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A B S T R A C T

As the deployment of artificial intelligence (AI) algorithms at edge devices becomes increasingly prevalent,
enhancing the robustness and reliability of autonomous AI-based perception and decision systems is becoming
as relevant as precision and performance, especially in applications areas considered safety-critical such as
autonomous driving and aerospace. This paper delves into the robustness assessment in embedded Deep Neural
Networks (DNNs), particularly focusing on the impact of parameter perturbations produced by single event
upsets (SEUs) on convolutional neural networks (CNN) for image semantic segmentation. By scrutinizing the
layer-by-layer and bit-by-bit sensitivity of various encoder–decoder models to soft errors, this study thoroughly
investigates the vulnerability of segmentation DNNs to SEUs and evaluates the consequences of techniques
like model pruning and parameter quantization on the robustness of compressed models aimed at embedded
implementations. The findings offer valuable insights into the mechanisms underlying SEU-induced failures
that allow for evaluating the robustness of DNNs once trained in advance. Moreover, based on the collected
data, we propose a set of practical lightweight error mitigation techniques with no memory or computational
cost suitable for resource-constrained deployments. The code used to perform the fault injection (FI) campaign
is available at https://github.com/jonGuti13/TensorFI2, while the code to implement proposed techniques is
available at https://github.com/jonGuti13/parameterProtection.
1. Introduction

There is an increasing interest in developing domain-specific pro-
cessors for the deployment of artificial intelligence (AI) algorithms at
the edge and at the endpoints. This trend is driven by the necessity of
freeing endpoint AI-based systems from having to send acquired data
to external, more powerful computing machines to be processed and
wait for a response before any action can be executed. The goal is
to make embedded AI systems completely autonomous, avoid security
and reliability issues associated with data transmission, and reduce
response latency. Achieving embedded AI processing autonomy makes
it possible to extend the applicability of complex AI algorithms, such as
the increasingly widespread deep neural networks (DNN), to domains
in which there may be severe communication bandwidth constraints,
hard reliability and security specifications and/or real-time response
requirements. Examples of such application areas are intelligent vision,
autonomous navigation, advanced driving assistance systems (ADAS),
autonomous driving systems (ADS), and aerospace applications such as
remote sensing and airborne flight control [1].
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Science and Innovation under grant PID2020-115375RB-I00.
∗ Corresponding author.
E-mail address: j.gutierrez@ehu.eus (J. Gutiérrez-Zaballa).

If AI has to be pervasively integrated in systems that autonomously
operate in real-world environments, AI processors must meet not only
demanding performance specifications, but also strict safety and re-
liability standards. This is nowadays a mayor concern in the devel-
opment of AI-based systems that must be integrated in safety-critical
applications such as in the aerospace [2] and automotive [3] do-
mains. For instance, the main agent that jeopardizes the performance
in the aerospace applications is the exposure of aircraft and spacecraft
electronics to radiation [4]. When a radiation particle interacts with
electronic components, the logical value stored in a cell may be altered,
resulting in a single event upset (SEU) or, more specifically, a single
bit upset (SBU) when it only affects a single bit or a multiple bit
upset (MBU) if multiple bits are affected. Field programmable gate
arrays (FPGA) are particularly sensitive to SBUs, which can affect both
the sequential elements of the implemented circuit (flip-flops or Block
RAMs) and the configuration memory (LUTs). In the simplest case,
a SBU will cause a bit of one of the implemented artificial neural
network (ANN) model parameters to flip. Depending on the specific
https://doi.org/10.1016/j.sysarc.2024.103242
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position of the SBU, the network output may change and differ from
the expected one (critical errors), putting the safety of the system at
risk. In the context of ADS, soft errors at terrestrial altitudes occur
due to the following factors: the interaction of high-energy cosmic
neutrons with silicon, the interaction of low-energy cosmic neutrons
with high concentrations of 10B in the device and the emission of alpha
particles from trace radioactive impurities in the device materials [5].
According to [6], when exposed to terrestrial neutrons, a bit in SRAM
has a probability of 1.33 ∗ 10−24 to flip in 1 ns. As explained in [7],
for a typical neural network of more than 10 million parameters, the
probability of at least one bit-flip occurring in a month is 10%. This
problem is aggravated as a consequence of increasing miniaturization
and the use of lower voltage levels in modern integrated circuits.

In addition to background radiation, embedded devices are also
vulnerable to other factors such as disturbance errors in storage devices
(SRAM and DRAM) and also to deliberate malicious bit-flip attacks
(BFA). Moreover, alternative technologies to traditional meta-oxide-
semiconductor devices for the more efficient in-memory computation,
e.g. memristive devices, are particularly prone to bit instabilities [8,9].
Disturbance errors are a general class of reliability problem that affects
memory and storage technologies such as SRAM, DRAM, flash and
hard-disk [10]. Write failure and read disturb are two major causes of
SRAM technology failures tightly related to miniaturization and low-
voltage operation [11]. In the case of DRAM, the so-called RowHammer
vulnerability is a well-known issue that produces data corruption and
the appearance of multiple bit-flips [10]. This has attracted the at-
tention of attackers, who can maliciously flip memory bits in DRAM
without the need of any data access privileges [12,13]. If extended to
safety-critical domains such as ADS and aerospace, the consequences
of data-oriented attacks can be catastrophic, especially when the BFAs
are targeted [14].

The outstanding performance of state-of-the-art DNNs in many ap-
plications is very often at the expense of increasing their size and
complexity dramatically [15]. Although it strongly depends on the
design of the digital circuit that implements their functionalities (the
‘‘application layer’’, [16]), large models are generally more robust due
to their overparameterized nature [17,18]. However, deploying com-
plex AI models into resource-constrained embedded processing systems
usually implies, firstly, applying one or various compression tech-
niques to transform large models into the so-called lightweight deep
learning models. These procedures aim to reduce the computational
complexity and the memory footprint of original DNNs maintaining
comparable performance. The most used approaches include network
pruning, parameter quantization, knowledge distillation, and archi-
tecture search [19]. Secondly, it is usually needed to design custom
processing units that help accelerate algorithm execution to meet speed
and power consumption specifications. This is achieved by tailoring
specific pipelines for data parallelism and applying arithmetic op-
timization techniques to make the most of both available memory
and computational resources. Depending on the selected target tech-
nology (the ‘‘physical layer’’, [16]), e.g., embedded GPUs, FPGAs,
or application-specific integrated circuits (ASIC), there exist different
design constraints to consider and specific optimization techniques to
apply. In any case, our concern is focused on the effects of SBUs on
the parameterization of the DNNs, i.e., how the values of trainable
parameters are altered and the potential consequences of these changes
on the performance of the DNN models.

In this paper, we analyze the reliability of encoder–decoder DNN
models designed for image segmentation tasks against SBU distur-
bances. This analysis has been performed with two main objectives in
mind. Firstly, the focus is on the consequences that compression tech-
niques such as model pruning and parameter quantization may have
on the robustness of these models. Secondly, a more comprehensive
study has been conducted to precisely determine how such disturbances
modify the model performance in the inference process. The aim was to

use this knowledge to propose design techniques that help improving
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model robustness, and thus system reliability, with no cost in terms
of computational complexity and memory footprint. This work was
originally motivated by the necessity to improve the reliability of some
image segmentation DNN models designed to be applied in ADAS/ADS
when implemented on the target processing devices, both embedded
GPUs and FPGAs. To date, there are few published studies that analyze
in detail and in a statistically significant way the impact of SBUs on
the robustness of image segmentation DNN models, particularly when
subjected to compression for deployments at the edge. This paper aims
to fill this gap by performing a detailed layer-by-layer and bit-level
analysis based on SBU emulation to better understand the mechanisms
that produce failures in the behavior of the models. The analysis
has been performed both for 32-bit floating-point and 8-bit quantized
representations to cover final implementations on different devices.
Although the study has been necessarily carried out for a specific
model architecture and a particular dataset, the purpose of the work
is to provide guidelines and analysis tools applicable to other models,
particularly those of the encoder–decoder type. Moreover, it also has
served to program a set of memory-, computation- and training-free
procedures for the protection, to a certain extent, of the performance
of such models against SBUs. The code has been made public at [20].

The main contributions of this paper are:

• We analyze in a statistically significant way how SBUs alter the
performance of encoder–decoder DNN models in image segmen-
tation tasks, determining the sensitivity of the output to single
bit-flips in the model parameters according to the layer depth,
the parameter type, and their binary representation.

• We analyze how and why model pruning affects the robustness of
the models against SBU perturbations.

• We study the consequences of applying parameter quantization in
terms of model robustness.

• We provide in [21] a modification of the original TensorFI2 [22]
code to allow applying fault injection (FI) campaigns on quan-
tized TensorFlow Lite models and on big unquantized Tensor-
Flow2 models too.

• We describe some simple rules to improve model robustness by
protecting model parameters against the consequences of SBUs
with no cost on computational complexity neither on the memory
footprint.

• We provide in [20] the code to perform fault mitigation based on
the above mentioned technique.

The paper is organized as follows: Section 2 includes the related
work done in the field of DNN robustness evaluation and hardening
techniques against SBUs. Then, in Section 3, we describe the archi-
tecture of the encoder–decoder model as well as the compression
techniques whose effect on model robustness will be studied. All the
experimental results in relation with the fault injection campaign are
collected in Section 4. Section 5 describes the proposed fault mitigation
technique. Finally, we provide the conclusions in Section 6.

2. Related work

2.1. Robustness of ANNs against bit-flips

Most published papers on ANN robustness against bit-flips focus
on classification tasks, while very few analyze semantic segmentation
models [23]. The majority of the authors have carried out experimental
fault injection campaigns combined with statistical analysis, while only
a few have developed a theoretical analysis based on the development
of a vulnerability model.

Among the experimental works, papers such as [24,25] test the
robustness of several image classification convolutional neural network
(CNN) architectures against single bit-flips in their weights, but with
relatively superficial analyses. In [26], the authors compare the robust-

ness of multilayer perceptrons and CNNs of different sizes, concluding
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that larger networks with more layers are more robust than smaller,
shallower networks. Some authors, such as [27], investigate the impact
of individual bit-flips while comparing floating-point and fixed-point
representations, concluding that the latter are more robust.

Works like [28,29] evaluate the effects of both quantization and
pruning on the robustness of models. The former shows that com-
pressed models are more fault-resilient compared to uncompressed
models in terms of bit error rate zero accuracy degradation, but sta-
tistical significance due to a short number of experiments leads to a
high variance in the prediction results. The latter finds that integer-only
quantization acts as a fault mitigation technique by reducing the overall
range of the data. It also concludes that pruning enhances the resilience
of deep models as a consequence of the reduction in the occupied area
and execution times.

Some works focus on methods to ensure the statistical significance
of fault injection campaigns. In [30], the authors present a method-
ology to evaluate the impact of permanent faults affecting CNNs in
automotive applications. Similarly, [31] describes how to correctly
specify statistical fault injections and proposes a data analysis on the
parameters of a CNN for image classification tasks to reduce the number
of fault injections required to achieve statistically significant results.
[32] presents one of the most exhaustive and complete analysis of
the vulnerability of 32-bit floating-point CNNs for image classification
tasks. The author considers various factors such as bit position, bit-flip
direction, parameter sign, layer width, activation function, normaliza-
tion, and model architecture. The key findings are: the vulnerability is
caused by drastic spikes in a parameter value, the spikes in positive
parameters are more threatening, an activation function that allows
negative outputs renders the negative parameters vulnerable as well,
and the dropout and batch normalization (BN) layers are ineffective in
preventing the massive spikes that bit-flips cause. In [33], the author
presents two exhaustive tools for fault injection in models created with
both TensorFlow1 and TensorFlow2 [22], and performs a thorough
analysis of the consequences of fault injections in different classification
models. Additionally, the article also explores techniques to identify the
source of the error by the analysis of changes in the model’s predictions.
In [34,35], floating-point and fixed-point data type model implemen-
tations are analyzed showing that fixed-point data provide the best
trade-off between memory footprint reduction and CNN resilience.
Similarly, [36] performs a comprehensive layer-wise fault analysis of
homogeneously and heterogeneously quantized DNNs, suggesting that
quantizing the DNN model heterogeneously to fewer bits helps increase
the model’s resiliency.

As a consequence of the growing concern about the threat of delib-
erate BFAs, some authors are studying the effects of simultaneous bit
disturbances across multiple model parameters. In the extensive work
presented in [14], BFAs are analyzed according to their untargeted
or targeted nature, and an effective mitigation methodology against
targeted BFAs is proposed. In [37], the authors apply a progressive
bit search algorithm to investigate the effects of bit-flip-based weight
attacks and obtain some relevant observations regarding quantized
DNN sensitivity: the most sensitive parameters are the ones close to
zero (large parameter shift), the weights in the front-end layers are
the most sensitive, and BFAs force almost all inputs to be classified
into one particular output class. Similarly, in [38], the authors evaluate
the accuracy degradation of an 8-bit integer quantized DNN as a con-
sequence of untargeted random BFAs, one-shot BFAs and progressive
BFAs for image classification tasks. The authors show that with the
most exhaustive BFA, i.e. progressive BFA, the accuracy drops to 1%
after just 5 iterations. This result aligns with the one described in [39],
where the author of the progressive BFA algorithm shows that an 8-
bit integer quantized ResNet-18 can malfunction after just flipping 13
weight bits out of 93 million.

