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Driving Style Recognition based on Ride Comfort Using a Hybrid
Machine Learning Algorithm*

Inés del Campo1, Estibalitz Asua2, Victoria Martı́nez3, Óscar Mata-Carballeira4, and Javier Echanobe5

Abstract— Driving style (DS) classification and identification
plays an increasingly important role in the development of
advanced driver assistance systems and automated vehicles.
Both the enhancement of driving safety and the improvement of
fuel efficiency are essential goals of current research in driving
style characterization. However, the comfort perspective has
still hardly been investigated, despite its importance for the
future of driving automation. This paper proposes a driving
style classification method, focused on global comfort of the
driver and the passengers, but which can also be integrated
into the above safety-efficiency viewpoint. Although human
comfort in vehicles is affected by different factors, the amplitude
and frequency of accelerations are recognized as key signals
for assessing driving comfort. The proposed DS classification
approach is based on a hybrid machine learning method that
combines an unsupervised clustering method with a data-driven
extreme learning machine (ELM) algorithm. Hierarchical clus-
tering is used to explore the relevance of the acceleration
components in relation to ride comfort, while a single layer
ELM topology is implemented to model the DS classifier. The
method has been evaluated using experimental data obtained
with an instrumented car equipped with in-vehicle sensors
and measurement units. The obtained clustering results are
consistent with comfort standard indicators, while the data-
driven algorithm provides encouraging results: more than 95%
classification rate using unseen data.

I. INTRODUCTION

The recognition of the driving style (DS) of a driver is
an ongoing challenge in the context of advanced driving
assistance systems (ADAS) and automated driving [1], [2].
The application scope of DS recognition systems includes:
• Driver-style correction systems targeted to improve

driving safety, fuel consumption, or both at the same
time.
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• Personalized ADAS, enhanced with the ability to be
adapted to driver behavior.

• Development of control strategies that improve the
perceived quality of automated driving.

A complete review of recent research on DS character-
ization and its relevance for the progress of autonomous
vehicles can be found in [1]. Up to now, most of the research
focuses on DS analysis concerning two important topics:
driving safety and fuel consumption. A variety of techniques
and algorithms have been explored to develop DS recog-
nition systems, ranging from simple rule-based algorithms
and model-based systems, to sophisticated machine learning
methods. Rule-based systems include threshold-based rules,
and fuzzy logic rules which are able to adapt to different DS;
model-based systems consist of a set of equations whose
parameters can be tuned to model different DS; machine-
learning algorithms include supervised methods (e.g. shallow
and deep artificial neural networks (ANN), support vector
machine (SVM), decision trees, etc.), unsupervised methods
(e.g. hierarchical clustering analysis (HCA) and principal
component analysis (PCA)), and hybrid strategies that com-
bines supervised and unsupervised algorithms.

In addition, data mining techniques for feature selection
and feature extraction are extensively used to enhance the
performance of machine learning techniques (see [1], and
references therein). In previous work, the authors developed
a driver recognition system based on driving behavior signals
and ANNs. They proposed a high performance system where
both the ANN topology (i.e. the number of inputs and the
number hidden neurons) and the feature selection are opti-
mized by means of a multiobjective genetic algorithm [3].
A different feature selection approach was proposed in [4],
[5], where the nearest shrunken centroids (NSC) clustering
procedure [6] was combined with a wrapper around the ANN
with the aim of reducing the number of driving behavior
signals.

Undoubtedly, safety is the most important objective in
the development of unmanned ground vehicles, while energy
efficiency is a key factor in the development of environmen-
tally friendly vehicles. However, looking at the humans in
this picture [7], comfort and well-being are also significant
factors that impact passengers’ experience in current as well
as future vehicles [8]. It is well known that temperature,
smell, gender, age, and many other features have effects
on global passenger comfort. Among these, vibrations are
considered to be the most significant sources of discomfort
(i.e. ride discomfort). One explanation for the connection
between discomfort and spectral content is that human organs
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are put under stress when falling into resonance [9], [10].
Although some vibrations are determined by certain charac-
teristics of vehicles and road paving, others depend largely
on the driving skills and/or behavior of driver. Therefore,
driving style characterization from the comfort perspective
is increasingly important in the development of ADAS and
automated vehicles [8].

