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Abstract

The main objective of this thesis is to develop a feedback con-
troller capable of reducing the peak detuning of SRF cavities be-
ing operated with high QL. Detuning occurs when factors like
mechanical vibrations and radiation pressure cause the cavity’s
resonance frequency to deviate from the desired operating fre-
quency, leading to a significant degradation of the efficiency of
the accelerator and, in extreme cases, may even cause operational
failures. This dissertation will deal in particular with microphonic
detuning, which refers to any external mechanical perturbations
affecting the accelerating structure. The resulting controller will
be tested on a 9-cell TESLA cavity in the Horizontal-Bi-Cavity-
Teststand (HoBiCaT) of Helmholtz-Zentrum Berlin (HZB).

Chapter 2 begins by setting out the basic theoretical foundations
for an in-depth understanding of the causes and effects of micro-
phonic detuning. To do so, it is necessary to review the electro-
magnetic behavior of resonant cavities, and the effect that coupled
mechanical disturbances have on it. Likewise, the main sources
of microphonics are also discussed and an extensive study of the
state of the art regarding the control of such disturbances is car-
ried out. From these researches it is determined that the Active
Disturbance Rejection Algorithm (ADRC) is a suitable alternative
as a feedback controller for low frequency disturbances.

In chapter 3, the ADRC controller is studied in detail, analyzing
itsmathematical description and testing it in simulation on several
systems usingMatlab/Simulink. Based on the results obtained, the
shortcomings of the ADRC for controlling delayed systems are ev-
ident, since it tends to destabilize with relatively low delays. Thus,
a study of the different techniques used to date to improve the per-
formance of the ADRC against systems with delay was done and
it was concluded that none of them are valid for the case in ques-
tion, since they sacrifice performance, and specially disturbance
rejection capabilities, in favor of stability.

Chapter 4 lays the foundations of a novel proposal for the im-
provement of ADRC in systems with time delay, the Modified Lin-
ear Active Disturbance Rejection Algorithm (MLADRC). First, the
mathematical development by which the MLADRC is defined is
presented, emphasizing the differences and advantages with re-
spect to the original ADRC. Then, a stability study of the algo-



8

rithm is performed and the effect that the different parameters
have on the controller performance is tested. Lastly, the aforemen-
tioned approach is implemented in a real mechanical system with
relevant resonant modes to analyse the feasibility of the design
process and the performance of the resulting controller, obtaining
promising results.

In chapter 5, the implementation and testing of the MLADRC al-
gorithm in a 9-cell TESLA cavity is presented. To do so, the con-
troller is first tested in a virtual SRF cavity using Matlab/Simulink.
Then, work was done on the fixed-point design of the controller
for its subsequent implementation on FPGA. For this purpose, it
is programmed both in Labview FPGA and VHDL. The next step
is to debug the hardware implementation of the controller using
Hardware In the Loop (HIL) techniques and a simulator imple-
mented in a PXI. Lastly, the controller is implemented and tested
on the real system, a 9-cell TESLA cavity. The results are analyzed
and discussed in the final part of the chapter.

Finally, Chapter 6 contains a brief summary of the most important
results of the thesis and the pertinent conclusions.

Additionally general knowledge about accelerating cavities is
added in the Appendices. This information is out of the scope
of this thesis but an uninitiated reader might find it useful to un-
derstand better the overall context of this work. The technical
details of the hardware used in the different experiments of this
work have also been compiled in the Appendices to facilitate the
reading of certain chapters.
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Chapter 1

Introduction

Particle accelerators, remarkable achievements of modern science and engi-
neering, hold immense relevance in modern society across a wide range of dis-
ciplines. While their primary function lies in exploring fundamental physics,
their deep impact extends to technological advancements, medical and indus-
trial applications, environmental research, and the cultivation of human capital.

In the realm of fundamental science, particle accelerators have revolutionized
the understanding of the universe. By colliding extremely energetic particles,
these machines recreate conditions similar to the universe’s early moments,
shedding light on fundamental particles, forces, and cosmic evolution. These
experiments yield insights into the fundamental laws that govern the universe,
helping scientist to understand and reveal questions about the laws of physics
that have remained unanswered for centuries.

The technological implications of this machines are far-reaching. The preci-
sion engineering and cutting-edge technologies developed for these machines
have found applications in diverse industries. The design and implementation
of high-gradient superconducting magnets, sophisticated radio frequency cavi-
ties, and advanced control systems have led to innovations in materials science,
energy production, and aerospace engineering, driving progress in those fields.

Medicine has greatly benefited from accelerators, particularly in cancer treat-
ment and medical imaging. Particle beams, such as protons and ions, provide
a targeted and highly precise form of radiation therapy, minimizing damage
to healthy tissues surrounding tumors. Additionally, accelerators produce iso-
topes used in medical imaging techniques, allowing for early disease detection
and personalized treatment plans.

In environmental and energy research, they contribute to the development
of novel materials for renewable energy technologies. Their capabilities are of
great importance in understanding nuclear waste management, nuclear reactor
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safety, and nuclear fusion, addressing environmental concerns and fostering
sustainable energy solutions.

Beyond their concrete contributions, particle accelerators play a vital role
in education and human capital development. Their complexity and interdisci-
plinary nature attract a diverse community of scientists and engineers, fostering
collaboration and knowledge exchange. As a result, a highly skilled workforce
emerges, driving innovation across multiple sectors and propelling society to-
wards greater scientific and technological achievements.

In conclusion, particle accelerators represent a cornerstone of modern soci-
ety’s progress and innovation. With their far-reaching implications in funda-
mental science, technology, medicine, energy, and environment, these sophis-
ticated machines contribute to the scientific progress of modern society.

Many particle accelerators are immense facilities not only in size and com-
plexity, but also in terms of energy consumption. In the current context of
climate change and soaring energy prices, current and future facilities need to
tackle their efficiency to ensure their viability.

While radio frequency (RF) acceleration has seen significant development
over several decades, the evolving demands of future facilities are presenting
fresh challenges that are driving advancements in RF acceleration technology.
The pursuit of efficient high-gradient RF structures and systems stands as one
of the five critical domains identified by the European Strategy for forthcoming
facilities [2], needing continued research and development efforts.

In low beam-loading superconducting radio frequency (SRF) accelerators,
controlling the detuning of the resonators allows the reduction of the over-
coupling, which is mainly given to manage for the expected detuning level of
a cavity. Reducing the detuning reliably to an insignificant level will allow to
operate cavities at low bandwidth, meaning high loaded quality factor (QL).
When the quality factors are optimized, the power consumption required to
attain a specific level of accelerating field diminishes, resulting in a reduction
in RF cost and the possibility of using solid state amplifiers, which are cheaper
andmore versatile than klystrons. This translates into lower installation budget
and lower operational costs and environmental impact.

Cavities that are being operated with such QL are specially susceptible to
a phenomenon called microphonic detuning [63], which refers to the detun-
ing caused by mechanical oscillations that couple to the accelerating structures
and impact their energetic efficiency and field stability. These mechanical dis-
turbances micro-metrically alter the geometry of the cavities, shifting the res-
onance frequency of the accelerating mode with respect to the nominal fre-
quency. This deformation generates a drift in the phase and amplitude of the
electromagnetic field inside the resonator that has traditionally been corrected
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by the Low Level Radio Frequency (LLRF) control system at the cost of injecting
more RF power. Such vibrations can arise from various sources, including ambi-
ent acoustic noise, Lorentz forces and mechanical resonances in the accelerator
components.

Several prominent accelerator facilities worldwide employ high loaded Q
factors in low-intensity beam experiments. The HIE-ISOLDE project aims to
upgrade the ISOLDE radioactive beam facility at CERN by adding a supercon-
ducting linear accelerator (LINAC) among other things. The intended operating
point for this accelerator falls in the range of QL = 1 · 107 − 3 · 107, with a
corresponding cavity bandwidth of 3 to 10 Hz [53], which makes the subject
of microphonics one of the main challenges to overcome. On the other hand,
in the case of the Large Hadron-electron collider (LHeC) [39], the possibility of
using Energy recovery linacs (ERL) such as the one developed in the BERlinPro
project is being considered [1] in order to accelerate electrons. For this pur-
pose, a high power energy recovery facility called PERLE has been proposed,
in which negligible beam loading and high QL are expected to be used [56].
Another clear example of the necessity of highQL operation in low beam load-
ing applications is the possible upgrade of the European XFEL to Continuous
Wave (CW) [6]. For this purpose, the cavities are expected to operate with QL

values between 107 and 108 and field gradients higher than 16 MV/m.





Chapter 2

SRF resonant cavities and
detuning

In this section, the principles governing the operation of SRF cavities will be
reviewed and the origin and cause of detuning will be explained. Acquiring a
comprehensive understanding of the problem will facilitate a smoother navi-
gation through potential difficulties. Thus, the study will be initiated by exam-
ining the electromagnetic fields generated in the most commonly used cavities
and resonance modes, verifying the strong dependence of these fields on the
geometry of the cavity and defining important concepts for the study of these
devices. Afterwards, the problem of detuning will be explained, as well as its
main causes and effects. SRF cavities are particularly sensitive to this prob-
lem, so the most important characteristics of these machines will be studied.
Finally, a study of the state of the art will be carried out in order to know in
which particular cases the detuning control is especially relevant and which
are the control techniques used to date.

2.1 | Resonant cavities

High-energy particle accelerators, whether circular or linear, use resonant cav-
ities as a fundamental element of acceleration. Those devices are typically con-
structed using conductive materials and have specific dimensions that allow
them to support standing or travelling waves at particular frequencies. In this
chapter we will focus on the cavities that work with standing waves, as these
are the ones that will be worked with throughout this thesis.

The standing waves occur when the wavelength of the injected RF signal fits
precisely within the dimensions of the cavity, causing constructive interfer-
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Figure 2.1.: Electromagnetic fields arrangement for several resonant modes of an ideal
cylindrical cavity [20].
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ence. When resonance is achieved, the energy of the incoming wave becomes
concentrated within the cavity, leading to increased electric and magnetic field
strengths. In this way it is possible to generate much larger electromagnetic
field gradients using substantially less energy than with constant electromag-
netic fields.

The geometry of the resonant cavity is crucial in determining its resonant
frequencies and resonant modes. In this way, cavities support multiple modes
of resonance, each corresponding to a specific pattern of standing waves. These
modes are characterized by the arrangement of electromagnetic field lines
within the cavity and each of them has a specific resonant frequency and en-
ergy distribution. Figure 2.1 shows the electromagnetic field distribution for
the first resonant modes of an ideal cylindrical cavity.

A more detailed study of the resonance modes of a cylindrical cavity is given
in appendix A, in particular the TM0n0 modes are studied. The analysis of
this type of cavity and modes is of particular importance for understanding the
operation of more modern cavities such as elliptical SRF cavities and to fully
understand the dependence of the resonant frequency on the geometry of the
device.

2.2 | SRF resonant cavities

One of the pressing problems of large acceleration facilities is their immense
construction cost and energy consumption. This is why one of the main ob-
jectives of the scientific community is based on reducing the investment and
operation costs of large accelerators.

In order to achieve higher energies for relatively light particles, like elec-
trons, linear accelerators (Linacs) are often used. In this type of facilities, the
investment costs are proportional to the length of the machine and since par-
ticles only traverse each accelerating section once, it is essential to have high
accelerating gradients in order to minimize the length of the accelerator.

Another demanding need is to keep the mains power as low as possible for
a given beam current and particle energy. In other words, the efficiency of
transforming mains power to beam power should be at maximum.

In principle, RF super-conductivity provides a technical solution for both
constraints, i.e. a high accelerating gradient and high mains-to-beam-power
conversion efficiency [94].

Thereby, SRF cavities are nowadays used in a broad range of applications in
which high accelerating gradients in CW are needed.
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Although there are several types of SRF cavities, this section will focus on
analysing the operation of cavities with elliptical geometry, and more specifi-
cally the TESLA cavity.

2.2.1 | Quality factor and cavity bandwidth

The quality factor of a resonator refers to the efficiency with which it is able
to store energy. In the case of SRF cavities this value may exceed 1010 due to
almost non-existent resistive losses.

The electrical resistance Rs of the a superconducting cavity for RF cur-
rents is defined by a temperature-dependent term RBCS and a temperature-
independent residual resistance Rres (See Appendix B.1).

Rs(T ) = RBCS(T ) +Rres (2.1)

When a resonance mode is excited, magnetic fields tangential to the cavity
walls are generated, which in turn produce induced currents and, subsequently,
resistive losses. The power dissipated (Pdiss) on the walls of the cavity can be
expressed by the following surface integral.

Pdiss =
1

2

∫ ∫
H̄Rsds (2.2)

Thus, one may define an intrinsic quality factor Q0 by

Q0 =
ω0Est

Pdiss
(2.3)

where Est is the energy stored inside the cavity and ω0 the resonant frequency
of the excited mode. Note that for each resonance mode, the intrinsic quality
factor of the cavity is different, although, from now on, it will be taken as con-
stant since the fundamental mode TM010 oscillating at 1.3 GHz will be taken
as a reference. This is the resonance mode and resonance frequency at which
TESLA cavities operate.

In cavities such as the TESLA, the intrinsic quality factor can reach values
of the order of 1010 and is mainly limited by the characteristics of the super-
conducting material itself. Even so, as the acceleration gradient approaches the
maximum allowed by the superconductivity limit of the material (50-60 MV/m
for TESLA cavities), the intrinsic quality factor tends to degrade to a large ex-
tent. (See Appendix B.2).
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Resistive losses are not the only loss mechanism of a cavity. The coupling by
the input power coupler determines the amount of power leaking back into the
cavity transmission line. These losses may be described by the external quality
factor Qext.

Qext =
ω0Est

Pext
(2.4)

where Pext encompasses all external power losses.

Finally, as a result of the interplay between the particle beam and the cavity
field, a fraction of the stored energy is transferred to the beam, being the gained
energy due to the acceleration. As a consequence, a quality factor referring to
this phenomenon of beam loading can also be introduced through the equation:

Qb =
ω0Est

Pb
(2.5)

Pb represents the power lost due to the beam loading effect, which is special
relevance in high beam current accelerators.

All loss effects may be summarized by a general quantity describing the qual-
ity factor of a cavity resonance diminished by the external effects. This is the
so-called loaded quality factor (QL) and determines the bandwidth of the RF
resonance.

QL =
ω0Est

Pdiss + Pext + Pb
(2.6)

Or in other terms:

1

QL
=

1

Q0
+

1

Qext
+

1

Qb
(2.7)

Similarly, the half bandwidth of a cavity resonance is defined as the point
where the power, which is proportional to the square of the voltage, drops by
3 dB. The half-bandwidth can be expressed by the following expression.

ω1/2 =
ω0

2QL
(2.8)

As can be seen, the higher the loaded quality factor, the lower the cavity
bandwidth.

The shunt impedance Rsh is another figure of merit related to the power
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dissipation of the cavity and it measures the effectiveness of producing an axial
accelerating voltage Vcav for a given power dissipation.

Pdiss =
V 2
cav

Rsh
(2.9)

A related quantity is the geometric shunt impedanceRsh/Q0, which depends
only on the cavity’s shape (1048 Ω for TESLA cavities) and can be obtained by
combining equation (2.9) with the definition of Q0:

Rsh

Q0
=

V 2
cav

ω0Est
(2.10)

2.2.2 | Eqivalent RLC circuit

In order to study the electromagnetic dynamics of a SRF cavity, the whole accel-
erating system can be modeled using an equivalent electric circuit [81] where
the cavity is modeled by a resonant RLC circuit, being R, L and C the the
equivalent resistance, impedance and capacitance of the cavity, respectively.
The power amplifier and the beam are represented as current generators and
the fundamental power coupler as an ideal transformer, with a winding ratio
of 1:m. The power source is connected to the coupling antenna via a matched
transmission line with impedance Z0, which may vary between 50 and 75 Ω
depending on the waveguide used.

Any mismatch between the cavity and source impedances leads to a reflec-
tion of a part of the forward power wave at the coupler. As this reflected wave
may destroy the RF source, the backwards traveling wave is redirected by a
circulator into a matched load. Figure 2.2 shows the equivalent circuit of the
fundamental mode of a cavity connected to a RF power source, where Vcav rep-
resents the transmitted voltage to the cavity and Vref the reflected voltage sent
to the circulator.

According to this scheme, the input coupler relates the waveguide side and
cavity side currents and voltages by the transformation equations:

V ′ = mV (2.11)

I ′ = mI (2.12)
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Figure 2.2.: Equivalent circuit model for a cavity accelerating a particle beam and con-
nected via a coupler antenna to an RF power source [24].

Thus, the impedance of the waveguide side seen from the cavity can be de-
fined as follows:

Z ′ = m2Z (2.13)

All primed quantities refer to the cavity side. Thus, the power dissipated
outside the cavity Pext, i.e. at the load of the circulator, can be defined as
the square of the cavity RMS voltage VRMS divided by the external impedance
Zext = m2Z0. Considering that the cavity voltage is sinusoidal, the RMS volt-
age can be expressed as VRMS = Vcav/

√
2. In this way, the external dissipated

power is defined as follows:

Pext =
V 2
cav

2m2Z0
(2.14)

Similarly, the power dissipated in the cavity walls Pdiss can be defined as:

Pdiss =
V 2
cav

2R
(2.15)

Note that the power dissipated inside the cavity is exclusively dependent on
the characteristics of the device, i.e. it solely depends on the intrinsic quality
factor of the cavityQ0. On the other hand, the power dissipated in the external
load depends on the degree of coupling between the cavity and the RF power
circuit. The coupling factor β is used to quantify that degree of coupling, and is
defined as the ratio of the power loss in the external circuit to that in the cavity.

β =
Pext

Pdiss
=

R

m2Z0
(2.16)
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The equivalent circuit components are defined in terms of the cavity param-
eters as follows [81]

√
L

C
=

R

Q0
(2.17)

ω0 =
1√
LC

(2.18)

Rsh = 2R (2.19)

At the same time, The ratio of the transformer, m, can be given in terms of
coupling factor of the fundamental power coupler β.

m =

√
R

βZ0
(2.20)

Note that the transformed external load Zext acts as a parallel resistor to the
cavity resistor R. Therefore, those two elements can be replaced by a single
resistor RL, known as the loaded impedance.

1

RL
=

1

R
+

1

m2Z0
(2.21)

This RL can also be defined as:

RL =
R

1 + β
=

Rsh

2(1 + β)
(2.22)

In a similar way, QL can be described as:

QL =
Q0

1 + β
(2.23)

Now that all the parameters of the equivalent circuit are defined as a function
of cavity quantities, it is possible to solve the time evolution equation of the
system to analyse its dynamics. As it is shown in Figure 2.3, the starting circuit
can be simplified to a externally driven RLC circuit.

Applying Kirchhoff’s law for currents, it is obtained that the incident current
in the RLC circuit, I(t), is equal to the sum of the currents through the capacitor
IC(t), the resistor IRL

(t) and the coil IL(t).
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Figure 2.3.: Simplified RLC circuit representing a fundamental resonance mode of a
cavity.

I(t) = IRL
(t) + IC(t) + IL(t) (2.24)

Given the definition of the current through those elements, the equation can
be rewritten as follows:

I(t) = C
dVC(t)

dt
+
VRL

(t)

RL
+

1

L

∫
VL(t)dt (2.25)

Note that the voltage dropping on the resistor VRL
, on the coil VL(t) and on

the capacitor VC(t) are equal and the same as the cavity voltage Vcav . Thus,
by deriving the function (2.25) with respect to time and substituting Vcav , we
obtain the following differential equation that defines the time evolution of the
cavity voltage as a function of the incident current.

V̈cav(t) +
1

RLC
V̇cav(t) +

1

LC
Vcav(t) =

1

C
İ(t) (2.26)

Using the previously discussed relationships between circuit parameters and
cavity quantities, the time evolution equation of the cavity voltage results in
the following formula:

V̈cav(t) +
ω0

QL
V̇cav(t) + ω2

0Vcav(t) =
ω0RL

QL
İ(t) (2.27)

This is the general form of an externally driven damped harmonic oscillator.



14 SRF resonant cavities and detuning

Therefore, if the applied current I(t) is harmonic, i.e. I(t) = I0sin(ωt), the
driving term of the right side of the equation is proportional to cos(ωt), and
the particular solution, which describes the stationary response of the system,
is given by

Vcav(t) = V0sin(ωt+ ψ) (2.28)

where

V0 =
RLI0√

1 + tan2(ψ)
(2.29)

and

tan(ψ) = QL(
ω0

ω
− ω

ω0
) (2.30)

The phase angle ψ is known as the tuning angle of the cavity and is defined
as the phase difference between the driving current I and the cavity voltage
Vcav .

If the driving frequency ω is very close to the cavity resonance frequency ω0,
one may rewrite equation (2.30) to:

tan(ψ) ≈ 2QL
∆ω

ω0
= 2QL

∆f

f0
(2.31)

where ∆ω = ω0 − ω. Note that this equation is of particular relevance to this
work because when detuning is sufficiently low, it can be inferred by comparing
the phase of the driving signal with that of the cavity voltage (see equation
(5.1)).

Under the same assumption, equation (2.29) can be rewritten as follows:

V0(∆ω) ≈
RLI0√

1 + (2QL
∆ω
ω )2

(2.32)

Equations (2.31) and (2.32) define the dependence of the amplitude and phase
of the cavity voltage with respect to detuning, forming what is known as the
Lorenz curve (see Figure 2.4).

To this point, the steady-state of the cavity has been analyzed, assuming that
the driving signals, i.e. both the RF generator and the beam current, have been
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0

0V(ω )-3dB
0

Figure 2.4.: Amplitude and phase of a cavity resonance plotted against frequency [67].

turned on for a long enough time, compared to the characteristic filling time of
the cavity.

The next step is to study the transient dynamics of the cavity field. For this
purpose, the differential equation (2.27), which defines the time evolution of the
field Vcav , is used as a starting point.

Assuming that the driving current of the RF generator Ig(t) and the Fourier
component of the pulsed beam Ib(t) are harmonics with a time dependence eiωt,
the driving current of the cavity I(t) can be represented as a phasor multiplying
a complex exponential.

I(t) = Ig(t) + Ib(t) = [Ire(t) + iIim(t)]eiωt (2.33)

where Ire and Iim are the real and imaginary components of the driving current
signal. Taking this current as the input signal to the system, the voltage output
Vcav can be represented following the same formulation.

Vcav(t) = [Vre(t) + iVim(t)]eiωt (2.34)

where Vre and Vim are the real and imaginary components of the cavity voltage.
Note that, through this notation, it is possible to separate the slowly changing
amplitude and phase, encoded in the phasor, from the fast RF oscillation.

The transient dynamics of a CW-driven cavity is sufficiently described by
the evolution of the cavity’s voltage phase and amplitude, i. e. the time varying
behavior of the phasor Vre + iVim. In this way, by introducing the phasors of
equation (2.33) and (2.34) in (2.27) and neglecting the second order time deriva-
tives of Vcav , since they are small compared to the lower order terms, the first
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order cavity differential equation for the phase and amplitude is obtained. The
whole derivation can be found in Annex A.6 of [81].

V̇re + ω1/2Vre +∆ωVim = RLω1/2Ire (2.35)

V̇im + ω1/2Vim −∆ωVre = RLω1/2Iim (2.36)

This equations can be rewritten in the matrix form of the state space formal-
ism as

(
V̇re
V̇im

)
=

(
−ω1/2 −∆ω

∆ω −ω1/2

)(
Vre
Vim

)
+

(
RLω1/2 0

0 RLω1/2

)(
Ire
Iim

)
(2.37)

Note that the real Vre(t) and imaginary Vim(t) components of the cavity
voltage can be related to its phaseψ and amplitude V0 bymeans of the following
trigonometric relationship:

ψ(t) = arctan

(
Vim(t)

Vre(t)

)
(2.38)

V0(t) =
√
V 2
im(t) + V 2

re(t) (2.39)

For a more in-depth analysis, incorporating the pulsed beam operation and
other case studies, the reader is referred to [81].

2.3 | Tesla cavities

The TESLA cavities [4] are SRF devices that were designed in the 1990s for use
in a proposed linear electron-positron collider called the TESLA Linear Collider
(TLC) [12], also known as the International Linear Collider (ILC). These cavi-
ties were specifically designed to provide efficient acceleration for electron and
positron beams, which would allow researchers to explore electron-positron in-
teractions in the center-of-mass energy range from 200 GeV to more than a TeV,
which can no longer be realized in a circular machine due to synchrotron radia-
tion. The proposed TESLA Linear Collider was intended to be a successor to the
Large Electron-Positron Collider (LEP) [65] and would have had the potential
to reveal new physics beyond what had been discovered at previous acceler-
ators. Although the TESLA project didn’t lead directly to the construction of
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the International Linear Collider as originally envisioned, many of the tech-
nological developments and concepts from TESLA have influenced subsequent
particle accelerator projects, including the design of SRF cavities for other ac-
celerators. The pursuit of high-energy linear colliders continues, with projects
like the Compact Linear Collider (CLIC) [89] and the International Linear Col-
lider (ILC) still being considered for future exploration of particle physics at the
highest energy scales.

2.3.1 | Cavity geometry and acceleration fields

The TESLA cavity is a 9 elliptical cell standing wave structure of about 1 m
length whose lowest TM mode, the TM010, resonates at 1300 MHz. This res-
onant mode is the one used to accelerate particles due to the arrangement of
electromagnetic fields that generates inside the cavity (see Figure 2.6 and 2.8).
The device is made from solid niobium and is cooled by superfluid helium at
1.8-2 K. Figure 2.5 shows the side view of the cavity structure.

Figure 2.5.: Side view of the 9-cell TESLA cavity [4].

The reasoning behind the evolution towards elliptical geometry in the TESLA
cavity is presented in the Appendix B.3, as well as the basic criteria for the
design of this type of cavity.

Each 9-cell cavity is equipped with its own titanium helium tank, a tuning
system that will be discussed in chapter 2.6, a coaxial RF power coupler capable
of transmitting a peak power greater than 200 kW, a pickup probe and two
Higher Order Modes (HOM) couplers. The main function of these couplers
is to extract the energy that the particle beam can deposit in unwanted higher
resonancemodes, which can induce longitudinal beam instabilities and increase
the beam’s energy spread (See Appendix B.4).

The electromagnetic field generated in this type of resonant cells in the
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TM010 mode is similar to that of cylindrical cavities, with only azimuthal mag-
netic field and maximum electric field at the device axis (see figure 2.6).

Figure 2.6.: Scheme of the electromagnetic disposition of the TM010 mode in an ellip-
tical cell. Electric field is represented in red and magnetic field in blue.

