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Deep Extreme Learning Machines with Auto Encoder
for Speed Limit Signs Recognition

Óscar Mata-Carballeira1, Inés del Campo2, Victoria Martı́nez3 and Javier Echanobe4

Abstract— This work presents a Deep Extreme Learning Ma-
chine with Auto Encoder scheme for Speed Limit Signs Recogni-
tion in the field of Advanced Driving Assistance Systems, where
traffic sign recognition from video imaging plays an important
role specially to provide vehicles with automated speed limits
enforcement. Current solutions adopted by car manufacturers
do not provide robust enough recognition behaviors when
the image quality, the lighting conditions or the clearance of
the traffic sign are compromised. These conditions result in
misinterpreting of the speed limits, showing wrong on-screen
advices which might confuse the driver, causing dangerous
situations.

In this work, the full chain of operations is studied. The
proposed scheme is trained and tested with the German Traffic
Sign Recognition Benchmark (GTSRB) database, achieving
recognition times as short as 0.62 ms per sample, reaching
with this timing real-time operation, and an accuracy of up to
92% with a simpler structure than other techniques currently
used, such as Convolutional Neural Networks (CNNs).

I. INTRODUCTION

In recent years, due to the massive improvements in
boarded electronics in terms of miniaturization and power
consumption, as well as cost reductions, Driving Assistance
Systems (DAS) both for amenity (e.g. cruise control, adaptive
suspension, etc.) and for safety (anti-lock braking system
(ABS), electronic brake assistance system (EBAS), electronic
stability program (ESP), etc.) have been gradually imple-
mented in cars of all ranges, with the previously quoted
DAS even becoming mandatory over the years for all new-
production cars.

Although current cars are fitted with DAS, particularly for
safety due to government regulations, many improvements
in this field can be still performed, specially in the field
of Advanced-DAS, such as Adaptive Cruise Control (ACC),
which uses radar detection to keep an adequate safety dis-
tance with the preceding vehicle, braking and throttling to
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accommodate the speed, and eventually, stopping the vehicle
in case of a more-than-likely collision [1].

Regarding the enhancement of the traffic signs’ enforce-
ment, many mid-rangers are being equipped with automated
front-video based traffic sign recognition systems, initially
showing on-screen warnings, and, in the latest applications,
setting automatically speed limits as the setpoint of the
adaptive cruise control.

These current commercial approaches show, nevertheless,
many problems on recognizing traffic signs under certain
conditions of lighting, missing digits and displaying unstable
behaviors [2]. These failures result in misinterpreting speed
limits, with the high risk it implies for the driver. In the
context of highly assisted cars, drivers are likely to devolve
the task of reading the speed limit signs in the vehicle
systems in the same manner it happens with many other
driving assistance systems, such as ABS or ESP [3]. This
problem, known as driver’s underload, might transform a
safety feature in another source of risk [4].

Since the nature of the human driver is well known [4], in
the context of an evolving paradigm of traffic, with the short-
term horizon of semi-autonomous cars sharing roadways
with conventional automobiles, the point of improving the
recognition of speed limit signs is crucial to increase the
road safety (since over-speed is one of of the main causes of
traffic accidents), and consequently, diminishing the number
of traffic-related fatalities.

In this context, the development of a more robust solution
for recognizing speed limits capable of coping with the
variability of the real world, with scale variations, partially
obstructed signs, bad lighting and motion blur is needed.
For this purpose, Extreme Learning Machine-Auto Encoders
have shown their suitability on image reconstruction and
re-interpreting in [5] for handwritten number recognition,
achieving extreme levels of accuracy. Another advantage of
this approach over other alternatives is the simplicity of its
formulation.

The main contribution of this work is a Speed Limit
Recognition system based on Multi-Layer Extreme Learning
Machines (ML-ELM), a type of Deep Extreme Learning
Machine consisting of stacks of ELMs on its Auto Encoder
variety as its hidden layers. ML-ELMs are simpler both in
mathematical complexity and in the use of a single type of
hidden layer instead of the grand variety of types CNNs use.
However, even though ML-ELMs are simpler solutions than
CNNs, acceptable recognition results are obtained.

