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Background: Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction
algorithms have been reported based on cross-sectional data generated viamultiple linear regression or machine learning. This study
aimed to construct an information fusion perturbation theory and machine-learning prediction model of warfarin blood levels based
on clinical longitudinal data from cardiac surgery patients.
Methods and material: The data of 246 patients were obtained from electronic medical records. Continuous variables were
processed by calculating the distance of the raw data with the moving average (MA Δvki(sj)), and categorical variables in different
attribute groupswere processed using Euclidean distance (ED ǁΔvk(sj)ǁ). Regression and classification analyseswere performed on the
raw data, MA Δvki(sj), and ED ǁΔvk(sj)ǁ. Different machine-learning algorithms were chosen for the STATISTICA and WEKA software.
Results: The random forest (RF) algorithm was the best for predicting continuous outputs using the raw data. The correlation
coefficients of the RF algorithmwere 0.978 and 0.595 for the training and validation sets, respectively, and themean absolute errors were
0.135 and 0.362 for the training and validation sets, respectively. The proportion of ideal predictions of the RF algorithm was 59.0%.
General discriminant analysis (GDA) was the best algorithm for predicting the categorical outputs using the MA Δvki(sj) data. The GDA
algorithm’s total true positive rate (TPR) was 95.4% and 95.6% for the training and validation sets, respectively, with MA Δvki(sj) data.
Conclusions: An information fusion perturbation theory and machine-learning model for predicting warfarin blood levels was
established. A model based on the RF algorithm could be used to predict the target international normalized ratio (INR), and a model
based on the GDA algorithm could be used to predict the probability of beingwithin the target INR range under different clinical scenarios.
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Introduction

Warfarin is a commonly prescribed oral anticoagulant in the
clinic. The approved clinical indications for warfarin are throm-
boembolism prophylaxis and treatment for atrial fibrillation
(AF), prosthetic heart valve, pulmonary embolism (PE), renal
disease, hepatic disease, pregnancy, hip and total knee arthro-
plasty, malignancy, and other conditions[1]. Moreover, large
individual variability in effects and a narrow therapeutic index
make warfarin dosage challenging for clinicians[2]. Although
several novel oral anticoagulants (NOACs), such as dabigatran,
rivaroxaban, apixaban, and edoxaban, have been used in the
clinic since 2010, the approved clinical indications for NOACs do
not include heart valve replacement (HVR)[1,3]. Warfarin is cur-
rently the only anticoagulant approved by the FDA for patients
with mechanical valves[3]. Moreover, compared with NOACs,
warfarin is more cost-effective[1,4]. Therefore, most patients who
need anticoagulant treatment for HVR or in low- and middle-
income territories may choose warfarin in the clinic.

Numerous dose-prediction algorithms have been developed
based on demographic, clinical, and genetic factors[2]. Most
algorithms utilize multiple linear regression (MLR)[5]. MLR
assumes that the relationship between the dependent and inde-
pendent variables is simply linear. All MLR algorithms are
restricted to patients within a target international normalized
ratio (INR) range[6]. Therefore, these algorithms might not pro-
vide accurate guidance for dosages to achieve INRs out of the
target range. Several studies have established warfarin dosage
algorithms using pharmacometrics (PMX) approaches[7,8].
However, the PMX approach is usually time-consuming and
labor-intensive, and it may take several days to weeks to complete
a study[9].

Attempts are being made to apply artificial intelligence (AI) in
medicine, including precision medication and drug development,
to aid clinical decision-making[10]. In this context, artificial
intelligence/machine learning (AI/ML) methods are tools that
have the potential to improve the efficiency of pharmacological
approaches and reduce experimental time and resources[11]. For
instance, several researchers have successfully applied AI/ML
algorithms to estimate warfarin doses[12–20]. However, the
datasets used by these researchers were obtained mainly from
public sources, such as the International Warfarin
Pharmacogenetic Consortium (IWPC, www.pharmgkb.org/
downloads) and the Chinese Low-Intensity Anticoagulant
Therapy After Heart Valve Replacement (CLIATHVR, unpub-
lished) study, and these data concerning these populations were
cross-sectional data[21]. Practical management guidance recom-
mends long-term warfarin anticoagulant use for venous throm-
boembolism therapy for over three months[22,23]. The INRs
usually fluctuate during warfarin anticoagulant therapy; there-
fore, the reported ML models may not be suitable over the whole
period of warfarin anticoagulant therapy. This study estimated
warfarin blood levels based on clinical longitudinal follow-up
data, accounting for the medical data collected in situ. AI/ML
models could provide personalized medicine (PM) treatments for
specific patients. The dataset included all essential patient clinical
data, precise demographic characteristics, combined drugs,
indications for surgery, comorbidities, and laboratory results.
The extent of the dataset created by combining all the patients’
health information makes this study even more challenging.
IFPTML combines information fusion (IF) techniques with

perturbation theory (PT) concepts and ML algorithms[24]. PT
methods can find the solution to a problem by adding perturba-
tions to the previously known exact solution for a related
problem[25]. IFPTML modeling is helpful for the IF of big data
from different sources[26]. Combining IF, PT and ML allows it to
establish models for predicting various response targets[24].
IFPTML has been applied mainly in medicinal chemistry, pro-
teomics, organic synthesis, nanotechnology, and others[24–27].
Here, we applied IFPTML to analyze data from clinical scenarios.

We introduced the IFPTML approach to construct a predictive
model for warfarin blood levels. The IFPTML predictive models
can assist with patient follow-up, improving patient prognosis,
and designing more personalized and effective treatment proto-
cols for warfarin.

Materials and methods

Experimental methods

Patients

All patients provided written informed consent. Patients
underwent cardiac surgery for various reasons, including
valvular heart disease, rheumatic valve disease, infectious
endocarditis, and aortic dissection. The inclusion criteria for
patients were age older than or equal to 18 years and cardiac
surgery. The exclusion criteria were as follows: patients who
refused surgery had tumors, were pregnant, had severe liver or
kidney dysfunction, or had coagulation dysfunction. The
indications for warfarin included HVR and large vessel
replacement of the pericardium. The demographic character-
istics, combined drugs, indications for surgery, comorbidities,
and laboratory test results were collected from the patient’s
electronic medical records. The hospital clinical laboratory
routinely measured the INR, blood cells, and blood biochem-
istry. Most patients were followed up for approximately three
months after the first day of warfarin administration after
cardiac surgery. This study was registered on Research
Registry website (www.researchregistry.com/browse-the-regis
try#home/registrationdetails/65f3c161b71a9f00265cab41/)
with a unique identifying number (UIN) for researchreg-
istry10088. This study was reported in line with the
strengthening the reporting of cohort studies in surgery
(STROCSS, Supplemental Digital Content 1, http://links.lww.
com/JS9/C688) guidelines[28].