If feasible from both technical and performance standpoints, the utilization
of multi-cell structures is advisable for minimizing the investment expenditure
of an accelerator. These multi-cell structures have a lower cost per unit length
and allow for higher effective gradients, which is especially relevant for linear
accelerators. However, this type of structures introduce new problems to be
faced, such as the increase of HOMmodes, new pass-band modes, field flatness
degradation and the higher sensitivity to mechanical vibrations. Those issues
will be discussed in more depth further below. In the following, cell-to-cell
coupling for the accelerating mode TM010 will be examined, although many of
the discussed features hold for other resonant modes.

Let’s consider the scenario of coupling two identical resonators with cylin-
drical symmetry. This is illustrated schematically in Figure 2.7 (a), where two
half-cells of an elliptical cavity are represented. The accelerating mode of each
resonator has the same frequency ω0 and field pattern. When the resonators
are coupled, as shown in Figures 2.7 (b) and (c), two different resonant modes
emerge in the coupling region, slightly different in frequency and field pattern.

The field patterns vary in the iris region depending on whether the coupling
plane aligns with the symmetry plane for the magnetic or electric field. These
variations result in different stored magnetic and electric energies, leading to
distinct frequencies. When there’s symmetry for the magnetic field, the res-
onator oscillates in phase, forming the "0 mode". Conversely, when the symme-
try plane corresponds to the electric field, the cavity oscillates in counter-phase,
constituting the "π" mode.
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As mentioned above, each of these pass-band modes has a different fre-
quency, referred to as ω0 for mode 0 and ωπ for mode π. When the stored
magnetic energy in the coupling region is bigger than the stored electric en-
ergy, ω0 is higher than ωπ and vice versa. Those cases are named as "magnetic
coupling" and "electric coupling" respectively.

In an ideal case without losses, where the resonators are in a steady state
and no energy dissipates via the beam, walls, or openings, no energy crosses
the iris. This is because, for each mode in our example, one of the components
of the Poynting vector becomes zero. The Poynting vector is defined as the cross
product of the electric field and the magnetic field divided by the permeability
of free space and indicates the direction and magnitude of the power per unit
area carried by an electromagnetic wave. For the 0 mode, it is the radial electric
field that becomes zero and for the πmode it is the angular magnetic field. For a
real structure, a linear combination of all modes is needed to enable cell-to-cell
energy flow. In the considered example both 0 and π mode must be excited,
though the additional mode has much smaller amplitude.

Figure 2.7.: Coupling of two resonators: (a) two identical resonators having the same
frequency ω0 and field pattern before they are coupled, shown is the contour of the
electric field for TM010 mode; (b) contours of the electric field for the 0 and π modes
after two resonators have been coupled; (c) electric field lines for the 0 and π modes
[82].

An added difficulty of using multi-cell structures arises from the possible
shift in the resonant frequency∆ωi of the different cells. This can derive from
various causes such as mechanical tolerances in the manufacturing process, or
from the cooling-heating cycles. This issue is referred to as field flatness and
leads to a degradation of the acceleration field.
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The sensitivity of the cavity to this field flatness problem is strongly depen-
dant on the coupling strength, which is measured by the coupling factor.

kcc =
ωπ − ω0

2(ωπ + ω0)
(2.40)

At the same time, the sensitivity of a N-cell cavity operating in π mode is
expressed by the following ratio.

∆Eacc

Eacc
= aff

∆ωi

ωi
(2.41)

Here, Eacc and ωi refer to the acceleration field and the resonance frequency
of the cells respectively. aff , on the other hand, is the field flatness factor and
is defined as follows:

aff =
N2

kcc
(2.42)

This parameter should be small to keep the structure insensitive to random-
cell frequency errors.

In weakly coupled structures, as a result of the nature of the coupling, for
every resonant field pattern of an uncoupled cell, there are n resonant modes
of n coupled cells. Those modes, differ in frequency, field amplitudes, and in
cell-to-cell phase advance.

In order to accelerate particles, the π mode of the TM010 is normally used.
As it has been previously discussed, when a cavity operates in this mode, the
individual cells are resonating in counter-phase, forming the acceleration field
shown in figure 2.8.

Figure 2.8.: Scheme of the electromagnetic disposition of the TM010 πmode in a 9-cell
SRF cavity. Electric field is represented in red and magnetic field in blue.

For acceleration of particles with velocity close to c (β ∼ 1), the length of
each cell is lcell = β · πc/ωacc. Thus, the time it takes for a particle to pass
from one cell to another is equivalent to half a cycle of the acceleration field
oscillation, so synchronic acceleration takes place. It is important to emphasize
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that for the correct acceleration of the particles, a Low Level Radio Frequency
(LLRF) control system [86] is strictly necessary, which is a technology designed
to ensure that the RF fields, responsible for accelerating and focusing particle
beams, maintain specific characteristics like amplitude and phase.

2.4 | Mechanical detuning

Mechanical detuning in SRF cavities refers to a phenomenon where the reso-
nant frequency of the cavity deviates from its desired or nominal value due to
mechanical deformations or vibrations.

As in the case of cylindrical cavities (see Appendix A) and in the same way as
for TESLA cavities, the electromagnetic resonance frequency is only dependent
on the device’s geometry. Thus, when the cavity undergoes mechanical vibra-
tion, its walls contract and expand, deforming its geometry in a few nanometers
and thus deviating its nominal resonance frequency. As discussed above, this
is especially detrimental in the case of SRF cavities operating at highQL, since
as shown in equation (2.8), the cavity bandwidth is inversely proportional to
its quality factor. TESLA cavities operate with bandwidths below 130 Hz when
the QL is greater than 107, so that even the smallest deformation can generate
changes in the nominal frequency of several bandwidths. In addition, the fact
that TESLA cavities are multi-cell structures results in mechanical resonance
modes at frequencies of even tens of hertz. In this way, these modes can be
excited by external vibrations, generating a large detuning and degrading the
acceleration field to a great extent. Figure 2.9 shows an example of the first
mechanical resonance modes of a 5-cell elliptical cavity.

Figure 2.9.: First three mechanical modes of a five cell SRF cavity [55].
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Mechanical detuning can be classified according to its origin. This classifica-
tion is described in the next sections.

2.4.1 | Lorentz Forces detuning

One of the primary effect contributing to cavity detuning is due to the Lorentz
forces acting on the cavity walls by the RF field itself. The pressure generated
by the RF field is expressed in equation (2.43).

Prad =
1

4
(µ0|H̄|2 − ϵ0|Ē|2) (2.43)

As it can be seen, the magnetic field exerts a repulsive force proportional to
the square of its modulus, while the electric field attracts the walls with a force
also proportional to the square of its modulus. Considering the distribution
of the electromagnetic fields in the fundamental resonance mode TM010 the
cells deform inward near the iris, while expanding outward at the equator, as
shown in Figure 2.10. Overall frequency shift will always be negative since the
repulsive magnetic field forces and the attractive electric field forces both work
together to decrease the resonance frequency of the deformed cavity.

Figure 2.10.: Lorentz forces exerted on a 650 MHz β=0.9 single cell cavity ahead with
the radiation pressure values in mbar at the 3.5 MV cavity voltage. Deformation is
exaggerated by 20000 times [55].

The radiation pressure generates a change of the cavity’s volume (∆V ) caus-
ing a shift of the resonance frequency given by Slater’s formula [88]. This phe-
nomenon is called Lorentz force detuning.

∆ω

ω
= −

∫
∆V (µ0|H̄|2 − ϵ0|Ē|2)dV∫
V (µ0|H̄|2 + ϵ0|Ē|2)dV

(2.44)
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Here, H̄ and Ē are the unperturbed field values and the denominator is the
stored energy in the resonator.

Lorentz force detuning is of particular concern in cavities operating in pulsed
mode, since periodic RF strokes can excite mechanical resonance modes of the
device. It can also be problematic in accelerators operating with high beam
loading, as the wakefield generated by the particle beam and the drastic ab-
sorption of energy can also excite unwanted mechanical resonance modes. In
the case studied in this work, the cavity operates in CW, so that the Lorenz
forces, by themselves, are not particularly harmful, since they generate a static
detuning that is relatively easy to correct. Even so, they are partly responsible
for the ponderomotive effect that will be presented later in this chapter.

2.4.2 | Microphonic detuning

The term microphonics refers to any external mechanical disturbance that af-
fects the geometry of the resonant cavity. External vibrations caused by heavy
machinery like the pumps for the liquid helium system or vacuum pumps may
be transmitted through the supply lines, the beam pipe or the ground, affect-
ing directly to the accelerating structure. In the case of this type of disturbances
generated by rotatory machinery, they usually have a constant oscillatory spec-
trum and is relatively easy to control by feed forward (FF) algorithms. The term
"feed forward" refers to the fact that the control action is applied based on the
known or anticipated input to the system, with the goal of directly compen-
sating for the expected disturbances or changes. In a FF control system, the
controller generates a control signal based on the anticipated disturbance be-
fore the system responds to it. A clear example of this technique is shown in [7],
where a Narrow badwidth Active noice control (NANC) based in FF principles
is applied to the SRF cavities of LCLS-II.

In addition to that, ground motion has the potential to propagate into the
cavity system. The sources of this natural noise are given by seismic activities
of the ground and ocean waves and have wavelengths up to several hundred
meters with frequencies below 1 Hz [5]. These external sources of noise un-
dergo partial filtration by the transfer medium. To address this, specifically de-
signed passive supports are positioned beneath the pumps, and flexible bellows
are integrated into any pipe that links vacuum pumps to the cryostat. These
measures are implemented to facilitate damping.

Another source of noise arises from the helium cooling system used to main-
tain superconducting conditions within the cavities. Variations in pressure
within the cryogenic system or alterations in the liquid helium level in the two-
phase line lead to modifications in the forces exerted on the cavity walls. Also,
Thermo-acoustic fluctuations arising from enclosed volumes in the cryo-plant
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[95] trigger pressure waves. This will directly act as an isotropically distributed
force onto the cavity via the helium transfer line. Additionally, during high-
power operation, there is a potential for boiling to take place in the superfluid
helium, which could transmit vibrations to the cavity structure. This kind of
microphonics are much harder to control due to their stochastic nature. For
this purpose, feedback control systems are used, but as will be shown through-
out the study, this is difficult due to the low relative stability of the cavities from
the mechanical standpoint.

2.4.3 | Ponderomotive effect

A phenomenon that is likely to impact the stability of the field in CW mode-
driven cavities is the interaction between mechanical detuning and time-
varying Lorentz forces. When combined with an RF feedback system in a setup
where a generator maintains a fixed reference frequency, this interaction has
the potential to induce undesired oscillations in both the amplitude and phase
of the RF field, particularly if there is a significant amount of RF power available
for compensation [22, 69].

In essence, two scenarios are conceivable, and these have been substantiated
through measurements conducted at the ELBE radiation source linear accelera-
tor [13]. In a scenario where the klystron (the power amplifier for the RF signal)
operates near its saturation point, either positive or negative detuning from the
resonance frequency can arise induced by microphonics.

In the case of a positive frequency shift, the RF field experiences a decay due
to this detuning effect. Consequently, the low-level RF system endeavors to
counterbalance the diminishing field amplitude by increasing the required for-
ward power, and the klystron saturates. However, since there is no additional
RF power available, the field amplitude diminishes further. This progression
contributes to a subsequent positive detuning, owing to the fact that the re-
duced field level is accompanied by a diminished negative Lorentz force detun-
ing offset. Even if the microphonics-induced detuning event that initiated this
process were to decrease, the RF field might fail to recover. It has now strayed
too far from resonance, causing the klystron to persist in a saturated state and
the field strength to diminish to a minimal level.

When the resonance frequency experiences a negative shift, it leads to an ob-
servable oscillatory instability. The disruption caused bymicrophonics-induced
perturbations is counteracted by the Lorentz force detuning as the field ampli-
tude begins to decrease. The directional nature of the ponderomotive effect
arises from the negative correlation inherent in the Lorentz force detuning.

At the ELBE linear accelerator, the measurement of this effect was only fea-
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sible during an RF pulse lasting approximately 50 ms. The ELBE cavity, shaped
in accordance with the TESLA design, consists of nine cells and operates as a
superconducting cavity. Figure 2.11 shows the measured ponderomotive effect
for both positive and negative frequency shift cases [67].

Figure 2.11.: Measurement of ponderomotive effect (red line) at the ELBE linac in
[67]. A saturation of the klystron due to microphonics detuning leads to a decay (blue
curve) or oscillation (red curve) of the field amplitude depending on the direction of
the microphonics that triggers the effect. As a reference measurement the stable case is
given (black curve). The data have been sampled at a set point field level of 11.5 MV/m
and a loaded quality factor of 1.3 · 107.

In the graph, the stable condition is represented by the black curve, which
involves driving the cavity at 11.5 MV/m while maintaining a loaded quality
factor of 1.3 · 107. For this particular test, the maximum klystron power had
been restricted to 10 kW. On the other hand, the blue curve showcases the out-
come when there is positive detuning due to microphonics-induced klystron
saturation. In this case, the desired field gradient is never achieved, and the
field strength declines to around 5 MV/m. In contrast, when there is negative
detuning, the anticipated oscillatory behavior has been verified through mea-
surements, as illustrated by the red curve.

It is worth mentioning that, like the Lorentz forces, the ponderomotive effect
is a nonlinear phenomenon that must be controlled using specific techniques.
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2.5 | RF Power reqirements and detun-

ing

The input power Pf requirement to maintain a constant electromagnetic field
in an CW operating SRF cavity, is mainly determined by its operation charac-
teristics and the peak detuning∆f it is subject to. Equation (2.45) displays such
dependence [67]:

Pf =
V 2
cav

4R
QQL

[(1 +

R
QQLIb

Vcav
cos(Φb))

2 + (
∆f

f1/2
+

R
QQLIb

Vcav
sin(Φb))

2] (2.45)

where, as stated in section 2.2.1, Vcav is the desired cavity voltage, QL is the
loaded quality factor, f1/2 is the cavity half bandwidth and R/Q is the geo-
metric shunt impedance, which are parameters related with the cavity and its
operation. On the other hand, Ib and Φb are parameters related with the beam,
representing the average beam current and the synchronous phase respectively.
The latter is defined as the relative timing between the accelerating electric field
and the beam and determines the acceleration field perceived by the particles
as they cross the cavity.

Analyzing equation (2.45) it is obtained that when the beam loading is large,
it is necessary to limit Vcav and to some extentQL to keep the energy consump-
tion in feasible values. Figure 2.12 shows the forward power requirements to
maintain different cavity voltages as a function of the loaded quality factor,
when beam loading is high (Ib = 50mA). For that case, peak detuning was set
at 10 Hz and the synchronous phase at 0º.

As it is shown in figure 2.12, the power requirements for a relatively low
cavity voltage of 8 MV/m is around 40 KW, at an optimal QL of approximately
106. Thus, in applications with high beam loading, the acceleration gradient
must be kept at conservative values to avoid unfeasible energy consumption.
This also means that the QL used for such applications is relatively low, and
consequently, the machines operating under these characteristics are not as
sensitive to detuning.

However, in applications where the beam loading is negligible, the power
required to maintain a certain acceleration gradient is almost solely dependent
on the detuning over the half-bandwidth squared. This means that for a small
bandwidth, i.e. high QL, the system is extremely sensitive to detuning and
significant power overhead is required by the RF control process to compensate.
In turn, this also means that for this type of application, extremely high energy
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Figure 2.12.: Forward RF power Pf as a function of loaded quality factor QL for dif-
ferent Vcav values and a beam intensity of Ib = 50 mA.

efficiencies can be achieved if the peak detuning is reduced to small enough
values.

Figure 2.13 shows the forward power required to maintain a Vcav of 16 MV/m
as a function of the loaded quality factor QL for different amounts of peak de-
tuning∆f . Beam current Ib and synchronous phaseΦb aremaintained constant
with values of 75 µA and 0º respectively.

Figure 2.13.: Forward RF power Pf as a function of loaded quality factor QLfor dif-
ferent ∆f values and a beam intensity of Ib = 75 µA.

This shows the significant improvement in energy efficiency that can be ob-
tained by suppressing detuning in low beam loading applications.
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2.6 | Tuning systems

As shown in Appendix A for a cylindrical cavity, the resonant frequency of an
SRF cavity is determined by its physical dimensions, such as the length and
shape. When the cavity undergoes mechanical perturbations the geometry of
the device changes, generating a deviation in the resonant frequency called de-
tuning. In this way, achieving and maintaining the desired resonant frequency
is essential for optimal performance. A tuner is an actuator, that allows for real-
time adjustment of the cavity’s resonant frequency to ensure proper synchro-
nization with the injected RF power signal. The tuner is also used to detune the
cavities far off resonance in the event of failure to avoid damage to the device.

Typically, tuners have to deal with two different types of detuning. On the
one hand, slow or static detuning, which is a constant or very slow frequency
shift that is consequence of cavity manufacturing tolerances, the cooling pro-
cess of the device or Lorentz forces in the case of continuous wave operation.
On the other hand, there is fast detuning, which is caused by dynamic mechan-
ical pertubations such as pressure changes in the liquid helium bath, seismic
movements, vacuum pumps or Lorentz forces in the case of pulsed operation.

The most commonly used actuators in the case of static detuning are stepper
motors and DC motors [85]. In order to compensate the detuning, tuners are
designed to transfer the rotary motion of the motor to elongate or shorten the
cavity by means of different mechanisms. These mechanisms depend on the
design of the tuner itself as will be discussed later.

In the case of fast detuning compensation, piezo-actuators are the most com-
monly used devices [21]. Piezo-electric actuators are transducers that convert
electrical energy into a mechanical displacement or stress based on a piezo-
electric effect, which is a phenomenon in which certain materials undergo a
mechanical deformation when an electric field is applied to them. They are
used in fast detuning control since they are a high precision positioning mech-
anism that can control a small mechanical displacement at high speed, with
the advantages of large generated force (3-4kN for a stack with a cross-section
of 1cm2) and stable displacement [74]. As in the case of stepper motors, these
actuators elongate or shrink the cavity depending on the detuning to be com-
pensated, although in this case, they can act in a bandwidth of hundreds of Hz.
Figure 2.14 shows a P-844K075 custom piezo-electric actuator used in the tuner
system on LCLS-II.

Magnetostrictive actuators are another less used option for fast detuning con-
trol. The basis for their operation is the magnetostrictive effect, which refers to
the change in shape or dimensions of a material when it is subjected to a mag-
netic field. When an external magnetic field is applied to a magnetostrictive
material, it causes the magnetic moments to align with the field, which at the
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Figure 2.14.: P-844K075 custom piezo-electric actuator manufactured by PI for LCLS-
II [74].

same time changes the magnetic energy of the material. In order to minimize
this energy change, the material undergoes mechanical deformation, which re-
sults in a change in the material’s dimensions. The goal is to induce controlled
mechanical deformation in the tuning element to adjust the resonant frequency
of the system, by applying a controlled magnetic field by means of a supercon-
ducting coil [51]. Those kind of actuators offer a larger tuning range when
compared to piezo-electrics, but they have lower tuning speed. Generating an
accurate magnetic field also involves additional challenges. Figure 2.15 shows
an industrial magnetostrictive actuator.

Figure 2.15.: Industrial magnetostrictive actuator [26].

However, correcting fast frequency variations with mechanical systems is
inherently difficult, in fact, for the fastest variations such as transient beam
loading, it is essentially impossible. As a result, the most common way to over-
come fast frequency shifts is by a combination of overcoupling the fundamental
power coupler in order to broaden the resonance and using extra RF power. This
is why amajor research effort is currently underway to develop non-mechanical
fast tuners. A clear example of this is the Ferro-electric fast reactive tuner or
FE-FRT [83]. Fundamentally FE-FRTs work by passing RF power through a
transmission line containing ferroelectric material and reflecting it back to the
cavity. The permittivity of the ferroelectric is controlled by applying a high
voltage signal across the ferroelectric, altering the RF path length. This causes
the phase of the RF fields and the reactance of the tuner as seen by the cavity to
change, altering the frequency of the cavity without affecting its geometry [84].
Although this is an innovative technology that promises bandwidths several or-
ders of magnitude greater than those achievedwithmechanical actuators, it still
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requires further research and refinement. One of the biggest hurdles to over-
come is the substantial RF power losses generated by the device. Figure 2.16
shows a proof of principle FE-FRT designed in [83] and successfully tested on
an SRF cavity at CERN.

Figure 2.16.: Proof of principle FE-FRT [83].

As discussed above, SRF cavity tuners use a combination of the mentioned
actuators to keep detuning levels as low as possible. The geometry and oper-
ating principles of two of the most commonly used tuners, the blade tuner and
the double lever tuner developed at SACLAY, are described below.

The blade tuner is a device consisting of three concentric rings that are placed
around the shell covering the cavity [11]. The outer rings are firmly attached to
the cryostat, which in turn is connected to the cavity at its ends (see figure 2.17).
It is worth mentioning that for the application of this type of tuner, a modified
He tank, with a central bellow to allow for coaxial displacement is needed.

Figure 2.17.: Tuner installed on the helium tank at DESY HALLE III machine shop.
Piezo-actuator is highlighted in green and flexible bellow in red [59].

The central ring is divided into two equal parts, and is connected to the outer
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rings by welded blades at an angle, which transforms the azimuthal rotation (in
opposite directions) of the two halves of the central ring into a variation of the
distance between the end rings. This axial displacement elongates or shrinks
the cavity depending on the detuning to be compensated for. Figure 2.18 shows
the kinetics of the mechanism governing the blade tuner.

Axial movementAxial movement

Azimuthal movement

Figure 2.18.: Cinematic description of the blade tuning system [73].

As it is shown in figure 2.19, the azimuthal rotation is provided by a leverage
system connected to a stepping motor. The fast actuator is implemented by
inserting elements between one of the end rings and the corresponding flange
on the He vessel. Figure 2.17 shows the piezo in place in the tuner installed on
the helium tank at DESY HALLE III machine shop.

Figure 2.19.: Two different designs for the blade tuner, with their corresponding driv-
ing systems. The stepping motor is highlighted in red and the support for fast actuators
in green. The tunner in the left was developed in the context of CARE subprograms for
the ILC [73] and the design in the right is an enhancement of the TTF superstructures
tuner [59].

On the other hand, the Saclay tuner is based on a compound lever mech-
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anism acting at one end of the cavity. The static tuning is obtained with the
combination of the lever arm and a screw which is driven by a stepper motor
and a gear box. As it is shown in Figure 2.20, one of the links to the He tank
is equipped with a piezoelectric holder in which the piezos responsible for the
fast tuning are set.

Figure 2.20.: Left picture: The structure of the tuning system itself. Highlighted in
red is the system of levers driven by the stepper motor and in green is the system by
which the tuner is connected to the helium vessel [23]. Right picture: A similar tuner
mounted on a cryostat. The holder for the piezo actuators is shown in green.

Motion made by piezo actuators is transmitted to the cavity flange by the
different parts of the tuner. It is important to note that due to the geometry of
the system and the fact that part of the stroke is lost in different interfaces of
the tuner, less than half of the piezo stroke is transmitted to the cavity flange
in this kind of tuner.

The principle of the Saclay tuner system is based on the fact that the pre-load
is directly applied on the piezo actuators by the cavity elasticity, which implies
that the tuner is designed to lengthen the cavity only [23]. No additional force
is applied by the support of the piezo actuators, excepting the weight of the
components.

Figure 2.21 shows a tuning system, also based on a double lever mechanism,
mounted on a real SRF cavity in HZB [60]. It is worth mentioning that there
are many variations in the design of both blade tuners and lever-based tuners,
as they are devices that are usually designed ad hoc for each type of cavity to
be controlled. Even so, most of them share the same operating principle.
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Figure 2.21.: A Lever-based tuning system mounted in the Helium vessel of a real SRF
cavity in HZB [60]. In the left picture, the piezo holder is highlighted in green while
the actual piezos are highlighted in blue. The stepping motor in shown in the right
picture highlighted in red.

2.7 | Control techniqes for mechanical

detuning

As has been demonstrated so far, controlling the level of detuning in SRF cav-
ities is of vital importance for the correct formation of acceleration fields, and
consequently for the correct acceleration of particles. This is especially the
case for accelerators with high QL operation. For that matter, active and pas-
sive control strategies are used to mitigate mechanical detuning, commonly in
conjunction with each other.

2.7.1 | Passive control

Strategies to mitigate vibration in SRF cavities start from the very stages of
design and construction. Passive control techniques aim to attenuate micro-
phonics through mechanical and structural design strategies without requiring
active control systems. These methods rely on the inherent properties of the
cavity and its support structure to passively mitigate vibrations.

Some common passive control techniques include the mechanical isolation
of the cavity. In [38] a passive microphonic mitigation process is performed
for the SRF cavities of the LCLS-II project, in which the cavity is isolated from
external vibration sources. Due to the combination of low beam loading and a
high cavity quality factor, the initially intended peak detuning allowance was
set at 10 Hz. However, the peak detuning observed was as high as 150 Hz. This
detuning exhibited a complex and variable time structure, characterized by both
rapid and gradual fluctuations in both amplitude and spectrum.
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Testing conducted under different temperature conditions revealed that ther-
moacoustic oscillations occurring within the cryogenic valves were the pre-
dominant source of the microphonics issue. To address this, measures were
taken, including the implementation of valve wipers and adjustments to valve
plumbing. These actions led to a significant enhancement in the environment
regarding cavity detuning. Furthermore, the mechanical supports of the cavity
were redesigned in order to to reduce, as far as possible, the vibrations trans-
ferred to the cavity.

The addition of materials with high damping properties in critical areas is
another broadly used technique to reduce mechanical detuning by isolating the
cavity. The article by T. Powers [75] describes the detuning problem they had
at CEBAF due to the traffic of vehicles on the roads adjacent to the center. The
solution given to the problem, in this case, was to insulate the structure that
connects the cavity with the outside world by means of mechanically atten-
uating materials such as Sorbothane. For this purpose, attenuator rings were
interposed in the joints of the waveguides, cavity supports, etc.

Knowing the origin of the vibration is always a great help in suppressing
it. In [78] for example, the problem of microphonics generated by the flow
of liquid helium in the cryostat is addressed from a design point of view. for
this purpose, three different configurations for the cooling system are pro-
posed that greatly reduce themechanical disturbances generated by the helium;
a dual-bath-single-temperature system, a dual-bath-dual-temperature system
and what they called a quiet helium source system.

Much work has also been done to improve the design of the cavities them-
selves to make them more resistant to vibration. The objective is to reinforce
the structure in areas known to be subject to strong mechanical stresses, such
the ones generated by Lorentz Forces. This is achieved by stiffening the struc-
ture using different techniques such us stiffening rings (see figure 2.22).

On the other hand, in [31], a different fabrication and stiffening method for
SRF cavities is presented, based on the addition of a thermal spray copper layer
onto a thin wall niobium cavity.

