
“A mathematical, computational and
experimental study of neuronal excitability”

by Guillaume Girier

DOCTORAL THESIS

Under the supervision of:
Serafim Rodrigues, BCAM,
Ikerbasque.

Doctoral school of computer engineering
at the University of the Basque Country

(UPV/EHU, Leioa, Spain)

During the academic years:
2020 - 2024

(cc) 2024 Guillaume Girier (cc by 4.0)

In collaboration with :

Collaborator :

Mathieu Desroches, INRIA, France.

iii

A mathematical, computational and experimental study of the
neuronal excitability

Reviewers
Daniele Avitabile, Associate Prof., Faculty of Science, Mathematics, VU Amsterdam, Amster-
dam, The Netherlands.
Denis Sheynikhovich, Associate Prof. and head of the “Aging in Vision and Action” lab at the
Vision Institute, Sorbonne Université, Paris, France.

Examiners
Daniele Avitabile, Associate Prof., Faculty of Science, Mathematics, VU Amsterdam, Amster-
dam, The Netherlands.
Manuel Maria Graña Romay, Prof., Department of Computer Science and Artificial Intelligence,
UPV EHU, Leioa, Spain.
Jan Tønnesen, Group leader, CSIC titular, Nanoscale Neurophysiology Lab, Instituto Biofisika,
Leioa, Spain.

Substitutes
Denis Sheynikhovich, Associate Prof. and head of the “Aging in Vision and Action” lab at the
Vision Institute, Sorbonne Université, Paris, France.
Ana Gonzalez Acuña, Prof., Department of Computer Science and Artificial Intelligence, UPV
EHU, Leoia, Spain.
Catalina Vich Llompart, Senior Lecturer, Department de Ciènces Matemàtiques i Informàtica,
Universitat de les Illes Balears, Palma, Spain.

v

Une étude mathématique, informatique et expérimentale de l’excitabilité neuronale

Résumé
L’excitabilité neuronale fait référence à la capacité des neurones à générer des signaux électriques,
appelés potentiels d’action, en réponse à des stimuli. Ce concept peut être étudié sous différents as-
pects (mathématiques, informatiques et expérimentaux). Dans cette thèse, nous nous intéresserons
à étudier ce concept en superposant, lorsque nécessaire, ces différents aspects afin d’en extraire de
nouveaux résultats, et ce à travers cinq projets différents. Dans le premier projet, nous étudierons
d’abord mathématiquement la transition comportementale entre les neurones intégrateurs (modèles
de neurones de type I) et les neurones résonateurs (modèles neurones de type II) dans des modèles
mathématiques de neurones tout en conservant les propriétés qui font du modèle un neurone
intégrateur. Dans un deuxième projet, nous analyserons les données neuronales obtenues à partir
des enregistrements patch-clamp de cellules Granule (GC) au cours de leur développement. Au
cours d’une période transitoire de maturation, les propriétés intrinsèques et synaptiques des nou-
veaux GC présentent des propriétés distinctes de celles des GC matures, sous-tendant potentielle-
ment la contribution de la neurogenèse au codage de la mémoire. Nous produirons un modèle
adapté à ce comportement. Dans deux projets liés, nous nous concentrerons sur l’obtention de
diagrammes de bifurcation à partir d’expériences bruitées, avec des méthodes inspirées de la con-
tinuation numérique, appelées Control Based Continuation in Experiments (CBCE). L’idée est
d’appliquer un contrôle en boucle fermée à une expérience et de rendre le contrôle itératif non
invasif, ce qui révèle l’attracteur de l’expérience non contrôlée. Dans le dernier projet, nous anal-
yserons les données d’imagerie calcique du bulbe olfactif de plusieurs souris auxquelles différents
produits chimiques ont été présentés. Notre objectif principal était de mettre en évidence des
schémas de réactions neuronales aux stimuli, mais également de développer un pipeline permet-
tant de comparer l’activité de différents sujets, à travers des cartes odotopiques.

Mots clés
Neurosciences computationnelles, Mathématiques, Informatique, Neurosciences expérimentales,
Excitabilité neuronale, Bifurcations, Modélisation, Analyse de données, Analyse de structure de
récurrence.

vi

A mathematical, computational and experimental study of the neuronal excitability

Abstract
Neuronal excitability refers to the ability of neurons to generate electrical signals, called action
potentials, in response to stimuli. This concept can be studied through different aspects (math-
ematical, computational and experimental). In this thesis, we will be interested in studying this
concept by overlapping, when necessary, these different aspects in order to extract new results,
and this through five different projects. In the first project, we will first mathematically study the
behavioral transition between integrator neurons (type-I neuron models) and resonator neurons
(type-II neuron models) in mathematical models of neurons while retaining the properties that
make the model an integrator neuron. In a second project, we will analyze neuronal data obtained
from patch-clamp recordings of Granule cells (GC) during their development. During a transient
period of maturation, new GCs intrinsic and synaptic properties exhibit distinct from mature GCs,
potentially underlying the contribution of neurogenesis to memory encoding. We will produce a
model adapted to this behavior. In two related projects, we will focus on obtaining bifurcation
diagrams from noisy experiments, with methods inspired by digital continuation, called Control
Based Continuation in Experiments (CBCE). The idea is apply closed-loop control to an exper-
iment and iteratively bring the control to being noninvasive, which reveals the attractor of the
uncontrolled experiment. In the last project, we will analyze calcium imaging data from the ol-
factory bulb of several mice to which different chemicals were presented. Our main objective was
to highlight neural reaction patterns to stimuli, but also to develop a pipeline allowing to compare
the activity of different subjects, through odotopic maps.

Keywords
Computational neuroscience, Mathematics, Computer science, Experimental neuroscience, Neu-
ral excitability, Bifurcations, Modeling, Data analysis, Recurrence structure analysis.

vii

Un estudio matemático, computacional y experimental de la excitabilidad neuronal

Resumen obligatorio de mı́nimo 5 páginas (solicitud UPV)
La excitabilidad neuronal se refiere a la capacidad de las neuronas para generar señales eléctricas,
llamadas potenciales de acción (PA), en respuesta a estı́mulos. Las neuronas son células excita-
bles que pueden responder a una variedad de estı́mulos, incluidas señales quı́micas o eléctricas
de otras células, cambios en la concentración iónica en su entorno o estı́mulos mecánicos como
la presión. La excitabilidad neuronal puede ser modulada por una variedad de factores, incluidos
neurotransmisores, hormonas, cambios en la concentración de iones en el entorno de la neurona
y la presencia o ausencia de estı́mulos inhibidores. Las variaciones en la excitabilidad neuronal
son esenciales para el funcionamiento normal del cerebro y del sistema nervioso, y pueden estar
implicadas en una variedad de trastornos neurológicos y psiquiátricos. El estudio de la excitabil-
idad neuronal es clave para comprender el funcionamiento del cerebro, cómo se comunican las
neuronas entre sı́ y cómo se forman y modifican los circuitos neuronales en respuesta a estı́mulos
ambientales.

Existen varios modelos de neuronas individuales que nos permiten estudiar la noción de um-
bral de excitabilidad: en los años 1940 y 1950, Alan Lloyd Hodgkin y Andrew Huxley desarrol-
laron un modelo matemático (HH) de la AP en las neuronas [1] (que obtuvo Premio Nobel en
1962) basado en experimentos sobre la iniciación y propagación de potenciales de acción en el
axón gigante del calamar. El modelo HH describe los mecanismos subyacentes a la propagación
de AP a lo largo del axón de una neurona [2, 3], mediante el uso de ecuaciones diferenciales. Gra-
cias a sus experimentos y modelo, también desentrañaron el papel clave de los canales Na+ y K+

en la generación de AP y la propagación de señales. Por lo tanto, el modelo HH fue un punto de
inflexión importante en el estudio matemático de la excitabilidad neuronal porque permitió a los
cientı́ficos predecir con precisión las caracterı́sticas de los AP y comprender cómo los diferentes
tipos de canales iónicos contribuyen a la generación y propagación de los AP.

El modelo de FitzHugh-Nagumo (FHN) es un sistema de dos ecuaciones diferenciales ordi-
narias que ha jugado un papel fundamental en el modelado matemático de la actividad eléctrica
de las neuronas y en la comprensión de los mecanismos subyacentes a las AP neuronales [4, 5].
Este enfoque, desarrollado de forma independiente por dos investigadores, Richard FitzHugh en
1961 y Jinichi Nagumo en 1962, ofrece una simplificación del modelo HH descrito anteriormente
y del complejo comportamiento de las neuronas, preservando al mismo tiempo las caracterı́sticas
esenciales de su dinámica.

En 1981, el modelo Morris-Lecar (ML) fue desarrollado por Catherine Morris y Harold Lecar [6].
Es un modelo matemático de la actividad eléctrica de las neuronas. Este modelo se basa en el
modelo HH, sigue el mismo formalismo y, por tanto, los movimientos de los iones a través de la
membrana. Este modelo fue desarrollado para describir la actividad eléctrica de las células de las
glándulas del estómago de la sepia, pero desde entonces se ha utilizado para estudiar la actividad
eléctrica de otros tipos de neuronas. Debido a su dimensión reducida (2D), es un modelo relativa-
mente simple comparado con otros modelos más complejos, como el modelo de Hodgkin-Huxley,
lo que lo hace más fácil de entender e implementar. El modelo se ha utilizado para estudiar mu-
chos aspectos de la actividad eléctrica de las neuronas, como la regulación de la excitabilidad
neuronal, las propiedades electrofisiológicas de los canales iónicos, la plasticidad sináptica y las
oscilaciones neuronales.

viii

Estos tres modelos neuronales serán los utilizados a lo largo de esta tesis. Esta tesis propone un
estudio en profundidad de la excitabilidad neuronal a través de diferentes enfoques, que van desde
sistemas dinámicos hasta experimentos de laboratorio con exploraciones computacionales. Cada
capı́tulo contiene resultados novedosos sobre la excitabilidad neuronal, ası́ como la validación de
modelos matemáticos como representaciones fieles de experimentos.

En el capı́tulo 2, estudiamos la transición de comportamiento entre las neuronas integradoras
(modelos de neuronas tipo I) y las neuronas resonadoras (neuronas tipo II) en modelos matemáticos
de neuronas. Los sistemas excitables se pueden clasificar según la existencia de oscilaciones por
debajo del umbral. Esta caracterı́stica divide todos los sistemas en dos tipos de neuronas: inte-
gradora o resonadora. Las neuronas integradoras se definen por: a) la capacidad de excitarse bajo
pulsos de alta frecuencia, b) la existencia de un umbral preciso y c) el hecho de que no tienen
una oscilación por debajo del umbral. Son, por tanto, neuronas de excitabilidad de clase I (lo que
significa que el régimen AP comienza en frecuencia cero). Por el contrario, las resonadoras son
neuronas que: a) responden sólo a pulsos en intervalos de frecuencia bien definidos, b) no tienen
un umbral especı́fico, y c) tienen oscilaciones por debajo del umbral. Por lo tanto, pertenecen a la
clase II (lo que significa que el régimen AP comienza con una frecuencia distinta de cero). En un
marco fisiológico, las neuronas se comportan como integradoras o como resonadoras, y esto no al
mismo tiempo.

En este capı́tulo, proponemos una nueva estrategia para obtener un cambio de excitabilidad en
un modelo neuronal, basada en la presencia de múltiples escalas de tiempo en este modelo. Ilus-
tramos nuestro enfoque con el llamado modelo INa/IK de E.M. Izhikevich, estudiado bajo el efecto
de una corriente externa sinusoidal lenta. Esto crea una estructura lenta-rápida caracterizada por
la presencia en el espacio de fases de un punto especial llamado singularidad en silla plegada.
Utilizando resultados recientes sobre la teorı́a geométrica de la perturbación singular relacionada
con las sillas plegadas, modificamos el forzamiento lento para obtener condiciones algebraicas en
la silla plegada que se sabe que crean oscilaciones de pequeña amplitud en las trayectorias que
pasan por ella en el espacio de fase. En el contexto neuronal, mostramos que estas oscilaciones de
pequeña amplitud están por debajo del umbral y, por lo tanto, dotan al modelo integrador de las
caracterı́sticas de un resonador. Este efecto no depende de la elección del modelo de tipo I, solo
requiere la estructura de bifurcación asociada (SNIC) de un modelo de tipo I. También mostramos
un escenario para el cambio inverso, del resonador al integrador, nuevamente basado en dinámicas
de múltiples escalas de tiempo, pero esta vez dependiente de una singularidad de nodo plegado. Se
sabe que los nodos plegados están asociados con oscilaciones de pequeña amplitud que, en el con-
texto neuronal, están por debajo del umbral. Concluimos sugiriendo un protocolo experimental,
basado en la configuración dynamic-clamp en electrofisiologı́a, para probar nuestras predicciones
teóricas y proponer también algunas perspectivas sobre la relevancia de nuestros hallazgos. Los
resultados de este capı́tulo aparecieron recientemente en la revista Nonlinear Dynamics (IF 5.6)
en un artı́culo titulado From integrator to resonator neurons: A multiple-timescale scenario1 [7].

Una neurona inmadura es una neurona que aún no ha logrado la diferenciación a una forma
madura. Durante el desarrollo neuronal, las neuronas inmaduras sufren muchas transformaciones
hasta alcanzar su estado maduro. Por ejemplo, deben establecer conexiones sinápticas con otras
neuronas para formar redes neuronales funcionales, y también deben desarrollar dendritas y ax-
ones para facilitar la transmisión de señales eléctricas y quı́micas. Las neuronas inmaduras juegan

1doi: 10.1007/s11071-023-08687-1.

https://doi.org/10.1007/s11071-023-08687-1

ix

un papel importante en la configuración del cerebro en desarrollo, ya que tienen la capacidad
de dividirse y diferenciarse en diferentes tipos de neuronas especializadas. Este proceso se llama
neurogénesis y es crucial para la formación de circuitos neuronales funcionales. Sin embargo, cier-
tos tipos de neuronas inmaduras también pueden estar presentes en los adultos, como las células
madre neurales en determinadas regiones del cerebro. Estas células tienen la capacidad de di-
vidirse y diferenciarse en diferentes tipos de neuronas y células gliales, lo que puede ayudar a
reparar el daño cerebral o regenerar el tejido dañado.

El Capı́tulo 3 se centró en el análisis de datos neuronales obtenidos de registros patch-clamp
de células granulares (GC) inmaduras durante su desarrollo. La excitabilidad de estas neuronas
puede variar según su etapa de desarrollo y su ubicación en el cerebro. En general, tienen mayor
excitabilidad que las neuronas maduras debido a la presencia de canales iónicos inmaduros en su
membrana celular. Estos canales iónicos inmaduros pueden permitir una mayor entrada de sodio
en las neuronas inmaduras, haciendo que su potencial de membrana sea más positivo y facilitando
la generación de AP, los impulsos eléctricos utilizados para transmitir información a través del
sistema nervioso. Con el tiempo, las neuronas inmaduras sufren cambios morfológicos y fun-
cionales hasta alcanzar su estado maduro. Los canales iónicos maduros reemplazan a los canales
inmaduros, lo que reduce la entrada de sodio y aumenta la eficiencia de los circuitos neuronales.

Durante un perı́odo transitorio de maduración, los nuevos GC exhiben propiedades intrı́nsecas
y sinápticas distintas de los GC maduros, lo que potencialmente subyace a la contribución de la
neurogénesis a la codificación de la memoria [8–14]. En este capı́tulo, buscamos explorar la
transición de los GC en maduración al bloqueo de despolarización mediante el uso de abrazadera
dinámica. Comprender el mecanismo preciso del bloqueo de la despolarización en los GC puede
conducir a una mejor comprensión de los cambios electrofisiológicos que experimentan los GC
durante el proceso de maduración. Mi parte del trabajo en este proyecto fue modelar los datos
recopilados y su excitabilidad anormal. Para igualar este comportamiento, utilizamos un modelo
tipo Hodgkin-Huxley en el que el canal de sodio tiene más estados de lo normal. Los resultados
de este proyecto se han recogido en un manuscrito titulado Complex excitability and ”flipping” of
granule cells: an experimental and computational study que se encuentra actualmente en revisión2

[15].

Una neurona tiene diferentes regı́menes (estado de reposo, régimen de picos) y, por lo tanto,
hay transiciones entre estos regı́menes que, en los modelos matemáticos subyacentes, correspon-
den a bifurcaciones [16]. La bifurcación es un concepto clave en matemáticas que tiene como
objetivo describir cómo los sistemas dinámicos responden a cambios en los parámetros y cómo
se producen transiciones cualitativas en su comportamiento cuando estos parámetros varı́an. Esta
teorı́a se centra en identificar puntos crı́ticos, llamados bifurcaciones, donde el comportamiento
del sistema sufre una transición fundamental. Estas bifurcaciones pueden resultar en cambios en
las trayectorias, atractores, perı́odos u otras caracterı́sticas del sistema. Las curvas de atractores y
repelentes, ya sean estacionarias o periódicas, separadas por puntos de bifurcación y representadas
en un mismo plano, forman diagramas de bifurcación de un parámetro.

En los capı́tulos 4 y 5, nos centramos en obtener diagramas de bifurcación a partir de ex-
perimentos ruidosos y métodos de continuación numérica [17, 18]. Basado en un control de
retroalimentación de bucle cerrado, con un algoritmo de búsqueda de raı́ces incorporado (por

2doi: 10.13140/RG.2.2.34294.57921.

https ://doi.org/10.13140/RG.2.2.34294.57921

x

ejemplo, el método de Newton), el método de continuación de experimentos basado en control
(CBCE) permite superar el hecho de que no conocemos a priori las ecuaciones rectoras asoci-
adas con el experimento que estamos realizando. estudiando. En el capı́tulo 4, estudiamos datos
experimentales obtenidos al someter una neurona a dos protocolos diferentes de electrofisiologı́a
de abrazadera de parche: una abrazadera de voltaje con rampa lenta en la tensión de retención
(VC) y una abrazadera de corriente con rampa lenta en la corriente de retención (CC). El resul-
tado del protocolo VC proporcionó una curva (corriente, voltaje) que se asemeja a un diagrama de
bifurcación en estado estacionario. Es más, una vez superpuestos al resultado del protocolo CC,
los dos conjuntos de datos interactuaron de manera similar a una solución de sistemas comple-
tos superpuestos a un diagrama de bifurcación de estado estable de subsistema rápido. Es decir,
un efecto de disección lento-rápido. En este capı́tulo, explicamos por qué funciona este método
simplificado y planteamos hipótesis sobre la cuestión del ruido obtenido alrededor de las partes
inestables de la variedad crı́tica. Ası́, este método, que es similar a una revisión simplificada del
CBCE (sin la parte de Newton), nos permite obtener una aproximación viable de un diagrama de
bifurcación experimental en estado estacionario, y también puede validar el modelo neuronal sub-
yacente como una buena representación de la verdadera neurona. Los resultados de este proyecto
se han recopilado en un manuscrito titulado Observing hidden neuronal states in experiments que
se encuentra actualmente en revisión3 [19].

En el capı́tulo 5, nos centramos en aplicar una versión completa del método CBCE en ex-
perimentos simulados mediante Simulink. Simulink es un software de modelado y simulación
gráfica desarrollado por MathWorks. Se utiliza en muchos campos de la ingenierı́a, incluida la
neurociencia computacional, para simular y analizar sistemas dinámicos. La operación en tiempo
real de Simulink permite la simulación de sistemas en tiempo real mediante el uso de algoritmos
en tiempo real para controlar los procesos de simulación. Esto permite probar sistemas y contro-
ladores en un entorno virtual antes de implementarlos en el mundo real. Los beneficios de usar
Simulink incluyen la capacidad de visualizar sistemas fácilmente, agregar y editar bloques para
refinar modelos, depurar modelos en tiempo real y trabajar con herramientas de diseño gráfico
fáciles de usar.

La versión completa del CBCE se acerca más a resultados precisos a la hora de obtener curvas
de puntos estacionarios. En cuanto a las ramas de soluciones periódicas, el método puede calcu-
larlas fácilmente cuando las oscilaciones son ”suficientemente simples”, es decir, en modelos de
tipo forma normal. Sin embargo, cuando las oscilaciones son más no lineales como en el modelo
de FitzHugh-Nagumo, el método parece tener más problemas para aproximar la rama correcta.