One of the first works that attempted to formalize a theoretical
method to evaluate the robustness of DNN models was presented

in [40]. It describes a layer-wise relevance propagation model based on
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the analysis of the contribution of individual neurons to the final loss.
With a similar approach, gradient-based methods such as that explained
in [41], analyze the sensitivity of each network layer according to the
importance (relevance) of the weights during inference. In [7], the
authors present a theoretical analysis of error propagation on some
commonly used processing layers in image classification models when
the sign bit is flipped. In [42], a vulnerability model based on some key
features such as gradient and absolute value of the parameters is con-
structed to reduce the necessary amount of fault injections to perform
robustness analysis. [43] proposes BinFI, a fault injector for finding
safety-critical bits in machine learning applications that significantly
outperforms random fault injection methods in terms of computational
costs. Finally, in [44], the authors formulate a bit-flip-based weight
fault propagation model for 32-bit floating-point CNNs to analyze the
robustness of ReLU-based models and propose a hardening method
based on function upper bounding. Nevertheless, the applicability of
these methods to segmentation networks is not straightforward because
they are primarily designed for classification networks, where the lay-
ers under study are typically simple convolutions and fully-connected
layers. Additionally, gradient-based analyses can be inaccurate due to
noisy gradients and challenges such as vanishing or dying gradients
associated with common activation functions like Sigmoid and ReLU.

All the above-mentioned works are focused on detection and clas-
sification DNN models. Regarding the few papers that deal with seg-
mentation networks, [45] claims to have performed the first fault
injection study of DNNs performing semantic segmentation, propos-
ing a critical/tolerable fault categorization for a 32-bit floating-point
DeeplabV3+ network. [46] evaluates the reliability of neural networks
for various tasks, including semantic segmentation, implemented in
32-bit floating-point representation on a GPU trained with Supervised
Compression for Split computing. In [47], the author stresses the im-
portance of statistical significance in the analyses, and proposes a fast
reliability methodology exploiting statistical fault injections in a U-Net
model for image segmentation. The author performs a comparison of
the results obtained with this method to those obtained by random FI
and improperly-defined statistical FI campaigns and shows the inability
of the latter campaigns to reveal sensitive parameters of U-Net.

2.2. Hardening and protection of neural networks against fault occurrence

Most of the papers that propose methods to protect ANNs against
faults are also concerned with image classification models. According
to the proposed protection technique, these can be grouped as those
that use redundancy, modifications of the activation functions, modifi-
cations of the parameters, and modifications of the training/inference
process.

One of the most basic methods for error detection and protection
is the use of a checksum together with a replication of the model,
which, while highly effective, is also prohibitively costly in terms
of memory consumption and computing overhead. [48,49] are two
examples where full duplication has been shown to be effective. As
proposed in [50–52], using a proper model sensitivity analysis makes it
possible to optimize redundancy to protect only the most critical layers.
In the same direction, [17] presents a software methodology based on
a triple modular redundancy technique to selectively protect a reduced
set of critical neurons, under a single fault assumption, by a majority
voter correction technique. In [53], the authors characterize fault prop-
agation not only by exposing the FPGA/GPU to neutron beams but also
by performing a thorough fault injection campaign. Based on the obser-
vations, the authors propose a strategy to improve system reliability by
adapting algorithm-based fault-tolerant solutions to CNNs, i.e., adding
invariants to the code for quick error detection or correction. In [54],
the authors propose protecting the matrix multiplication operation of
the CNNs in GPUs based on a three-stage methodology to selectively
protect CNN layers to achieve the required diagnostic coverage and

performance trade-off: sensitivity analysis to misclassification per CNN
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layers using a statistical fault injection campaign, layer-by-layer per-
formance impact and diagnostic coverage analysis, and selective layer
protection. Finally, [55] proposes a reduced-precision duplication with
comparison technique to improve the reliability of computing devices
to reduce overhead. It is suitable for mixed-precision architectures, such
as NVIDIA GPUs.

The bounding of activation functions is an alternative technique to
redundancy to reduce implementation overhead. In [56], the authors
perform a comprehensive error resilience analysis of DNNs for image
classification tasks subjected to hardware faults in the weight mem-
ory. Then, ClipAct is applied, an error mitigation technique based on
squashing the high-intensity faulty activation values to alleviate the
impact of faulty weights on predictions. In [57], Ranger is proposed, a
low-cost fault corrector which selectively restricts the ranges of values
in specific DNN layers to dampen the large deviations typically caused
by transient faults leading to silent data corruptions. In [58], FitAct
is proposed, a low-cost approach to enhance the error resilience of
DNNs for image classification tasks by deploying fine-grained post-
trainable activation functions. The main idea is to accurately bound the
activation value of each individual neuron via neuron-wise bounded ac-
tivation functions to prevent fault propagation in the network. In [18],
the author presents a comprehensive methodology for exploring and
enabling a holistic assessment of the trilateral impact of quantization
on model accuracy, activation fault reliability, and hardware efficiency.
The framework allows for the application of different quantization-
aware techniques, fault injection, and hardware implementation and
directly measure the hardware parameters. A novel lightweight pro-
tection technique integrated within the framework that ensures the
dependable deployment, evaluating the maximum values of the layers’
activations and replacing the out-ranged values with either lower or
upper-bound to avoid fault propagation, is also proposed. Finally, [44]
presents a boundary-aware ReLU to improve the reliability of DNNs
by determining an upper bound of the activation function which is
theoretically calculated so that the deviation between the boundary and
the original output cannot affect the final result.

Some other works explore methods to enhance network robustness
by directly modifying the network parameters. Based on the findings
of [40] about the connection between neuron resilience and its con-
tribution to the final prediction score, the authors of [59] propose
a methodology based on architectural and feature optimization to
avoid critical bottlenecks and balance the feature criticality inside each
layer. In [60], the authors propose MATE, which is a low-cost CNN
weight error correction technique based on the observation that, as
all mantissa bits of the weights are not closely related to accuracy,
some of them can be replaced with error correction codes. Therefore,
MATE can provide high data protection with no memory overhead.
In [61], the authors perform a comparison of the robustness among
32-bit floating-point, 16-bit floating-point, and 8-bit integer formats for
image classification tasks and propose an opportunistic parity method
to detect and mask errors with zero storage overhead.

There are also proposals to harden network performance by the
modification of the training or inference process. The authors of [62]
propose a bipolar vector classifier which can be easily integrated with
any CNN structure for image classification tasks that end in a fully
connected layer. The underlying idea is that as the weights of the
classifier are binarized to ±1, the resulting final feature vector will
only contain positive/negative values that will also be binarized to
±1, and thus, a pattern will be created. Each class has a specific
reference pattern so, to assign the final feature vector to a certain
class, it will be compared with all the reference patterns, and the
winning class will be the one with the smallest Hamming distance.
In [63], the authors compare the accuracy of quantized DNNs (QNNs)
for image classification tasks during accelerated radiation testing when
trained with different methodologies and implemented with a dataflow
architecture in an FPGA. The authors find that QNNs trained with fault-
aware training, a kind of data augmentation methodology to allow
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the network to also experience errors during training, make QNNs
more resilient to SEUs in FPGAs. In [64], an efficient error detection
solution for object detection-oriented CNNs is proposed based on the
observation that, in the absence of errors, the differences between the
input frames and the inference provided by the CNN should be strictly
correlated.

Finally, regarding the specific works that focus on the hardening
of DNNs against BFAs, [37] proposes binarization-aware training and
piecewise clustering as methods to enhance the resistance of quantized
DNNs. The authors conclude that applying binary quantization, increas-
ing network capacity, and using dropout or Batch-Norm regularization
are effective techniques to build resistance, while applying adversarial
weight training or pruning is shown to be ineffective. In [38], a three-
step algorithm based on mean calculation, quantization and clipping
is proposed to reconstruct the perturbed quantized weight matrix to
tolerate the faults caused by BFAs. The overhead introduced by the
process is small and the protected DNN can better cope with progressive
BFA than non-protect DNN (accuracy of 60% and 1% respectively after
5 iterations). A completely different approach is presented in [14],
where the authors propose a dynamic multi-exit architecture that trains
extra internal classifiers for hidden layers that can tolerate the existing
attacks which flip bits in one specific layer. The experiments are
conducted using well-known DNN structures and image classification
datasets. Apart from the above-described methods, which aim to miti-
gate the effect of such attacks, there are also some other methods that
focus on verifying the integrity of the models. In [65], the authors
propose to extract a unique signature from the original DNN prior to
deployment and then verify the inference output on-the-fly while trying
to add the minimum performance and resource overhead. Indeed, due
to the strict temporal and memory footprint constraints that edge
devices must adhere to, the protection systems of interest to us are
those that introduce minimal memory/computation overhead.

3. Model development and optimization

3.1. Architectural design and training

The segmentation model used as reference for this study is a U-
Net, an encoder–decoder fully convolutional network (FCN) for image
segmentation, but adapted to use hyperspectral images (HSI) as inputs.

Fig. 1. A sample segmented image of HSI-Drive v2.0.
The most recent version of the model [66] was trained using the

HSI-Drive v2.0 dataset [66], intended for developing ADAS/ADS sys-
tems using HSI (Fig. 1). The results on the test set can be found in
Table 1.

The model, depicted in Fig. 2, features a 5-level encoder–decoder
architecture comprising two sequences of 3 × 3 2D convolutional
layers (initially with 32 filters) followed by batch normalization and
ReLU activation at each level. Additionally, it includes one 2 × 2 2D
max-pooling layer per encoder level and one 2 × 2 transposed 2D
Convolutional layer per decoder level. The resulting model comprises
31.14 million parameters and requires 34.60 GFLOPS per inference
to execute (Table 2). Detailed information regarding the training and
testing procedures can be found in [66].
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Fig. 2. Architecture of the unpruned unfolded unquantized U-Net model which has been used as reference.
Table 1
Segmentation metrics on the test set using the 32-bit floating-point unpruned and
pruned models.

Unpruned Pruned

Class Metric

Rec. Prec. IoU Rec. Prec. IoU

Road 99.69 98.14 97.84 99.57 98.16 97.75
Marks 91.95 95.70 88.30 92.74 95.12 88.53
Vegetation 97.66 96.32 94.15 97.30 96.11 93.61
Sky 96.45 96.71 93.38 96.04 97.52 93.75
Others 81.84 93.42 77.38 82.26 92.14 76.86
Global 97.23 97.17 94.67 97.12 97.06 94.48
Weighted 91.98 95.68 88.40 92.33 95.36 88.48

Table 2
Complexity of the different models under study after applying pruning/quantization
(status).

Metric Status

00 10 01 11

Params. (M) 31.14 0.31 31.14 0.31
Operat. (OPS) 34.60a 8.49a 34.60 8.49
Size (MB) 118.77 1.24 29.70 0.31

a Before applying quantization, operations are FLOPS.

3.2. Model compression

The most prevalent model compression techniques among deep
learning developers for later implementation on edge devices involve
applying pruning and/or quantization after training the 32-bit floating-
point model. To evaluate how these compression techniques affect the
model’s robustness against SBUs, several factors must be considered.
First, the size of the model and the architecture designed for its im-
plementation as a digital processor, which directly influences the ratio
of unused to used resources and the probability for a SBU to happen.
However, device occupation is not the only parameter influencing the
Device Vulnerability Factor (DVF), representing the probability of a
configuration bit being critical for the design [67]. Overparameterized
models can absorb more SBUs without producing critical errors since
there are more irrelevant weights and biases whose perturbations do
not alter the output. Thus, it is one of the objectives of this paper to
analyze whether large reductions in DNN model sizes can be achieved
using these compression techniques without degrading model accuracy
or robustness to SBUs. For this, we are assuming streaming-like ar-
chitectures with independent resources allocated for all layers so the
impact of a SEUs is isolated [68].
5 
3.3. Pruning

Pruning facilitates the reduction of both the number of parameters
to be stored and the number of computations to be performed. The con-
cept involves eliminating the least significant parameters of the model.
Depending on which parameters and how they are pruned, pruning can
be categorized as fine-grained/sparse/unstructured, where the least im-
portant weights are rounded to 0, or coarse-grained/dense/structured,
where entire filters are removed from the computational graph. While
the former method generally allows for pruning more weights without
harming performance, it is only justified if the processing system is
able to optimize multiply and accumulate (MAC) operations with sparse
matrices.

In this work, we have applied a conventional structured pruning
approach that has been customized to perform model optimization in
an iterative manner. The algorithm basically analyzes the computa-
tional complexity of each layer while evaluating the impact of the
pruning process on the model’s accuracy to guarantee negligible impact
on overall performance. As shown in Table 2, applying this method a
99% reduction in the number of parameters and a 75% reduction in
the number of operations was achieved.