2.7.2 | Active control

Active control techniques involve real-time monitoring and correction of mi-
crophonics using feedback or feed-forward control systems. These methods
aim to actively counteract the vibration-induced disturbances through electro-
magnetic or mechanical adjustments.

In a feed forward control system, the control action is determined based on
the predicted disturbance rather than waiting for the disturbance to affect the
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Figure 2.22.: The left side of the figure shows the positioning of the stiffening rings in
the cell geometry. On the right, the effect of the stiffening rings on the attenuation of
the Lorentz Forces suffered by the cavity is shown [98].

system’s output and then adjusting the control accordingly. The idea is to "feed
forward" information about the expected disturbance into the control system
so that corrective measures can be taken in advance.

In this way, feed-forward systems are commonly used to correct vibrations
whose frequency is fixed and localized, either because they are generated by a
constant disturbance or because they are located in one of the resonance modes
of the cavity. In [68] an Adaptive Feed-forward (AFF) controller is used to con-
trol microphonics derived from mechanical eigen modes. Another clear exam-
ple of feed-forward control is the Narrowband Active Noise Control (NANC)
techniques used in [7], where microphonic detuning produced by rotary ma-
chinery, such as vacuum pumps or HVAC equipment, is greatly reduced.

In the case of low-frequency stochastic disturbances, like those generated
by fluctuations in the liquid helium flow or environmental noise, the use of
feedback control systems is necessary. These kind of controllers continuously
measure the output of the system, and this information is used to adjust the
control inputs in order to minimize the difference between the actual output
and the desired set-point. The traditional proportional-integral (PI) controller
has been used in various machines [19] and is very effective when the phase
response of the tuner is a monotonous function of frequency which is usual
at lower frequencies (10 Hz). At higher frequencies, the tuner-cavity system
typically has mechanical eigenmodes that introduce steps in the phase response
which may possibly lead to positive feedback and instability at even modest
gains. This is where the difficulty of controlling this type of system lies. In order
to circumvent this problem, arbitrary digital control filters can be optimized
specifically to compensate for a given microphonics spectrumwhile taking into
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account the exact phase response of the tuner [37]. The main disadvantage of
this technique is that it is mandatory to study in detail the dynamics of the
system in order to design the controller.

Integrator feedback can also be effectively used to cancel the steady-state er-
ror and slow drifts of the detuning, caused for example by the helium pressure
variations [79]. This kind of algorithm can also compensates for the effect of
the Lorenz Force detuning, when the accelerating field set point is changed, but
it is insufficient to compensate perturbations in the frequency range of micro-
phonics.

In [54], a feedback controller based on the input-output linearization method
(RST feedback) is employed in a simulation environment to control a 9-cell
TESLA cavity. The simulation results were positive, resulting in a very pro-
nounced reduction of the detuning. However, such an algorithm is highly de-
pendent on the accuracy of the mathematical model of the plant used to design
it. This can mean a much higher performance in simulation than in real life,
since the model used to design the controller is identical to the one that is con-
trolled in the simulation itself.

In the work done by Z. Zheng and colleagues [103], a feedback control combo
is used to overcome low frequency detuning in a SRF cavity, in which the Ac-
tive Disturbance Rejection Control (ADRC) algorithm is tested to control the
fast piezo-tuner and a PI for the stepper motor. Despite obtaining very good re-
sults in simulation [102], they soon discovered that in practical cases the ADRC
provided no better performance than a conventional PI. In this case, they con-
cluded that the delay generated by the hysteresis of the piezo-actuator was the
cause of the malfunction of the ADRC.

Certainly, and based on the work done throughout this thesis, the delay in
the control signal is especially detrimental to the ADRC algorithm. Thus, this
work focuses on creating a modification of the ADRC (MLADRC), much more
resistant to delay, with which to control low frequency stochastic detuning.
In the following section, the theoretical basis of the ADRC is presented and
the changes made to the algorithm to make it delay resistant are explained in
depth.



Chapter 3

Active disturbance rejection
control

The ADRC [36, 33, 87] algorithm is an advanced control technique that ad-
dresses the challenges of disturbances and uncertainties in dynamic systems. It
provides an effective solution by combining an extended state observer (ESO)
with control action to counteract the effects of disturbances and enhance overall
system performance.

At its core, ADRC operates on the principle of estimating the total system
disturbance, including both internal and external factors, and then generating
control signals to compensate for these disturbances [87]. Unlike traditional
control methods that rely heavily on precise system models and parameter
tuning, ADRC is designed to handle uncertainties without requiring accurate
knowledge of the system dynamics.

The ESO in ADRC plays a crucial role. It estimates the so-called "total dis-
turbance", which includes unknown inputs, model uncertainties, and external
disturbances. By providing a continuous estimate of the total disturbance, the
ESO enables the control system to make real-time adjustments and effectively
reject any non desired dynamics. This estimation capability is particularly ben-
eficial in situations where disturbances are unpredictable or difficult to measure
accurately.

In this way, ADRC offers several key advantages that contribute to its
widespread application in various fields:

I. Robustness to Uncertainty: ADRC is renowned for its robustness in
the face of uncertainties. The ESO continually updates its estimation
based on observed system behavior, allowing the control system to adapt
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to varying conditions without requiring precise knowledge of the under-
lying dynamics.

II. Simplicity and Reduced Modeling: Unlike some control techniques
that demand detailed and accurate system models, ADRC relies on the
ESO’s disturbance estimation to handle uncertainties. This significantly
reduces the complexity associated with model development and system
identification.

III. Fast Disturbance Rejection: ADRC’s ability to estimate and counteract
disturbances in real time enables rapid response to changing conditions.
This is particularly advantageous in systems where disturbances can oc-
cur suddenly or frequently.

IV. Minimized Tuning Requirements: Traditional control methods often
require intricate tuning to achieve desired performance. ADRC reduces
the need for meticulous tuning due to its inherent disturbance rejection
capabilities, making it more user-friendly and less sensitive to parameter
changes.

V. Applicability in Complex Systems: ADRC’s effectiveness in dealing
with uncertainties makes it suitable for complex systems, including those
with nonlinearities, time-varying dynamics, and external disturbances.

VI. Improved Setpoint Tracking: ADRC’s disturbance estimation and re-
jection abilities contribute to accurate tracking of setpoints, ensuring that
the system’s output closely follows the desired reference trajectory.

VII. Practical Implementation: TheADRC is a lightweight and very easy to
implement algorithm that has found applications in various fields, from
industrial processes to robotics, wind energy, and automotive systems,
showcasing its versatility and adaptability [100].

In summary, the ADRC algorithm is a powerful approach to control dynamic
systems in the presence of disturbances and uncertainties. Its foundation on
the extended state observer, along with its robustness, simplicity, reduced tun-
ing requirements, and applicability to complex systems, positions ADRC as a
valuable tool for achieving high-performance control in SRF cavities.

The ADRC is a non-linear algorithm in nature, as the ESO originally uses
non-linear functions to approximate the total disturbance [40]. This brings with
it the design and implementation difficulties typical of non-linear systems. Still,
for most practical cases, it is possible to apply a linear version of the ADRC
known as linear ADRC or LADRC, which offers virtually the same performance.
This LADRC will therefore serve as the starting point for the development of
our own algorithm.
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The following section presents the theoretical basis of the linear active dis-
turbance rejection control (LADRC).

3.1 | Theoretical basis for the Linear

ADRC

Prof. Jingqing Han, the creator of the ADRC algorithm, took, in 1989, a different
approach in control design, relying bastly on deductive reasoning, as evidenced
in his paper "Control theory: is it a model analysis approach or a direct control
approach?" [35]. This journey culminated in the development of the ADRC,
which was a new way of tackling modern control theory. This paradigm shift
in the study and development of a control algorithm resulted in the ADRC not
having initially a strict mathematical demonstration from the control theory
standpoint, but a more intuitive explanation.

Thus, in this section the operation of the controller will be presented intu-
itively, and each of its parts will be described both mathematically and func-
tionally.

Before continuing, it is worth mentioning that in the original ADRC scheme,
there is an element known as the tracking differenciator (TD). The primary
objective of this control element is to follow the transient profile of the reference
signal, addressing the issue of sudden changes in the set point and reducing
possible noise generated by sensors. As in this particular case, the objective
of the controller is to suppress the detuning of the cavities, i.e. to bring the
detuning to zero, the setpoint signal will always be constant and null. This is
why in this particular case, it does not make sense to implement a TD and that
is why no special attention has been devoted to it.

One of the premises for the operation of the ADRC is that virtually any con-
trollable and observable system, whether linear, nonlinear, time-varying, etc.,
can be simplified to a decoupled chain of integrators by means of the appro-
priate feedback law. This new system, which in advance will be called general-
ized canonical form, is always observable and controllable and easily controlled
by proportional gains, through a state feedback controller. In equation (3.1) a
single-input-single-output (SISO) system of decoupled chain of integrators of
order n is shown.
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

ẋ1 = x2

ẋ2 = x3
...
ẋn = u

y = x1

(3.1)

Here, x1, x2, . . . , xn are the states of the system and y and u the output and
input respectively. This can also be depicted as its state space representation.

˙̄x(t) = Ax̄(t) + Bu(t)

y(t) = Cx̄(t)
(3.2)

where A, B and C are described as follows.

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
0 0 0 · · · 0


n×n

(3.3)

B =
(
0 · · · 0 1

)T
n×1

(3.4)

C =
(
1 0 · · · 0

)
1×n

(3.5)

Thus, the main idea of the ADRC algorithm is to find the appropriate feed-
back law that converts the system to be controlled into its generalized canonical
form, to later control it by means of a state feedback. This is achieved by dy-
namic linearization via the technique of the observer.

Although such concept is, in general, applicable to many nonlinear multi-
input–multi-output (MIMO) time varying systems, a nth order SISO system is
used as an example for the sake of simplicity and clarity. So lets assume an
unknown nth order system described by the following equations.
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

ẋ1 = x2

ẋ2 = x3
...
ẋn = f(x1, x2, . . . , ω(t), t) + bu

y = x1

(3.6)

where y is the output, measured and to be controlled, u is the input, and
f(x1, x2, . . . , ω(t), t) is a multi-variable function of both the states and exter-
nal disturbances ω(t), as well as time. This f function encompasses all system
dynamics different from the canonical form, as well as the effect of any external
perturbation.

The objective here is to make y behave as the desired canonical form using
u as the manipulative variable, and for this purpose, f(x1, x2, . . . , ω(t), t) does
not need to be expressively known. In fact, in the context of feedback control,
F (t) = f(x1, x2, . . . , ω(t), t) is something to be overcome by the control sig-
nal, and it is therefore denoted as the “total disturbance”. Thus, the algorithm
takes as disturbance, not only external perturbations, but also unwanted in-
ternal dynamics of the system. At this point, a challenge typically associated
with system identification has been transitioned into the realm of disturbance
rejection.

Treating F (t) as an additional state of the system xn+1, it is possible to re-
define (3.6) with the following extended state system.



ẋ1 = x2

ẋ2 = x3
...
ẋn = xn+1 + bu

ẋn+1 = Ḟ (t)

y = x1

(3.7)

Which can also be expressed by its state space representation as follows.

˙̄x(t) = Aex̄(t) + Beu(t) + EeḞ (t)

y(t) = Cex̄(t)
(3.8)

Being Ae,Be,Ce and Ee the matrices shown bellow.
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Ae =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
0 0 0 · · · 0


(n+1)×(n+1)

(3.9)

Be =
(
0 · · · 0 b 0

)T
(n+1)×1

(3.10)

Ce =
(
1 0 · · · 0

)
1×(n+1)

(3.11)

Ee =
(
0 0 · · · 1

)T
(n+1)×1

(3.12)

Note that at this point, our system has been redefined as a decoupled chain
of integrators in the first n states, plus the total disturbance which is isolated
in the n+1 state.

So, the next step is to apply a Luenberger observer [15] to the system (see
equation (3.13)), which will be called extended state observer (ESO) since it is
applied to the extended system.

˙̄̂x(t) = Ae ˆ̄x(t) + Beu(t) + L0(y(t)− ŷ(t))

ŷ(t) = Ce ˆ̄x(t)
(3.13)

Where L0 = [β1 . . . βn+1]
′ is a parameter that defines the bandwidth of the

observer (ωe), which have to be usually at least ten times faster than that of the
system’s dynamic and delimits the frequency range of the disturbances to be
considered.

A State Observer, is amathematical tool used in control theory to estimate the
internal state variables of a dynamic system based on its measurable outputs, as
long as the system is observable. In this way, by feeding into the observer the
input signal u of the system and the measured output signal y it is capable of
estimating the values of every state at every moment (ˆ̄x) as well as the output
of the system ŷ. Taking into account that the system has been defined in such
way that the total disturbance f(x1, x2, . . . , ω(t), t) is isolated in the last state
of the extended system, the ESO is able to estimate its value. This allows the
control law (u0−F (t))/b to reduce the plant to a cascade integral form, where
u0 refers to the control signal generated by the state feedback controller. Figure
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3.1 shows the topology of the LADRC algorithm and figure 3.2 the structure of
the ESO in more depth.

Plant

ESO
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k1 kn

N
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=F(t)xn+1

xnx1

r

State Feedback Controller    Decoupled chain of integrators

Figure 3.1.: Common topology of the LADRC algorithm.

It is important to note that, unlike a conventional state observer, in which
an approximate mathematical model of the plant is needed, the ESO does not
need any information about the system to be controlled, since its purpose is to
force it to behave as a decoupled chain of integrators, by feeding back the total
disturbance. In fact, in this explanation the order of the ESO has been defined
as the order of the system to be controlled plus one, but this has been done only
to understand the origin and concept of the ESO. In reality, the stability of the
control system can be assured as long as the ESO is an order higher than the
relative order of the system [91], which is the difference between the number
of poles and zeros of the system.

In the schematic shown in figure 3.1, a state feedback control is applied to
the linearized plant where N is a scaling parameter and K̄ = [k1, k2 . . . , kn]
is the vector resulting from solving the corresponding pole placement problem
[66]. In this particular case, the control signal u is defined by the following
expression.

u(t) =
Nr − K̄[x̂1, x̂2, . . . , x̂n]

T − x̂n+1

b
(3.14)

where x̂n+1 corresponds to the total disturbance F (t).

Note that, once the plant has been reduced to its decoupled chain of integra-
tors form, it is possible to apply a wide range of different controllers.
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Figure 3.2.: Topology of the ESO.

3.1.1 | Alternative system description

To facilitate the analysis of the system by means of its open-loop frequency
response, and based on [99], the LADRC scheme has been redefined as shown
in Figure 3.3.
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Figure 3.3.: Topology of the alternative scheme for the LADRC using a generalized
extended state observer (GESO).

The main idea of this alternative form of LADRC is to internalize the con-
troller directly into the ESO dynamics, thus generating the so-called generalized
ESO (GESO). This GESO has the same function as the ESO, but instead of re-
ducing the system to a decoupled chain of integrators, it reduces the system
directly to the desired dynamics, which would have been determined by the
controller (K̄ vector) in the standard scheme.

The GESO can be expressed by its state-space representation as follows.
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
˙̄̂z(t) = Ag ˆ̄z(t) + Bg

(
r′(t)

y(t)

)
yg(t) = Kg ˆ̄z(t)

(3.15)

Being Ag , Bg and Kg defined by the following equations.

Kg =
(
K̄ 1

)
(3.16)

Ag = Ae − L0Ce −
1

b
BeKg (3.17)

Bg =
(
1
bBe L0

)
(3.18)

Note that, although conceptually there are differences between the two
schemes, they are mathematically equivalent. Figure 3.4 depicts the topology
of the GESO based on the original ESO scheme.
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Figure 3.4.: Topology of the GESO based on the scheme of the standard ESO.

Using the Laplace transform presented in [30] over equation (3.15) the GESO
can be rewritten as a function of the variable s as shown below.

{
s ˆ̄Z(s) = Ag

ˆ̄Z(s) + Be
b R

′(s) + L0Y (s)

Yg(s) = Kg
ˆ̄Z(s)

(3.19)
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Solving the equation (3.19) to suppress ˆ̄Z(s), the output of the GESO Yg(s)
can be defined by the equation (3.20).

Yg(s) = Kg(sI(n+1)×(n+1) − Ag)
−1Be

b
R′(s)

+ Kg(sI(n+1)×(n+1) − Ag)
−1

L0Y (s)
(3.20)

which can be rewritten as a two-degree-of-freedom (2DOF) conventional feed-
back structure as shown in Figure 3.5. It must be said that this equivalent de-
scription is only valid for analysis and not as an alternative implementation
scheme since numerical issues may arise.

Yg(s) = Hgeso(s)Y (s) +Hr
geso(s)R

′(s)

Hgeso(s) = Kg(sI(n+1)×(n+1) − Ag)
−1

L0

Hr
geso(s) = Kg(sI(n+1)×(n+1) − Ag)

−1Be

b

(3.21)

whereHgeso(s) is a transfer function relating the Y (s) input to the GESO out-
put Yg(s), whileHr

geso(s) relates the input to the GESOR′(s) also to the output
Yg(s). Also note that the denominator of both transfer functions are the same.
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u yr
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e  -τsr' -

Delayed Plant
k

Figure 3.5.: Topology of the alternative scheme for the LADRC using a GESO, defined
by a 2DOF feedback structure. A possible time delay τ is also added to the plant.

This description facilitates the stability analysis of the LADRC system. Using
the transfer functions in (3.20) and adding a time delay τ to the plant, the closed
loop characteristic equation derived from Figure 3.5 can be written as follows:

1 + e−τskHgeso(s)P (s) = 0 (3.22)
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where P (s) is the transfer function of the plant. The roots of (3.22) are the
poles of the closed loop transfer function and defines the stability of the system
which can be studied as function of the direct-loop gain k, for a particular time
delay τ . Note that k = 1/b is the nominal value that satisfies the matching con-
dition, since this description is valid for any time delay, including τ = 0. The
matching condition is a term that refers to the minimal condition that assures
the estimated disturbance and the actual disturbance to match, so the controller
is able to effectively rejects disturbances by introducing an integral effect to the
controller.

Note that the introduction of the time delay in the transfer function is of vital
importance, since the main handicap of the application of the ADRC control in
an SRF cavity is its special sensitivity to delay. Thus, one of the requirements
for developing a more delay-resistant control algorithm is to be able to study
the effect of the delay on the controlled system.

When τ is not 0, the analytical solution of equation (3.22) is not simple, since
the number of roots are infinite. However, frequency domain methods, such as
the Nyquist criterion, are valid in this case [104, 99]. By obtaining the Nyquist
diagram (or Bode diagram for open loop stable systems) from the expression
e−τskHgeso(s)P (s), the stability of the system can be analysed by the Nyquist
criterion and the delay stability margin can be easily obtained.

As a straightforward result, if the original system is open-loop stable, for any
delay τ a sufficiently low kmakes the closed-loop system stable [19]. However,
if this k value is lower than 1/b the matching condition is not fulfilled, and the
disturbance reduction is diminished.

Let us now consider the following expression:

Hgeso = Hc
geso +Hf

geso (3.23)

being

Hc
geso = [K, 0](sI(n+1)×(n+1) −Ag)

−1L0 (3.24)

Hf
geso = [0 . . . 0, 1](sI(n+1)×(n+1) −Ag)

−1L0 (3.25)

By decomposing theHgeso transfer function as shown in equation (3.23), the
feedback loop in Figure 3.5 can be separated into two loops, which can be anal-
ysed independently. One of them refers to the equation (3.25) and represents
the effect that the total disturbance feedback has on the overall control loop.
The other loop referring to equation (3.24) represents the effect of the feedback
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of the rest of the state vector. Note that the denominator of the transfer func-
tionHc

geso andH
f
geso are equal and have a pole in the origin, since the matching

condition is satisfied by definition of matrix Ag .

To illustrate the effect of each loop, an example with two mechanical reso-
nances is considered:

P (s) =
1.4

s+ 1
+ g0 + g1 (3.26)

g0 =
ω2
0

s2 + 2δ0ω0s+ ω2
0

(3.27)

g1 =
ω2
1

s2 + 2δ1ω1s+ ω2
1

(3.28)

with ω0=10 rad/s, δ0=0.1, ω1=40 rad/s, δ1=0.05 and a constant delay τ of 0.005 s.
Those values were chosen in order to define a systemwith low relative stability,
which is a fundamental characteristic of the real system to control.

The objective of the following study is to analyze the influence of each of
the parts of the control loop described by 3.25 and 3.24, which, as already men-
tioned, refer to the feedback of the total disturbance and the feedback of the
rest of the state control, respectively. For this purpose, the τ delay of 0.005 s
is added and the open loop of the aforementioned parts of the control loop, i.e.
functions e−τsHc

geso(s)P (s) and e−τsHf
geso(s)P (s), is studied.

In this way, several first order LADRC controllers have been defined based
on equation (3.15), using different values of the observer bandwidth ωe (two
poles in -ωe) to obtain L0, and different values of the controller bandwidth ωc

(one pole in -ωc) to compute K.

First, to observe the effect of the observer bandwidth ωe on the controller
performance, the controller bandwidth ωc is set constant to 5 rad/s and sev-
eral GESOs are generated with observer bandwidths ranging between 1000
and 10000 rad/s. Figure 3.6 shows the Bode diagram for both open-loop trans-
fer functions e−τsHc

geso(s)P (s) and e−τsHf
geso(s)P (s) for the aforementioned

values of ωe.

Similarly, several LADRC controllers (again first order) has been defined
keeping constantωo=1000 rad/s for different values of the LADRC control band-
width ωc. Figure 3.7 shows the Bode diagrams for the open-loop transfer func-
tions e−τsHc

geso(s)P (s) and e−τsHf
geso(s)P (s), for such systems.

Observing Figures 3.6 and 3.7, it is easy to discern that the observer band-
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Figure 3.6.: Open loop Bode diagrams with ωc=5 rad/s and τ = 0.005 s for equations
e−τsHc

geso(s)P (s) (right) and e−τsHf
geso(s)P (s) (left). The observer bandwidth ω0

ranges between 1000 rad/s and 10000 rad/s and the phase degrades linearly with τ .

Figure 3.7.: Open loop Bode diagrams with ωe=1000 rad/s and τ = 0.005 s for equa-
tions e−τsHc

geso(s)P (s) (right) and e−τsHf
geso(s)P (s) (left). The controller band-

width ωc ranges between 0.1 rad/s and 10 rad/s and the phase degrades linearly with
τ .

width is closely related to the change of the gain value in the disturbance esti-
mation loop (Hf

geso(s)P (s)).

Other relevant conclusion, observed in all cases, is the evident effect of the
delay τ=0.005 s on the stability of the LADRC system. This effect is especially
important for the feedback loop containing the estimated disturbance. The high
gain responsible of the disturbance reduction makes the system unstable with
relatively low time delay, since the delay increases the phase lag proportionally
with the frequency. In this case, following the Nyquist criterion for stable open-
loop systems, the system becomes unstable if the system amplitude is higher
than 0 db at frequencies with a phase lag higher than -180 degrees. Figure 3.6
and 3.7 show that the mentioned phase limit is always surpased due to the delay
effect and, in conclusion, all cases have amaximum system gain that guarantees
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the stability. This maximum allowable gain limits the capacity of disturbance
rejection.

Lastly, this example shows that, comparing both feedback loops, the distur-
bance estimation loop (Hf

geso(s)P (s)) is the dominant one, since its open-loop
gain is much larger. This means that it can be considered the main control effect
of the LADRC scheme. From this analysis, it is clear that the expression (3.22)
facilitates the stability analysis of the LADRC controller, especially in the pres-
ence of time delay, and shows the possibility of using the gainK as a designing
parameter.

3.2 | ADRC algorithm and time delay

Like other control techniques, ADRC has practical limitations. One significant
restraint arises from the presence of time delay, which reduces the stability
range of the closed loop system.

Although the nominal stability of the ADRC was proved by adopting a suf-
ficiently fast observer with a performance recovery principle [28], it is difficult
to be employed in practice because the intrinsic delay of the system destabilizes
the control loop.

In [62], the study of this phenomenon is carried out in depth, and it is con-
cluded that the input time-delay tolerance is strictly decreasing with the in-
creasing of the bandwidth of the ESO when other control parameters are fixed.

In contrast, the observer’s accuracy is strongly linked to its dynamics, with
better performance obtained the faster the observer is. Therefore, with the
original ADRC, it is necessary to find a compromise between performance and
closed-loop stable robustness.

Such is the sensitivity of the algorithm to delay that it is unfeasible for sys-
tems with relatively large time delays or poor relative stability, as it is shown
in next section.

3.2.1 | Empirical analisys

Said conclusions can be demonstrated empirically with relative ease in simula-
tion by applying an ADRC to a plant, and varying the parameters of interest,
such as time delay (τ ) and ESO bandwidth (ωe), to see the resulting system
response.

For this purpose, in this section a mathematical model, obtained by Dr. Neu-
mann and colleagues in [68] ,will used, which consist of a mechanical system
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composed by a saclay-I type piezo tuner and a 9-cell TESLA cavity. This is an
approximate model of order 28 and relative order 1, whose frequency response
is depicted in the Bode diagram of Figure 3.8.
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Figure 3.8.: Frequency response of the approximated mathematical model of the me-
chanical system formed by a Saclay-I piezo tuner and a 9 cell TESLA cavity. The model
has no time delay. The diagram relates the control signal to the piezo actuator in volts
with the generated detuning in Hz.

First, the effect of the ESO bandwidth (ωe) on the system stability and con-
troller performance is studied. For this purpose, since the relative order of the
system is two, an ADRC of order two is applied. This controller is composed of
an ESO of order three and a state feedback control. The controller bandwidth
(ωc) is set to 150 rad/s, which means that the control vector K̄ is defined in
such way that all poles of the resulting system are located at that frequency.
The resulting system has fast dynamics with a rise time of approximately 20
milliseconds. Figure 3.9 shows the step response comparison between the non
controlled piezo-cavity system and the controlled system depending on ωe.

As shown in figure 3.9 the temporal response of the system to a step input is
faster and more stable the bigger ωe is. This is because the wider the bandwidth
of the observer, the wider the frequency range in which it can detect and cor-
rect unwanted disturbances and internal dynamics. In fact, if ωe is expanded
sufficiently, it is possible to reduce the complex dynamics of the mechanical
system that is being controlled to a simple second-order system with a double
pole at -150 rad/s. Figure 3.10 shows a Bode diagram comparing the original
uncontrolled mechanical system to the one achieved with an extremely high
ESO bandwidth (ωe = 1000000rad/s).
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Figure 3.9.: Step response of the piezo-cavity mechanical system in open loop and
controlled by different ADRCs. The uncontrolled system’s output is scaled by a factor
of 1/15 for ease of comparison. The controller bandwidth ωc equals 150 rad/s for all
cases while the ESO bandwidth ωe varies.
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Figure 3.10.: Frequency response of the piezo-cavity mechanical system in open loop
and controlled by an ADRC with ωe = 1000000 rad/s and ωc = 150 rad/s. The uncon-
trolled system’s output is scaled by a factor of 1/15 for ease of comparison.