Specifically, the ISO 5805 [11] defines ride comfort as
“subjective state of well-being or absence of mechanical
disturbance in relation to the induced environment”. One
of the most unpleasant types of ride discomfort is motion
sickness. It is a dizziness, fatigue, or nausea that results from
the conflict between visually perceived movement and the
vestibular system’s sense of movement [8]. So, passengers
are more prone to motion sickness than the driver, as they
do not maintain visual references.

This paper proposes a driving style classification method,
focused on the global comfort of the driver and the pas-
sengers, using machine learning techniques. The proposed
approach is based on a hybrid machine learning method
that combines an unsupervised clustering method with a
data-driven extreme learning machine (ELM) algorithm.
Agglomerative hierarchical clustering analysis is used to
explore the relevance of the acceleration components to ride
comfort, while a single layer ELM topology is implemented
to model the DS classifier. ELM is a suitable solution, even
for demanding applications that require online learning and
adaptation [12], [13]. It is based on a simple tuning-free
algorithm and its learning speed is very high. Moreover,
learning with ELM does not present local minima or over-
fitting problems. As a consequence, ELM is less dependent
on designer intervention than conventional machine learning
techniques, such as back-propagation (BP) ANN, or SVM.

The proposed method has been extensively evaluated
using experimental data obtained with an instrumented car
equipped with sensors and measurement units: the Uyanik
car [14]. The DS recognition system provides promising
results: more than 95% classification rate using unseen data.
Moreover, the DS recognition system has been used to
classify a subgroup of drivers that do not participate in the
training/testing driving sessions. These experiments provide
encouraging results in ride comfort classification and suggest
interesting focuses for future investigation. It is worth noting
that the proposed implementation approach, based on ELM
and driving behavior signals, is able to predict the driving
style of a driver along the first minutes of a driving session.

The rest of the paper is organized as follows: Section II
introduces the main sources of discomfort in a vehicle, and
presents a block diagram of the proposed DS recognition
system. In addition, a brief description of the data sets used
in this work is provided. Section III introduces the agglomer-
ative hierarchical clustering algorithm used for driving style
classification and provides experimental results. After that, in
Section IV, the ELM topology is presented and recognition
rates are provided. Finally, some concluding remarks are
offered and future research work is proposed.

II. RIDE COMFORT CHARACTERIZATION

The discomfort due to vibrations depends on different
features: the magnitude, the frequency, the direction, and the
duration of the vibrations. Therefore, ride quality evaluation
implies considering both discrete events (e.g. an abrupt lane
change), and average vehicle motion (e.g. low frequency
motion over a long period of time that could induce motion
sickness) [10].

Eventual discomfort can be determined by maximum val-
ues of acceleration and jerk (i.e. time derivate of acceleration)
which typically arise at swift lane changes and entrances and
exits of curves. A high value of acceleration or jerk can cause
discomfort even during short periods of time. Concerning
average vehicle motion, low frequency motion is the main
contributor to motion sickness, while high frequency motion
causes stress and discomfort. Motion sickness is rarely a
problem at high frequencies.