The remainder of this document is organized as follows:
Means of detecting and identifying traffic signs are dealt with
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along Section II, while the solutions adopted to implement
this method are described in Section III. Section IV compiles
the results while the conclusions are shown in Section V.

II. RELATED WORKS

As indicated in [6], a typical Traffic Sign Recognition
integrates three, well-differentiated modules:
A) Image pre-processing and extraction:

• Edge detection.
• Sign detection.
• Sign extraction.

B) Feature extraction.
C) Classification.

In the field of image pre-processing and extraction, the
first part is edge detection. Several algorithms can be used
on this topic [7]. The first one is Sobel Operator. This
approach uses a couple of 3 × 3 convolution kernels that
are to be moved through the pixel grid of the subject
image [8]. These kernels designed to respond maximally
to the maximum color gradients, which occur on edges.
Other similar approaches are the Prewitt’s Operator, which
is computed like Sobel’s with the only difference that the
values of the 3 × 3 convolution kernels differ; the Roberts
Cross Operator, similar to Sobel’s and Prewitt’s but with
2 × 2 kernels instead, being more sensitive to 45◦ edges
[9]; Laplacian of Gaussian is implemented similar to the
preceding algorithms, but it requires a Gaussian smoothing
operation to be performed on the image to make it more
robust to noise [10]; finally Canny edge detectors [11] have
demonstrated their suitability to optimally detect boundaries
with its superior signal-noise ratio, performing well even in
detecting edges on intensively textured images but with the
main drawback of being the most complex algorithm and the
most computationally intensive solution.

The next task to perform is sign detection or segmentation.
This stage extracts the bitmaps corresponding with the Speed
Limit Signs from the remainder of the image. This task is a
well known research topic. In [12] two paradigms are distin-
guished: color-based and shape-based methods. On the one
hand, the most remarkable shape-based algorithm suitable
for speed limit sign detection is Circle Hough transform,
which, after performing an edge detection operation, is able
to identify circular patterns by intersecting fixed radii circles
along the detected edges [13]. Another method is Distance
Transform (DT), in which the position of the corners is
calculated first and, after that, the distance of each pixel to the
corners is computed to form the DT-feature vector [14]. An
additional focus is Histograms of Oriented Gradients (HOGs)
[15], which, dividing the image in finite-size cells, integrates
their gradients over multiple cells.

On the other hand, color-based detectors are focused on
bounding a Region of Interest (ROI) from the segmentation
of a color image, and then ROI is delimited, a processing
stage extracts the Sign. These detectors are, however, suscep-
tible to day-night conditions, lighting and weather changes
since they corrupt the color information [16].

In the field of feature extraction, Haar wavelet features can
be used. Haar features are the difference of the sum of pixels
inside rectangular areas that can be slided and scaled within
the original image [17]. Thus, these features are placed in
patterns matching with the locations where singular points
of each traffic sign are expected to be found. This approach
has the main disadvantage of requiring the definition of
a feature map for each signal and, despite it brings very
high recognition rates under ideal conditions, it is sensitive
to orientation, since in works such as [18], rotation of the
Haar wavelet features is not contemplated. Scale-invariant
feature transforms (SIFTs) and Gabor features are interesting
too, while HOGs can be used also for this application.
Another approach is that provided by nuclear-and L2,1-norm
regularized 2D neighborhood preserving projection (2DNPP)
methods for extracting representative 2D image features [19].

Several approaches exist in the field of speed limit sign
classification, but many of them make use of some kind
of character segmentation method [20], [21], which first
recognizes if the sample is a speed limit sign, and in this case,
it applies a threshold binary filtering in order to perform the
character segmentation and recognize each digit individually.
This solution has the main disadvantage of having two
intermediate steps, which affect negatively its robustness and
dramatically increase computational costs.

In the field of Machine Learning techniques, Artificial
Neural Networks, specially Single-Layer Feedforward Net-
works (SLFNs) have shown their good performance in many
application fields, solving both problems of regression and
classification. Although conventional approaches, with tun-
ing algorithms such as Backpropagation, perform well in
most of the occasions, it is well known that they have a
big disadvantage: since their tuning depends on a gradient-
based calculus problem, they are very sensitive to local
minima, resulting on conditions of non-convergence or even
instability issues [22]. In addition, they have the drawback of
converging very slowly in a wide variety of cases and they
show poor performance for traffic sign recognition.