Thus, based on the simulations performed, it is empirically demonstrated that
the performance of the ADRC increases as the bandwidth of the ESO increases.

Let now analyze the effect of the time delay on the stability of the controlled
system. For this purpose, an ADRC configuration that is relatively conservative
in terms of ESO bandwidth, but offers good dynamics is selected, i.e. ωc = 150
rad/s and ωe = 16000 rad/s.
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As shown in Figure 3.11, as soon as delay is introduced into the system, the
performance of the controller starts to deteriorate exponentially. The longer
the delay, the lower the relative stability of the system, as reflected in the oscil-
lations in figure 3.11, until it is completely destabilized when reaching a delay
value between 100 to 110 microseconds. Note that these delay values are very
small even for an actuator with such fast dynamics as a piezo-actuator, which,
as will be shown later, has a delay of the order of milliseconds.

Figure 3.11.: Both images show the step response of the controlled system with vary-
ing time delays. The ADRC that controls the system has ωe = 16000 rad/s and
ωc = 150 rad/s as fixed parameters. The image on the right is a detailed view of
the image on the left, where the trend of the system is better appreciated.

By analyzing the bode diagram of the system in open loop (see chapter 3.1.1
and equation (3.22)), for different time delays (figure 3.12), it is easy to discern
where and why the instability occurs. As it is well known, the time delay de-
grades the phase response of the system proportionally to the frequency, which
is reflected in the bode diagram as an exponential drop in phase, since it is rep-
resented in logarithmic scale. At the same time, looking at the frequency re-
sponse of the system (figure 3.8), it can be seen how at around 2000 rad/s the
phase of the system is approximately -150 degrees. This means that this partic-
ular system has very little margin of stability against delay, since if the phase
worsens by more than 30 degrees in that frequency zone, a phase crossover is
generated in which the gain of the open-loop system is greater than 0 dB, so
that the Nyquist stability criterion is not met.

According to [62], the ADRC time delay tolerance increases as the observer
bandwidth decreases. To demonstrate this fact and to analyze the stabilization
process from the point of view of the Nyquist stability criterion, the delay is set
to 150 microseconds and the observer bandwidth is decreased until the system
is stabilized. As it is shown in figure 3.13, as the bandwidth of the observer
decreases, the gain of the control system decreases too. In this way, it is possible
to achieve a ωe low enough so that the open-loop gain of the system at the
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Figure 3.12.: Frequency response of the open loop system with varying time delays.
The ADRC that is applied has ωe = 16000 rad/s and ωc = 150 rad/s as fixed param-
eters. An arrow indicates the phase crossover frequency at which the Bode stability
criterion is not met for each delay case.

phase crossover frequency is less than 1dB, thus fulfilling the Nyquist stability
criterion. In this particular case, the observer’s bandwidth had to be decreased
to 1000 rad/s in order to stabilize the system.
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Figure 3.13.: Frequency response of the open loop system with a fixed time delay of
150 µs and varying ωe. The bandwidth of the controller ωc is 150 rad/s. An arrow
indicates the phase crossover frequency at which the Bode stability criterion is met
and not met for each ωe case.

Obviously, with the reduction of the bandwidth of the observer, comes the
loss of performance of the controller. Figure 3.14 shows the step response of the
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controlled system (closed loop) without delay (ωe = 16000 rad/s and ωc = 150
rad/s) and with a delay of 150 µs (ωe = 1000 rad/s and ωc = 150 rad/s). A
noticeable degradation in system dynamics is observed, which also suggests a
loss in the controller’s disturbance rejection capabilities.
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Figure 3.14.: Step response of the controlled system with and without delay. The
ADRC that controls the non delayed system has parameters of ωe = 16000 rad/s and
ωc = 150 rad/s. The ADRC that controls the delayed system has parameters of ωe =
1000 rad/s and ωc = 150 rad/s.

In conclusion, it is shown that the bandwidth of the observer is closely related
to the performance of the system but also to its sensitivity to delay. Further-
more, it is clear that reducing the ESO bandwidth is not a valid system for the
stabilization of systems such as the one in question, since the loss of perturba-
tion rejection capabilities is too significant.

3.2.2 | Control strategies against time delay

Thus, in recent decades, control specialists from all over the world have been
working on strategies to overcome this shortcoming and make the ADRC more
resistant to delay.

Various methods have been proposed to address this issue within ADRC-
based schemes. In [36], Han proposed the possibility of designing the ADRC
without considering time delay, which sacrifices performance. Another ap-
proach involves using a Padé approximation, increasing the system order, but
it is only suitable for small time delays [90, 29]. To take into account the time
delay, it has been suggested in [99, 101] to introduce a delay in the control
signal before it enters the ESO. In [77], a Smith predictor-based generalized
Proportional Integral control is proposed for input delayed nonlinear mechan-
ical systems. [14] proposes a predictor scheme for time delay compensation in
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uncertain time delay systems. [29] presents a two-degree-of-freedom (2DOF)
control structure for unstable time-delayed systems. More recently, ADRC de-
signs based on probabilistic robustness have been applied to systems with delay
[97].

While these methods improve stability in the presence of time delay, they
may reduce the disturbance rejection effect and often require more information
about the system, negating one of the major advantages of the ADRC.



Chapter 4

Modified Linear Active
disturbance rejection control

As already discussed in the previous chapter, the ADRC is a versatile and easy
to implement controller, which provides certain features ideal for reducing de-
tuning in SRF cavities, such as fast disturbance rejection, great performance
controlling non-linear systems and not needing much information about the
system to be controlled for its design and implementation.

The main idea of the algorithm is to reduce the plant to a simpler decoupled
chain of intergrators form (canonical form) in order to, then, control it bymeans
of a state feedback controller. This is achieved through the feedback of what
is known as the total disturbance, which is nothing more than any dynamics,
whether internal or external, that are different from the dynamics of the canon-
ical form of the system. To obtain this total disturbance, the algorithm uses an
extended state observer whose operation is described in chapter 3.1.

As shown in section 3.2, the ADRC algorithm is particularly sensitive to time
delays in the control signal and the system destabilizes even for low delay and
controller gain values. In addition, many of the techniques used so far to cir-
cumvent this problem sacrifice performance and perturbation rejection capabil-
ity in exchange for stability. Many others sacrifice one of the major advantages
of the ADRC, which is the lack of need to know the dynamics of the system to
be controlled.

In this section, a novel solution is presented to make the ADRC more resis-
tant to delay without compromising in excess its performance and its intrinsic
advantages such as the possibility to design the controller without having in-
formation about the system to be controlled. In this case, the linear version of
the ADRC, the LADRC, is taken as the foundation of the new algorithm. This
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modification of the LADRC is calledmodified linear active disturbance rejection
control, or MLADRC.

Throughout this chapter, the formal definition of the MLADRC algorithm
will be presented, as well as the detailed explanation of its working principles
and the main differences with respect to the original LADRC. Then, the algo-
rithm design methodology is shown, with a step-by-step guide, both for the
case in which the system dynamics are known and for the case in which they
are not. Later, a simulation example is used to illustrate the design methodol-
ogy and to perform a stability analysis of the algorithm in question. Finally, the
algorithm is implemented in a real oscillatory system to validate its feasibility.

4.1 | Theoretical basis for the MLADRC

The concept of the MLADRC arises from the reformulation of the LADRC algo-
rithm (see chapter 3.1.1) that was carried out to analyze the stability by means
of the analysis of the open-loop system response.

The central idea in this stabilization approach involves systematically push-
ing the controller towards its stability threshold by progressively increasing
the control loop’s gain. Once this limit is reached, an assessment of the re-
sulting instability is carried out. This evaluation can be based on analyzing
the system’s open-loop Bode diagram if the system dynamics are known or by
studying the system’s output signal when the system’s dynamics are unknown.
Subsequently, with the frequency range responsible for system destabilization
identified, the goal is to re-establish stability using loop shaping techniques that
will be explained in more detail throughout this chapter. Figure 4.1 shows the
topology of the MLADRC.

Plant

GESO

k+-
u yr

r

Loop Shaping 
Compensator

f'

Figure 4.1.: Topology of the MLADRC controller.

The following is a mathematical definition of theMLADRC controller, as well
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as an explanation of its operation. It also details the most notable differences
between the MLADRC and the original ADRC.

4.1.1 | Use of the generalized extended state ob-

server

One of the major differences between MLADRC and the original ADRC is the
internalization of the state space feedback control in the ESO itself, giving rise
to the so-called generalized ESO, or GESO.

As explained in chapter 3.1.1, one of the main purposes of reformulating the
ADRC scheme is to access the frequency response of the open-loop system.
This is not possible with the original scheme since the ESO has as an input the
control signal u (see figure 3.1). By means of this transformation of the scheme,
an algorithmmathematically identical to the original one is obtained. However,
this reformulation offers the possibility of studying the stability of the closed
loop system by means of frequency domain techniques, i.e, by analyzing the
characteristic equation shown in equation (3.22).

The GESO is formally defined by means of its state space representation by
the following equation.


˙̄̂z(t) = Ag ˆ̄z(t) + Bg

(
r(t)

y(t)

)
yg(t) = Cg ˆ̄z(t)

(4.1)

Being Ag = Ae − L0Ce − 1
bBeKg and Bg =

(
1
bBe L0

)
, as it was defined

in chapter 3.1.1. In the other hand, Cg is defined differently depending on the
signal that is desired to be used in order to control the system (see equations 4.4
and 4.5). Note that these matrices can be represented more explicitly as follows

Ag =



−β1 1 0 · · · 0 0
−β2 0 1 · · · 0 0
...

...
... . . . ...

...
−βn−1 0 0 · · · 1 0

−βn − k1 −k2 −k3 · · · −kn 0
−βn+1 0 0 · · · 0 0


(n+1)×(n+1)

(4.2)
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Bg =


0 β1
...

...
1 βn
0 βn+1


(n+1)×1

(4.3)

Cg1 =
(
k1 k2 · · · kn 1

)
1×(n+1)

(4.4)

Cg2 =
(
0 0 · · · 1

)
1×(n+1)

(4.5)

where n is the relative order of the system, which is the difference between the
number of poles and zeros. Note that (β1, . . . , βn+1) and (k1, . . . , kn) are the
vectors L0 andK respectively, which are designer tools to define the bandwidth
of the observer ωe and the controller ωc.

It is also worth mentioning that this scheme allows the use of two possible
alternatives to generate the output; Cg1 and Cg2. In the first case, the full feed-
back loop is used, similarly to the typical LADRC scheme. While in the second
case, the feedback is obtained only by means of estimating the total disturbance
F(t).

Taking into account the nature of the total disturbance and the results ob-
tained in previous experiments [52], the dynamics resulting from this updated
approach do not diverge significantly from those of the original scheme. The
notable benefit lies in the simplified structure of the controller, which facilitates
more straightforward analysis.

One of the most important aspects about this new scheme is that due to the
way theAg matrix is defined (see equations (3.17) and (4.2)), the matching con-
dition in the GESO is fulfilled for any closed loop gain. This allows us to ex-
change the 1/b gain of the original ADRC scheme (see figure 3.1) for a variable
gain k, which allows us to adjust the gain of the controller. This gain can be
explicitly implemented in the direct chain of the controller or be implicit in the
definition of the loop shaping compensator.

Varying this gain has an effect very similar to that shown in figure 3.13 in
which the bandwidth of the observer ωe is changed. The benefit of having
this control variable is that it eliminates the need for redefining the ESO when
adjusting the open-loop gain, assuring the matching condition. This enables us
to systematically approach the stability limit of our controller by incrementally
raising this gain, facilitating an in-depth examination of the underlying factors
leading to system instability.

Finally, by looking at both the matrices defining the GESO (equations (4.2),
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(4.3), (4.4) and (4.5)) and the MLADRC topology (figure 4.1), it can be seen that
the high frequency gain b is not a relevant part of the algorithm description,
so it is not a parameter to be known, unlike in the case of the original ADRC.
This means that to design the MLADRC, it is only necessary to know the rela-
tive order n of the system, which is another great advantage over the original
algorithm.

4.1.2 | Loop shaping compensator

As the analisys shown in chapter 3.2.1 illustrates, gain reduction is a lim-
ited design strategy, which may be useful only for systems with small time-
delays. However, the MLADRC approach paves the way for enhancing stability
through the implementation of a loop shaping compensator, thereby enabling
an increase in loop gain and consequent reduction of disturbances. This repre-
sents one of the primary innovations introduced by the MLADRC algorithm.

A loop shaping compensator refers to a control system component used to
alter the frequency response or transfer function of a control loop. This can
involve adding filters, poles, or zeros in the control system to shape the open
loop frequency response and achieve the desired closed-loop behavior. Loop
shaping is a widely used design methodology that can be implemented through
various strategies to achieve a desired frequency response shape, as detailed in
[3]. Controllers used in this approach may include PID controllers, lead or lag
phase compensators, notch filters and so forth.

In the case of time delayed systems, loop shaping can be applied to com-
pensate the frequency response in the high gain, high phase lag areas. Two
potential measures can be implemented: either reducing the gain or introduc-
ing a lead phase within the critical frequency range. In scenarios involving
resonances, lead compensators can enhance phase response, while notch filters
can greatly reduce the system’s gain within these sensitive frequency ranges.
Conversely, at high frequencies, a gain-reducing filter may become essential,
as the lag introduced by the delay may be excessive to be able to compensate.

Taking into account all that was exposed in chapter 3.1.1 and adding the loop
shaping compensator into the equation, it is possible to analyze the open-loop
response of the system by studying the characteristic equation (4.6).

1 + e−τskHgeso(s)C(s)P (s) = 0 (4.6)

Being Hgeso the transfer function of the GESO, depicted in equation (3.21),
P (s) the transfer function of the plant and C(s) the transfer function of the
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loop shaping compensator. Likewise, τ and k refer to the time delay and loop
gain respectively.

Note that the frequency response can be obtained experimentally in a large
number of systems.

4.2 | Designing methodology

When developing this algorithm, the need for a straightforward process for
the controller design, regardless of the system to be controlled, was taken into
account. One of the major advantages of theMLADRC is that it is not necessary
to know the dynamics of the plant, although it is useful when designing the
loop shaping compensator. This poses a great usefulness for big facilities, as
the operator could set the controller parameters without knowing the specific
behaviour of a given cavity.

4.2.1 | Practical steps for the design of the

MLADRC

The method for designing and adjusting the controller is as follows.

I. Select the bandwidth of the observer, ωe. This parameter determines
the frequency range in which the controller detects disturbances and is
closely related to the stability of the system. As shown in [52], the sta-
bility decreases the larger the bandwidth of the observer. This is because
at higher frequencies, the effect of the delay in the phase of the system
is greater. Thus, the observer bandwidth is set as large as the delay al-
lows. For systems with little relative stability, a conservative approach
is to choose the bandwidth a decade larger than the highest frequency
disturbance to be rejected.

II. Set the bandwidth of the controller, ωc. This step determines the final dy-
namics of the system and therefore varies depending on the application.
In any case it should be at least 10 times smaller than the bandwidth of
the observer.

III. Once implemented, it is advisable to start with almost no gain G, and
gradually increase it until the desired dynamics are fulfilled. If the relative
stability of the system is small, either because of the delay or because of
its own characteristics, it may destabilize before the desired dynamics are
achieved. In that case, a loop shaping compensator will be needed.

IV. If the plant transfer function is known, the filter can be designed using
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model based techniques in the frequency domain. If there is no informa-
tion about the plant, it is possible to gradually increase the gain (G) until
the system approaches instability and measure the frequency in which
the instability occurs. Then, implement a loop shaping compensator such
us a notch filter in order to drastically decrease the action of the controller
in that problematic frequency, without affecting the performance in the
rest of the bandwidth.

This method is illustrated below by means of a practical example carried out
in simulation, but first, a brief review of how to analyze system stability using
a bode diagram.

4.2.2 | System stability analysis using Bode plot

The Nyquist Stability Criterion is a mathematical method employed to assess
the stability of a control system and can be easily studied through the examina-
tion of its Bode plot, as long as the system is a minimum-phase system. Because
it only looks at the Bode plot of the open loop systems, it can be applied without
explicitly computing the poles and zeros of either the closed-loop or open-loop
system. As a result, it can be applied to systems defined by non-rational func-
tions, such as systems with delays. This criterion offers a quantitative assess-
ment of the system’s stability, considering both the system’s gain and phase
characteristics in its response.

This method introduces two critical measures of stability, namely the gain
margin and phase margin. These margins are important because they provide
an indication of how close the system is to instability and are very useful tools
for designing the MLADRC controller for minimum-phase systems. They are
defined as follows.

| Gain margin

The gain margin is the amount of additional gain that can be added to the sys-
tem without causing instability. It is defined by the negative of the gain of the
open loop system at the phase crossover frequency, that is the frequency in
which the phase of the open loop system crosses -180 degrees. The gain mar-
gin can be directly read from the Bode plot by calculating the vertical distance
between the magnitude curve and the x-axis at the phase crossover frequency,
as it is shown in figure 4.2. The greater the gain margin, the greater the relative
stability of the system.
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Phase crossover frequency=316 rad/s

Gain crossover frequency=316 rad/s

Phase margin=29.1 degree

Gain margin=8.94 dB

Figure 4.2.: Phase and gain margin of an example system.

| Phase margin

The phase margin refers to the amount of phase, that can be increased or de-
creased without making the system unstable. It is defined by the phase lag of
the open loop systemminus 180 degrees, at the frequency where the gain of the
open loop system is 0 dB. This frequency is called the gain crossover frequency.
The phase margin can be directly read from the Bode diagram by calculating
the vertical distance between the phase curve and and -180 degrees at the gain
crossover frequency, as it is shown in figure 4.2. The greater the phase margin,
the greater the relative stability of the system.

4.2.3 | Practical example of the design and stabi-

lization of a MLADRC algorithm

For this example, the piezo tuner model shown in figure 3.8 is used as the target
system, but in this case, with an instrinsic delay of 150µs. As it has been pointed
before, this delay generates a linear decay in the phase of the system that is
shown as exponential in the bode diagram (see figure 4.3), since the frequency
is represented in logarithmic scale.

As it can be seen, the combination of the delay and the observed resonance
peak at 1500 rad/s causes the system to destabilize in closed loop at a relatively
low frequency, 2000 rad/s or 318 Hz. This will be of particular importance for
the stabilization process that will follow.



Designing methodology 65

0

10

20

30

40

D
et

u
n
in

g
 (

d
B
)

From: u  To: y

103 104
-270

-180

-90

0

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency (rad/s)

Figure 4.3.: Bode diagram of the delayed piezo tuner that is used as an example in
chapter 4.2.3.

In order to carry out the design and stabilization process, the control system
shown in figure 4.4 is implemented in Matlab, where the input r refers to the
system set-point and p to the external disturbances suffered by the system.

Piezo
model

GESO

k+-

u yr

r

Loop Shaping 
Compensator

++ e-τs

p

Plant

f'

Figure 4.4.: Scheme of the simulation system implemented in matlab to test the de-
signing methodology of the MLADRC.

To begin with, and based on the fact that the relative order of the system to
be controlled is 1, it is determined that it is sufficient to implement anMLADRC
of order 1, with the corresponding ESO of order 2. Thus, the next step is to set
the bandwidths of both the observer ωe and the controller ωc.

Typically, the bandwidths of both the controller and the observer are defined
according to the system to be controlled and the specifications of the particular
system, following the guidelines set out in the section 4.2.1. In this case, it is
decided to work with ωc = 150 rad/s and ωe = 16000 rad/s since they were
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the ones used in the stability analysis carried out in section 3.2.1, and this will
allow us to compare the results of our stabilization system with those obtained
in that section.

One of the main objectives of our stabilization system is not to degrade the
performance of the controller to the best extent possible, unlike most of the
processes proposed to date. This is why, first of all, the GESO is applied to the
non delayed target system in order to study its ideal performance. As shown
in figure 4.5, the controller in question provides first-order dynamics, with no
overshoot and a rise time of 0.02 sec. As far as disturbance damping is con-
cerned, the controller is capable of suppressing the perturbation in roughly 0.02
seconds, suggesting a bandwidth of approximately 90 Hz.

Figure 4.5.: Step response of the non-delayed system controlled by a MLADRC with
ωe = 16000 rad/s and ωc = 150 rad/s. The plot in the left shows the response of the
system when introducing the step as the systems setpoint, while the plot in the right
shows the response of the system when introducing the step as a perturbation.

Once the delay inherent to the piezo-tuner has been applied, the system be-
comes unstable. This fact is easy to explain by analyzing the bode diagram of
the system response in open loop. Figure 4.6 shows the comparison between
the open loop response of the delayed and the non-delayed systems. As can
be seen, the delayed system shows the typical linear degradation in the phase
derived from the time delay, which in the bode diagram appears as an expo-
nential decay. Due to the resonance peak that the system has at 1500 rad/s, the
phase of the system around that frequency is very close to -180 degrees. When
the delay is applied, the phase shift it introduces at those frequencies is enough
to make the phase exceed -180 degrees and thus generate a phase crossover
frequency. As the gain of the open loop system at that crossover frequency is
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higher than 0dB, this means that the closed loop system is unstable, as it is well
demonstrated if a step input is introduced in it.
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Figure 4.6.: Bode diagram of the controlled system in open loop. The blue plot rep-
resents the response of the non delayed system while the orange plot represents the
delayed system.

Since the system is unstable,there are two options at this point. Use fre-
quency design techniques in case the dynamics of the system are known (ap-
proximate transfer function), or apply a notch filter at the destabilization fre-
quency if there is no transfer function available. In order to demonstrate the
validity of both procedures and to compare the results, both stabilization ap-
proaches will be carried out below.

| Stabilization via a notch filter

First of all, it is worth mentioning that, taking into account the characteristics
of this system, stabilization by means of a notch filter is not the most efficient
solution. This is because the mechanism by which the system is stabilized by
introducing a notch filter is based on the decrease of the open loop gain of the
system at the destabilization frequency. Figure 4.6 shows how the gain of this
system at that frequency is 12.5 dB, which implies that for the notch filter to
stabilize the system, it must reduce the gain below 0 dB in that frequency range
without affecting the phase excessively. This implies a relatively large change
in the dynamics of the system, and suggests that the system is stabilized at the
expense of a degradation in performance. Still, implementing a notch filter as a
loop shaping compensator is a viable method for when no system information
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is available, as shown below. Equation (4.7) depicts the transfer function of a
generic notch filter, where ω0 is the frequency to which the filter is centered
and Q the quality factor of the filter.

HNotch(s) =
s2 + ω2

0

s2 + ω0
Q s+ ω2

0

(4.7)

In the hypothetical case of not having an approximate transfer function, the
first step to implement the notch filter is to obtain the frequency at which the
system destabilizes. For this purpose, the gain k is reduced until the point at
which the system stabilizes, and gradually increased until the oscillations typ-
ical of the onset of destabilization are detected at the system output. For this
particular case, the system starts to destabilize with a gain k = 0.18 as it is
shown in figure 4.7.

0.034 s

Figure 4.7.: Time response of the delayed system when k=0.18 and a step input is
introduced as a perturbation. The plot in the left shows the evolution of the system’s
time response while the right plot shows a zoom of that same response.

When the system destabilizes, it begins to oscillate with a period of 34 µs,
which indicates a destabilization frequency of approximately 295 Hz, or 1850
rad/s. It is important to note that since there is no transfer function available,
this method relies more in trial and error. In this way, a notch filter centered in
1850 rad/s and with a quality factor Q=1 was initially implemented as the loop
shaping compensator. Then, those parameters were tuned until an appropriate
system response was achieved. The final implemented notch filter is described
by equation (4.8) and is centered in 1550 rad/s with a quality factor Q=0.88.

HNotch(s) =
s2 + 2402500

s2 + 17613s+ 2402500
(4.8)
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Figure 4.8 shows the time response of the controlled system to a step input
and compares it to the ideal behaviour obtained above. As expected, stabilisa-
tion by means of the notch filter has altered the performance of the original
controller and has, to some extent, degraded its ability to reduce disturbances.
Even so, the loss in performance has not been as noticeable as that obtained
by other stabilisation methods such as reducing the gain of the control loop.
In fact, the controller maintains intact the ability to follow a set-point, just as
the original controller would do when controlling the system without delay.
In addition, the settling time of the disturbance is approximately 0.05 seconds,
suggesting a bandwidth of 36 Hz.

Figure 4.8.: Step response of both the non-delayed system controlled by a MLADRC
and the delayed system controlled by the same MLADRC but stabilized with a notch
filter. The plot in the left shows the response of the systems when introducing the step
as the systems set-point, while the plot in the right shows the response of the systems
when introducing the step as a perturbation.

By looking at the Bode diagram relating the disturbances to the output of
the closed-loop system (see figure 4.9), it is easy to discern the effect of the
notch filter on the disturbance suppression capability of the controller. As the
notch filter reduces the gain of the controller at frequencies around 1550 rad/s to
prevent it from destabilising, it also reduces its ability to act on the disturbances
at these frequencies. This is reflected in the closed-loop system’s Bode diagram
as an increase in the gain at around 1550 rad/s.

It is important to note that this does not mean that the notch filter is an
inferior solution per se. There are simply cases where one type of loop shaping
compensator gives better results than others, and this depends largely on the
characteristics of the system to be controlled. What is true is that when the
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Figure 4.9.: Bode diagram relating the disturbances entering the system with the gen-
erated detuning. It compares the response of the non-delayed system while being con-
trolled with the MLADRC and Bode diagram of the delayed system being controlled by
the MLADRC and stabilized by the notch filter.

frequency response of the system is not known, it is usually easier to implement
a notch filter, since it is enough to know the frequency at which the system
destabilises. That being said, it is also possible to implement a lead filter by
trial and error.

| Stabilization via loop shaping techniqes

In order to stabilise a system using loop shaping techniques, it is imperative to
have an approximate transfer function of the system. This stabilisation method
is based on analysing the frequency response of the system in open loop and
detecting the frequency range in which the Nyquist stability criterion is not
met. Later, by means of additional filters and controllers implemented as loop
shaping compensators, the idea is to model the gain and phase of the system at
those problematic frequencies in order to bring the system back to its stability
regime, affecting its dynamics as little as possible.

Returning to the problem at hand and looking at the figure 4.6, it can be
seen that the instability is given by the phase of the system in the frequency
range 1800-2800 rad/s. The combination of the delay and the resonance that
the system exhibits at 1500 rad/s causes the phase of the open-loop system to
exceed -180 degrees in a short frequency range and in conclusion makes the
closed-loop system unstable.
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Thus, the objective of the loop shaping compensator that should be imple-
mented is to increase the phase of the system in that problematic frequency
range so that it never exceeds -180 degrees and thus no phase crossover fre-
quency exists where the gain is greater than 0 dB. The ideal filter to achieve
such an effect is a lead compensator, which can be defined by the equation
(4.9).