Data protection

All the data analysis procedures in Europe complied with the
General Data Protection Regulation (GDPR)[29–32]. The GDPR
defines pseudonymization in Article 4 (5) as the processing of
personal data in such a way that they can no longer be attributed
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• Clinical longitudinal data were recorded from cardiac
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• Warfarin blood levels were considered a continuous or
categorical output.

• An artificial intelligencemodel of warfarin blood levels was
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to a subject without the use of additional information, provided
that such additional information is kept separate and is subject to
technical and organizational measures intended to ensure that the
personal data are not attributed to an identified or identifiable
natural person. In general terms, pseudonymization aims to
protect personal data by hiding the identity of individuals (data
subjects) in a dataset, for example, by replacing one or more
personal data identifiers with so-called pseudonyms and ade-
quately protecting the link between the pseudonyms and the
initial identifiers. Consequently, all patient data were pseudony-
mized by the team from the first institution using an internal code
to identify the patients. These codes and patients’ identities were
never shared with the other researchers in this study. In addition,
the pseudonymized data were processed on a single computer and
were never copied, transferred, or accessed from/to other devices
at the second institution.

Bioanalysis

Warfarin exerts its anticoagulation effect by interfering with the
recycling of vitamin K in the liver, subsequently blocking the
synthesis of vitamin K-dependent clotting factors[33]. Therefore,
fluctuations in vitamin K concentrations in the body may affect
the anticoagulant effects of warfarin. However, the concentration
of vitamin K is not monitored as part of standard clinical care.
The present study established a method for measuring the serum
vitamin K concentration via liquid chromatography-tandem
mass spectrometry (LC-MS/MS). The validation of the mea-
surement method was consistent with the biological sample
analysis guidelines in the Chinese Pharmacopoeia.
Approximately 2 ml of blood was drawn in a coagulation tube.
The vitamin K concentrations were detected in these blood
samples. All the samples were stored at − 80°C before analysis.
Only the concentrations of vitamin K1 and one subtype of vita-
min K2 (MK4) were measured.

Genotyping

Genetic analysis of CYP2C9 (rs1057910) and VKORC1
(rs9923231) was performed in the standard clinical care for
patients taking warfarin[8]. Many additional genes have been
reported to be involved in the pharmacokinetics (PK) and phar-
macodynamics (PD) of warfarin and the coagulation process[34].
Other warfarin-related genes were genotyped by multiplex
polymerase chain reaction (PCR) and sequencing. The detailed
methods used for multiplex PCR are described in the supple-
mentary materials, Supplemental Digital Content 2, http://links.
lww.com/JS9/C689.

Computational methods

Univariate analysis

To avoid introducing additional nonphysiological variables into
the models, we first performed univariate analysis to assess the
effect of each variable on warfarin blood levels before performing
IFPTML data analysis. Each continuous variable was tested for
continuous output by simple correlation analysis with the
Pearson correlation coefficient and P value. Each categorical
variable was tested for continuous output by the Mann–Whitney
U test or Kruskal–Wallis H test with a P value. The Wilcoxon
rank sum test tested each continuous variable for categorical
output with a P value. Pearson’s chi-square test with a P value

tested each categorical variable for categorical output. A P value
less than 0.05 was considered to indicate statistical significance.
All univariate analyses were performed with R (ver.4.2.3).

IFPTML data analysis

In this study, we used the IFPTML approach to train/validate
linear and nonlinear models to predict the outcome values vij for
each ith patient conforming to the subset of conditions/labels sj.
The general form of the IFPTML model is illustrated in
Equation 1 and Figure 1. We also describe different cases based
on the general linear model. This approach includes three stages:
IF, PT, and AI/ML.
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The outcome of equation f(vij)calc is a scoring function of the
predicted propensity of the patient to have the clinically accepted
level for the output variable vij. The first input variable is the
function of reference f(vij)ref, which is equal to the prior prob-
ability that the jth property of the patient is at the desired level.
The variables vk are the continuous input variables for the patient
(age, weight, height, drug doses, and others). The variables sj=
[s1, s2, … smax] are partitions/subsets of the patients’ original
discrete/labeling variables (genre, mutations, treatments, and
others). The parameters of a1, ac,s, and ak,s are the coefficients of
the model to be fitted by AI/ML algorithms. Finally, the user fits
the hyperparameters α, q, and r. Here, we introduce three cases/
stages of IFPTML linear models depending on the values of the
hyperparameters (α, q, and r) and the thresholds of the coeffi-
cients (a1, ac,s, and ak,s); the three detailed forms of IFPTML
models are shown in the supplementary materials, Supplemental
Digital Content 2, http://links.lww.com/JS9/C689. The hyper-
parameters are: α= switching, q=moment power, and r=
distance power. The coefficients are as follows: a0=bias, a1=
variable coefficients, ac,s=distance weights, and ak,s=moment
weights.

The next step is performing the following IFPTML data pre-
processing phases to explore the diverse cases of the IFPTML
models mentioned in the previous section. We introduce how to
identify the data (data engineering) and determine the values for
the objective function f(vij)obs, reference function f(vij)ref, moving
averages <vk(sj)> , deviations Δvk(sj) (first-order PTOs), and
Euclidean distances ǁΔvk(sj)ǁ. The general workflow for calcu-
lating the model’s objective function and input parameters is
shown in Figure 2. In the previous cases, linear discriminant
analysis (LDA) can be the algorithm of choice for identifying this
kind of IFPTML linear classification.

IF preprocessing and data rearrangement

First, we performed an IF analysis of patient clinical data, which
included demographics, laboratory tests, and genetic data. The
database was rearranged as follows: each row (case) relates to the
ith patient at the jth visit/interview. The columns contained three
types of variables. The first variable class (vij) was each patient’s
output values. The second class (vki) included patient data, such
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as age, weight, and drug dose. The third-class variables sj were
categorical variables (such as sex, smoking status, and genotype).
Notably, the categorical label sk only applies to the input variable
sj. A detailed description of the horizontal IF process for input
labels and continuous input, as well as the vertical IF process and
output preprocessing, are provided in the supplementary mate-
rials, Supplemental Digital Content 2, http://links.lww.com/JS9/
C689.

