 0.03 0.02 0.05 0.04 0.03

0,0001
maxValidationAccuracy 86.19 79.98 90.27 86.88 92.40 92.04 93.69 95.29 94.85
minValidationLoss 0.43 0.67 0.37 0.37 0.27 0.27 0.26 0.19 0.21

maxTrainingAccuracy 88.37 84.54 93.85 89.00 94.93 97.20 94.51 97.41 98.96
minTrainingLoss 0.39 0.48 0.25 0.28 0.17 0.11 0.14 0.08 0.04
Table 5
Hyperparameter analysis for the following configurations: patch size, 128; initial number of filters, 8, 16, 32; encoder depth, 2,3,4 and initial learning rate,
0.1, 0.01, 0.001 and 0.0001.

Initial num. of filt. 8 16 32

Img. size
Enc. depth 2 3 4 2 3 4 2 3 4

128 0,1
maxValidationAccuracy 94.31 91.65 96.41 94.10 96.37 93.60 95.48 96.23 96.32
minValidationLoss 0.17 0.22 0.15 0.18 0.12 0.20 0.15 0.14 0.14

maxTrainingAccuracy 96.91 95.11 98.56 96.91 98.89 95.98 97.74 98.46 98.33
minTrainingLoss 0.09 0.14 0.04 0.08 0.03 0.12 0.07 0.04 0.05

0,01
maxValidationAccuracy 95.75 97.25 97.78 96.05 96.64 97.43 95.06 97.23 97.26
minValidationLoss 0.17 0.13 0.11 0.16 0.16 0.11 0.19 0.13 0.12

maxTrainingAccuracy 98.52 99.49 99.65 98.90 99.49 99.62 98.65 99.67 99.68
minTrainingLoss 0.04 0.01 0.01 0.03 0.01 0.01 0.04 0.01 0.01

0,001
maxValidationAccuracy 95.56 97.01 96.97 96.38 96.57 97.02 96.73 97.24 97.31
minValidationLoss 0.17 0.16 0.17 0.16 0.17 0.13 0.16 0.15 0.11

maxTrainingAccuracy 97.02 99.34 99.72 98.63 99.62 99.77 99.26 99.83 99.85
minTrainingLoss 0.08 0.03 0.02 0.04 0.01 0.01 0.02 0.01 0.01

0,0001
maxValidationAccuracy 73.08 91.65 93.33 93.41 94.96 94.23 93.88 95.56 96.19
minValidationLoss 0.64 0.31 0.25 0.24 0.24 0.21 0.29 0.20 0.19

maxTrainingAccuracy 81.81 94.12 97.20 95.28 97.95 99.07 97.19 99.10 99.77
minTrainingLoss 0.50 0.31 0.10 0.16 0.08 0.03 0.09 0.02 0.01
Table 6
Comparison of U-Net and ANN with regard to model size and computational
complexity.

U-Net ANN

Num. of params. 31.707 K 13.653 K
FLOPS 259.9 M 27.093 K
FLOPS per image inference 4.678 G 1.206 G

mini batch size of 128, an initial learning rate of 0.005 with drop period
and weighted cross-entropy loss function, among other parameters, for,
at most, 60 epochs. Table 7 collects the classification performance
on the patches in the testing set. In addition, as previously stated,
the images are reconstructed to the original resolution from the 18
overlapping patches into which each of them has been divided, so
Table 7 also displays the metrics for the complete reconstructed images.
The comparison shows how the use of overlapping patches improves
the segmentation performance, especially the precision, compared to
the non overlapping reconstruction. This is because the FCNs tend to
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fail to correctly predict the classes on the patch contours since they lack
part of the contextual information for the contour pixels.

Analyzing the numerical results of the reconstructed images, it
can be seen that all the classes show a good IoU value with the
exception of the Road Marks class, which suffers from a low precision
value. In the first example, in particular, for every 100 TPs of this
class there are 37 FPs. However, as Road Marks is the minority class,
this inaccuracy does not severally affect the overall metrics. This can
be visually verified when depicting the segmentation outputs for the
testing images. Figs. 10 and 11 show the segmentation maps of three
example images chosen from the three different driving scenarios in the
dataset: an urban environment, an interurban road and a highway. The
proposed FCN quite satisfactorily segments a typical driving scene for
the 3-class experiment (Fig. 10(k)) while it misinterprets some pixels in
more challenging images such as those where there are objects casting
their shadows on the road (Fig. 10(j)) or where there are overlapping
objects, as on the left side in (Fig. 10(l)).

Similarly, in the five-class example (Figs. 11(j) to 11(l)), similar

issues can be observed, but there is much more information about the
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Table 7
Performance of the modified U-Net (patches and rebuilt images from overlapping patches) on the 3-classes (up) and 5-classes (down) test
datasets in terms of recall, accuracy and IoU (Intersection over Union).