HLead(s) =
ωp(s+ ωz)

ωz(s+ ωp)
(4.9)

where ωz stands for the frequency at which the zero of the filter is located and
ωp represents the frequency at which the pole is located.

Thus, to stabilise the system, the lead compensator has been designed in
such a way that its pole is at 2500 rad/s and its zero is at 1500 rad/s. In this
way, the open-loop system’s phase is increased in the desired frequency range
without affecting the gain significantly. This is important because if the gain
is increased excessively, stability problems could arise at other frequencies that
have not been problematic up to now.

In conclusion, the lead filter implemented as a loop shaping compensator is
defined by the equation (4.10) and has a Bode diagram as shown in the figure
4.10.

HLead(s) =
1.667s+ 2500

s+ 2500
(4.10)
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Figure 4.10.: Bode diagram of the phase lead filter used to stabilize the system.
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As can be seen in figure 4.10, the lead filter increases the phase of the system
by approximately 15 degrees at around 2000 rad/s. If this filter is implement
and the Bode diagram of the complete system in open loop plotted (figure 4.11),
it can be seen how the phase crossover frequency that was at 1850 rad/s has
disappeared, resulting in the stabilisation of the system.

-20

-10

0

10

20

30

D
et

u
n
in

g
 (

d
B
)

103 104
-360

-270

-180

-90

0

Ph
as

e 
(d

eg
)

Unstable system
Stabilized system

Frequency  (rad/s)

Figure 4.11.: Bode diagram of the open loop of the system without stabilization and
stabilized by a lead compensator.

As the lead compensator stabilises the system, almost without altering the
dynamics of the system, the controller performance obtained by this technique
is superior to that achieved by the notch filter, and almost identical to the ideal
performance of the MLADRC when controlling the system without delay. This
has more to do with the fact that more information was available for the design
of the lead compensator than with the compensator itself. Figure 4.12 com-
pares the time response of the system without delay being controlled by the
MLADRC (ideal performance) and the system with delay, stabilised by the lead
compensator and controlled by the same MLADRC. As can be seen, the lead
compensator not only stabilises the system, but also slightly improves perfor-
mance by increasing the gain of the controller at frequencies above 2000 rad/s.
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Figure 4.12.: Step response of both the non-delayed system controlled by a MLADRC
and the delayed system controlled by the same MLADRC but stabilized with a lead
filter. The plot in the left shows the response of the systems when introducing the step
as the system’s set-point, while the plot in the right shows the response of the systems
when introducing the step as a perturbation.

4.3 | Experimental validation of the

MLADRC

In this section, the aforementioned approach is implemented in a real mechani-
cal system with relevant resonant modes to analyse the feasibility of the design
process and the performance of the resulting controller.

4.3.1 | System description

The mechanical system used to analyse the stabilization process must meet cer-
tain characteristics that are important for proper testing of the control algo-
rithm and its ability to reject disturbances. Considering that the ultimate goal
of this algorithm is to control the microphonics of an SRF cavity, it is impor-
tant that the mechanical system in which the controller is validated has similar
qualities to those of such cavities, at least from a control point of view.

Among the most remarkable features regarding the control of an SRF cavity
are its high sensitivity to mechanical vibrations, a remarkable non-linear dy-
namics derived from Lorentz forces and the fact that it is a non-collocated con-
trol problem. This implies that the control input and the output measurement



74 Modified Linear Active disturbance rejection control

are at different locations within the structure, making the system significantly
more difficult to control.

In this way, the mechanical system selected for this test is a passive flexible
structure mounted on a single-axis seismic table for the study of active mass
dampers, shown in Figure 4.13. The structure has a capacitive accelerometer
on its top in order to measure the vibration of the system and is controlled by
the linear movement of the shaking table. At the same time, the shaking table is
controlled by a high-torque motor connected to it via a rack-and-pinion system.
The motor also has a high-resolution optical encoder with which the position
of the shaking table is measured.

Flexible sheets

Motor & encoder

Accelerometer

Figure 4.13.: Picture of the validation system. A flexible structuremounted in a seismic
table.

As far as the control characteristics of the system are concerned, it is a system
that tends to oscillate with relative ease, as it has a large resonance mode at 4
Hz. Thus, like resonant cavities, it is a system that is particularly sensitive
to mechanical vibrations. In addition to this, the dead zone of the motor and
the static friction in the pinion-rack system cause the dynamics of the system
to have an important non-linear component. Finally, it is worth mentioning
that it is a non-collocated control problem, as the main intent is to control the
vibrations of the upper part of the structure by moving the lower platform.
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| Seismic table

This is a system commercialised by Quanser consisting of a stand and a stain-
less steel mobile platform. This platform slides along two guides by means of
linear ball bearings, which are responsible for reducing the friction between the
platform and the support. The motion is generated by a high quality DC motor
capable of generating enough torque to accelerate masses of 5kg at 9.81m/s2.
This movement is transmitted to the platform by means of a rack and pinion
transmission system which has a maximum displacement range of 4 cm. In ad-
dition, the platform also has a position measurement system consisting of an
optical encoder. The most relevant characteristics of the system are shown in
table 4.1.

Table 4.1.: Technical specifications of the shake table I.
Symbol Description Value Unit

∆x Range of movement 0.04 m
m1 Moving platform mass 1.5 kg
nr Rack holes 30 Teeth/m
rp Pinion inner radius 6.35 mm
np Number of sprocket teeth 12 Teeth

| DC motor

The motor used in this system is a low-displacement, high-torque motor de-
signed and marketed by the Pittman brand. More specifically, it is the Pittman

Express 1404S005 model. The technical specifications of the device are given
in table 4.2. It is worth mentioning that in order to protect the integrity of the
motor brushes, the bandwidth of all incoming signals has been limited to 50Hz.

Table 4.2.: Technical specifications of the DC motor Pittman Express 1404S005.
Symbol Description Value Unit

τmax Max torque 1.4 Nm
km Torque constant 0.0612 Nm
kb Counter-electromotive force constant 0.0612 Vs/rad
Imax Max current 22.9 A
Rm Motor shell resistance 1.5 Ω
Lm Motor shell inductance 1.6 mH
jm Moment of inertia of the motor 2.64 · 10−5 Kgm2

| Optical encoder

The position of the mobile platform is measured by means of a quadrature dig-
ital optical encoder located at the rear of the motor, so the position measure-
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ments obtained are always relative to the initial position of the structure. The
specific model of the encoder is US Digital E3-2048-250-H and its character-
istics are listed in table 4.3.

Table 4.3.: Technical specifications of the Optical encoder US Digital E3-2048-250-H.
Symbol Description Value Unit

R Resolution 8192 Accounts/rev
Se Sensitivity 4.87 µm

Type TTL

| Flexible structure

This is a structure created byQuanser (modelAMD-1) consisting of two flexible
stainless steel sheets connected to each other at the ends by two methacrylate
platforms. It is anchored vertically to the table described in the previous section
by means of screws. In this particular case, it does not have any type of control-
lable moving element, making it a passive element. It includes an accelerometer
which provides measurements of the acceleration of the upper platform of the
structure. The most relevant characteristics are shown in table 4.4.

Table 4.4.: Technical specifications of the flexible structure.
Symbol Description Value Unit

l Width 320 mm
h Height 500 mm
d Depth 110 mm
m2 Mass 1.6 kg

| Accelerometer

The top surface of the structure is equipped with a single-chip DC capacitive
accelerometer with signal conditioning and a dynamic range going from -5g to
5g. It is calibrated by the manufacturer to generate 1 Volt per g of measured
acceleration (Sa = 9.8m/s2V ). The accelerometer is capable of measuring
both static and dynamic accelerations, and is mounted so that its sensitive axis
is longitudinal to the structure.

4.3.2 | System identification

In order to have a preliminary idea of the dynamics of the system and as a start-
ing point for the design of the loop shaping compensator, a simplified mathe-
matical model has been developed, which represents the most relevant features
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of the system. For this purpose, and due to the complexity of the real dynamics
of the structure, the mass-spring approximation was selected to serve as the
foundation of the model.

First, it is important to model the dynamics of the DC motor. The process
starts by defining the electrical equation based on the electrical schematic for a
DC motor shown in figure 4.14.

Figure 4.14.: Electric schematic of a generic DC motor.

Applying Kirchhoff’s law to the DC motor schematic shown in figure 4.14,
the following electrical equation is obtained.

um(t) = Rmi(t) + Lm
di(t)

dt
+ eb(t) (4.11)

where um is the input voltage to the motor, i is the current flowing through
the circuit, eb the counter-electromotive force and Rm and Lm the terminal
resistance and inductance of the motor respectively.

In this particular case, it is possible to simplify the equation using the electri-
cal motor constant elimination method, since Lm is considerably smaller than
Rm (see table 4.2). Thus, the electrical equation is defined as the following.

um(t) = Rmi(t) + eb(t) (4.12)

On the other hand, the DC motor shall be considered to satisfy the following
electromagnetic coupling ratios.

eb(t) = kbθ̇m(t) (4.13)

τm(t) = kmi(t) (4.14)

where kb is the counter-electromotive force constant and km is the torque con-
stant of themotor. Both constants are equal when expressed in units of the same
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unit system, and represent the efficiency of the motor in converting electrical
energy into mechanical energy.

Thus, by replacing the equation (4.13) in (4.12), it is possible to represent the
electrical equation of the system as follows:

um(t) = Rmi(t) + kbθ̇m(t) (4.15)

By isolating the intensity i(t) in equation (4.15) and replacing it in equation
(4.14) and taking into account that τm = rpFm and ẋ1(t) = rpθ̇(t), the equation
that relates the motor force to the voltage between its terminals is obtained.

Fm(t) =
km
Rmrp

um(t)− kmkb
Rmr2p

ẋ1(t) (4.16)

The next step is to parameterise the dynamics of the flexible structure. In this
approach, the total mass of the system is divided into two. On the one hand the
mass of the platform (m1) and on the other hand the mass of the structure itself
(m2). In order to represent the oscillatory character of the system, these masses
are connected to each other by means of an imaginary spring with an elastic
constantKf . The system to be studied is thus represented in figure 4.15, where
Bc is the coefficient of viscous friction corresponding to the load, Fm is the
force exerted by the motor on the load and x1 and x2 the linear positions of the
upper and lower masses respectively.

m

Figure 4.15.: Diagram of the approximate mass-spring system and the forces acting
on it.
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Note that the only oscillatory dynamic of the system is given by the imag-
inary spring, so the resulting approximation will only represent the most sig-
nificant resonance of the real system, which will be a function of the unknown
parameters kf and Bc. This is why, first of all, those parameters are approxi-
mated.

For this purpose, an experimental procedure was carried out in which, while
keeping the position of the lower platform fixed, a thrust was manually applied
to the upper part of the structure. Then, the acceleration of the upper platform
was measured and the data was processed in Labview [9] to calculate both the
frequency response and the envelope. Labview is a system design and devel-
opment platform created by National Instruments that is widely used for the
development of measurement, and control systems. It employs a graphical pro-
gramming language, often referred to as "G" that is based in dataflow operation.

By keeping the position of the moving platform fixed (x1(t) = 0), the system
shown in figure 4.15 has been converted into a damped harmonic oscillator
governed by the following time evolution equation.

ẍ2(t) = C0e
−γtcos(ωnt+ ϕ0) (4.17)

where C0 and ϕ are constants determined by initial condition and ẍ2 is the
acceleration of the upper platform. At the same time, it is known that for a
damped harmonic oscillator, the following relations are met.

γ =
Bc

2m2
(4.18)

ωn =
√
ω2
0 − γ2 (4.19)

ω0 =

√
kf
m2

(4.20)

where ω0 is the harmonic frequency of the system.

In this way, to calculate the natural frequency of the system ωn, it is suffi-
cient to measure the resonance peak observed in the Fourier transform of the
measured acceleration, obtaining a value of 4 Hz, or ωn = 25.133rad/s.

To obtain the damping coefficient γ, it is enough to adjust the envelope of
the measured acceleration with the function f(t) = C0e

−γt, obtaining a value
of γ = 0.142rad/s.
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Substituting the values of γ and ωn into the equations (4.18-4.20) the param-
eters shown in the table 4.5 are calculated.

Table 4.5.: Parameters of the mass-spring approximation.
ω0 Bc kf

25.133 rad/s 0.454 kg/s 1010.7 N/m

In order to obtain the time evolution equations for both the top surface and
the base of the structure, the system shown in figure 4.15 was solved using
analytical mechanics.

The first step has been to formulate the Lagrangian, which is nothing more
than the difference between the kinetic and potential energy of the system.

L = T − V (4.21)

The total kinetic energy is equal to the sum of the contributions of both
masses and the motor. The potential energy, in turn, is the energy stored in
the imaginary spring. It is worth mentioning that the deformation of the imag-
inary spring is x1(t) − x2(t) and the kinetic energy of the motor is defined as
follows.

Tm(t) =
1

2
Jmω

2(t) =
1

2

Jm
r2p
ẋ21(t) (4.22)

where rp is the radius of the pinion, Jm is the moment of inertia of the rotor
and ω(t) is its angular velocity.

The Lagrangian is thus defined as follows:

L =
1

2
m1ẋ

2
1(t) +

1

2
m2ẋ

2
2(t) +

1

2

Jm
r2p
ẋ21(t)−

1

2
kf [x1(t)− x2(t)]

2 (4.23)

The next step is to state the Lagrange equations.

{
d
dt

∂L
∂ẋ1

− ∂L
∂x1

= Qx1

d
dt

∂L
∂ẋ2

− ∂L
∂x2

= Qx2

(4.24)

Bearing in mind that Qx1 and Qx2 are the external forces acting on the dy-
namics ofm1 andm2 respectively, the following is obtained.
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{
(m1 +

Jm
r2p

)ẍ1(t) = kf [x1(t)− x2(t)] = Fm(t)− (Bc +
B′

m
r2p

)ẋ1(t)

m2ẍ2(t) + kf [x1(t)− x2(t)] = −Bcẋ2(t)
(4.25)

Note that Qx1 is equal to the total force exerted by the motor minus the
viscous frictional force generated by both mass 1 and the rotor. Similarly, Qx2

is equal to the viscous frictional force experienced by mass 2.

From this point onwards and in order to simplify the equations, the following
equivalences will be used.

meq = m1 +
Jm
r2p

(4.26)

Beq = Bc +
B′

m

r2p
(4.27)

In order to be able to operate with the system of differential equations more
easily, the equivalences (4.26) and (4.27) have been introduced and the Laplace
transform has been applied under zero initial conditions.

{
meqs

2X1(s) + kf [X1(s)−X2(s)] = Fm(s)−BeqsX1(s)

m2s
2X2(s) + kf [X1(s)−X2(s)] = −BcsX2(s)

(4.28)

Operating on the system of equations (4.28) the expression relatingX1(s) to
X2(s) is obatined.

X2(s) =
kf

m2s2 +Bcs+ kf
X1(s) (4.29)

At this point, substituting the equations (4.29) and the Laplace transform
of Fm(t) (4.16) into the first equation of (4.28), an equation only in terms of
the input voltage to the motor Um(s) and the position of the moving platform
X1(s) is obtained.

meqs
2X1(s)+kf

m2s
2 +Bcs

m2s2 +Bcs+ kf
X1(s)+BeqsX1(s)+

kmkB
Rmr2p

sX1(s) =
km
Rmrp

Um(s)

(4.30)
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In this way, the transfer function relating the input voltage to the motor and
the position of the moving platform can be defined as follows.

Gx1(s) =
X1(s)

Um(s)
=

km
Rmrp

meqs2 + (Beq +
kmkB
Rmr2p

)s+ kf (
m2s2+Bcs

m2s2+Bcs+kf
)

(4.31)

Lastly, by using in equation (4.31) the values of the parameters provided by
the manufacturer (tables 4.1, 4.2 and 4.4), as well as those calculated in sec-
tion this section (table 4.5), it is obtained that the transfer function Gx1 can be
defined as follows.

Gx1(s) =
X1(s)

Um(s)
=

2.98(s2 + 0.284s+ 631.712)

s(s+ 24.11)(s2 + 9.546s+ 879.911)
(4.32)

Substituting equation (4.32) into equation (4.29), the transfer function relat-
ing the input voltage of the motor with the position of the top surface of the
structure is calculated.

Gx2(s) =
X1(s)

Um(s)
=

1881.3

s(s+ 24.11)(s2 + 9.546s+ 879.911)
(4.33)

This system can also be described by its state space representation as shown
in equation (3.2) where A, B and C are the following matrices.

A =


0 0 1 0
0 0 0 1

−469.063 469.063 −33.38 0
631.6875 −631.6875 0 −0.3125

 (4.34)

B =
(
0 0 2.087 0

)T (4.35)

C =

(
1 0 0 0

631.6875 −631.6875 0 −0.3125

)
(4.36)

By analyzing the bode diagram relating the input of the system Um(s) to the
position of the moving platformX1(s) shown in figure 4.16, it is obvious that it
has similar characteristics to the piezo tuner studied in section 4.2.3. Although
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the system is simpler, as only the most significant resonance has been charac-
terised, it suffers from the same stability problem. This is caused by the fact that
the resonance-antiresonance pair at 4 Hz makes the phase at that frequency
very close to -180 degrees. Thus, when the time delay is sufficiently big, the
phase will exceed -180 degrees, generating a phase crossover frequency where
the gain is greater than 0 dB, and in conclusion, destabilising the system.
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Figure 4.16.: Bode diagram of the Gx1
transfer function.

4.3.3 | Experimental setup

For the experiment, a myRIO-9000 [48] was used to host the control algorithm.
This device is a modular embedded control and acquisition system developed
by National Instruments (NI). It is designed for applications that require real-
time processing, high-speed data acquisition, and reliable performance in harsh
environments. The general architecture of a myRIO involves a microprocessor
running a real-time operative system, a Field Programmable Gate Array (FPGA)
and and a set of analogue and digital inputs and outputs. See Appendix C.2 for
more information.

In this way, theMLADRC algorithmwas developed using LabViewReal-Time
and was run on the real-time processor of the myRIO. The analog I/O terminals
of the Mini System Port (MSP) of the device were used to generate and acquire
the nedeed signals. Figure 4.17 shows a schematic of the experimental setup.

ThemyRIO acquires both the acceleration signal from the upper platform and
the position of the lower platform via the analogue input/output terminals. The
MLADRC algorithm implemented for this particular system assigns a weight
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ADC

DAC
Control signal

Position

Acceleration

Flexible Structure

Power amplifierMyRIO-9000

Development PC

Figure 4.17.: Scheme of the experimental setup used for the flexible structure testing.

to each of these magnitudes and adds them together to then apply the control
to that new magnitude. In this way, the algorithm tries to minimize both the
position error of the lower platform and the acceleration of the top platform.
Once the control signal is computed it is amplified by a power amplifier and
sent into the motor of the structure. The myRIO is connected via USB to a
development PC where the parameters of the system can be monitored.

4.3.4 | Experimental results

In this section, the controller and stabilisation techniques developed throughout
this work are applied to the actual flexible structure.

| MLADRC performance without delay

First, the generic performance of theMLADRC for the mechanical system given
by matrices (4.34-4.35) has been measured. For that purpose, the MLADRC
structure described in figure 4.1 was implemented on a myRio device using
LabVIEW and its performance was compared with that of a PID.

In order to make an objective comparison between both algorithms, it is im-
portant to set the parameters ofthe PID to an acceptable level of optimisation.
For this purpose, a genetic algorithm based on BLX-alpha crossover [25] was
developed to find the optimal parameters for the PID. This algorithm starts the
first iteration by implementing on the mathematical model defined by the ma-
trices (4.34-4.36) the controller to be optimised with random parameters, and
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calculates its performance by measuring several parameters of interest such as
overshoot, rise time, RMS etc. For the next iterations, the algorithm retains the
top 20% of controllers and adds new random controllers to the pool and repeats
the process, until the controllers exceed user-set standards.

After extensive testing, the optimal parameters for the PID were defined as
Kp = 3 , Ki = 12 and Kd = 0.006. Similarly, it was determined that a
second-order MLADRC with a GESO bandwidth of ωe = 250Hz and a con-
troller bandwidth of ωc = 15Hz is an acceptable compromise between smooth
dynamics and good disturbance rejection. In this way, the L0 and K0 matri-
ces (see chapter 4.1) have been set to place the observer poles at 250 Hz (three
poles) and the controller poles at 15 Hz (two poles). As shown in figure 4.18, the
performance of the MLADRC algorithm is superior to that of a PID, because it
offers five times less overshoot and much better vibration rejection.

The sampling time used in the discrete implementation of the controller has
been 0.5 milliseconds, thus restricting the MLADRC to a maximum bandwidth
of 1 KHz.

Figure 4.18.: Step response of the non-delayed system controlled by a well-tuned PID
versus the proposed MLADRC. The graph above shows the position of the mobile plat-
form while the lower graph shows the acceleration of the top platform.

| Stabilization of the delayed system by loop shaping

To test the proposed stabilization procedure, the control signal has been delayed
via software by 5 ms, making the system unstable. Analysing the resulting con-
trol signal shown in figure 4.19, it can be concluded that the system instability
grows in a frequency range around 97 Hz. Thus, a compensation around that
frequency is necessary in order to maintain the stability.
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Figure 4.19.: Unstable control signal using the MLADRC with τ = 0.005s.

In this way, a digital notch filter centered in 97 Hz was implemented as a loop
shaping compensator, in order to stabilize the system and improve its dynam-
ics. In this case, the stability is obtained limiting the gain around the critical
frequency.

Hnotch(z) =
z2 − 1.911z + 0.9975

z2 − 1.753z + 0.8396
(4.37)

Figure 4.20 compares the step response of the non delayed system controlled
by the original MLADRC, with the step response of the delayed system con-
trolled by the MLADRC plus the loop shaping compensator. Recall that the
objective of the stabilisation by loop shaping techniques is that the MLADRC
algorithmwithstands higher time delay values while maintaining performance.
As it is shown in the step response, the MLADRC provides a better time re-
sponse, even though it has to deal with the added delay, which is a clear sign
of the controller’s validity.

In order to analyse the disturbance rejection capabilities of the MLADRC
and to observe whether its performance has decreased in this aspect in the
stabilisation process, the top of the structure is struck in a controlled manner
with a mass attached to a pendulum. The process is carried out with the non-
delayed system controlled by the original MLADRC (no added filter) and with
the delayed system controlled by the MLADRC plus a stabilization filter. Figure
4.21 shows how the stabilized MLADRC not only maintains its performance,
but is able to reduce the acceleration of the top surface of the structure in less
time than the MLADRC with no loop shaping, even when a delay is added to
the control signal.

In conclusion, the resulting controller keeps the system’s step response al-
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Figure 4.20.: Step response of the delayed (τ = 0.005s) system controlled by the sta-
bilized MLADRC plus notch filter versus the step response of the non-delayed system
controlled by the MLADRC without stabilization. The graph above shows the position
of the mobile platform while the lower graph shows the acceleration of the top plat-
form.

Figure 4.21.: External disturbance response of the delayed (τ = 0.005s) system con-
trolled by the stabilized MLADRC versus the step response of the non-delayed system
controlled by the MLADRC without stabilization. The graph above shows the position
of the mobile platform while the lower graph shows the acceleration of the top plat-
form.

most identical and improves to a large extent the disturbance rejection (see
figures 4.20 and 4.21 respectively), validating the proposed loop shaping-based
compensation MLADRC scheme.





Chapter 5

mladrc algorithm applied to a
srf tesla cavity

Now that the potential of the MLADRC algorithm has been demonstrated and
its design process has been validated, both in simulation and experimentally, the
algorithm is applied to the system that originally concerned us, a SRF TESLA
cavity. For this purpose, the same process will be followed as for the flexible
structure, which is summarised in a mathematical modelling phase, followed by
a designing phase in simulation to finish with the experimental implementation
in the cavity itself. This procedure will be explained in this last chapter.

5.1 | HoBiCaT facility for SRF systems

The success of the TESLA Test Facility (TTF) in showcasing the reliable oper-
ation of TESLA equipment has led to several proposals for CW linear acceler-
ators built on this technology. These CW machines are designed for moderate
energies (2–5 GeV) with minimal beam loading, allowing for continuous wave
operation.

While much of the TESLA technology can be directly applied to CW ma-
chines, the shift to continuous wave operation introduces new challenges not
necessarily addressed in TTF. Recognizing this, HZB constructed in 2003 a hor-
izontal test facility named HoBiCaT [58] (Horizontal Bi-Cavity Test-facility).
This facility enables swift testing and turnaround of SRF elliptical cavities in
general and TESLA cavities in particular. Its design draws inspiration from
the CRYHOLAB [80] and CHECHIA [17] systems developed at the Orsay and
Saclay institutes, respectively.

The HoBiCaT test facility includes a cryostat, feedbox, helium refrigeration
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plant, RF power supply and space for two 9-cell elliptical cavities with its associ-
ated ancillary equipment. All of it is placed inside a bunker to protect operators
and equipment from radiation.

5.1.1 | Cryostat design

The horizontal vacuum tank (Figure 5.1) is capable of accommodating two com-
plete TESLA 9-cell cavities or one TESLA superstructure, along with RF cou-
plers, tuners, and helium tanks. The generously sized tank, with interior di-
mensions of 1.1 m in diameter and 3.5 m in length, is also versatile enough to
house larger cavities, extending up to 500 MHz.

Figure 5.1.: The HoBiCaT cryostat [58].

Power couplers access the vacuum vessel through two of the four large
feedthroughs located on the side, mirroring the arrangement seen in TESLA
modules. Numerous diagnostic ports are incorporated for additional instru-
mentation. Conveniently positioned doors at each end provide rapid access to
the unit.

A feedbox is situated on the main vessel, receiving 4.2K liquid helium (LHe)
from the HZB cryoplant. This feedbox then supplies the cavities with either
1.8–2.2K or 4.2K LHe.
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5.1.2 | Cryogenic system

Figure 5.2 illustrates the cryogenic scheme of the HoBiCaT cryostat. 4.2K he-
lium from the cryogenic plant of HZB is collected in a 50-liter vessel in the
feedbox. From here, helium passes through a heat exchanger and is expanded
via a Joule-Thompson effect valve into a 2-phase line. This in turn supplies the
two cavity helium vessels with He. A reservoir with a heater and a level me-
ter at the end of the two-phase line is used for level control and to balance the
dynamic heat load of the cavities.

Figure 5.2.: Cryogenic system in HoBiCaT [58].