The input categorical variables are unified as a vector sj= [
s1, s2 …, sn] (Table S1, Supplemental Digital Content 2, http://
links.lww.com/JS9/C689). The output continuous variables
(vij) are labeled “Within” when the observed INR is within the
range of 1.8-2.5; otherwise, the output variable is labeled
“Out.” Furthermore, Nvars= 235 input continuous variables
(vki) and Nlabels= 62 input labeling variables (sj) are included.
After the initial IF process, we performed two additional IF

and data rearrangement processes. The first was an IF hor-
izontal process, and the second was an IF vertical process
(more details are shown in the supplementary materials,
Supplemental Digital Content 2, http://links.lww.com/JS9/
C689). The IF horizontal process was applied to input labels
sj> 0 and continuous input variables vki.

IFPTML linear vs. nonlinear algorithms

LDA and MLR were proposed as the linear classification and
regression model algorithms. In these linear models, we used
the objective function value (f(vij)obj, supervised learning) as
the algorithm’s input, as well as the other input variables. The
input variables were the function of reference f(vij)ref, the ori-
ginal variables vki, and their first-order PTOs such as Δvk(sj) or
second-order PTOs such as Euclidean distance ǁΔvk(sj)ǁcj. After
defining the input variables, the LDA algorithm was used to fit

Figure 1.Workflow summary of AI/ML guided prediction of warfarin blood levels for personalized therapy based on clinical longitudinal data from cardiac surgery
patients. AI, artificial intelligence; IF, information fusion; LC-MS/MS, liquid chromatography-mass spectrometry/mass spectrometry; ML, machine learning; PCR,
polymerase chain reaction; PT, perturbation theory.
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the model by determining the coefficients a1, ak,s, and ac,s
values. Similarly, we also used these input variables to train
and validate nonlinear IFPTML models via different algo-
rithms. The specificity (Sp) (%), sensibility (Sn) (%), χ2, and P
value were used to measure the performance of the classifica-
tion model. Furthermore, the correlation coefficient, mean
absolute error (MAE), root mean square error (RMSE), rela-
tive absolute error (RAE), and root relative square error
(RRSE) were used for regression analysis to measure the per-
formance of the regression models. In addition, we utilized
different classification models, such as general discriminant
analysis (GDA), BayesNet (BN), logistic, multilayer perceptron
(MLP), support vector machine (SVM), K-nearest neighbor
(KNN), and random forest (RF) models. We also used multiple
regression models, such as linear regression (LR), MLP, SVM,
KNN, bagging, and RF models, to train/validate our model.
The methods used for calculating the output variable and
posterior probability are described in the supplementary
materials, Supplemental Digital Content 2, http://links.lww.
com/JS9/C689. The GDA model was performed using
STATISTICA (v 6.0) software. Other AI/ML algorithms uti-
lized WEKA (v 3.8.6) software.

Results

Clinical results

A total of 246 patients with 3261 INRs were enrolled in this study.
Fifty-four single-nucleotide polymorphisms (SNPs) in related genes
were detected in these patients. The median duration of follow-up
was 99 days (range: 12–188 days). Some of the clinical character-
istics of the enrolled patients are shown in Table 1; more detailed
information is shown in Tables S1, Supplemental Digital Content 2,
http://links.lww.com/JS9/C689 and S2, Supplemental Digital
Content 2, http://links.lww.com/JS9/C689. The SNP frequency of
the patients’ additional genes is shown in Table S3, Supplemental
Digital Content 2, http://links.lww.com/JS9/C689.

Blood counts and blood biochemistry indices were recorded
during the follow-up period. The hospital clinical laboratory
measured blood cell counts and biochemistry as needed.
Generally, blood and biochemical data were collected more fre-
quently during hospitalization than before, and blood analysis
was less frequent in the outpatient department. In most cases,
only the INR was monitored when patients were followed up in
outpatient clinics. The blood count and biochemical indicator
data are shown in Tables S4, Supplemental Digital Content 2,

Figure 2. General workflow for pre- and post-processing of variables in IFPTML model development. IFPTML: information fusion perturbation theory machine
learning; INR: international normalized ratio; LDA, linear discriminant analysis; ML, machine learning; SVM, support vector machine.
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http://links.lww.com/JS9/C689 and S5, Supplemental Digital
Content 2, http://links.lww.com/JS9/C689, respectively.

In clinical practice, patients usually have multiple diseases, and
other drugs are needed to treat comorbidities. This study focused
mainly on warfarin; only the daily dosage of the combined drugs
was recorded. The characteristics of the patients taking combined
medication are shown in Table S6, Supplemental Digital Content
2, http://links.lww.com/JS9/C689.

Computational results

Univariate analysis

Using univariate analysis, all the continuous and categorical input
variables were first assessed to predict warfarin blood levels. The
results of each variable for continuous output variables are shown
in Table S7, Supplemental Digital Content 2, http://links.lww.com/
JS9/C689 (continuous input variables) and S8, Supplemental
Digital Content 2, http://links.lww.com/JS9/C689 (categorical
input variables). The results of each variable for the categorical
output variables are shown in Table S9, Supplemental Digital
Content 2, http://links.lww.com/JS9/C689 (continuous input vari-
ables) and S10, Supplemental Digital Content 2, http://links.lww.
com/JS9/C689 (categorical input variables). The results of uni-
variate analysis were not the only strategy for model establishment.
For instance, the variables CYP2C9 (rs1057910) and CYP4F2
(rs2108622) had no statistical significance after univariate analysis
for the categorical output variables. However, we also introduced
these two variables during the subsequent analysis because many
studies have demonstrated that these two variables have physiolo-
gical significance for warfarin.

Regression model

All regression models were generated using WEKA software.
The selected classifiers for the different algorithms in WEKA
software are shown in Table S11, Supplemental Digital
Content 2, http://links.lww.com/JS9/C689. The input variables
for the first order of the IFPTML model, called MA Δvk(sj),
and the second order of the IFPTML model, called Euclidean
distances ǁΔvk(sj)ǁ, are shown in Tables S12, Supplemental
Digital Content 2, http://links.lww.com/JS9/C689 and S13,
Supplemental Digital Content 2, http://links.lww.com/JS9/
C689. We used raw warfarin dosage data as input variables in
the IFPTML model. Table 2 shows the parameters that can
quantify the performance of the IFPTML regression model.
The goodness-of-fit results for the six training and validation
raw data algorithms are shown in the scatter plots presented in
Figures 3 and S1, Supplemental Digital Content 2, http://links.
lww.com/JS9/C689, respectively. The predicted biases (PBs)
for the six algorithms for the raw data in the training and

Table 1
Sets of categorical variables (sk) and continuous (vki) input
variables, characteristics of the patients in the study, and their
partitions (sj and ck).