Patches
(128 × 128 × 25)

Rebuilt images from
overlapping patches

Recall Precision IoU Recall Precision IoU

Road 97.90 95.66 93.74 98.54 94.56 93.25
Road marks 90.25 73.11 67.75 87.89 77.22 69.80
Non-drivable 91.07 97.16 88.71 91.20 98.57 90.01
Overall 95.37 95.55 91.31 95.42 95.44 91.50
Mean 93.07 88.64 83.40 92.54 90.12 84.35
Weighted 90.60 75.71 70.27 88.54 79.43 72.60

Road 92.61 99.05 91.36 93.28 99.00 92.41
Road marks 80.93 75.39 64.02 78.32 79.11 64.90
Vegetation 94.98 94.63 90.12 95.74 95.80 91.88
Sky 97.86 93.09 91.23 97.49 93.39 91.20
Other 84.97 62.71 56.45 84.83 64.59 57.90
Overall 91.79 93.29 86.47 92.75 93.80 87.66
Mean 90.18 84.98 78.64 89.93 86.38 79.66
Weighted 88.64 82.14 75.27 87.40 84.15 75.93
Fig. 10. Comparison among the visible (first row), ground truth (second row), ANN segmentation (third row), U-Net segmentation (forth row) images of three different scenarios:
urban (first column), road (second column) and highway (third column) for the 3-class experiment.
11
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Fig. 11. Comparison among the visible (first row), ground truth (second row), ANN segmentation (third row), U-Net segmentation (forth row) images of three different scenarios:
urban (first column), road (second column) and highway (third column) for the 5-class experiment.
scenes. For instance, it can be observed that the system is now able to
identify the presence of some objects in the non-drivable sections of the
images such as traffic signals, pedestrians and guardrails.

Following what has been done with the baseline spectral classifier,
the same U-Net has been trained with pseudoRGB images which have
been extracted as previously described in Section 3.1. Fig. 12 contains
the IoU values of the rebuilt images for the 5-class-experiment. As it can
be seen, although some classes (Road and Road Marks) are not affected
by the reduction of the spectral number of channels, the rest of the
classes do suffer a considerable degradation of their metrics.

In ADAS environments, it is of utmost importance to correctly
identify traffic signals, cars and pedestrians. As Fig. 13a and b show,
our FCN is able to detect those obstacles for the 5-class experiment.
However, when we want to determine the class to which those objects
belong to, we have to train the FCN using some additional classes
(as for Painted Metal in Fig. 13c and d) which, for the mentioned
examples, are undersampled. The results obtained are inconclusive and
not robust, so we will investigate how to effectively combine spectral
classifiers (which can easily cope with unbalanced datasets) with U-Net
to improve the segmentation results.
12
5. System prototyping and characterization

As stated above, there are two main processes involved in the
implementation of this HSI segmentation system: the preprocessing of
the raw images provided by the snapshot camera and the FCN-based AI.
In this section we describe in detail how both processing stages have
been developed, implemented and tested on three different embedded
processing systems: a low-cost single board computer, an embedded
GPU SoC and a PSoC with an embedded FPGA. We also give details
of the benchmarking setup used for the characterization of all three
implementations and we analyze the results obtained.

5.1. Benchmark setup

Proper hardware selection is essential for the successful deployment
of AI in an edge device. In the particular case of the ADAS/ADS, this
decision is conditioned by the need to satisfy strict specifications in
terms of processing latency, cost and energy consumption without com-
promising the overall performance of the algorithm (safety criticality
considerations aside). Most current edge-AI deployments rely on SoCs
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Fig. 12. IoU values of the rebuilt images for the 5-class-experiment using pseudoRGB
images (blue) or HSI (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

including AI-oriented coprocessors (domain specific or even application
specific). However, depending on the complexity of the AI model (num-
ber of parameters and FLOPS) and the constraints associated with the
specific application, the use of cheaper, lower-end devices could pro-
vide satisfactory results. Consequently, we have selected three different
prototyping platforms to explore the performance of our application:
a Raspberry Pi 4B, a NVIDIA Jetson Nano Development Kit and an
AMD-Xilinx ZCU104 development board.

The Raspberry Pi 4 Model B (Pi4B) is the leading single-board
computer of the Raspberry Pi family with significant enhancement in
CPU, GPU and I/O performance. This single-board computer consists
of a quad-core Cortex-A72 (ARM v8) 64-bit SoC 1.5 GHz with 8 GB of
LPDDR4 SDRAM, which includes a recent upgrade that lets the cores
work in turbo-boost mode and reach a peak frequency of 1.8 GHz
safely [40]. The NVIDIA Jetson Nano is a small, powerful computer for
embedded AI applications with 4 GB 64-bit LPDDR4 SDRAM. The SoC
combines a Quad-core ARM Cortex-A57 MPCore processor (1.43 GHz of
maximum theoretical frequency) with a Maxwell architecture NVIDIA
GPU containing 128 CUDA cores [41]. Finally, the ZCU104 develop-
ment board includes a Zynq UltraScale+ MPSoC with a quad-core ARM
Cortex-A53 processor (1.5 GHz of maximum theoretical frequency) and
a dual-core Cortex-R5 real-time processor in the Processing System (PS)
connected to a 16 nm FinFET Programmable Logic (PL) with access to
a 2 GB 64-bit wide DDR4 external memory [42].

Although all three devices include ARM v8-A architecture Quad-
Core Cortex processors (A53, A57 and A72), they do not only differ
in CPU frequency but also in other aspects, such as L1 I/D Cache Size,
L2 Cache Size, execution order, number of pipeline stages and so on.
Cortex A53 is said to be a power-efficient processor when compared
to the more powerful A57, while A72, which is the direct successor of
the A57, was designed to improve its predecessor in the PPA metric:
performance, power and area [43] (see Table 8).