There are different methods for quantifying ride quality
from comfort perspective. As is detailed in [9], [10], the
sensation of vibrations on human body depends on the
signal direction and its spectral content, and accordingly,
inspection of the Power Spectral Density (PSD) is a powerful
method for the evaluation of ride quality. The PSD of a
signal provides a measure of the power present in the signal
as a function of frequency, per unit frequency. In most
practical applications, it can be estimated by computing the
squared magnitude of the Fourier transform. In addition, the
International Organization for Standardization (ISO) 2631-
1 defines several methods to measure vibrations as well
as to process data to standardized performance measures
concerning health, perception, comfort and motion sickness
[15]. The quantified performance measures of ISO 2631
are based on frequency weighted root mean square (RMS)
computations of acceleration data in each axis. The ISO norm
defines several filter shapes that delimit the frequency bands
where different components of discomfort are present: filters
wf , wd, and wk, where filter wf is representative of motion
sickness discomfort, while the filters wd and wk model the
horizontal and vertical components of global discomfort,
respectively (see Fig. 1).

Most of the above methods for evaluating ride com-
fort/discomfort consider a single frequency, or a limited
frequency range, and a single direction. However, taking into
account that passengers are exposed to multiple frequencies
in different axes at the same time, it can be conjectured that
motion at many different frequencies and directions might
increase the discomfort and the risk of motion sickness.
Therefore, a classification of driving styles based on ride
comfort should consider the total power of vibrations, inde-
pendently of the kind of discomfort that each frequency/axis
generates.

A. Development of the Driving Style Recognition System

The block diagram depicted in Fig. 2 shows the main steps
involved in the development of the proposed DS recognition
system. It is based on a hybrid machine learning method that
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Fig. 1. Amplitude responses of different weighting filters in ISO 2631, wf :
motion sickness (blue), wd: global comfort horizontal-component (green),
and wk: global comfort vertical-component (red).

combines an unsupervised clustering algorithm with a data-
driven extreme learning machine. Firstly, the driving styles
of a group of drivers are classified into a number of discrete
classes based on selected features: a hierarchical clustering
algorithm is used in this step. Since our aim is to classify
the drivers according to the ride comfort of their driving
styles, the summation of the spectral components (i.e. PSD
sum) of accelerations in each axis is selected as input feature.
This feature accounts for ride comfort in a broad sense, and
a typical inertial measurement unit (IMU) attached to the
vehicle can be used to capture the XYZ accelerations.

Then, each class is to be labeled according to a predefined
comfort criterion: the evaluation of meaningful comfort pa-
rameters, or the result of a survey filled in by the passengers.
A combined approach, that considers both criteria would be
desirable. However, in this work, the former approach will
be used because passengers’ surveys are not available.

After that, a DS recognition system is developed to model
the classifier. Extreme learning machines (ELM) with a
variety of architectures have been evaluated to implement the
classifier: single-layer ELM, ELM auto-encoders, and deep-
ELM [13]. The best performance has been obtained with a
single layer feed-forward network (SLFN) featuring 100 neu-
rons in the hidden layer. This topology has been selected to
carry out the experiments presented in the following sections.
The whole method has been evaluated using experimental
data obtained with the Uyanik instrumented car [14].

B. The Uyanik Data Set

The data set was collected using the Uyanik instrumented
car: a sedan car equipped with different sensors and mea-
surement units [14]. The car route is around 25 km, about
40 minutes, in the vicinity of Istanbul. It includes different
kinds of roads and traffic sections: city, very busy city,
highway, highway with less traffic, and a university campus.
A representative subset of the recording sessions consisting
of 22 drivers was chosen, recordings with missing values
or incomplete information were discarded. The complete
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Fig. 2. Block scheme: development process of the hybrid DS characteri-
zation system for ride comfort classification.

data set includes audio and video recordings, CAN-bus
signals, pedal-sensor recordings, a frontal laser scanner, and
an inertial measurement unit (IMU).

After a comprehensive examination of the available infor-
mation, a set of signals and variables, which are successfully
used for modeling driving behavior, was selected [5]. The
subset of low level variables (i.e. time series), and 20 high
level features (RMS value (time domain), and PSD sum
(frequency domain)) used in this research is summarized
in Table I. Several redundant variables, such as: roll rate,
pitch rate and yaw rate, were discarded because they do not
improve the driving comfort classification rates obtained with
the selected signals. The sample rate of the signals is 32
Hz and the features are computed over 128-second frames
(i.e. 4096 samples) with 1-second shift (i.e. 32 sample shift),
that is to say, with an overlapping of 127 seconds between
consecutive windows. The acceleration: XACC, YACC, and
ZACC, will be used in the development and subsequent
labeling of the ride comfort classes, while the remaining
features will be used to implement the DS recognition
system.