La recurrencia es una propiedad fundamental de muchos sistemas dinámicos; fue formulada
por primera vez por Poincaré [20] y es omnipresente en diversos procesos en la naturaleza y en
los sistemas biológicos. Un sistema puede divergir fuertemente, pero después de un tiempo se
repite infinitas veces tan cerca como se desee de su estado inicial. En otras palabras, determinadas
regiones del espacio de estados (del sistema asociado) son visitadas frecuentemente a lo largo del
tiempo. Eckmann et al. [21] introdujo por primera vez una visualización de esta recurrencia y
se pueden utilizar diferentes medidas para estudiar las propiedades del sistema. Sin embargo, se
utiliza un parámetro de umbral fundamental, ε , para identificar y determinar el nivel de obser-
vación de la recurrencia. Para proporcionar una observación óptima, es posible optimizar el valor
de ε , lo que permite analizar con mayor precisión los estados transitorios y metaestables (es decir,
estados dinámicos cuasi-invariantes) de un sistema [22–25]. Se ha demostrado la aplicabilidad

3doi: 10.48550/arXiv.2308.15477.

https://doi.org/10.48550 /arXiv.2308.15477

xi

a la dinámica cerebral. [24]. Especı́ficamente, el método RSA identifica una condición óptima
(función de utilidad parametrizada por ε) basada en una matriz estocástica. La función de utili-
dad se construye mediante la traza de la matriz estocástica y la entropı́a de las columnas y filas
de la matriz, y finalmente se maximiza mediante un método de optimización, que determina el ε

óptimo. Esto luego permite revelar los estados recurrentes (dados como estados transitorios cuasi-
invariantes o estados metaestables) de un sistema dado.

En el capı́tulo 6, presentamos un estudio analı́tico de datos sobre el bulbo olfatorio de ratones.
Es decir, analizamos datos de imágenes de calcio procedentes de 3 ratones sometidos a diferentes
sustancias quı́micas. Desarrollamos un pipeline para estudiar los datos: primero segmentamos el
espacio de coordenadas real de las neuronas con el método k-means, luego produjimos el prome-
dio de las neuronas de cada segmento para cada individuo. Luego, procesamos previamente los
datos con el método de alineación de referencia y finalmente aplicamos el método RSA. Estos
primeros resultados nos mostraron que efectivamente existen patrones de recurrencia de estos re-
conocimientos olfativos. A continuación, haber segmentado los datos en subgrupos según las
coordenadas de las neuronas en el bulbo olfatorio nos permite comparar los centroides de estos
estados metaestables. Estos resultados se resumirán en mapas odotópicos que demuestran que las
mismas áreas del bulbo olfatorio se activan por la misma sustancia quı́mica. Además, también
demostraremos que para los diferentes tipos de sustancias quı́micas se utilizan las mismas áreas
para el reconocimiento pero en diferentes niveles de intensidad. Finalmente propondremos el
aprendizaje de un clasificador supervisado de estos centroides para demostrar que son significati-
vamente suficientes para discriminarlos.

En el Apéndice 8, proponemos el estudio de un circuito neuromórfico basado en el modelo de
Morris-Lecar. Un circuito neuromórfico es un tipo de circuito electrónico diseñado para reproducir
el funcionamiento de las redes neuronales en el cerebro humano, esto incluye la simulación de la
electrofisiologı́a neuronal, como la generación de potenciales de acción, transmisión sináptica y
otros procesos eléctricos y quı́micos vinculados a las neuronas. actividad. El interés de estudiar un
circuito neuromórfico de una sola neurona para esta tesis era tener un experimento modelado en el
que conozcamos las ecuaciones que guı́an el comportamiento del modelo. Lo que esperábamos era
poder aplicar nuestras metodologı́as desarrolladas durante la tesis en este circuito para calibrarlas,
pero también trabajar en la noción de experiencia en tiempo real, que era un nuevo desafı́o para
estos métodos. En la configuración de bucle abierto, el experimento funcionó bien; sin embargo,
con la configuración de bucle cerrado encontramos problemas que no se pudieron solucionar. Es
decir, retrasos entre la aplicación de la corriente dada al experimento y la lectura de la salida.

Por tanto, esta tesis demostró que el estudio de la excitabilidad neuronal mediante una com-
binación de enfoques matemáticos, computacionales y experimentales es crucial para comprender
el funcionamiento del sistema nervioso. Las matemáticas proporcionan el marco esencial para
modelar el complejo comportamiento de las neuronas, permitiéndonos generar representaciones
abstractas y predicciones cuantitativas que guı́an nuestros experimentos. La computación mejora
esta capacidad al proporcionarnos herramientas sofisticadas para simular y analizar modelos y
explorar conjuntos de datos. Los experimentos proporcionan datos valiosos y tangibles que fun-
damentan nuestra comprensión en la realidad biológica. La combinación de estos enfoques sigue
siendo un tema de investigación en curso, con nuevos resultados disponibles, que nos permitirán
contribuir a la comprensión de la actividad neuronal. El método CBCE es un ejemplo de con-
tribución como forma de cerrar la brecha entre modelos y experimentos, y revelar estados neu-
ronales inestables y su papel.

xii

Palabras clave
Neurociencia computacional, Matemáticas, Informática, Experimental, Excitabilidad neuronal,
Análisis de datos, Análisis de estructuras de recurrencia, Diagrama de bifurcación, Modelado.

xiii

Acknowledgments

I would like to thank Mathieu Desroches for having faith in me, for giving me the opportunity to
start a career in computational neuroscience during my Master’s programme, and for introducing
me to Serafim Rodrigues. I also thank Serafim Rodrigues for giving me the opportunity to join
his team at BCAM and for trusting me to develop the MCEN lab. Of course, I thank them for
supervising my thesis during these three years full of adventures. I would also like to thank Bruno
Delord, who gave me a new taste for mathematics and advised me to follow this path 7 years ago.

I would also like to thank all the collaborators I had throughout this thesis and who led to
successful projects: Peter beim Graben, Jan Sieber, Anton Chizhov, Joanna Danielewicz, Tobias
Ackels, Andreas Schaefer and Dmitry Amakhin.

I would also like to thank the Bambinos for supporting me for three years, Anne-Carmen
Sanchez for her help with certain aspects of data analysis, Rémi Calvin for his listening and his
time, Marı́a Gabriela Saldaña for her patience and affection, Marinela Dishkova for my well-being
in Bilbao, Park Jihyo for her smile and Jean-Philippe Roux for his ability to make people laugh in
all circumstances.

Merci. Thank you. Gracias.

xv

Contents

1 Introduction 1
1.1 General objectives . 1
1.2 Neuronal Excitability . 2

1.2.1 Biological background . 2
1.2.2 Mathematical background . 4
1.2.3 Integrator and resonator neurons . 6
1.2.4 Immature neurons . 8

1.3 Excitability in an experimental context . 9
1.3.1 Control Based Continuation in Experiments (CBCE) 9
1.3.2 Simulink: from equations to first simulated experiments 10
1.3.3 Patch-Clamp: application to neurons . 11
1.3.4 Recurrence Structure Analysis: A way to detect metastable states 11

1.4 Thesis organization . 13

2 From integrator to resonator neurons 17
2.1 Introduction . 17
2.2 Theoretical context . 19

2.2.1 Slow-fast dynamics . 19
2.2.2 Desingularized Reduced System . 21

2.3 Izhikevich’s INa/IK model. 23
2.3.1 Under constant external current . 23
2.3.2 Applying a slow sinusoidal external current 24

2.4 Integrator neuron with resonator behaviour . 29
2.4.1 The eigenvalue ratio of the DRS’s saddle equilibrium 29
2.4.2 Slow forcing with feedback from the voltage 29

2.5 A multiple-timescale scenario for the reverse switch: from resonator to integrator 31
2.6 Discussion . 32

3 Complex excitability and flipping of granule cells 35
3.1 Introduction . 35
3.2 Materials and methods . 36

3.2.1 Animals and treatment . 36
3.2.2 Preparation of brain slices . 36
3.2.3 Electrophysiology . 37
3.2.4 Statistical analysis . 38
3.2.5 Computational Modelling . 38

3.3 Results . 39
3.3.1 Intrinsic properties, firing pattern and depolarization block 39
3.3.2 Effect of extra channels . 40
3.3.3 “Flipping” cells . 41
3.3.4 “Flipping” in a computational model . 42
3.3.5 Bifurcation analysis of “flipping” . 43

3.4 Discussion . 44

xvi

4 Observing hidden neuronal states in experiments 51
4.1 Introduction . 51
4.2 Material and methods . 53

4.2.1 Animals and treatment . 53
4.2.2 Electrophysiology . 53
4.2.3 Equations and parameters for the simulations of the Morris-Lecar model . 53

4.3 Results . 54
4.4 Analysis . 56
4.5 Discussion . 59

5 Control Based Continuation in Experiments (CBCE) 61
5.1 Introduction . 61
5.2 Theoretical context . 62

5.2.1 Newton’s method . 63
5.2.2 Broyden’s method . 63
5.2.3 Spectral decomposition by normalized Fourier series 64

5.3 Algorithmes and simulated experiments . 65
5.3.1 Modified FitzHugh Nagumo model . 65
5.3.2 CBCE algorithm for the stationary case 69
5.3.3 Broyden’s Jacobian matrix calculation variant 69
5.3.4 Secant direction update variant . 71
5.3.5 Trust region and multiple trials . 72
5.3.6 Periodic solution case . 72
5.3.7 CBCE algorithm for the periodic case 75

5.4 Results . 76
5.5 Discussion and conclusion . 82

6 Metastable odotopic representations in mice olfactory bulb 83
6.1 Introduction . 83
6.2 Material and methods . 85

6.2.1 Experimental context and data pre-processing 85
6.2.2 Optimal Recurrence Analysis . 88
6.2.3 Classifiers . 91

6.3 Results . 92
6.4 Discussion . 97
6.5 Conclusion . 98

7 General Discussion 101

8 Appendix: Morris-Lecar analog circuit dynamical study 103
8.1 Introduction . 103
8.2 Material and methods . 103

8.2.1 The Morris-Lecar neuromorphic circuit 103
8.2.2 Additional informations on the setup . 105
8.2.3 Studying the circuit dynamic . 105

8.3 Results . 107
8.3.1 Dynamical behavior . 107
8.3.2 Sensitivity analysis . 110
8.3.3 Attempt to apply our methods . 110

8.4 Discussion and conclusion . 112

xvii

9 Appendix: Code scripts 115
9.1 Chapter 2: Integrator and resonator neurons . 115
9.2 Chapter 3: Immature neuron excitability . 116
9.3 Chapter 4: Rudimentary continuation . 120
9.4 Chapter 5: Continuation Based on Controled Experiments 121

9.4.1 Part 1: Fixed point case . 121
9.4.2 Part 2: Periodic case . 136

9.5 Chapter 6: Recurrence Structure Analysis . 145
9.5.1 Part 1: Reading the data, applying the K-means method, and applying the

baseline alignment method. 145
9.5.2 Part 2: Creating the centroid heatmaps for one odor and for all subjects. . 158
9.5.3 Part 3: Creating the centroid heatmaps for reach odor type. 161

Bibliography 181

xix

Acronyms

AP Action potential. 2

CBCE Control-based continuation in experiments. 9

CC Current clamp. 52

DRS Desingularized Reduced System. 22

FHN FitzHugh-Nagumo model. 3

GSPT Geometric singular perturbation theory. 32

HB Hopf bifurcation point. 6

HH Hodgkin-Huxley model. 3

KNN K-Nearest Neighbour. 91

LP Limit point (or saddle-node) bifurcation. 67

ML Morris-Lecar model. 3

MMO Mixed-mode oscillations. 33

RP Recurrence plot. 12

RSA Recurrence Structure Analysis. 12

SGD Stochastic Gradient Descent. 91

SMOTE Synthetic Minority Over-sampling Technique. 91

SNIC Saddle-node on invariant circle. 5

SVM Support Vector Machine. 91

VC Voltage clamp. 52

1

Chapter 1

Introduction

1.1 General objectives

First of all, we propose to describe what the main objectives of the thesis will be, and an overview
of what will be presented. As the title of the thesis indicates, we will therefore focus on studying
neuronal excitability through different methods from the mathematical, computational and exper-
imental fields. The keystone of this work will be to combine these three fields, when possible, in
order to obtain a more complete understanding of neuronal excitability. All the concepts named in
this section will be described in the following sections.

Some chapters will be based on mathematical methods, such as the slow-fast dynamical sys-
tems theory [26–28], in order to study, understand or modify the excitability of neurons, and in
fine, to produce experimental protocols applicable to real neurons. It will therefore be essential to
pay attention to the limits of what is possible to apply through experimental setups. In Chapter 2,
we will propose to study models of integrator or resonator neurons [29–31], and the possibility of
changing the behavior of one type of neuron to obtain the behavior of the second type, without
changing its mathematical characteristics; and this using an experimentally applicable protocol.

In Chapter 3, we will study the transient behavior of a granule neuron which passes from the
immature stage to the mature stage. This behavior obtained through an experimental protocol
designed by collaborators will be the subject of the construction of a model which simulates this
same protocol. This project will therefore have the main objective of studying the excitability
portrait of a maturing dendate gyrus neuron through a model established for this occasion.

Other chapters will be based on both the computational and experimental aspects of the thesis:
in fact, beyond simulating mathematical models, we will also contribute in (Chapters 4 and 5)
bridging the gap between dynamical models and real neuronal recording. Indeed, mathematical
models can often be considered as simple examples of neural mechanisms and behaviors. We will
therefore seek to go further, by adapting a methodology used in the field of differential equations
to real experiments in order to obtain one-parameter experimental bifurcation diagrams [17, 18].
These kinds of representation will allow us to observe the excitability threshold of the neuron, the
spiking regions, but also the unstable states of a neuron.

From a computational perspective, Chapter 6 will be about analyzing data from the olfactory
bulb of mice that are stimulated with chemicals. Indeed, the notion of neuronal excitability can
be studied through experimental data in order to understand in more detail the neuronal activation
patterns, or the regions of interest in the assimilation of a stimulus. This chapter therefore aims to
study neuronal excitability through data analytical methods.

Still with the aim of bridging the gap between dynamical models, and real neuronal recording,
in Appendix A, we showcase the work that we have been carried out on a neuromorphic circuit:
an electronic circuit designed to reproduce the behavior of a neuron model. This includes the
generation of action potentials, or even synaptic transmission. The interest of such a chapter was
therefore to study a “controlled” experiment in order to apply the methodologies developed during
the thesis. However, difficulties were encountered during the development of the project, but as
this work is in the same direction as the thesis, we have decided to include it as an appendix. The

2 Chapter 1. Introduction

importance of studying this type of experiment, and the limitations encountered during the thesis
are also discussed in the appendix.

In summary, the main objectives of the whole thesis are to: 1) bring together different fields of
research with the aim of studying neuronal excitability, 2) to bridge the gap between mathematics
and the experimental world, via the computational aspect, in order to use differential equation
models and associated methodologies as tools for studying neuron recordings, 3) to show the
diversity of possible approaches to studying the notion of neuronal excitability.

In the following section, the different concepts, methods and experimental protocols will be
described in detail in order to give the reader a better understanding. Then, a detailed roadmap for
the organization of the thesis will be proposed.

1.2 Neuronal Excitability

1.2.1 Biological background

Neuronal excitability refers to the ability of neurons to generate electrical signals, called action
potentials (AP), in response to stimuli. Neurons are excitable cells, which can respond to a variety
of stimuli, including chemical or electrical signals from other cells, changes in ionic concentration
in their environment, or mechanical stimuli such as pressure.

When a neuron is stimulated, an imbalance sets in between sodium (Na+) and potassium (K+)
ions and it can reach a excitability threshold that triggers the generation of an AP. An AP is an
electrical signal that travels down the neuron’s axon and can trigger the release of neurotransmit-
ters from the neuron’s synaptic terminals. These neurotransmitters can then excite or inhibit other
neurons with which the original neuron is connected. This phenomenon is therefore of capital im-
portance in the transmission of information. Moreover, the principle of “none or all” suggests that
the transmission of information between two neurons occurs in a binary manner, which means that
either the signal is transmitted entirely or it is not transmitted at all. Thus, the idea is that as long as
the necessary excitability threshold is not reached, there will be no response from the postsynaptic
neuron. A small amount of neurotransmitters will not cause a partial response from the neuron,
but it will take a large enough amount to trigger a full response. This ensures that information is
transmitted reliably and accurately, which is essential for the functioning of the nervous system.
(See Fig. 1.1)

Figure 1.1: “All or none” effect: (A) The stimulation bring the membrane potential below
the excitability threshold, then the neuron returns to the resting state. (B) The excitability
threshold is reached and an AP is therefore generated.

Neuronal excitability can be modulated by a variety of factors, including neurotransmitters,
hormones, changes in ion concentration in the environment of the neuron, and the presence or

1.2. Neuronal Excitability 3

absence of inhibitory stimuli. Variations in neuronal excitability are essential for normal brain
and nervous system function, and may be implicated in a variety of neurological and psychiatric
disorders. The study of neuronal excitability is hence important to understand the functioning of
the brain and how neurons communicate with each other and how neural circuits are formed and
modified in response to environmental stimuli.

There are various single neuron models that allow us to study this notion of excitability thresh-
old: for instance, the Integrate-and-Fire model (also called leaky integrate-and-fire), is one of the
simplest models for describing the electrical behavior of neuron [32]. It was first investigated in
1907 by Louis Lapicque and makes it possible to study in particular the capacity of a neuron to in-
tegrate and transmit electrical signals. However, it is only a phenomelogical model and it does not
take into account some more complex aspects of neuronal biology, such as specific ion channels,
details of AP propagation.

In the 1940s and 1950s, Alan Lloyd Hodgkin and Andrew Huxley developed a mathematical
model (HH) of the AP in neurons [1] (which earned them a Nobel Prize in 1962) based on experi-
ments about initiation and propagation of action potentials in the squid giant axon. The HH model
describe so the mechanims underlying the propagation of AP along the axon of a neuron [2, 3], by
using differential equations. Thanks to their experiments and model, they also unraveled the key
role of Na+ and K+ channels in the AP generation and signal propagation. Hence, the HH model
was a major turning point in the mathematical study of neuronal excitability because it allowed
scientists to accurately predict the characteristics of APs and understand how different types of
ion channels contribute generation and propagation of APs.

The FitzHugh-Nagumo model (FHN) is a system of two ordinary differential equations that
has played a fundamental role in the mathematical modeling of the electrical activity of neurons
and in understanding the mechanisms underlying neuronal APs [4, 5]. This approach, developed
independently by two researchers, Richard FitzHugh in 1961 and Jinichi Nagumo in 1962, offers
a simplification of the HH model described previously, and of the complex behavior of neurons
while preserving the essential characteristics of their dynamics.

In 1981, the Morris-Lecar model (ML) was developed by Catherine Morris and Harold Lecar [6].
It is a mathematical model of the electrical activity of neurons. This model is based on the HH
model follows the same formalism and so the movements of ions across the membrane. This
model was developed to describe the electrical activity of cuttlefish stomach gland cells, but it has
since been used to study the electrical activity of other types of neurons. Due to its reduced di-
mension (2D), it is a relatively simple model compared to other more complex models, such as the
Hodgkin-Huxley model, which makes it easier to understand and implement. The model has been
used to study many aspects of neuron electrical activity, such as regulation of neuronal excitability,
electrophysiological properties of ion channels, synaptic plasticity, and neuronal oscillations.

As part of this thesis, we will use some of these models which we will describe in more depth
in each of the associated chapters.

When we study a mathematical model like those described above, the rest state of the neuron
actually corresponds to a stable state, from which we deviate by disturbing the stability of the
model. Thus, like what we have seen on the notion of all-or-none, a weak disturbance, through the
current imposed on the neuron which does not allow the excitability threshold to be reached, will
return the steady state solution. Once the threshold has been passed, then we obtain an AP.

Alan Lloyd Hodgkin also defined three classes of neurons distinguished by their frequency-
current (f–I) curves [33]. This classification is so based on the dynamics of the APs of neurons
modeled using differential equations:

1) The type I neurons are characterized by an appearance of APs at a low frequency, depend-
ing on the strength of the applied current

2) The type II neurons are characterized by an appearance of APs at a certain frequency that
is relatively insensitive to changes in the strength of the applied current.

4 Chapter 1. Introduction

3) The type III neurons are the neurons which can have only one spike, then return to resting
state, no matter what the input is.

Figure 1.2: Frequency-current (F-I) relations of (A) an class 1 neuron (cortical pyramidal
neuron) and (B) a class 2 neuron (brainstem mesV neuron). (Adapted from [34], Fig. 1.14)

Thus, the different classes of neuronal excitability refer to the different ways in which neurons
respond to electrical or chemical stimuli. By studying these different classes of neuronal excitabil-
ity, one can better understand the underlying mechanisms that regulate neuronal activity. This may
have important implications for the treatment of certain neurological diseases, such as epilepsy,
where abnormal regulation of neuronal excitability can lead to seizures, but most importantly it
helps us understand how neurons work and how they communicate. In this thesis, we will focus
on the first two classes of excitability.

