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Abstract

The aim of this technical report is to present some detailgdia@ations in order to help
to understand and use the Message Passing Interface (M lleparogramming for solving
several mixed integer optimization problems. We have aped a C++ experimental code that
uses the IBM ILOG CPLEX optimizer within the COmputationldftastructure for Operations
Research@OIN-OR and MPI parallel computing for solving the optimization dets under
UNIX-like systems. The computational experience illustsshow can we solve 44 optimization
problems which are asymmetric with respect to the numbartefier and continuous variables
and the number of constraints. We also report a comparatihethe speedup and efficiency of
several strategies implemented for some available nunfltereads.

Keywords: Optimization, Message Passing Interface, Parallel ComguCOIN-OR Open
Solver Interface, CPLEX optimizer.
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1 Introduction

Parallel computingis a Computer Science area that studies the necessary mardne software

aspects to perform simultaneous execution of tasks. Ciyréns discipline is the prominent
paradigm on high performance computing and also on compubhitecture due to the industry’s
shift to multicore processors.

At hardware level, the parallel era starts at the late 19B0the form of shared memory mul-
tiprocessor supercomputers. The development of this typerputers continued until the early
1980s when a new paradigm of massively parallel multipreamess(MPPs) arrived. MPPs showed a
significantly better performance and became dominant df pgrformance computing. From late
1980’s on computing clusters appear by linking a large numbé off-the-shelf computers con-
nected by an off-the-shelf network. Nowadays parallel coting is mainly based on clusters and
multicore processors. For deeper information about pdraimputing hardware considér [3] and
[6]. The top 500 website gathers every six months the inftionaconcerning the top 500 super-
computing sites at world level .

This cooperation among processors can be of different eakepending on the way processors
exchange information. The basic parallel architecturesespond tasshared memorgandmessage
passing(or distributed memory). As described on [8] “one procesdga shared memory machine
can communicate with another by writing the informatioroiatglobal shared memory location and
having the second processor read directly from that logatising a bus. So the communication is
carried out byshared variables This makes inter-processor communication very easy astcdfa
produces problems in terms of simultaneous access of a@imgumory location. On the other hand
on message-passing paradigm each processor has its owmieery connected by a network
with the rest of processors, the communication is based @sage-passing.

On mathematical optimization, we often find large-scalebfmms or we need to solve many
of them, which can not be done efficiently by a single processeen if technology is constantly
improving. Parallel computing aims to be a powerful tool tamage this type of problems, operating
on the principle that large problems can often be divided gmaller ones. The idea is simple: to
usep processors in cooperation in order to (ideally) be able keesa problem, to solve a problem
times faster or to solve @times bigger problem using the same amount of time.

In this technical report we show how to solve many problems Imyessage-passing paradigm
code, because the solving processor of each model is catypietdependent from the rest of them,
so the transfer of information is not significant. The conagiohal experience will be carried out in
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Figure 1: Shared memory and distributed memory architest(fP: processor, M: memory)
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the cluster ARINA (se€ ]1]), that provides an extensive emnent for message-passing architec-
ture.

The presented code have been programmed with the MPI librssydescribed on [10] “the
Message-Passing Interface or MPl is a library of functioms$ macros that can be used in C, FOR-
TRAN and C++ programs. As its name implies MPI is intendeduse in programs that exploit
the existence of multiple processors by messange-passibgveloped in 1993 is one of the first
standards for parallel programming and it is the first théiaised on message-passing.

This work aims to present a general environplment for palrathlving of several optimization
problems using directly the IBM ILOG CPLEX optimizer (sé€g)[Within the COmputational IN-
frastructure for Operations Research ($ée [2] ahd [9]).Mam objective of this work is to describe
the MPI parallelization for solving optimization problem#n the computational experience, we
show the evolution of the computing time depending on thelmemof processors used and the se-
lected solver, where the combination of a general MPI palizdition with the internal ILOG CPLEX
parallelization has been considered.

The remainder of the technical report is organized as falolw Sectiori R appears the context
of the problem that we are interested in solving. Sedtiondvsithe main MPI sintaxis for parallel
computing and Sectidn 4 shows the paralleling strategy. maia ideas for MPI execution under
UNIX-like systems are presented in Secfidn 5. Sedtlon 6rteploe computational experience using
COIN-OR and CPLEX. In the Appendix 1 we present the C++ coddeitail for the illustrative
example. An example of Makefile for compiling C++ code with Mfavironment is given in the
Appendix 2.

2 Context

Let us consider the following mixed 0-1 optimization prahle

Z=min ax+ by
st. Ax+By=h
1
x e {0,1}"™, @
yeRY,

wherex andy are thenx andny dimensional vectors of the 0-1 and continuous varialdes)db are
the vectors of the objective function coefficiendsandB are the constraint matrices, respectively,
andh the right-hand-side.

As we have mentioned previously, we can consider two sdnati to solve a large-scale opti-
mization problem, that can be decomposed smaller subproblems or to solve a huge nuntpef
independent mixed-integer problems. In any case, how casoWez!, 7, ..., 7 in non-sequencial
order?

We will use the MPI parallel programming for solvirggoptimization problems, that will be
read in Mathematical Programming System (MPS), which isadsrd format for linear and mixed
integer optimization. We will compare the COIN-OR optintipa solver and the CPLEX optimizer
under COIN-OR, with sequential and parallel programmindgs important to notice that the ILOG



CPLEX optimizer also includes internally a parallel envinent for solving an optimization model.
The number of parallel threads (on shared memory) that CPita} use for any invocation of a
parallel algorithm is controlled by the threads paramépsr_ PARAM_THREADS.
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Figure 2: Strategies: MPI threads with CPLEX threads (8atiseavailable for solving 44 problems)

If we consider cores with 8 threads, we can solvedpeoblems in different ways depending on
the number of threads for distributed memory (MPI threads) the number of threads for shared
memory (CPLEX threads). For example, we will considet 44 problems, so- calleBl1, P2, ...,
P44, we could use 8 MPI threads and sequential CPLEX; or 4 Miiektls and 2 CPLEX threads;
or 2 MPI threads and 4 CPLEX threads; or 1 MPI thread and 8 CPitEads, among others. We

illustrate the different executions in the Figlte 2.

It is important to notice that not all thread have the same.r@le denotgrimary threads to
those who execute a copy of the executable, that is, thedbngarking on a distributed memory
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paradigm and linked by MPI functions. One of the primary #du® will be denotedoordinator
thread, this specific thread will be the one who gather the distadunformation. On the other
handauxiliary threads will take part on the process only when the CPLEX optimizepuiees their
participation for a shared memory solving. Each auxilidmedad is linked to a specific primary
thread. The corresponding notation will be applied at tfiferdint diagrams of this technical report
and it is summarized on the following lines.

Consideringn+ 1 MPI threads andh+ 1 CPLEX threads:

Coordinator thread 0.0
Primary threads i.0 i
Auxiliary threads i.j i =

3 MPI sintaxis

Let us start the description of the MPI environment by undir the three main phases that appear
at machine level on a message-passing paradigm|_ske [183eTihases are not directly executed
by the user, they are automatically performed by the machine

Phase a: The user issues a directive to the operating system whickheasffect of placing a copy
of the executable program on each processor.