3.4. Quantization

Quantization aims to reduce the number of bits needed to store the
model parameters, thereby reducing memory footprint (see Table 2).
Additionally, it can speed up both data transfer and model inference
for custom processor implementations. Depending on the target device,
quantization can be more or less fine-grained in terms of homogeneity,
uniformity, scale factor, symmetry, and mixed-precision.

In this article, we have chosen a general and standardized hetero-
geneous quantization scheme, known as post-training integer quanti-
zation (PTQ), as implemented by TensorFlow Lite [69]. This procedure
converts 32-bit floating-point numbers (weights and activation outputs)
to the nearest 8-bit fixed-point numbers, while biases, due to the
greater sensitivity of the models to perturbation on these parame-
ters, are converted to 32-bit fixed-point numbers. This heterogeneous
quantization scheme allows for model size reduction while preserving
accuracy [69,70]. As shown in Table 3, comparable segmentation met-
rics are obtained for the quantized model to those with the unquantized
model, as quantization schemes applied to already trained models, are
simple to apply and produce negligible accuracy degradation for most
widely used ANN models [71,72].
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Table 3
Segmentation metrics on the test set using the 8-bit integer unpruned and pruned
models.

Unpruned Pruned

Class Metric

Rec. Prec. IoU Rec. Prec. IoU

Road 99.68 98.09 97.79 99.59 98.15 97.75
Marks 91.67 95.79 88.12 92.51 95.46 88.61
Vegetation 97.63 95.76 93.59 97.38 95.88 93.47
Sky 93.60 98.29 92.10 94.02 98.45 92.65
Others 82.49 92.56 77.37 82.81 91.54 76.92
Global 97.10 97.04 94.44 97.07 97.00 94.39
Weighted 91.44 96.06 88.24 91.99 95.81 88.55

3.5. Quantization of pruning

To fully compress the model, both techniques can be applied consec-
utively: first pruning and then quantization. As shown in Table 3, after
the quantization of the pruned model segmentation accuracy on the
test set remains mainly unaltered. Table 2 sums up model complexity
figures for each version of the reference model: original (00), pruned
(10), 8-bit quantized (01), and pruned and quantized (11). As can be
seen, the original memory footprint is reduced from 118.77 MB to just
317.44 KB.

4. Assessment of the fault injection campaign

To test the models’ robustness against SBUs, an extensive fault
injection campaign was conducted on the aforementioned models using
a modified version of the TensorFI2 framework [22]. This modification
enables a more memory-efficient implementation by directly accessing
the parameters of the model without creating additional copies or
intermediate tensors, ensuring that FI on complex, large models does
not result in an excessive memory overhead. The original code has
also been extended to support quantized TensorFlow Lite models and
is available at [21]. To evaluate the perturbation produced by injected
faults, the corrupted FCNs have been assessed using ten test images that
represent the diversity of driving conditions in the dataset described in
Section 3.

Performed FI campaign involved injecting single bit-flips into the
parameters of the FCN model under analysis. Parameter sets include
the weights/kernels of the 2D convolution layers (𝑐𝑜𝑛𝑣2𝐷𝑘), bias of the
2D convolution layers (𝑐𝑜𝑛𝑣2𝐷𝑏), weights/kernels of the 2D transposed
convolution layers (𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑘), bias of the 2D transposed convolution
layers (𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑏), gamma of the batch normalization layers (𝐵𝑁𝛾 ),
and beta of the batch normalization layers (𝐵𝑁𝛽). Thus, in what
follows, 𝑝1 set of the network refers to the weights of the first 𝑐𝑜𝑛𝑣2𝐷
layer, while 𝑝2 set represents the biases of that layer. In like manner,
when it is mentioned that an error has been injected into parameter 𝑥,
it means it has been injected into one of the 𝑚 elements that comprise
parameter 𝑥 set.

As a general rule, for a given parameter, the higher the bit position
in which the fault is injected, the greater its impact on the output,
disregarding the sign bit. However, not every layer and every parameter
contributes equally to the output. Previous studies [30,34,54] focused
on tasks such as image classification and object detection, have shown

that faults injected in the exponent bits (interval [23–30]) are more 1

6 
likely to alter the output. To verify whether this is also generally the
case for this encoder–decoder model aimed to image segmentation and
in order to set reasonable bounds for the range of bits to be modified,
a first round of 150 faults per-layer spanning the entire range [0–31]

ere injected. We could verify that in some cases, bit-flips in the
ange [20–23] and in the sign bit (31) also modified significantly the
nference result. Based on these preliminary results, a comprehensive
ault injection campaign was conducted on bit positions [20–31].

The quantity of fault injections was set to 1550 single bit-flip faults
er layer, totaling 155 000 injections to assure statistically representa-
ive experiments according to Eq. (1) as proposed in [73].

= 𝑁
1 + 𝑒2 ∗ 𝑁−1

𝑡2∗𝑝∗(1−𝑝)

(1)

where 𝑁 represents the number of possible faults per-layer (number of
arameters * parameter bit-width), 𝑒 denotes the error margin, which
as set to 0.025 (2.5%), 𝑡 is the cut-off point corresponding with the

onfidence level, set to 1.96 (95%), and 𝑝 is the estimated probability
f faults resulting in a failure, set to 0.5 since, as it is a priori unknown,
conservative approach is to use the value that maximizes the sample

ize [73]. This is also done in other studies such as [30,34]. Finally,
represents the minimum number of injections for the study to be

tatistically significant, capped at 1550 for the chosen parameters.
To assess the impact of the fault injection campaign, it is necessary

o first define what constitutes an error. Contrary to the definition
iven in classification tasks, where the output is a single class and a
rediction is deemed erroneous if the top-ranked class predicted by the
riginal model changes, defining errors in segmentation tasks is more
hallenging. Changes in the predicted class of some isolated pixels may
ot significantly alter the overall interpretation of the image, so in order
o have an unequivocally defined metric, in this analysis the error rates
re defined related to changes in the predicted classes at any pixels in
he test images.

.1. Fault injections in unquantized models

As a consequence of the 32-bit floating-point data representation,
he effect of a bit-flip varies with its position (Fig. 3). To maintain
larity in terminology, the most significant bit (MSB), the sign bit, is
ssigned position 31, while the least significant bit (LSB) is assigned
osition 0.

Figs. 4 and 5 depict the bit-flip error rate according to the bit
osition and the parameter position for both the unpruned and pruned
odels. As expected, the unpruned model exhibits greater robustness

nd can better withstand the injected faults. Once the general statistical
esults have been observed, let us now analyze in detail the insights
f the sensitivity of the model performance to perturbations in the
arameters.

.1.1. Analysis of robustness of the unpruned model
utput 𝑐𝑜𝑛𝑣2𝐷 layer 𝑐𝑜𝑛𝑣2𝐷_22 (𝑝99-𝑝100 sets in Fig. 2) consists of
𝑐𝑙𝑎𝑠𝑠 filters of 1 ∗ 1 ∗ 𝐶 dimensions and 𝑛𝑐𝑙𝑎𝑠𝑠 biases, where 𝑛𝑐𝑙𝑎𝑠𝑠 is
he number of classes to be predicted (6 in this model) and C is the
umber of output channels from the previous layer, 𝑐𝑜𝑛𝑣2𝐷_21 (32 in
his model).

A signal calibration analysis (see Fig. 6) reveals that the activa-
ions of the last convolutional layer lie within the range [−6.7656,

1.7859], while the absolute values of the bias parameters turn out to
Fig. 3. Single-precision floating-point format (IEEE 754 format).
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Fig. 4. Bit-flip error rate on the original unpruned model.

Fig. 5. Bit-flip error rate on the original pruned model.

Fig. 6. Graphic representation of the unpruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_21 to 𝑐𝑜𝑛𝑣2𝐷_22).

be smaller than 1 (−0.8494, 0.3171, −0.0275, 0.0394, −0.1706, 0.1090).
Consequently, a change in the sign (bit 31) of one of the biases is
unlikely to alter the winning class. However, a bit-flip in bit 30 will
significantly increase the bias’ magnitude, because in 32-bit floating-
point representation all six biases contain a ‘0’ in their 30th bit. The
7 
impact of a bit-flip on bit 30 depends on two factors: the sign of the
bias and the probability of the model predicting each class. In the
scenario where the bit-flip occurs in a negative bias (biases 0, 2, and
4), the bias becomes so negative that the associated class will never be
predicted by the model. Consequently, if the original model predicted
many pixels of that class in an image, produced error rate will be very
high; conversely, if the presence of that class was low, produced error
will be small. If the bit-flip happens in a positive bias (biases 1, 3, and
5), the bias becomes large enough so that the associated class is always
predicted by the model. Again, depending on the frequency of that class
in an image, the resulting error rate can be high or negligible. Both
the sign of the bias associated to each class and the probability of the
model predicting each class can be known beforehand. Therefore, the
error rate can be predicted using Eq. (2).

%𝑒𝑟𝑟𝑜𝑟30 =
5
∑

𝑗=0
𝑃 𝑗
𝑓 𝑖 ∗ 𝑃 𝑗

𝑚 (2)

where 𝑗 is the class index, 𝑃 𝑗
𝑓 𝑖 is the probability of a bit-flip occurring in

class/bias 𝑗 (assumed to be 1
6 ) and 𝑃 𝑗

𝑚 is the probability of the faultless
model predicting 𝑗 as the output class. Applying this equation yields:

%𝑒𝑟𝑟𝑜𝑟30 =
1
6
(0 + 55.09 + 4.41 + 73.05 + 7.47 + 83.73)

= 37.29

The slight discrepancy between this value (37.29%) and the one
obtained from the experimental data (34% in Fig. 4) is due to the
statistical error of the fault injection since it may not result in the exact
same number of flips for each of the 6 classes (assuming a constant
probability of 1

6 is thus only an approximation). Additionally, the highly
unbalanced terms in the equation make the effect of the non-constant
probability more noticeable.

Regarding the weights, 𝑐𝑜𝑛𝑣2𝐷_22𝑤, they are multiplied by the
output activation of layer 𝑐𝑜𝑛𝑣2𝐷_21, which, due to the use of ReLU
activation functions, is always ≥ 0. Hence, if the bit-flip occurs in a
weight that is multiplied by a 0-valued activation from 𝑐𝑜𝑛𝑣2𝐷_21, the
model will be immune to it (unless the bit-flip produces a non-desirable
special value such as 𝑁𝑎𝑁 in the weight itself). The impact of a flip in
the sign bit is considered negligible and the effect of a flip in bit 30,
similar to biases, will only be relevant if the weight is negative and
belongs to a filter of the class predicted by the model or if it is positive
but does not belong to a filter of the class predicted by the model.

Gamma parameter in batch normalization layers The gamma (𝛾) parame-
ter of the BN layers is the most sensitive one in the model (located in the
third, fourth, seventh and eighth positions in each of the 8-parameter
blocks of Fig. 2). This high sensitivity is due to the very nature of the BN
operation, as specified in Eq. (3) for a single pixel of a single channel
of an activation map (the final result is a scalar value):

𝐵𝑁(𝐶𝑜𝑛𝑣2𝐷(𝐱)) = 𝛾
(
∑

𝐰⊙ 𝐱 + 𝑏) − 𝜇
√

𝜎
+ 𝛽 (3)

where 𝐱 represents an input 3D array, 𝐰 is the weight 3D array of a
filter of the 𝑐𝑜𝑛𝑣2𝐷 layer, 𝑏 is the bias of a filter of the 𝑐𝑜𝑛𝑣2𝐷 layer,
𝛾 is the positive gamma parameter of the BN, 𝛽 is the bias parameter
of the BN, and 𝜎 and 𝜇 are the variance and the mean of the training
data.

It so happens that in this model, 𝛾 values are positive, smaller than 2
but higher than 0.1. Thus, in this case, three different scenarios can be
considered: values higher than 1, equal to 1, and smaller than 1. In the
first case, except for bit 30, the remaining 7 bits of the exponent are ‘1’s
and the mantissa is non-zero, so a bit-flip in bit 30 converts the original
value to a 𝑁𝑎𝑁 (Fig. 3). The propagation of the 𝑁𝑎𝑁 through the
network is unavoidable, resulting in a completely wrong output map. In
the second case, where the mantissa is zero, the same bit-flip converts
the value 1 into +∞. This situation is akin to the previous one, as the
network cannot digest this error except in situations where the value of
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the weight of the next 𝑐𝑜𝑛𝑣2𝐷 is negative so as the ReLU transforms the
−∞ into a 0. In the last case, considering 0.1 as an example, the bit-flip
in position 30 will increase the value to something around 𝑒37, which
is near the maximum representable value (≈3.4028𝑒38). Moreover, as
Eq. (3) shows, that result is divided by the square root of the variance
of the data, which is usually much smaller than 1. Consequently, the
resulting value would exceed the maximum value and would saturate
to ± ∞. In fact, as observed in the calibration analysis (e.g. Figs. 7, and
8), BN layers always increase the range of the processed data.

Fig. 7. Graphic representation of the unpruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷 to 𝑐𝑜𝑛𝑣2𝐷_3).