There are additional secondary cooling loops in HoBiCaT serving various
purposes. One of these is a 4.2K He supply line intended for filling the helium
vessels from the bottom during the cooldown process. Another 4.2K Helium
line is in place to cool the table that supports the cavities. Additionally, there is
a helium-gas line designed to cool heat intercepts on the input couplers, which
includes a heater that enables temperature variation from 4.2 K to 20 K. Finally,
a liquid nitrogen loop is implemented to cool the 77K radiation shield.

5.1.3 | RF power

Initially the main RF power source was a 10 kW CPI klystron adapted from
the CEBAF 1.5-GHz design scaled to 1.3 GHz, but at the moment, two 15 kW
CW Solid State Amplifiers (SSA) can be used operating at 1.3 GHz and 1.5 GHz.
These SSA are located outside the bunker so the RF is transmitted through high
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power coaxial lines and waveguides. The RF chain also includes the circulators
and water loads to protect the SSA from reflected power. Since beam loading is
absent, 10 kW are sufficient for HoBiCaT tests, which is enough to compensate
microphonic detuning up to 35 Hz at 20 MV/m.

5.2 | Characterization of the tuner-

cavity system

Although knowing the dynamics of the system is not strictly necessary to de-
sign theMLADRC, it is very useful when analyzing its viability and studying the
effect of its different components. The availability of an approximate transfer
function allows analytical design of the controller, including the loop shaping
compensator, to later validate its operation in the real system.

It is important to emphasize that the experimental part of this work takes
advantage of the measuring setup, and all the previous study carried out by Dr.
Neumann and colleagues [68].

5.2.1 | Detuning measurement

The resonance frequency of a cavity is exclusively dependent on its geometry.
Thus, when a vibration is coupled to the system, it generates a micro-metrical
deformation that causes a drift in its resonance frequency. In TESLA cavities, a
change of the cavity length by a mere 1 nm results in a frequency shift of 0.3 Hz,
which is specially relevant when operating with highQL, due to the extremely
narrow bandwidth of the cavity.

When a cavity is fed by a fixed frequency derived from a master oscillator
and a detuning event occurs, the cavity responds with a reduction of the field
amplitude and a phase shift ∆Φ. It is possible to relate the detuning ∆f to the
phase shift by means of the following equation [68].

∆f(t) =
f0
2QL

tan[∆Φ(t)] (5.1)

where f0 is the fundamental resonance frequency. Thus, the phase shift can
be used to measure and control the detuning. Note that equation (5.1) is only
valid in steady state, which corresponds to detuning values comprised within
the cavity half bandwidth. For TESLA cavities operating with QL larger than
107, the half bandwidth is approximately 65 Hz.

The scheme provided in Figure 5.3 presents an overview of the RF measure-
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Figure 5.3.: Standard RF setup at HoBiCaT for continuous wave detuning measure-
ment.

ment setup used at HZB’s HoBiCaT (Horizontal Bi-Cavity Test facility) [58]
for detuning measurements. The cavity operates in an open loop configura-
tion, driven by a tunable master oscillator. The forward wave signal from this
source is split to create a signal path for phase error measurement.

In order to feed the cavity, the RF signal is amplified by a SSA. By utilizing a
three-stub tuner [42] and adjusting the variable penetration depth of the TTF-
III input coupler antenna [57] into the beam pipe coupler port, the coupling
strength can be varied. This allows for coverage of QL ranging from 2 · 108
down to 5 · 106.

To extract the transmitted power signal and observe the excited RF resonance
of the cavity, a pickup antenna with a weak coupling strength (Qext ≈ 5 · 1011)
is employed.

For precise phase and detuning measurements, the transmitted power sig-
nal undergoes amplification using a phase-stable limiting amplifier to eliminate
amplitude variations. This ensures a clean phase shift measurement between
the reference signal and the transmitted signal at a low-noise RF mixer. Any
phase offsets introduced by the RF cabling can be compensated using a phase
shifter in the reference signal path.

The phase error signal is further processed by a low-pass filtering amplifier
to optimize the signal-to-noise ratio, eliminate higher-frequency components
of the mixing process, and prevent aliasing caused by the subsequent sampling
process. Sampling frequencies within the range of 1.0-5.0 kHz are chosen to
cover the detuning range of several hundred Hertz.
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5.2.2 | Transfer function measurement

Each accelerating cavity in an accelerator is equipped with a tuning system
to adjust the resonance frequency to the desired operating point. In the case
of elliptical niobium cavities, stepper motors are utilized along with a lever
system to alter the cavity’s length. For TESLA cavities, the tuning systemsmust
have a range of approximately 300-500 kHz to compensate for manufacturing
tolerances and changes that occur during cooldown.

To compensate the dynamic Lorentz-force detuning, caused by the pulsed
RF mode of operation, modern tuning systems often incorporate an integrated
piezo-tuner that helps mitigate such fast detuning events.

In the case of CW operated cavities, the pulsed Lorentz-force detuning is not
a mayor concern. However, these fast tuners can still be utilized to compensate
for microphonic detuning, which arises from external mechanical vibrations or
acoustic disturbances affecting the cavity’s resonance.

Figure 5.4.: Saclay tuning system for TESLA cavities. The left picture shows a Saclay-
II tuner (red) with a step motor (purple) and a piezo holder (green) mounted on the
cryovessel of the cavity. The right picture displays the piezo holder frame (green) de-
signed in HZB with two piezos mounted (blue).

In this particular case and as can be seen in Figure 5.4, the cavity has a Saclay-
II type tuner in which a P-844K075 encapsulated piezo actuator is incorporated
[74]. This piezo tuner consists of two piezo-ceramic stacks mounted in a steel
sheath.
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The setup for measuring the transfer function between the piezo drive sig-
nal and the detuning response of the cavity is illustrated in Figure 5.5. To en-
sure precise measurements by excluding the low-pass characteristics resulting
from the narrow cavity bandwidth, the loop is closed, operating in a phase-
locked-loop configuration. The measurement itself is performed with a lock-in
amplifier, which generates the excitation signal while performing low noise
measurements.

TESLA CavityMaster Oscillator SSA Circulator

Low Pass 
Filter

3 stub-tuner

Phase 
Shifter

Mixer
Phase stable limiting amplifier

Pick-up
probe

Tuner with piezo

PLL 
Closed

Lock-in Amplifier

Piezo amplifier

V sin(f    t)modpo(     )modf    f(     )modf    

Input coupler

Figure 5.5.: Measurement setup to obtain the transfer function between piezo excita-
tion and cavity detuning response.

Making use of the piezo-actuator, the system was excited by a sinusoidal sig-
nal of variable frequency. A frequency sweep was performed between 0 and 800
Hz, with a step of 0.2 Hz. To account for the unknown quality factor of the me-
chanical modes prior to the measurement, each frequency step was measured
for a minimum duration of 2.4 seconds. This extended measurement time al-
lowed for the acquisition of the steady state response for each data point.

Figure 5.6 depicts the transfer function that relates the piezo drive signal
and the generated detuning. Given the narrow bandwidth of the cavity in low
beam-loading CWmachines, the contribution of eigenmodes above 100 Hz will
have limited significance. However, it is important to note that they are rele-
vant in terms of system stability. In fact, the resonance mode at 160Hz gen-
erates an abrupt jump in the phase of the system making its phase margin
barely 2 degrees. This means that the system’s closed-loop relative stability
is extremely low. In addition, above that frequency, the phase continues to de-
teriorate, which makes it difficult to control this system by means of a feedback
controller, at least in that frequency range.

Looking at the group phase, it is possible to infer that the system delay is
approximately 1.2 milliseconds. This derives from the intrinsic delay of the
piezoelectric actuator and mechanical tuner. It is important to note that, as
previously stated, this time delay is especially harmful to system stability, as it
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Figure 5.6.: frequency response of the system composed by the Saclay-II tuner and the
TESLA cavity. The graph relates the piezo drive signal with the detuning generated in
the cavity.

degrades the phase of the system and can cause a phase crossover at frequencies
where the system gain is still higher than 0 dB.

5.3 | Analysis and design in simulation

As previously mentioned, due to the mechanical characteristics of the cavi-
ties, feedback controllers tend to destabilize these systems even at very low
gains, obtaining effective bandwidths of only a few Hertz. The objective of this
controller implementation is to reduce the detuning caused by stochastic ef-
fects over the widest possible bandwidth, to demonstrate the feasibility of the
MLADRC algorithm and to discuss its advantages over more traditional con-
trols such as the PID.

Since a frequency response of the system is available, it is possible to per-
form a theoretical analysis and design of the controller using tools such as the
Bode and Nyquist diagrams. In addition, this allows to compare the expected
theoretical behavior and the real one, to ensure unequivocally the feasibility of
the design method and the MLADRC algorithm.
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As discussed throughout the chapter, the objective of the control to be imple-
mented is to reduce stochastic detuning as much as possible in the maximum
possible bandwidth. For this purpose, and due to the relatively large system de-
lay, it will be necessary to find a compromise between disturbance suppression
and system stability in closed loop.

Figure 5.7 depicts the frequency response of a second order MLADRC algo-
rithm as a function of the bandwidth of the controller fc.
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Figure 5.7.: Bode diagram of a second order MLADRC algorithm as a function of the
bandwidth of the controller fc.

The more the bandwidth of the controller is increased, the more the system
gain increases at low frequencies, indicating an improvement in disturbance
rejection in that frequency range. As far as the phase is concerned, it is possible
to observe how the phase increment decreases the higher fc is. Considering the
transfer function shown in Figure 5.6, the objective for stabilizing the closed-
loop system is to improve the phase in the 160-190Hz range, so the higher the
phase increment of the controller, the more stability it will bring to the system.
In conclusion, detuning suppression capabilities increase with the controller
bandwidth (fc), but the stability it brings to the system decreases.

Repeating the same process with the observer bandwidth (fe) and as shown
in Figure 5.8, the controller gain increases the larger fe is, although it should be
noted that the effect is greater at higher frequencies. This means that in the case
of a system with delay, the bandwidth of the observer can negatively influence
the stability of the system, since for the system to be stable, it is necessary that
the gain of the controlled system is less than 0 dB above the phase crossover fre-
quency. As far as phase is concerned, it improves the wider the bandwidth, so
in theory, for a non delayed system, the performance of the controller is higher
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Figure 5.8.: Bode diagram of a second order MLADRC algorithm as a function of the
bandwidth of the observer fe.

the wider the bandwidth of the observer. In this particular case, as the system
has a relatively large delay, the bandwidth of the observer is limited by the sta-
bility of the system, since it is not desirable for the system gain to be high at
high frequencies. In addition, the phase distortion arising from the discretiza-
tion when the observer dynamics is too fast is also detrimental for the stability
of the system. It should also be taken into account that the higher the band-
width fe, the higher the execution speed of the controller and consequently the
higher the needed computational power of the hardware used.

Based on the above, it is determined that a second orderMLADRCwith band-
widths of fc = 170Hz and fe = 2000Hz is appropriate for this particular sys-
tem. To adjust the controller, the gain G is gradually increased until the best
disturbance rejection performance is achieved. This information is obtained
from the magnitude of the bode diagram of the closed-loop system. It should
be noted that as the gain increases, the stability of the system decreases until
destabilization is reached. Thus, it is important to reach a compromise between
performance and relative stability. To analyze the stability of the system, it is
possible to study the Nyquist diagram of the open-loop system. By following
this process, a gain of G = 3.62 · 10−6 is obtained.

At this point, the objective is to improve the relative stability of the system
in order to further increase the gain and achieve a better suppression of dis-
turbances as well as a wider bandwidth. This can be done by implementing a
large range of filters as a loop shaping compensator device, which is a key com-
ponent of the proposed MLADRC. By analyzing the frequency response of the
open loop system when the instability occurs, it is determined that the instabil-
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ity is generated at around 170 Hz, as could already be predicted by observing
the transfer function shown in figure 5.6. Thus, a notch filter centered at 170 Hz
is implemented in order to decrease the gain of the controller in that particular
frequency and stabilize the system. Looking at the Nyquist diagram shown in
figure 5.9, it can be seen that in the unstabilized system (blue line), there is a
resonance surrounding the point (-1,0), which is the one located at 170 Hz. Af-
ter applying the notch filter and stabilizing the system, it can be noticed how
the circumference that represents that resonance decreases to the point of not
surrounding the point (-1,0) anymore. The continuous version of this filter is
defined by equation (5.2) and its effect can be seen in the nyquist diagram in
figure 5.9.

Hnotch =
s2 + 1140926

s2 + 854s+ 1140926
(5.2)

Figure 5.9.: Nyquist diagram of the system with and without loop shaping compen-
sator. The Gain of the controller for both cases is 7.5 · 10−6.

Once the system is stabilized by the filter, it is possible to further increase the
gain (G=9.1 · 10−6) of the controller to improve its performance. Figure 5.10
shows the closed-loop frequency response to disturbances of the system for the
MLADRC with and without loop shaping compensator. It is also shown the
system response with a well-tuned proportional (P) and proportional-integral
(PI) controller. Those controllers where tuned through numerical computation
using frequency domain techniques.

Comparing the MLADRC with the PI, the former offers greater detuning re-
duction over a wider bandwidth, approximately 30 Hz. It is also demonstrated
that with the appropriate loop shaping compensator, a notch filter in this case,
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Figure 5.10.: Frequency response of the closed-loop system for different controllers.

it is possible to improve the performance of the controller by making it more
stable and thus increasing its gain.

5.4 | Design validation using Simulink

So far, all simulations concerning the controller have been performed using the
mechanical model of the cavity, which is nothing more than the mathematical
function relating the incoming voltage to the piezo tuner to the detuning gener-
ated in the cavity. Although a good starting point, these simulations are limited
in their ability to represent reality, as resonant cavities are complex systems in
which electromagnetic andmechanical dynamics are tightly coupled. When the
detuning increases, the cavity voltage gradient decreases, making the Lorentz
forces impinging on the cavity walls smaller as well. This, in turn, generates
changes in the cavity detuning that again affect the cavity voltage, and so forth.

To have an additional test of the performance of the controller including non-
linear effects, a Simulink model has been used which includes the coupling
between the mechanical and electromagnetic part of the cavity, as well as the
detuning estimator to be used in the real system. It should be remembered
that the electromagnetic-mechanical coupling is produced through the Lorenz
force detuning, which introduces non-linear dynamics that pose an additional
challenge for the controller.
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5.4.1 | Model description

This section describes the mathematical model used in the validation process.
First of all, it is worth mentioning that a large part of the model was previously
designed by HZB researchers for use in their own investigations. Even so, it is
considered useful to set out the foundations of this initial model in order to later
present all the improvements and refinements that have been implemented in
it as a result of this work. Thus, the Simulink model designed in HZB [24] is
taken as a starting point.

Regarding the electromagnetic dynamics, the behavior of the RF envelope of
the transmitted voltage without beam loading is represented in the simulation
model by the following equation:

d

dt
Vcav =

(
−ω1/2 −∆ω

∆ω −ω1/2

)
Vcav +

(
RLω1/2 0

0 RLω1/2

)
Iamp

m
(5.3)

where ω1/2 =
ω0
2QL

, RL is the loaded impedance defined as RL = R
1+β and∆ω

is the detuning defined as the difference between the driving frequency and the
RF resonance frequency (∆ω = ω0 − ω). At the same time, Vcav and Iamp are
the cavity voltage and RF power source current, respectively, represented by
their real and imaginary part, Vcav = (V r

cav, V
i
cav)

T and Iamp = (Iramp, I
i
amp)

T .
See section 2.2.2 for more detail about the EM behavior of the cavity. Note that
since in this case, the input to the system is the current generated directly in
the RF power amplifier, the incident current in the cavity is defined as Iamp/m,
where m is the winding ratio of the ideal transformer of the equivalent RLC
circuit (see equation (2.20)).

In summary, a simplified electromagneticmodel with two inputs is presented,
which characterises the fundamental mode of the EM resonance of the cavity.
On the one hand, the RF power source current Iamp, which dictates the general
dynamics of the system, and on the other hand, the detuning ∆ω, which is
used to couple the mechanical dynamics to the electromagnetic dynamics as
it is shown in figure 5.11. It also has two outputs representing the real and
imaginary part of the cavity voltage, to which the forward current Ifw was
added later on to allow the implementation of the detuning estimator.

As far as the mechanical aspect of the model is concerned, a transfer func-
tion is generated from the data obtained in section 5.2.2, by means of the vector
fitting algorithm [34]. Originally, this transfer function had a single input and
output, relating the input voltage to the piezo Vpiezo with the detuning gen-
erated in the cavity ∆ω, but in this case, two additional inputs were added to
make the model more realistic. On the one hand an input for possible exter-
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nal disturbances Vpert and on the other hand an input for Lorenz forces VLF .
To calculate the Lorentz forces acting on the cavity the following expression is
used, VLF = k0[(V

r
cav)

2 + (V i
cav)

2] where k0 is a scaling factor of order 10−13.

One of the main unknowns in controlling the mechanical vibrations of an
elongated cavity such as the TESLA is based on the non collocated nature of the
control problem. There are not enough studies so far to ensure that vibrations
along the entire cavity geometry can be controlled by an actuator at one end of
the cavity alone. Similarly, the exact effect of a mechanical disturbance affect-
ing one point or another of the cavity is not known. In order to characterise
this behaviour to some extent, the mechanical transfer function of the cavity
has been altered so that each of the inputs (Vpiezo, Vpert and VLF ) affects the
generated detuning slightly differently. For this purpose, the mechanical trans-
fer function has been expressed by its state space representation and the input
matrix Bm = (b1, b2, . . . , bn)

T has been altered by adding two new columns.

B′
m =


b1 −kpertb1 kLF b1
b2 −kpertb2 kLF b2
...

...
...

bn −kpertbn kLF bn

 (5.4)

where kpert and kLF are the gains affecting the perturbation and Lorenz forces
inputs respectively. Note that in this case the different inputs are simply mul-
tiplied by a gain, but filters could also be applied to each input to enhance or
minimise the effect of certain resonance modes depending on the input of the
system. This would be a way to characterise more precisely the non-collocated
nature of the control problem at hand, but it would require more detailed re-
search that has not been carried out in this thesis.
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Figure 5.11.: Block diagram of the Simulink model.
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Finally, a detuning estimator is used to obtain the detuning signal to perform
the control. This device is capable of calculating an approximation of the de-
tuning using the forward current Ifw, which is a signal that can be accessed in
the real system.

5.4.2 | Simulation experiment and results

Using the simulink model described in the previous section, the MLADRC al-
gorithm designed in chapter 5.3 has been tested.

Note that unlike in previous experiments, the electromagnetic dynamics of
the cavity are present in this new model. Thus, before introducing the mechan-
ical control loop, it is necessary to develop a LLRF system to keep the phase and
amplitude of the electromagnetic field of the cavity stable. As this is not the fo-
cus of this thesis, the research literature has been used to implement a generic
LLRF system. In this case, the work done in [93] was the foundation to design
and implement the ADRC to control the electromagnetic dynamics of the cav-
ity. The bandwidths of such controller are fo = 6000Hz and fc = 100Hz. Since
in this case the delay is not a bounding factor, it has not been necessary to use
the design and stabilisation techniques developed throughout this work.

As far as the detuning control is concerned, theMLADRC algorithm designed
in chapter 5.3 has been implemented, which consists of a GESO with fo =
2000Hz and fc = 170Hz bandwidths and a notch filter centered at 170 Hz.

The implementation of the controller was carried out by mimicking a real
digital implementation in order to study the effects of the discretization on the
performance of the controller, as well as to have a first version that could be
implemented on real hardware. Details on the implementation are set out in
the following chapter. The resulting system is shown in figure 5.12.

To test the controller, a reference voltage is set for the cavity, and first, only
the phase and amplitude control loop is activated. Then, a white noise signal
is introduced through the input corresponding to the mechanical perturbations
in order to study the detuning it generates.

This process is repeated again, with the MLADRC activated to analyse the
detuning reduction achieved. Finally, to have data with which to compare the
performance of the controller, the process is repeated using the PI controller
presented in chapter 5.3. Figure 5.13 shows the results achieved in this experi-
ment.
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Figure 5.12.: Block diagram of the control structure used to control the cavity in
Simulink.
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Figure 5.13.: Detuning generated in the cavity model by a white noise input. Three
different cases are shown: When the detuning control is disabled (red), when detuning
is controlled by a PI (blue) and when detuning is controlled by the MLADRC (yellow).

5.5 | Implementation and design valida-

tion using Hardware in The Loop

Hardware in the Loop (HIL) testing is a simulation technique employed in the
development and validation of complex control systems. At its core, HIL in-
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volves integrating a control system, referred to as the System Under Test (SUT),
with a simulator or plant model that encapsulates the dynamic behavior of the
physical system. It is worth mentioning that the virtual SRF cavity that was
used as the plant model, was developed as a result of the collaboration between
HZB and the University of the Basque Country [24].

The uniqueness of this simulator is that it is implemented on specific hard-
ware that supports real-time execution, which ensures that the simulation oc-
curs at the same rate as the actual system’s dynamics. Other important aspect
of the HIL technique is that the control algorithm can be implemented directly
in the actual hardware intended to host the controller, giving the possibility to
study and debug the digital implementation itself.

In summary, through this closed-loop operation, HIL testing provides a
means to comprehensively evaluate the performance of a control system un-
der conditions that closely mimic real-world scenarios. It allows for the testing
of various scenarios, ranging from normal operation to extreme conditions and
enables the testing of the actual digital implementation of the controller.

5.5.1 | HIL system description

National Instruments (NI) hardware was used to assemble the HIL system. On
the one hand, the controller was implemented in a flexRIO device while the SRF
cavity simulator was installed in a PCI eXtensions for Instrumentation (PXI)
device. Both the controller and simulator were implemented on the FPGA of
the respective devices, in order to ensure real time execution. More details on
FPGAs are given in appendix C.1.

A PXI is a modular electronic platform that combines the high-speed capa-
bilities of the PCI bus with specialized synchronization and triggering features.
These devices typically consist of a chassis, a soft real-time controller, and var-
ious IO modules that can be configured to meet specific testing requirements.

For this particular case, in addition to the mandatory real-time controller, the
PXI has been assembled using a re-configurable module, housing an FPGA, and
a high-performance, high frequency analogue I/O module. For the technical
characteristics of the system, please refer to Appendix C.3.

A flexRIO, in the other hand, is a re-configurable I/O module that combines
FPGA processing hardware and a CPU running Linux real-time. Compared to
the PXI, it is a slightly more restricted device in terms of customisation, as it
only offers one input into which different I/O modules can be integrated. Even
so, it is a highly flexible platform for developing high-speed and customizable
measurement and control applications.
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As in the previous case, a high frequency I/O analogue module is connected
to the FPGA input of the flexRIO to generate and receive the RF signals required
for the HIL system (See Appendix C.4 for technical information on the system).
The layout of the experimental setup for the HIL system is shown in Figure
5.14.

ADC

DACDAC

CPU
+

ADC

RF Input Signal (20 MHz)

Detuning signal

Control signal

FlexRIO PXI
(Controller) (Simulator)

MonitorDevelopment PC

Signal Generator

Figure 5.14.: Scheme of the setup used to create the HIL system.

As shown in chapter 5.4.1, the virtual cavity model includes both electromag-
netic and mechanical dynamics. Thus, in order to perform simulations on it, it
is necessary to feed it with an RF signal as it would happen in a real cavity.
For that matter, a 20 MHz RF signal is used to simulate the cavity probe signal.
The PXI, in which the simulator is housed, samples the RF signal four times per
cycle (80MHz), which is known as IQ sampling. This sampling method allows
the I/Q values of the signal to be obtained directly without the need for extra
signal processing. This constant RF input generates in the mathematical model
a voltage gradient inside the virtual cavity and a constant detuning resulting
from the Lorentz forces. Note that for the sake of simplicity, no amplitude and
phase control is applied.

The signal that will act as a mechanical disturbance, on the other hand, is
generated in the CPU of the PXI, and is sent to the mathematical model housed
in the FPGA through a Direct Memory Access (DMA) channel. This signal
generates additional detuning on top of the existing detuning due to Lorentz
Forces. The sum of all detuning is generated by I/O module with a generation
speed of 100 MHz and is sent to the controller. The I/O module of the FlexRIO
samples the detuning signal with a sampling rate of 100 MHz and feeds the
discrete signal into the controller hosted in the FPGA. The controller computes
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the neccesary control signal and it sends it back in to the virtual cavity, closing
the control loop.

The FlexRIO is connected via ethernet to a development PC on which the
controller implementation has been designed and from which the performance
of the controller can be monitored. Similarly, the PC housed in the PXI is con-
nected to a computer screen in order to monitor the cavity parameters.

5.5.2 | Digital implementation and validation

As mentioned above, the MLADRC controller has been implemented in the
FPGA of a flexRIO. As shown in more detail in Appendix C.1, a FPGA is a
re-programmable digital integrated circuit that enables the possibility to define
and implement custom digital circuits on the go. Unlike traditional application-
specific integrated circuits (ASICs), which are custommanufactured for specific
design tasks, FPGAs can be programmed using a hardware description language
(HDL) such as VHDL or Verilog, which allows the controller prototyping pro-
cess to be fast and cost-effective. Note that such devices guarantee the execution
of algorithms in hard real-time.

Although high-level languages can be used to define the operation of the cir-
cuit to be implemented, it is important to bear in mind that the final objective
is to design and implement a real digital circuit. This means that in order to
make an efficient design, it is important to take into account aspects of the im-
plementation such as the type of data to be used, the distribution of the signals
in the device itself to avoid timing violations and the necessary resolution for
each signal. The following describes the process carried out to translate the
MLADRC algorithm into a digital circuit and implement it on an FPGA.

In order to obtain the discrete representation of the controller, it is necessary
to carry out a discretization process. To do so, first the execution time is set to
10 MHz, as this is a relatively slow speed to be carried out on an FPGA, but it
also provides enough room to experiment with the bandwidth of the GESO.

One of the most crucial characteristics of a system when determining its sta-
bility is its phase. This is why it is of key importance to maintain the phase
properties of the controller in the discretization process. To ensure that, the
Tustin transform was used, since it preserves the relative stability of the sys-
tem and is generally used when the phase response has to be preserved [96].

Thus, the implementation of the discrete GESO using its state space repre-
sentation (5.5) is done first.
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{
x[k + 1] = Agdx[k] + Bgdu[k]

y[k] = Cgdx[k] + Dgdu[k]
(5.5)

where xk are the discrete states of the GESO and yk and uk are the discrete
output and input respectively. On the other hand, Agd,Bgd,Cgd and Dgd are
the matrices that define the dynamics of the discrete GESO and can be obtained
by applying the Tustin transform to the continuous GESO. Figure 5.15 shows
the structure used to implement equation (5.5), as well as the dimensions of the
matrices for a second-order GESO, which is the one used for the control of the
cavity.