In order to make a fair power and energy consumption comparison,
we disabled as many peripherals as possible; this includes, in the
case of the Pi4B, onboard LEDs, microHDMI, bluetooth or Wifi, for
example. Power measurements have been performed either by software
commands or by plugging an external power meter between the power
supply and the device (Fig. 14). We have selected a USB-C digital
meter from Klein Tools [44] that reliably measures (accuracy of ±
13

1%) the voltage and current (with a resolution of 0.01 V and 0.01 A e
respectively) that flows through both the Raspberry Pi 4B and the
Jetson Nano boards. Furthermore, the tegrastats command allows us
to extract valuable information about the power consumption of the
processing elements (CPU, GPU and overall) of the Jetson Nano, so
a more comprehensive analysis can be derived. However, there is a
mismatch between the values obtained from the tegrastats command
and the values read from the digital power meter, an issue that has also
been reported previously, such as in [45]. As for the Zynq UltraScale+
MPSoC, power monitoring is carried out with the Infineon IR Power-
Center GUI that obtains power rail values through Infineon IRPS5401
power controllers [42]. The onboard Infineon IRPS5401 power con-
trollers are accessed through an I2C connector included in the Infineon
USB Cable [46–48].

With regard to the communication infrastructure developed to ease
the benchmarking process on multiple devices, in Fig. 14 a router can
be seen that is used to create a local area network which allows us
to communicate with various prototyping boards via the ssh protocol
while their Internet access is granted.

5.2. Raw image preprocessing

Recording in real driving conditions implies that the setup of the hy-
perspectral camera cannot be kept invariable. Moreover, lighting con-
ditions cannot be controlled due to changes in the scenarios, weather
conditions and daylight. Additionally, the use of a moving platform
(the vehicle) and the presence of moving objects severely constrain the
exposition time and, in consequence, the amount of light that can reach
the sensor in each situation. The HSI-drive database contains images
acquired in very diverse conditions that require different setups of the
camera and optics. This diversity makes it more difficult to effectively
preprocess the raw images in order to generate hyperspectral cubes
with equivalent characteristics that can be used to successfully train
AI models. In addition, this preprocessing has to be replicated on-the-
fly during the inference phase, so the computational aspects of the
preprocessing pipeline have also to be addressed.

The processing stages involved in the pipeline of the raw image pre-
processing to obtain the corresponding reflectance hyperspectral cubes
depend on the type of application. In our context, the programmed
preprocessing algorithm consists of the following four steps: crop and
clip, reflectance correction, band extraction, and translation to center
(partial demosaicing).

As reported in Section 3, the CMOS sensor has a standard size of
1088 × 2048. However, as the multispectral filter array (MSFA) does
not cover the entire surface of the sensor, the resulting active area
has a lower resolution (1080 × 2045) and so the acquired raw images
need to be cropped and clipped. After that, the acquired radiance is
normalized by taking a white reference frame as the highest response
from the sensor, resulting in a reflectance signal which is assumed to
be robust under different acquisition conditions. In order to eliminate
the static noise of the sensor, bias correction is previously performed by
subtracting a dark reference frame from both the image and the white
reference frames. The next step, known as band extraction, transforms
the 2D representation obtained from the mosaic-shaped MSFA (Fig. 15)
into a hyperspectral cube. As a consequence of the snapshot camera
technology, each of the 25 pixels of the 5 × 5 mosaic contains spectral
information about a different wavelength (Fig. 15) and thus each pixel
lacks the spectral content related to the remaining 24 wavelengths.
Therefore, to reconstruct from the raw data either a full resolution
image (1080 × 2045 × 25) or a partial resolution image (216 × 409 ×
5) a typical approach is to use an interpolation algorithm in a process
nown as (partial) demosaicing. In our application, we have opted
or a partial demosaicing process which consists of applying linear or
ilinear interpolation techniques to interpolate the reflectance value
f the missing spectral bands in certain spatial positions which are
he center of the mosaic (hence its name, translation to center). Two

xamples are shown in Fig. 15. On the upper part of the image, we
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Fig. 13. U-Net segmentation comparison of two selected images: 5-class experiment (a-b) and 3-class experiment + Painted Metal (c-d).
Fig. 14. Power measurement infrastructure and communication with computing boards: 1, Raspberry Pi 4B; 2, Router; 3, Jetson Nano; 4, Power meter and 5, ZCU104.
Table 8
Comparison among the selected platforms focusing on the processors’ characteristics.