The driving session of each driver was partitioned into
a training segment (approximately two thirds of total trip:
around 1600 windows) and a testing segment (the remaining
third of the trip without window overlapping: around 672
windows). A subgroup of 15 drivers was involved in the
development of the DS recognition system, while 7 drivers
without previous contact with the system were used to
evaluate the performance of the ELM-based classification
model.

III. DRIVING STYLE CLASSIFICATION INSPIRED
FROM COMFORT PERSPECTIVE

An agglomerative Hierarchical Cluster Analysis (HCA)
has been used to establish coherent groups of drivers based
on the input features in the training data of every driving ses-
sion. This is a bottom-up approach that iteratively measures
the distance between any two clusters (initially single drivers)
merging the two closest ones in each step. The measurement
method in this case considers the Euclidean distance and
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TABLE I
DRIVING STYLE RECOGNITION: SENSORS, SIGNALS AND FEATURES

Sensors
and units

Signals (time series: 32 Hz
sample rate)

Time
(RMS)

Frequency
(PSD
sum)

CAN-bus

SWA: Steering wheel angle 1 11

SWS: Steering wheel speed 2 12

VS: Vehicle speed 3 13

PGP: Percent gas pedal 4 14

ERPM: Engine RPM 5 15

Pressure
sensors

BP: Break pedal pressure 6 16

GP: Gas pedal pressure 7 17

IMU unit

XACC: X axis accelerometer 8 18

YACC: Y axis accelerometer 9 19

ZACC: Z axis accelerometer 10 20

High level features are derived from analysis frames of 128 sec
with an overlapping of 127 sec. Only signals in boldface are
involved in the clustering step.

follows a single-linkage algorithm (i.e. nearest neighbor).
It evaluates the distance between the closest members of
each pair of clusters. This unsupervised clustering procedure
generates a hierarchical structure in the form of a binary tree.

The input to the HCA is the RMS of the PSD sum of
the accelerations in each axis (XACC, YACC, ZACC). The
available data are sampled at 32 Hz, so, according to Nyquist
Criterion, the frequency analysis is limited to less than 16
Hz, meanwhile low frequency components that lay out of the
frequency band wf∪wd∪wk are discarded because they are
little relevant for ride comfort characterization (see Fig. 1).
It is worth noting that each part of the human body has a
natural resonance frequency, some of which lie above 16 Hz
(e.g. the head natural frequency) [17]. However, most of the
analysis performed on biomechanical models state that the
response of the human body vibration is relevant until 10
Hz, and from this point it begins to lose sensitivity linearly
[18]. This behavior is consistent with the filters proposed in
the 2631-1 ISO (see Fig. 1).

A. HCA Experimental Results

The HCA method has been used to categorize the first
15 drivers into homogeneous classes from the perspective
of ride comfort. The obtained binary tree is depicted by
the dendrogram in Fig. 3, where the vertical axis represents
the dissimilarity between clusters, and thus, the horizontal
line in the picture shows three well-distinguished clusters.
On the right of the figure it can be clearly seen a single-
driver class (Cluster 1) associated with Driver 12; on the left
side of the figure a class composed of 12 drivers, the most
populated class, can be distinguished (Cluster 2); finally, the
third cluster matches up Driver 10 and Driver 13 (Cluster
3). Figure 4 shows the values of the statistical variables
used to develop the clusters, the members of each cluster are
highlighted using different symbols and colors. The number
of clusters has been selected taking into account a trade-
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Fig. 3. Dendrogram corresponding to the categorization of the first 15
drivers into homogeneous classes from the perspective of ride comfort.

off between classification discrimination and complexity. As
will be seen next, both the results shown in the dendrogram
as well as the interpretability of the clusters confirm the
suitability of a three-class DS classifier.