Phase b: Each processor begins execution of its copy of the exeautabl

Phase c: Different processors can execute different statementsrémyching within the program.
Typically branching will be based on processor ranks.

The main idea behind these phases is that every primarydthiezzives an exact copy of the
executable. The code is executed in parallel but we woutddiKerent primary threads to execute
different statements. This is achieved by a rank based biagncin other words, defining the rank
of the processor that will perform a specific statement or fanthing data vectors by rank. This
allows to work on a Single Program Multiple Data paradigm.

The implementation of the corresponding executable supplifferent experimental codes. On
the following lines we present the general structure of a Mplementation in C++ (see [10]). This
layout can be divided in five groups by considering the nadfitbe functions they use.

#include "mpi.h"
main(int argc, char x*argv) {

// Group 1: Declaring MPI variables.

// Group 2: Beginning of the MPI environment (No MPI functions called before this).



// Group 3: Functions controling the number of processes.
// Group 4: Communication functions.

// Group 5: End of the MPI environment (No MPI functions called after this).

The following subsections will describe the objective otlegroup and will use as practical
example sentences of the C++ code added as Appendix 1.

3.1 Group 1: Declaring MPI variables

In this part the specific variables related to the MPI enviment are declared. This section may not
appear in every MPI code since a big part of MPI functions he/éput or output common C++
variables.

Among the most frequent MPI variables we filPl_Group andMPI_Comm. The first one
creategroupsof processor whereas the second creab@smunicatorsthat is, a group of processors
plus a context of communication, in other words, a collettd processors that can send messages
to each other.

By default, acommunicatorcalled MPI_COMM_WORLD is created at the beginning of each
program and it consists of all the active processors at theution. This turns very useful for global
communications but frequently it is simpler to consideoasbgroups of processors. That is the
case of the considered code.

As it is shown at the Appendix 1the following MPI variableg a@eclared atnainmpi.cpp

MPI_Group orig_group,new_group;
MPI_Comm new_comm;

For other MPI variables consider [10] and [12]

3.2 Group 2: Beginning of a MPI environment

MPI_Init(&argc,&argv);

MPI1_Init corresponds to the first MPI function that must be executed program. It allows
the system to use the MPI library and therefore its featuteaust be called just once and no MPI
functions can be called before this.



3.3 Group 3: Functions controlling the number of processors

In order to have a functional point-to-point communicatemvironment it is essential to identify
each processor withiank number, so that we can easily specify the sender and theveecéid-
ditionally, therank allows the programmer to work on$ingle Program Multiple Dat{SPMD)
paradigm, that implies that with a single program diffeqgmicessor execute different tasks. Schemat-
ically:

if (rank == 0) DO X
else if (rank == 1) DO Y

To do so, the MPI library provides thdPl_Comm_rank function:
MPI_Comm_rank (MPI_COMM_WORLD,&original_rank) ;

The first argument defines tttwmmunicatorand the correspondingank of the processor is
stored on the second argument. Note that a processaahlgsin general different, for eactom-
municatorthat is involved on.

Frequently, the tasks to be executed are divided among Hikalle processors. The function
MPI_Comm_sizeallows us to determine the number of processors in a commatani¢stored on
the second argument):

MPI_Comm_size (MPI_COMM_WORLD,&original_size) ;

How can we create a new communicator considering only aptiveessors?

Let us consider the case where the number of processorgertittan the number of submodels
to solve, that isimodel< original_size That will mean that some of the processor will not actually
solve any subproblem. In order to simplify the processorathgring the final solutions, we have
created a new group considering only the active threadsn&bessary steps will be:

Extract handle of global group from MPI_COMM_WORLD usiPl_Comm_group. The
handle is stored on the second argument.

MPI_Comm_group(MPI_COMM_WORLD, &orig_group);
Form a new group as a subset of global group usii®]_Group_incl.

if (nmodel < original_size) {

MPI_Group_incl(orig_group, nmodel, ranksl, &new_group);

} else {

MPI_Group_incl(orig_group, original_size, ranks2, &new_group);

}

ranksl is an array olhmodel elements containing th@nksof the processors to be part of the
new group. The handle of the new group is stored&rew_group. On the other hand,anks2
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contains the ranks of thelPI_COMM_WORLDso notice that ihmodel£ original_sizethe new
group will correspond to the existingPl_COMM_WORLDyroup.

Let us create a new communicator for the new group usiRy§ Comm_create This function
creates the new communica&new_comm with the processonew_group extracted from commu-
nicatorMPl_COMM_WORLD

MPI_Comm_create (MPI_COMM_WORLD, new_group, &new_comm);

3.4 Group 4: Communication functions

Message-passing communication is the core of a MPI envieoiinThe basic functions to develop

such an exchange correspond to MPI_Send and MPI_Recv. Bhéufiction sends a message to a
designated processor whereas the second receives a miegsaggrocessor. As mentioned on[[10]

in order for the message to be succesfully communicatedy8tera must append some information
to the data that the application program wishes to transhhits information is called thenvelope

of a MPI message It will contain the following basic information:

e The rank of the receiver
e The rank of the sender
e Atag

e A communicator

Every message-passing function defines as arguments theysaspects. As example we will
consider the specific functions used at the Appendix 1 chtid; Gatherv andMPI_Allgatherv .

Analysing the parallel computing strategy we will see thrattesubmodel is assigned to a pro-
cessor. After the solving task is finished we will gather tléug of the objective function at the
submodel ranked 0. The corresponding function will be defexefollows:

MPI_Gatherv(&zq_loc[0], assignment[pid], MPI_INT,
&zq[0] ,assignment, inicial, MPI_INT, O, new_comm);

WhereMPI_Gatherv is used to gather information of type vector in a specific pssor (for
scalar values use MPI_Gather). The first three argumentsediie vector to be sent, that is, a vector
stored from&zq_loc[0] of lengthassignment[pidjand of typeMPI_INT (in other words, a vector
of integer values). The processor rankeat thenew_comntommunicator will receive a vector of
type MPI_INT from each processor of the same communicator. The size oétséved vectors is
defined at the vectaassignmentind their position at the new vect8zq[0] is established by the
vectorinicial.

Additionally we want all the processors to have access t@tasolve status. To do so we will
use theMPI_Allgatherv . This function is an extension &iPl_Gatherv, since the same structure
is repeated for every processor, in other words, the gataor will be stored in every processor.
Note that the only difference at argument level is that thixcfion does not ask to define the receiver
rank.



MPI_Allgatherv(&istruef969_loc[0], assignment[pid], MPI_INT,
&istruef969[0] ,assignment, inicial, MPI_INT, new_comm) ;

Notice that the Appendix 1 code also includes MBI_Allreduce function. It has a double
nature since it combines values from all processors andtilitgs the result back to all processors.
In this particular case all processors will store atrtlelsvariable the value obtained by taking the
maximum value (MPI_MAX) among the locatols_max_lowariables.

MPI_Allreduce(&ncols_max_loc,&ncols, 1, MPI_INT, MPI_MAX,new_comm);

The MPI library provides a rich variety of functions for mage-passing tasks. For further
information see[[12].