Another focus is performing no digit segmentation, consid-
ering the extracted Sign as a block Deep Neural Networks
show adequate performances. With this consideration, the
most important approach that is being used currently are
Convolutional Neural Networks (CNNs) [23] which ag-
glutinate the Feature Extraction and Classification stages.
However, although CNNs have shown great accuracy rates,
they suffer from many problems, such as they still rely on
Backpropagation gradient-descent methods. In addition, they
use a set of different types of layers to extract different kinds
of features, and each single architecture must be selected
very carefully. Due to these characteristics they also present
a very high computational cost.

Extreme Learning Machines are formulated with the aim
of solving this problem [24]. Compared with the backprop-
agation training paradigm, they provide faster training times
due to the avoidance of gradient minimization problems,
solving a System of Linear Equations instead.

Sharing the approach of ELMs, ELM-Auto Encoders are



Acc
ep

ted
 M

an
us

cri
pt

designed [5] to extract features by means of a properly
trained SLFN, avoiding calculations such as gradients, pro-
jections, etc. And finally, Multi-Layer ELMs (ML-ELM) are
formulated also in [5] as an efficient manner of integrating
the feature extraction proficiency of ELM-AEs with classifi-
cation and regression abilities, providing in one single step
the applications that Speed Limit Signs recognition requires:
feature extraction and sample classification. They have also
the main advantage, compared with CNNs, that all features
are extracted by layers computed by means of ELM-AEs, this
is, a single topology for every layer, resulting on a simpler
algorithm.

III. BLOCK DIAGRAM OF THE PROPOSED METHOD /
METHODOLOGY

As shown in Figure 1, this proposed Speed Limit Sign
Recognition method comprises three stages: 1) the speed
limit sign image extraction module by Sobel Edge Detection
and Circle Hough Transform; 2) the contrast normalization
stage and 3) a multi-layer ELM to get the signals classified
correctly.

A. Dataset of Choice

For the development and testing of this work, several
datasets containing images of Traffic Signs are used. These
datasets have been collected during the last years from a wide
variety of countries, mainly from Europe, North America and
Eastern Asia. The samples they contain also include Speed
Limit Signs.

However, although there is a full range of dataset options
to choose, the experiments have been performed on the Ger-
man Traffic Sign Recognition Benchmark (GTSRB) dataset
[25] since it is widely accepted and uses in many other works
in this area. In addition, this dataset is specially suitable
for performing training and testing operations on a Speed
Limit Recognition System, since it compiles a family of 43
different types of traffic signs under a variety of conditions
of lighting, perspective, integrity, image resolution, etc.

Thus, GTSRB comprises 39209 images for training, and
12630 images for validation purposes, all of which are
composed of a 24-bit RGB map of sizes ranging from 15
× 15 up to 250 × 250 pixels.

Due to the approach taken to perform this work, the only
images selected will be those containing the speed limit
signs. These signs and the values they display in open-traffic
roads are regulated and normalized in each country and their
appearances are kept very similar throughout Europe.

Since this work is oriented to public roads, the signs
intended to be identified are of the classes displayed in Figure
2.

Signals containing values such as 5, 10 or 15 km/h are
neither contained in this dataset nor considered for the system
since they are not displayed in open-road conditions (they are
typical from parking lots).

In order to provide a uniform input for the Speed Limit
recognition solution, all images will be re-scaled to 28×28
matrices, resulting in 784 elements per sample. They will

Video Feed

S b l EdSobel Edge
Detection

Circle Hough
Transform

Sign Extraction

Contrast
Normalization

ML-ELM Classification

Fig. 1. Block diagram of the proposed solution.

30 50 60 7030 50 60 70
80 100 12080 100 120

Fig. 2. Normalized European traffic signs (German-Austrian Variant).
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also be transformed to gray-scale and contrast normalized.
Additionally, since not all training classes contain the same
number of samples, their contents are trimmed to have
the same number of training experiments for each class,
improving the accuracy of the training. By trimming the
number of training samples to balance the elements for each
class, the training dataset is reduced to 9870 elements (7
classes of 1410 elements each).