Weight parameters in 𝑐𝑜𝑛𝑣2𝐷 layers As shown in Fig. 4, faults injected
in weight parameters of 𝑐𝑜𝑛𝑣2𝐷 layers located in the encoder branch
(𝑝 sets below 40 in Fig. 2) have more impact on the output than when
injected in the decoder branch (𝑝 sets above 48). This discrepancy is
due to the presence of skip-connections between encoder and decoder
branches since faults injected in the first layers will directly propa-
gate to the outputs through skip connections. Moreover, longer data
paths will be also involved in the propagation of the errors through
encoder/decoder branches, including BN layers which, as mentioned
above, increase the range of the signals with the risk of overflows.

Fig. 8. Graphic representation of the unpruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_4 to 𝑐𝑜𝑛𝑣2𝐷_7).

In the worst case, if a bit-flip occurs in bit 30th of a positive weight,
when multiplied by a positive input, it produces a value close to the
maximum representable number (otherwise it would be absorbed by
the ReLU and 0 would be propagated, which is less problematic). Thus,
most likely, the value would saturate to infinity when passing through
a BN layer. This observation aligns with the fact that the weights of the
first 5 convolutions (Figs. 7 and 8) are significantly larger than those
of the rest of convolutions in the encoder. Hence, it is more likely for
a bit-flip in bit 30 to cause an output mismatch when it is produced in
these initial layers, as can be verified in Fig. 4.
8 
Table 4
Percentage of positive bias of the most sensitive 𝑐𝑜𝑛𝑣2𝐷 layers in the unpruned model.
Note: the tables are read in a U way (from top to bottom in the encoder layers and
from bottom to top in the decoder layers).

Name Pos. Total % Name Pos. Total %

conv2D 15 32 46.88 conv2D_21 30 32 93.75
conv2D_1 12 32 37.50 conv2D_20 11 32 34.38
conv2D_2 19 64 29.69 conv2D_19 31 64 48.44
conv2D_3 6 64 9.38 conv2D_18 10 64 15.63
conv2D_4 18 128 14.06 conv2D_17 34 128 26.56
conv2D_5 16 128 12.50 conv2D_16 20 128 15.63
conv2D_6 23 256 8.98 conv2D_15 174 256 67.97
conv2D_7 55 256 21.48 conv2D_14 109 256 42.58

Bias parameters in 𝑐𝑜𝑛𝑣2𝐷 layers According to obtained statistics
(Fig. 4), biases of 𝑐𝑜𝑛𝑣2𝐷 layers in the decoder branch appear to be
more sensitive than biases in the encoder branch. The explanation of
this is that, for a bit-flip in position 30 of a bias in a 𝑐𝑜𝑛𝑣2𝐷 layer to
significantly alter the output, it must be a positive valued bias. Errors in
negative biases are absorbed by ReLU layers, since BN layers between
𝑐𝑜𝑛𝑣2𝐷 and the ReLU do not change the sign of that value, given that
the multiplicative constants are always positive. 𝑐𝑜𝑛𝑣2𝐷 bias values
share the same characteristics, i.e. positive and smaller than unity, as
case 3 of the 𝛾 parameters described in Section 4.1.1. Therefore, when
passing through BN layers, its value will increase to infinity, causing
errors in the outputs.

Fig. 9. Bit-flip error in the 30th bit (dashed) and ratio of positive parameters (solid)
by parameter index: 𝑐𝑜𝑛𝑣2𝐷𝑏 (green), 𝐵𝑁𝑏𝑒𝑡𝑎 (blue) and 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑏 (orange) in the
unpruned model. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

We can analyze the influence of bias parameters in more detail
by inspecting the presence of positive biases in the primary 𝑐𝑜𝑛𝑣2𝐷
layers (deeper layers closer to the base of the model are analyzed in
a separate paragraph later on). As shown in Table 4, the percentage
of positive biases in the decoder branch is much higher than in the
encoder branch, which is consistent with our analysis and the obtained
statistical observations. In fact, if the correlation between the presence
of positive bias and produces error rates is examined, parallel trends
are observed (green lines in Fig. 9).

Beta parameters in batch normalization layers Similarly to the analysis
performed for biases in 𝑐𝑜𝑛𝑣2𝐷 layers, comparable error sensitivity for
positive 𝛽 parameter values is observed. As shown in Fig. 9 (blue lines),
there is also a high degree of correlation between the error rate and the
percentage of positive 𝛽 in each BN layer (Table 5).
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Table 5
Percentage of positive betas of the most sensitive BN layers in the unpruned model.
Note: the tables are read in a U way (from top to bottom in the encoder layers and
from bottom to top in the decoder layers).

Name Pos. Total % Name Pos. Total %

bn 15 32 46.88 bn_21 32 32 100
bn_1 0 32 0 bn_20 5 32 15.63
bn_2 1 64 1.56 bn_19 36 64 56.25
bn_3 0 64 0 bn_18 13 64 20.31
bn_4 0 128 0 bn_17 41 128 32.03
bn_5 0 128 0 bn_16 18 128 14.06
bn_6 3 256 1.17 bn_15 201 256 78.52
bn_7 43 256 16.80 bn_14 114 256 44.53

Bias parameters in 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟 layers Finally, in Table 8, the percentage
of biases that are positive for the primary 𝑐𝑜𝑛𝑣2𝐷_𝑡𝑟 layers is grouped
to see if the biases of the 𝑐𝑜𝑛𝑣2𝐷_𝑡𝑟 also follow the above dynamics.
Plotted in orange in Fig. 9, it is observed how, as in previous cases,
both lines follow the same trend.

At this point, it is important to note that only bit-flips in the bit
30 of parameters have been considered so far. Indeed, bit-flip on the
rest of the bits produce many fewer errors, as seen in Fig. 4. However,
there are particular bits in specific parameters, such as bit 26 in the
bias of the first 𝑐𝑜𝑛𝑣2𝐷 layer, associated with a significant error rate.
Explanation on this issue will be provided later on this paper. Finally,
it has to be remarked that the correlation between lines depicted in
Fig. 9 is not perfect. The reason is that faulty bits in negative biases can
also result in a prediction error since they may turn positive activations
into 0 values, and there are also corrupted positive biases that can be
absorbed by a ReLU layer if they are multiplied by a null or negative
weight (the error should be smaller then).

Deep layers: the base of the U-Net From the calibration and the FI
analyses, it can be concluded that the deepest layers of the network
(𝑝33-𝑝58 sets in Fig. 2) practically do not contribute to the inference
process. Nevertheless, training of shallower models (encoder depths
2, 3, and 4) with fewer convolution filters (8, 16, 32 in the first
convolution) produced considerably worse results. In fact, compressing
trained large sparse models has been shown to be more effective than
training smaller dense models [74].

Fig. 10. Graphic representation of the unpruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_8 to 𝑐𝑜𝑛𝑣2𝐷_11).

Convolution weights in deep layers are so small that only the biases
(Figs. 10 and 11) contribute to the activations. Theoretically, even a
bit-flip in the most significant bit of the biases is quickly absorbed by
the network and should not influence the outputs. However, it can be
seen in Fig. 4 that error statistics for FIs in deep layers (𝑝41-𝑝50 sets) are
not negligible. This is because the previous reasoning does not take into
account events where a parameter value becomes 𝑁𝑎𝑁 . That is what
precisely occurs when the bit 30 of one of the 𝛾 parameters whose value
is very close to 1 flips up.
9 
Fig. 11. Graphic representation of the unpruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_12 to 𝑐𝑜𝑛𝑣2𝐷_14).

4.1.2. Analysis of robustness of the pruned model
Output 𝑐𝑜𝑛𝑣2𝐷 layer In the pruned model, the structure of 𝑐𝑜𝑛𝑣2𝐷_22
is very similar to that of the unpruned model, as it also consists of
6 filters of size 1 ∗ 1 ∗ 32 and 6 biases. As shown in Fig. 12, there
is a slight difference in the range of the activations, which is now
[−8.3144, 15.1673]. However, since the values of the bias parameters are
essentially identical to those of the unpruned model (−0.8495, 0.3150,
−0.02991, 0.0373, −0.1736, 0.1066), the conclusions that can be drawn
are quite the same.

Fig. 12. Graphic representation of the pruned model’s calibration studies (layers
𝑐𝑜𝑛𝑣2𝐷_21 to 𝑐𝑜𝑛𝑣2𝐷_22).

Applying Eq. (2) to this case, the following value is obtained:

%𝑒𝑟𝑟𝑜𝑟30 =
1
6
(0 + 55.66 + 4.35 + 72.93 + 7.37 + 83.13)

= 37.24

The theoretical value (37.24%) is not far from that obtained ex-
perimentally and depicted in Fig. 5 (32%), being the difference a
consequence of the statistical nature of the FI campaign.

Let us now focus on lower position bits. In Fig. 5 it can also be
seen that faults in bits 29, 28, 27, and 26 do not generate errors in the
output, but changes in bit 25 do. If we analyze the binary exponent of
the 6 biases under consideration (see Fig. 13), it is observed that all
of them contain a ‘1’ in bits [26–29]. A bit-flip in those positions will
produce a reduction of the represented magnitude, and hence, the result
of the bias addition will decrease too. However, since the biases are
small compared to the range of activations (see Fig. 12), it is reasonable
to think that this reduction will not produce a meaningful change in
the output map. Same circumstance will happen if a bit-flip from 1 to
0 occurs in bit 25. But, focusing on the last bias of Fig. 13, a bit-flip
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from 0 to 1 in bit 25 causes the partial exponent to fill with 1s. Thus,
the value increases from +0.1 to +1.7, which is a mayor perturbation
that will probably produce a prediction error.

Fig. 13. Exponent part of the 32-bit floating-point representation of the biases of the
last 𝑐𝑜𝑛𝑣2𝐷 of the pruned model.

Gamma parameter in batch normalization layers In the pruned model, it
is also found that the 𝛾 of the BN layers is the most sensitive parameter,
and the same explanation holds. However, in the seventh BN layer
(𝑝27 set in Fig. 2), there is a clear decrease in the number of errors
associated with bit-flips in bit 30 and an increase in the number of
errors associated with bit-flips in bits [26−29]. The reason is that some
of the 𝛾 values in this layer, unlike in the rest of the BN layers, are
greater than 2 but smaller than 3. This means that the exponents in the
binary representations change drastically from 01111111 to 1000000.
Then, a change in bit 30 of those 𝛾s will no longer cause a value to
be a 𝑁𝑎𝑁 ; instead, it will be a very small number that is less likely to
produce a critical error. In turn, a bit-flip in bits [26−29] will now result
in a considerable increase in magnitude, so the error rates for those bit
positions grow compared to the layers with 𝛾 values smaller than 2.

Fig. 14. Bit-flip error in the 30th bit (dashed) and ratio of positive parameters (solid)
by parameter index: 𝑐𝑜𝑛𝑣2𝐷𝑏 (green), 𝐵𝑁𝑏𝑒𝑡𝑎 (blue) and 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑏 (orange) in the
pruned model. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Bias parameters in 𝑐𝑜𝑛𝑣2𝐷 layers As observed in the unpruned model,
flips in bit 30 of the biases of 𝑐𝑜𝑛𝑣2𝐷 layers located in the encoder
branch do not produce as many errors as in the decoder part. Table 6
contains the total number of positive biases compared to the total
number of biases in those layers. Again, as shown in Fig. 14 (green
lines), there is a high correlation between the sign of the biases and
the error rate.

As previously mentioned, Fig. 5 exhibits a peak for the bias pa-
rameter of the first 𝑐𝑜𝑛𝑣2𝐷 layer in bit 26. Furthering the discussion
from the paragraph on the last 𝑐𝑜𝑛𝑣2𝐷, here 31 out of the 32 biases
have an absolute value greater than 2−15 (all 0s in the exponent
except bits 29, 28 and 27). Hence, altering bit 26 produces the most
significant increase in absolute value. While this increment may seem
insignificant, considering the first layer’s activations (refer to Fig. 15)
10 
Fig. 15. Graphic representation of the pruned model’s calibration study (layers 𝑐𝑜𝑛𝑣2𝐷
to 𝑐𝑜𝑛𝑣2𝐷_3).

which are the lowest across the network ([−2.6148, 2.1645]), even small
perturbations can induce notable changes.
Table 6
Percentage of positive bias of the most sensitive 𝑐𝑜𝑛𝑣2𝐷 layers in the pruned model.
Note: the tables are read in a U way (from top to bottom in the encoder layers and
from bottom to top in the decoder layers).