B. Classes Analysis using Comfort Parameters

In the following, the previously developed classes will be
labeled inspired from ride comfort. As it has been introduced
in Section II, there are several methods for quantifying ride
quality. Two widely accepted indices will be used to analyze
the obtained clusters and assign suitable labels to each class.

Each performance measure is related to a specific fre-
quency filter (see Fig. 1). The first comfort parameter that
will be evaluated is the total weighted RMS acceleration
(av) [16]. It considers the acceleration signal in three axes

Fig. 4. Input data to the agglomerative HCA: RMS(PSD sum) of
accelerations. Selected clusters are: Cluster 1 (blue dot): Drivers 10 and
13; Cluster 2 (green cross): Drivers 1-9. 11, 14, and 15; Cluster 3 (red
square): Driver 12.
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and reflects the effect of signal spectral content in the
human body as the 2631-1 ISO determines. This parameter
is defined as follows:

av =
√
k2xa

2
wxd + k2ya

2
wyd + k2za

2
wzk, (1)

where kx, ky and kz are constants according to [15] that
quantify the effect of the different axes accelerations in the
human body. Furthermore, the accelerations are weighted and
filtered in the way that the same ISO norm determines, and
awxd, awyd and awzk are the results of being filtered by wd,
wd and wk filter, respectively (see Fig. 1). The weighted
RMS acceleration for each axis is expressed as,

awij =

√
1

Tf

∫ Tf

0

a2i , wj(t)dt, (2)

where i determines the direction, j is the corresponding
filter, and Tf is the time range of acceleration data.

In the same standard, a measure of the likelihood of nausea
(MSDV) due to motion sickness is defined and quantified.
MSDV is accumulated over time. Although, it may also be
useful to evaluate the mean MSDV-rate, which is independent
of the time range of the measurement:

MSDV i =

√
1

Tf

∫ Tf

0

a2i , wf (t)dt, (3)

where wf is the blue filter in Fig. 1.
The above performance index (1) and (3) have been

computed for each driver that participated in the driving
sessions. The first index, av , represents a general comfort
measure and the second one, MSDV, is related with motion
sickness. In view of the obtained results (see Fig. 5), it
can be concluded that the hierarchical clustering analysis
performed in the previous section is representative of the ride
comfort of each one of the 15 drivers. Moreover, comparing
the results of awij with the values specified in ISO 2631-
1 for each axis [10], likely reactions of the passengers
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Fig. 5. Ride quality from comfort perspective quantification. Top: av
parameter, which describes general comfort; bottom: MSDVz rate param-
eter, which is related with motion sickness. The drivers on the left side of
the vertical line (1 to 15) were used to train the system, while the drivers
on the right side (16 to 22) are new for the DS classifier.
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Fig. 6. Topology of a single-layer feed-forward network (SLFN) used by
ELM. The weights and biases of the hidden layer are random numbers,
while the parameters of the output layer are analytically determined.

for all the drivers under test would be rather comfortable
(Cluster 1), a little uncomfortable (Cluster 2), or, in the worst
situation (Cluster 3), fairly uncomfortable. It is worth noting
that none of the drivers exhibits very uncomfortable driving
behavior, therefore, current data are not able to account for a
richer specter of driving styles. Regarding MSDV, the results
clearly highlight the different driving styles, in agreement
with the previous ones. In sum, a suitable label assignment
could be: Cluster 1: “Comfortable”, Cluster 2: “A Little
Uncomfortable”, and Cluster 3: “Fairly Uncomfortable”.