1.2.2 Mathematical background

The previous section decribes the fact that a neuron has different regimes (resting state, spiking
regime) and that there are therefore transitions between these regimes, which, in the underlying
mathematical models, correspond to bifurcations [16]. Bifurcation is a key concept in mathemat-
ics which aims to understand how dynamical systems respond to changes in parameters and how
qualitative transitions in their behavior occur when these parameters vary. This theory focuses
on identifying critical points, called bifurcations, where the behavior of the system undergoes a
fundamental transition. These bifurcations can result in changes in the trajectories, attractors, pe-
riods, or other characteristics of the system. Curves of attractors and repellors, whether stationary
or periodic, separated by bifurcation points and represented in a same plane, form one-parameter
bifurcation diagrams.

Calculating bifurcation diagram analytically may be quite challenging: the most basic method
to obtain them is called the brute-force approach and consists in simulating the system for long
enough so as to exhaust the transient dynamics and reach a small-enough vicinity of an attractor. It
can be a stationary attractor (equilibrium), a periodic attractor (limit cycle), either simple or more
complicated (e.g., period-doubled, period-quadrupled cycles, etc.), or even chaotic attractors. The
main drawback is that it does not give access to bifurcation points, nor to unstable branches.
However, it can be used to identify the presence of chaotic attractors and understand the route to
chaos in parameter space.

Fortunately, there are robust numerical algorithms to compute such objects, namely numerical
continuation methods. One of these important methods is called natural parameter continuation
(also called naive continuation) [35]: this is a predictor-corrector algorithm used to compute the
solution set of a (possibly multi-dimensional) algebraic equation which is “under-determined”
(that is, with one more unknown than equation) and hence admits a one-parameter family of
solutions. Starting from a point on the branch one seeks to compute, the algorithm allows to
find subsequent points by using a prediction, which perturbs the parameter and the initial guess
away from the previous point; and then, a correction which allows to converge the predicted new

1.2. Neuronal Excitability 5

point iteratively back to the correct branch by using a root-finding method, for instance, Newton’s
method [36]. Naive continuation makes a very simple prediction where only the parameter is per-
turbed. Nevertheless, this method has a limit: the Newton corrector fail when the jacobian matrix
is singular. This phenomena happen when the determinant of this matrix is equal to zero, so when
we have a fold bifurcation type.

The most successful method is the one called Pseudo-arclength continuation designed by Her-
bert Keller [35, 37]. The main idea of this method is to reparametrise the solution curve by the
arclength, instead of having it parametrised by the main bifurcation parameter. Using this idea,
one can go past fold points and compute both stable and unstable branches. This method is the
one that we will use throughout the thesis when we study the bifurcation diagrams of ODE neuron
models. Most of the time we will use the software XPPAUT 1, which incorporates a module con-
taining the pseudo-arclength continuation package AUTO, implemented by Eusebius J. Doedel.
Doedel [38, 39].

Figure 1.3: Pseudo-arclength continuation process: (A) Choose a starting point on the
bifurcation curve that you wish to follow for a parameter value λ0, with the aim of de-
termining the next point (λ1, u1). (B) Evaluate the derivatives of the equations at u0 with
respect to the control parameter and construct a Jacobian matrix and choose a step value
∆s, usually called a ”pseudo-arclength step”, which will determine the step length along
the bifurcation curve. Calculate the pseudo-arclength vector (u̇0, λ̇0) by multiplying the
tangent vector by the pseudo-arclength step, then update the control parameter by adding
the pseudo-arclength step to the current control parameter. (C) Re-evaluate the continu-
ity equations using the new control parameter. (D) Use a numerical method, such as the
Newton-Raphson method, to solve the updated continuity equations and find the new solu-
tion u1 of the system. If the solution converges, use it as the point on the bifurcation curve.
Repeat the steps until you reach a desired point on the bifurcation curve or decide to stop.
(Adapted from [40], slide 48)

Bifurcations allow to obtain a theoretical parallel to Hodgkin’s excitability classification (as
described in section 1.2.1): in fact, the characteristics of classes 1 and 2 are obtained in the models
from the bifurcation structure which passes from the steady state at the periodic regime when the
current is varied [34]. Thus, we can characterize the bifurcation diagram of the classes of neurons
as follows:

1) The class I neurons bifurcation diagrams are characterized by the presence of a saddle-
node on invariant circle (SNIC). Before the bifurcation, the system has two stationary points, a

1Available at https://sites.pitt.edu/ phase/bard/bardware/xpp/xpp.htmll

https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.htmll

6 Chapter 1. Introduction

node point (stable) and a saddle point (unstable). At the bifurcation, the two points merge into
a saddle-node point, and an invariant circle appear, hence the name SNIC. This SNIC point is a
homoclinic connexion which dissapear, after the bifurcation, to give way to the periodic regime
(See Fig. 1.4.A).

2) The class II neurons bifurcation diagrams are characterized by the presence of a Hopf
bifurcation (HB). There are two types of Hopf point: supercritical bifurcation and subcritical. In
the supercritical case, before the bifurcation, we have a stable stationary point. At the bifurcation,
a stable periodic point branch is born, and the stability of the stationary point changes to become
unstable (See Fig. 1.4.B). In the subcritical case, an unstable stationary point becomes stable at
the bifurcation, and the periodic branch which is born is unstable.

3) The class III neurons bifurcation diagrams do not have any particular bifurcation point.

Figure 1.4: Example of bifurcation diagram for (A) a class 1 excitability neuron (Izhike-
vitch’s INa/IK model [34]), (B) and a class 2 excitability neuron (FHN model [4]). Red
(resp. black) segments of the S-shaped curve of equilibria denote stable (resp. unstable)
branches. For the example (A), as the applied current I is increased, oscillations (spikes)
appear through a SNIC bifurcation (red dot) and then disappear through a supercritical
Hopf bifurcation (blue dot). In the case of (B), as the applied current Iapplied is increased,
oscillations (spikes) appear through a first subcritical Hopf bifurcation and then disappear
through a second subcritical Hopf bifurcation (blue dots).

Moreover, as evident on Fig. 1.1, a spike is a very nonlinear oscillation, with a fast component
(sharp rise and decay of the membrane potential) and a slow component (subthreshold dynamics
near the resting state). In models of AP generation, this is closely related to the presence of
multiple timescales. In Fig. 1.5, this phenomena is illustrated throught an example: we impose on
a class 1 neuron model a slow ramp of current in order to observe the different model regimes,
and we overlay the solution on the model bifurcation diagram. Indeed one can observe in Fig. 1.5
the transitions between the regimes (1), (2) and (3). The action potentials occuring in (2) are fast
events due to the periodic orbits. Being in the resting state (1) or imposing a too high-level of
current until saturation (3) give a slow solution evolving near the critical manifold.

The evolution of membrane potentiel is generally faster than that of variables related to ionic
channels. Therefore, one usually studies such models using slow-fast dynamical systems theory.
This difference in speed between the two phenomena is important and can be highlighted with a
methodology called slow-fast dynamics. This allows us to study separately slow and fast compo-
nents of the system, and will be described more fully in the chapter 2.

1.2.3 Integrator and resonator neurons

Excitable systems can be also classified according to the existence of sub-threshold oscillations.
This feature divides all systems into two types of neurons: integrator or resonator. Integrator
neurons are defined by: a) an ability to excite under high frequency pulses, b) the existence of a
precise threshold, and c) the fact that they do not have a sub-threshold oscillation. According to
Hodgkin’s excitability classification, they are therefore class I excitability neurons (which means

1.2. Neuronal Excitability 7

Figure 1.5: Example of bifurcation diagram for a class 1 excitability neuron (Izhikevitch’s
INa/IK model [34]), overlaid with a trajectory coming from a slow current ramp, such as:

˙Iapplied = ε where 0 < ε ≤ 1. (1) The solution follows slowly the critical manifold stable
part, (2) then at the SNIC bifurcation, the solution jumps quickly to the periodic regime,
and (3) return to a slow regime after the Hopf bifurcation (HB) because of the saturation.

that their frequency tends to 0 during the transition between the stationary and periodic regime).
On the contrary, resonator are neurons that: a) respond only to pulses in well-defined frequency
intervals, b) do not have a specific threshold, and c) have sub-threshold oscillations. They therefore
belong to class II (which means that their frequency does not tend towards 0 during the transition
between the steady and periodic regime). In a physiological framework, neurons behave either as
integrators or as resonators, and not at the same time.

Figure 1.6: Responses sketch of (A) integrators and (B) resonators to input pulses having
regular inter-pulse periods. (Adapted from [34], Fig. 7.18)

In Fig. 1.6 (A), the integrator neuron is integrating the signal and going back to the resting
state without doing sub-threshold oscillation. On another hand, the resonator neuron (Fig. 1.6 (B))
is also integrating the message, but the potential is oscillating during the transition between the
periodic regime and the resting state.

Examples of integrating neurons that can be found in vivo include pyramidal neurons in the
cerebral cortex, which integrate sensory and motor information to generate movements; Purkinje

8 Chapter 1. Introduction

neurons in the cerebellum, which integrate sensory information to coordinate fine motor skills;
spinal ganglion neurons, which integrate sensory information to control spinal cord reflexes. It is
also possible to do the same with resonant-type neurons: the neurons of the cochlear nucleus in
the inner ear, which resonate at specific frequencies to help with auditory perception; the neurons
of the retina, which resonate at specific frequencies to help detect contours and movements in the
visual environment, or neurons in the brain that are involved in memory and cognition, which can
resonate at specific frequencies to aid in memory consolidation and thinking.

In the scientific litterature, one can find examples of neurons which are switching from inte-
grator to resonator behavior, but through different methods. In in vitro experiments, it is currently
possible to make an integrator-type neuron behave like a resonator neuron by means of pharma-
cological intervention. Indeed, the notion of behavioural switch between integrator and resonator
neuron has long been described in the experimental and computational neuroscience literature,
however using different approaches. At the experimental level, the environment of the neuron
can be controlled in order to obtain this change of excitable behaviour. In particular, this has
been achieved pharmacologically, to control the opening of ion channels [31, 41], by current in-
jection [42], using an electric field [43] or even by means of an excitation laser in neuromorphic
experiment [44].

In mathematical and computational studies, these methods have also been demonstrated as
viable [31, 41, 43–47], together with other approaches: to name a few, by adding terms taking into
account new neuronal structures [48, 49], by varying some of the model’s parameters [50, 51],
or by varying the input forcing frequency [42, 52]. However, all these methods have in common
that they result in changes of the system’s bifurcation structure in order to allow this transition
from integrator to resonator behaviour. In the present case, we want to keep the same bifurcation
structure, that is, a SNIC bifurcation associated with integrator-type behaviour, and act differently
upon the system so that it can be made to display the characteristic subthreshold oscillations of a
resonator.

In chapter 2, we will demonstrate mathematically that an integrator neuron can have the be-
havior of a resonator neuron once periodically forced in an adequate way, and therefore to have
subthreshold oscillations. To do this, we will study the INa/IK biophysical model, proposed by E.
Izhikevich, in the integrator regime, and apply to it a slow oscillating current, which amounts to
adding two slow variables. This addition of two slow variables transforms the initial model into
a parabolic bursting model, and it is known that this type of model possesses a “folded-saddle”
singularity, then we adjust the forcing in order to make small subthreshold oscillations near this
folded singularity, an effect recently unveiled [53]. Effectively, this means that the forced neuron
now behaves like a resonator.

1.2.4 Immature neurons

An immature neuron is a neuron that has not yet achieved the differentiation into a mature form.
During neuronal development, immature neurons undergo many transformations to reach their
mature state. For example, they must make synaptic connections with other neurons to form
functional neural networks, and they must also develop dendrites and axons to facilitate the trans-
mission of electrical and chemical signals. Immature neurons play an important role in shaping
the developing brain, as they have the ability to divide and differentiate into different types of
specialized neurons. This process is called neurogenesis, and it is crucial for the formation of
functional neural circuits. However, certain types of immature neurons may also be present in
adults, such as neural stem cells in certain regions of the brain. These cells have the ability to
divide and differentiate into different types of neurons and glial cells, which can help repair brain
damage or regenerate damaged tissue.

1.3. Excitability in an experimental context 9

The excitability of these neurons can vary depending on their stage of development and their
location in the brain. In general, they have higher excitability than mature neurons due to the pres-
ence of immature ion channels in their cell membrane. These immature ion channels may allow
increased sodium entry into immature neurons, making their membrane potential more positive
and facilitating the generation of AP, the electrical impulses used to transmit information through
the nervous system. Over time, immature neurons undergo morphological and functional changes
to reach their mature state. Mature ion channels replace immature channels, reducing sodium
entry and increasing the efficiency of neural circuits.

In chapter 3, we will focus on the granule cells present in the dendate gyrus and more precisely
on a particular behavior which has been highlighted by colleagues: in fact, during the development
of these immature granule cells, the neurons seem to spike for imposed current ranges for which
mature neurons will just be saturated. Work on this discovery will therefore focus on the develop-
ment of a biophysical model reproducing the same phenomenon, and the study of the bifurcation
diagrams of this model.

1.3 Excitability in an experimental context

1.3.1 Control Based Continuation in Experiments (CBCE)

As part of this thesis, we want to apply the continuation method in the context of experiments,
which means that we do not have access to the equations, but only to the outputs of the experi-
ment, namely, patch-clamp electrophysiological recording of neurons. Our approach is motivated
by previous work that succeeded in computing bifurcation diagram from noisy experiment, how-
ever solely for mechanical experiments [54]. Hence, we aim to adapt this approach to excitable
systems, in particular in the present context, neurons.

The use of such methods to obtain a bifurcation diagram is very useful in the field of math-
ematical models in order to understand the dynamics of a system from the value of a parameter
studied. This representation is therefore very important in order to study the transitions between
the different regimes (resting state or spikes), but also in order to observe the model excitability
threshold. Applying such a method to an experiment would therefore allow us to understand how
the behavior of a neuron, whose we do not know underlying dynamics, evolves when we impose
a different level of current on it, or even to see its excitability threshold. We now propose to
summarize the different methods already existing on this topic.

In [54], they study the motion of a forced pendulum which is described by a nonlinear dif-
ferential equation, which is difficult to solve analytically. They studied how the solutions of the
simple pendulum vary as a function of the forcing amplitude p and they produced bifurcation
diagrams (See Fig. 1.7). Moreover, this method is robust against noise which is positive since
experiments with neurons are very noisy.

The continuation method applied to the forced pendulum experiment in [54] is based on
feedback-control theory. Control theory refers to the idea that systems can be regulated and kept in
balance by feedback mechanisms that adjust internal processes in response to an external signal. In
a closed-loop system, there is continuous feedback between the output and the input, which allows
the control to be adjusted according to system variations. In the chapter 4 and 5, we will explore
different strategies to control an experiment (neuron or mathematical model) in such a way that
we can apply the continuation process only based on the experiment output. This method is called
Control Based Continuation in Experiments (CBCE). As we saw in the previous section 1.2.2,
the pseudo-arclength continuation implies that we have access to the differential equations of the
model. When we work with experiments, it is of course impossible to access to this kind of in-
formation, and so numerical continuation methods cannot be used. We will present in this thesis
two continuation methods, based on closed-loop control theories, which can be applied on exper-
iments.

10 Chapter 1. Introduction

Figure 1.7: Experimental bifurcation diagrams for 2, 3, 4, and 5 Hz, respectively. The
variable θ̃ is the periodic reference signal, and p is the forcing amplitude. They are showing
measured rotations (small circles: hollow for saddle rotations, full for stable rotations) and
estimated fold points (large full circles). (Adapted from [54], Fig. 2)

1.3.2 Simulink: from equations to first simulated experiments

Simulink is a graphical simulation and modeling software developed by MathWorks. It is used
in many fields of engineering, including computational neuroscience, to simulate and analyze
dynamical systems. Simulink’s real-time operation enables simulation of real-time systems by
using real-time algorithms to control simulation processes. This allows systems and controllers to
be tested in a virtual environment before implementing them in the real world. Benefits of using
Simulink include the ability to easily visualize systems, add and edit blocks to refine models,
debug models in real time, and work with easy-to-use graphical design tools.

Figure 1.8: Screenshot of the Simulink interface: in the center of the image, we can see the
FHN model modeled in the form of a circuit. Each component corresponds to an operation
or term of the model. In the upper right corner, the scope gives the dynamics of the circuit
in real time, which makes it possible to follow the behavior of the model.

The main advantage of this Matlab toolbox is the fact that we know exactly the equations that

1.3. Excitability in an experimental context 11

govern the dynamics of the experiment, but also the dynamics themselves, which gives us points
of reference for testing the CBCE algorithm that we wish to implement. In addition, it is possible
to disable/enable the noise, which gives us even more control over the experience. This step is
therefore an interesting testbed for CBCE.

In computational neuroscience, Simulink is used to model neural systems, in particular to
study the dynamics of neural networks and to understand information processing processes in the
brain. Applications of Simulink in computational neuroscience include modeling vision, modeling
synaptic plasticity, simulating auditory perception, and studying the interactions between different
levels of information processing in the brain.

1.3.3 Patch-Clamp: application to neurons

Modern electrophysiology has emerged through the pioneering work of a few key scientists.
George Marmont, who designed the space clamp protocol [55]; Kenneth Cole, who with Marmont
and others, adapted the previous protocol to the voltage clamp [56]. And, at the same time and
in close contact with Marmont and Cole, Alan Hodgkin, Andrew Huxley and Bernard Katz, who
exploited the voltage clamp to measure conductances [1–3]. Hodgkin and Huxley were awarded
the Nobel Prize (1963 Nobel Prize in Physiology or Medicine) in part for these voltage-clamp
measurements. Much later on, in the early 1980s, the modern patch-clamp technique was in-
vented [57, 58], for which Neher and Sackmann were awarded the Nobel Prize (1991 Nobel Prize
in Physiology or Medicine).

An even more recent and more advanced electrophysiology protocol, namely dynamic clamp,
was invented in the early 1990s [59, 60] and it allows a two-way real-time communication be-
tween the experimental neuron and a computer simulation. For instance, it allows to replace a
pharmacologically blocked ion channel by a computer simulation of it and study the response of
the controlled cell to variations of all parameters of this model, hence validating the model and
exploring the space of cellular responses. This technique has become very popular in electrophys-
iology labs worldwide and it can be used to bring experiments on neurons closer to their mathe-
matical and computational description; see e.g. [61–63]. For instance, in [64] it was used to build
directly from controlled neural experiments phase diagrams, namely a set of states characterising
a large number of possible excitable states of the neuron. These bring unique information about
how neurons adapt to variations of external of internal inputs (e.g. conductances, concentrations).

Specifically, patch-clamp is a technique used to study the properties of ion channels in living
cells. The technique consists of using a glass micro-pipette filled with an ionic solution of defined
composition to establish electrical continuity with the membrane of an isolated living cell. The
technique can be used to study excitable cells such as neurons and muscle cells as well as non-
excitable cells which also have ion channels on their surface. The patch-clamp technique can be
used in clamped voltage mode (voltage-clamp), which makes it possible to measure the membrane
current at a potential determined by the experimenter, or in clamped current mode (current-clamp),
making it possible to to inject charges while measuring the membrane potential.

1.3.4 Recurrence Structure Analysis: A way to detect metastable states

In the final chapter of this thesis, we will focus on a set of data from mice who have been pre-
sented with different types of chemicals and whose olfactory bulb activity is monitored using
calcium imaging. The main aim is to determine whether certain groups of neurons are more active
than others in recognising an odour type in different individuals: to do this, a pipeline was devel-
oped to map the olfactory bulbs of the three subjects, which allowed the neurons to be compared.
A method was then used that combined several data processing techniques: first, the K-means
method was used to group the data from each mouse into regions of interest (also called clus-
ters) [65–67]. This allowed the identification of populations of neurons that were more active in

12 Chapter 1. Introduction

Figure 1.9: (A) Experimental setup with brain slice (1), patch pipette (2), reference elec-
trode (Ag-AgCl pellet) connected to ground (3), amplifier ((5), Multi-clamp 700B) with
CV-7B headstage (4), AD-converter ((6), National Instruments NI USB-6343) and stan-
dard PC computer (7). (B) Sketch of the Patch-clamp main steps: the neuron is fixed to a
solid support and a glass micropipette electrode is used for the recording. Then, various
recording configuration are possible: (8) the micropipette is placed on the cell, and it as-
pires this surface for the records, (9) the micropipette is recording only an excised patch
of the neuron; depending of the sense of the patch, the method is called ”outside-out” or
”inside-out”, (10) the cell is open to the environment of the micropipette for the records.

response to certain chemicals. A data processing technique was then used to reduce the noise in
the recordings [68].