Name Pos. Total % Name Pos. Total %

conv2D 15 32 46.88 conv2D_21 26 28 92.86
conv2D_1 12 32 37.50 conv2D_20 11 26 42.31
conv2D_2 18 52 34.62 conv2D_19 24 38 63.16
conv2D_3 6 52 11.54 conv2D_18 9 34 26.47
conv2D_4 14 46 30.43 conv2D_17 25 34 73.53
conv2D_5 14 58 24.14 conv2D_16 17 26 65.38
conv2D_6 16 62 25.81 conv2D_15 45 52 86.54
conv2D_7 24 76 31.58 conv2D_14 36 52 69.23

There is also a noticeable peak in the error rates of 𝑐𝑜𝑛𝑣2𝐷_16𝑏
for changes in bit 27 (𝑝72 set in Fig. 2). Among the 26 biases, 4 of
them have 6 of the 7 LSBs of the exponent set to 1 (all except bit 27),
placing their absolute value in [1.5259𝑒−5, 2 ∗ 1.5259𝑒−5] range. There
are other 2 biases that are slightly outside this range. Simultaneously,
the activations of this layer are not very large (refer to Fig. 16). In
consequence, a bit-flip in bit 27 notably increases the value of those
4 biases to values larger than 1 but smaller than 2 (with the other 2
biases reaching a value close to 1).

Fig. 16. Graphic representation of the pruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_15 to 𝑐𝑜𝑛𝑣2𝐷_17).

According to this, we could expect small error rate peaks in certain
bit positions for every layer in Fig. 5, given that all bias parameter sets
contain some values with binary representations that are one bit away
from completing the 7 least significant bits of the exponent (partial
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exponent). However, this is not the case for every layer. The reason is
that layers with higher activation ranges are more robust against such
errors.

An illustrative example is provided by the biases in 𝑐𝑜𝑛𝑣2𝐷_20 (𝑝92
set in Fig. 2), where 10 out of 26 biases show an absolute value in
the range [1.5259𝑒−5, 2 ∗ 1.5259𝑒−5). There are other 2 biases that
are close to this range. In those cases, flipping bit 27 will cause
a noticeable increase in the values, making them greater than one.
However, those bit-flips do not induce more errors than in 𝑐𝑜𝑛𝑣2𝐷_16
because of the broader range of activations ([−3.38, 4.93] for 𝑐𝑜𝑛𝑣2𝐷_16
and [−8.97, 6.94] for 𝑐𝑜𝑛𝑣2𝐷_20).

Beta parameter in batch normalization layers The errors resulting from
injecting a flipped bit 30 on the 𝛽 parameter in the batch normalization
layers increase for the pruned model. The percentage of 𝛽 parameters
that are positive relative to the total is noted inTable 7. As shown in
Fig. 14 (blue line), the correlation between parameter soundness and
the error rate is almost perfect.

Table 7
Percentage of positive betas of the most sensitive BN layers in the pruned model. Note:
the tables are read in a U way (from top to bottom in the encoder layers and from
bottom to top in the decoder layers).

Name Pos. Total % Name Pos. Total %

bn 15 32 46,88 bn_21 28 28 100
bn_1 0 32 0,00 bn_20 5 26 19,23
bn_2 1 52 1,92 bn_19 33 38 86,84
bn_3 0 52 0,00 bn_18 12 34 35,29
bn_4 0 46 0,00 bn_17 30 34 88,24
bn_5 0 58 0,00 bn_16 17 26 65,38
bn_6 3 62 4,84 bn_15 52 52 100
bn_7 40 76 52,63 bn_14 52 52 100

Bias parameter in 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟 layers This parameter is one of the most
pruned as Table 8 shows the difference in the number of parameters
before and after applying pruning. Visualizing the two lines plotted
in orange in Fig. 14, it is observed that this is the case for which the
two curves are farther apart. However, it should be noted that this is
the oddest case, since all the biases are positive. This would imply an
error rate of 100%, but we have previously discussed that very large
positive biases can still be absorbed, reducing their adverse impact on
the output.

Table 8
Percentage of positive bias of the most sensitive 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟 layers of the unpruned (left)
and pruned (right) models. Note: the table is read from bottom to top.

Name Pos. Total % Name Pos. Total %

conv2Dtr_4 19 32 59.38 conv2Dtr_4 8 8 50
conv2Dtr_3 13 64 20.31 conv2Dtr_3 10 10 100
conv2Dtr_2 4 128 3.13 conv2Dtr_2 4 4 100
conv2Dtr_1 129 256 50.39 conv2Dtr_1 2 2 100

Finally, 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟_4 (𝑝90 set in Fig. 2) is analyzed in detail as it has a
peak in bits 24 and 25 (Fig. 5). Based on Fig. 17, problems arise when
the bit-flip increases the magnitude of a value. Since all the biases of the
parameter have bits in the range [26−29] set to ‘1’, a bit-flip in those bits
will not increase their value, so an error is unlikely to happen. However,
in many cases, a bit-flip in bit 24, and especially in bit 25, causes bias
values to increase to even above unity (when the least significant 7 bits
of the exponent are set to ‘1’).

Deep layers: the base of the U-Net The base of the pruned U-Net is also
quite insensitive to single bit-flips (Fig. 5) due to small parameter val-
ues. However, it is observed that in the graph region located between
the first two transposed 𝑐𝑜𝑛𝑣2𝐷 layers (𝑝51-𝑝58 sets in Fig. 2) there
is an increase in the error rate. This is not a surprise if we look at
how the ranges of the weights in layer 𝑐𝑜𝑛𝑣2𝐷_13 (𝑝55 set in Fig. 2)
have increased after the pruning and the subsequent fine-tuning process
(there is a noticeable drift to the left when comparing Figs. 11 and 18).
11 
Fig. 17. Exponent part of the 32-bit floating-point representation of the 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟_4𝑏,
𝑝90 set in Fig. 2.

Fig. 18. Graphic representation of the pruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_12 to 𝑐𝑜𝑛𝑣2𝐷_14).

4.1.3. Sensitivity changes in pruned layers
The most intensely pruned 𝑐𝑜𝑛𝑣2𝐷 layers of the encoder branch

are 𝑐𝑜𝑛𝑣2𝐷_4, 𝑐𝑜𝑛𝑣2𝐷_5, 𝑐𝑜𝑛𝑣2𝐷_6 and 𝑐𝑜𝑛𝑣2𝐷_7 (𝑝17-𝑝18, 𝑝21-𝑝22, 𝑝25-
𝑝26 and 𝑝29-𝑝30 sets in Figs. 2 respectively), which are precisely the
layers with the largest increase in the measured error rate. The pruning
process did not result in a modification of the range of the weight values
because, as expected, pruned filters contained very small weights.
As can be observed comparing parameter ranges depicted in Figs. 8
and 19, the original model contains many irrelevant weights that are
not present in the pruned model. In consequence, any SBU will be
potentially more critical in the pruned model although, on the other
hand, in most of implementations the probability of a SBU in smaller
models is also lower.

4.1.4. Batch normalization folding
Since the 𝛾 parameters of the BN layers have shown to be the most

sensitive ones of the network upon SBUs, fusing the BN operation with
the previous 𝑐𝑜𝑛𝑣2𝐷, technique known as BN folding, may produce an
improvement in the robustness of the model. Following the notation
of Eq. (3), both operations can be fused into just one 𝑐𝑜𝑛𝑣2𝐷 operation
as follows:

𝐵𝑁(𝐶𝑜𝑛𝑣2𝐷(𝐱)) = 𝛾
(
∑

𝐰⊙ 𝐱 + 𝑏) − 𝜇
√

𝜎
+ 𝛽

= ̂𝐶𝑜𝑛𝑣2𝐷(𝐱) =
∑

(�̂�⊙ 𝐱 + �̂�)
(4)

where �̂� = 𝛾
√

𝜎
𝐰 and �̂� = 𝛾 𝑏−𝜇

√

𝜎
+ 𝛽.

Although the original aim of this technique was to reduce the
number of parameters to be stored and improve training performance,
here we analyze if, indeed, it can help reduce prediction error rates
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Fig. 19. Graphic representation of the pruned model’s calibration study (layers
𝑐𝑜𝑛𝑣2𝐷_4 to 𝑐𝑜𝑛𝑣2𝐷_7).

produced by bit-flips. Fig. 20 shows the statistics of errors for the
unpruned model after having folded all BN layers. As can be seen, the
layers associated with the highest error rates have been eliminated and,
as a consequence of that, the base of the U-Net now does not produce
any errors (there are neither 𝑁𝑎𝑁s nor ± ∞). The error rates associated
with the kernel of the 𝑐𝑜𝑛𝑣2𝐷 layers have decreased while the error
rates in the kernel and bias parameters of the 𝑐𝑜𝑛𝑣2𝐷_𝑡𝑟 layers remains
unaltered. However, the error rates to injected faults in the biases of
𝑐𝑜𝑛𝑣2𝐷 layers have increased. To explain this increment, attention must
be paid to the changes produced in the ranges of these values.

Fig. 20. Bit-flip error rate on the unpruned folded model.
Table 9 collects some bias range statistics for 𝑐𝑜𝑛𝑣2𝐷 layers, both for

the unfolded and the folded models. As expected, the folding operation
has significantly increased the absolute value of the bias parameters.
Biases with absolute values between 1 and 2 in the folded model are a
bit-flip away in bit 30 from producing a 𝑁𝑎𝑁 value. Similarly, bit-flips
in any of the remaining bits of the exponent of biases in the range above
2 will increase their value, augmenting the probability of producing
output errors. This analysis aligns with Fig. 20, showing that layers
with the most values in the ‘risky’ range also have the highest error
rates, and vice versa.

The same significant differences observed in the unpruned folded
model are also evident in the pruned folded model (compare statistics
in Figs. 5 and 21). Firstly, the layers associated with the highest error
12 
Table 9
Bias values per range before and after BN folding in some sensitive 𝑐𝑜𝑛𝑣2𝐷 layers of
the unpruned model.

Range/conv2D Not folded Folded

_3 _6 _19 _21 _3 _6 _19 _21

−∞ < x ≤ −2 0 0 0 0 0 3 0 1 0 0
−2 < x ≤ −1 0 0 0 0 0 3 1 12 6 0
−1 < x ≤ 1 32 64 256 64 32 15 63 230 28 26
1 < x ≤ 2 0 0 0 0 0 5 0 7 27 2
2 < x ≤ +∞ 0 0 0 0 0 6 0 6 3 4

rates have been removed. Secondly, the base of the U-Net does not
produce any errors either. Thirdly, the error rates associated with the
𝑐𝑜𝑛𝑣2𝐷 kernel decreases and the error rates in 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟 kernel and bias
parameters remains stable. Lastly, the error rates associated with the
bias of 𝑐𝑜𝑛𝑣2𝐷 layers have increased. Once again, some bit positions
[24−29] which previously caused few or no errors, are now generating
a significant number of them. Looking to Table 10, we see the same
range increase of bias values as in the unpruned model after BN folding,
which leads to higher error rates in the corresponding layers.

Fig. 21. Bit-flip error rate on the pruned folded model.
In conclusion, although BN folding has positive effects on the gen-

eral robustness of the model by eliminating layers with the highest
error rates and the most dangerous situations from areas with low
information, and reducing the number of parameters to protect, hence
decreasing vulnerability, it also increases the probability of errors in
some layers due to the increment of the absolute value of the 𝑐𝑜𝑛𝑣2𝐷
biases.
Table 10
Bias values per range before and after BN folding in some sensitive 𝑐𝑜𝑛𝑣2𝐷 layers of
the pruned model.

Range/conv2D Not folded Folded

_3 _6 _19 _21 _3 _6 _19 _21

−∞ < x ≤ −2 0 0 0 0 0 3 0 0 0 0
−2 < x ≤ −1 0 0 0 0 0 3 1 5 0 0
−1 < x ≤ 1 32 52 62 38 28 12 51 34 16 22
1 < x ≤ 2 0 0 0 0 0 5 0 7 19 3
2 < x ≤ +∞ 0 0 0 0 0 6 0 6 3 3

4.2. 8-bit integer quantized models (QNNs)

The applied quantization scheme (Section 3.2) involves converting
weights to 8-bit integers and biases to 32-bit integers. Additionally, BN
layers have been folded into previous convolution layers to reduce the
number of parameters and speed up computations. According to [69],
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Fig. 22. Two’s complement arithmetic for 8-bit and 32-bit integer/fixed-point representation.
the quantized version �̂� of a real number 𝑟 is approximated by Eq. (5),
where 𝑆 is a real positive scale factor, 𝑞 is an 8/32-bit integer value,
and 𝑍 is the zero-point integer value (0 for symmetric quantization).

̂ ≈ 𝑟 = 𝑆(𝑞 −𝑍) (5)

Thus, the value 𝑞𝑦 resulting from 𝑌 = 𝑊 𝑥 + 𝑏 is:

𝑞𝑦 =
𝑆𝑤𝑆𝑥
𝑆𝑦

(𝑞𝑤𝑞𝑥 −𝑍𝑥𝑞𝑤 + 𝑞𝑏) (6)

Due to the per-tensor and mainly symmetric quantization, the num-
ber of 𝑞𝑖 values that need to be stored is considerably greater than
that of 𝑍𝑖 and 𝑆𝑖 values. Additionally, due to the quantization process
itself, the S values have to meet certain restrictions [69] and are not
of interest for the comparison being made. Consequently, bit-flips were
only injected on 𝑞𝑤 and 𝑞𝑏, which are represented in two’s complement
arithmetic, the typical computer representation for fixed-point (signed
integers are just one example) binary values (Fig. 22).