IV. COMFORT-BASED DRIVING STYLE
RECOGNITION USING ELM

The implementation of the DS classification developed in
Section III will be performed using a SLFN ELM with 100
neurons in the hidden layer. The advantages of ELM-like
algorithms arise from the fact that the parameters of the
hidden nodes are randomly generated and do not need to be
iteratively tuned [12], [13]. As a consequence, the learning
procedure of ELM is simpler and less time-consuming than
conventional learning algorithms such as backpropagation-
ANN and SVM.

A. Extreme Learning Machine

First, the basics of ELM are briefly reviewed with the
aim of highlighting the advantages of this machine learning
technique and providing the required background. Fig. 6
depicts the topology of a SLFN with n inputs, m outputs,
and L nodes in the hidden layer. The network output for
generalized batch ELM with additive nodes is

y(x) =
L∑

i=1

βihi(x) = h(x)β. (4)

Without loss of generalization, a single output node (m =
1) is taken in (4). The vector of weights β = [β1, · · · , βL]
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links the hidden nodes (i.e. random nodes) with the output
node, and h(x) = [h1(x), · · · , hL(x)] is the output vector
of the hidden layer for a given input x ∈ Rn. The output of
the ith hidden node is

hi(x) = s(aix+ bi),ai,x ∈ Rn,bi ∈ R, (5)

with s(aix+ bi) being the sigmoid activation function, ai
the random weights vector connecting the inputs with the
ith hidden node, and bi the random bias of the ith hidden
node. The set of parameters of the hidden nodes (ai, bi),
with 1 ≤ i ≤ L, are randomly generated and they are not
tuned.

Learning aims at computing the vector of output weights,
β in (4), for each output node. Given a set of K training
samples, (xj , tj), 1 ≤ j ≤ K, where x ∈ Rn is the jth
input vector, and t ∈ Rm is the corresponding output vector
(i.e. the target output), learning is performed by solving (4)
for the set of training samples

T = H(x)B, (6)

with H being the hidden layer output matrix

T =

h(x1)
...

h(xK)

 =

h1(x1) · · · hL(x1)
...

...
...

h1(xK) · · · hL(xK)


K×L

(7)

B =
[
β1 . . . βm

]
, and

 t1
...
tK


K×m

(8)

Then, (6) is a linear system and the output weights B can
be estimated as

B̂ = H†T, (9)

where H† is the Moore Penrose generalized inverse of matrix
H. Different methods can be used to solve (9), with the
singular value decomposition (SVD) method being the most
used with ELM [19].

B. Experimental Results

The DS recognition system has been extensively tested
using the selected features and the Uyanik data set (see
Table I). The whole group of 15 drivers used to train the
system has been evaluated with the aim of verifying the
performance of the ELM classifier. In this evaluation, two
thirds of the data were intended to train the system, and
the remaining one third was saved for testing. The ELM
training and prediction are performed over the subset of input
features (i.e. features 1 to 7 (time domain) and 11 to 17
(frequency domain)), with 100 hidden neurons, L=100. In
every case, the average accuracy over 100 trials of ELM has
been computed to provide more stable results and minimize
the effect of randomness. The mean ride comfort class
identification rate for the 15-driver group, is 93.57% with
a standard deviation of 0.99 and a maximum identification

rate of 95.71%. The above topology provides a performance
versus complexity trade-off: a smaller network could be
used without significant degradation of results (e.g. the mean
identification rate is 91.80% with L=50 and 90.84% with
L=30), while an increase in the the number of hidden neurons
scarcely improves the identification rates.