The Recurrence Structure Analysis (RSA) method [22–25, 69, 70] was then used to generate
diagrams, called recurrence plots (RP), showing when a phase space trajectory visits roughly the
same region in the phase space. Recurrence is a fundamental property of many dynamical systems
(i.e. systems that evolve in time), which was first formulated by Poincaré [20] and is ubiquitous
of various processes in nature and biological systems. A system may strongly diverge, but after
some time it recurs infinitely many times as close as one wishes to its initial state. In other words,
certain regions of state space (of the associated system) are frequently visited in the course of
time. A visualisation of this recurrence was first introduced by Eckmann et al. [21] and different
measures can be used to study the properties of the system. However, a fundamental threshold
parameter, ε , is used to identify and determine the level of observation of the recurrence. To
provide an optimal observation, it is possible to optimize the value of ε , which allows to more
precisely dissect the transient and metastable states (i.e. dynamical quasi-invariant states) of a
system [22–25]. The applicability to brain dynamics has been demonstrated. [24]. Specifically,
the RSA method identifies an optimal condition (utility function parameterised by ε) based upon
a stochastic matrix. The utility function is constructed by the trace of the stochastic matrix and
the entropy of the columns and rows of the matrix, and finally it is maximised by an optimisation
method, which determines the optimal ε . This then enables to unveil the recurrent states (given as
transient quasi-invariant states or metastable states) of a given system.

The metastable states are understood as saddle attractors (i.e., attractors with one stable mani-
fold from which system’s trajectories approach the attractor and one unstable manifold via which
system’s trajectories are repelled) in the phase space of a system. For example in our present
case, then the phase space is the combined the tufted cell activity, which is high-dimensional, and

1.4. Thesis organization 13

Figure 1.10: RSA illustrating sketch: (A) Representation of a trajectory in some phase
space, where balls represent the discrete times at which the signal is measured. Near
the saddle metastable states, the balls are overlapping due to the slowing down of the
trajectory: these overlapping balls are the metastable states. (B) Representation of the
same concept but with a noisy signal. Here, two metastable states are also founded.

of which we have reduced the dimensionality with the K-means method. The determination of
saddle attractor is possible because the trajectory slows down in the vicinity of a saddle, and this
will be reflected by longer time scales in the recurrence domains. This idea is shown in the sketch
Fig. 1.10 (A), which depicts a curve as a system’s trajectory in some phase space and the balls rep-
resent the discrete times at which the signal is measured. Note that these balls will overlap close to
the saddle attractor due to slowing down of the trajectories. Subsequently, a colouring scheme (i.e.
symbols which are then associated with the symbolic dynamics) are used to distinguish between
the transient states and saddles. The blue balls are the transient states, while the two identified
saddles are orange and green, respectively, in this case (i.e. in this cartoon we have two identified
saddles). In Fig. 1.10 (B) we represent the same idea of a noisy trajectory which recurs between
two metastable states. Once the transient and metastable states are identified, then the associated
Markov model can be constructed to explain an experimental observation [24].

1.4 Thesis organization

In Chapter 2, we propose a new strategy to obtain an excitability switch in a neuron model, based
upon the presence of multiple timescales in this model. We illustrate our approach with the so-
called INa/IK model by E.M. Izhikevich, studied under the effect of a slow sinusoidal external
current. This creates a slow-fast structure characterized by the presence in phase space of a special
point called folded-saddle singularity. Using recent results on geometric singular perturbation
theory related to folded saddles, we modify the slow forcing in order to obtain algebraic conditions
on the folded saddle which are known to create small-amplitude oscillations in trajectories flowing
past it in phase space. In the neuronal context, we show that these small-amplitude oscillations are
subthreshold and hence endow the integrator model with the characteristics of a resonator. This
effect is not dependent upon the choice of type-I model, it only requires the associated bifurcation
structure (SNIC) of a type-I model. We also show a scenario for the reverse switch, from resonator
to integrator, again based on multiple-timescale dynamics but this time reliant upon a folded-node
singularity. Folded nodes are known to be associated with small-amplitude oscillations which, in
the neuronal context, are subthreshold.

Chapter 3 was concerned with the analysis of neuronal data obtained from patch-clamp record-
ings of immature Granule cells (GC) during their development. The excitability of these neurons
can vary depending on their stage of development and their location in the brain. In general, they
have higher excitability than mature neurons due to the presence of immature ion channels in their
cell membrane. These immature ion channels may allow increased sodium entry into immature
neurons, making their membrane potential more positive and facilitating the generation of AP, the

14 Chapter 1. Introduction

electrical impulses used to transmit information through the nervous system. Over time, imma-
ture neurons undergo morphological and functional changes to reach their mature state. Mature
ion channels replace immature channels, reducing sodium entry and increasing the efficiency of
neural circuits.

In Chapters 4 and 5, we focused on obtaining bifurcation diagrams from noisy experiments
and numerical continuation methods [17, 18]. Based upon closed-loop feedback control, with an
embedded rootfinder algorithm (e.g. Newton’s method), the Control Based Continuation on Ex-
periments (CBCE) method allows to overcome the fact that we do not a priori know the governing
equations associated with the experiment we are studying. In chapter 4, we studied experimental
data obtained by subjecting a neuron to two different patch-clamp electrophysiology protocols: a
voltage clamp with slow ramp on the hold voltage (VC), and a current-clamp with slow ramp on
the hold current (CC). The result of the VC protocol provided a (current, voltage) curve resembling
a steady-state bifurcation diagram. What is more, once superimposed onto the result of the CC
protocol, the two datasets interacted in a similar manner as a full systems solution overlaid onto
a fast-subsystem steady-state bifurcation diagram. That is, a slow-fast dissection effect. In this
chapter, we explained why this simplified method works, and we pose hypotheses on the question
of the noise obtained around the unstable parts of the critical manifold. Thus, this method, which
is akin to a simplified revision of CBCE (without the Newton part) allows us to obtain a viable
approximation of an experimental steady-state bifurcation diagram, and also it can validate the
underlying neuron model as a good representation of the real neuron.

In Chapter 5, we focused on applying a complete version of the CBCE method on experiments
simulated via Simulink. Simulink is a graphical simulation and modeling software developed
by MathWorks. It is used in many fields of engineering, including computational neuroscience,
to simulate and analyze dynamical systems. Simulink’s real-time operation enables simulation
of real-time systems by using real-time algorithms to control simulation processes. This allows
systems and controllers to be tested in a virtual environment before implementing them in the real
world. Benefits of using Simulink include the ability to easily visualize systems, add and edit
blocks to refine models, debug models in real time, and work with easy-to-use graphical design
tools.

In Chapter 6, we presented a data-analytic study on the olfactory bulb of mice. Namely, we
analysed calcium imaging data coming from 3 mice subjected to different chemicals. We devel-
oped a pipeline to study the data: first we segmented the real coordinate space of the neurons with
the k-means method, then we produced the average of the neurons of each segment for each indi-
vidual. Then, we pre-processed the data with the baseline alignment method, and finally applied
the RSA method. These first results showed us that there are indeed patterns of recurrence of these
olfactory recognitions. Next, having segmented the data into subgroups based on the coordinates
of neurons in the olfactory bulb allows us to compare the centroids of these metastable states.
These results will be summarized in odotopic maps which demonstrate that the same areas of the
olfactory bulb are activated for the same chemical. In addition, we will also demonstrate that for
the different types of chemicals the same areas are used for recognition but at different intensity
levels. We will finally propose the learning of a supervised classifier of these centroids to show
that they are significantly sufficient to discriminate them.

In Appendix 8, we propose the study of a neuromorphic circuit based on the Morris-Lecar
model. A neuromorphic circuit is a type of electronic circuit designed to reproduce the operation
of neural networks in the human brain, this includes the simulation of neuronal electrophysiology,
such as the generation of action potentials, synaptic transmission, and other processes electrical
and chemical linked to neuronal activity. The interest in studying a single neuron neuromorphic
circuit for this thesis was to have a templated experiment in which we know the equations which
lead the behavior of the model. What we hoped for was to be able to apply our methodologies

1.4. Thesis organization 15

developed during the thesis on this circuit in order to calibrate them, but also to work on the notion
of real-time experience, which was a new challenge for these methods. In open-loop setup, the
experiment worked well, however, with the closed-loop setup we encountered problems that could
not be fixed. Namely, delays between the application of the given current to the experiment, and
reading the output.

17

Chapter 2

From integrator to resonator neurons:
A multiple-timescale scenario

The results presented in this chapter have been published [7] as: G. Girier1, M. Desroches2 and S.
Rodrigues1,3, From integrator to resonator neurons: A multiple-timescale scenario, Nonlinear Dy-
namics 111: 16545-16556, 2023. https://link.springer.com/article/10.1007/s11071-023-08687-1

Now that the context of this thesis is established, we will begin our exploration of neuronal
excitability. As described previously, this chapter will lead us to explore the modulation of the
behavior of an integrator-type neuron so that it adopts a resonator-type behavior, while retaining
its mathematical properties inherent to an integrator neuron. This information could therefore
help us to understand with more perspective the transmission of information in vitro, but also the
plasticity that a neuron can have when external currents are transmitted to it. This step will allow
us to further immerse ourselves in the mathematical and computational aspect of our research,
and thus establish the different tools that we will use throughout the thesis to analyze systems of
differential equations.

2.1 Introduction

Excitable systems, in particular neurons, can be classified according to the various criteria, one of
them being the existence of sub-threshold oscillations [29–31]. This feature allows to distinguish
between two types of neurons: integrator and resonator. Integrator neurons are defined by: a) the
ability to get excited under high frequency pulses, b) the existence of a precise threshold, and c) the
fact that they do not have a sub-threshold oscillations. They belong to what is usually referred to as
type-I neuronal excitability, which means that their firing frequency starts from 0 at the transition
between the stationary and the periodic regime. In contrast, resonator are neurons that: a) respond
only to input with well-defined frequencies (they “resonate” with these special frequencies), b) do
not have a well-defined threshold, and c) have sub-threshold oscillations. Therefore they display
type-II neuronal excitability, which means that their firing frequency is bounded away from 0 at the
transition between the stationary and the periodic regimes. In an experimental framework, neurons
behave either as integrators or as resonators, and this feature is observed neither simultaneously
nor in the same physiological conditions.

From a dynamical systems standpoint, the underlying models of these two types of neurons
differ by their bifurcation structure upon variation of an applied current I as main parameter.
Namely, in integrator-type models a saddle-node on invariant circle (SNIC) bifurcation organises
the transition from rest to spiking, and their excitability threshold is defined by the stable manifold

1 BCAM Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
2MathNeuro, Project-Team, Inria Centre, Université Côte-d’Azur, France
3Ikerbasque, the Basque Foundation for Science, Spain

https://link.springer.com/article/10.1007/s11071-023-08687-1

18 Chapter 2. From integrator to resonator neurons

of the saddle equilibrium that disappears through the SNIC bifurcation. In contrast, in resonator-
type neuron models this transition occurs via a Hopf bifurcation (HB), which is often subcritical
and followed, in parameter space, by a saddle-node bifurcation of limit cycles [71]. The threshold
is not well-defined however it can be approximated by a family of so-called canard cycles [34,
72–74].

In in vitro experiments, it is currently possible to make an integrator-type neuron behave like
a resonator neuron by means of pharmacological intervention. Indeed, the notion of behavioural
switch between integrator and resonator neuron has long been described in the experimental and
computational neuroscience literature, however using different approaches. At the experimental
level, the environment of the neuron can be controlled in order to obtain this change of excitable
behaviour. In particular, this has been achieved pharmacologically, to control the opening of ion
channels [31, 41], by current injection [42], using an electric field [43] or even by means of an
excitation laser in neuromorphic experiments [44].

In mathematical and computational studies, these methods have also been demonstrated as
viable [31, 41, 43–47], together with other approaches: to name a few, by adding terms taking
into account new neuronal structures [49], by varying some of the model’s parameters [50, 51],
or by varying the input forcing frequency [42, 52]. However, all these methods have in common
that they result in changes of the system’s bifurcation structure in order to allow this transition
from integrator to resonator behaviour. In the present case, we want to keep the same bifurcation
structure, that is, a SNIC bifurcation associated with integrator-type behaviour, and act differently
upon the system so that it can be made to display the characteristic subthreshold oscillations of a
resonator.

The main objective of the present work is to demonstrate mathematically that an integrator
neuron – namely, a type-I neuron model– can be made to behave like a resonator neuron once an
adequate slowly-varying current is applied to it with real-time feedback from the membrane po-
tential; hence, we aim to obtain subthreshold oscillations in an integrator neuron model. Crucially,
we want to achieve this apparent excitability switch without modifying the underlying bifurcation
structure of the model.

To do so, we will exploit the multiple-timescale structure of the slowly-forced integrator model
and show that subthreshold oscillations are possible in a specific parameter range, no matter which
integrator model we are starting from, provided it has a SNIC bifurcation upon constant applied
current and provided we apply to it a specific slowly-varying time-dependent current.

In a nutshell, we will show that the forcing requires to consider two additional slow variables
and that the extended (minimally 4D) model possesses a so-called folded-saddle singularity [26,
27]. It was recently discovered [53] that subthreshold oscillations can appear near a folded saddle
provided a certain algebraic condition is satisfied in the singular limit, that is, when the (explicit)
timescale separation parameter ε tends to 0; see also [28]. It turns out that this condition cannot
be obtained in a slowly-forced integrator system if the forcing is too simple, that is, harmonic;
see Section 2.3. As we will show in Section 2.4, one needs a feedback term from the voltage in
the forcing equation in order to obtain the subthreshold oscillations, which suggests in the context
of real neurons, an autaptic behaviour, and can be tested experimentally using a dynamic-clamp
protocol.

We will showcase our strategy with a simple biophysical example of 2D type-I neuron model,
namely the INa/IK model proposed by Izhikevich in [34]; however our approach will work with any
type-I neuron model. Noteworthy, it does not require to alter the underlying bifurcation structure
of the model, which is customary in studies reporting a switch from integrator to resonator [31, 43,
47]. The excitability switch that we propose here is purely due to timescale separation between the
model and the forcing. We also showcase the reverse scenario, namely a switch from resonator to
integrator. This requires to have a folded node instead of a folded saddle, therefore a different slow
forcing structure, however here again we obtain the switch from one neuronal type to the other by
staying within the same bifurcation scenario, only playing with the slow-fast structure of the model

2.2. Theoretical context 19

and of its folded singularity. The folded-node scenario indeed induces a particular geometry for the
trajectories passing near such a folded singularity. Namely, they make transient small-amplitude
oscillations, which correspond to subthreshold oscillations in the neuronal context [26, 74] and
their number can be controlled, e.g., by varying initial conditions. Indeed, families of initial
conditions giving rise to the same number of oscillations form so-called rotation sectors in phase
space. Furthermore, by controlling the trajectory to flow into the first rotation sector, one can
suppress these subthreshold oscillations and hence, turn the behaviour into an integrator, hence
obtaining the reverse switch. However, we will argue that the folded-saddle scenario is more
appropriate for this switch between integrator and resonator neuron in order to obtain a behaviour
as close as possible to experiments.

This chapter is organised as follows. First, in section 2.2, we will provide all the theories
needed to understand properly the results obtained. In Section 2.3, we present the INa/IK model
and analyse numerically its integrator structure. Then, we apply to it a first slow harmonic forcing
and show that it is sufficient to create a folded-saddle singularity but insufficient to obtain sub-
threshold oscillations, which require a more elaborate forcing. This is why, Section 2.4, we adapt
the forced current in order to obtain the singular-limit algebraic condition giving rise to subthresh-
old oscillations in the full model, and hence the resonator behaviour. In Section 2.5, we present the
reverse scenario, whereby a resonator neuron can behave like an integrator, and show that this is
due to another type of folded singularity, namely a folded-node singularity. Finally, we conclude
in Section 2.6 and propose a strategy to verify experimentally our theoretical predictions.

2.2 Theoretical context

In this section, the different theories and methods necessary for the understanding of the chapter
will be given.

2.2.1 Slow-fast dynamics

Definition: Suppose one have a system with two timescales (t and τ being the characteristic time
scale for the process): {

τxẋ = f (x,y),
τyẏ = g(x,y),

(2.1)

where (x,y) ∈ Rn ×Rm, τx (resp. τy) is the characteristic timescale of x (resp. y), and the
overdot denotes differentiation with respect to the time t.

Suppose x is the variable evolving on fast time scale t. Suppose y is the variable evolving on
slow time scale τ . Suppose there is a ratio between this time scale t and τ . Then suppose that x
evolves on a much faster timescale than y, which can be expressed as: 0 < τx ≪ τy. Then one can
define a timescale ratio parameter ε by: ε := τx/τy, which immediately gives that 0 < ε ≪ 1, and
system (2.1) can be rewritten in explicit slow-fast form as:{

ε ẋ = f (x,y),
ẏ = g(x,y),

(2.2)

where t naturally appears as slow time in (2.2). Only then, one can introduce the fast time τ by
posing: τ = t/ε , which gives:

εdτ = dt (2.3)

20 Chapter 2. From integrator to resonator neurons

Using chain rule, we obtain:

dx
dτ

=
dx
dt

dt
dτ

= ε
dx
dt

(2.4)

We rewrite 2.1 in terms of fast time τ:{
x′ = f (x,y),
y′ = εg(x,y).

(2.5)

The two systems of differential equations (2.2) and (2.5) have the same phase portraits, as long
as ε ̸= 0, but their trajectories are parameterized differently. The interest of these two systems (2.2)
and (2.5) lies in the fact that their limits when ε = 0 are very different. These two limits allow to
highlight separately fast and slow components, respectively, of the overall system dynamics.

For system (2.2), the singular limit ε = 0 yields:{
0 = f (x,y)
y′ = g(x,y)

(2.6)

System (2.6) is a differential-algebraic equation (DAE) usually referred to as slow subsystem
(sometimes also called reduced problem). Specifically, this is a differential equation for the slow
variables y together with an algebraic constraint given by f (x,y) = 0, which effectively defines the
phase space of the system and which corresponds to the equation of the so-called critical manifold
(fast nullmanifold). So, this system allows us to study the limiting slow dynamics of the system
(slow flow).

For system (2.5), the singular limit takes the form:{
x′ = f (x,y,0)
y′ = 0

(2.7)

System (2.7) is typically called fast subsystem or layer problem, it is a form of adiabatic limit.
In the fast subsystem, the slow variables y are kept constant and hence become parameters in the
fast equations, which persist. The set of stationary points of the fast subsystem with respect to
the parameters y is therefore defined by the set { f (x,y,0) = 0}, and we see that we recover the
equation of the critical manifold. Thus, the critical manifold plays an essential role both in the fast
subsystem, as a geometric representation of the family of stationary points w.r.t y, and in the slow
subsystem, as phase space.

Thanks to slow-fast systems for a precise range of parameters, canard solutions can appear.
Canard solution are particular trajectories, and a strict minimum system, with one fast and one
slow equations, is enough to obtain them. The best known class is the case where the critical
manifold of the studied system forms a regular fold, and have an attracting and a repellant part.

The behavior of these solutions is the next: first, they follow the attracting part of the critical
manifold, passes close to a bifurcation point, and then follow the repelling part of critical manifold
during a short delay, before to be ejected. This interesting phenomenona is also due to the loss of
normal hyperbolicity at the bifurcation point. (See Fig. 2.3 for an example of canard solution)

In geometric terms a canard solution corresponds to the intersection of an attracting and a
repelling slow manifold near a non-hyperbolic point of S. We call the intersection of these fixed
slow manifolds a maximal canard. If a slow-fast system with canard solutions has a dimension
superior or equal to 3, it is so possible to apply the desingularisation and reduction process, in
order to highlight particular folded-fixed points which explain the particular behavior of these
solutions.

2.2. Theoretical context 21

Another important concept is the slow passage phenomena which is the results of a slow vari-
ation of a parameter. The consequence of the slow passage effect is that bifurcation does not occur
at the bifurcation point, but, further, with a delay after the passage throught the bifurcation point
in question. These dynamics can be observed around bifurcation points like Hopf bifurcations,
pitchfork bifurcations, or SNIC bifurcations.

The prediction of the model behavior can be difficult to evaluate because of this bifurcation-
delay. It becomes even worse due to the presence of jump transitions and memory effect associated
with the slow passage effect. So, delay control in bifurcation due to the slow passage effect is
something to take in consideration in order to understand model mecanisms. This phenomena
could be compared to a canard phenomena, which is also a delay-bifurcation, but this new one is
non-explosive and it is not restricted to a very narrow parameter intervals.