Sets Subset vki/sk Variable Value

sj sI= DemoCat s1 Male 157 (63.8%)
sI= DemoCat s1 Female 89 (36.2%)
sIII= PKGeneCat s9 CYP2C9

(rs1057910) *1/*1
227 (92.3%)

sIII= PKGeneCat s9 CYP2C9
(rs1057910) *1/*3

19 (7.7%)

sIV= PDGeneCat s24 VKORC1
(rs9923231) AA

209 (85.5%)

sIV= PDGeneCat s24 VKORC1
(rs9923231) AG

34 (13.8%)

sIV= PDGeneCat s24 VKORC1
(rs9923231) GG

3 (1.2%)

sII= TypeCat s7 DVR 25 (10.2%)
sII= TypeCat s7 AVR 36 (14.6%)
sII= TypeCat s7 MVR 97 (39.4%)
sII= TypeCat s7 TVR 3 (1.2%)
sII= TypeCat s8 Mechanical valve 86 (35.0%)
sII= TypeCat s8 Bioprosthetic valve 123 (50.0%)

ck cIII= Demography v127 Age (years) 58 ± 13
cIII= Demography v128 Height (cm) 164.7 ± 8.8
cIII= Demography v129 Weight (kg) 63.9 ± 11.8

cI=Warfarin daily dosage
regime

v1-v63 Doses (mg/d) 2.12± 0.96

cII= Days of warfarin
administration prior to INR

measurement

v64-v126 Treatment times
(day)

6.7± 7.8

AVR, aortic valve replacement; DVR, aortic and mitral valve replacement; INR, international normalized
ratio; MVR, mitral valve replacement; TVR, tricuspid valve replacement.

Table 2
Regression parameters for different data levels using WEKA.

Corr. Coeffi. MAE RMSE RAE (%) RRSE (%)

AI/ML Set A B C A B C A B C A B C A B C

LR t 0.588 0.605 0.562 0.377 0.591 0.62 0.507 0.796 0.826 78.6 77.3 81.1 80.9 79.6 82.7
v 0.527 0.448 0.016 0.397 0.645 0.843 0.537 0.933 3.59 82.6 84.2 110.1 85.3 93 358

MLP t 0.751 0.652 0.294 0.359 0.611 0.779 0.482 0.838 1.066 74.9 79.8 101.8 77 83.9 106.7
v 0.475 0.431 − 0.05 0.483 0.701 1.621 0.687 1.014 20.823 100.5 91.5 211.7 109.2 101.2 2076.8

SVM t 0.564 0.583 0.516 0.353 0.573 0.596 0.525 0.824 0.866 73.6 74.9 78 83.7 82.5 86.7
v 0.524 0.43 0.143 0.395 0.628 0.701 0.543 0.932 1.477 82.2 82 91.5 86.3 92.9 147.3

KNN t 1 0.991 0.9997 0 0.035 0.002 0 0.134 0.025 0 4.5 0.2 0 13.4 2.5
v 0.305 0.397 0.363 0.482 0.726 0.761 0.706 1.057 1.137 100.3 94.8 99.4 112.3 105.4 113.4

Bagging t 0.753 0.774 0.765 0.317 0.498 0.507 0.443 0.68 0.702 66.1 65 66.3 70.7 68 70.3
v 0.562 0.573 0.514 0.371 0.608 0.623 0.524 0.828 0.864 77.2 79.4 81.4 83.3 82.6 86.1

RF t 0.978 0.969 0.973 0.135 0.231 0.222 0.19 0.32 0.313 28.1 30.1 29 30.4 32 31.4
v 0.595 0.629 0.553 0.362 0.578 0.601 0.51 0.787 0.837 75.3 75.4 78.5 81.1 78.5 83.5

A, raw data; AI/ML, artificial intelligence/machine learning; B, MA Δvki(sj) data; C, ED ǁΔvk(sj)ǁ data; Corr. Coeffi., correlation coefficient; KNN, K-nearest neighbor; LR, linear regression; MAE, mean absolute
error; MLP, multilayer perceptron; RAE, relative absolute error; RF, random forest; RMSE, root mean squared error; RRSE, root relative squared error; SVM, support vector machine; t, training; v, validation.
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validation sets are shown in Table 3 and Figure S2,
Supplemental Digital Content 2, http://links.lww.com/JS9/
C689 and S3, Supplemental Digital Content 2, http://links.
lww.com/JS9/C689. The optimal algorithm was determined
based on a significant correlation coefficient and the minimum
parameters of MAE, RMSE, RAE, and RRSE. According to
these criteria, the results showed that the RF algorithm was the
optimal algorithm (Table 2), and the proportion of ideal pre-
dictions of the validation data was 59.0% (Table 3) for fitting
with the raw data. However, the prediction performance did
not significantly improve when the MA Δvki(sj) and ED data
were processed (Table 2). Although the correlation coefficient
of the RF algorithm in the validation set of MA Δvki(sj) data
was slightly greater than that of the raw data (62.9% vs.
59.5%), the MAE, RMSE, and RAE of the RF algorithm in the
validation set of the raw data were slightly smaller than those
of the MA Δvki(sj) data.

The estimated parameters for the MA Δvki(sj) data are shown in
Table 2. The goodness-of-fit results for the six algorithms for the
training and validation MA Δvki(sj) data are shown in the scatter
plots in Figure 4 and S4, Supplemental Digital Content 2, http://
links.lww.com/JS9/C689, respectively. The PBs for the six MA
Δvki(sj) data algorithms in the training and validation sets are shown
in Table 3 and Figures S5, Supplemental Digital Content 2, http://
links.lww.com/JS9/C689 and S6, Supplemental Digital Content 2,
http://links.lww.com/JS9/C689. All these results confirm that the RF
algorithm performed the best in fitting the MA Δvki(sj) data.