On the other hand, the ELM paradigm has been compared
with a traditional classification technique: the Support Vector
Machine (SVM) with radial basis function (RBF) kernel [20].
The cost parameter C has been chosen equal to the range
of output values of training data, i.e. C = 1, while the
RBF kernel parameter γ has been selected from the best
performance of γ =

[
2−7, 2−6, · · · , 27

]
. According to our

experimental results, SVM is able to slightly improve the
generalization performance of SLFN ELM: the best ride
comfort class identification rate, for the 15-driver group,
is 97.86%. This value has been obtained with γ = 2−2.
However, the SVM system requires as much as 1495 support
vectors (i.e. nodes) to achieve a 2% improvement. Fine
tuning around the above values increases the identification
rate up to 98.03% with γ = 0.35 and 1673 support vectors.
In sum, the performance of SVM is slightly better than the
performance of ELM, but at the expense of a complexity
increase of more than one magnitude order.

Table II summarizes the classification rates obtained using
the last third of each driving session to test the ELM. As
can be seen, the ELM-based system is able to model the DS
of the whole group of 15 drivers. Every driver have been
successfully classified using the testing data. The testing data
were obtained during the same driving session as the training
data, but in a different segment of the route, this fact validates
the robustness of the proposed method.

The developed DS classification system has been used to
classify a subgroup of 7 drivers who do not participate in the
previous training/testing of the system (i.e. unseen drivers).
These drivers traveled the same route as the drivers used
to develop the system. Table III presents the classification
rates for each unseen driver. As can be seen, six of the
seven drivers have been classified into Cluster 2 (“A Little
Uncomfortable”), while Driver 20 has been classified into
Cluster 1 (“Fairly Uncomfortable”).

With the aim of getting a deeper insight into the classifier
operation, the selected comfort index (1) and (3), correspond-
ing to the 7-driver group have been evaluated (see Fig. 5).
In view of these results, Driver 20 should be also classified
into Cluster 2. However, a more comprehensive analysis
of this driver revealed that he/she presents high values of
accelerations in Y axis (YACC: lateral axis). This component
of acceleration (lateral acceleration) resulting from driver’s
turning paths is a relevant cause of motion sickness for
passengers [21]. In addition, we observed that the driving
session of this driver was affected by traffic jam (more than
10 minutes). Although the fraction of the path affected by
traffic jams was excluded from the testing data, this fact
could have affected negatively the driving style of the driver.
In this sense, DS classification contemplates more than one
style for the same driver under different conditions.
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V. CONCLUSIONS

A new driving style classification method, focused on ride
comfort of the driver and passengers, has been proposed.
Although driving safety and fuel efficiency are typical goals
in current driving style recognition systems, ride comfort has
attracted little research attention, despite its significance for
future unmanned ground vehicles.

A hybrid machine learning method has been developed
and successfully tested using experimental data. The system,
composed of an unsupervised hierarchical clustering analysis
(HCA) algorithm and a high performance extreme learning
machine (ELM), takes advantage of recent advances in
machine learning and data mining. This kind of hybrid
approach improves the overall performance of the system,
and is suitable for further improvement of the classification
accuracy by increasing the number of input features. More-
over, other goals of interest (e.g. safety or fuel efficiency)
could be easily integrated into the classifier by means of a
clustering redefinition and ELM retraining.

Our experimental results show that the HCA algorithm
is able to identify relevant clusters that can be coherently
interpreted from the ride comfort perspective. In addition,
the ELM network provides high classification rates, more
than 95%, using a straightforward single-layer topology. The
robustness of the method has been evaluated by means of
new drivers that did not participate in the development of the
system. Most of these drivers were successfully classified,
according to the values of standard comfort indices. How-
ever, complementary information about the driving sessions
and the passengers’ experience is required to obtain more
reliable conclusions: this is the aim of our future research.

TABLE II
EXPERIMENTAL RESULTS USING THE 14-100-3 ELM TOPOLOGY

Driver Target
Cluster

Percentage Classification (%)

Cluster 1 Cluster 2 Cluster 3

10 1 83.70 16.30 0.00

13 1 67.00 32.48 0.00

1 2 0.00 100.00 0.00

2 2 0.00 100.00 0.00

3 2 0.00 100.00 0.00

4 2 0.00 100.00 0.00

5 2 0.00 100.00 0.00

6 2 0.14 99.86 0.00

7 2 12.71 87.29 0.00

8 2 5.18 94.82 0.00

9 2 0.23 99.77 0.00

11 2 0.00 100.00 0.00

14 2 3.61 96.39 0.00

15 2 1.16 98.84 0.00

12 3 0.00 0.00 100.00

Test results obtained using the last third of each trip.