2.2.2 Desingularized Reduced System

Definition: A study of new particular dynamics of solutions which progress near new points of
equilibrium, the pseudo-stationary points, will also interest us. These new concepts therefore
require a better understanding of the structure of the slow subsystem of a slow-fast system of type
2.6, but with a variable x of dimension 1, and y, of dimension 2, which means that we have now
two slow variables that we will call y and z:

εx′ = f (x,y,z,ε)
y′ = g(x,y,z,ε)
z′ = h(x,y,z,ε)

(2.8)

A change of time in 2.8 therefore makes it possible to obtain the fast subsystem:
x′ = f (x,y,z,ε)
y′ = εg(x,y,z,ε)
z′ = εh(x,y,z,ε)

(2.9)

From 2.8, with ε = 0, we derive the following implicit equation with respect to time, thanks to
the chain rule:

0 = f (x,y,z,0)

⇐⇒ 0 =
∂ f
∂x

(x,y,z,0)x′+
∂ f
∂y

(x,y,z,0)y′+
∂ f
∂ z

(x,y,z,0)z′
(2.10)

By replacing the terms that we know of the complete system, we therefore obtain the following
rearrangement:

−∂ f
∂x

(x,y,z,0)x′ =
∂ f
∂y

(x,y,z,0)g(x,y,z,0)+
∂ f
∂ z

(x,y,z,0)h(x,y,z,0) (2.11)

However, equation 2.11 is no longer defined when ∂ f
∂x = 0, i.e. along the fold of the critical

manifold: it is therefore necessary to desingularize our system, or to project it on a plane. Indeed,
given that we have two slow variables, the critical manifold will be dimension two, and therefore
the slow subsystem will be essentially dimension two as well. Thus, one projects in such a way as
to keep only two differential equations:

22 Chapter 2. From integrator to resonator neurons

Figure 2.1: Diagram of the principle of desingularization of a system, with (A) a critical
manifold which has a fold where the solutions passing through it are not defined, which
gives (B) a desingularized reduced system whose phase plane can be studied in order to to
emerge a true singularity (T S) present on what is the fold of the critical manifold. Then,
we recover the flow of the slow subsystem on the critical manifold (A) where the folded-
singularity (FS) is. Also shown is the critical manifold S0 (blue surface), and the fold curve
F (dotted line).

x′ =
∂ f
∂y (x,y(x,z),z,0)g(x,y(x,z),z,0)+

∂ f
∂ z (x,y(x,z),z,0)h(x,y(x,z),z,0)

∂ f
∂x (x,y(x,z),z,0)

z′ = h(x,y(x,z),z,0)
(2.12)

This system also not being defined when ∂ f
∂x = 0, we therefore admit an unusual change in

time depending on x, and which makes it possible to obtain the following auxiliary system:

{
x′ = ∂ f

∂y (x,y(x,z),z,0)g(x,y(x,z),z,0)+
∂ f
∂ z (x,y(x,z),z,0)h(x,y(x,z),z,0)

z′ =− ∂ f
∂x (x,y(x,z),z,0)h(x,y(x,z),z,0)

(2.13)

Where y(x,z) therefore only depends on x and z since we place ourselves on the critical
manifold and this dependence amounts to locally solving the equation of the critical manifold:
f (x,y,z,0) = 0.

The system of equation 2.13 corresponds to what is called the desingularized reduced system
(DRS): it makes it possible to obtain stationary points in its phase plane which will correspond to
folded singularity points in the phase plane of the complete system studied. Thus, from 2.13, we
can linearize around such a stationary point and we obtain the following Jacobian matrix:

J =

(
A(x,z) B(x,z)
C(x,z) D(x,z)

)
(2.14)

tr(J) = A(x,z)+D(x,z)

det(J) = A(x,z)D(x,z)−C(x,z)B(x,z)

∆(J) = Tr(J)2 −4det(J)

(2.15)

If det(J) < 0, then the stationary point obtained is a saddle point in the phase plane of (6),
and will therefore give a folded-saddle point in the complete system 2.8. If det(J)> 0, tr(J)< 0,
and D(J) > 0, we obtain an attractive node point (which will give a pseudo-node point in the
complete system), whereas if det(J) > 0, tr(J) > 0, and D(J) > 0, the node point is repulsive. If

2.3. Izhikevich’s INa/IK model. 23

Figure 2.2: Bifurcation diagram of the system (2.16) with respect to parameter I. Red
(resp. black) segments of the S-shaped curve of equilibria denote stable (resp. unstable)
branches. As the applied current I is increased, oscillations (spikes) appear through a
SNIC bifurcation (red dot) and then disappear through a supercritical Hopf bifurcation
(labelled HB and marked by a blue dot). Parameter values are: C = 1, EL =−80, ENa = 60,
EK = −90, gL = 8, gNa = 20, gK = 10, Vm,1/2 = −20, Km = 15, Vn,1/2 = −25, Kn = 5,
τn(V) = 1.

det(J)> 0, tr(J)< 0, and D(J)< 0, we obtain an attractive focus (which will give a folded-focus
in the complete system), while det(J)> 0 , tr(J)> 0, and D(J)< 0, then the focus is repellent.

2.3 Izhikevich’s INa/IK model.

2.3.1 Under constant external current

We consider a two-dimensional conductance-based neuron model with minimal components for
excitability. This model was proposed by Izhikevich in [34] and it was referred to as the INa/IK
model, since it only assumes basic persistent sodium with instantaneous activation, potassium and
leak currents; this is the name we shall use throughout this article. The model’s equations are:

CV ′ = I −gL(V −EL)−gNam∞(V)(V −ENa)−gKn(V −EK),

n′ =
n∞(V)−n

τn(V)
,

(2.16)

with steady-state functions: x∞(V) = (1 + exp
(
(Vx,1/2 −V)/kx

)
)−1, x = {m,n}, and where the

prime denotes differentiation with respect to the time τ .
For simplicity, we take the time constant τn(V) to be independent of V and we shall fix its

value to 1. System (2.16) is based on a simplification of the two-dimensional reduction of the
Hodgkin-Huxley model proposed by Krinskii & Kokoz [75], independently by Rinzel [76], and
further studied, e.g., by Moehlis [77]. Thus, the variable V represents the membrane potential of
the neuron, and n, the activation of potassium channels. The constants gx (where x corresponds
to L, Na, or K) are the maximal conductances of the ionic currents considered, Ex are the Nernst
potentials of the ionic species and C is the capacitance of the neural membrane; I denotes an
externally applied current.

The bifurcation diagram of system (2.16) with respect to I, shown in Fig. 2.2, is typical of a
neuron with type-I excitability [78]. Namely, a family of low-voltage equilibria (rest states of the
neuron) destabilise and give way to a family of stable limit cycles (spiking states of the neuron) via
a SNIC bifurcation, which occurs at an input current value I ≈ 4.51. The SNIC bifurcation being a
homoclinic-type bifurcation, the emerging stable cycle has a very large period (tending to infinity

24 Chapter 2. From integrator to resonator neurons

at the bifurcation), hence a very small frequency, which is a key hallmark of type-I excitability. At
a much higher value of the input current, the branch of stable cycles disappears via a supercritical
Hopf bifurcation at I ≈ 200. Therefore, system (2.16) is considered to be in an integrator regime
here.

2.3.2 Applying a slow sinusoidal external current

We now consider a periodic forcing to system (2.16) in the form of a slow externally-applied
sinusoidal current. This can be done by replacing the constant term I in the V -equation of (2.16)
by a time-dependent function I(τ) = I0+sin(ετ), with ε > 0 a small constant. However, to further
analyse the resulting periodically forced system using geometric singular perturbation theoretical
tools [79], it is more appropriate to write it in autonomous form and obtain the slow sinusoidal
forcing I(τ) as the solution of a harmonic oscillator, that is, a second-order differential equation
in I, which one can also write as a set of first-order differential equations in (I,J). Hence, we
consider system (2.16) forced by the following slow differential equations:

I′ =−εJ,

J′ = ε(I − I0).
(2.17)

We are therefore considering the following extended 4D system:

CV ′ = I −gL(V −EL)−gNam∞(V)(V −ENa)−gKn(V −EK),

n′ =
n∞(V)−n

τn(V)
,

I′ =−εJ,

J′ = ε(I − I0),

(2.18)

where the prime denotes differentiation with respect to τ which, in this context, is called the fast
time. Hence, (2.18) is a slow-fast dynamical system with two fast variables V and n, and two slow
variables I and J. As customary in multiple-timescale dynamics, we can rescale time by a factor
ε and introduce the slow time t = ετ , which brings the system in a different time parametrisation
that will be helpful when styding its slow singular (ε = 0) limit, namely:

εCV̇ = I −gL(V −EL)−gNam∞(V)(V −ENa)−gKn(V −EK),

ε ṅ =
n∞(V)−n

τn(V)
,

İ =−J,

J̇ = I − I0,

(2.19)

where the over-dot denotes differentiation with respect to t.
As long as ε ̸= 0, the systems (2.18) and (2.19) are equivalent, they have the same phase

portraits, but the solution trajectories are parameterized differently. Furthermore, their respective
singular limits are different and highlight different aspects of the original system’s dynamics: the
fast components in the case of system (2.18), and the slow components for (2.19).

The fast singular limit (i.e., system (2.18) with ε = 0) corresponds to the original integrator
INa/IK model (2.16), which is logical since the extended system (2.18) was obtained by slowly
forcing this integrator model. Recall that its bifurcation structure, shown on Fig. 2.2, is char-
acterised by the presence of a SNIC bifurcation. The S-shaped curve of equilibria of this fast
subsystem (2.16) is called critical manifold of the full system and we label it as S0 in Fig. 2.2 and

2.3. Izhikevich’s INa/IK model. 25

Figure 2.3: Folded-saddle canard trajectory (black curve with arrows) from (2.18) super-
imposed on the fast subsystem’s bifurcation diagram already shown in Fig. 2.2. Arrow
black curve: trajectory, red curve: unstable stationary points, black curve: stable stationary
points. Parameter values are as in Fig. 2.2 except: I0 = 4, ε = 0.001.

subsequent figures. Its algebraic expression is given by

S0 :=
{

I −gL(V −EL)−gNam∞(V)(V −ENa)−gKn∞(V)(V −EK) = 0
}

(2.20)

Hence, the critical manifold, which in the present case is a surface in R4 (since it has the
dimension of the slow variables), can be seen as a graph over V and its equation can be written S0 =
{I = f (V)}. Figure 2.3 shows a trajectory of the slowly forced system (2.18) superimposed onto
the critical manifold S0 and displayed only in the vicinity of the fast subsystem SNIC bifurcation
point, for specific initial conditions of the forcing I(0) = I0 and J(0). The trajectory (in black,
with arrows representing the direction of motion) follows the stable branch of equilibria of the fast
subsystem (red branch of the parabolic-shaped bifurcation curve), which is the behaviour predicted
by slow-fast theory. However, near the SNIC point – also labelled FS for reasons related to the
slow subsystem (see below) – the trajectory turns around the point, instead of being repelled away,
before flowing backwards as the forcing changes direction. This behaviour is counter-intuitive, it
has to do with certain types of canards, and it is best explained by considering the other singular
limit, namely the slow limit, of the forced integrator system (2.18), as we do next.

Similar to the fast subsystem, we take the ε = 0 limit of system (2.19), which provides a good
approximation of the slow dynamics of the forced integrator system. However, the slow singular
limit is very different from the fast one and it is given by the following differential-algebraic
system:

0 = I −gL(V −EL)−gNam∞(V)(V −ENa)−gKn(V −EK),

0 =
n∞(V)−n

τn(V)
,

İ =−J,

J̇ = I − I0.

(2.21)

The first two equations of (2.21) express the fact that in the slow singular limit, the dynamics is
constrained to evolve only on S0. In passing, this shows the importance of the critical manifold
in both singular limits. The other two equations are the slow differential equations written in
the slow-time parametrisation. The resulting system (2.21) is complicated to study as such, in
particular because of the algebraic constraint which hides the limiting fast dynamics. However,

26 Chapter 2. From integrator to resonator neurons

one can rescue it by differentiating this algebraic constraint with respect to time which, after
projecting the dynamics onto the (V,J) plane (because the slow singular dynamics is essentially
2D) and rearranging terms, yields the following version of the slow subsystem:

fV (V)V̇ =−J,

J̇ = I − I0,
(2.22)

with I = f (V) due to the constraint to evolve on S0 and where fV denotes the derivative of f with
respect to V , namely,

fV (V) = gL +gNa(m∞,V (V)(V −ENa)+m∞(V))+ . . .

. . .gK(n∞,V (V)(V −EK)+n∞(V)),
(2.23)

with:

x∞,V (V) =
dx∞(V)

dV
=

exp
{(

(Vx,1/2 −V)/kx
)}

kx
x∞(V)2, x = {m,n}.

System (2.22) is the more practical form of the slow subsystem or reduced system (RS). This
limiting system is singular along the zero set of fV , which geometrically corresponds to the fold
set F := { fV (V) = 0} of the critical manifold. The critical manifold of system (2.19) is a cubic
surface and its fold set F has two connected components; see, e.g., Fig. 2.5 for an illustration
of the lower fold curve F of S0. Noteworthy, the fold curve locally separates each of the two
attracting sheets of S0, along which fV (V) > 0, from the repelling sheet defined by fV (V) <
0. The attractiveness and repulsiveness of S0 is inherited from the stability and instability of
equilibria of the fast subsystem (2.16), given that its set of equilibria precisely corresponds to S0.
For a similar reason, the fold set F corresponds to the set of saddle-node bifurcations of the fast
subsystem, hence the lower fold curve F corresponds to a family of SNIC bifurcation points of the
fast subsystem. Namely, the SNIC point shown in Fig. 2.2 and detected when varying parameter I
in (2.16) does not depend on J, hence we obtain a line of such point in the forced system (2.19).

In order to understand the flow of the RS near the fold curve F , one classical approach is to
desingularise system (2.22) by rescaling time by a factor fV (V), which brings forth the so-called
desingularized reduced system (DRS)

V ′ =−J,

J′ = fV (V)(f (V)− I0),
(2.24)

where the prime denotes differentiation with respect to the new time, i.e., after desingulariza-
tion. System (2.24) is now defined everywhere on R2 including along the fold set F .

Two points are worth noting about the DRS. First, the change of time by a factor fV (V) arti-
ficially creates in (2.24) the possibility for equilibria on the fold set F , in particular on the lower
fold curve F . Such equilibria satisfy the algebraic conditions

J = 0, fV (V) = 0,

whereas the other equilibria of (2.24) satisfy the algebraic conditions

J = 0, f (V) = I0,

and these are also equilibria of the RS system (2.22). Second, the same change of time, because
of the V -dependent factor, makes the orientation of trajectories of the DRS be opposite to that of
the RS whenever fV (V) < 0, that is, along the repelling (middle) sheet of S0. Hence, the DRS is
a standard planar dynamical system, which can for instance have a saddle equilibrium on F , and
the RS has the same geometrical orbits but the reversal of orientation along the repelling sheet

2.3. Izhikevich’s INa/IK model. 27

Figure 2.4: Phase portraits in the (J,V) plane. A: DRS system (2.24), B: RS system (2.16).
In both panels, the orange lines are the components of the V -nullcline, while the green
curve is the J-nullcline. A: the DRS has 3 equilibria, 2 centers (blue dots) and 1 saddle
(red dot); the red curves are the stable and unstable manifolds of the saddle, they coincide
and form a double homoclinic connection, each loop surrounding one of the centers. B:
there are 2 center equilibria (blue dots) and one folded saddle (red dot). The red curves
are the singular true and singular faux canards, they coincide to form a double folded
homoclinic connection [27, 80]. Parameter values are as in the previous figures.

28 Chapter 2. From integrator to resonator neurons

Figure 2.5: Phase portrait of system (2.18) projected onto the (I,J,V) space. Also shown
is the critical manifold S0 (blue surface), the lower fold curve F (dotted line), the singular
true and faux canards (red curves), the folded-saddle singularity (red dot), labelled FS, and
a trajectory making one spike without subthreshold oscillations (black curve). Parameter
values are as in previous figures, initial conditions are: V (0) = −76, n(0) = 3 · 10−05,
I(0) = I0 =−5.48 and J(0) = 10.

of S0 implies that the saddle equilibrium of the DRS is not an equilibrium anymore in the RS.
Rather, it is a special point called folded saddle, which two special trajectories reach in finite time
and cross. One trajectory crosses it from the attracting side of S0 upwards, continuing along the
repelling side, and it corresponds to the stable manifold of the saddle equilibrium of the DRS. The
other trajectory crosses it in the opposite direction and it corresponds to the unstable manifold of
the saddle of the DRS. Both trajectories are related to canards in that they cross from one side to
the other of the critical manifold via a folded singularity. In the folded-saddle case, they are called
true singular canard and faux singular canard, respectively [26].

Figure 2.4 shows the phase portrait of the DRS of system (2.19) on panel A, and of the cor-
responding RS’s phase portrait on panel B. A saddle equilibrium of the DRS is located on F ,
therefore it corresponds to a folded saddle in the RS. The DRS has two other equilibria, both of
center type, they are still (true) equilibria of the RS and, hence, they will also influence the dy-
namics of the full system. Figure 2.5 shows the RS’s phase portrait in a 3D (I,J,V) projection,
where the critical manifold S0 is indeed a surface and F a curve; in fact, F is a straight line here
since it does not depend on J. The figure illustrates well the geometry of such problems and the
role of folded-saddle singularities in shaping the dynamics of slowly periodically-forced type-I
neuron models. Indeed, such systems effectively correspond to parabolic bursters [81] and folded
saddles organise the appearance of spikes in such bursters along solution branches in parameter
space; see [27] for details.

On Fig. 2.5, a spiking solution of system (2.19) is shown on top of S0 and it clearly appears
that, as it reaches the (lower) fold curve F of S0 and comes close to the folded-saddle point FS,
the trajectory follows the true singular canard, then it makes a spike and, as the voltage is going
down back to baseline, the trajectory follows the faux singular canard. Therefore in this context
of type-I membrane model with slow periodic forcing, the spike-adding threshold is organised by
folded-saddle canards [27]. Therefore, with a slow harmonic forcing, an integrator neuron like
system (2.16) displays a folded-saddle singularity and still behaves as an integrator. In particular,
it cannot generate subthreshold oscillations. This is essentially due to the eigenvalue ratio of the
saddle equilibrium of the DRS, as we will see next.

2.4. Integrator neuron with resonator behaviour 29

2.4 Integrator neuron with resonator behaviour

2.4.1 The eigenvalue ratio of the DRS’s saddle equilibrium

We have just seen that the slowly forced integrator neuron model has trajectories with no sub-
threshold oscillations. Our aim is now to create these subthreshold oscillations in order to effec-
tively obtain a switch from integrator to resonator behaviour.

Recent results by Mitry and Wechselberger [53], also confirmed in the context of piecewise-
linear slow-fast systems in [28], show that it is possible to obtain subthreshold oscillations near a
folded saddle. More precisely, near the faux canard of a folded saddle, which is the perturbation
for ε > 0 small enough of the singular faux canard described in the previous section and shown in
Fig. 2.5. As proven in [53], the algebraic condition to obtain these subthreshold small-amplitude
oscillations is on the ratio µ of the eigenvalues of the saddle equilibrium of the DRS, the ratio
being of the unstable eigenvalue over the stable one. Necessarily µ is negative, however if it is
strictly contained between −1 and 0, then such oscillations appear around the folded saddle’s faux
canard; see already Fig. 2.6 for an illustration.

As explained in the previous section, spiking trajectories of the forced system (2.19) follow
the singular faux canard – hence, they also stay close to its ε-perturbation, the faux canard – right
after making a spike, as the voltage goes down towards baseline. Hence, provided we can obtain
subthreshold oscillations near the faux canard, then these will adequately resemble those obtained
in resonator neurons, which will provide us with our objective of turning an integrator neuron into
a resonator one purely based on a slow-fast effect.

Now, a rapid glance at the DRS (2.24) makes us conclude that its Jacobian matrix has zero
trace, whatever the equilibrium solution around which one linearises. Hence, the saddle equilib-
rium of the DRS, which corresponds to the folded-saddle of system (2.19), is a neutral saddle,
implying that the ratio of its eigenvalues is necessarily equal to −1. This will always be the case
when slowly forcing an integrator model if the forcing is harmonic. Therefore, to obtain sub-
threshold oscillations one needs to consider a more elaborate forcing, namely one that includes a
feedback term from the voltage.

2.4.2 Slow forcing with feedback from the voltage

We now consider a more general forcing, with a feedback term in V in the I equation in order to
obtain a non-zero trace in the Jacobian matrix of the new DRS evaluated at the saddle equilibrium
of interest. We will keep the J equation only dependent on I as we simply need one non-zero
diagonal element in the Jacobian matrix evaluated at this saddle equilibrium in order to ensure that
its eigenvalue ratio will be different than −1. For simplicity, we will keep the dependence in V in
the I equation linear and show that it suffices to obtain the expected behaviour both at the level of
the eigenvalue ratio and in the full system’s solutions. Specifically, we define the new slow forcing
(written in fast time) as

I′ = ε (−J+αV) ,

J′ = ε (I − I0),
(2.25)

which then yields the new DRS (after rescaling to the slow time)

V ′ =−J+αV,

J′ = fV (V)(f (V)− I0).
(2.26)

Note that the voltage equation of the DRS is obtained from the slow differential equation for I
in the forcing system, and that I must be kept equal to f (V) in the slow singular limit. For these
reasons, it would suffice that the I equation of the forcing depends on I and not on V , on top of its

30 Chapter 2. From integrator to resonator neurons

Figure 2.6: Phase portrait of system (2.19) projected onto the (I,J,V) space. Also shown
at the critical manifold S0 (blue surface), the lower fold curve F (dotted line), the singular
true and faux canards (red curves), the folded-saddle singularity (red dot), labelled FS,
and a trajectory making subthreshold oscillations (black curve). Parameter values are as in
previous figures.