Bgd
3x2

++

++

++ z-1
z-1
z-1

Cgd
1x3

++

Agd
3x3

Dgd
1x2

x3[k+1]

x2[k+1] x2[k]

x1[k+1]

x3[k]

x1[k]

y[k]
u1[k]

u2[k]

Figure 5.15.: Structure used to implement the second order GESO.

It is worth mentioning that the registers, represented by green blocks, are
activated by a clock signal with a frequency identical to the execution time of
the algorithm, 10 MHz. On the other hand, the blue blocks with the names of
each GESO matrix represent a multiplication between a matrix and a vector
that can be decomposed into simple additions and multiplications as shown in
the equation (5.6).
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A·x =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

·


x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


(5.6)

Thus, to multiply a matrix of n×m dimension and a vector of n dimension, it
is necessary to perform n ·mmultiplications and (n−1) ·m additions, that can
be implemented by means of full adders and multiplier circuits. This allows us
to get a preliminary idea of the resources needed for the implementation of the
control algorithm. Table 5.1 shows the amount of multiplication and addition
needed to perform each of the matricial multiplication for a second order GESO.

Table 5.1.: Number of additions and multiplications needed to implement for a second
order GESO.

Agd Bgd Cgd Dgd Other Total

Additions 6 3 2 1 4 16
Multiplications 9 6 3 2 0 20

As can be seen from the table, the GESO implementation is quite light on
FPGA resources, as it is composed of a conservative number of simple arith-
metic operations and 3 registers.

To implement the loop shaping compensator, a normalized discrete transfer
function of order 2 has been integrated, such as the one shown in equation (5.7).

Hlc(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(5.7)

This function consists of two poles and two zeros with which to implement a
wide variety of compensators such as notch filters, lead-lag compensators and
so forth. The transfer function was implemented using its direct form, which
is defined by the difference equation shown in (5.8).

y[k] = b0u[k] + b1u[k − 1] + b2u[k − 2]− a1y[k − 1]− a2y[k − 2] (5.8)

where u[k] is the discrete input to the loop shaping compensator and y[k] is the
discrete output. This equation can be implemented using the structure shown
in figure 5.16.

Once the structures to be used in the implementation have been established,
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Figure 5.16.: Structure used to implement the Loop Shaping Compensator.

the format and word length of each internal signal of the circuit is determined,
i.e. the number of bits with which each signal will be represented inside the
circuit. The implementation also requires the compensation of internal delays,
to avoid phase signal mismatches.

To do this, it should first of all be noted that most implementation in FPGA
uses fixed-point mathematics, since it enables a much simpler implementation
which is optimal for performance and power consumption. This means that for
a successful implementation, it is necessary to know the dimension of each of
the internal signals of the circuit, in order to assign them a format and word
size suitable to represent the data to be transmitted by them. This is of partic-
ular importance in the case of fixed-point representation, since the number of
bits representing the integer and fractional part of the data is fixed, unlike in
floating-point mathematics.

So, before defining the fixed-point design, the algorithm was implemented in
simulink following the real structure with which it would later be implemented
in the FPGA (see figure 5.15 and 5.16). This allows us to simulate the controller
under a wide variety of situations to determine the dimensions of each of the
internal signals of the algorithm. Once this information is available, the word
length to be used is defined and each signal is assigned a number of integer bits
sufficient to represent the largest value that the signal has reached. It is worth
mentioning that although the algorithm has been simulated under an extensive
casuistry, it is possible that in reality there may be cases where the value of the
signals exceeds the value measured in simulation. To manage this uncertainty
and avoid overflows, the integer part of the data word has been given 3 more
bits than necessary.

Initially, an 18-bit design was developed, with the idea of making the most of
the FPGA’s resources, as the device has 18-bit embedded adders andmultipliers.
In this way, it is possible to minimise the resources required for the implemen-
tation of the algorithm and improve routing and timing, while at the same time
using the FPGA’s embedded circuits, which generally offer higher performance.
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When testing the implementation in Simulink, using Xilinx System Generator
[43], it was observed that 18 bits is not a sufficient word length to implement
the controller, as the system destabilises even with very conservative values for
the controller. After analysing the problem, it was concluded that this is not due
to possible overflows, but because the algorithm needs a minimum resolution
in certain internal signals that could not be achieved with 18 bits.

Thus, work continued with the fixed-point implementation, and it was em-
pirically concluded that the minimum word length to guarantee the stability of
the controller, for this particular caser, is 24 bits. However, in order to have a
greater margin of error and to take advantage of the FPGA’s embedded adders
and multipliers, a 36-bit design was developed. It is worth mentioning that al-
though the device’s embedded adders and multipliers are 18 bits, it can use two
of them in conjunction to perform 36-bit additions and multiplications. It is
also noteworthy that the fixed-point designs of the controller were carried out
using both VHDL and Labview FPGA.

5.5.3 | HIL Results

Experimentation with the HIL system served to validate the real-time perfor-
mance of the MLADRC algorithm implementation, ensuring that non-linear
dynamics such as those derived from Lorentz Forces do not introduce effects
that could affect the stability of the system.

More importantly, it was also possible to test the implementation of the algo-
rithm on the target hardware, which allowed to foresee the interface function-
ality that would be needed and to prematurely correct implementation errors
such as overflows in different signals.

Regarding the actual detuning reduction achieved, it is not considered of
great relevance, since the mathematical model of the virtual cavity differs from
the real SRF cavity that will be used and the parameters of the model were not
appropriately tuned. In this way, the obtained results were qualitative rather
than quantitative. Even so, reductions of over 80% or the RMS detuning were
achieved with respect to the open loop, when introducing white noise as a total
disturbance.

5.6 | Algorithm testing in the real SRF

TESLA cavity

Finally, the algorithm is implemented and tested on the real system, a 9-cell
Tesla cavity in HoBiCaT.
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5.6.1 | Control setup

As far as the control setup is concerned, the same measurement method de-
scribed in the previous chapter 5.2.2 is used. In this case, the loop is closed
by the mechanical control implemented in the FlexRIO device, so the master
oscillator operates with the PLL loop opened and generating a constant driv-
ing signal of 1.3 GHz. The signal that is fed into the controller as a reference is
the phase difference obtained by comparing the incident and transferred signal.
Thus, technically, a phase control is performed, although the direct relationship
between detuning and phase shift can be observed in equation (5.1). The con-
trol signal is amplified before driving the piezo-tuner, as it is depicted in Figure
5.17.

TESLA CavityMaster Oscillator SSA Circulator

Low Pass 
Filter

3 stub-tuner

Phase 
Shifter

Mixer
Phase stable limiting amplifier

Pick-up
probe

Tuner with piezo

PLL 
Opened

MADRC

Piezo amplifier

o(t) f(t)

Input coupler

FlexRIO

Figure 5.17.: Control setup used in HZB to compensate detuning of a TESLA cavity.

As has been described before, the implementation is done on the FPGA of a
FlexRIO NI-7935R so there is enough execution speed to set the observers band-
width high enough to experiments with different controller configurations. In
this way, the controller is implemented with an execution rate of 10MHz. In ad-
dition, a NI-5783 IO module is used, which provides an acquisition/generation
speed of 100 MHz and a full-scale output range of 2V peak to peak. Considering
that the piezo-amplifier has a gain of 20, the dynamic range of the control signal
is ±20V , which constitutes 20% of the operational range of the piezo-tuner.

5.6.2 | Experimental results

For this experiment, the input coupler and the three stub-tuner were arranged
so that the QL of the cavity was fixed at 107. The cavity was fed by a 400W
driving signal generating a field gradient of 4MV/m. Then, by means of one
of the piezo actuators, a frequency constant mechanical disturbance of 11.4Hz
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was introduced in order to replicate possible perturbations that the cavity may
suffer during its operation in a machine, and to have a known disturbance on
which tomeasure the reduction obtained by our controller, in adddition to other
stochatics disturbances present in the system.

Following the design method described in section 4.2.1, first, the bandwidths
of both the observer and the controller are determined. Taking as a starting
point the values obtained in the theoretical section 5.3 and taking into account
the possible discrepancies between the transfer function (Figure 5.6) and the real
system, different MLADRCs are tested in order to find the optimal controller to
which the loop shaping compensator will be applied later. The bandwidth of
the observer was fixed at 2000Hz and different controller bandwidths were
tested, obtaining the results shown in figure 5.18. The gain of all controllers
were adjusted to provide the greatest reduction of disturbances while ensuring
system stability. Table 1 shows the most relevant parameters results for each
controller.
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Figure 5.18.: Frequency spectrum of the measured detuning of the TESLA cavity by
using different controller bandwidths. A constant perturbation of 11.4 Hz is being fed
into the system.

Table 5.2.: Measured detuning and bandwidth for different controllers.
Gain (10−4

) RMS (Hz) Bandwidth (Hz)

Open loop — 2.2857 —
ωc= 50 Hz 8.866 0.9005 5
ωc = 100 Hz 1.067 1.0699 5
ωc = 150 Hz 0.605 1.0628 7

As can be seen from both figure 5.18 and the results in table 5.2, all three
controllers have very low bandwidth since the gain is limited by the stability of
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the system. Even so, they are able to control the static detuning and reduce the
dynamic detuning by, at least, half in a bandwidth of around 5 Hz.

The next step, which consists of stabilizing the controller by loop shaping, is
performed with the controller with ωc=150, since it is the one that best reduces
disturbances at low frequencies and has the widest effective bandwidth. Thus,
following the methodology described in 4.2.1, the controller gain is increased
until the system destabilizes. This happens with aG = 6.6 ·10−4 generating an
oscillation of 164 Hz, which is very similar to what was predicted in the analysis
of the simulations. In order to stabilize the system, a notch filter centered in 164
Hz is implemented, so the gain of the controller in that frequency is drastically
decreased mantaining the performance in the rest of the bandwidth. The notch
filter is represented by the following equation:

Hnotch =
s2 + 1061811

s2 + 1030s+ 1061811
(5.9)

Once the system was stabilized, is was possible to further increase the con-
troller gain to a value of 77 · 10−4, more than an order of magnitude higher.
This resulted in a bandwidth of approximately 30 Hz, 25 Hz more than what
was achieved without loop shaping. In addition, the fixed 11.4 Hz resonance
was reduced by 11 dB, which in linear is equivalent to a factor of 4. Figure 5.19
shows the detuning measured for different controller gains and figure 5.20 il-
lustrates in more detail the reduction achieved on the disturbance generated by
the secondary piezo-tuner at 11.4 Hz.
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Figure 5.19.: Frequency spectrum of the measured detuning of the TESLA cavity for
different controller gains. The parameters of the controller are ωe = 2000Hz and
ωc = 150Hz. A constant perturbation of 11.4 Hz is being fed into the system.
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Figure 5.20.: Zoom in of the measured detuning of the TESLA cavity for different
controller gains. The parameters of the controller are ωe = 2000Hz and ωc = 150Hz.
A constant perturbation of 11.4 Hz is being fed into the system.

In order to better appreciate the bandwidth of the controller, and the effect
it has on the different mechanical resonance modes of the cavity, figure 5.21
shows the integrated detuning spectra.

.

.
-4

-4

Gain=77  10
Gain=6.6  10

0 20 40 60 80 100

Frequency (Hz)

0

5

10

15

20

25

30

D
et

u
n
in

g
 s

u
m

. 
(H

z)

Open loop
Gain=3.3  10.

.

-4

Figure 5.21.: Integrated detuning spectra of the TESLA cavity for different controller
gains. The parameters of the controller areωe = 2000Hz andωc = 150Hz. A constant
perturbation of 11.4 Hz is being fed into the system.

Note that the bandwidth and performance of the controller increases with
gain. The same conclusions are obtained if the data is represented on a time
scale. Figure 5.22 clearly shows the DC correction and the improvement of
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the detuning RMS the larger the gain. Table 5.3 shows the most representative
results for this controller.
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Figure 5.22.: Measured detuning of the TESLA cavity for different controller gains.
The parameters of the controller are ωe = 2000Hz and ωc = 150Hz. A constant
perturbation of 11.4 Hz is being fed into the system.

Table 5.3.: Measured detuning and bandwidth for different gains with the same con-
troller (ωe = 2000Hz and ωc = 150Hz).

Gain(10−4
) Peak value(Hz) RMS(Hz) Bandwidth(Hz)

Open loop 6.2424 2.5877 —
3.3 7.2179 1.4824 3
6.6 3.5389 1.2264 7
77 2.3252 0.5297 29

Thus, the feasibility of the MLADRC algorithm and the proposed design
method is evident. As shown in table 5.3, the MLADRC adjusted by loop shap-
ing techniques is able to reduce the detuning (RMS) by a factor of 5 with respect
to the open loop. Furthermore, it is evident that the controller’s performance
is significantly reduced when the stabilization step by loop shaping is absent.
This is due to the lower relative stability, which prohibits increasing the gain
without destabilizing the system, leading to a performance degradation of more
than 60%. It is worth mentioning that experiments have been performed with
different values ofQL and disturbance frequencies, varying from 107 to 5 · 107
and from 5 Hz to 20 Hz respectively and the result has been very similar.



Chapter 6

Summary and conclusion

This work begins with a brief introduction to particle accelerators. Many of
these machines are immense facilities not only in size and complexity, but also
in terms of energy consumption. In the current context of climate change and
soaring energy prices, current and future facilities need to tackle their efficiency
to ensure their viability. The pursuit of efficient high-gradient RF structures and
systems stands as one of the five critical domains identified by the European
Strategy for forthcoming facilities, needing continued research and develop-
ment efforts.

One of the approaches being taken to increase the efficiency of accelerating
structures and reduce energy consumption is the use of high QL. When the
quality factors are optimized, the power consumption required to attain a spe-
cific level of accelerating field diminishes, resulting in a reduction in RF cost
and the possibility of using solid state amplifiers, which are cheaper and more
versatile than klystrons.

The problemwith such highQL is that it makes the bandwidth of the cavities
extremely narrow, making them very sensitive to external mechanical distur-
bances, known asmicrophonics. Thus, the aim of this thesis has been to develop
a controller that provides advantages over the algorithms used to date to control
the detuning generated by these microphonics.

The first step was to study the problem of detuning in depth, making use of
the literature on the subject. To this end, the main characteristics and operating
principles of SRF cavities were reviewed, with a special focus on TESLA cavi-
ties. By analysing the equivalent RLC circuit with which the electromagnetic
dynamics of a cavity can be represented, many important conclusions can be
derived. On the one hand, by studying the steady-state behaviour of the cavity,
the relationship between detuning and the amplitude and phase of the cavity
voltage can be identified, which analytically shows how detrimental detuning
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is to the stability of the cavity field. This study is of particular relevance to this
work as it shows that when the detuning is sufficiently small with respect to the
cavity bandwidth, it can be calculated by the phase difference between the cav-
ity field and the incident current. On the other hand, by analysing the transient
behaviour of the cavity field, the simplified mathematical model to describe the
electromagnetic dynamics of the cavity can be derived.

After presenting the main sources of detuning in a TESLA cavity, the power
required to maintain a constant acceleration gradient in a CW-operating cavity
was analysed as a function of beam loading and detuning. From this study, it
can be found that when there is high beam loading, for energy consumption
reasons, the loaded quality factor and the accelerating gradient must be kept at
relatively low values, thus reducing the effect of detuning on the field. On the
other hand, in applications where beam loading is negligible, it is possible to in-
creaseQL to values of the order of 107, thus obtaining high energy efficiencies.
In these cases, as the cavity bandwidth is reduced to a few hundred Hz, the field
stability becomes much more sensitive to detuning. Thus, in applications with
low beam loading, reducing the peak detuning of the cavity translates in the
possibility of increasing the loaded quality factor and in conclusion, increasing
the energy efficiency of the machine.

After carrying out a study of the state of the art of microphonics control, the
ADRC algorithm was presented, which is the controller used as the foundation
for the development of the MLADRC throughout this thesis.

As described in chapter 3, the ADRC is a feedback control algorithm that
bases its operation on the compensation of any unwanted dynamics by esti-
mating the so-called total disturbance. For this purpose, an ESO that contains
information on the desired dynamics is defined. This control element is able to
estimate the difference between the real and desired dynamics (the total distur-
bance) and then feed it back into the system to cancel the undesired dynamics.

Based on the mechanical characteristics of an SRF cavity, it was determined
that the ADRC is a strong candidate to control detuning in such systems, as
it offers great performance in controlling non-linear systems and is especially
good at rejecting disturbances. Moreover, it is an easy-to-implement algorithm
that requires little preliminary information about the system to be controlled,
which makes it especially useful in the case of large accelerators where a large
number of different cavities have to be controlled.

However, due to the high gain obtained in the ESO bandwidth, the ADRC
algorithm is very sensitive to the presence of time delay, specially when con-
trolling mechanical systems like an SRF cavity. As could be seen in the stability
study conducted in section 3.2, this is largely due to the fact that systems with
mechanical resonances often have frequency ranges where the phase of their
frequency response is very close to -180 degrees. Moreover, since the time de-
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lay adds a shift in the phase response of the system, which grows linearly with
frequency, it is relatively easy for the controller to generate a phase crossover
frequency. Since the gain provided by the ESO is extremely large for the entire
ESO bandwidth, the open-loop system gain at that phase crossover frequency
is usually greater than 0 dB, thus destabilising the system.

Studying the state of the art of the ADRC for time delayed systems, it was
observed that most of the modifications designed to improve the stability of
the algorithm in the face of time delay, also negatively affected its performance
when it came to rejecting external disturbances. Thus, a new modification was
developed, the MLADRC, with the aim of increasing the stability of the ADRC
in the face of time delay, while maintaining the performance of the controller.

In this way, the MLADRC is studied in depth in chapter 4. This new modifi-
cation of the ADRC has two main differences with respect to the original algo-
rithm. On the one hand, in order to study the open-loop response of the system
more easily, the state feedback control was integrated into the ESO itself, giving
rise to the so-called GESO. This modification allows the study of the stability of
the system by means of both the Bode and Nyquist diagrams of the open-loop
system and it assures the matching condition of the ADRC algorithm. On the
other hand, and as a complement to the GESO, a loop shaping compensator is
introduced in the controller’s direct chain. The purpose of this control element
is to alter the frequency response of the system in the frequency ranges most
likely to destabilise the system. In this way, by altering the phase and ampli-
tude of the open-loop system, it is possible to increase the relative stability of
the closed-loop system without affecting the performance of the controller.

One of the main objectives in developing the MLADRC algorithm was to
make it a straightforward controller that is both simple to design and easy to
implement. To this end, a straightforward design method was developed in
section 4.2.1 to create MLADRC controllers without the need of having a great
amount of information about the system to be controlled nor to be an expert
in the field. This provides a simple step by step guide for engineers around the
world to perform preliminary tests of the algorithm on their own systems.

Before applying the controller to a real cavity, both the design methodol-
ogy and its operation was validated on a resonant mechanical system. First,
an ADRC was applied to the system and to validate the design and stabilisa-
tion method, a time delay was applied by software large enough to destabilise
the system. Then, the ADRC was exchanged for the MLADRC modification
and the system was stabilised using loop shaping techniques. This stabilisation
process was carried out in two different ways. On the one hand, the informa-
tion provided by the approximate transfer function of the system was used,
and a lead filter was developed as a loop shaping compensator. In this way, the
system was stabilised and a performance similar to that of the ADRC with the
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system not delayed was achieved. On the other hand, the stabilisation process
was repeated, this time without resorting to the information previously avail-
able about the system. To do this, the control signal was measured empirically
when the system was in an unstable regime, and a notch filter centred on the
oscillation frequency of the destabilised control signal was implemented as a
loop shaping compensator. This method performed somewhat worse, but still
achieved better performance than a well-adjusted PI.

Thus it was demonstrated that the stabilisation and design method of the
MLADRC works, despite not knowing the dynamics of the system to be con-
trolled. Furthermore, it could be observed that the MLADRC keeps the perfor-
mance of the original ADRC almost intact, providing it with greater resistance
to time delay. Finally, the superior performance of the MLADRC over a more
conventional controller such as the PI could also be observed on a real system.

The next step was to test the MLADRC algorithm in a real SRF cavity. For
that matter, a 9-cell TESLA cavity equipped with a Saclay-II tuner was used,
which is located in the HoBiCaT test bench at the Helmholtz-Zentrum Berlin.
This process was carried out in three different phases, which are described in
the chapter 5.

In the first phase, an ad hocMLADRCwas designed for the cavity in question.
To this end, a process of identification and parametrization of the mechanical
dynamics of the cavity was first carried out, resulting in the mechanical trans-
fer function of the system. The most relevant feature of this transfer function
was the important resonance mode at 160 Hz, which causes the phase of the
system around this frequency to approach -180 degrees. This gives the system
an extremely low relative stability.

Based on the measured transfer function, a well tuned MLADRC was de-
signed and proven in simulation in chapter 5.3. On the one hand, it was shown
that the MLADRC algorithm in itself offers better performance than the most
commonly used PI, since it offers greater reduction of disturbances in a wider
bandwidth (see Figure 5.10). The feasibility of the stabilization system based
on loop shaping was also demonstrated. By providing the system with greater
relative stability through the implementation of filters, it has been possible to
increase the gain of the controller, increasing at the same time its performance
and bandwidth.

In the next phase, the fixed-point design of the algorithm was carried out
and implemented on the FPGA of a flexRIO device. To carry out the debugging
process of the implementation and to test the performance of the controller in a
somewhatmore realistic environment, a HIL systemwas developed. The results
obtained were satisfactory, and the last step of the process was proceeded with.

In section 5.6.2, both the MLADRC algorithm and the design methodology
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were experimentally validated in the SRF cavity. Through trial and error, it was
determined that the optimum parameters for the controller wereωc=150 Hz and
ωe=2000 Hz, which is in agreement with the results obtained in simulation. The
relationship between the controller gain and its performance was also demon-
strated, since as shown in figure 5.19, the higher the gain parameter, the greater
the bandwidth and detuning reduction. Finally, the validity of our stabilization
method using loop shaping was demonstrated. By implementing a notch filter
centered at 164 Hz, not only were the theoretical results matched, but they were
significantly improved. An RMS of 0.5 Hz was achieved, 50% lower than that
obtained in simulation, along with a bandwidth of 29 Hz.

From all this it was concluded that the MLADRC algorithm is a strong can-
didate for the control of low frequency stochastic microphonics. It is easy to
implement and design, and does not require too much prior information about
the system to be controlled. In that sense, it shares many of the benefits and
strengths of classical PID controllers, but with better overall performance.

Compared to the classic ADRC, the alternativeMLADRC structure offers two
important advantages. On the one hand, it allows to analyze the open-loop
frequency response more easily, facilitating the stabilization process. On the
other hand, it is designed in such way that the matching condition is always
met regardless of the controller gain. This allows the gain to be used to bring
the system to its stability limit, which later allows a stabilization filter to be
designed with relative ease.

It is also worth mentioning that due to the ease of design and implementation
of the MLADRC, it is possible to automatize the controller design process for
almost any cavity. This is of particular interest for installations where a large
number of SRF cavities are to be controlled.

Finally, it should be noted that this is a feedback controller with the objec-
tive of controlling low frequency stochastic microphonics such as those de-
rived from the pressure fluctuations of liquid helium. For future projects, it
is planned to implement this feedback algorithm in conjunction with a feed
forward algorithm that can handle constant-frequency detuning events, such
as those that can occur due to rotating machinery like vacuum pumps. This
would provide a controller operating in different bandwidths capable of sup-
pressing low-frequency stochastic disturbances and higher frequency constant
disturbances, thus obtaining a state-of-the-art detuning control system for SRF
cavities.

It is also interesting to explore the possibilities that FE-FRT actuators may
offer in the future, since, as discussed in section 2.6, the lack of mechanical
parts enables them to offer much faster responses. This greatly benefits the
MLADRC algorithm since, as has been shown throughout this thesis, its most
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limiting factor is the delay of the system to be controlled, i.e. the delay of the
actuators.
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Appendix A

Cylindrical cavities and the
TM0n0 resonance modes

In this appendix the electromagnetic fields generated in a cylindrical cavity are
summarized, as it can be found in the bibliography. This type of geometry is
commonly used for non-superconducting cavities and through its study many
of the characteristics of the fields generated in SRF elliptical cavities can be
inferred. In addition to this, only the so-called TM0n0 resonance modes are
reviewed, since they have characteristics well suited for accelerating charged
particles and are the most commonly used modes for this purpose.

One of the major advantages of these modes, for cylindrical cavities, is that
they do not generate a magnetic component in the direction of wave propaga-
tion, i.e. the entire magnetic field is in the transverse plane and has no portion
parallel to the length axis. This means that when charged particles pass through
the cavity along its longitudinal axis, their trajectory is not altered by the mag-
netic field. At the same time, this kind of resonant modes generate longitudinal
electric fields with a maximum value at the center of the cavity, which is espe-
cially useful for the acceleration of charged particles.

When working with cylindrical structures, the sub-indexes that classify the
resonant modes refer to cylindrical coordinates. In the case of TM0n0 modes,
indexes indicate that the magnetic component has zero variation in the radial
direction (0), n full cycle variations in the azimuthal direction (n), and zero
variation in the axial direction (0).

The following study is synthesised from the book Principles of Charged Par-
ticle Acceleration [41], more specifically from Chapter 12, Resonant Cavities and
Waveguides, accesible in [70]. It is also worth mentioning that certain topics
studied in this section such as resistivity and eddy current penetration are not
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directly applicable to SRF cavities. These differences become apparent when
SRF cavities are discussed further in section 2.2.

R0

d

Figure A.1.: Geometry of a generic cylindrical resonant cavity.