TABLE III
EXPERIMENTAL RESULTS FOR UNSEEN DRIVERS

Driver Output
Cluster

Percentage Classification (%)

Cluster 1 Cluster 2 Cluster 3

16 2 0.00 100.00 0.00

17 2 0.00 100.00 0.00

18 2 3.53 96.47 0.00

19 2 10.32 89.68 0.00

20 1 65.51 34.49 0.00

21 2 0.00 100.00 0.00

22 2 0.00 100.00 0.00

REFERENCES

[1] C. Marina Martinez, M. Heucke, F. Y. Wang, B. Gao and D.
Cao, ”Driving Style Recognition for Intelligent Vehicle Control and
Advanced Driver Assistance: A Survey,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 3, pp. 666-676, March
2018.

[2] Y. Du, C. Liu and Y. Li, ”Velocity Control Strategies to Improve Au-
tomated Vehicle Driving Comfort,” in IEEE Intelligent Transportation
Systems Magazine, vol. 10, no. 1, pp. 8-18, Spring 2018.

[3] J. Echanobe, I. del Campo and M. V. Martnez, ”Design and opti-
mization of a Neural Network-based driver recognition system by
means of a multiobjective genetic algorithm,” 2016 International Joint
Conference on Neural Networks (IJCNN), Vancouver, Canada, 2016,
pp. 3745-3750.

[4] M. V. Martnez, I. del Campo, J. Echanobe and K. Basterretxea,
”Driving Behavior Signals and Machine Learning: A Personalized
Driver Assistance System,” 18th IEEE International Conference on
Intelligent Transportation Systems (ITSC), Las Palmas Gran Canaria,
Spain, 2015, pp. 2933-2940.

[5] M. V. Martnez, J. Echanobe and I. del Campo, ”Driver identification
and impostor detection based on driving behavior signals,” 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), Rio de Janeiro, Brazil, 2016, pp. 372-378.

[6] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, ”Class Prediction
by Nearest Shrunken Centroids, with Applications to DNA Microar-
rays,” Statistical Science, vol. 18, pp. 104-117, 2003.

[7] E. Ohn-Bar, and M. M. Trivedi, ”Looking at Humans in the Age of
Self-Driving and Highly Automated Vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 1, no. 1, pp. 90-104, 2016.

[8] M. Elbanhawi, M. Simic, and R. Jazar, ”In the passenger seat: Inves-
tigating ride comfort measures in autonomous cars,” IEEE Intelligent
Transportation Systems Magazine, vol. 7, no. 3, pp. 417, Fall 2015.

[9] N. Karlsson and H. Tjärnbro, Motion sickness in cars, Department of
Product and production Development. CHALMERS UNIVERSITY
OF TECHNOLOGY, 2012.

[10] J. Eriksson and L. Svensson, ”Tuning for Ride Quality,” in Au-
tonomous Vehicle, UPPSALA UNIVERSITET, 2015.

[11] ISO, Vibration and Shock-Vocabulary, ISO 2041, 1990.
[12] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, ”Extreme Learning

Machine for Regression and Multiclass Classification,” IEEE Trans-
actions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol.
42, no. 2, pp. 513-529, 2012.

[13] J. X. Tang, C. W. Deng, and G. B. Huang, ”Extreme Learning Machine
for Multilayer Perceptron,” IEEE Transactions on Neural Networks
and Learning Systems, vol 27, no. 4, pp. 809-821, 2016.

[14] H. Abut, H. Erdogan, A. Ercil, B. C Çürüklü, H. C. Koman, F. Tas,
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