J dependence, in order to obtain a non-zero trace in the Jacobian matrix of the DRS corresponding
to this new forcing. This would amount to replacing V by I in the first equation of (2.26). As a
consequence, this in particular would avoid to use a feedback term in V in the full system (2.25).
However, it turns out that the full dynamics would not be able to exploit within its spiking regime
the eigenvalue ratio of the slow singular limit, as additional unwanted equilibria would arise.

Therefore we keep the new slow forcing system (2.25) to obtain the resonator behaviour. This
new forcing may appear for now as the result of some ad hoc reverse engineering process, however
we shall propose in the discussion section an explanation for its form and a possible experimental
implementation of it.

We can now verify that the new DRS (2.26) does possess a saddle equilibrium on F and that
one can take a value of parameter α so that its eigenvalue ratio is strictly between −1 and 0. At an
equilibrium (V ∗,J∗) located on the lower fold curve F of S0, the Jacobian matrix of (2.26) reads

J =

(
α −1

fVV (V ∗)(f (V ∗)− I0)) 0

)
,

where fVV (V) is the second derivative of f with respect to V . Given that α contributes to the trace
of J and not to its determinant, it is clear that we still have a saddle equilibrium on F , and hence
a folded saddle in the full system with the new forcing. Therefore, the eigenvalue ratio µ is given
by

µ =
α +

√
α2 −4 fVV (V ∗)(f (V ∗)− I0)

α −
√

α2 −4 fVV (V ∗)(f (V ∗)− I0)
. (2.27)

We then verify numerically that, for α negative and sufficiently large in absolute value, µ is indeed
strictly between −1 and 0. For instance, by fixing α =−4 one can observe the expect subthresh-
old oscillations when simulating the full system, as illustrated in Fig. 2.6 where we also show the
critical manifold S0 (blue surface), its lower fold curve F (dotted line), the folded-saddle singular-
ity, labelled FS (red dot), and the two singular canards (red curves traced on S0). Any values of α

such that µ in expression (2.27) is between −1 and 0 will work equally well. The plotted trajectory
is entirely subthreshold, however it comes close to the folded saddle and then turns back; as the

2.5. A multiple-timescale scenario for the reverse switch: from resonator to integrator 31

Figure 2.7: Integrator neuron (2.16) acting as a resonator with the slow forced cur-
rent (2.25). Parameter values are as in previous figures except: ε = 0.02, α = −8. Initial
conditions are: V (0) =−113.11, n(0) = 3 ·10−05, I(0) = I0 ranging between −4 and −7,
and J0 = 546.

voltage is going down towards baseline, it oscillates around the singular faux canard. Hence we
have obtained a key feature of a resonator neuron by simply modifying the slow forcing received
by an a priori integrator neuron without modifying its bifurcation structure obtained with constant
forcing. Resonator models have also other features which we can as well recover here.

In Figure 2.7, we highlight this resonator effect in the time series of the full system with
the new forcing, obtained by taking an ensemble of initial conditions for the forcing, namely
varying I0. What we observe is a transition in the voltage response from no spike, to one spike and
then two spikes, depending on the value of I0. Every trajectory with at least one spike has clear
subthreshold oscillations after the spike, or after the second spike for trajectories that have two
spikes. What is more, the values of I0 at which we observe a first spike in the voltage response,
and then a second spike, are quite specific. This confirms that the forced system resonates with
specific inputs. Consequently, we have obtained the main features of a resonator neuron. Again,
the main mechanism behind this switch of behaviour is purely due to the slow forcing received by
the integrator model, and based upon multiple-timescale dynamical phenomena.

2.5 A multiple-timescale scenario for the reverse switch: from res-
onator to integrator

So far, we have mostly focused on the switch from an integrator to a resonator while retaining
the characteristics of the integrator in absence of forcing. It is also possible to obtain the reverse
switch, that is, to have a resonator neuron that behaves like an integrator. To do so, we keep
system (2.16) but now consider yet another slow forcing, namely:

I′ = ε (−βJ+α(V −V0)) ,

J′ = ε (I − I0),
(2.28)

where β is a new parameter that allows us to regulate the applied current; β was implicitly equal to
1 in the previous slow forcing (2.25). We also add V0 as new parameter as it helps controlling the

32 Chapter 2. From integrator to resonator neurons

Figure 2.8: A: Resonator neuron model (2.16) with the slow forced current (2.28) for
J(0) = −370. The folded node is labelled FN. B: Same model acting as an integrator for
J(0) =−380, I(0) =−6.0. Parameter values are as before except: β =−1, V0 =−65.933.

amplitude of the feedback term from the voltage; V0 was implicitly equal to 0 in the previous slow
forcing. The new parameter β also enables to change the type of folded singularity by changing
the topological type of the DRS equilibrium located on the fold curve F . In particular, varying β

may turn the saddle into a node, hence giving a folded node in the full system. The non-singular
(ε > 0 small) dynamics near a folded node is well known to produce small oscillations, which
in the neuronal context correspond to subthreshold oscillations [26]. Also known is the fact that,
near a folded node, the phase space is locally partitioned into rotation sectors in which trajectories
make a fixed number of subthreshold oscillations. Hence, it suffices to take initial conditions into
the first rotation sector in order to obtain that the dynamics of this resonator system appears to
behave like an integrator; Fig. 2.8 illustrates this effect.

Therefore, it is interesting to showcase this effect of a resonator that behaves like an integrator
without changing anything to its structure. However, the observed behaviour has a notable dis-
crepancy with standard resonator neurons, whereby the subthreshold oscillations occur before the
spike and not after; see Fig. 2.8 A. Yet, this type of scenario can be related to experimental obser-
vations since there are neurons with this kind of electrical behaviour recorded in vitro; see [82] for
an example in dorsal root ganglion neurons of rats.

2.6 Discussion

In this work, we have studied a novel mechanism for excitability switch, from integrator to res-
onator and vice versa, within the framework of multiple-timescale dynamical systems. As a proof-
of-concept, we considered the simple yet biophysical 2D example of the INa/IK model by Izhike-
vich, but it would work just as well in any type-I model. Starting from a parameter set in which
the model behaves as an integrator in the classical sense, that is, where the spiking regime occurs
through a SNIC bifurcation, we first applied a slow periodic forcing in order to create a multiple-
timescale structure in the forced model, and to show that the resulting 4D model possesses a
folded-saddle singularity. Following standard geometric singular perturbation theory (GSPT), we
derived the desingularized reduced system (DRS) and showed that it had a saddle equilibrium on
the fold curve of the critical manifold of the original system. This slow periodic forcing preserved
the integrator behaviour. However, modifying the forcing by including a feedback term from the
membrane potential, we managed to affect the eigenvalues of the saddle equilibrium of the DRS.
This, according to recent results from GSPT [53], has the effect to allow for small-amplitude oscil-
lations in trajectories that pass near the folded saddle. In turn, this provided us with a mechanism

2.6. Discussion 33

to obtain subthreshold oscillations in a neuron model that was a priori an integrator, hence making
it behave like a resonator. The feedback term in V in the slow current forcing can be seen as a
simple form of autaptic connection, which is physiologically plausible.

Therefore, we can see these results as theoretical predictions that we would like to verify
experimentally. From the standpoint of electrophysiological measurements on real neurons, the
possibility to apply a current that depends in real time on the readout potential from the neuron
can be obtained through a dynamic-clamp protocol [83, 84]. The experimental setup allows to
inject currents to a cell that depends upon the measured voltage in real time. It can be used in
conjunction with pharmacological blockade of e.g. one ionic channel of the cell and injecting
back the corresponding current as a result of a computer simulation using the measured voltage.
We are current working on validating our theoretical prediction using dynamic-clamp experiments.

From the modeling’s point of view, adding this term αV in the slow differential equation of
the forcing current was a way to modulate the determinant of the Jacobian matrix of the DRS, and
therefore obtain subthreshold oscillations after a spike as well as modulate their number. Thus, it
is possible to keep the bifurcation structure and the characteristics of an integrator neuron model
while forcing it to display the specific behaviour of a resonator neuron.

This difference with the classical scenario of integrator neuron models can potentially have
interesting fallouts in the study of information transmission between neurons. Indeed, by defini-
tion, an integrator neuron integrates the message and returns to the rest electrical potential without
subthreshold oscillation. The fact that an integrator neuron can resonate like a resonator neuron
shows that the transmission of information is more complex than a simple integration of a message
given upstream. This is an interesting avenue for follow-up research on this topic.

We have also shown that the inverse scenario of switch from a resonator towards an integrator
is also possible, by using a folded-node scenario in place of a folded-saddle one. However, the
subthreshold oscillations obtained with a folded-node scenario occur before the spike rather than
after, which is uncommon for resonator neurons. This may be associated with certain types of
neurons (as reported in e.g. [82]) and to the dynamical phenomenon of mixed-mode oscillations
(MMO) [26]. The most important aspect of this numerical experiment is that the resonance phe-
nomenon does occur and it can be related to known properties of folded-node canards, in response
to specific forcing inputs [85]. Yet, one can control the trajectories in such a scenario so that no
subthreshold oscillation occurs as the solution flows past the folded node, which effectively makes
the resonator behave like an integrator. We plan to verify experimentally this theoretical and com-
putational prediction, first in neuromorphic analog circuits and then, using dynamic clamp, in real
neurons.

Finally, in both the folded-saddle and the folded-node scenarios, the question of chaos can
be pertinent as chaotic attractors have been shown to appear near a folded saddle [86] and near a
folded node [26], respectively. Looking for such dynamics in the context of excitability switches
due to either type of folded singularity goes beyond the scope of the present work but it is an
interesting question for future work. In particular, the presence of chaos in brain activity has
gathered substantial attention in the past few decades [87–90] and, in this context, the role of
multiple timescales is still to be fully unravelled.

35

Chapter 3

Complex excitability and “flipping” of
granule cells: an experimental and
computational study

The results presented in this chapter have been submitted for publication: J. Danielewicz1, G.
Girier1, A. Chizhov2, M. Desroches2, J.-M. Encinas3 and S. Rodrigues1,4, Complex excitability
and ”flipping” of granule cells: an experimental and computational study 5. My contribution to
this work was in the design and analysis of the model.

After having examined the mechanisms of neuronal excitability of integrator and resonator
neurons from a purely theoretical point of view, we will now approach the study of a phenomenon
obtained experimentally: thus, we will look here at an atypical behavior of granule cells immatures
of the dentate gyrus. In order to study this phenomenon, we will develop a mathematical model
to highlight this unusual behavior and, subsequently, the analysis of the model will be done using
the same tools as those used in the previous chapter. We will also integrate the experimental data
obtained by our colleagues in this chapter in order to give a complete context to the reader.

3.1 Introduction

Depolarization block - a silent state that occurs when a neuron receives excessive excitation - is
a very important feature and is regarded to have pathological relevance for some brain disorders,
including epilepsy and schizophrenia [91–93]. Furthermore, depolarization block in dopaminergic
neurons was suggested to explain the therapeutic action of antipsychotic drugs [93]. Among all
the mechanisms responsible for transition into depolarization block, the inactivation of voltage-
gated sodium channels is believed to play a key role [94–96]. Subsequently, it has been shown
that decreasing the sodium conductance pharmacologically causes dopamine neurons to go into
DB with lower maximal frequencies at lower values of applied current, whereas augmenting this
conductance with the dynamic clamp has the opposite effect [96, 97]. Dynamic clamp, a term for
the various combinations of software and hardware that simulate these conductances, has proven
to be a valuable tool for electrophysiologists for studying different excitability classes of cells [98].

The dentate gyrus (DG) is the input gate to the mammalian hippocampal formation and has
been implicated in spatial navigation, response decorrelation, pattern separation and engram for-
mation. Continual neurogenesis in the adult dentate gyrus produces new granule cells (GCs) that

1 BCAM Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
2 MathNeuro Project-Team, Inria Centre at Université Côte-d’Azur, France
3Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, Spain
4Ikerbasque, the Basque Foundation for Science, Spain
5HAL: https://hal.science/hal-04232000/

https://hal.science/hal-04232000/

36 Chapter 3. Complex excitability and flipping of granule cells

integrate into the hippocampal circuit by establishing synapses with existing neurons [12, 99–
101]. Granule cells are the prominent neuronal subtype within the DG, and have been studied ex-
tensively from the perspective of their intrinsic response properties. GCs are characterized by their
peculiar delayed and heterogeneous maturation. Most of them (85%) are generated postnatally.
From the primary dentate matrix, neural precursors migrate to the dentate gyrus between embry-
onic day 10 and 14 where they differentiate into neurons [102, 103]. Neurogenesis reaches a peak
at the end of the first postnatal week and is largely completed toward the end of the first postnatal
month [104]. Interestingly, the dentate gyrus retains the capability to give rise to new neurons
throughout life, although at a reduced rate [105, 106]. In adulthood, after being generated in the
subgranular zone, immature GCs are incorporated into pre-existing circuits, thus contributing to
improve several brain functions including learning and memory processes. During a transient pe-
riod of maturation, new GCs exhibit intrinsic and synaptic properties distinct from mature GCs,
potentially underlying the contribution of neurogenesis to memory encoding [8–14].

The vast repertoire of electrical activity displayed by neurons is the result of membrane-
bound ion channels, each producing a distinct conductance that facilitates current flux through
the membrane. These conductances may be static, or their magnitudes may be voltage- or ligand-
dependent. The intrinsic firing properties and ionic conductances in GCs are thought to reflect
their developmental stage and maturation level [8, 107, 108]. Among DG granule cells, input
resistance (Ri), threshold current (Ithr), and firing patterns have been used as signatures of the
degree of maturation and circuitry integration. During the first few days, postmitotic neurons
remain in the proliferative subgranular zone and display very high input resistance (several gi-
gaohms), because of the low density of K+ channels in the plasma membrane. Immature GCs
also express voltage-dependent Na- and K-channels at a low density. Thus, depolarizing current
steps elicit ”immature” action potential (single spikes with small amplitude and long duration) in
current-clamp recordings [105, 106, 109]. Maturating GCs show a progressive decrease in input
resistance and an increase in spike amplitude and frequency, suggesting that a deep rearrangement
of voltage-operated and non-gated channels occurs at the same time.

In this study, we focused on exploring firing patterns and the transition to depolarization block
of granule cells in the dentate gyrus by using dynamic clamp electrophysiological recordings. We
applied dynamic clamp recordings to explore the diversity of neurons and to tackle their excitabil-
ity by adding artificial sodium-like or potassium-like voltage-gated channels. This approach al-
lowed us to describe for the first time a new electrophysiological phenomenon that we have called
“flipping”.

3.2 Materials and methods

3.2.1 Animals and treatment

Four- to six-week old C57BL/6 mice were used for all procedures. Mice were housed at con-
stant humidity and temperature with a 12-h light/dark cycle with food ad libitum. The use of
animals for experimentation and the experimental procedures are included in the approved proto-
cols M20 2022 129 (2022-2025); M20 2022 130 (2022-2025) that have been reviewed and ap-
proved by the ethics (CEID and CEIAB) committees of the UPV/EHU and the Diputación Foral
de Bizkaia.

3.2.2 Preparation of brain slices

Mice were anestethized with isoflurane and decapitated. Their brains were quickly removed and
placed in ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM): 92 NMDG, 2.5 KCl,
0.5 CaCl2, 10 MgSO4, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 5 Na-ascorbate, 3 Na-pyruvate, 2
Thiourea and 25 D-glucose (pH 7.3 – 7.4; 300 – 310 mOsm) and bubbled with the mixture of 95%

3.2. Materials and methods 37

O2 – 5% CO2. Coronal slices (thickness = 250 µm) containing DG were cut from hemisphere
ipsilateral to the TBI/Sham surgery using a vibrating microtome (Leica VT1000). Slices were
stored submerged in room temperature for recovery.

3.2.3 Electrophysiology

After 1-1.5 h individual slices were placed in the recording chamber mounted on the stage of
Scientifica microscope with 40x water immersion lens and superfused at 3 ml/min with warm
(32 ± 0.5 ◦C), modified ACSF of the following composition (in mM): 124 NaCl, 4.5 KCl, 1.25
NaH2PO4, 26 NaHCO3, 1 MgSO4 * 7 H2O, 1.8 CaCl2, and 10 D-glucose (pH 7.3-7.4; 300-
310 mOsm), bubbled with the mixture of 95% O2 – 5% CO2. Recording micropipettes were
pulled from borosilicate glass capillaries (Science Products) using the PC-100 Nareshige puller.
The pipette solution contained (in mM): 125 K-gluconate, 20 KCl, 2 MgCl2, 10 HEPES, 4 Na2-
ATP, 0.4 Na-GTP, 5 EGTA (pH 7.3-7.4; 295-305 mOsm,). Pipettes had open tip resistances of
approx. 7-9 MΩ. The calculated liquid junction potential using this solution was 13.1 mV, and
data were corrected for this offset. Signals were recorded using Axon MultiClamp 700B amplifier
(Molecular Devices), filtered at 2 kHz, and digitized at 20 kHz using Digidata 1550A (Molecular
Devices) interface and Clampex 10 software (Molecular Devices, USA).

Cell access was obtained in the voltage-clamp mode and Resting Membrane Potential (RMP)
was measured immediately upon break-in in the current-clamp mode by setting the clamp current
equal to zero. In order to understand better the functional role of ion channels in shaping the
electrical activity and entry to depolarization block granule cells were recorded under dynamic
clamp conditions. In our specific setup, a second computer was connected to the MultiClamp
700B amplifier via the NI DAQ PCI-6221-37pin (National Instruments, Austin, TX). We employed
a dynamic-clamp setup with open source software6. Contrary to alternative available dynamic
clamp distributions, our software allows for a flexible development environment, which is the key
requirement for later enhancements of specific experimental protocols. Once the two systems
were connected, whole-cell recordings were performed in real-time, currents injected into the cell
were directly dependent on measured voltage. The firing characteristics of the recorded cells
was assessed using intracellular injections of rectangular current pulses of increasing amplitude
(range:- 200 pA to + 1200 pA; duration: 500 ms) and f-I curves (firing rate vs injected current)
were constructed. With dynamic clamp, we mimicked additional channels and assessed several
parameters, like conductance, half-maximum location of the activation and inactivation functions
of the ion channels responsible for general electrical activity and entry to DB of the recorded cells.
To describe the additional currents, we employed conventional approximations such as Hodgkin-
Huxley ones for potassium channels, and Markovian model for sodium channels. Only cells with
stable access resistance were accepted for the data analysis. A schematic of our experimental set
up is presented in Fig. 4.1.

In the experiments where additional shunting was mimicked, the injected current was calcu-
lated as a linear function of V :

Iinj(V, t) = u(t)− s(t)(V +60mV), (3.1)

where u(t) and s(t) are step functions of time. The reference membrane potential was choosen to
be equal to -60mV.

In the experiments with the additional sodium and potassium channels, the injected current
was as follows:

Iinj(V, t) = INa(V)+ IK(V)+ IKM(V)+u(t)− s(t)(V +60mV), (3.2)

6Available at http://www.ioffe.ru/CompPhysLab/AntonV3.html

http://www.ioffe.ru/CompPhysLab/AntonV3.html

38 Chapter 3. Complex excitability and flipping of granule cells

Figure 3.1: Dynamic-clamp experimental setup

where INa, IK and IKM were calculated according to ODEs coming from a mathematical model.

3.2.4 Statistical analysis

Statistical analysis was performed using the dynamic clamp open source software Visualizator7

and GraphPad Prism8. Data were analyzed using a one–way ANOVA. Post hoc analysis for
ANOVA was conducted by using Tukey’s test. The level of statistical significance was set at
p< 0.05. All data sets were tested for deviation from normal distribution (Kolmogorov–Smirnov’s
test).

3.2.5 Computational Modelling

We have combined multi-timescale mathematical modelling for excitability framework developed
in [110] and conductance-based modelling.