In this representation, a notable drawback arises from the double
functionality of the sign bit: a bit-flip in the sign bit converts a very
small negative number into a very large positive number (and vice
versa) and a very small positive number into a very large negative
number (and vice versa). By contrast, two’s complement does not define
a specific representation for 𝑁𝑎𝑁 or infinity, seemingly alleviating the
issues associated with these values.

Fig. 23. Bit-flip error rate on the unpruned quantized model. Weights are quantized
to 8 bits (bit 7 is the MSB). Biases are quantized to 32 bits and faults are injected
across all bit positions due to disparities in their ranges.

We repeated the statistical fault injection campaign on the QNN
and obtained results are graphed in Figs. 23 and 24 respectively. Based
on these results, the unpruned model shows, in principle, a superior
robustness.

4.2.1. Analysis of robustness of the unpruned model
Relevance of weights compared to biases The injection of a fault in the
convolution weights shows minimal impact on the output (see Fig. 23).
Due to skip-connections in the model, the only critical scenario is
the appearance of bit-flips in the first layer. The significance of the
13 
Fig. 24. Bit-flip error rate on the pruned quantized model. Weights are quantized to
8 bits (bit 7 is the MSB). Biases are quantized to 32 bits and faults are injected across
all bit positions due to disparities in their ranges.

perturbations in weights is negligible compared to the biases, which
is a noteworthy observation. This means that for an error protection
technique based on redundancy, it could practically be limited to
storing and checking the biases.

Fig. 25. Bit-flip error in [17–30] bits (dashed) and ratio of positive bias (solid) in some
𝑐𝑜𝑛𝑣2𝐷𝑏 encoder layers of the quantized unpruned model.

The biases Contrary to what was observed for the unquantized models,
encoder biases induce more errors than decoder biases. Since bit-flips
cannot result in 𝑁𝑎𝑁s or ±∞ in two’s complement representation,
the analysis differs. For QNNs the layer position is more determinant,
mainly due to the presence of skip connections and longer error propa-
gation paths. Indeed, the initial layers of the model are clearly the most
sensitive ones.

However, analyzing the sign of the biases remains relevant to ex-
plain the bit-flip errors in the initial layers of the encoder. For int-8
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Fig. 26. Calibration study of the unpruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑜𝑛𝑣2𝐷 to 𝑐𝑜𝑛𝑣2𝐷_6.

representation, perturbed parameters produce output errors that de-
pend on the position of the flipped bits, being positions [17–30] the most
sensitive. Once a bit-flip in one position produces an increase in the bias
value high enough to produce an error at the output, changes in higher
positions become inconsequential. In order to get a general estimation
of a single statistical error rate value generated by upset events in any of
the considered bit positions, a linear weighting approximation based on
bit significance has been applied. Fig. 25 reveals a practically identical
trend between the calculated bit-flip error and the ratio of positive
biases.

Fig. 27. Calibration study of the unpruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑜𝑛𝑣2𝐷_13 to 𝑐𝑜𝑛𝑣2𝐷_17.

Finally, we analyze why bit-flips above bit 16, on average, result
n significant errors, those below bit 13 cause very few errors, and
elow bit 9 induce none. By referencing Table 11 and Figs. 26–29, it
an be seen that the maximum bias values hovers around 217. Thus,
it-flips in higher positions lead to a magnified bias, resulting in a
ignificant increase in the error rates. Moreover, certain layers exhibit

requirement for 30/31 bits to represent all values. To expound
n this observation, we must differentiate between highly significant
arameters (those in the first layers of the encoder and the last layers
f the decoder) and those of low significance (found in the base zone).

If a parameter is placed in a highly relevant area of the model
e.g., 𝑐𝑜𝑛𝑣2𝐷_3, 𝑐𝑜𝑛𝑣2𝐷_4, 𝑐𝑜𝑛𝑣2𝐷_5, 𝑐𝑜𝑛𝑣2𝐷_6, 𝑐𝑜𝑛𝑣2𝐷_17, 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟_3,
𝑜𝑛𝑣2𝐷_18, 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟_4), the necessity for a high number of bits primar-
ly stems from representing negative values (Table 11). However, there
re relatively few instances of very negative values in these areas (as
bserved in Figs. 26–28). Notably, channels with very negative biases
ypically have negligible relevance to the output, as the ReLU activation
unction effectively nullifies their contributions.
14 
Fig. 28. Calibration study of the unpruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2_18𝐷 to 𝑐𝑜𝑛𝑣2𝐷_22.

Fig. 29. Calibration study of the unpruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2𝐷_7 to 𝑐𝑜𝑛𝑣2𝐷_12.

Conversely, in comparatively irrelevant areas of the model
e.g., 𝑐𝑜𝑛𝑣2𝐷_9, 𝑐𝑜𝑛𝑣2𝐷_10, 𝑐𝑜𝑛𝑣2𝐷_11, 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟, 𝑐𝑜𝑛𝑣2𝐷_12,
𝑜𝑛𝑣2𝐷_13, 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟_1), the necessity for a high number of bits arises
rom the need to represent both very positive and very negative values
Table 11). In these regions, there are numerous instances of very
ositive or very negative values (as observed in Figs. 27 and 29).
owever, many of the channels either contain very negative biases

which are absorbed by ReLU activation) or very positive values that
re subsequently multiplied by nearly zero weights (thus, contributing
nsignificantly).
able 11
ecessary bits to represent all pos./neg. values of the 𝑐𝑜𝑛𝑣2𝐷𝑏 (green) and 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑏

orange) parameters in the quantized unpruned model.
Layer Positive Negative Layer Positive Negative

0 18 17 22 13 16
1 15 15 21 17 13
2 16 16 20 15 15
3 15 31 4 19 28
4 16 31 19 16 17
5 15 31 18 15 31
6 18 31 3 20 29
7 18 20 17 17 31
8 23 23 16 16 31
9 32 31 2 18 30
10 32 31 15 19 21
11 32 31 14 19 20
0 32 31 1 32 31
12 32 31 13 32 31

In summary, although certain layers exhibit biases quantized to
30/31 bits, the high-order bits (typically 15/16 bits) are essentially
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redundant as they solely extend the sign. These bits could potentially
serve as a means of detecting and/or correcting sensitive bit positions.

Deep layers: the base of the U-Net Quantizing the model does not alter
the significance of the base of the U-Net. Even when a bit-flip occurs
at the most sensitive bit (bit 31), the deepest layers (𝑝16-𝑝32 sets in
Fig. 23) remain unchanged. This is because the convolution weights are
very small, and only biases (as depicted in Figs. 27 and 29) contribute
to the activations.

Output 𝑐𝑜𝑛𝑣2𝐷 layer The biases of the last convolution layer are
[−25983, 2355, −187, 300, −1494, 923] (as illustrated in Fig. 28), con-
isting of 3 positive and 3 negative biases. In the event of a bit-flip
ccurring in any of the bits within the [17–30] range, the positive biases
ecome more positive, while the negative biases become more negative.
pplying equation from Section 4.1.1, the expected error rate for a
it-flip in these positions is:

𝑒𝑟𝑟𝑜𝑟17−30 =
1
6
(0 + 54.91 + 4.28 + 72.42 + 6.91 + 83.86)

= 37.06

This value is similar to that obtained experimentally by linearly
eighting the error rates in the [17 − 30] range (37.64% in Fig. 23).

Considering that a bit-flip in the sign bit significantly modifies the
agnitude, interpreting the results requires an inverse explanation: if

he bit-flip occurs in bias 0, the value becomes very positive and will
nvariably be the winning class, even though it should never win (error
f 100%); if it occurs in bias 1, the bias becomes very negative, and
lass 1 will never win (error of 45.09%). The same reasoning applies
o the remaining biases. Hence, the error rate associated with bit-flips in
it 31 should be approximately the complement of the error associated
ith bit-flips in bit [17−30], i.e., 62.94%. This value is notably smaller

han the one obtained experimentally, which is 88%. The discrepancy
an be attributed to the uneven distribution of errors injected into each
f the six biases in the statistical analysis for bit-flip 31 together with
he presence of highly unbalanced terms in the error rate equation for
it-flip 31 (complement values are 100, 45.09, 95.72, 27.58, 93.09 and
6.14).

Fig. 30. Calibration study of the pruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2𝐷 to 𝑐𝑜𝑛𝑣2𝐷_6.

4.2.2. Analysis of robustness of the pruned model
Relevance of weights compared to biases Despite the decrease in ro-
bustness of the pruned model (as illustrated in Fig. 24), the relative
negligible importance of weights compared to biases persists.

The biases The pruning process removes numerous irrelevant channels
containing high negative biases along the whole model (Table 12).
This can be seen by comparing the same figures for the unpruned
and pruned case (e.g. Figs. 26 and 30). The only region where this
cleanup may not be too pronounced is the central area (as seen in the
comparison of Fig. 29 with Fig. 32). However, even in this region, the
 f

15 
Fig. 31. Bit-flip error in [17 − 30] bits (dashed) and percentage of positive bias (solid)
n 𝑐𝑜𝑛𝑣2𝐷𝑏 layers of the pruned quantized model.

Fig. 32. Calibration study of the pruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2𝐷_7 to 𝑐𝑜𝑛𝑣2𝐷_12.

Table 12
Necessary bits to represent all pos./neg. values of the 𝑐𝑜𝑛𝑣2𝐷𝑏 (green) and 𝑐𝑜𝑛𝑣2𝐷𝑡𝑟𝑏
orange) parameters in the quantized pruned model.
Layer Positive Negative Layer Positive Negative

0 18 17 22 12 16
1 15 15 21 17 14
2 16 16 20 16 15
3 15 16 4 17 –a

4 16 17 19 17 14
5 15 15 18 15 15
6 18 18 3 19 –a

7 18 17 17 17 16
8 23 22 16 16 15
9 32 31 2 18 –a

10 32 31 15 18 12
11 32 31 14 18 18
0 32 31 1 32 –a

12 32 –a 13 32 –a

a Means that there are no values of that sign.

activations show a less homogeneous distribution, which indicates that
associated weights are more meaningful.

If we compare again the ratio of positive biases of the 𝑐𝑜𝑛𝑣2𝐷
ayers with bit-flip error rate in the [17–30] range (Fig. 31) the existing
orrelation between those two quantities for the first six 𝑐𝑜𝑛𝑣2𝐷 layers
an be observed.

Finally, it is worth noting that, similar to the unpruned case, bit-
lips occurring below position 9 do not significantly affect the output.
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Similarly, errors become increasingly detrimental to the model from
position 16 onwards.

Deep layers: the base of the U-Net The QNN exhibits the same charac-
teristics at the base of the U-Net as the quantized unpruned model.
Specifically, the values in 𝑝16-𝑝32 sets do not generate any errors in
he output, regardless of the position of bit-flips. This is a consequence
f the small values of convolution weights, and only biases (as depicted
n Figs. 32 and 33) contribute significantly to the activations.

Fig. 33. Calibration study of the pruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2𝐷_13 to 𝑐𝑜𝑛𝑣2𝐷_17.

Output 𝑐𝑜𝑛𝑣2𝐷 layer The explanation given for the unpruned model re-
mains applicable. Despite having slightly smaller magnitude bias values
([−19945, 1730, −150, 209, −1120, 665]), as depicted in Fig. 34, these
biases retain their sign bit. The error rates experimentally obtained for
bit-flips in positions [17−30] extracted from the linear weighting of the
data is 37.89%, consistent with the theoretical error value 37.06%.

%𝑒𝑟𝑟𝑜𝑟17−30 =
1
6
(0 + 55.68 + 4.24 + 73.03 + 6.96 + 82.48)

= 37.06

The error associated with a bit-flip in bit 31 is 93%, exceeding the
xpected value due to the uneven distribution of bit-flips among the
iases.

Fig. 34. Calibration study of the pruned quantized model (𝑞𝑤, 𝑞𝑏 and 𝑞𝑎) from layers
𝑐𝑜𝑛𝑣2𝐷_18 to 𝑐𝑜𝑛𝑣2𝐷_22.

4.2.3. Analysis of multiple random bit-flips
To estimate error rates under regular operating conditions, we have

performed a statistical analysis of MBUs on both quantized unpruned
and quantized pruned models. Since FIT (Failures in Time) values
reported by manufacturers such as AMD-Xilinx [67] for the most up-to-
date FPGA technologies are in the range of tens of FIT/Mb, and given
16 
that targeted BFAs in embedded systems would be very improbable,
this study has been performed based on a randomized fault injection
campaign.

We randomly injected [1, 10, 50, 100, 250, 400, 650, 800, 950,
1250, 1550, 1750, 2000] bit-flips into the parameters of the entire
model and repeated each injection 150 times to obtain average and
standard deviation values. Figs. 35 and 36 show the mean multiple
bit-flip error rate on the quantized unpruned and pruned DNNs, re-
spectively. As expected, the unpruned model is quite robust since the
subset of highly sensitive parameters is small compared to the whole
parameter set, so the probability of failure is low compared to that
of the pruned model. Nevertheless, it is worth noting that assuming
a failure rate of 20 FiT/Mb (based on data from [67]), the unpruned
model, with 100 times more parameters (see Table 2), experiences 5
SEUs/hour, whereas the pruned model experiences 0.05 SEUs/hour.
Specifically, for models quantized to INT8, the unpruned model would
accumulate 1000 upsets in just 8.3 days of operation, whereas the
pruned model would require approximately 2.3 years.