The estimated parameters for the ǁΔvk(sj)ǁ data are shown in
Table 2. The goodness-of-fit results for the six algorithms used for
training and validation ǁΔvk(sj)ǁ data are shown in the scatter plots
in Figures 5 and S7, Supplemental Digital Content 2, http://links.
lww.com/JS9/C689, respectively. The PBs for the six algorithms
on the ǁΔvk(sj)ǁ dataset in the training and validation sets are

shown in Table 3 and Figures S8, Supplemental Digital Content 2,
http://links.lww.com/JS9/C689 and S9, Supplemental Digital
Content 2, http://links.lww.com/JS9/C689, respectively. All these
results confirm that the RF algorithm had the best performance for
fitting the ED ǁΔvk(sj)ǁ data.

Classification model

STATISTICA software was applied to train/validate the
IFPTML-LDA classification linear model. The classification was
performed for the output as the categorical variable, including

Figure 3. Scatter plot of the observed values and model-predicted values in the training datasets with the raw data. A: scatter plot of the observed values and
model-predicted values for LR algorithm; B: scatter plot of the observed values and model-predicted values for MLP algorithm; C: scatter plot of the observed
values and model-predicted values for SVM algorithm; D: scatter plot of the observed values and model-predicted values for KNN algorithm; E: scatter plot of the
observed values and model-predicted values for Bagging algorithm; F: scatter plot of the observed values and model-predicted values for RF algorithm. LR, linear
regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest.

Table 3
Predicted bias results of the regression for different data levels in
different predicted groups using WEKA software.

PB< − 20% − 20%≤ PB≤ 20% PB> 20%

AI/ML Set A B C A B C A B C

LR t 15.1 15.2 15.5 57.5 57.8 56.0 27.4 27.0 28.5
v 15.6 14.3 17.3 54.1 56.4 51.4 30.3 29.4 31.3

MLP t 31.6 30.3 37.8 60.1 59.3 43.2 8.3 10.4 19.0
v 35.3 30.7 38.5 48.4 56.4 41.5 16.3 12.9 20.0

SVM t 17.8 18.5 18.8 62.8 60.9 59.6 19.4 20.6 21.6
v 19.2 18.8 21.0 57.9 56.9 56.8 23.0 24.3 22.2

KNN t 0.0 0.3 0.0 100.0 98.8 100.0 0.0 0.9 0.0
v 17.2 22.0 19.9 55.0 54.8 56.4 27.8 23.2 23.7

Bagging t 10.8 10.8 10.8 66.6 64.8 65.4 22.7 24.3 23.8
v 13.8 13.6 13.9 60.0 56.8 56.4 26.3 29.6 29.7

RF t 0.5 0.7 0.4 96.8 95.1 95.2 2.7 4.1 4.4
v 11.8 13.8 12.0 59.0 57.6 58.4 29.2 28.6 29.6

A, raw data; AI/ML, artificial intelligence/machine learning; B, MA Δvki(sj) data; C, ED ǁΔvk(sj)ǁ data;
KNN, K-nearest neighbor; LR, linear regression; MLP, multilayer perceptron; PB, predicted bias; RF,
random forest; SVM, support vector machine; t, training; v, validation.
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outputs within and out of the target range according to the raw
INR value. Only the continuous variables were included as the
input attributes. However, the categorical variables used as the
input attributes were excluded from the raw data during the
GDA.We defined the function of reference and the PTOs of zero,
first, or second order according to the case/order of the model as
the input. Initially, we scanned all the hyperparameters α, q, and
r. For the zero-order model (α= 0, q= 1, and r=1), we used the
raw original variables vki. For the first-order model (α=1, q=1,
and r=1), we used the PTOs of first-order Δvki(sj), and for the
second-order model (α=1, q= 2, and r=½), we used the second-
order PTOs ǁΔvk(sj)ǁ.

In the first IFPTML-LDAmodel, we used the original/raw data
as the input variable. Additionally, for variable selection, we
applied forward stepwise (FSW) selection complemented by an
expert-guided selection (EGS) strategy to select the most essential
features. The formula of the best-identified model is described as
follows (Equation 2):

f v 1.6772 0.1204 Dose3 0.0112

POD 0.1188 Cefoperazone

0.9305 Ceftriaxone 0.1086

Ticarcillin 12.84 Tigecycline

9.82 Spironolactone

0.0644 Neutrophil 2.264 Plateletcrit

0.019 Human_albumin Eq. 2

ij calc( ) = − + × +

× + ×

+ × +
× + ×

+ ×

− × + ×

− × ( )

PN 2446 222.839 0.05train
2= χ = <

where Dose 3 represents the day 3 warfarin dose before the
INR, and POD represents postoperative days.

The total prediction accuracies of GDA for the raw data were
61.2% and 64.0% for the training and validation datasets,
respectively. The results of the other algorithms for the raw data
using WEKA software are shown in Table 4. The RF algorithm
had the highest number of correctly classified instances, with
68.6% in the validation dataset.

The total prediction accuracies of GDA for the MA Δvki(sj)
dataset were 95.4% and 95.6% for the training and validation
datasets, respectively. The second IFPTML-LDA algorithm
used the first order of PTO (Δvki(sj)) as input variables to train/
validate the model. The best IFPTML model is described below
(Equation 3). The results of other algorithms for MA Δvki(sj)
data using WEKA software are shown in Table 4.

Eq

f v 17.04 34.04 f v 0.6244

Dose01 TypeCat 1.137 CEFUS ROVTypeCat

0.5472 Dose01 PKGeneCat 6.191

Bifidobacterium PKGeneCat

0.162 HALB VKPKGeneCat

0.8073 CEFUS ROVNRGeneCat 1.585

HDCL NRGeneCat 0.3398

Dose03 ClotGeneCat 0.2648

PDW ClotGeneCat . 3

ij calc ij ref( ) = − × ( ) +

× Δ ( ) − × Δ ( )
− × Δ ( ) −

× Δ ( )

− × Δ ( )

+ × Δ ( ) −

× Δ ( ) +

× Δ ( ) −

× Δ ( ) ( )

PN 2446 2919.95 0.05train
2= χ = <

where Dose01 represents the day 1 warfarin dose prior to
the INR; CEFUS represents cefuroxime sodium; HALB

Figure 4. Scatter plot of the observed values and model-predicted values in the training datasets with moving average Δvki(sj) data. A: scatter plot of the observed
values and model-predicted values for LR algorithm; B: scatter plot of the observed values and model-predicted values for MLP algorithm; C: scatter plot of the
observed values and model-predicted values for SVM algorithm; D: scatter plot of the observed values and model-predicted values for KNN algorithm; E: scatter
plot of the observed values and model-predicted values for Bagging algorithm; F: scatter plot of the observed values and model-predicted values for RF algorithm.
LR, linear regression; MLP, multilayer perceptron; SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest.
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represents human albumin; HDCL represents high-density
cholesterol; Dose03 represents the day 3 warfarin dose prior
to the INR; and PDW represents the platelet distribution
width.