Properties Core

Cortex-A53 Cortex-A57 Cortex-A72

Revision v8.0-A v8.0-A v8.0-A
Platform Zynq UltraScale+ MPSoC Jetson Nano SoM Raspberry Pi 4B
OS Petalinux 2022.1a Ubuntu 18.04.6 LTS Ubuntu 22.04.1 LTS
Number of cores 4 4 4
Execution In-order Out-of-order Out-of-order
Pipeline depth 8 15+ 15+
Superscalar Yes Yes Yes
Neon and FPU Yes Yes Yes
L1 I Cache (per core) 32 KB 48 KiB 48 KiB
L1 D Cache (per core) 32 KB 32 KiB 32 KiB
L2 Cache 1 MB 2 MiB 1 MiB
Clock rate 1.199 GHz 1.479 GHz 1.8 GHz
External DDR4 memory 2 GB 4 GB 8 GB

aThis OS has been used to work more comfortably with AMD-Xilinx’s Tools. However, for TensorFlow Lite model development, we have opted
for Ubuntu 20.04.3 LTS.
14
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Fig. 15. Translation to center algorithm.

want to interpolate in the spatial position which corresponds to band
13, the reflectance value that we would obtain if we placed there a
band-7 filter. For that purpose, we take into account the values of
the surrounding four band-7 pixels, and the distance from the band-
13 pixel, and apply a bilinear interpolation to extract that value. We
perform this operation to extract all the missing information from
the remaining bands but only in the central position of each mosaic.
However, as the other example suggests, there are some positions in
the contour of the image for which there are not 4 neighboring pixels
and so a different treatment (such as linear interpolation) is required.

Differently from what is made in [7], the cube generation contains
neither the median filtering nor the band normalization steps. This is
because although a prior analysis demonstrated the benefits of using
a median filter before training a multi-layer feedforward network,
those effects are largely overshadowed in an FCN by the convolutional
layers which act as a kind of spatial regularizer and, consequently,
the overall latency is greatly reduced. Regarding the normalization, we
have performed hardware acceleration on it, including this step as the
first layer of U-Net.

5.2.1. Embedded software programming
The raw image preprocessing algorithm has been programmed in C

and compiled to be executed as an embedded Linux application in the
microprocessors of the benchmark devices as part of the HW/SW code-
sign for the implementation of the system. To reduce its latency, we
have combined thread-level parallelism (OpenMP pragmas) with data-
level parallelism (Single instruction multiple data, SIMD, via Neon).
OpenMP is an API to develop parallel applications on shared-memory
processors, such as embedded systems and accelerators, in a flex-
ible manner [49]. OpenMP grants the programmer control of the
thread creation, workload distribution among the threads (not only the
scheduling type but also the restriction of a certain task to one thread),
thread synchronization and variable attributes (i.e. which variables
are shared among threads and which are kept private to avoid data
incoherence and race conditions). The way of working with OpenMP is
by adding compiler directives or pragmas and modifying environment
variables that condition both the compile and runtime behavior of the
program in a fork-join model. OpenMP can be combined with Neon
(ARM Advanced SIMD architecture) and Floating Point technologies
which are fully integrated into the processor and share the processor
resources for integer operation, loop control and caching, significantly
reducing the area and power cost [50]. SIMD instructions are carried
out in the 32 128-bit SIMD/floating-point registers that the AArch64
architecture includes.

To implement those techniques in our software design, on the one
hand, some compiler directives have been added to the code after
15
Table 9
Mean execution time over 1000 iterations of the C image-preprocessing Linux appli-
cation on the ZCU104 development board combining the use or not of SIMD and
MP.

Pipeline step Use of SIMD-MP

00 01 10 11

Image cropping (ms) 6.654 2.883 6.654 2.886
Reflectance correction (ms) 251.803 90.902 50.369 21.519
Band extraction (ms) 53.063 16.217 311.803 13.042
Translation to center (ms) 340.196 162.219 22.586 13.583
Total (ms) 651.716 272.223 111.453 51.030

analyzing how to parallelize the code execution among the different
threads. The analysis consisted of identifying parallel regions (coarse-
grained parallelism) and then focusing on the parallelizable loops
(fine-grained parallelism). In order to parallelize loops, we have studied
the dependency between loop indexes or data inside the loops. Besides
this, as all threads can modify and access all variables, we have also
examined when to change the scope of one of the variables and make
them local to each thread to avoid undesirable behavior. Finally, we
have checked if the execution time of each iteration varies inside a
loop to establish how to distribute the workload among threads. On
the other hand, we have also included compiler autovectorization to
boost the use of the Neon technology.

To evaluate the extent to which the use of SIMD instructions and
multiprocessing accelerates our application, an ablation study has been
performed. The results of the four combinations are shown in Table 9.

The combination of SIMD instructions with the thread-level paral-
lelism enabled by the QuadCore ARM-Cortex A we are working with
significantly reduces latency with respect to the options where no
optimization (12x), or only one of them (5x for MP-only and 2x for
SIMD-only approaches), is used. In addition, by analyzing each of the
preprocessing stages individually, some conclusions that are consistent
with the characteristics of the stages can be drawn.

For the crop and clip stage, the only variable that conditions the
execution time is the use or not of multiprocessing. This can be easily
explained since this stage only consists of cropping and copying an
array where the calculation of the start/end indexes is straightforward.

On the other hand, as previously mentioned, the reflectance cor-
rection stage consists of a normalization based on several references,
so that a significant acceleration can be achieved with only the use of
SIMD instructions, although this is more evident in the median filtering
stage, as will be discussed below.

As with the first stage, during partial demosaicing, the image is
transformed from a two-dimensional representation to a three-
dimensional representation, so the differential factor is whether or not
to use multiprocessing. However, since the way in which the indexes
for band extraction are calculated requires several mathematical opera-
tions that can be parallelized, the use of SIMD instructions additionally
reduces the latency.