3.5 Group 5: End of a MPI environment

MPI_Finalize();

MPI1_Finalize corresponds to the last MPI function that must be executed program. It
cleans up unfinished tasks and closes the interaction vatMPl library. It must be called just once
and no MPI functions can be called after this.

4 Parallelization Strategy

Before analysing the parallelization strategy, let us immrshe serial version of the solving process.
Figure[3 summarizes on a descriptive diagram the four taske tperformed by the only thread.
These tasks correspond to a data input, model creatioringghvocess and printing the numerical
results. Each of them is applied to every single problemreeftarting the next step.

12
READ DATA
{PO1, P02, P03, PO3, ..., PA4}

I

CREATE COIN-OR MODELS
{P01, P02, P03, PO3, ..., P44}

I

SOLVE MODELS
{P01, P02, P03, PO3, ..., P44}

I

PRINT RESULTS
{P01, P02, P03, PO3, ..., P44}

Figure 3: Basic steps of the serial execution




We can extend the descriptive diagram to a two thread phvalision as shown in Figuié 4. In
this case the first three tasks are performed by both thréedsg the total amount of problems,
this will significantly reduce the total amount of time. Oribe solving process is finished on both
threads, the coordinator thread gathers the numericdtsdsumassing passing functions and prints

them.

¥

READ DATA
{P01, P02, PO3, PO3 ..., P22}

I

CREATE COIN-OR MODELS
{P01, P02, P03, PO3, ..., P22}

I

SOLVE MODELS
{P01, P02, P03, PO3, ..., P22}

1.0

1

READ DATA
{P23, P24, P25 P26,..., P44}

I

CREATE COIN-OR MODELS
{P23, P24, P25, P26,..., P44}

I

SOLVE MODELS
{P23, P24, P25, P26,..., PA4}

e

send results

__________________

PRINT RESULTS
{PO1, P02, P03, P03, ..., P44}

Figure 4: Basic steps of the MPI parallel execution

The user can define the branching cited on the third blockrdowpto the desired parallel pro-
gramming strategy. The following procedure shows the predmputing idea behind the example
code provided in the Appendix 1 and a parallel diagram isttated in Figuré]5.

Step 0: Declaring optimization and MPI variables [All primary processors]

The correspondence at variable level between the optilizatodel [1) and appended C++
code is described at Talllé 1. Declare MPI variables by usingtfons of Group 1 described
at Subsectioh 3]1.

Table 1: Correspondence between the optimization modefreniinplemented C++ code

Model q z (Xy) nx+ny
C++ nmodel zgq xO0 ncols

Step 1: Definition of the global environment [All primary processors]
* Beginning of the MPI environment using functions from Gr@Bubsection 312

Definition of the total number of processors, the rank of eafdinem and creation of a new
communicator by using functions of Group 3 described at &ctite[3.8. By default, proces-
sor ranked) is defined as coordinator.
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Step 2: Presolve assigned modelfAll primary and auxiliary processors]

Every processor reads the corresponding MPS files and srieg@ssociated CPLEX within
COIN-OR optimization models.

¢ If selected optimizer = CPLEX: Each processor starts a shaemory parallel computing
environment with a chosen number of auxiliary processeor&idurd b we show an illus-
trative diagram that corresponds to use 2 MPI threads andlERRhreads. Assigned
models are presolved.

o If selected optimizer = COIN-OR: Each processor presolgsigaed models.

Step 3: Global MPI communication. [All primary processors]

The coordinator processor gathers the presolve informaifoall models and all primary
processors gather presolve status by using functions fromugs4 described at Subsection

B.4
Step 4. Check the presolve statufCoordinator processor]

o If all models are feasible and bounded: Go to Step 5.
e Else: Goto Step 8.

Step 5: Solve assigned model§All primary and auxiliary processors]

o If selected optimizer = CPLEX: Each processor starts a sharemory parallel program-
ming environment with a chosen number of auxiliary procesg¢see Figuré]5). As-
signed models are solved.

o If selected optimizer = COIN-OR: Each processor solvegyassi models.

Step 6: Global MPI communication. [All primary processors]

The coordinator processor gathers the presolve informatiall models by using functions
form Group 4 described at Subsection| 3.4

Step 7: Print results [Coordinator processor]
The coordinator processor prints all results.

* End of the MPI environment using functions from Group 5 dieset at Subsectidn 3.5

Step 8: Execution ends in all processorgAll primary processors]

5 Basic installations and executions under UNIX-like systas

5.1 Basicinstallations: COIN-OR, CPLEX, C++, MPI

Firstly, its necessary to install COIN-OR, which stands @®mputational IN fraestructure for
OperationsResearch, a collection of open source software for optinoimasee([2].
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Step 0 - 1.0
T

Step 1 DEFINE GLOBAL VARIABLES DEFINE GLOBAL VARIABLES
P npr, assignment, inicial... npr, assignment, inicial...
DEFINE LOCAL VARIABLES DEFINE LOCAL VARIABLES
Step 2 . .
pid, zq_loc, x0_loc ... pid, zq_loc, x0_loc ...
READ ASSIGNED READ ASSIGNED
MPS MODELS MPS MODELS
CREATE ASSIGNED CREATE ASSIGNED
COIN-OR MODELS COIN-OR MODELS
7 7
. . . . 1.0 1.1 1.2 1.3
SHARED PRESOLVE OF SHARED PRESOLVE OF
ASSIGNED MODELS ASSIGNED MODELS
Y
thread0.0 gathers presolve information l

Step 3

all primary threads gather presolve statlis

no

Step 4 === feasible and

bounded?

feasible and o
bounded? .

yes

|
I
|
|
|
|
|
l
SHARED SOLVING OF i SHARED SOLVING OF
ASSIGNED MODELS ! ASSIGNED MODELS
I
|
|
|
I
|
T
|
|
|

Step 5 1.0 1.1 1.2 1.3

v
| thread0.0 gathers solve informatior{ l
]
PRINT ALL
Step 7 RESULTS
]
Step 8 - — 5 END e — END

Figure 5: Parallelization diagram (2 MPI threadst CPLEX threads)

The first step is to download the codes. For downloadi@N-OR you must click orDown-
load/Usein the left hand side of the home pelgp://www.coin-or.org Then in the second Section
titted Source Code, you must click tvereto download the source code for the latest stable release.
You can observe an index for the source of a number of COINept®j You must click oi€oinAll/
to obtain the list of last versions. In this case you will klend selecCoinAll-1.3.1.zip Alterna-
tively you can go directly to the corresponding home p&génAll-1.3.1.zip After downloading
the tarball you must extract the code into a new subdirectsoftware/CoinAll For a step by step
explanation on how to download and use COIN-OR consider. [11]

Secondly, you must install the IBM ILOG CPLEX software fortiogization with academic
license, see [7]. For downloading CPLEX, you must click on

www-01.ibm.com/software/websphere/products/optitnzdacademic-initiative/index.html