B. Traffic Sign Extraction

Concerning the first point, many operations must be
performed on the raw image, firstly to extract the area
of the front-video frame containing the signal we want
to identify. For that purpose, several approaches might be
carried out such as the Circle Hough Transform. This tech-
nique is specifically intended for circular pattern detection
on digital imaging since Speed Limit signs are circular
in many countries. It is directly derived from the Hough
Transform, an algorithm that outperforms approaches such
as edge detection, in which, due to imperfections in the
pixel structure as well as perspective issues (i.e, circles might
appear as ellipses).

Thus, due to the previously pointed out issues, Circle
Hough Transform is more robust provided that instead of
identifying the round patterns themselves and given a fixed,
expected radius or range of radii, it assigns a score for each
circle candidate. The higher the score, the more likely the
candidate is a circle.

The process of finding circular patterns in an image
using Circle Hough Transform is subsequently described and
graphically represented in Figure 3 [26]:
• Edge detection by Sobel operations [27]
• For each edge point:

– Draw a circle of the expected radius with center on
each edge point.

– Increment in an accumulator all the coordinates
where the drawn circle goes through the detected
edges (that will be the score).

– Find maxima in the accumulator.
• Map the coordinates of the found maxima.
Apart from the circle extraction, which is one of the crucial

points of a Traffic Sign Recognition System, the correction
of the illumination and contrast levels plays an important role
too. There exist several approaches to solve that issue, such
as contrast normalization, either in RGB or grayscale images.
These operations are very simple, and for gray-scale imaging
are based on re-scaling all the brightness values considering
the minimum of the original image as absolute black, and
the maximum as absolute white.

C. Multi-Layer Extreme Learning Machines

It is well known that the performance of a Machine
Learning algorithm depends basically on the concrete fea-
tures of the input data, so, a manner of extracting those
features is crucial to achieve the maximum development
in that enterprise. Traditionally, manual engineering of the

Fig. 3. Graphical interpretation of the Circle Hough Transform.

features has been carried out to extract them from a given
dataset, with the corresponding drawbacks it implies, needing
knowledge in the area to generate the appropriate features.

In that context, algorithms known as Auto Encoders, can
perform the task of generating features automatically, being
useful for training multiple-layer neural networks, known as
Deep Networks.

Deep Networks outperform Single-Layer Feedforward
Networks (SLFNs) and traditional multiple-layer neural net-
works, but they still show slow learning speeds. Conse-
quently, as a solution to slow learning speeds, Extreme
Learning Machines (ELMs) are developed [24] as SLFNs
with fast learning rates and improved generalization capabil-
ities, and with the approach shown in [5], where an ELM
is used to develop an Auto Encoder (AE), coining the term
ELM-AE, Multi-Layer ELMs (ML-ELMs) are deployed as
stacks of several ELM-AE, solving the problem of deep
networks’ slow training rates.

1) Formulation of ELM: The method of ELM proposed
[24] assumes that the weights and biases of the hidden nodes
of a SLFN are randomly generated. Thus, with L being the
number of hidden nodes, the output of an ELM is calculated
as follows:

fL(x) =
L∑

i=1

βihi(x) = h(x)β (1)

with β = [β1, . . . , βL]
T the matrix of weights from the

hidden layer to the output nodes; h(x) = [g1(x), . . . , gL(x)]
are the hidden node outputs (with random features) for the
input x; and given a number N of training samples, we
define a set of input and training arrays X = [x1, . . . ,xi]
and T = [t1, . . . , ti] with i = 1, . . . , N . Consequently, ELM
is the solution of the following problem:

Hβ = T (2)

where T = [t1, . . . , tN ]T are the target labels and H =
[hT (x1), . . . ,h

T (xN )]T . Thus, since equation 2 is a System
of Linear Equations, it can be solved in the subsequent
manner:

β = H†T (3)

where H† is the Moore-Penrose generalized inverse of matrix
H
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Fig. 4. Samples of different characteristics of lighting, blur and integrity (left) are input to an ELM-AE, resulting in generalized, homogeneous and
corrected images for each sample (right).