The third IFPTML-LDA model is used as the input variable,
and the second is PTO ǁΔvk(sj)ǁ. The total predicted accuracy of
GDA for ǁΔvk(sj)ǁ data was 94.6% and 95.7% for the training
and validation datasets, respectively. The best IFPTML-GDA

Table 4
Classification analysis results of the prediction performance for different data levels using WEKA.

TPR FPR Precision Recall F-Measure ROC

AI/ML Set Class A B C A B C A B C A B C A B C A B C

BN t Out 0.718 0.766 0.908 0.483 0.198 0.091 0.735 0.878 0.949 0.718 0.766 0.908 0.726 0.818 0.928 0.694 0.832 0.954
Within 0.517 0.802 0.909 0.282 0.234 0.092 0.497 0.648 0.841 0.517 0.802 0.909 0.507 0.717 0.874 0.694 0.832 0.954

v Out 0.743 0.779 0.923 0.519 0.196 0.126 0.727 0.881 0.931 0.743 0.779 0.923 0.735 0.827 0.927 0.688 0.831 0.937
Within 0.481 0.804 0.874 0.257 0.221 0.077 0.502 0.662 0.859 0.481 0.804 0.874 0.491 0.726 0.866 0.688 0.831 0.937

Logistic t Out 0.843 0.981 0.984 0.543 0.036 0.023 0.743 0.981 0.987 0.843 0.981 0.984 0.79 0.981 0.986 0.773 0.994 0.996
Within 0.457 0.964 0.977 0.157 0.019 0.016 0.611 0.964 0.971 0.457 0.964 0.977 0.523 0.964 0.974 0.773 0.994 0.996

v Out 0.794 0.966 0.962 0.586 0.06 0.084 0.716 0.968 0.955 0.794 0.966 0.962 0.753 0.967 0.959 0.686 0.981 0.98
Within 0.414 0.94 0.916 0.206 0.034 0.038 0.52 0.937 0.929 0.414 0.94 0.916 0.461 0.939 0.922 0.686 0.981 0.98

MLP t Out 0.75 0.986 0.999 0.461 0.096 0.974 0.752 0.95 0.656 0.75 0.986 0.999 0.751 0.968 0.792 0.675 0.981 0.231
Within 0.539 0.904 0.026 0.25 0.014 0.001 0.537 0.971 0.917 0.539 0.904 0.026 0.538 0.936 0.05 0.675 0.981 0.231

v Out 0.726 0.981 0.985 0.537 0.074 0.968 0.716 0.961 0.654 0.726 0.981 0.985 0.721 0.971 0.786 0.627 0.982 0.249
Within 0.463 0.926 0.032 0.274 0.019 0.015 0.477 0.964 0.529 0.463 0.926 0.032 0.47 0.945 0.06 0.627 0.982 0.249

SVM t Out 0.882 0.975 0.976 0.599 0.076 0.056 0.733 0.96 0.97 0.882 0.975 0.976 0.8 0.968 0.973 0.642 0.95 0.96
Within 0.401 0.924 0.944 0.118 0.025 0.024 0.646 0.953 0.955 0.401 0.924 0.944 0.495 0.938 0.949 0.642 0.95 0.96

v Out 0.84 0.968 0.97 0.621 0.053 0.06 0.715 0.972 0.968 0.84 0.968 0.97 0.773 0.97 0.969 0.609 0.958 0.955
Within 0.379 0.947 0.94 0.16 0.032 0.03 0.56 0.941 0.944 0.379 0.947 0.94 0.452 0.944 0.942 0.609 0.958 0.955

KNN t Out 1 0.999 1 0 0.002 0 1 0.999 1 1 0.999 1 1 0.999 1 1 1 1
Within 1 0.998 1 0 0.001 0 1 0.999 1 1 0.998 1 1 0.998 1 1 1 1

v Out 0.647 0.826 0.828 0.477 0.407 0.382 0.716 0.791 0.801 0.647 0.826 0.828 0.68 0.808 0.814 0.585 0.707 0.723
Within 0.523 0.593 0.618 0.353 0.174 0.172 0.443 0.648 0.659 0.523 0.593 0.618 0.48 0.619 0.638 0.585 0.707 0.723

RF t Out 1 0.998 1 0 0 0 1 1 1 1 0.998 1 1 0.999 1 1 1 1
Within 1 1 1 0 0.002 0 1 0.997 1 1 1 1 1 0.998 1 1 1 1

v Out 0.84 0.962 0.943 0.6 0.263 0.302 0.722 0.872 0.853 0.84 0.962 0.943 0.777 0.915 0.896 0.698 0.965 0.936
Within 0.4 0.737 0.698 0.16 0.038 0.057 0.573 0.913 0.869 0.4 0.737 0.698 0.471 0.816 0.774 0.698 0.965 0.936

A, raw data; AI/ML, artificial intelligence/machine learning; B, MA Δvki(sj) data; BN, BayesNet; C, ED ǁΔvk(sj)ǁ data; FPR, false positive rate; KNN, K-nearest neighbor; MLP, multilayer perceptron; RF, random
forest; ROC, receiver operating characteristic; SVM, support vector machine; t, training; TPR, true positive rate; v, validation.