You have to register "join now" in the right of screen and gstip 2. You will see the screen,
IBM Academic Initiative (the ILOG Optimization Key Requgsage, or click on

https://www14.software.ibm.com/webapp/iwm/web/prgirodo?lang=en_US&source=ai-ILOGKEY
give your institutional (for example, UPV/EHU) e-mail agds. When you are registered click on
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13

15

17

19

21

academic-initiativeyou can do "Get Full version software". Select " downloadrfrtne software
catalogue", give your institutional e-mail address andwasd, click by email. IrFind by search
text put CPLEX and click orSearchyou have a list of program$3M ILOG CPLEX Optimization
Studio Academic Research Edition V1Z@& several platforms. Select one of them and click on
"l agree" at the end of the screen addwnload now. Select the directory to instalboftware/C-
PLEX. Also, save the license key filccess.ilmn the location of your choice, for downloading the
license key, you can follow the instructions of ILOGQuic&S{pdf, to obtain this file, please click
on|ILOGQuickStart.pdf For a step by step explanation on how to download and use &mlithin
COIN-OR consider [11]. Finally, you can install the mpic+entpiler and thenpi.hlibrary for MPI
parallel computing from the webpage @NU |http://gcc.gnu.org(see [5]).

5.2 Basic executions

Once you have downloaded and installed all the softwareritbestin the previous subsection, you
can compile, link and execute your own C++ code with the neviones.

For the compilation in the machinginness.1gp.ehu.es of the so-calledhainmpi . cpp file
provided in the Appendix 1 of this technical report, you widled a script that contains all the sen-
tences to compile the C++ file under MPI, linking with the COGINR libraries and the optimization
software CPLEX. We will use the following script so-calleslpile, which has been written by the
technicians of the SGI/1Z0-SGlker Computing Service atutd//EHU, seel[ll]. For an alternative
unix machine, you can consult the Appendix 2.

#!/bin/bash
[ $# !'= 1 ] & echo —e "\n Provide one file name\n" && exit
#compiler=g++
#compiler=icpc
compiler=mpiicpc
extra_emt64=""
if [ $compiler == "g++" ]; then
gnu_CXXFLAGS="-03 —fomit—frame—pointer —pipe —fexceptions —DIL_STD —DNDEBUG"

gnu_warnings="pedantic-errors —Wimplicit —Wparentheses-Wreturn—type —Wcast-
qual —Wall —Wpointer—arith —Wwrite—strings —Wconversion —-Wno-unknown-
pragmas”
else
gnu_CXXFLAGS="03 —fomit—frame—pointer —pipe —fexceptions —DIL_STD —DNDEBUG"
[ $(arch) == "x86_64" ] && extra_emt64="Wparentheses"
gnu_warnings="$extra_emt64Wreturn—type —Wcast-qual —Wall —Wpointer—arith —
Wwrite—strings —Wconversion—Wno-unknown-pragmas"”
fi
coin_dir="/software/CoinAll"

coin_libdir="$coin_dir/lib"

coin_liblink="-L$coin_libdir"
#all libraries of coin
coin_libs=$for i in $(Is $coin_libdir/libx.la);do basename $i .la;done |sed 'S

/Mib/—1/g’ | tr —s "\n" " ")
coin_incs=“1%coin_dir/include/coin"
cplex_incs=*1/software /CPLEX/cplex/include/ilcplex/"
mkl_libs="-L/opt/intel/composerxe/mkl/lib/intel64 ~Imkl_intel_Ip64 —
Imkl_sequential—Imkl_core —Ipthread™
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cplex_libs="L/software /CPLEX/cplex/lib/x86-64_sles10_4 .1/ static_pic+lcplex —

lilocplex"

[ $(arch) == "ia64" ] & cplex_libs=""

[ —f $x_$(arch) ] & echo—e "\n ============= Deleting old $ $(arch)\n" & rm
$x_$(arch)

$compiler $gnu_CXXFLAGS $gnu_warnings $coin_incs $cpléxcs $coin_liblink
$coin_libs $cplex_libs $mkl_libs $.cpp —o $«_$(arch)

echo ""
if [ —f $«_$(arch) ] ;then

echo ============= Done!!, § $(arch) binary has been created
else

echo ============= ERROR!!, 4 $(arch) binary couldnot be created
fi
echo ""

compile.dat

If you import this script from non UNIX-like systems, you shad edit it

$ vi compile

and write
Esc : set fileformat=unix
Esc : wq

copy compile.dat in compile

$ cp compile.dat compile

Then, you can give execution permission with the followiegtence:

$ chmod u+x compile

Now, you can execute the main C++ file with the script descripeviously:

$ ./compile mainmpi

The binary will be created with theainmpi_x86_64 name and it can be executed from the

prompt with the commandpirun or mpiexec for mpi execution with 8 threads:
$ mpirun -n 8 ./mainmpi_x86_64

Or alternatively, the binary can be sent to the queue of tetesy using acript_file with
the specific sentences to determine, among others,

e the maximum real time. For reserving 12 howtBBS -1 walltime=06:00:00
e the memory allowed. For reserving 1 gfPBS -1 mem=40gb

e the number of threads. For reserving 8 threa®®S -1 nodes=1:ppn=8:xeon8
You can send the executable file to the queue with the sentence
$ gsub_arina script_file

For more information about sending files to ARINA, you can see
http://www.ehu.es/sgi/category/mandar-trabajos
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6 Computational experience

The proposed main program has been implemented in a C++iexp#al code. It uses the open
source optimization engim@OIN-ORfor solving the mixed 0-1 optimization problems, in partanu
we have used the functions: Clp (LP solver), Cbc (MIP solvesi, OsiClp, OsiCbc, OsiCpx and
CoinUtils. Additionally, it uses one of the state-of-the-aommercial optimization engines, in
particular CPLEX, see [7], within the open source endl@IN-OR

The computational experiments were conducted at the ARIbAputational cluster provided
by the SGI/1IZO-SGlker at the UPV/EHU. ARINA provides 1400re® divided as follows: 1112
xeon cores, 248 Itanium2 cores and 40 opteron cores. Alllzdlon nodes are connected by an
Infiniband network with high bandwidth and low latency. Fbe tpresent experiments the xeon
x86_64 architecture (Xeon Nehalem-EP E5520 @ 2.27GHz)rigpes have been used, consisting
on 8 cores with 24 Gb of RAM with an QDR infiniband interconmeat Whereas for the calculation
data storage, a 22 Tb high performance file system based drelwas used.

The list of optimization problems that we are going to solsédased on the scenario-cluster
submodels obtained from the multistage stochastic mixggpblem P4 taken from the computa-
tional experience reported in/[4]. The full model is a lasgpale problem withQ| = 217 scenarios
(nonsymmetric scenario tree) ahd | = 4 stages, where the nonanticipativity constraints has been
relaxed for the first and second stagegse 44 subproblems have been obtained. The main dimen-
sions of the original large-scale optimization problem &mel subproblems average and standard
deviation dimensions are shown in Tallés 2 [and 3, respbctwvel Tabld 4 shows the value of the
optimal objective function for the 44 mixed integer probkenihe 44 MPS files can be downloaded
as well as theainmpi. cpp code.