The model’s equations are defined as follows:

C
dV
dt

= gL(V −VL)− INa − IDR − IA +u(t)− s(t)(V −Vus) (3.3)

Approximating formulas for the currents INa, IDR and IA are taken from [111]. The voltage-
dependent potassium current IDR is defined as:

IDR(V) = ḡDRnyK(V −VK), (3.4)

dn
dt

=
n∞(V)−n

τn(V)
, (3.5)

dyK

dt
=

yK∞(V)− yK

τy(V)
, (3.6)

7Available at http://www.ioffe.ru/CompPhysLab/AntonV3.html
8https://www.graphpad.com/

http://www.ioffe.ru/CompPhysLab/AntonV3.html
https://www.graphpad.com/

3.3. Results 39

τn =
1

αn +βn
+0.8ms, n∞ =

αn

αn +βn

αn = 0.17 · e(V+5)·0.090 ms−1, βn = 0.17 · e(V+5)·0.022 ms−1,

τy = 300ms, yK∞ =
1

1+ e(V+68)·0.038

(3.7)

The voltage-dependent potassium current IA is defined as:

IA(V) = ḡAn4
Al3

A(V −VK), (3.8)

dnA

dt
=

nA∞(V)−nA

τn(V)
, (3.9)

dlA
dt

=
lA∞(V)− lA

τl(V)
, (3.10)

τnA =
1

αnA +βnA

+1ms, nA∞ =
αnA

αnA +βnA

αnA = 0.08 · e(V+41)·0.089 ms−1, βnA = 0.08 · e(V+41)·0.016 ms−1,

τlA =
1

αlA +βlA
+2ms, lA∞ =

αlA
αlA +βlA

,

αlA = 0.04 · e−(V+49)·0.11 ms−1, βlA = 0.04ms−1,

(3.11)

The voltage-dependent sodium current INa was approximated by the following 4-state Markov
model [111]:

INa(V) = ḡNax1(V −VNa), (3.12)

x1 + x2 + x3 + x4 = 1, (3.13)

dxi

dt
=

4

∑
j=0, j ̸=1

A j,ix j − xi

4

∑
j=0, j ̸=1

Ai, j with i = 1,2,3, (3.14)

A1,2 = 3 ms ,A1,3 = f 1,3
1 (V),A1,4 = f 1,4

1 (V),

A2,1 = 0,A2,3 = f 2,3
2 (V),A2,4 = 0,

A3,1 = f 3,1
1 (V),A3,2 = 0,A3,4 = f 3,4

2 (V),

A4,1 = f 4,1
1 (V),A4,2 = 0,A4,3 = 0,

(3.15)

f i, j
1 (V) =

{
τ

i, j
min +

1

e(V−V i, j
1/2)/ki, j

}−1

f i, j
2 (V) = {τ

i, j
min +[(τ i, j

max − τ
i, j
min)

−1 + e(V−V i, j
1/2)/ki, j

]−1}−1,

(3.16)

3.3 Results

3.3.1 Intrinsic properties, firing pattern and depolarization block

We studied the firing patterns and the capabilities of granule cells for entering DB under dynamic
clamp conditions. Firing rate was assessed by constructing f-I curves for each individual neuron;
see Fig. 3.2 B. Furthermore, the maximum frequency of generating action potentials was calcu-
lated as the number of spikes per stimulation time (500 ms). Because DB depends not only on the
injected current but also on the extra (synaptic) conductance (additional shunting), we measured

40 Chapter 3. Complex excitability and flipping of granule cells

the dependence of firing rate versus current and conductance (Fig. 3.2A), thus revealing the full
domain of spiking in the plane of those input parameters, which can be re-interpreted in terms of
excitation and inhibition in the following way:

Iinj(V, t) = v(t)− s(t)(V +60mV) = GE(t)(VE −V)+GI(t)(VI −V), (3.17)

that is,
u(t) = GE(t)(VE +60mV)+GI(t)(VI +60mV), s(t) = GE(t)+GI(t), (3.18)

where GE and GI are the excitatory and inhibitory synaptic conductances, respectively.
Entrance into DB was defined when the recorded cells started generating action potentials with

half of the maximum spiking frequency, and the uDB/Gin parameter was measured, where uDB is
the value of u that leads to DB, and Gin is the input conductance of neuron at the resting state,
evaluated from responses to current step injection. Based on firing characteristics, specifically
maximum frequency of generating action potentials, we have observed that recorded cells can be
divided into two main groups:
1) LFC (low-frequency cells) generating action potentials with a maximum frequency lower than
12 Hz (9 cells out of 18; Fig. 3.3 A,C), and
2) HFC (high-frequency cells) generating action potentials with a frequency higher that 12 Hz (9
out of 18 cells; Fig. 3.3B,C).
The maximum spiking frequency reached by LFC cells was significantly lower when compared to
HFC cells (7.5±1.4 Hz vs 22.9±2.1 Hz, p < 0.0001; see Fig. 3.3 D).

In LFC cells, the firing rate decreased for uDB/Gin bigger then 56.4± 6.38 mV due to depo-
larization block and it was siginificantly lower than for HFC cells (79± 10 mV; p < 0.05;F =
2.5; t = 1.9;d f = 14; see Fig. 3.3 E), which indicates that LFC neurons are entering into DB ear-
lier than HFC cells. We have compared basic intrinsic properties of recorded LFC and HFC cells,
such as action potential (AP) amplitude, resting membrane potential (RMP), the duration of action
potential measured as AP half width, input resistance, threshold for generating AP and tau. There
were no significant differences between two groups (see Table 3.1). Therefore, we suggest that
the maximum firing rates of different neurons are mainly related to the current critical for entering
DB.

Table 3.1: Basic parameters of recorded neurons. Data presented as mean± SEM; there
were no significant differences between the groups (p > 0.05 ANOVA). LFC - low fre-
quency cells, HFC - high frequency cells, RMP - resting membrane potential, Ri - input
resistance, n - number of recorded cells.

3.3.2 Effect of extra channels

We studied whether additional sodium and potassium channels would significantly affect both
firing rates and entrance into the depolarization block of recorded granule cells. We implemented
the addition of both sodium and potassium channels and assuming that the maximum firing rate
is controlled by the currents that provide spike frequency adaptation, we decided to add slow
potassium channels (KM-channels). As a result, LFC neurons started showing much higher values

3.3. Results 41

Figure 3.2: Assesment of firing rate in examplary neurons. (A) Firing rate as the number
of APs per stimulation time interval (500ms) for a representative neuron as a function of in-
jected current u and extra conductance s, both scaled by the input conductance Gin=9.9nS.
Cell 21/C4. (B) Firing rate vs injected current steps (f-I curve) for cell 21/C4. (C) Rep-
resentative responses of 21/C4 cell to sub- and suprathreshold depolarizing current pulses
showing spiking pattern, entrance to DB and full depolarization block without extra con-
ductane (Gin=0). (D) Representative responses of 21/C4 cell to sub- and suprathreshold
depolarizing current pulses showing spiking pattern, entrance to DB and full depolariza-
tion block under shunting conditions (Gin=2)

of firing rate and the maximum frequency of generating action potentials was significantly higher
when additional Na/KM channels were introduced (without extra channels 7.5± 1.4 Hz vs with
Na/KM channels 36±3 Hz; p < 0.0001; F = 4.5; t = 8; d f = 8; Fig. 3.4 A,C). However, adding
Na/KM channels did not significantly affected the uDB/Gin parameter, therefore the entrance into
DB of LFC cells has not been influenced (without extra channels 56± 6 mV vs with Na/KM
channels 54± 9 mV; p = 0.4; F = 1.6; t = 0.17; d f = 11; Fig. 3.4 D). In the HFC group, after
adding extra Na/KM channels, a change to f-I curve previously observed in the LFC neurons was
present only in 1 out of 9 recorded cells. In remaining HFC neurons additional Na/KM channels
did not affected firing rate (Fig. 3.4 B,C). Overall, the mean maximum frequency of generating
action potentials in HFC cells was not significantly altered by the addition of Na/KM channels
(without extra channels 23±2 Hz vs with Na/KM channels 36±13 Hz; p = 0.34; F = 30; t = 1.0;
d f = 7.5; Fig. 3.4 B,C). In HFC group, after adding Na/KM channels, cells tend to enter DB
block earlier than without additional channels as the value of the uDB/Gin parameter is smaller,
however this shift is not statistically significant (without extra channels 82±11 mV vs with Na/KM
channels 66±18 mV; p = 0.23; F = 2.3; t = 0.76; d f = 10; Fig. 3.4 D).

While analyzing f-I curves plots of recorded neurons we have observed an interesting phe-
nomenon regarding depolarization block. In several granule cells, after adding Na/KM channels
we observed a complex, non-gradual dependence of firing rate on injected current.

3.3.3 “Flipping” cells

While, in general, the initial entrance into DB was not affected by additional Na/KM channels as
there were no significant differences in uDB/Gin parameter (as described in the previous section),
8 out of 18 recorded neurons expressed a very unique behavior in terms of their firing patterns.
After reaching a full DB characterized as generating only 1 or 2 action potentials in response to
injected current step, these cells were not able to maintain it, instead they ”flipped” and started
generating trains of spikes at larger injected current steps before finally reaching another DB. We

42 Chapter 3. Complex excitability and flipping of granule cells

Figure 3.3: Comparison between two subpopulations of recorded cells. (A) Firing rate
for a representative LFC neuron as a function of injected current and extra conductance,
both scaled by the input conductance Gin=3.5nS. Cell 21/C1. (B) Firing rate for a repre-
sentative HFC neuron as a function of injected current and extra conductance, both scaled
by the input conductance Gin=9.9nS. Cell 21/C4. (C) f-I curves for representative LFC
and HFC cells. (D) Maximum spiking frequency in LFC neurons was significantly lower
than in HFC neurons. (E) LFC neurons are entering depolarization block earlier than HFC
neurons. (F) Representative responses of LFC (top) and HFC (bottom) cells to suprathresh-
old depolarizing current pulse. Data presented as mean± SEM (Horizontal dashed line);
**** indicate statistical significance p< 0.0001 ANOVA; * indicate statistical significance
p < 0.05 ANOVA

called this phenomenon “flipping” (Fig. 3.5). Interestingly, even within this small subpopulation
of “flipping” cells we were able to observe two different types of “flipping” behavior. Half of the
recorded cells were able to overcome the DB only once, meaning one big ”flip” was present in
their firing responses to current injection. However, the remaining half of the “flipping” neurons
were able to produce multiple ”flips” (2 to 8). In general, we observed that the majority (5 out of
8) of “flipping” neurons were previously assigned to the LFC group and within this subpopulation
2 cells were able to generate multiple ”flips” (2 and 3 flips). The remaining 3 “flipping” cells
were HFC neurons and 2 of those cells were able to generate 6 and 8 ”flips” in response to in-
jected current step (Fig. 3.6 A). As the majority of “flipping” cells generating only one ”flip” were
previously assigned to the LFC group, we wondered whether the number of ”flips” is correlated
with the initial spiking frequency. We have observed a positive correlation between the number
of ”flips” and the maximum frequency of action potentials generated by the cell in control condi-
tions, meaning without additional Na/KM channels (r = 0.74; R2 = 0.54; p = 0.037; Fig. 3.6 F),
however there was no correlation between the number of generated ”flips” and the maximum spik-
ing frequency recorded with additional Na/KM channels present (r = 0.24; R2 = 0.055; p = 0.58;
Fig. 3.6 G). Because “flipping” is a phenomenon that we have never come across before, we won-
dered what could be the possible mechanism behind it, for this purpose we designed and analysed
a computational model.

3.3.4 “Flipping” in a computational model

In order to analyze the “flipping” effect, we simulated a neuron with a Na- and K-channels. In
the present model, the “flipping” is observed only for nonzero extra conductance. The excitation
domain (Fig. 3.7 A) has a “horn” on the right. Hence, the f-I curve shows a gap (Fig. 3.7 C),

3.3. Results 43

Figure 3.4: Effects of additional sodium and slow potassium channels on firing rate and
enterance to depolarization block. (A) Firing rate for a representative LFC neuron without
(left) and with additional Na/KM channels (right; gNa=200 nS, gKM=200 nS). (B) Firing
rate for a representative HFC neuron without (left) and with additional Na/KM channels
(right; gNa=10 nS, gKM=10 nS). (C) Maximum spiking frequency was significantly in-
creased in LFC neurons, but not in HFC cells. (D) Addition of Na/KM channels does not
influence the u/Gin parameter. Data presented as mean± SEM; **** indicate statistical
significance p < 0.0001 ANOVA.

which is due to the “flipping”. In terms of spike trains (Fig. 3.7 B), this gap is revealed as a
cease of spiking for intermediate currents, and constant spiking in response to smaller and larger
currents. At large currents, however, the amplitude of spikes is different, which is explained by
a different sequence of transitions undergone by the sodium channels between the states of the
Markov model. While during weak stimulus the hyperpolarization between spikes is stronger and
the channels pass through low- and high-threshold states, for larger current the neuronal membrane
is always depolarised between spikes and the channels pass only through high-threshold states.
This recruitment of different channel states in different regimes causes the “flipping” behavior.

Blockade of potassium channels in the model leads to shrinkage of the excitation domain
(Fig. 3.7 D), but remains the split and thus “flipping”.

In the reduced model with only Na-channels present, the “flipping” is observed in wider range
of extra conductances.

3.3.5 Bifurcation analysis of “flipping”

With the model introduced above, it is possible to reproduce the phenomenon of “flipping”, and its
appearance is linked to the number of states for the sodium channel of the model. With three states
for this channel, the model displays one periodic regime upon variations of the applied current,
and this regime is bounded in parameter space by Hopf bifurcations (one supercritical and one
subcritical); see Fig 3.8. Namely, a family of low-voltage equilibria (rest states of the neuron)
destabilise and give way to a family of stable limit cycles (spiking states of the neuron) via a
supercritical Hopf bifurcation (HB1), which occurs at an input current value I ≈ 1.2. At a much
higher value of the input current, the branch of stable cycles disappears via a subcritical Hopf
bifurcation (HB2) at I ≈ 2. This scenario is compatible with type-2 neural excitability.

In contrast, when the number of states is increased to four, the two Hopf bifurcations from
the previous scenario are still present, for similar values of applied current (HB1, HB2), however a
second periodic regime appears, bounded in parameter space by a second pair of Hopf bifurcations,

44 Chapter 3. Complex excitability and flipping of granule cells

Figure 3.5: Example of the “flipping” phenomenon. (A) f-I curves of a representative
cell exhibitng a pronounced ”flip” in firing pattern induced by the addition of gNa=50 nS,
gKM=50 nS channels (blue line). (B, C) Firing rate as a function of injected current and
extra conductance, both scaled by the input conductance Gin=4.27nS without (B) and with
(C) additional Na/KM channels. (D) Representative responses to a suprathreshold depo-
larizing current pulses.

at higher values of Iapplied ; see Fig 3.9. Indeed, at an input current value I ≈ 3.2, the stable solution
destabilise again and give way to a family of stable limit cycles via a supercritical Hopf (HB3).
This branch of stable cycles disappears via a subcritical Hopf bifurcation (HB4) at I ≈ 4.1. The two
pairs of Hopf bifurcations are separated by a regime where the model admits a stable stationary
state with voltage higher than the firing threshold, hence a DB. Therefore, this second periodic
regime arising at larger values of the input current is therefore compatible with the “flipping”
phenomenon reported in the present work, and it is due to the number of sodium channel states in
the model.

3.4 Discussion

Managing the diversity of neurons is a very complex yet very important task. Electrophysiological
criteria, such as intrinsic properties, excitability class represented by firing patterns and transition
to depolarization block are very useful tools in identifying and distinguishing different types of

3.4. Discussion 45

Figure 3.6: “flipping” cells. (A) Division of “flipping” cells based on the number of ”flips”
and the initial firing rate (LFC vs HFC). (B) Firing rate of a LFC neuron generating one
”flip” after addition of gNa=100 nS, gKM=40 nS; Cell 21/C3. (C) Firing rate of a LFC
neuron generating multiple ”flips” after addition of gNa=50 nS, gKM=50 nS; Cell 21/C6.
(D) Firing rate of a HFC neuron generating one ”flip” after addition of gNa=50 nS, gKM=20
nS; Cell 21/C2. (E) Firing rate of a HFC neuron generating multiple ”flips” after addition
of gNa=50 nS, gKM=50 nS; Cell 21/C7. (F) The number of ”flips” is correlated with the
maximum frequency of spikes generated in response to injected current step before the
addition of Na/KM channels. (G) The number of ”flips” is not correlated with the maxi-
mum frequency of spikes generated in response to injected current step after the addition
of Na/KM channels.

neurons that are sharing anatomical and functional similarities. Therefore, the primary goal of this
study was to explore firing characteristics and entrance into depolarization block of granule cells.

Depolarization block of granule cells is very rarely discussed in experimental findings prob-
ably because the range of input currents in which GCs transition to DB could be considered un-
physiological, especially in the case of mature GCs. However, a model developed for hippocampal
CA1 region by Bianchi suggests that even background synaptic activity in the gamma range in-
volving less than 3 percent of the total number of excitatory synaptic inputs converging on any

46 Chapter 3. Complex excitability and flipping of granule cells

A D

Current / Gin, mV

C
on

du
ct

an
ce

/G
in

0 20 40 60 80 100
0

2

4

6

8

10 80
60
40
20
0

Hz

Current / Gin, mV

C
on

du
ct

an
ce

/G
in

0 20 40 60 80 100
0

2

4

6

8

10 32
24
16
8
0

Hz

B C

pA

H
z

0 100 200 300 400 500
0

10

20

30

40

50

60

m
V

-60

-40

-20

0
Iind=200pA (u/Gin=40mV), s/Gin=4

m
V

-60

-40

-20

0
Iind=250pA (u/Gin=50mV), s/Gin=4

ms

m
V

200 400 600
-60

-40

-20

0
Iind=340pA (u/Gin=68mV), s/Gin=4

Figure 3.7: Simulations of a neuron with Na- and K-channels. gNa=228nS, gKM=500nS,
Gin=5nS. A: f-u-s dependence; B: f-I curves for s/Gin=4; C: spike trains. D: Reduced
model with only Na-channels.

given CA1 pyramidal neuron, could easily generate an aggregate peak input current larger than 1
nA [94]. This finding makes the DB a very important feature of any neuron, because it is highly
probable that in large active networks, such as dentate gyrus, numerous cells will likely be in a DB
at any time, therefore their silent state could influence the activity of the entire network.

Many studies focusing on the excitability of granule cells reported two main types of firing
patterns that GCs generate in response to increasing current injections. Typically, type-1 DG gran-
ule cells are exhibiting spikes starting from a moderate intensity of stimulation and increasing
in frequency following steps increments. At current injections of high intensity, these cells are
lacking sustained firing, action potentials become progressively smaller in amplitude and GCs are
entering DB at a relatively early stage (200-250 pA). In contrast, type-2 DG granule cells are usu-
ally described as firing throughout all the current step without failure (entering DB) and exhibiting
firing frequencies that were linearly proportional to the intensity of the current step, i.e. the maxi-
mum number of action potentials was always observed for the highest current intensity [112–114].
Based on results obtained in our study, we observed that LFC neurons resemble the type-1 cells
reported by others. In our experimental protocol, however, we used a wider range of current in-
tensities therefore we were able to observe the transition of HFC (type-2) GCs into DB at a later
stage (450-500 pA). That approach, with applying current intensities greater than 300 pA, is not
typically used by others, therefore only linear firing patterns of type-2 GCs is most commonly
described in other experimental findings.

Under physiological conditions, neurons fire in response to the activation of synaptic con-
ductances. In electrophysiological experiments, usually, neuronal characteristics are probed in
current-clamp conditions, which cannot fully reflect the synaptic activation because the injected
current cannot mimick changes of membrane conductance, if only it is not voltage-dependent.

3.4. Discussion 47

Figure 3.8: Bifurcation diagram of the system with 3 states, and with respect to parameter
Iapplied. Red (resp. black) segments of the curve of equilibria denote stable (resp. unstable)
branches. As the applied current Iapplied is increased, oscillations (spikes) appear through a
subcritical Hopf (HB1) and then disappear through a supercritical Hopf bifurcation (HB2).
Parameter values are: τ

1,3
min = 0.33 ms, τ

3,1
min = 0.33 ms, τ

2,3
min = 1.0 ms, V 1,3

half = −51mV,
V 3,1

half =−42mV,V 1,3
half =−53mV, k1,3 =−2,0 mV, k3,1 = 1,0 mV, k2,3 =−1,0 mV, τ

2,3
max =

100 ms, VNa = 65 mV, VK = −70 mV, VL = −64.96 mV, ḡNa = 2.28µS/cm2S, ḡDR =
0.76µS/cm2, ḡA = 8.36µS/cm2, ḡL = 0.048µS/cm2, s = 0.2cm2, Vus = −49 mV, C =
0.7µF/cm2, A1,2 = 3 ms−1. Initial conditions are: V0 =−65, x1 = 0, x2 = 0, n0 = 0.00128,
yK,0 = 0.47, nA,0 = 0.079, lA,0 = 0.85.

The conductance change provides shunting effect, whose importance is shown, for instance, in
visual cortex studies [115, 116]. Such characteristics of neuronal activity as the firing rate and
the spike shape parameters are much more fully expressed by their dependence on both signals,
the synaptic current and synaptic conductance, or, the injected voltage-independent current and
conductance [117, 118]. These signals determine the first two, voltage-independent and linearly
voltage-dependent components of the total current received by a neuron from synaptic input [117].
Therefore, in our study we used the dynamic-clamp technique, because it can provide both input
signals, the synaptic current and the synaptic conductance [119, 120]. The dynamic-clamp stimu-
lation protocols used in our study were based on [60, 120–123].