Figure 5. Scatter plot of the observed values and model-predicted values in the training datasets with Euclidean distance ǁΔvk(sj)ǁ data. A: scatter plot of the
observed values and model-predicted values for LR algorithm; B: scatter plot of the observed values and model-predicted values for MLP algorithm; C: scatter plot
of the observed values and model-predicted values for SVM algorithm; D: scatter plot of the observed values and model-predicted values for KNN algorithm; E:
scatter plot of the observed values and model-predicted values for Bagging algorithm; F: scatter plot of the observed values and model-predicted values for RF
algorithm. LR: linear regression; MLP: multilayer perceptron; SVM: support vector machine; KNN: K-nearest neighbor; RF: random forest.
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model is described below (Equation 4). The results of other
algorithms for ǁΔvk(sj)ǁ data using WEKA software are shown in
Table 4. Of all the algorithms, the IFPTML-LDA algorithm using
the first-order PTO (Δvki(sj)) data had the highest number of
correctly classified instances, with 96.0% in the validation
dataset for the ǁΔvk(sj)ǁ data.

f v 17.81 34.83 f v

0.115 V DoseTypeCat 0.1031

V MWDiureticTypeCat 0.1314

V MWDiureticPKGeneCat 10.93

V LOGDAspirinPKGeneCat

40.92 V LOGDDiclofenacPKGeneCat

0.0104 V Blood_cell_countPKGeneCat

0.069 V DEMOPDGeneCat

0.0302 V DEMOVKPKGeneCat

0.6514 V ProbioticsVKPKGeneCat

k

k

k

k

k

k

k

k

k

ij calc ij ref( ) = − × ( )

+ × ǁ∆ ( )ǁ −

× ǁ∆ ( )ǁ −

× ǁ∆ ( )ǁ +

× ǁ∆ ( )ǁ

+ × ǁ∆ ( )ǁ

− × ǁ∆ ( )ǁ

− × ǁ∆ ( )ǁ

+ × ǁ∆ ( )ǁ

− × ǁ∆ ( )ǁ

ðEq:4Þ

PN 2446 2952.951 0.05train
2= χ = <

Program for warfarin blood level prediction

Overall, discriminant analysis was the algorithm with the best
performance to predict the categorical output using the MA
Δvki(sj) data for classification analysis (Equation 3). A program
was designed to predict warfarin blood levels. This program used
a file with all the test results to perform the prediction calcula-
tions. Once the necessary changes were made after running the
program, a new file with the predictions was automatically cre-
ated in the same directory from which the information from the
input file was obtained. The type of mutation in each gene and the
status of each categorical variable (such as sex or smoking status)
in Excel were converted into a string of characters readable by the
script. The specific mutations for each selected gene and catego-
rical variables within each group were selected via drop-down
lists. All the necessary data from Equation 3 were entered into a
template Excel file to make the prediction. This program is stored
in the GitHub repository (https://github.com/hbediaga/warfarin.
PTML).

Discussion

This study aimed to construct a precise model for predicting
warfarin blood level based on clinical longitudinal data using the
IFPTML model. The IFPTML model has been widely used to
identify the activity of new chemical compounds in drug
discovery[24]. Although numerous warfarin prediction algo-
rithms have been developed using MLR or PMX, few studies
have reported using the IFPTML model in clinical data analysis.
Many factors are related to warfarin dosage requirements,
including combined chemical drugs, herbal medicines, dietary
supplements[35], and genetic polymorphisms[34]. Previous studies
on the precision of warfarin dosages have focused mainly on
predicting the optimal initial or stable dose via ML models[36].
However, the results of these reports may not be helpful in the
long-term management of warfarin anticoagulant therapy

because clinicians need more guidance on how to adjust the
warfarin dosage during the duration of anticoagulant therapy.
We conducted a study to explore the effects of numerous factors
on warfarin response using the IFPTML algorithm based on
longitudinal follow-up data. The results showed that RF was the
best algorithm for predicting the continuous output from the raw
data (Table 2). The IFPTML-GDA model was the best algorithm
for predicting categorical outputs from the MA Δvki(sj) data for
classification analysis.

The present study simultaneously conducted regression and
classification analyses for clinical longitudinal data. Because
several scenarios exist in clinical practice, such as adjusting the
warfarin dosage according to the target INR when clinicians
know the patient’s INR, the regression model could be helpful.
When clinicians are concerned about whether the INR could be
archived within the target range at a specific dose, the results of
the classification model might be a helpful tool. For instance, a
clinical physician wants to know the initial warfarin dose for a
new patient and measures the INR after 3 days of warfarin
administration. The user could input the variables included in the
model and set the target INR range as 1.8–2.5, then test different
dosages to determine which dose could achieve the target INR
range using the regression model and the derived dosage as the
initial dose. Then, the user could input the model variables and
the daily dose of warfarin from the patient’s last INR measure-
ment to this INR measurement period and test different dosages
to determine which dose could achieve the target INR range using
the regressionmodel. Themodel could derive the subsequent dose
of warfarin. Generally, patients seen in the outpatient department
are those who have been taking warfarin for a long time.
Clinicians may be concerned about whether the target INR could
be achieved at a specific dose for outpatient patients, for which
the classification model might be a helpful tool. If the input
variables of the model for patients change, the user inputs the
changed variables into the model to derive the suitable dosage for
the subsequent dose. The current study provides a flexible tool for
determining the exact warfarin dosage.

ML aims to describe the mathematical function between
observed output variables and the corresponding input variables
using additional free parameters and complex interactions. This
complexity makes the model difficult to interpret physiologically;
this model is called the “black box.” Most ML algorithms are
designed to handle high-dimensional data[37]. Generally, it is
necessary to perform data preprocessing before analysis using
ML algorithms because the raw data are usually unable to be used
directly and often have complex nonlinear relationships[38].
Therefore, theMAΔvki(sj) and ǁΔvk(sj)ǁ distances were calculated
for different feature groups (categorical variables). The standard
algorithms utilized in the present study included SVM, KNN, RF,
and MLP. The ML algorithm was trained using a data-driven
approach that does not consider biological/pharmacological
mechanisms[37]. Therefore, discussing the impact of factors on
model parameters, such as the PMX analysis, is unnecessary.
However, this did not mean the data could be collected at will
during the research process, and irrelevant data might decrease
the model fitting performance. Researchers should conduct a
detailed literature review and clarify which factors impact the
output variables before conducting project research. During
execution, the factors that impact the output variables should be
collected as often as possible. To determine the critical factors
(input attributes), we performed a univariate analysis of
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automatically selected attributes using WEKA software and
expert experience before performing the data analysis via ML
algorithms.