Table 2: Large-scale problem dimensions

#rows nx ny #non-zeros density (%)q |Q ¥ 7
9248 2176 4792 515768 0.64 44 217 272 4

Table 3: Testbed 44 subproblem average (standard devigimensions

# rows nx ny # non-zeros density (%)
average 270 63 151 14263 7.93
(st. deviation) (53.46) (12.58) (25.16) (2981.38) (1.57)

Tabled b andl6 give the main execution times for COIN-OR aptmand for CPLEX solver
within COIN-OR (allowing one single thread for CPLEX), reggively. The headings are as fol-
lows: Available threadsthe number of threads for the serial and parallel programgplaximum #

prob/thread the bottleneck or maximum number of problems to be solvethi®ad, that is[niprw;

Min, Average, Maxthe minimum, average and maximum CPU time by thread (inrekx)p respec-
tively; Average, St. dethe average and standard deviation (in seconds) for tHelwek time after
15 executions of the same code. The CPLEX within COIN-OResalvbetween 3 and 5 five times
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Table 4: Testbed 44 MIP solutions

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11

-2953.46
-5067.97
-3957.70
-5310.86
-9219.36
-6539.62
-8196.80
-6582.53
-7811.68
-8126.43

-8420.17

P12 -3215.94
P13 -6662.71
P14 -4078.15
P15 -5315.24
P16 -8504.21
P17 -6592.45
P18 -5186.78
P19 -6291.11
P20 -7378.17
P21 -8450.21
P22 -8558.38

P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33

-8945.76
-7271.52
-7136.25
-7046.85
-5561.61
-5327.66
-3991.81
-8051.70
-4887.34
-5434.41

-9432.48

P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44

-2915.80
-4291.44
-9412.94
-7899.80
-4851.96
-7735.64
-7764.66
-9828.10
-2786.57
-4311.35
-8135.21

faster than the plain use of COIN-OR (without any presolimgut generation). If we compare

CPU time versus real time, we can conclude that communitaitioe is not very relevant.

Table 5: Computing times under COIN-OR

Available Maximum CPU time Real time
threads # prob/thread Min. Average Max. | Average St. dev.
Serial 1 44 | 17.651 17.651 17.651 17.780 0.013
MPI 1 44 | 18.013 18.013 18.013 18.239 0.093
2 22| 8.823 8.866 8.779 8.972 0.010
4 11| 5.018 5.165 5.271 5.373 0.029
8 6| 3.118 3.647 3.960 4.508 0.253
16 3| 1.735 2.077 2272 2.632 0.270
32 2| 1.239 1.857 1996 2.054 0.005
64 1| 0.839 1403 1517 1.590 0.260

Table 6: Computing times under COIN-OR&CPLEX - single titréar CPLEX

Available Maximum CPU time Real time
threads # prob/thread | Min. Average Max. | Average St. dev.
Serial 1 44 | 6.107 6.107 6.107 6.163 0.019
MPI 1 44 | 6.344 6.344 6.344 6.401 0.005
2 22| 3.161 3.165 3.168 3.201 0.002
4 11| 1.647 1.667 1.683 1.706 0.005
8 6 | 0.992 1.025 1.074 1.120 0.030
16 3| 0.521 0.546 0.564 0.604 0.058
32 2 | 0.349 0.390 0.405 0.426 0.0175
64 1| 0.227 0.259 0.276 0.297 0.0857
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TablelT gives the main execution times for CPLEX solver witBiOIN-OR considering a num-
ber of available threads and several combinations betwsemumber of threads for distributed
memory (MPI threads) and shared memory (CPLEX threads) r@stef headings are as defined in
the previous tables. For 8 available threads the averagjémesafor computing the serial execution
is 7.699 seconds, which corresponds to the worst stratebg Flgure 6 shows the real time for
COIN-OR in horizontal read line and the real time for CPLEXvarttical blue bars, it is classified
according to the available number of threads, as detail@dltedd an@]7. We can observe that for
a fixed number of available threads the real time for solviregtproblems (a big number of them
with small dimensions) is decreasing with the bigger nundiéviPI threads. So, the fastest case
corresponds to the biggest number of MPI threads and a dimglad for CPLEX, which highlights

the interest of MPI parallel computing.

Table 7: Computing times under COIN-OR&CPLEX - multipledhds for CPLEX

Available MPI x CPLEX CPU time Real time
threads threads Min. Average Max. | Average St. dev.
1 1x1 6.107 6.107 6.107 6.163 0.019
2 1x2 4.328 4328 4.328 5.683 0.046
2 2x1 3.161 3.165 3.168 3.201 0.002
4 1x4 2.382 2.382 2.382 6.076 0.055
4 2x2 2.141 2.184 2227 2.986 0.022
4 4x1 1.647 1.667 1.683 1.706 0.005
8 1x8 2.590 2590 2590 7.699 0.222
8 2x4 1.184 1.229 1.258 3.229 0.245
8 4x2 1.095 1.124 1.176 1.632 0.032
8 8x1 0.992 1.025 1.074 1.120 0.030

MPI= 1 corresponds to serial execution

20

Real time (seconds)
0

Figure 6:

1 thread

10

=
=

o~
=
=

2 threads

-
3
&

4 threads

10

T o
= 2
3 &

o
3
=

10

8 threads

° T o oo
2 X s =
3 & F &

CPLEX within COIN-OR real time, classification {diP1 x CPLEX) threads

17



Finally, the Tabld_ B summarizes the best real times for CORl-and CPLEX, with all the
available threads considered. The headings are as folReal Timethe wall clock time in seconds
(average time over 15 realization§peedupserial real time over parallel real time; akéficiency
parallel real time over number of threads, in percentages Sgeedup and efficiency is high and
similar for 2 and 4 available threads, but is better for CPLMin COIN-OR optimization solver
for 8 or more threads. These results are illustrated in Eigur

Table 8: Efficiency COIN-OR versus COIN-OR&CPLEX

l

Available COIN-OR COIN-OR&CPLEX
threads | Real time Speedup Efficiency| Realtime Speedup Efficiency,
Serial 1 17.780 1.000 100.¢ 6.163 1.000 100.4
MPI 2 8.972 1.982 99.1 3.201 1.925 96.3
4 5.373 3.309 82.7 1.706 3.613 90.3
8 4.508 3.944 49.3 1.120 5.503 68.9
16 2.632 6.755 42.2 0.604 10.204 63.§
32 2.054 8.656 27.1 0.426 14.670 45.9
64 1.590 11.182 17.5 0.297 20.751 324
o |—e= CPLEX &€ @ —e— CPLEX
“ |+&-  coIN \ -&  COIN
o Ideal g - ‘_
3 \
o = “
s~ | 521 Y\
g g N
n E L \\‘ L
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Appendix 1

Number of threads

Number of threads

Figure 7: Speedup and efficiency vs number of threads

The main progranmainmpi . cpp is detailed below (C++ keywords are showrbine comments in
greenand MPI elements ined).