Fig. 35. Mean error rate due to multiple bit-flips for the quantized unpruned model.
Each purple dot represents the error rate of individual repetitions of the injections. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The results align with those reported by other authors in the context
of image classification. For instance, the accuracy loss in [38] for the
DNN when exposed to random BFAs is quite similar to that of the
unpruned model (Fig. 35). Similarly, the accuracy loss when faults
are injected into sensitive parameters is comparable to that of the
pruned model (Fig. 36). In this regard, injecting random faults into
an optimized and compressed model is analogous to injecting targeted
faults into an uncompressed and not optimized model. In [39], it is
also noted that for any given network, a very high number of ran-
dom faults must be injected to significantly degrade inference quality.
Finally, [37] identifies several techniques as either beneficial or detri-
mental to network robustness, among which pruning is detrimental,
whereas increasing network capacity is beneficial.

5. Robustness enhancement techniques

As discussed in Section 2.2, neural network hardening methods
against single bit-flips can be categorized into four groups: redundancy-
based methods, activation function modifications, parameter modifi-
cations, and training/inference process modifications. Key comparison
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Fig. 36. Mean error rate due to multiple bit-flips for the quantized pruned model. Each
purple dot represents the error rate of individual repetitions of the injections. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

features include recovered accuracy, storage overhead, time overhead,
and retraining requirements.

Redundancy-based methods, such as triple-modular redundancy
[17], introduce significant storage and time overhead. This is due to the
need to compare the original model parameters against two additional
copies. However, these methods do not require retraining.

Methods that modify activation functions also introduce storage and
time overhead, which can be either fixed [56,57] or model-dependent
and variable [18,44]. Some methods, such as [58], require the modified
activation function to be included during training, necessitating dataset
availability and introducing a possible training overhead (the authors
report around 6% training overhead).

Methods based on parameter modifications generally do not in-
troduce storage overhead. For instance, [59] does not add storage or
time overhead but requires retraining to create a more homogeneous
architecture with fewer critical bottlenecks. The MATE method pro-
posed in [60] avoids retraining and memory overhead by replacing
non-critical mantissa bits with error correction codes, although it does
introduce a time overhead. Similarly, [61] adjusts the parity of weights
by flipping the least significant bits as needed, avoiding storage over-
head but increasing inference time as faults are masked with zero
values.

The requirements for methods that modify the training or inference
process vary. The method proposed in [63] relies on adversarial train-
ing, requiring dataset availability. In contrast, the method in [64] uses
17 
the inference results of previous frames, adding both storage and time
overhead. The method described in [62] has zero overhead, but is only
applicable if the CNN ends in a fully connected layer.

Regarding methods that aim to mitigate or mask BFAs, the approach
described in [14] requires dataset availability because it involves train-
ing additional internal classifiers, which increases storage overhead.
However, due to the nature of this method, which promotes early exits,
inference time is reported to be reduced to 46.1%–59.4% of the original
model’s inference time. In a different approach, the authors of [65]
extract a unique signature from the DNN offline and verify the integrity
of the model on the fly. This method introduces additional time and
storage overheads. While these approaches enhance resilience against
faults, they often involve large memory and computation overheads,
challenging their suitability for safety-critical DNN inference on edge
devices. Therefore, in this work, we aim to enhance robustness without
increasing memory or computational costs.

The in detail analysis of error propagation described in the pre-
vious sections allows for identifying some key factors that shape the
sensitivity of segmentation FCNs to SBUs. As explained, this sensitivity
depends mainly on the combination of two factors: the location of the
affected parameters in the architecture of the models, and the param-
eter values (range, sign and their numeric representation). Based on
this knowledge, it is possible to establish some design rules to protect
the model from being too sensitive to SBUs by avoiding ‘‘risky’’ states
while preserving performance. One of such states in single-precision
floating-point (IEEE 754 format) is having too many parameters which
are one bit-flip away from having the exponent filled, because this
representation stands for two especially destructive values: 𝑁𝑎𝑁 and
±∞. Consequently, when a SBU causes the exponent to be filled,
undesirable results are produced during inference. Similarly, partial
exponent filling (leaving aside the MSB) as illustrated in Figs. 13 and
17, also leads to a notable number of errors. This occurs because a
number with an absolute value smaller than 1 transforms into a number
with an absolute value greater than 1 (but still smaller than 2). Given
that weight and bias values typically fall within the range of 0 to 1
(except for the 𝛾 values of the BN layers), such situations are common
and require attention.

5.1. Modifying model’s parameterization

The proposed protection method involves identifying parameters
with exponents containing either seven bits set to ‘1’ or partial expo-
nents with six bits set to ‘1’. This is graphically illustrated on some
example values in Fig. 37, where colored in green are the values with an
exponent identified as ‘‘risky’’ by the tool. Exponents containing seven
‘1’s (with the MSB set to ‘1’) have not been included, as parameters
with such high values are not likely in neural networks.

The proposed method involves incrementing or decrementing the

exponent by one, with the aim of making the number of ‘0’s to be
Fig. 37. Values of the partially filled exponents (in green) after increasing (in blue) or decreasing (in orange) its value by 1. The three values which are crossed in red are not
seful as either the number of ‘0’-valued positions does not increase or the value of the parameter increases above 2. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)



J. Gutiérrez-Zaballa et al.

b
t
0
u
i
p

r
c
t
w
c
v
t
a
s
‘
d
t
o
T
N
a

s
(
p
s
T
C
(

o
f
o
a
T
C
(

(

Journal of Systems Architecture 154 (2024) 103242 
greater than one. This prevents the partial exponent from being filled if
a bit-flip event occurs. However, not all the exponents with one ‘0’ are
candidates for this method. For example, modifying exponent 01111110
y 1 would not be useful (Fig. 37), as it would either decrement
he number of ‘0’s or leave it unchanged. Similarly, incrementing
1111101 would not be useful either, as the number of ‘0’s would remain
nchanged. Furthermore, 10000000 has been omitted because bit-flips
n the partial exponent would significantly increase the value of the
arameter above 2.

After performing the increment/decrement of the exponent, the
esultant value of the parameter is doubled/halved. Thus, it has to be
ompensated by modifying the mantissa. If the exponent is increased,
he mantissa value needs to be reduced to the minimum value (1.0),
hile if the exponent is decreased, the mantissa value needs to be in-

remented to the maximum value (≈1.999). Depending on the original
alue of the mantissa, the protected value will differ more or less from
he original. This modification of the parameter values would produce

perturbation in the model’s performance, thus the tool allows for
etting upper and lower thresholds for the mantissas to be identified as
‘full’’ or ‘‘empty’’ and, thus, candidates for protection. These thresholds
efine the ‘‘protection target’’ (PT) parameter of the tool. According to
his setting, the tool can first evaluate in what extent the performance
f the model is modified.
able 13
umber of candidate parameters to protect for the pruned and unpruned models
ccording to the PT setting.
Protection Protected parameters

Not folded Folded

NotPruned Pruned NotPruned Pruned

PT1 2433 126 721 160
PT2 5993 1095 7497 1551
PT3 21544 5316 36534 7809
PT4 40754 10498 71141 15 368

To illustrate how this technique performs on the models under
tudy, four different PTs have been explored: PT1 (1.999, 1.001), PT2
1.99, 1.01), PT3 (1.95, 1.05), and PT4 (1.9, 1.1). PT0 stands for un-
rotected models. Table 13 shows the number of candidate parameters
elected for protection by the tool according to the protection target.
able 14
omparison of IoU values of the original model (PT0) and the protected models
PT1-PT4). BN unpruned unfolded.
Class/Target PT0 PT1 PT2 PT3 PT4

Road 97.84 97.84 97.85 9.31 16.36
Road marks 87.99 87.99 88.00 45.77 5.50
Vegetation 94.23 94.23 94.24 1.93 12.62
Sky 92.83 92.83 92.85 5.05 2.42
Others 78.12 78.12 78.17 10.35 12.26
Global 94.71 94.71 94.72 8.76 14.20
Weighted 88.54 88.54 88.56 25.23 6.38

Tables 14 to 17 compare the IoU metric on the test set between the
riginal unprotected model and the modified protected ones with dif-
erent PT settings. Depending on the analyzed model, the degradation
f the IoU metric shows different sensitivity to the PT value although,
s expected, the higher the PT, the higher the model perturbation.
able 15
omparison of IoU values of the original model (PT0) and the protected models
PT1-PT4). BN pruned unfolded.
Class/Target PT0 PT1 PT2 PT3 PT4

Road 97.73 97.73 97.73 97.73 97.48
Road marks 88.17 88.17 88.16 88.23 88.13
Vegetation 93.66 93.66 93.67 93.76 93.61
Sky 92.89 92.89 92.88 92.77 91.63
Others 77.34 77.34 77.36 77.24 76.46
Global 94.46 94.46 94.46 94.46 94.14
Weighted 88.48 88.48 88.48 88.47 87.97

For the unpruned unfolded model, PT2 is the highest feasible PT
Table 14). For the unpruned folded model, it has to be assessed
18 
whether PT3 is too aggressive or not (Table 16). Regarding pruned
models, PT3 is adequate so it remains to be determined whether PT4
is too demanding or not (Tables 15 and 17).
Table 16
Comparison of IoU values of the original model (PT0) and the protected models
(PT1-PT4). BN unpruned folded.

Class/Target PT0 PT1 PT2 PT3 PT4

Road 97.84 97.84 97.84 97.75 97.57
Road marks 87.99 88.00 88.00 86.80 85.96
Vegetation 94.23 94.23 94.23 94.15 93.99
Sky 92.83 92.83 92.83 92.13 90.79
Others 78.12 78.12 78.12 77.12 75.18
Global 94.71 94.71 94.71 94.47 94.05
Weighted 88.54 88.54 88.54 87.61 86.53

To evaluate the suitability of applying a certain PT setting, the fol-
lowing points have been taken into account. As applying this method-
ology does not either create new potentially dangerous situations or
solve the unprotected dangerous ones, PTs are going to be evaluated
by injecting a single bit-flip in the ‘‘risky’’ position (so that exponent
or partial exponent would be filled) in the parameters selected with
each PT. The assessment is based on the following three metrics: the
global IoU (GIoU), the weighted IoU (WIoU) and the error rate. IoU-
based metrics evaluate the model just in the labeled pixels while error
rate is a comparison against the prediction of the faultless model so,
even in absence of bit-flips, protected models could have a certain error
rate. In this section, analysis will be focused only on the results with
the maximum achievable PT values.
Table 17
Comparison of IoU values of the original model (PT0) and the protected models
(PT1-PT4). BN pruned folded.

Class/Target PT0 PT1 PT2 PT3 PT4

Road 97.73 97.73 97.72 97.73 97.78
Road marks 88.17 88.17 88.16 88.08 87.89
Vegetation 93.66 93.66 93.66 93.61 93.56
Sky 92.89 92.89 92.90 92.65 92.03
Others 77.34 77.33 77.31 77.02 76.98
Global 94.46 94.46 94.45 94.40 94.38
Weighted 88.48 88.48 88.48 88.32 88.05

5.1.1. Protection of the unpruned unfolded model
Applying PT2 yields notable benefits (see Table 18), as the error

rate is significantly reduced while the IoU metrics, especially for bit 26,
show improvement. There is a scenario where the three indicators do
not align (bit 25): despite minor improvements in the IoU metrics, the
error rate considerably increases for the protected model. This could be
attributed to the fact that, unintentionally, in the absence of faults, the
protected model outperforms the non-protected model (see Table 14),
indicating a considerable number of pixels that change their value even
before bit-flip injection.
Table 18
Comparison of the non-protected and PT2 protected unpruned unfolded models on
potentially dangerous bit positions.

Non-protected Protected

Bit GIoU WIoU % error Bit GIoU WIoU % error

30 89.07 80.06 7.76 30 90.63 82.69 0.72
29 92.30 85.23 0.32 29 92.31 85.28 0.04
28 92.30 85.23 1.02 28 92.31 85.28 0.04
27 92.23 85.14 1.55 27 92.29 85.25 0.08
26 90.12 81.81 4.43 26 91.65 83.90 1.36
25 83.04 73.08 5.54 25 83.11 73.17 10.01
24 92.22 85.09 1.86 24 92.23 85.13 0.54

5.1.2. Protection of the pruned unfolded model
Analyzing PT4 for the pruned unfolded model (Table 19), we can

see that a straightforward conclusion cannot be extracted as the bene-
fits of the protection are not shared among all bits. As a consequence,
it is necessary to assess how the protected model behaves beyond the
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labeled pixels, since erroneous pixels may be situated in regions that
are not critical. Otherwise, protection target should be lowered down
to 3, as it has been verified that the protected model outperforms the
non-protected one.
Table 19
Comparison of the non-protected and PT4 protected pruned unfolded models on
potentially dangerous bit positions.