Nevertheless, depending on the nature of the data, in order
to obtain better generalization capabilities and higher robust-
ness, a regularization factor, also known as ridge parameter
C, may be added:

β =

(
I

C
+HTH

)−1
HTT (4)

2) ELM as an Auto Encoder (ELM-AE): As shown in
[5], there exist three different meaningful input feature
representations:

• Compressed representation: Represents features in a
lower dimensional feature space.

• Sparse representation: Represents features in a higher
dimensional feature space.

• Equal-dimension representation: Represents features in
an equal-dimensional feature space.

To train a single ELM-AE, the input data X is also used
as the training set, verifying T = X. Inserting this equity in

1

p

1

p

1

x1

xp

(a1, b1) g1

x1

xp

β1

βp

Input Nodes Output Nodes

p

d

p

d

L

xd

(aL, bL) gL

xd

βp

βd
Hidden Nodes with

randomly mapped features

Fig. 5. ELM-AEs are solved in the same way as conventional ELMs. The
only exception is that the targets considered for training coincide with the
input data. The number of hidden nodes L can be equal, greater or less than
the number of input/output nodes.

Equation 2, we obtain:

Hβ = X (5)

Concerning the random biases and weights needed to
calculate H, although it is not strictly necessary, they should
be orthogonalized after they are generated since they tend to
provide better unsupervised learning performances [5].

In the field of this work, the advantage ELM-AE brings
is that eliminates the deviations shown by each sample
returning an intermediate, generalized representation. The
behavior of an ELM-AE is displayed on Figure 4. In this
figure, a set of 70 speed limit signs (10 samples from 7
different classes) is chosen for both training and testing of
an ELM-AE. As it can be observed, with the original pre-
processed samples on the left side of the image, and the
output of the trained ELM-AE on the right side, a new
representation is obtained.

The effect of applying this technique is the removal
of blurs, distortions, overexposure of the frame and noisy
artifacts, as well as typographic mistakes such as incomplete
digits, displacement of the baselines of the digits and align-
ment errors. It also corrects the orientation of the images,
performing a rotation.

In accordance with the behavior displayed on Figure 4,
ELM-AEs show their suitability for image processing due to
their feature extraction capabilities.

3) Multi-Layer Extreme Learning Machine (ML-ELM):
Multi-Layer Extreme Learning Machines may be interpreted
as stacks of ELM-AEs. Hence, for each layer we want to add
to a ML-ELM, an ELM-AE must be solved. However, differ-
ing from the contents displayed in the previous section, since
the only information we are interested on is that contained
in the hidden nodes, the random orthogonal parameters are
discarded in the final stack as they are found implicitly in β.

In addition, considering that ML-ELMs are based on ELM,
they do not need to be tuned finely. Thus, applying the
postulates of ELM-AE, each ML-ELM hidden layer weights
are calculated by finding a β for a ELM-AE assigned to each
layer. Hence, given a number of nodes Lj for a set of nodes
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TABLE I
AVERAGE RECOGNITION RATES, TEST AND TRAINING TIMES AND STANDARD DEVIATIONS.

Topology Ridge Recog.
σ

Test
σ

Training
σParams. Rate Time Time

784-2050-3200-7000-7 8E-3 180 1500 1E5 90.86% 0.25% 2.59 s 0.10 s 70.55 s 0.82 s
784-2050-3200-7000-7 5E-3 560 29500 1E5 90.95% 0.25% 2.55 s 0.07 s 69.96 s 0.84 s
784-2950-3200-7500-7 8E-3 180 1500 1E5 90.96% 0.35% 2.99 s 0.10 s 83.85 s 0.63 s
784-2950-3200-7500-7 5E-3 560 29500 1E5 91.24% 0.24% 2.96 s 0.10 s 82.87 s 0.59 s
784-2050-3200-15000-7 1E-2 560 29500 1E5 91.65% 0.35% 4.56 s 0.12 s 167.79 s 1.28 s

of the hidden layer Hi, we obtain the set of hidden layer
weights βi as:

βi = g(Hi−1)†Hi−1 (6)

with g(Hi−1)† being the generalized inverse of the array of
hidden nodes with randomly mapped features applied to an
activation function g(x) according with Figure 5. Assuming
βi as the parameters of the i-th hidden layer, the values of
each hidden layer are calculated as follows:

Hi =
(
βi
)T

Hi−1 (7)

where Hi is the vector of nodes of the i-th hidden layer. We
will assume that H0 = X, the βout of the output layer will
be computed using regularized least squares:

βout =
(
Hk
)†

T (8)

with k the number of hidden layers, resulting Hk the last
hidden layer.