1 //
11
3| //
/11

from UPV/EHU.
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No part of this code may be reproduced,

This is the last version of the code mainmpi.cpp.
Copyright (C) 2012 by U. Aldasoro,

modified or transtad ,

All rightreserved.
M.A. Garin, M. Merino dnG. Perez,

in any
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[/l form or by any means without the prior written permissiorf 6he authors.
/I Cluster models are in mps format, as external files

#include "itoa.h"

#include <mpi.h>

#include <string.h>

#include <stdlib .h>

#include <math.h>

#include <assert.h>

#include <stdio .h>

#include <iostream >

#include <fstream>

using namespacestd;

#include "ClpSimplex . hpp"

#include "CoinHelperFunctions . hpp"
#include "CoinBuild . hpp"

#include "CoinModel . hpp"

#include <iomanip>

#include <cassert >

#include "OsiClpSolverinterface .hpp"
#include "CbcModel. hpp"

#define rmaxmin (1) /[l (1): Maximum; (—=1): Minimum

#define nmodel 44 // Number of cluster models

#define useCplex 1 /I Select solver. 0: COINOR; 1: Cplex

#define threadsCplex 2 // Number of parallel threads used by each MPI thread

#ifdef useCplex
#include "OsiCpxSolverinterface .hpp"
#endif

int main(int argc, char xxargv)
{
/!l STEP 0— DECLARING OPTIMIZATION AND MPI VARIABLES
int imod,i,j,loc,pid,npr,lp,original_rank ,original_sizeerror ,ncols;
int assignment[nmodel],inicial[nmodel],nonzero[nmodehjumres[nmodel],
numvar[nmodel], numvarint[nmodel], assignmentX0 [nmbHeniX0[nmodel ],
istruef969 [nmodel |;
double zg[nmodel];

MPI_Group orig_group ,new_group; //MPI groups

MPI1_Comm new_comm; /IMPI communicator

/I STEP 1— DEFINITION OF THE GLOBAL ENVIRONMENT

MPI_Init(&argc ,&argv); // Beginning of the MPI environment
MPI_Comm_size (MPLCOMM_WORLD, &original_size);/ Total number of threads
MPI_Comm_rank (MPL.COMM_WORLD, &original_rank);// Who am |?

/I 1.1 — Creating a new communicator considering active threads

/I 1.1.1— Basic variables
int ranksl[nmodel];
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int xranks2; ranks2mew int[original_size];
for(i=0;i<nmodel;i++) {ranksl[i]=i;}
for(i=0;i<original_size;i++) {ranks2[i]=i;}

/I 1.1.2— Extract handle of global group from MPL_COMM_WORLD using
MPI_Comm_group
MPI_Comm_group (MPI_COMM_WORLD, &orig_group);

/I 1.1.3— Form new group as a subset of global group using MPI_Grouplin

if (nmodel < original_size)fIPI_Group_incl(orig_group, nmodel, ranksl,6 &
new_group);

} else {MPI_Group_incl(orig_group, original_size , ranks2, &newroup) ;}

/I 1.1.4— Create new communicator for new group using MPI_Comm_areat
MPI_Comm_create (MPI_COMM_WORLD, new_group , &ew_comm)

/I 1.1.5— Determine new rank in new communicator using MPI_Comm_rank
MPI_Group_rank (new_group, &pid);
MPI_Group_size (new_group, &npr);

/I 1.1.6 — Creating the output file
ofstream solution ("CPLEX_COIN_MPI_solution.dat",iosaut); //OQutput file

/I 1.2 — Only active threads follow the solving process
if (original_rank < npr) {

/I ' 1.2.1 — Assigning the work load
for(i=0;i<npr;i++) assignment[i]Fnt(nmodel/npr);
for(i=0;i<(nmodeknpr«xint (nmodel/npr));i++) assignment[i]=assignment[i]+1;

inicial [0]=0;
for(i=1;i<npr;i++) inicial[i]=inicial[i —1]+assignment[i-1];

/I 1.2.2 — Declaring local variables

int ncols_max loc=0;

double xzq_loc; zqg_loc=new doublgassignmenfpid]];

int xnonzero_loc; nonzero_ loc=new int[assignmenfpid]];

int xnumres loc; numres loc=new int[assignmen{pid]];

int xnumvar_loc; numvar_loc=new int[assignmen{pid]];

int xnumvarint loc; numvarint loc=new int[assignmenfpid]];
int xistruef969 loc; istruef969 loc=new int[assignmen{pid]];

/I 1.2.3 — Creating the output file
if (pid == 0) {
if (useCplex == 0) {solution <<#x* SOLVER: COIN-OR *x*x"<<"\n\n";}
else {solution <<"xxx SOLVER: CPLEX xxx \n\n +++ NUMBER OF " <<
"PARALLEL THREADS ON CPLEX = "<<threadsCplex <<" +++ \n\n};

solution <<"Beginning of CPLEX_COIN_MPI_solution.dat @goput of mainmpi.
cpp) \n Number of threads = "<<original_size <<"\n Number of
submodels = "<<nmodel<<"\n Number of active threads = "<kqp"\n";
for (i=0;i<npr;i++) {
solution <<" Number of submodels solved by thread "<<i<<" =<"
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109 assignment[i]<<", starting by submodel = "<< inicial]fil<<"\n";}
}
111
/I 1.2.4 — Creating the COINOR or CPLEX/COIN-OR models
113 OsiClpSolverinterfacexsol0;
sol0=new OsiClpSolverinterface [assignmeppid]];
115
OsiCpxSolverlnterfacexsoll;
117 soll=mew OsiCpxSolverlnterface [assignmephpid]];
for(loc=0;loc<assignment[pid];loc++)
119 CPXENVptr env = sollloc].getEnvironmentPtr();
CPXsetintparam (env, CPX PARAM THREADS, threadsCplex);
121 }
123 for(loc=0;loc<assignment[pid];loc++)
125 imod=inicial[pid]+loc; const chak final;
final=""; char buffer[33];
127 final=itoa (imod+1, buffer ,10);//convert in char
char model [80]; strcpy (model,"Cluster");
129 strcat (model, final); puts (model);
131 if (useCplex == 0) {
sol0[loc].setObjSense (rmaxmin) ;
133 solQ[loc].readMps(model);//Read cluster submodel
nonzero loc[loc] = sol0[loc].getNumElements () ;
135 numres loc[loc] = sol0O[loc].getNumRows () ;
numvar_loc[loc] = sol0O[loc].getNumCols () ;
137 for(j=0;j<sol0[loc].getNumCols ();j++)
if (solO[loc].islnteger(j)) numvarintloc[loc]++;
139 if (sol0[loc].getNumCols() > ncols_maxloc)
{ncols_max loc = sol0[loc].getNumCols () ;}
141 } else {
soll[loc].setObjSense (rmaxmin);
143 soll[loc].readMps(model);//Read cluster submodel
nonzero loc[loc] = soll[loc].getNumElements () ;
145 numres loc[loc] = soll[loc].getNumRows () ;
numvar_loc[loc] = soll[loc].getNumCols () ;
147 for(j=0;j<soll[loc].getNumCols ();j++)
if (soll[loc].islnteger(j)) numvarintloc[loc]++;
149 if (soll[loc].getNumCols() > ncols_maxloc)
{ncols_max_loc = soll[loc].getNumCols () ;}
151 }
}
153
if (npr > 1) {
155 MPI_Allreduce(&ncols_max_loc,&ncols, 1, MPI_INT, MPLAX, new_comm) ;
} else {
157 ncols=ncols_maxloc;}
159 double *%x0;x0=new doublex[nmodel];
for (i=0;i<nmodel;i++) x0[i]=new double [ncols];
161
double *x0_loc; x0_loc=new doublgassignmenfpid]«ncols];
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double xx0vector; xOvectoraew doublgnmodel«ncols];

for (imod=0;imod<assignmertpid] ;imod++) {
for(j=0;j<nmodel;j++) {
x0_loc[imodxncols+j]=0;
}
}

for (i=0;i<npr;i++) {
iniX0[i]=inicial[i] *ncols; assignmentX0[i]=assignment[4hcols;}