Taking as reference the resonant cavity shown in Figure A.1, being R0 its
radius and d its length, the electromagnetic field generated when exciting a
TM0n0 mode is calculated [27]. To do so, the Maxwell equations are used as a
starting point:

∇× Ē +
∂B̄

∂t
= 0 (A.1)

∇ · Ē = 0 (A.2)

∇× B̄ − ϵµ
∂Ē

∂t
= 0 (A.3)

∇ · B̄ = 0 (A.4)

By applying the vector identity∇× (∇× Ā) = ∇(∇· Ā)−∇2Ā, Equations
(A.1) and (A.4) can be rewritten as follows:

∇2Ē − 1

v2
∂2Ē

∂t2
= 0 (A.5)
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∇2B̄ − 1

v2
∂2B̄

∂t2
= 0 (A.6)

where v is the speed of light in the the medium inside the cavity:

v = c

√
ϵ0µ0
ϵµ

(A.7)

By solving wave equation (A.5) it is possible to calculate the electric field
related to the resonance modes TM0n0. To do so, it is necessary to apply the
appropriate boundary conditions [21] in cylindrical coordinates:

I. The TM0n0 modes have azimuthal symmetry: ∂
∂θ = 0

II. The electric field along the z-axis is constant: ∂Ē
∂z = 0

III. The only component of the electric field is longitudinal: Er = 0 and
Eθ = 0

IV. The electromagnetic field varies over time with an ω frequency. ejωt

These last two conditions imply that the electric field has the following form:

Ē = Ez(r)e
jωtẑ (A.8)

Using the cylindrical coordinate form of the Laplacian operator and applying
the aforementioned boundary conditions on equation (A.5), it is obtained that
the TM0n0 resonance modes satisfy the following wave equation:

d2Ez(r)

dr2
+

1

r

dEz(r)

dr
+
ω2

v2
Ez(r) = 0 (A.9)

As can be seen, equation (A.9) is a particular case (α=0) of the Bessel equa-
tion, whereby the solution can be expressed in terms of the zero-order Bessel
functions J0(knr) and Y0(knr) [22]. In this case, the function Y0(knr) is elimi-
nated because the electric field to be found has a finite value on the z-axis. Thus,
the electric field taking part in the TM0n0 resonance modes has the following
form:

Ezn(r, t) = E0nJ0(knr)e
jωnt (A.10)

where E0n is the magnitude of the electric field of the TM0n0 mode over the z-
axis, ωn is the resonance frequency in rad/s and kn is the resonance wave num-
ber, which is defined as kn = ωn/c, being c the speed of light in the medium.
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Another boundary condition, is that the electric field parallel to the cavity
wall at r = R0 has to be zero. This means that Ezn(R0, t) = 0. Thus it follows
that the only valid values of kn are those that make the function J0(knR0) zero.
Table A.1 shows these values for the first 4 modes:

Table A.1.: Values of kn and ωn for the first four TM0n0 modes [18].
Mode kn ωn

TM010 2.405/R0 2.405/√µϵR0

TM020 5.520/R0 5.520/√µϵR0

TM030 8.654/R0 8.654/√µϵR0

TM040 11.792/R0 11.792/√µϵR0

To calculate the magnetic field associated to the electric field, it is sufficient
to substitute the expression A.10 in equation (A.1), obtaining the following:

−jvknBθn = E0n
d(J0(knr))

dr
ejωnt (A.11)

Rewriting the equation, it is found that the resultant magnetic field in the
TM0n0 modes is the following.

Bθn(r, t) = −j
√
µϵE0n

kn
J1(knr)e

jωnt (A.12)

Thus, looking at equation (A.10) it can be concluded that the electric field
generated when a TM0n0 mode is excited is longitudinal and only dependent
on the radius. Similarly, looking at equation (A.12), it can be extracted that the
associated magnetic field is azimuthal and also solely dependent on the radius.
Furthermore, substituting the corresponding Bessel functions in each of the
above equations, it is observed that the electric field is maximum on the z-axis,
while the magnetic field is zero. This fact is very appropriate for accelerating
charged particles, since on the one hand they obtain the maximum acceleration
when passing through the z-axis, and on the other hand, they are not deflected
since the magnetic field on the z-axis is zero and there is no transversal electric
field.

Taking the TM010 mode for simplicity, the electromagnetic field created in
the cavity takes the form shown in Figure A.2.

Similarly, the normalized magnitude of both the electric and magnetic field
as a function of radial position is shown in the graph in Figure A.3.

As can be seen in Figure A.3, the electric field is maximum on the z-axis while
it decays almost linearly as it approaches the cavity wall (r=R0). In the case of
the magnetic field, its value is zero on the axis while it increases as it moves
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Figure A.2.: Scheme of the electromagnetic fields generated when exciting a TM010

mode in a cylindrical cavity. The electric field is represented in red while the magnetic
field is represented in blue.
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Figure A.3.: Normalized magnitude of axial electric field and azimuthal magnetic field
as a function of radial position.

away from the center of the cavity, reaching its maximum around 0.8r/R0 and
decreasing again as it continues to approach the cavity wall.

With regard to the resonant frequency of each TM0n0 mode, given that ωn =
vkn and that the valid kn are those that take the function J0(knr) to 0 when
r = R0, the following expression is obtained:

ωn =
X0n√
µϵR0

(A.13)
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X0n being the nth zero of the zero-order Bessel function, J0(x). Note that
the resonance frequency of a cylindrical cavity is exclusively dependent on the
characteristics of the medium (µϵ), which is assumed to be constant, and its
radius (R0). The value of ωn for the first 4 modes is shown in Table A.1.

The total amplitude of the electromagnetic fields generated inside the cavity,
on the other hand, is completely dependent on the amplitude of the injected RF
wave, and on the effectiveness with which the cavity stores the energy of that
wave, up to a limit. This efficiency is represented by the quality factor Q0 of
the device, which is defined as the ratio between the energy stored Est in the
cavity and the energy dissipated Ediss in each half oscillation cycle:

Q0 = π
Est

Ediss
(A.14)

Alternatively, this factor can also be defined as the ratio between the resonant
frequency f0 of the resonant mode and its bandwidth fBW [18].

Q0 =
f0
fBW

(A.15)

Thus, the more energy the device dissipates, the worse its quality factor will
be, and therefore, the lower the electromagnetic fields generated inside it, with
the consequent loss of acceleration capability. On the other hand, the higher the
quality factor, the better its efficiency in storing energy, although its bandwidth
will be narrower and, as will be discussed in following sections, it will be more
sensitive to disturbances.

As a general rule, resonant cavities are designed with the objective of obtain-
ing the highest possible quality factor. For this purpose, materials with very
high conductivity such as copper, aluminum and, in particular cases, supercon-
ducting materials such as niobium [23] are used in their construction. Even
so, due to the large electromagnetic fields generated inside the cavity, large in-
duced currents appear on the walls of the device, making the loss of energy
due to resistivity very noticeable. These currents penetrate the cavity walls at
a distance determined by the surface depth δ [16].

δ =

√
2ρ

ωµ
[
√

1 + (ρωϵ)2 + ρωϵ] (A.16)

Being ρ the conductivity of the material, µ and ϵ the magnetic permeability
and permittivity of the material respectively and ω the angular frequency of the
induced current. As it is shown in equation (A.16), the surface depth is deter-
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mined by the frequency of the current and the characteristics of the conductive
material.

Similarly, the current density Js induced in the walls of a cylindrical cavity
is given by the following equation.

Js = Bθ(r, t)/µ0 (A.17)

In this way, the current density induced in the cavity walls is dependent on
the azimuthal magnetic field of each point of the wall, so that the energy losses
due to resistive effects are also dependent on this field. As has already been
proven throughout this section, the magnetic field varies depending on the res-
onance mode being excited, so it can be concluded that each resonance mode
is associated with a different induced current, and in conclusion, a different en-
ergy loss due to resistive effects. This shows that the cavity quality factor Q
is dependent on both the cavity characteristics and the resonance mode being
excited. As an example, equation (A.18) shows the quality factor of a cylindrical
cavity for its TM010 resonance mode.

QTM010 =
d/δ

1 + d/R0
(A.18)

It is important to note that when the beam of particles passes through the
cavity, there is a possibility of indirectly exciting undesired higher-order modes
due to wakefield effects [61]. As a consequence, the resultant electromagnetic
field becomes a superposition of the electromagnetic fields produced by each
individual resonance mode. The contribution of these unwanted modes, as a
general rule, is detrimental to the correct acceleration of the particles, since the
electromagnetic fields they generate do not have the correct characteristics.
Thus, all energy derived to make the cavity resonate in these modes is lost and
the Q factor of the device is degraded.

Throughout this section, certain conclusions have been obtained that will be
of great help for the development of the work. the most relevant ones are listed
below.

I. In the case of cylindrical cavities, the most commonly used resonance
modes for particle acceleration are the so-called TM0n0. This is because,
as shown in figure A.2, they provide electromagnetic fields with a very
particular arrangement. On the one hand, the electric field is only axial
(see equation (A.10)), and maximum in the center of the cavity, which al-
lows maximizing the energy transfer to the particles. On the other hand,
the magnetic field is azimuthal and zero in the cavity axis (see equation
(A.12)), which decreases particle scattering.
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II. The resonant frequency of each mode is defined solely by the medium
and the geometry of the cavity (see equation (A.13)). Considering that the
cavities operate in ultra high vacuum (UHV), it can be assumed that the
medium is constant so that the resonant frequency is strictly dependent
on the geometry of the cavity. This is an important fact when it comes
to understanding the problem of detuning.

III. The quality factor of a resonant cavity refers to its efficiency in storing
energy and is inversely proportional to its bandwidth. As shown in equa-
tion (A.18), the quality factor of a cavity is not only defined by its physical
characteristics (geometry and material), but also by the characteristics of
the resonant mode that is excited. Thus, it is important that the cavity
has an appropriate design to avoid, or at least reduce, the excitation of
unwanted high-order modes (HOM). This is usually accomplished with
HOM filters, which are designed to selectively absorb and dissipate en-
ergy from these undesired modes, effectively damping their effects and
preventing them from interfering with the accelerator’s operation.



Appendix B

Relevant characteristics of
elliptical SRF cavities

B.1 | Surface resistance

The primary advantage of utilizing superconducting cavities resides in their re-
markably low surface resistance, measuring around 10 nΩ at 2 K. While normal
conducting cavities exhibit typical quality factors ranging from 104 to 105, SRF
cavities can surpass 1010, thereby reducing RF losses by a significant margin
of 5 to 6 orders of magnitude. Despite the reduced efficiency of refrigeration,
substantial savings in primary electric power are achieved.

That being said, it should be pointed out that, unlike the DC case, super-
conductors are not free from energy dissipation in microwave fields. This phe-
nomenon stems from the penetration of the RF magnetic field into a thin sur-
face layer, which induces oscillatory behaviors among the non-bound electrons,
those that do not form Cooper pairs. The quantity of these "free electrons," ex-
periences an exponential reduction in relation to temperature. According to
the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, the surface
resistance within the domain of temperatures less than half the critical temper-
ature (Tc/2) can be mathematically expressed as follows in the case of niobium:

RBCS ∝ ω2

T
e−1.76Tc/T (B.1)

For niobium the BCS surface resistance at 1.3 GHz amounts to about 800 nΩ
at 4.2K and drops to 15 nΩ at 2K. In TESLA-like bulk Nb cavities, the exponential
temperature dependence is the reason why operation at 1.8–2K is essential for
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achieving high accelerating gradients in combination with very high quality
factors.

In addition to the BCS term there is a residual resistance Rres that is inde-
pendent from the temperature. It is caused by impurities in the superconductor
material and trapped magnetic flux. Niobium is in principle a superconductor
without flux pinning, but in practice, weak magnetic DC fields are not expelled
upon cooldown and remain trapped in the material. Those flux lines contain a
normal-conducting core whose area is roughly πϵ20. The coherence length ϵ0,
which refers to the distance over which a wave maintains a relatively constant
phase relationship, is of about 40 nm in Nb. In this way, trapped magnetic DC
flux results in a surface resistance described by the following expression [10].

Rmag = (Bext/2Bc2)Rn (B.2)

Where Bext is the externally applied field, Bc2 the upper critical field and Rn

the surface resistance of the conductor in the normal state. When operating
at a frequency of 1.3 GHz, the surface resistance incurred due to entrapped
magnetic flux totals 3.5 nΩ/µT for niobium. Consequently, cavities that lack
proper shielding against the Earth’s magnetic field are constrained toQ0 values
below 109.

B.2 | Limitations

The intrinsic limitation of a superconducting resonator is dictated by the ne-
cessity to maintain the RF magnetic field at the inner surface below the "su-
perheating field" of the superconductor, which typically ranges from 200 to 240
mT for niobium [92]. For the TESLA cavities, this constraint imposes a maxi-
mum attainable accelerating field of 50-60 MV/m. While, in theory, the quality
factor should remain constant, as this fundamental superconductor limit is ap-
proached, other effects often result in the "excitation curve" Q0 = Q0(Eacc)
reaching noticeably lower values. Frequently, this is accompanied by a signif-
icant decline in Q0 as the cavity’s highest gradient is approached. The main
factors contributing to this degradation in performance encompass excessive
heating at impurities on the inner surface, the emission of electrons due to field
effects, and multipacting. Multipacting is an abbreviation for "multiple impact-
ing" and refers to a resonant process, where the number of unwanted electrons
resulting from a parasitic discharge rapidly grows to a larger value at some spe-
cific locations in a radio-frequency cavity, which, in the case of SRF devices, can
lead to quenching of superconductivity [76].

This phenomenon is closely related to another basic limitation of the maxi-
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mum field in a superconducting cavity, which is referred as thermal instability.
The dissipation of energy due to RF losses exhibits non-uniform characteristics
across the entire surface of the cavity. Specific regions tend to manifest larger
temperature raises, occasionally surpassing the critical temperature of the su-
perconductor, which is referred as quenching. Consequently, these regions un-
dergo a transition to a normal-conducting state, leading to notably intensified
power dissipation. Given the exponential increase of surface resistance with
temperature, this scenario can potentially trigger an uncontrollable escalation,
culminating in a complete quenching of the entire cavity. As a typical num-
ber, the diameter of a normal-conducting spot must exceed 50 µm to be able to
initiate a thermal instability at 25 MV/m for niobium.

Lastly, field emission of electrons from sharp tips is the most severe limita-
tion in high-gradient superconducting cavities. In field-emission loaded cavities
the quality factor drops exponentially above a certain threshold, and X-rays are
observed. There is experimental evidence that small particles on the cavity sur-
face, such us dust or fibers, act as field emitters. As a result, meticulous cleaning
procedures, such as high-pressure water rinsing, stand out as the most effective
measure to counteract field emission. Figure B.1 shows a typical stainless steel
particulate that was collected from a CEBAF-type 5-cell niobium SRF cavity
after service for beam operation.

Figure B.1.: stainless steel particulate that was collected from a CEBAF-type 5-cell
niobium SRF cavity [32].

All this limitations are discussed to a greater extent in the book by Padamsee,
Knobloch and Hayes [72], Rf superconductivity for accelerators.
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B.3 | Criteria for elliptical cavity de-

sign

Unlike in normal conducting cavities and due to the low surface resistance of
superconductive materials, issues of high shunt impedance are of minor impor-
tance. This is why SRF cavities are designed with other objectives in mind, such
as obtaining low-surface electromagnetic fields or avoiding electron multipact-
ing effects. This results in larger iris openings and a rounded shape. Figure B.2
shows an inner elliptical cell and its shape parameters which are used to trim
the RF properties according to given criteria for an specific application.

hez her hir
hiz

lcell /2

req

rir

Figure B.2.: Cross section of an elliptical cell. The figure on the right depicts the seven
parameters that are used to design the cell.

hez , her and hiz , hir are the half axis of the ellipses defining the curvature of
the equator and iris of the cell respectively. Similarly, req and rir are the radius
of the equator and iris of the cell while lcell is the length of the cell.

It should be noted that not all geometric parameters can be freely chosen.
On the one hand, lcell has to be adjusted to the speed of accelerating particles
v, since the maximum energy gain takes place for lcell = v/2c, which provides
synchronic acceleration of the beam along the multi-cell structure [82]. On the
other hand, the radius of the cell req must be trimmed to adjust the frequency
of the accelerating mode, which is a final step in the design process. In this
way, optimization of the geometry of the inner cell, for a given application of a
multi-cell accelerating structure, has to be performed with proper adjustment
of the remaining five geometric parameters. This usually leads to conflicts in
the optimization process and results in the need to adopt certain compromises
in the design.

There are three criteria very often used for the inner-cell design, directly
related to applications of accelerating structures:
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When operating with high gradients, the aim is to ensure that the ratio of
peak magnetic field to accelerating gradient is minimized. This is achieved by
altering the curvature of the iris and equator of the cell, as well as by reducing
the iris radius.

When cryogenic losses are to beminimised, the dissipation factor is sought to
be maximised, which is a factor that depends on the geometry of the cavity and
the characteristic impedance of the beam and is used as a measure for energy
dissipation in the cavity wall. This is usually achieved by reducing the radius
of the iris and altering the shape of the equator.

Lastly, when operating with high beam loading the aim is to design the cell
so that the Wakefield effects excite as few HOMs as possible. This is normally
done by increasing the radius of the iris. As an example, Figure B.3 shows 3
prototype cells that were proposed for the International Linear Collider (ILC)
[64].

Figure B.3.: Three inner cells proposed for ILC: original TESLA shape (left), RE shape
(middle), LL shape (right) [82].

The TESLA inner cell, shown in the left of Figure B.3 is one of the most used
geometry in modern SRF cavities. It was designed in the 1990s with the ob-
jective of achieving exceptionally high accelerating gradients, ideally reaching
44.5MV/m. In the years 2002 and 2004, two geometries of inner cell with better
ratio of peak magnetic field to accelerating gradient where proposed; the Low
Loss (LL) and the Re-entrant (RE), with an achievable maximum gradient of 52
MV/m and 51 MV/m for the RE and LL shapes respectively. The disadvantage
of those new shapes were higher HOM loss factors and bigger multipackting
effects due to the difficulty of properly cleaning those more complicated ge-
ometries.
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B.4 | Higher-order modes and couplers

When traversing an accelerating cavity, a particle beam excites a broad spec-
trum of higher modes, depending on the geometric shunt impedances (Rsh/Q0)
of those modes. The resulting electromagnetic field left behind by the beam is
called the wakefield. As such, the beam’s movement can deposit a noteworthy
amount of energy into high impedance, Higher-Order Modes (HOMs). Unless
adequately extracted and damped, these HOMs can also induce longitudinal
beam instabilities and increase the beam’s energy spread, or even cause a total
beam loss.

The main functions of HOM couplers are to remove the beam-induced power
in themonopole HOMs and to damp the dangerousmonopole and dipole modes
to avoid energy spread, beam emittance degradation, and beam blow-up after
multiple beam passages. Figure B.4 shows the main systems for decoupling
HOMs from the accelerating field.

(a) (b) (c)

Figure B.4.:Different types of HOMcouplers. (a) The antenna/loop based TESLAHOM
coupler [71]. (b) Waveguide HOM coupler examples for the Cornell/CEBAF cavity. (c)
Beam-pipe absorbers lined with ferrite [8].



Appendix C

Hardware used for the
implementation

C.1 | Field Programmable Gate Arrays

A FPGA is a re-programmable digital integrated circuit composed of con-
figurable logic blocks (CLBs) and input/output ports (IOBs) (see Figure C.1),
whose interconnection and functionality can be programmed using a hard-
ware description language (HDL) such as VHDL or Verilog. Unlike traditional
application-specific integrated circuits (ASICs), which are custom manufac-
tured for specific design tasks, FPGAs enable the possibility to define and im-
plement custom digital circuits on the go, maintaining most of the performance
advantages of ASICs.

Figure C.1.: Simplified structure of an FPGA.
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The CLB is the fundamental building block of FPGA technology, which, in
general, consists of the combination of a number of logic cells like the one
shown in Figure C.2.

3 input LUT

3 input LUT Full
Adder

D

Figure C.2.: Simplified structure of a logic cell.

The main components of a typical logic cell are a 4-input Look Up Table
(LUT) where logic functions can be programmed, a full adder (FA), and a D-
type flip-flop. Note that in Figure C.2, the LUT is spitted in two 3-input LUTs.
This is because, when configured in normal mode, both LUTs are combined into
a 4-input LUT through the multiplexer depicted in red. Instead, when the cell
is configured in arithmetic mode their outputs are fed to the FA. That config-
uration is dictated by the multiplexer depicted in green. Lastly, the output can
be either synchronous or asynchronous, depending on the programming of the
multiplexer depicted in blue.

Another important feature of FPGAs are the re-programmable interconnec-
tions. In essence, they consist of switch boxes, like the one shown in Figure C.3,
arranged at the intersections of the interconnections between CBLs.

Programmable
Switch

Figure C.3.: Simplified structure of a switch box.

Whenever a vertical and a horizontal channel intersect, a switch box is
present. In the most typical architecture, when a wire enters a switch box,
there are three programmable switches that enable it to connect to three other
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wires in adjacent channel segments. In this switch box topology, a wire in track
number one connects only to wires in track number one in adjacent channel
segments, wires in track number 2 connect only to other wires in track number
2 and so on.

In summary, these elements allow the configuration of interconnections be-
tween the CBLs, generating the routing of the signals of the integrated circuit
in the FPGA. It must be mentioned that FPGAs contain dedicated global and
regional routing networks for clock and reset signals so they can be delivered
with minimal skew.

Modern FPGA families include the most basic and widely used functional-
ities, such as addition and multiplication, directly embedded in silicon. The
so-called digital signal processing (DSP) blocks implement specific support for
common fixed-point and floating-point arithmetic, which reduces the need to
build equivalent logic from general-purpose CBLs and greatly increase the per-
formance of the device.

C.2 | MyRIO-9000

The myRIO-1900 card from National Instruments is a portable reconfigurable
I/O (RIO) device that provides analogue input (AI), analogue output (AO), digital
input and output (DIO), audio and power output in a compact integrated device.
It can be connected to a development computer via USB connector or via wifi.
Figure C.4 shows a picture of the device and a schematic of all its input and
output ports.

Figure C.4.: Schematic of the NI myRIO-1900 and its connection ports [48].
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It is powered by a dual-core Xilinx Z-7010 microprocessor with 667 MHz
processing speed, running a Linux Realtime operating system, which offers soft
real time processing capabilities. It also features a Xilinx Z-7010 FPGAworking
in conjunction with the microprocessor which offers hard real time processing.
Figure C.5 shows the full disposition of the different parts of the myRIO-9000.

Figure C.5.: NI myRIO-1900 Hardware Block Diagram [48].

As for the myRIO’s input and output terminals, the device has two myRIO
Expansion Ports (MXP), to which breakout cards can be added, and a Mini Sys-
tem Port (MSP), to which a connection terminal can be screwed (see Figure C.4).
Both types of ports have both analogue and digital IOs of different characteris-
tics, as well as communication buses based on UART protocol.

All the analogue inputs are multiplexed to a single analog-to-digital con-
verter (ADC) with an aggregated sample rate of 500 KS/s and a resolution of
12 bits. Each MXP port has 4 single ended AI channels with a nominal range
going from 0 to 5 V. In the case of the MSP port, only two AI channels with a
nominal range of ±10 V are available.

Each analogue output channel has a dedicated digital-to-analog converter
(DAC) with a maximum update rate of 345 KS/s and a resolution of 12 bits, so
they can all update simultaneously. The DACs for the analog output channels
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are controlled by two serial communication buses from the FPGA. MXP con-
nectors share one bus, and the MSP connector and the audio outputs share a
second bus. Each MXP port has 4 single ended AO channels with a nominal
range going from 0 to 5 V and a current drive of 3 mA. In the case of the MSP
port, only two AI channels are available, with a nominal range of ±10 V and a
current drive of 2 mA.

Note that in this appendix only the most relevant characteristics of the device
for the experiments carried out throughout the thesis have been described. For
further technical information, please refer to [48].

C.3 | PXI system

The PXI is a device designed as a modular instrumentation platform for appli-
cations in test and measurement. At its core is the PXI chassis, which serves
as a physical enclosure that houses key components called PXI modules (See
Figure C.6). Inside the chassis there is a back plane, a printed circuit board that
forms the communication backbone, that enables the flow of data and control
signals between different PXI modules, which are the functional units of the
system.

Figure C.6.: Example of a PXI system.

These modules are varied and can encompass signal generators, real-time
CPUs, FPGA modules, digital I/O devices, RF analyzers, and more. When in-
serted into the PXI chassis, these modules are automatically recognized and
configured by the system. The chassis may also include special slots for timing
modules, which are responsible for generating and distributing the clock signals
necessary for the synchronisation of all the different modules in the device.
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In this way, PXIs are very versatile devices that can be assembled using the
most appropriate modules to provide the desired functionality.

The chassis used for this work is the NI PXIe-1082, which, as shown in Figure
C.7, has one slot for the controller, two peripheral slots with PCIe input, one
slot for a timing module and four hybrid peripheral slots with PCI/PCIe input.

Figure C.7.: Schematic showing the most relevant features of the NI PXIe-1082 chassis.
The figure on the left shows the most relevant components on the front of the device,
as well as the different inputs. The figure on the right shows the interconnections
between the different inputs of the device [49].

In the first slot of the chassis an NI PXIe-8135 module is connected [50],
which is a system controller based on an embedded computer that has a quad-
core Intel Core i7-3610QE processor, dual channel DDR3, 1600 MHz memory
controller, all the standard I/O, and an integrated hard drive.

The PXI controller runs the software that controls and directs the specific
functions of each module in the system. It handles module configuration, task
synchronisation, and communication with other devices or systems.

A re-configurable NI PXIe-7966R module is installed in one of the PCIe pe-
ripheral slots, which has a Virtex-5 SX95T FPGAwith 640DSP slices and 40MHz
default time-base [47].

For signal acquisition and generation, an analog input/outputmodule NI 5781
is added to the input of the FPGA module. This adapter has two analog input
channels with a fixed input range of 2 Vpk−pk when operating in differential
mode and 1 Vpk−pk in single ended mode. It has a sample rate that can range
from 10MHz to 100MHz and features an analog to digital converter (ADC) with
14-bit resolution. Similarly, it has two analog output channels with 2 Vpk−pk

output range when working in differential mode and 1 Vpk−pk in single ended
mode. The data generation rate ranges from 10 MHz to 100 MHz, but for this
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device, can be increased to 400 MHz by means of interpolation. Finally, the
digital to analog converter (DAC) has a resolution of 16 bits [45].

The card also has a CLK IN input to introduce an external clock signal and a
CLK OUT output to generate an internal clock signal.

C.4 | FlexRIO system

FlexRIO is a technology platform developed by NI for designing and imple-
menting custom hardware-accelerated systems. It consists of a CPU running a
real-time operating system, and an FPGA on which to implement logic circuits.
Figure C.8 shows the device itself and some possible IO modules.

Figure C.8.: FlexRIO device with an IO module mounted and different IO module op-
tions.

The device used in this work is a FlexRIO 7935R [46], which has a Kintex-7
XC7K410T FPGA with 1540 DSP48 slices and a default time-base of 40 MHz. As
far as the processor is concerned, it consists of a Xilinx Zynq-7020 dual core
running a 32-bit NI Linux Real-Time OS, which is embedded together with the
FPGA on a single chip, thus creating a system on chip (SoC) device.

Since the signals used in SRF cavities are in the radio frequency range, it is
necessary to implement an analogical input and output module to the FlexRIO
to carry out the signal acquisition and generation process. The device chosen
for that matter was the NI 5783 Analog Adapter Module [44], which has 4 ana-
log input channels, 4 analog output channels and a clock input to serve as an
external clock reference, among others.

The 4 analog inputs are single-ended with a fixed input range of 2.03 Vpk−pk

and a sampling rate that can range between 60 to 100 MHz. Each analog input
features an ADC with 16-bit resolution. Similarly, the 4 analog outputs are
single ended with a 16-bit resolution DAC and an output range of 1.001 Vpk−pk.
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