Of the four stages of preprocessing, band alignment is undoubtedly
the one that contains the most mathematical operations, both when
choosing the indexes of the pixels selected for interpolation and when
performing the interpolation operation itself. This justifies the consid-
erable acceleration observed between using either only SIMD or only
opting just for multiprocessing.

5.2.2. Test results
Table 10 shows the mean latency over 1000 iterations of the raw

image preprocessing pipeline running on the Cortex A-72 (Raspberry Pi
4B), Cortex A-57 (Jetson Nano), and Cortex A-53 (ZCU104) quad-core
processors. According to these figures and if no pipeline schemes are
implemented, this processing stage would limit the reachable through-
put to 19.10 FPS, 40.56 FPS and 19.84 FPS respectively.
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Fig. 16. Path adopted to transfer the FCN from one representation to another.
Table 10
Mean execution time over 1000 iterations of the C image-preprocessing
Linux application on the benchmarked devices: Raspberry Pi 4B (RPI), Jetson
Nano (JN) and ZCU104 development board (ZCU).

Pipeline step
Device type RPI JN ZCU

Image cropping (ms) 6.128 2.309 2.886
Reflectance correction (ms) 13.630 7.729 21.519

Band extraction (ms) 21.124 8.324 13.042
Translation to center (ms) 11.453 6.290 13.583

Total (ms) 52.335 24.652 51.030

5.3. FCN inference

The implementation of the FCN has been carried out in several
phases, starting with the study of the effect of different quantization
levels on the ARM v8 quad-core Cortex processors and ending with the
implementation of the optimized models on the AI hardware acceler-
ators, when available, such as the NVIDIA GPU and the AMD-Xilinx
DPUs on the FPGA.

5.3.1. Implementation workflow and tools
The design, training and validation of the FCN has been performed

with MATLAB’s Deep Learning Toolbox. While the most recent version
of MATLAB includes tools to directly export deep models, including
segmentation FCNs, to other frameworks such as TensorFlow, and
even provide tools for the automatic deployment of deep models in
FPGAs [51], this was not possible with the Matlab version used in this
project (2021b).

Consequently, to link our ML development environment to any im-
plementation workflow, we opted for exporting the MATLAB-generated
deep models to the Open Neural Network Exchange (ONNX) repre-
sentation. ONNX is an open standard format for representing machine
learning models that can be then used with a variety of frameworks,
tools and compilers. In our workflow, the ONNX representation was
exported to Keras/TensorFlow [52] via onnx2keras [53]. Fig. 16 shows
the flowchart that represents the workflow adopted to transfer the FCN
from one representation to another and adapt it to the requirements of
both the DL frameworks and the computing platforms under study.

As has been remarked in Section 3.2, we favored the use of a
smaller-size FCN architecture over the most accurate one in order to re-
duce memory footprint and computational load. In an initial approach,
we tested the software execution of the FCN directly on the three
Cortex microprocessors. With that aim in mind, we used TensorFlow
Lite, a library for deploying models on smartphones, microcontrollers
and other edge devices. By default, TensorFlow Lite utilizes CPU ker-
nels that are optimized for the Neon instruction subset of ARM, but
which are not necessarily optimized for the intensive computational
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workload of deep models. Thus, to reduce the final latency as much
as possible, we partially used XNNPACK, a highly optimized library
of floating-point, neural network inference operators for ARM [54], as
the inference engine, which we combined with the multicore execution.
Nevertheless, the obtained latency values are not reasonable in ADAS;
for this reason, in order to speed up the FCN inference and reduce
the memory footprint in all cases, we opted for another strategy and
performed post-training quantization using TensorFlow Lite.

As we have prioritized the highest possible speed-up, we have opted
for the full integer quantization approach where the whole network
(weights, biases, activation functions, input and output) is dynamically
quantized (a calibration dataset is therefore needed) using 8-bit integer
precision. It is interesting to remark that, although having applied full
integer quantization, the size of the data buffer is not reduced fourfold.
This is because in the quantization procedure, bias vectors are still
quantized as 32-bit data. As is justified in [55], there is a need for
the high precision of bias vectors because, as they are added to many
output activation functions, otherwise, this could result in an overall
bias which could endanger the accuracy of the network. Besides, 8-bit
integer products are accumulated using a 32-bit accumulator so 32-bit
registers cannot be avoided.

Finally, in order to get the best possible performance out of the
benchmark computing platforms, we have implemented the FCN on
the dedicated AI coprocessors, i.e. the embedded GPU in the Jetson
Nano and the DPUs in the MPSoC’s FPGA. In order to make as fair a
comparison as possible, the three devices were programmed using their
preferred DL framework, i.e. Tensorflow Lite for the Raspberry Pi 4B,
Tensor RT for the Jetson Nano, and Vitis AI for the AMD-Xilinx MPSoC.
TensorRT, built on the NVIDIA CUDA parallel programming model, is
an SDK provided by NVIDIA to perform low latency and high through-
put DL inference applications by optimizing trained neural networks
and calibrating them for low precision without accuracy degradation.
The resultant network can be deployed in diverse platforms, ranging
from hyperscale data centers to embedded processors [56]. Vitis AI is
a development platform for AI inference on AMD-Xilinx hardware plat-
forms. Vitis AI Quantizer exploits quantization and the VAI Optimizer
applies channel pruning techniques to reach the high-throughput and
low-latency requirements of ADAS applications. According to [57], by
converting the 32-bit floating point weights and activations to an 8-bit
integer format, Vitis AI Quantizer can reduce computing complexity
without losing prediction accuracy and, as the fixed-point network
model requires less memory bandwidth, a faster speed is also provided.
After compiling the quantized FCN and the DPU with Vitis AI Compiler,
the output product is loaded at runtime in the system composed of the
ARM CPU and the DPU accelerator in the MPSoC by a C++ application.