IV. RESULTS

The experiments have been run on an Intel Xeon E5-2630
v4 CPU PC with 32 GB of RAM and they are performed in
three stages: First, the Circle Hough Transform is checked.
Apart, the training reduced dataset is used to infer the
parameters of the ML-ELM, training the classifier, and after
that, the test dataset is input in the trained classifier and
the tags of the testing dataset and the tags inferred by the
classifier on the input data are compared, calculating the
recognition rates.

The Sobel edge detection and Circle Hough Transform
MATLAB implementations are tested over several front
video images, resulting in successful extraction of circular
traffic signs, among which, speed limit signs are found. For
640× 480 front images and a radius of 15 pixels, the signal
extraction time is 12±0.87 ms.

After these checks have been carried out, several trials
on different ML-ELM topologies are performed since layers
deeper than the first one do not show results as clear as those
displayed in Figure 4. Thus, contents of the deeper layers
are not directly interpretable considering that they contain
transformed features of the preceding layer.

The topologies regarding both the number of nodes
for each hidden layer and the regularization parameters
between layers are modified between experiments in or-
der to study their influence on the accuracy and perfor-
mance. The scheme used for notation is defined as fol-
lows: IN−H1 − · · · −Hk −OUT with IN the number

input nodes for each sample, OUT the number of output
nodes/classes and H1 − · · · −Hk the depths of each hidden
layer.

Ten rounds are performed on each topology. Three average
parameters are considered to evaluate the performance of
each explored ML-ELM. Recognition rate, test time and
training time. Their standard deviations are also displayed.

Observing the data displayed in Table I, recognition rates
higher than 91.65 % can be achieved. Analyzing the results,
it can be stated that increasing the number of hidden neurons
in certain layers increases the recognition rate, but for the
same topology, the adjustments of the ridge parameters for
each layer play an even more important role on increasing
the number of hits.

In order to compare the Speed Limit Signs recognition
rates with already existing solutions, the GTSRB benchmark
results [28] are consulted and shown in Table II.

Analyzing the results of the GTSRB benchmark on Table
II and considering that the highest recognition rate achieved
in this work is 91.65 %, the proposed Speed Limit Sign
Recognition System would surpass the 8th classified of the
GTSRB benchmark in performing this task.

As an example of successful recognition under overlight-
ing conditions, the ML-ELM with the topology of the 4th
row in Table I is selected. The image in Figure 6 is input
to the chosen ML-ELM and the classification outputs are
shown in Table III. As it can be observed and remarked in
bold characters in Table III, the output with the highest value
of 0.98 corresponds with the 70 km/h speed limit sign class.
The values that the ML-ELM assigns to the other classes are
below -0.91, namely very far from 0.98, which means that
not only does the ML-ELM identify the Speed Limit Sign
correctly, but also it does it confidently.

Concerning testing times, the more nodes are added to the
architecture, the more time it takes to classify the training
data. As it can be observed in Table I the biggest network
takes almost twice as long as the smallest one since it has

TABLE II
GTSRB SPEED LIMIT SIGNS CLASSIFICATION RATES

Ranking Solution Speed Recognition
Rate (%)

1 CNN with 3 Spatial
Transformers [23] 99.69

... ... ...
7 LDA on HOG 2 [29] 95.37
8 LDA on HOG 1 [29] 91.44



Acc
ep

ted
 M

an
us

cri
pt

Fig. 6. A 28×28 B/W bitmap of a 70 km/h Speed Limit Sign suffering
from overlighting and bad digit integrity is used as example.

TABLE III
CLASSIFICATION OUTPUTS OF A ML-ELM FOR THE 70 KM/H SIGNAL IN

FIGURE 6.

Class: 30 50 60 70 80 100 120
Output: -1.07 -0.91 -0.97 0.98 -0.99 -0.97 -1.05

approximately twice as many neurons. Thus, the smallest
times happen for the 784-2050-3200-7000-7 topology, no
matter the ridge parameters, delaying between 2.59 and
2.55 s to classify all the samples. With these times, and
considering that the testing dataset contains 4110 samples, a
performance of 0.62± 0.17 ms per sample is achieved.