/!l STEP 2 - PRESOLVE ASSIGNED MODELS
error=0;

for(loc=0;loc<assignment[pid];loc++)

{
if (useCplex == 0) {
imod=inicial[pid]+loc;
CbcModel pmO(solfloc]);
istruef969 loc[loc]=0; solO[loc].initialSolve ();
if (solO[loc].isProvenPrimallnfeasible ()) {zgloc[loc]=rmaxminx1l.e25;
istruef969 loc[loc]=1;}
if (istruef969 loc[loc]==0){
if (sol0[loc].isProvenDuallnfeasible () ){
zq loc[loc]=—1.0«rmaxmin«1l.e25; istruef969loc[loc]=2;}
if (!sol0[loc].isProvenOptimal ()) {
zgq_loc[loc]=—1.0«rmaxmin«1.e25; istruef969loc[loc]=2;}
}
} else {
imod=inicial[pid]+loc;
istruef969 loc[loc]=0; soll[loc].initialSolve ();
if (soll[loc].isProvenPrimallnfeasible ()) {zgloc[loc]=rmaxmin«x1l.e25;
istruef969 loc[loc]=1;}
if (istruef969 loc[loc]==0){
if (soll[loc].isProvenDuallnfeasible () ){
zq loc[loc]=—1.0«rmaxmin«x1.e25; istruef969loc[loc]=2;}
if (!soll[loc].isProvenOptimal ()) {
zgq_loc[loc]=—1.0«rmaxmin«1.e25; istruef969loc[loc]=2;}
}
}
}

/1 STEP 3— GLOBAL MPI COMMUNICATION (GATHERING PRESOLVE INFORMATION
if (npr > 1) {
MPI_Allgatherv(&istruef969_loc [0], assignment[pid], RLINT,
&istruef969 [0],assignment, inicial , MPI_INT, new_comm)
MPI_Gatherv(&zq_loc[0], assignment[pid], MPI_INT, &z®@],
assignment , inicial , MPI_INT, 0, new_comm);
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} else {
for (imod=0;imod<nmodel ;imod++) {
istruef969 [imod]=istruef969loc[imod]; zq[imod]=zq_loc[imod];
}
}

for (imod=0;imod<nmodel;imod++) {
if (istruef969[imod] == 1){
solution<<"\n Cluster submodel "<<imod+1
<<" is primal infeasible. ObjValue = "<<zq[imod]; error=};
if (istruef969[imod] == 2){
solution <<"\n Cluster submodel "<<imod+1
<<" is unbounded. ObjValue = "<<zq[imod]; error=1;}

}

/l STEP 4 - CHECK PRESOLVE STATUS
if (error == 0){

/I STEP 5 SOLVE ASSIGNED MODELS
if (useCplex == 0) {
for(loc=0;loc<assignment[pid];loc++)
{
imod=inicial[pid]+loc; CbcModel pmO(sollloc]);
pmO . branchAndBound () ;

if (!pm0.isProvenOptimal ()) {
zq loc[loc]=—1.0«rmaxminx1l.e25; istruef969loc[loc]=3;}

if (fabs(pmO.getBestPossibleObjValue ())>1.e24){
zgq_loc[loc]=—1.0«rmaxmin«1.e25; istruef969 loc[loc]=4;}

if (istruef969 loc[loc] == 0) {
zq loc[loc]=pm0. getObjValue () ;
for(j=0;j<pm0.getNumCols () ;j++) {
x0_loc[locxncols+j]=pm0. getColSolution () [j];}}

}
} else {
for(loc=0;loc<assignment[pid];loc++)
{
imod=inicial[pid]+loc; soll[loc].branchAndBound () ;
if (!soll[loc].isProvenOptimal ()) {
zq loc[loc]=—1.0«rmaxminx1l.e25; istruef969loc[loc]=3;}
if (fabs(sollloc].getObjValue ())>1.e24){
zgq_loc[loc]=—1.0«rmaxmin«1.e25; istruef969loc[loc]=4;}
if (istruef969 loc[loc] == 0) {
zq loc[loc]=soll[loc].getObjValue () ;
for(j=0;j<soll[loc].getNumCols ();j++)
X0 _loc[locxncols+j]=soll[loc].getColSolution()[j];}
}
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/' STEP 6- GLOBAL MPI COMMUNICATION (GATHERING SOLVE INFORMATION)
if (npr > 1) {
MPI_Gatherv(&zq_loc[0],assignment[pid],MPI_DOUBLEZ[0],
assignment ,inicial ,MPI_DOUBLE,Q ,new_comm) ;
MPI_Gatherv(&nonzero_loc [0],assignment[pid],MPI_INInonzero [0],
assignment ,inicial ,MPI_INT,0 ,new_comm) ;
MPI_Gatherv(&numvar_loc [0] ,assignment[pid],MPI_INSpumvar[0],
assignment ,inicial ,MPI_INT,0,new_comm) ;
MPI_Gatherv(&numvarint_loc [0],assignment[pid],MPNT,&numvarint[0],
assignment ,inicial ,MPI_INT,0,new_comm) ;
MPI_Gatherv(&numres_loc[0],assignment[pid],MPI_INfhumres[0],
assignment ,inicial ,MPI_INT,0 ,new_comm) ;
MPI_Gatherv (x0_loc ,assignmentXO0 [pid],MPl_DOUBLE, xéwtor ,
assignmentX0 ,iniX0 ,MPI_DOUBLE, 0 ,new_comm) ;
MPI_Gatherv(&istruef969_loc[0],assignment[pid],MPNT,&istruef969 [0],
assignment ,inicial ,MPI_INT,0,new_comm) ;

} else {
for (imod=0;imod<nmodel ;imod++) {
zq[imod]=zq loc[imod]; nonzero[imod]=nonzeroloc[imod];
numvar[imod]=numvar loc[imod]; numres[imod]=numresloc[imod];

istruef969[imod]=istruef969loc[imod];
for (j=0;j<numvar[imod];j++){
x0vector[imodncols+j]=x0_loc[imod«xncols+j];
}
}
}

for (imod=0;imod<nmodel ;imod++) {
if ((istruef969[imod] == 3) | (istruef969[imod] == 4)){
solution <<"\n Cluster submodel "<<imod+1 <<" is unboundéd}
}
}