The Deep Learning Processor Unit (DPU) is a configurable compu-
tation engine, optimized for convolutional neural networks, which can
be customized to some extent by modifying its parallelism degree and
logic resource utilization. It is implemented in the programmable logic
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Fig. 17. System diagram of the DPU.
of the MPSoC with direct AXI connections to the processing system. The
DPU executes compiled microcode generated from a neural network
graph by fetching the instructions from off-chip memory to control how
the computing engine behaves. To achieve high throughput, efficiency
and reduce external memory bandwidth requirements, on-chip memory
is reused as much as possible to buffer input activations, intermediate
feature-maps and output activations. The user-configurable parameters
are DSP slices, LUT, block RAM and UltraRAM usage. There are even
other options for additional functions such as channel augmentation,
average pooling, depthwise convolution and softmax. For more detailed
information, the reader is referred to [58].

As can be seen in Fig. 17, our implementation contains 2
DPUCZDX8G cores, each of which features a B4096 architecture which
means that 4096 operations are performed per DPU clock cycle, which
is set to 300 MHz. More specifically, in each clock cycle, 8 pixels
of the input feature map (which can have, at most, 16 channels)
are multiplied by their respective portions of the 16 convolutional
filters, so 8 × 16 × 16 multiplication operations and sums are per-
formed; this results in a total of 4096 operations. Those three values
are architecture-specific parameters known as pixel parallelism, input
channel parallelism and output channel parallelism, the latter two
sharing the same value. Fig. 17 also shows the logic resources occupied
by this implementation.

Although the three DL frameworks allow quantizing models to 8
bits, not all devices are capable of performing computations in this
type of representation. The FCN has thus been quantized according to
what the respective microarchitectures allow: an 8-bit integer format
for the Raspberry Pi, a 16-bit FP format for the Jetson Nano (although
as indicated by NVIDIA, TensorRT would choose a higher-precision
FP32 kernel if this results in overall lower runtime, or if no low-
precision implementation exists), and an 8-bit format representation for
the AMD-Xilinx MPSoC.

5.3.2. Test results
The implementation of the neural network layers varies slightly

from TensorFlow to TensorFlow Lite so, it has first been verified that
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there are no significant deviations when exporting the U-Net floating
point model from TensorFlow to the Lite version.

The first test has been performed on the software execution of the
FCN on the CPU of the three devices both before and after quanti-
zation. As can be seen in Table 11, the throughput associated to the
FP32 inference latency hardly reaches 1 FPS, while the 8-bit integer
implementation produces a notable speed-up, although not enough to
meet the application requirements (1.2 FPS to 2.4 FPS).

The second test has been performed on the implementations that
use the full power of the SoCs, either with the embedded GPU or the
embedded DPU/FPGA. As can be observed in Table 12, the latency is
dramatically reduced in both cases, with a x4.47 speed-up in the Jetson
Nano and a x22.16 speed-up in the AMD-Xilinx MPSoC. To obtain those
values, as each image consists of 18 patches, we have opted for using a
18-patch batch size, although further experiments could be carried out
to find the best size to optimize latency–throughput trade-off [59].

Regarding power consumption, the 4.258 W measured in the Rasp-
berry Pi corresponds to the utilization of the whole board although, as
previously explained, we have disabled as many peripherals as possible
to make a fairer comparison. As for the Jetson Nano, 3.995 W is ob-
tained after applying a correction term (empirically inferred comparing
the output of tegrastats command and power meter measurement) to
the addition of the CPU and GPU consumptions. Properly isolating the
chip’s consumption from the peripherals allows us to make a finer
comparison with the Zynq Ultrascale+ whose 8.8 W also represent
the chip’s consumption. With respect to energy utilization, the figures
show that the higher power consumption of the AMD-Xilinx MPSoC is
fully compensated by the latency acceleration achieved, making this
the device with the most efficient processing, slightly better than the
Jetson Nano.

In a two-stage pipelined processing implementation (image pre-
processing + FCN inference), currently achievable throughput limit is
imposed by the image preprocessing stage, imposing a limit of around
19,6 FPS. Although this stage could be hardware accelerated in the
future to improve throughput, achieved image segmentation latency
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Table 11
CPU-inference latency characterization of the unquantized and quantized FCN on the three
devices: Raspberry Pi 4B (RPI), Jetson Nano (JN) and ZCU104 development board (ZCU).