Observing the testing and training times for the biggest
network, and taking into account that with properly tuned
ridge parameters the recognition rates achieved for smaller
networks are pretty similar, it is discarded since its perfor-
mance does not justify its computational cost.

In addition, comparing Circle Hough Transform extraction
times with Classification times, it can be stated that the
time it takes to compute this transform (12±0.87 ms per
sample) is more than 17 times the computing period of the
ML-ELM classifier (0.62 ± 0.17 ms per sample), so the
minimum operation time is restricted by the Circle extraction
and coincides with it.

V. CONCLUSION AND FUTURE WORKS

In this work, an alternative method to Convolutional Neu-
ral Networks for speed limit sign recognition is presented.
ML-ELMs present simpler, more understandable topologies
than CNNs. The classification process is carried out by a
three-hidden-layer ML-ELM. This ML-ELM also performs
successfully the extraction of the features since it is a stack
of ELM-AEs.

In the line of the results shown in the preceding section, let
us note that the recognition rates are achieved by performing
no preprocessing apart from a simple contrast normalization
with the remarkable fact that the recognized speed limits
signs show different lighting conditions, motion blur, digit
misplacement, bad integrity and/or partial occlusions.

The results obtained are promising since both Signal Ex-
traction and Feature Extraction and Classification are suitable
for Real-Time Processing even using a CPU. Nevertheless,
as a future line of work, algorithms, specially Circle Hough
Transform might be ported to Graphical Processing Unit
(GPU) code in order to take advantage of the parallel,

multi-thread processing features of these devices and achieve
extremely low working times.

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review
and future perspectives,” IEEE Intelligent Transportation Systems
Magazine, vol. 6, no. 4, pp. 6–22, winter 2014.

[2] M. Mathias, R. Timofte, R. Benenson, and L. V. Gool, “Traffic sign
recognition x2014; how far are we from the solution?” in The 2013
International Joint Conference on Neural Networks (IJCNN), Aug
2013, pp. 1–8.

[3] M. S. Young and N. A. Stanton, “38 automotive automation: effects,
problems and implications for driver mental workload,” Engineering
Psychology and Cognitive Ergonomics: Volume 1: Transportation
Systems, p. 347, 2017.

[4] M. Cunningham and M. Regan, “Driver distraction and inattention in
the realm of automated driving,” IET Intelligent Transport Systems,
2017.

[5] L. Kasun, H. Zhou, G.-B. Huang, and C.-M. Vong, “Representational
learning with elms for big data,” IEEE Intelligent Systems, vol. 28,
pp. 31–34.

[6] Z. Huang, Y. Yu, J. Gu, and H. Liu, “An efficient method for traffic sign
recognition based on extreme learning machine,” IEEE Transactions
on Cybernetics, vol. 47, no. 4, pp. 920–933, April 2017.

[7] J. Kaur and A. Sharma, “Review paper on edge detection techniques in
digital image processing,” in 7th International Conference on Innova-
tive Research in Engineering Science and Management (ICIRESM-16)
at (IETE), Lodhi Road, New Delhi, India on, vol. 13, 2016, pp. 168–
171.

[8] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an
image edge detection filter using the sobel operator,” IEEE Journal of
Solid-State Circuits, vol. 23, no. 2, pp. 358–367, Apr 1988.

[9] R. Maini and H. Aggarwal, “Study and comparison of various image
edge detection techniques,” International journal of image processing
(IJIP), vol. 3, no. 1, pp. 1–11, 2009.

[10] M. Dusio, M. A. Olsena, and C. Busch, “Fingerprint sample quality
assessment via ridge line count using laplacian of gaussian edge
finding,” in Biometrics and Forensics (IWBF), 2014 International
Workshop on. IEEE, 2014, pp. 1–6.

[11] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679–698, Nov 1986.

[12] A. Mogelmose, M. M. Trivedi, and T. B. Moeslund, “Vision-based
traffic sign detection and analysis for intelligent driver assistance
systems: Perspectives and survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 4, pp. 1484–1497, Dec 2012.
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