/I STEP 7— PRINT RESULTS (if pid == 0)
it (pid == 0) {

solution <<"\n\n [RESULTS 1:] PROPERTIES OF SOLVED MQBE";
for (imod=0;imod<nmodel ;imod++){
solution<<"\n \n Cluster submodel "<<imod+1<<" of "<mwodel;
solution << "\n Number of variables: "; solution<< numvanjod];
solution << "\n Number of constraints: "; solution<< nmes[imod];
solution << "\n Number of nonzero elements: "<<nonzero[thjo
for (j=0;j<numvar[imod];j++){
x0[imod][j]=x0vector[imodtncols+j];
[/ solution << "\n x[ "<<imod<<","<<j<<"]"<<xO0[imod][]j]<<" \n"; [/ To
print x0
}
}

solution <<"\n\n\n [RESULTS 2:] OBJECTIVE FUNCTION VAIES \n";
for (imod=0;imod<nmodel ;imod++) {

solution <<"\n Optimal objective value Cluster submodel<imod+1
<<" of "<<nmodel <<" is "<<zq[imod];}
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}

/I STEP 8 — EXECUTION ENDS IN ALL PROCESSORS
solution.close ();
MPI_Finalize (); //End of the MPI environment
return O;
}
mainmpi.cpp
Appendix 2

To compile and link the code, you can also use a Makefile sinilahe described below in this

Appendix, where are used additionally the libraries -lp#it. As summary to generate and run the

executable you must to install the packages,

lam-runtime libgompl

liblam4 libmpich1.0gf
libopenmpi-dev libopenmpil.3
mpi-default-bin mpi-default-dev
mpich-bin openmpi-bin
openmpi-checkpoint openmpi-common
openmpi-doc

and their dependences. All of them have been installed inmthehineb012526.bs.ehu.es of
the Laboratory of Quantitative Economics from the Univigrsif the Basque Country (UPV/EHU,

Bilbao, Spain). To run the executable of name nmpi in this machine with eight cores, you must

type from the prompt,
$ mpirun -v -np 8 -host b012526 mainmpi

# Copyright (C) 2006 International Business Machinasad others.

# All Rights Reserved.

# This file is distributed under the Common Public License.

# $I1d: Makefile.in 726 2006-04—17 04:16:00Z andreasw $

HYHHBHBH RS R RSB SB R R R R R R R R R R R R
# You can modify this example makefile to fitfor your own program. #
# Usually , you only need to change the five CHANGEME entriesldve. #

HYHHBHBH RS R RSB SB R R R R R R R R S R R R
# To compile other examples, either changed the followidighe, or

# add the argument DRIVER=problem_name to make

DRIVER = mainmpi

# CHANGEME: This should be the name of your executable
EXE = $(DRIVER)

# CHANGEME: Here is the name of all object files corresponding the source

# code that you wrote in order todefine the problem statement
OBJS= mainmpi.o
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SYSTEM = x86-64_sles10_4.1

# Directory with COIN header files

COININCDIR = /opt/coin—1.3.1/include/coin

# Directory with COIN libraries

COINLIBDIR = /opt/coin—1.3.1/1ib

COINLIBDIROSI = /opt/coin—1.3.1/0si/lib

# Directory with CPLEX

CPLEXDIR= /opt/ILOG/CPLEX_Studio_AcademicResearl cplex
# Directory with CPLEX header files

CPLEXINCDIR = $(CPLEXDIR)/include/ilcplex

# Directory with CPLEX libraries

CPLEXLIBDIR =$(CPLEXDIR) /lib /$(SYSTEM)/static_piclibcplex.a

CPLEXBINDIR =$(CPLEXDIR) / bin /$ (SYSTEM)

# CHANGEME: Additional libraries
ADDLIBS =

# CHANGEME: Additional flags for compilation (e.g.,include flags)
ADDINCFLAGS =
HAHHHHHHHHH BB HHHH BB HHH BB HHH BB HHH B BB HHH B R R SRR H TR R RS

# Usually, you don’'t have to change anything below. Note thaft yiou #
# change certain compiler options, you might have to recompithe #
# package. #

HHHHHHHHHHH AR HHH AR HHH R HH AR HHHH BB HHHH BB R R TR AR HH
# C++ Compiler command

#CXX = g++

CXX=mpic++

# C++ Compiler optionsfor g++

H#CXXFLAGS = —03 —fomit—frame—pointer —pipe —-DNDEBUG —pedantic-errors —Wimplicit
#-Wparentheses-Wreturn—type —Wcast-qual —Wall —Wpointer—arith —Wwrite—
strings

#-Wconversion—-Wno-unknown-pragmas—-O —fPIC —fexceptions -DIL_STD

# C++ Compiler optionsfor mpic++

CXXFLAGS = —03 —fomit—frame—pointer —pipe —-DNDEBUG —Wimplicit —Wparentheses—
Wreturn—type —Wcast-qual —Wall —Wpointer—arith —Wwrite—strings —Wconversion
—Wno-unknown-pragmas—O —fPIC —fexceptions —DIL_STD

# additional C++ Compiler optionsfor linking
CXXLINKFLAGS = —WI,——rpath —WI,$(COINLIBDIR) —WI,$(CPLEXLIBDIR)
# Libraries necessary to link with Clp

LIBS = —L$(COINLIBDIR) —ICbcSolver —ICbc —ICgl —10siClp —10siCbhc —10si —IClp —
ICoinUtils —L$(COINLIBDIROSI) —I0siCpx —L$(CPLEXBINDIR) —lcplex122 —Ipthread
\
—Im

# Necessary Include dirs (we use the CYGPATH W variables tdowal
# compilation with Windows compilers)
INCL = —1‘$(CYGPATH_ W) $(COININCDIR) $(CPLEXINCDIR) ‘ $(ADDINCHRAGS)

# The following is necessary under cygwinif native compilers are used
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80

82
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88

CYGPATH W = echo

# Here we list all possible generated objectwy executables todelete them
CLEANFILES =

all: $(EXE)
.SUFFIXES: .cpp .c .0 .obj

$(EXE): $(OBJS)
bla=;\
for file in $(OBJS); do bla="$$bla ‘$(CYGPATH W) $$file ‘"; done; \
$(CXX) $(CXXLINKFLAGS) $(CXXFLAGS) —0 $@ $$bla $(ADDLIBS) $(LIBS)
clean:
rm —rf $(CLEANFILES) $(OBJS)
.cpp.o:
$(CXX) $(CXXFLAGS) $(INCL) —c -0 $@ ‘test—f '$<’ || echo '$(SRCDIR)/’‘$<
.cpp.obj:
$(CXX) $(CXXFLAGS) $(INCL) —c -0 $@ ‘if test —f '$<’; then $(CYGPATH W) ’'$<’;
else $(CYGPATH W) '$(SRCDIR)/$<’; fi*
.C.0:
$(CC) $(CFLAGS) $(INCL)-c -0 $@ ‘test—f '$<’ || echo '$(SRCDIR)/'‘$<
.C.0bj:
$(CC) $(CFLAGS) $(INCL)—c —o0 $@ ‘if test —f '$<’; then $(CYGPATH W) '$<’;
else $(CYGPATH W) '$(SRCDIR)/$<"; fi*

Makefile
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