Framework (Accelerator) TF Lite (CPU)
Data quantization FP32 INT8

Measurement
Platform RPI JN ZCU RPI JN ZCU

Latency (s) 1.910 0.835 1.345 0.613 0.416 0.820
Table 12
Power, latency and energy consumption measurements regarding the quantization technique (8-bit integer,
INT8 or 16/32-bit floating point FP16/FP32), framework (TensorFlow Lite, TF Lite; Tensor RT, TRT and Vitis
AI), accelerator and platform (Raspberry Pi 4B (RPI), Jetson Nano (JN) and ZCU104 development board (ZCU))
used.

Framework (Accelerator) TF Lite (CPU) TRT (GPU) Vitis AI (FPGA)
Data quantization INT8 FP16/FP32 INT8

Measurement
Platform RPI JN ZCU

Power (W) 4.258 3.995 8.8
Latency (s) 0.613 0.093 0.037
Energy (J) 2.608 0.372 0.326
Table 13
U-Net model size variation after applying full integer quantization.

3-class experiment 5-class experiment

Quantization No Yes No Yes

Buffer type Memory (KB) % Memory (KB) % Memory (KB) % Memory (KB) %

Non-data 11.432 8.42 17.108 35.06 11.432 8.41 17.156 35.11

Data 124.392 91.58 31.684 64.94 124.464 91.59 31.708 64.89

Total 135.824 100 48.792 100 135.896 100 48.864 100
(50 ms) is adequate for most ADS/ADAS systems such as forward colli-
sion warning systems, emergency breaking systems, trajectory planning
systems, etc. [60].

Finally, we present results from the analysis of the memory footprint
and the real performance of the segmentation. On Table 13, it is
interesting to note how the non-data buffers (responsible for storing,
among other things, operators and subgraphs) have the same size for
both experiments when quantization has still not been performed on
the network. This is due to the fact that the difference between the
two models lies solely in the number of filters of the final convolution
layer and not in any other operator.

Table 13 also shows that data buffers take up more than 90% of the
whole unquantized model. This is what allows the size of the complete
model to be reduced considerably when quantization is applied, allow-
ing it to be stored in a device with fewer memory resources. However,
it has to be mentioned that there is a 50% increase in the size of
the non-data buffers after quantization. This fact is a consequence of
the inclusion of new operators (scaling or casting, for example) which
are needed for the aforementioned process. As for the segmentation
variations, we show in Table 14 the recall, precision and IoU after the
different quantization approaches.

Table 14 includes some interesting results. With regard to the 3-
class experiment, the 8-bit integer Raspberry Pi 4B and the AMD-Xilinx
MPSoC quantization approaches (each device with its own quantization
technique) offer similar and even better performance in several cases
than the 16/32-bit floating point Jetson Nano. Furthermore, these
results also verify that the use of overlapping patches improves the
segmentation recall/precision. Nevertheless, the results from the 5-class
experiment show that having added two classes to the initial segmen-
tation application increases the challenge difficulty to such an extent
that the best results are now obtained with the Jetson Nano. These
results highlight the need to either explore alternative quantization or
finetuning techniques or directly train the neural network in such a
way that it is aware that it will be later quantized, a process known as
Quantization Aware Training (QAT) [57].
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Although metrics such as those listed in Table 14 are a good indica-
tor of the quality of inference, it is essential to inspect the inference
results in the images, especially when dealing with weakly labeled
datasets such as the one we are working with. Otherwise, the prediction
of the neural network in the unlabeled pixels, which are equally as
important as the other ones, is unknown.

For the visual inspection of the results, we have chosen the same
images as before. Although, at first sight, the three images all look
similar, we will thoroughly analyze them one by one. As for the urban
image, the output from the AMD-Xilinx MPSoC (Fig. 18(i)) is that
which has the smallest white spot in the foreground; however, it is
also the one that fails to perceive the left side thin road lines. The
output from Raspberry Pi 4B and Jetson Nano are almost identical
(Figs. 18(c) and 18(f)). Regarding the road landscape, the segmentation
of the Raspberry Pi 4B (Fig. 18(b)) is the one that makes the smallest
error, followed by the Jetson Nano’s (Fig. 18(e)) in the vegetation to the
right of the road sign and in the sky/vegetation intersections. However,
they have less ability than the AMD-Xilinx MPSoC (Fig. 18(h)) to
detect objects located at medium-long distances; this is evident in the
sharpness of both the signal on the left and the guardrail underneath
it, in the couple who is going for a walk and in the house at the
back. Finally, in relation to the highway scene, which is challenging,
once again the Raspberry Pi 4B and the Jetson Nano (Figs. 18(c),
18(f)) show a different output compared to the AMD-Xilinx MPSoC
(Fig. 18(i)): while the former better identify the lane lights before the
tunnel entry, the latter is the only one to detect the road on the right
side and to partially predict the road on the left. Nevertheless, the
overall segmentation is extremely good.

6. Conclusions

HSI contains relevant spectral information that can help to develop
more capable intelligent vision systems. In the field of ADAS and
ADS, HSI can provide sufficient information to produce the correct

segmentation of relevant items in driving scenarios and thus provide
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Table 14
Recall, accuracy and IoU (Intersection over Union) of the quantized neural network inference running on the three tested computing platforms:
Raspberry Pi 4B (RPI), Jetson Nano (JN) and ZCU104 development board (ZCU).