Non-protected Protected

Bit GIoU WIoU % error Bit GIoU WIoU % error

30 0.00 0.00 100 30 26.03 24.52 79.50
29 92.48 84.50 0.00 29 91.93 84.11 1.61
28 92.48 84.50 0.00 28 91.93 84.11 1.61
27 90.83 82.33 2.35 27 91.55 83.71 2.14
26 89.82 80.76 3.51 26 90.92 82.51 2.93
25 78.25 67.49 14.58 25 79.24 68.26 13.98
24 92.32 84.35 1.03 24 91.83 83.89 2.12

5.1.3. Protection of the unpruned folded model
In the unpruned folded model, PT2 is the highest achievable one,

albeit with unimpressive results, as there is neither loss nor significant
improvement (see Table 20). Nevertheless, despite the lack of remark-
able changes, this PT still yields benefits, as it increases the mean WIoU
and reduces the mean error rates. Thus, its application keeps being
beneficial for the model.
Table 20
Comparison of the non-protected and PT2 protected unpruned folded models on
potentially dangerous bit positions.

Non-protected Protected

Bit GIoU WIoU % error Bit GIoU WIoU % error

30 10.25 9.48 88.91 30 31.11 26.58 65.23
29 92.30 85.23 0.00 29 92.29 85.23 0.01
28 92.30 85.23 0.00 28 92.30 85.23 0.02
27 92.30 85.23 0.00 27 92.29 85.23 0.02
26 92.30 85.23 0.05 26 92.29 85.23 0.03
25 92.27 85.15 0.43 25 92.28 85.20 0.31
24 92.29 85.15 0.69 24 92.29 85.15 0.69

5.1.4. Protection of the pruned folded model
In the pruned folded model, the highest achievable PT is 3

(Table 21). Even though the error rate slightly increases (but not more
than 0.31%), positive differences in terms of GIoU and WIoU are found
for all bit positions. After applying PT4, the improvements in WIoU
disappear, while the error rate still increases.
Table 21
Comparison of the non-protected and PT3 protected pruned folded models on
potentially dangerous bit positions.

Non-protected Protected

Bit GIoU WIoU % error Bit GIoU WIoU % error

30 0.00 0.00 100 30 23.84 18.86 72.09
27 92.48 84.50 0.08 27 92.54 84.54 0.39
26 92.44 84.43 0.27 26 92.53 84.52 0.43
25 92.39 84.35 0.55 25 92.52 84.49 0.61
24 92.34 84.33 0.97 24 92.40 84.34 1.07

After assessing all the models, it can be concluded that the target
rom which to start the protection can be deduced just by inspecting
he results of Tables 14 to 17. For all the models, this target has been at
east 2. Depending on the parameters of the model, a PT of 3, 4, or even
igher may still be beneficial. As this method is completely memory and
omputation-free, it can be combined with memory-hungry methods,
uch as modular redundancy, which would focus on protecting just the
ritical parameters that have not been protected with this method.

.2. Additional protection techniques: revisiting model’s parameterization

Additional protection techniques to that proposed in Section 5.1 can
e applied to enhance model protection with no memory and compu-

ational overhead. In contrast to the previous method, the following

19 
methods exclusively focus on the redefinition of the model parameters.
This adjustments ensures that, in the absence of bit-flips, the model
retains its original behavior while preventing potentially critical value
changes due to bit-flip events.

5.2.1. Applying sparse pruning
Applying sparse pruning can be beneficial in terms of robustness

regardless of whether the processor is designed to improve inference
performance in the presence of sparse matrices. In case of identifying
that the model has parameters in the range 1 ≤ |𝑥| < 2 that are
ot relevant for inference, applying sparse pruning (setting irrelevant
arameters to 0) prevents the appearance of 𝑁𝑎𝑁 values in case of
it-flips.

.2.2. Redefining batch normalization parameters
If folding of batch normalization layers, which can be viewed as

epthwise convolutions (see Eq. (7)), is not applied, 𝛾, 𝜎, 𝜇 and 𝛽
arameters can be reconditioned as long as the weight (𝑊 ) and bias
𝑏) values do not change. Parameter reconditioning can be applied with
wo aims: either directly reduce the amount of parameters at risk of
aving the exponent filled or just modify their mantissa values so that
he protection method described in the previous section can be applied.

𝑁(𝑥) = 𝛾
(𝑥 − 𝜇)
√

𝜎
+ 𝛽 =

𝛾
√

𝜎
𝑥 + (𝛽 − 𝛾

𝜇
√

𝜎
) = 𝑊 𝑥 + 𝑏 (7)

.2.3. Applying cross layer equalization
This method, which is similar to CLE [75] for quantization, allows

or the protection of convolutional kernels, which contain most of
he parameters in the model. The method is based on the positive
caling equivariance property (𝑓 (𝑠𝐱) = 𝑠𝑓 (𝐱)) which is held for models
ontaining Parametric Rectified Linear Unit (PReLU) functions. The
ctivation map 𝐲 of a certain layer 𝑛 can be calculated as 𝑓𝑛(𝐖𝑛 ⋅𝐱+𝐛𝑛)
here 𝐖𝑛 and 𝐛𝑛 are the weights and biases of the convolutional kernel
pplied to layer 𝑛 and 𝐱 is the input cube. If we calculate the activation
ap of the next layer 𝑛+1 in terms of the previous layer 𝑛, Eq. (8) shows

hat model parameters can be reconditioned as long as the activation
unction of the 𝑛th layer fulfills the equivariance property (e.g. ReLU
nd Identity).

= 𝑓𝑛+1(𝐖𝑛+1 ⋅ 𝑓𝑛(𝐖𝑛 ⋅ 𝐱 + 𝐛𝑛) + 𝐛𝑛+1)
= 𝑓𝑛+1(𝐖𝑛+1 ⋅ 𝐒 ⋅ 𝑓𝑛(𝐒−1 ⋅𝐖𝑛 ⋅ 𝐱 + 𝐒−1 ⋅ 𝐛𝑛) + 𝐛𝑛+1)
= 𝑓𝑛+1(�̂�𝑛+1 ⋅ 𝑓𝑛(�̂�𝑛 ⋅ 𝐱 + �̂�𝑛) + 𝐛𝑛+1)

(8)

here 𝐒 is a diagonal matrix containing the scale factor of the param-
ters for each of the filters of a convolutional layer.

.2.4. Applying bias absorption
Bias absorption [75], which is applied during post training quanti-

ation procedures, can be implemented with a different purpose in this
omain: reducing the number of critical parameters in the model. The
nly requirement in order to apply this method is that 𝑓 (𝐖𝐱 + 𝐛− 𝐜) =
(𝐖𝐱 + 𝐛) − 𝐜 must be fulfilled. It is straightforward to see that this
ondition will not be met by any non-linear activation function, will
lways be met by identity and will be met by ReLU activations just in
ertain situations (𝐜 = 𝑚𝑎𝑥(0,𝐖𝐱 + 𝐛)∀𝐱) that are closely related to 𝐱
ata distribution and 𝐖 and 𝐛 parameters. The method is described
n Eq. (9), where �̂�𝑛 = 𝐛𝑛 − 𝐜 and �̂�𝑛+1 = 𝐖𝑛+1 ∗ 𝐜 + 𝐛𝑛+1.

= 𝑓𝑛+1(𝐖𝑛+1 ⋅ 𝑓𝑛(𝐖𝑛 ⋅ 𝐱 + 𝐛𝑛) + 𝐛𝑛+1)
= 𝑓𝑛+1(𝐖𝑛+1 ⋅ (𝑓𝑛(𝐖𝑛 ⋅ 𝐱 + 𝐛𝑛) + 𝐜 − 𝐜) + 𝐛𝑛+1)
= 𝑓𝑛+1(𝐖𝑛+1 ⋅ (𝑓𝑛(𝐖𝑛 ⋅ 𝐱 + �̂�𝑛) + 𝐜) + 𝐛𝑛+1)

̂ ̂

(9)
= 𝑓𝑛+1(𝐖𝑛+1 ⋅ 𝑓𝑛(𝐖𝑛 ⋅ 𝐱 + 𝐛𝑛) + 𝐛𝑛+1)
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6. Conclusions

This article analyzes the robustness of encoder–decoder type FCNs
against SBUs in semantic segmentation tasks and how compression
techniques applied for deployments in embedded systems alter this
robustness. The analysis is based on a statistical campaign of software-
injected SBUs in different network parameters to conduct a layer-by-
layer and bit-by-bit in-depth study of the sources of critical errors.
The reference models used in this study were designed and optimized
for hyperspectral image segmentation with application to autonomous
driving systems, and were trained on the HSI-Drive v2.0 dataset. We
identified the potentially most problematic bit-flips according to the
location of the parameters in the model architecture, their binary
representation, range and sign, and relevance to the inference process.
From this analysis, a tool for estimating the model’s robustness and
a simple memory and computation-free error mitigation method is
proposed.

This study reveals that in 32-bit floating-point FCN models with
lower-bounded activation functions, such as the commonly used ReLU,
critical errors are primarily associated with SBUs that result in an
increment in the parameter values. This is because, as noted by other
authors, commonly used machine learning computations are often
monotonic. However, not all increments pose the same risk. The most
sensitive bit is the MSB of the exponent, as its bit-flip significantly
increases the model parameters’ values from below 2 to ∞ or 𝑁𝑎𝑁 ,
in the worst-case scenario, propagating the error throughout the model.
Given the typical values of the parameters in BN layers, this layer is the
most sensitive to such bit-flips. Furthermore, we have found that this
layer extends the range of output values, thus contributing negatively
to the propagation of errors that may have occurred in previous layers.
In this regard, it is noted that layers with many positive biases are
particularly vulnerable. Another particularly ‘‘risky’’ situation arises
from parameters with almost filled partial exponents. When a partial
exponent is filled by a bit-flip, the parameter undergoes a transition
from a value significantly below unity to a new value above unity,
leading to a noticeable amount of errors. Due to the specific character-
istics of encoder–decoder type FCNs with skip connections, SBUs in the
first layers of the encoder branch and in the last layers of the decoder
branch, which are closer to the model’s output, produce comparatively
higher error rates. On the other hand, it is observed that perturbations
in the parameters at the base of the model have little influence on the
output.

Regarding compression techniques, pruned models show higher
sensibility to SBUs than unpruned models. This is attributed to the over-
parameterized and parallel nature of original unpruned DNN models.
However, the primary advantage of pruned models lies in their smaller
size, as it is less likely for an SBU to occur in a model with fewer
parameters. Hence, to accurately assess the influence of pruning on
the vulnerability to SBUs, model implementation details such as circuit
design and selected target device should be considered.

With respect to data representation, integer-quantized models show
higher robustness to bit-flips. This is due to the particularities of integer
binary representation, since there is no option to extreme values such
as 𝑁𝑎𝑁s or ∞s to occur. The employed quantization method, where
weights are quantized to 8 bits while biases are quantized to 32 bits,
makes the latter more sensitive to SBUs. Furthermore, it is generally
observed that the upper word of the bias representation simply serves
to extend the sign, so it could be used to implement error detection
and/or correction methods with no memory overhead. Finally, since
the model sensitivity is fundamentally linked to perturbations in the
biases and these constitute a tiny subset of the whole parameter-set,
memory-intensive error mitigation techniques such as duplication or
triple modular redundancy applied only to biases would ensure high
model protection with low memory burden.

When combining prunning and quantization it was observed that

the fully compressed model is more robust than the pruned unquantized

20 
model but less robust than the unpruned quantized model. It can be
concluded that integer quantization always contributes to robustness
enhancement, whereas the evaluation of the effects of pruning is tied
to the applied compression degree and the final implementation of the
model.

Concerning the robustness analysis of quantized models, if instead
of a targeted fault injection technique random multiple fault injection
is performed, it is observed that the unpruned model exhibits a con-
siderably greater robustness. This is because, in quantized models, the
sensitive parameters are the biases, and not the weights, which consti-
tute a small subset of the total parameters, reducing the likelihood of
a random bit-flip occurring in them. Additionally, due to the network
architecture, most parameters are concentrated in the base of the U-Net,
where the least critical layers are located. As a result, after pruning,
the robustness against bit-flips is significantly reduced since nearly
any bit-flip can affect a sensitive parameter. Nonetheless, assuming a
failure rate of 20 FiT/Mb, it is worth noting that the unpruned model
experiences 5 SEUs/hour whereas the pruned model experiences 0.05
SEUs/hour. This implies that the unpruned quantized model would
need just 8.3 days of operation to accumulate 1000 upsets, whereas
the pruned model would require approximately 2.3 years.

Finally, based on the performed analysis, a set of complementary
protection methods is proposed to mitigate some delicate situations
like partial exponent completion. In particular, we describe a new
memory and computation overhead-free method for the protection of
certain model parameters in floating-point representation. This tech-
nique enables the selection of various protection targets, where a higher
target involves attempting to protect more parameters in the model.
However, setting too ambitious protection targets may result in an
excessive modification of the original parameterization, thus a model
performance analysis must be accomplished beforehand.
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