The data were split into a training set and a validation set. The
training set was used to fit the model to different algorithms, and
the validation set was used to evaluate the model in the different
algorithms[38]. The optimal algorithmwas determined based on a
significant correlation coefficient and theMAE, RMSE, RAE, and
RRSE minimum parameters. According to these criteria, the RF
model was the optimal algorithm, with a correlation coefficient of
0.595 and an MAE of 0.362(Table 2); the proportion of ideal
predictions was 59.0% for fitting with the raw data in the vali-
dation set (Table 3). However, the prediction performance did
not significantly improve when the MA Δvki(sj) and ED ǁΔvk(sj)ǁ
data were used (Table 2). Although the correlation coefficient of
the RF algorithm in the validation set of MA Δvki(sj) data was
slightly more significant than that of the raw data (62.9% vs.
59.5%), the MAE, RMSE, and RAE of the RF algorithm in the
validation set of the raw data were slightly smaller than those of
the MA Δvki(sj) data. Compared with published studies that
constructed models with ML algorithms, the model’s predictive
performance in this study had some inconsistencies. The corre-
lation coefficient of this model in the validation set was lower
than those of the ANN model of Saleh et al.[39]. (0.656), TWIST
system (0.693)[40], the EEM model of Tao et al.[20]. (0.664), the
kernel-based SVRmodel of Maghsoudi et al.[41]. (0.825), and the
LightGBM algorithm model of Liu et al.[42]. (0.872) but higher
than that of the ANFIS model of Tao et al.[18]. (0.313). The
percentage of ideal predictions in this study was close to those of
the ANFIS model of Tao et al.[18]. (63.7% for internal validation
and 60.6% for external validation), the hybrid model with a
genetic algorithm and back propagation neural network of Li
et al.[19]. (58.7% for internal validation and 62.9% for external
validation), and the EEM model of Tao et al.[20]. (52.7%).
However, the percentage of ideal predictions in this study was
more significant than those of the models reported by Saleh
et al.[39]. (47.8%), Truda et al.[14]. (46.6%), Asiimwe et al.[43].
(50%), and Jahmunah et al.[44]. (38.6%) and lower than those of
the LightGBM algorithm model of Liu et al.[42]. (68%), the
ANFIS model of Gu et al.[15]. (73.5%), the GBM model of
Nguyen et al.[45]. (73.8%) and the SSNN model of Ma et al.[46].
(75.6%). Most reported ML algorithms for predicting warfarin
dosage are based on cross-sectional data. The algorithm in the
current study was used to predict blood levels after warfarin
administration. It may be why the current study’s results are
inconsistent with those of previous reports. It was not necessary
to compare the difference in the MAE between the current study
and previous reports because the current study used it to evaluate
the predictive blood levels. In contrast, previous studies used it to
evaluate the predictive dosage.

Huang et al.[47]. and Lee et al.[48]. constructed INR prediction
models using ML algorithms. The correlation coefficients and
proportion of ideal INR predictions for the validation set were
more significant in the present study than in the study by Huang
et al.[47]. (with a 0.473 correlation coefficient and a 47.1% INR
ideal prediction). The current study had a similar MAE for the
INR (0.362) for the validation set as that of Huang et al.[47].
(0.376). Lee et al.[48]. did not report the proportion of the pre-
dicted INR within 20% of the observed INR; however, they
reported the proportion of the predicted INR within distances of
0.2, 0.25, and 0.3, or distances of greater than 0.5 and greater

than 1.0 from the observed INR. We chose to compare the pro-
portion of predicted INR values within 0.3 of the observed INR
because the INRMAEwas 0.362. Therefore, in the current study,
the percentage of ideal predictions was similar to that of the Lee
et al.[48]. model (53.4%).

We found that several algorithms had similar prediction per-
formances during the classification analysis. GDA merely ana-
lyzes linear variables. Therefore, categorical variables were
excluded from the classification analysis using raw data. It led to
the loss of a substantial amount of information, such as infor-
mation about the effect of genes. Hence, the prediction perfor-
mance of the classification analysis was relatively poor when
using the raw data (Table 4). The MA of continuous variables
was calculated for different attribute groups to consider the effect
of categorical variables. The distance between each continuous
variable and the MA and Euclidean distances ǁΔvk(sj)ǁ of similar
attributes of continuous variables were further calculated. The
prediction performance was significantly improved for classifi-
cation analysis usingMAΔvki(sj) and Euclidean distance ǁΔvk(sj)ǁ
data (Table 4). The TPRs of the logistic, MLP, and SVM algo-
rithms exceeded 90% for classification analysis in different
groups using MA Δvki(sj) data, and the TPRs of the logistic and
SVM algorithms were also more significant than 90% using
Euclidean distance ǁΔvk(sj)ǁ data. These algorithms were gener-
ated usingWEKA software, and it could not be determined which
variables affected the warfarin response (black box). All the input
variables could be considered to have effects on warfarin efficacy.

GDA was selected as the classification algorithm using
STATISTICA software. The GDA algorithm provides an explicit
equation that describes the relationship between the output and
input variables. The total TPRs of the GDA algorithm were
95.4% and 95.6% for the training and validation sets, respec-
tively, with MA Δvki(sj) data, and 94.6% and 95.7% for the
training and validation sets, with Euclidean distance ǁΔvk(sj)ǁ
data. Therefore, MA Δvki(sj)-level data might be sufficient for
future GDA algorithm-based clinical applications. The variables
included in the model using MA Δvki(sj) data for classification
analysis are shown in Equation 3. Therefore, it was easy to
understand the relationship between the output and input vari-
ables using the GDA algorithm for classification analysis. No
studies have considered the output (INR or warfarin dosage) of
the algorithm as a categorical variable, so we did not compare the
results of the classification analysis for the current study with
those of other studies.

Overall, compared with other reported AI/ML algorithms for
warfarin, the current research features are as follows: patient data
were longitudinal data, and the INR was selected as the output
variable. Most of the reported ML algorithms for determining
warfarin dosage use cross-sectional data. The data were down-
loaded from the IWPC (www.pharmgkb.org/downloads)[12,14,39,
44] or CLIATHVR (unpublished)[18,19,46,49,50] datasets and were
used to predict the maintenance dose[12,16,18–20,39,40,42–44,46,48–51].
The dataset used in the present study was more extensive than that
used in previously reported ML algorithms. It might be because
there are more interpretations of warfarin variability. The limita-
tions of the current study include the following: the sample size was
relatively small, unrelated (or nonphysiological) variables were
included in the IFPTML model, external data did not evaluate the
model, and a web server based on the foundation of the current
study to facilitate access for clinical applications was not developed.
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An evaluation of the model and a more user-friendly and accessible
platform should be established in the future.

Conclusions

In conclusion, an IFPTML model for predicting warfarin blood
levels was developed based on longitudinal clinical data. The
IFPTML model is a valuable tool that can be used to determine
personalized warfarin dosages based on the INR range. This
model also considers patient characteristics that affect the war-
farin dosage response. The best IFPTMLmodel was generated via
the RF algorithm, anML algorithm that can be used to predict the
target INR. GDA can be used to predict the probability of being
within the target INR range under different clinical scenarios.
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