Rebuilt

Metric Recall Precision IoU

Class name Device

RPI Nano ZCU RPI Nano ZCU RPI Nano ZCU

Road 98.28 98.19 97.97 95.44 95.72 97.11 93.87 94.06 95.19
Road marks 86.13 84.42 86.71 80.98 79.91 81.12 71.63 69.64 72.15
Non-drivable 92.87 93.45 95.59 97.79 97.71 97.40 90.96 91.44 93.21
Overall 95.86 95.98 96.74 95.84 95.96 96.77 92.27 92.50 93.78
Mean 92.42 92.02 93.42 91.40 91.11 91.88 85.49 85.05 86.85
Weighted 87.08 85.61 87.78 82.75 81.80 82.88 73.89 72.16 74.52

Road 90.22 93.26 90.37 99.24 98.75 99.05 89.60 92.17 89.59
Road marks 78.66 75.91 78.30 78.53 78.61 78.69 64.74 62.92 64.60
Vegetation 96.90 95.86 96.02 91.85 95.73 95.63 89.23 91.93 91.99
Sky 97.64 97.51 95.40 92.85 93.56 95.40 90.81 91.38 91.21
Other 78.47 84.01 85.50 57.29 64.44 57.34 49.51 57.40 52.25
Overall 90.58 92.62 91.08 92.34 93.61 93.20 84.41 87.42 85.66
Mean 88.38 89.31 89.12 83.95 86.22 85.22 76.78 79.16 77.93
Weighted 86.92 86.25 85.67 82.65 83.96 82.28 74.58 75.06 73.06
Fig. 18. Results from the 5-class quantized U-Net inference on the benchmarked devices of three diverse images.
the vehicles with meaningful data for scene understanding. However,
ADAS and ADS require capturing and processing HSI at video rates,
which posses an additional challenge to the task of image segmentation.
Nowadays, hyperspectral imaging at video rates in small formats is
possible mainly by using snapshot cameras that incorporate standard
CMOS imaging sensors with filter-on-chip technology. Filter-array tech-
nology constrains, to some extent, the quality of the captured spectral
and spatial information, especially in outdoor uncontrolled environ-
ments, as is the case in real driving situations. Consequently, to achieve
19
good classification performance and robustness, it is necessary to apply
additional techniques beyond the mere use of raw spectral information.

It is known that the use of spatial information via convolution
operations allows for obtaining a more robust segmentation of images
by applying deep-learning techniques, but it is at the cost of a huge
increase in the complexity of the models. However, the requirements
of ADAS applications impose tight constraints on the complexity of the
AI models, since they must be deployed in compliance with the low
cost, low latency and low power requirements of embedded computing
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platforms. In this regard, we demonstrate that satisfactory segmen-
tation results can be obtained for low/medium-complexity use cases
when combining spectral information from a snapshot camera with the
spatial information obtained with light encoder–decoder FCN models.
In particular, we provide evidence that with a careful design and a
hyperparameter optimization process, it is possible to achieve good
performance with FCNs of sizes in the range of tens of thousands of
parameters.

We provide a benchmark of designed segmentation systems by the
deployment on three significative embedded computing platforms: a
multicore microprocessor, a SoC featuring an embedded GPU, and
a PSoC containing an FPGA. We show that the FPGA-based PSoC
approach is superior in terms of both latency and energy efficiency. The
PSoC implementation allows for achieving almost 20 fps of processing
throughput with a simple two-stage processing pipeline (preprocessing
stage and inference stage), which meets the latency requirements of
the ADAS industry standards. In fact, it is important to highlight that,
unlike other works published in this field of application, our tested
prototypes incorporate not only the acceleration of the neural network
inference via the AI dedicated coprocessor, but also the necessary
preprocessing of the acquired raw HSI which, in fact, reveals itself
to be a bottleneck that needs to be taken into account in the image
segmentation pipeline. In this sense, we also show that accelerating
the preprocessing stage by taking advantage of both the thread-level
and the data-level parallelism of modern microprocessor architectures
in the writing of the code, makes the difference in terms of throughput.

Although the presented results are promising, HSI-based intelligent
vision research is still at its early stages and there is much room for
improvement. Future work will focus on extending the capabilities
of the system at both the algorithmic and the implementation levels.
It is expected that the ML-based algorithmic development and model
training will be improved as a result of the availability of a greater
amount of data. In this sense, the recently published new v2.0 release
of the HSI-Drive dataset, which provides 496 additional labeled images
extracted from new recordings performed in Winter and Autumn, will
facilitate the training of models thanks to the increase of data available,
particularly for the minority classes and for challenging scenarios such
as rainy weather, low-lighting environments etc. In this regard, it will
be necessary to investigate how to extract more meaningful spectral
features that would be able to enhance class separability and how
to effectively combine this information with the spatial features at
different scales.

Regarding the deployment on embedded computing platforms that
fit ADAS/ADS application requirements, on the one hand, it is nec-
essary to further explore optimization techniques regarding model
quantization, pruning, the use of separable convolutions etc. On the
other hand, we are assessing the possibility of designing a more cus-
tomized AI coprocessor to further accelerate the data flow and reduce
resource occupation in order to enhance the system throughput and
reduce power consumption.
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