Every neuron has sodium and potassium currents and the interaction between these currents
results in different transitions between spiking and the silent state, therefore here we studied the
effects of additional Na- and KM-channels on firing rates and DB of GCs. In the case of rather
“weak” LFC cells with a small maximum firing rates and narrow domain of spiking, the additional
Na- and KM-channels increased the firing rate and enlarged the domain so that it resembled the
firing pattern of HFC cells. Interestingly, in the case of HFC cells addition of Na/KM channels
had no effect on maximum firing rate with the exception of one neuron. Moreover, the addition of
extra Na/KM channels has no influence on the initial transition to depolarization block, except for
“flipping” cells.

The discovery of the “flipping” phenomenon is the major finding of this study. As we have
metioned earlier (see Results) we defined “flipping” behavior as the ability of certain neurons
to overcome the initial depolarization block in order to start generating trains of spikes at larger
injected current steps before finally reaching another depolarization block. To the best of our
knowledge, this neuronal behavior has not been previously reported in other experimental studies.

Importantly, we were able to reproduce “flipping” phenomenon in our computational model
reaching the conclusion that, the appearance of “flipping” is linked to the number of states for the

48 Chapter 3. Complex excitability and flipping of granule cells

Figure 3.9: Bifurcation diagram of the system with 4 states, and with respect to parameter
Iapplied. Red (resp. black) segments of the curve of equilibria denote stable (resp. unstable)
branches. As the applied current Iapplied is increased, oscillations (spikes) appear through a
subcritical Hopf (HB1) and then disappear through a supercritical Hopf bifurcation (HB2).
Then, the scenario appears for higher values of Iapplied: oscillations appear through a sub-
critical Hopf (HB3) and then disappear through a supercritical Hopf (HB4) Parameter val-
ues are: τ

1,3
min = 0.33 ms, τ

3,1
min = 0.33 ms, τ

2,3
min = 1 ms, τ

1,4
min = 0.33 ms, τ

3,4
min = 1ms, τ

4,1
min =

0.33 ms, V 1,3
half =−51mV, V 3,1

half =−57mV,V 1,3
half =−53mV, V 1,4

half =−57mV, V 3,4
half =−60mV,

V 4,1
half =−51mV, k1,3 =−2 mV, k3,1 = 1 mV, k2,3 =−1 mV, k1,4 =−2 mV, k3,4 =−1 mV,

k4,1 = 1,0 mV, τ
2,3
max = 100 ms, τ

3,4
max = 100 ms, VNa = 65 mV, VK =−70 mV, VL =−64.96

mV, ḡNa = 2.28µS/cm2, ḡDR = 0.76µS/cm2, ḡA = 8.36µS/cm2, ḡL = 0.048µS/cm2,
s = 0.2cm2, Vus = −49 mV, C = 0.7µF/cm2, A1,2 = 3 ms−1. Initial conditions are:
V0 =−65, x1 = 0, x2 = 0, n0 = 0.00128, yK,0 = 0.47, nA,0 = 0.079, lA,0 = 0.85.

sodium channel of the model. The voltage-dependent sodium current was approximated by the 4-
state Markov model from [111], and its reduction to the 3-state version. The 4-state model model
describes two closed, one open and one inactivated states of the channel. This version of the model
shows a sharp threshold over a 5 to 10 mV range, depending on the recent history of the channel,
and the ability to recover from inactivation during repolarizations positive to earlier thresholds,
without a large window current, therefore the available threshold depends on the history of firing,
shifting down during the course of spike repolarization without giving a strong window current.

With three states for the Na channel, the model displays one periodic regime upon variations
of the applied current, and this regime is bounded in parameter space by Hopf bifurcations. This
scenario describes a typical non-flipping cell. However, when the number of states is increased
to four a second periodic regime appears, bounded in parameter space by a second pair of Hopf
bifurcations, at higher values of applied current. The two pairs of Hopf bifurcations are separated
by a regime where the model admits a stable stationary state resembling an initial depolarization
block. The presence of the second periodic regime arising at larger values of the input current is
compatible with the “flipping” phenomenon, therefore we believe that the apperance of “flipping”
it is due to the number of sodium channel states.

Heterogeneities in intrinsic excitability and firing patterns of granule cells have been fre-
quently reported in the context of neurogenesis. As we previously described (see Introduction)
the intrinsic firing properties and ionic conductances in GCs are thought to reflect their devel-
opmental stage and maturation. There is a general agreement that GCs expressing less mature
phenotype, previously described by others as type-1 cells, are reaching a maximum number of
spikes with current steps of moderate intensity. At current injections of high intensity, these cells

3.4. Discussion 49

are lacking sustained firing and are entering depolarization block. On the other hand GCs classi-
fied as type-2 are characterized by a linear firing in response to increasing current injections [113,
114]. It has been also recently reported that GCs located in different DG subregions exhibit dif-
ferent firing patterns [124]. Dentate gyrus, within each location along its dorso-ventral span, is
anatomically segregated into three different sectors: the suprapyramidal blade, the crest region,
and the infrapyramidal blade [125]. Across these sectors, granule cells manifest considerable het-
erogeneities in their intrinsic excitability, temporal summation, action potential characteristics,
and frequency-dependent response properties. Having this in mind, the majority of our recordings
were performed in the dorsal blade of the dentate gyrus within the crest. Therefore, it is not only
possible, but more likely, that the two subpopulations of GCs described here (LFC vs HFC) are
on a different stage of their maturation process, moreover we believe that the observed “flipping”
phenomenon could be also correlated with neuronal maturation, especially when vast majority
of “flipping” cells were LFC neurons. Immature neurons do not have a well-defined excitability
identity (i.e. fixed conductivities) and rather have a fluid conductivity (akin to properties of stem
cells) which enables them to explore the landscape of excitability types (1, 2 or 3). The final
stage of maturation is stabilized via effectively being programmed by the environment set by local
neuronal circuits in the DG.

We conjecture that our observed “flipping” behavior is induced by external electrical input
(or in general electrical-chemical environment) that effectively pushes neurons to jump between
classes of excitability. Without a proper ”birth dating” technique (for example by using retroviral
injections), that was not implemented here, unfortunately we cannot be sure. More research in the
future will be required in order to describe “flipping” phenomenon in greater details and answer
outstanding open questions: What is the possible role of “flipping”? Is “flipping” correlated with
neuronal maturation? And finally, can this phenomenon be observed in other types of neurons in
different brain regions?

Thus, the work presented in this chapter and the previous one shows the complementarity of
models and experiments: in Chapter 2, we began our work with the mathematical study of a model,
to then establish an experimental protocol applicable to a neuron in vitro. In this Chapter 3, our
experimental colleagues produced a flipping phenomenon via an experimental protocol adapted to
their setup, and we showed how this protocol also makes it possible to obtain the same result on
a neuron model. This complementarity shows the robustness of the models as a representation of
neurons, but also their importance as a tool.

51

Chapter 4

Observing hidden neuronal states in
experiments

The results presented in this chapter has been submitted for publication as: D. Amakhin1, A.
Chizhov2, G. Girier3, M. Desroches2, J. Sieber4 and S. Rodrigues3,5, Observing hidden neuronal
states in experiments, arXiv: 2308.15477. My contribution to this work was the slow-fast analysis
underpinning the reported phenomenon, as well as, the simulation of the protocols in-silico.

Let us now move on to a part of the thesis that combines mathematical, computational and
experimental approaches. Chapters 4 and 5 focus on using the continuation method to study
neuronal excitability in experiments, and so to bridge the gap between dynamical models, and
real neuronal recording. Obtained from the continuation method, the one-parameter bifurcation
diagram is a powerful representation to observe the excitability threshold, the spiking regions, but
also the unstable states of a neuron. However, while the continuation method is well established
for mathematical models for which the differential equations are known, its application to real
experiments is more complex. In these chapters we will explore two alternative approaches to
applying this method experimentally, one based on imposed current and the other on mastering
the exact solutions of the experiments.

4.1 Introduction

When characterising the dynamics of nonlinear systems, one fundamental criterion for a model is if
its invariants such as steady states or periodic orbits match experimental observations. The ability
to validate models is, thus, greatly expanded by experimental tools with the capacity to unveil
non-observable (sensitive or dynamically unstable) invariant states that are otherwise inaccessible
to standard measurements. This thesis chapter applies the experimental technique to use feedback
control for tracking unstable states while varying parameters to electrophysiology experiments
on neuronal cells. Our aim is to support systematic validation of neuron models by comparing
bifurcation diagrams and observing their between-cells variability. We focus on unstable parts
of steady-state branches obtained by feedback-controlled experiments and compare them with
indirect evidence from standard measurements from open-loop experiments. This extends recent
work of Ori et al. [64, 126] constructing phase diagrams from neuronal data, and complements
other approaches such as using data to verify the bifurcation structure of neuronal models [127,

1Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and
Biochemistry of RAS, St. Petersburg, Russia

2 MathNeuro Project-Team, Inria Centre at Université Côte-d’Azur; France
3 BCAM Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
4College of Engineering, Mathematics and Physical Sciences, University of Exeter, United-Kingdom
5Ikerbasque, the Basque Foundation for Science, Spain

https://arxiv.org/abs/2308.15477

52 Chapter 4. Observing hidden neuronal states in experiments

Figure 4.1: (a) Experimental setup with brain slice (A), patch pipette (B), reference elec-
trode ((Ag-AgCl pellet) connected to ground (C), amplifier (E, Multiclamp 700B) with CV-
7B headstage (D), AD-converter (F, National Instruments NI USB-6343) and standard PC
computer (G). (b) VC and CC protocol runs for cell 5: (Ivc(t),Ṽ (t))-curve for VC run (thin
bright blue: unfiltered data with sampling time step 5× 10−5 s, blue/red/brown: median
of Ivc over moving windows of size ∆w = 4×103 steps equalling 0.2s) and (Ih(t),Vcc(t))-
curve for CC run (orange, mean of Ih over moving windows. (c) (Ivc(t),Ṽ (t))-curves for
VC protocol of all 5 cells on waterfall Ṽ -axis (same color coding as (b)).

128], model-based data analysis [129] or parameter estimation from data [130]. Our approach is
similar to recent experimental demonstrations in mechanical systems [54], vibrations and buckling
experiments [131, 132], pedestrian flow experiments [133], cylindrical pipe flow simulations [134]
and feasibility studies for synthetic gene networks [135, 136].

In our electrophysiology experiments on entorhinal cortex neurons we apply a voltage clamp
(VC) [3, 56], followed by current clamp (CC). In the VC setup the electrode acts as a voltage
source, fixing the potential across the neural membrane, measuring the current, while the CC
setup adds a fixed external current, measuring the resulting membrane potential (see Fig. 4.1(a)).
The VC experiment is the closed-loop feedback-controlled part of the protocol and CC is the open-
loop protocol, because in-vivo neurons are subject to current signals that drive spiking (oscillatory)
or rest (steady) states of the neural membrane potential. VC has been applied successfully to
study neuronal nonlinear current-voltage relationships, so-called N-shaped I-V characteristics,
which cause enhanced neuronal excitability and influence the regenerative activation of certain
ionic currents (e.g., sodium) [137–141] across the neural membrane, into and out of the cell. We
show that the VC protocol with a slowly varied reference voltage signal gives access to stable
and unstable neuronal steady states of the neuron. In contrast, the open loop CC protocol with
a slowly varying applied current always follows stable (observable) states, driving the neuron to
dynamically transition between its observable rest states and its observable spiking states.

We interpret these combined experimental protocols (VC and CC) using multiple-timescale
dynamics, in particular, the dissection method [142], which reveals the dynamic bifurcations in the
experiment; see Fig. 4.1(b). In this slow-fast framework, the states traced by the VC protocol with
slow variation correspond to the steady-state experimental bifurcation diagram of the so-called
fast subsystem of mathematical model describing the protocol [142]. Hence, the N-shaped I-V
relation of a neuron should be seen as a S-shaped V-I bifurcation diagram; see again Fig. 4.1(b).
Following this strategy, we demonstrate the feasibility of tracking a family of neuronal steady
states (stable and unstable) via variations of reference signal and reparameterizing the obtained
curve using the feedback current.

4.2. Material and methods 53

4.2 Material and methods

4.2.1 Animals and treatment

Male Wistar rats were used in this study (age P21, N=8 animals). For the bifurcation diagrams
(see Fig.1b and Fig. 4.2), 4 of these 8 rats were used. Cells 1-3 were recorded from different
animals, cells 4-5 were recorded from the same animal.

The use and handling of animals was performed in accordance with the European Community
Council Directive 86/609/EEC. Horizontal 300-µm-thick brain slices were prepared as described
in [143]. The slices contained the hippocampus and the adjacent cortical regions and were kept
in the artificial cerebrospinal fluid (ACSF) with the following composition (in mM): 126 NaCl,
24 NaHCO3, 2.5 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgSO4, 10 glucose (bubbled with 95% O2/5%
CO2 gas mixture). All the listed chemicals were purchased from Sigma-Aldrich (St. Louis, MO,
USA).

4.2.2 Electrophysiology

We performed the whole-cell patch-clamp recordings of the principal neurons in the entorhinal
cortex. Neurons within the slices were visualized using a Zeiss Axioscop 2 microscope (Zeiss,
Oberkochen, Germany), equipped with a digital camera (Grasshopper 3 GS3-U3-23S6M-C; FLIR
Integrated Imaging Solutions Inc., Wilsonville, OR, USA) and differential interference contrast
optics.

Patch pipettes were produced from borosilicate glass capillaries (Sutter Instrument, Novato,
CA, USA) and filled with one of the following pipette solutions. A potassium gluconate-based
pipette solution had the following composition (in mM): 136-K-Gluconate, 10 NaCl, 10 HEPES,
5 EGTA, 4 ATP-Mg, 0.3 GTP.

A Multiclamp 700B (Molecular Devices, Sunnyvale, CA, USA) patch-clamp amplifier, a NI
USB-6343 A/D converter (National Instruments, Austin, TX, USA) and WinWCP 5 software
(SIPBS, UK) were used to obtain the electrophysiological data. The recordings were lowpass
filtered at 10 kHz and sampled at 20-30 kHz. The access resistance was less than 15 MΩ and
remained stable during the recordings. The liquid junction potential was not compensated for.
The flow rate of ACSF in the recording chamber was 5 ml/min. The recordings were performed at
30◦C.

Specifically for the voltage-clamp protocol. We note the CV-7B headstage has four different
feedback resistors (Rf): 50 MΩ, 500 MΩ, 5 GΩ, and 50 GΩ. The Rf determines the maximum
currents that can be recorded or injected. In voltage-clamp mode it is generally recommended to
use the largest possible value of Rf (larger Rf results in less noise), though high values can result
in current saturation. Since in our preparation the electrical currents varied between 50-2000 pA
(several nA for the potassium ion currents at positive holding potentials), we chose Rf= 500 MΩ

(i.e. feedback gain gc = 2 nS).

4.2.3 Equations and parameters for the simulations of the Morris-Lecar model

We applied the VC and the CC protocols, with slow variations in the feedback reference signal and
in the applied current, respectively, to the Morris-Lecar model [6], whose equations are as follows

CV̇ =−gL(V −VL)−gCam∞(V)(V −VCa)−gKw(V −VK)+gc(Vh −V),

ẇ = φ
w∞(V)−w

τw(V)
,

(4.1)

54 Chapter 4. Observing hidden neuronal states in experiments

with the following voltage-dependent (in)activation and time-constant functions:

m∞(V) = 0.5(1+ tanh((V −V1)/V2)),

w∞(V) = 0.5(1+ tanh((V −V3)/V4)),

τw(V) = cosh((V −V3)/(2V4))
−1.

(4.2)

To obtain Fig.1 of the main manuscript, we have used the following parameter values. Finally,

Table 4.1: Parameter values for the Morris-Lecar model (8.1).

parameter C gL VL gCa VCa gK VK gc φ V1 V2 V3 V4

unit pF nS mV nS mV nS mV nS mV mV mV mV
value 20 2 -60 5 80 8 -74 20 0.067 -0.5 14 11 17.4

for both the VC protocol with slow variation, and the CC protocol with slow variation, the speed
of the variation was chosen to be equal to ε = 0.01. Note that gc can be decreased to 7, which
is in the same order of magnitude as the experimental one. Moreover, the capacitance chosen for
the model simulations is on the same order of magnitude as observed in the experiments. Never-
theless, the key point to note is that we are not aiming for quantitative agreement since this is a
conductance-based phenomenological model.

4.3 Results

We applied first VC and then CC protocol to 5 neurons in the entorhinal cortex of 4 male Wistar rats
[143]. We first performed the VC neuronal recordings varying the hold voltage Ṽ from −80 mV to
+30 mV slowly with ˙̃V = 1.83 mV/s, while measuring current, called Ivc in Fig. 4.1(b,c). Subse-
quently, for the CC recordings we first determine the minimal injected current required to induce a
depolarization block of action potential generation (Idb in Fig. 4.1(b), upper limit of current input
where firing occurs). Then we gradually increased the injected current from 0 pA to Idb during
60 s, such that İh is in the range 6.6 . . .7.4 pA/s for the 5 neurons, while recording voltage Vcc(t).

Figure 4.1(b) shows the time profiles (Ih(t),Vcc(t)) of the CC protocol run (orange, thin) and
(Ivc(t),Ṽ (t)) of the VC protocol run (bright blue, thin) for cell 5 overlaid in the (I,V)-plane. Af-
ter smoothing the VC time profile is the S-shaped curve (Ivc,sm(Ṽ),Ṽ) (blue/brown/red, thick).
It equals the (I,V)-characteristic of the stationary neuronal states of the CC protocol, including
dynamically unstable states (brown and red). The transition to stable spiking states is compati-
ble with type-I excitability, however we do not have sufficient data to conclude. Their dynamical
instability is inferred in two ways: (i) by the negative slope of the (Ivc,sm,Ṽ)-curve (brown) after
smoothing over a moving window with larger size ∆w = 1.5× 104 steps (= 0.75s), or (ii) by the
presence of oscillations (neuronal firing) in the CC run at Ih equalling the Ivc,sm (red). The stability
boundaries of the stationary states are labelled as bifurcations in Fig. 4.1(b). The change of stabil-
ity near the disappearance of stable spiking states at Idb is a Hopf bifurcation. The fold points of
the (Ivc,sm,Ṽ)-curve are saddle-node (fold) bifurcations. Figure 4.1(c) shows the stationary-state
curves with their inferred dynamical stability for all 5 cells. The cells are vertically ordered and
numbered according to depth of the S-shape, determining if they fall into the class of type-I or
type-II neurons. Figure 4.1(c) demonstrates wide variability in steady-state curve shape among
cells of nominally same function.

Figure 4.2 presents the recordings for VC and CC protocol for cells 1–4 in the same way as
Fig. 1(b) (which was for cell 5). The graphs superimpose the observations of our VC protocol

4.3. Results 55

Figure 4.2: Experimental bifurcation diagrams for cells 1–4.

with slow variation of the feedback reference signal and the CC protocol with slow variation of
the externally applied currents. The graphs confirm (as does Fig. 1(c) from the main manuscript)
that type-II properties of the neurons vary between individual cells. We also observe that in all
cells for Ih > Idb and for cell 3 for small Ih the distance between the stable steady states obtained
from the VC protocol and the corresponding trajectory segments obtained from the CC protocol
is larger than the bias caused by dynamic variation of Ṽ and Ih respectively, based on estimate (5)
of the main text. We do not have a complete physiological explanation for this mismatch, but we
hypothesise that this is due to the natural physiological drift of underlying neuronal processes as
one performs successive recordings on the same cell.

A characteristic for the class of excitability is the dependence of the spiking frequency on
the external current Iext as Iext approaches the lower limit of the spiking region, with a drop in
frequency expected for type-I neurons. Fig. 4.3 presents the interspike interval as a function of
the hold current Ih in panel (a), and the frequency against Ih in panel (b) for the 5 cells for which
experimental bifurcation diagrams are shown in Figure 1 of the main manuscript and Fig. 4.2.
We detected crossing times for Vcc(t) through the threshold V = 0 from below (or equivalently
Poincaré map, at V = 0). As visible in Fig. 4.3, even though the 5 cells have different steady-state
curves (obtained with the VC protocol), their frequency behaviours during the CC protocol are
qualitatively similar with drops from ≈ 15 Hz to ≲ 5 Hz for all cells. Hence, the frequency drop
does not allow us to conclusively distinguish between different excitability classes for the present
cells. However, the steady-state bifurcation diagrams obtained through VC protocols show that
cells 3-5 exhibit an experimental bifurcation diagram that is compatible with type-1 excitability,
while cells 1 and 2 have type-II compatible steady-state curves.

56 Chapter 4. Observing hidden neuronal states in experiments

Figure 4.3: Interspike intervals in seconds (panel (a)) and frequency in Hz (panel (b)) for
the spiking responses during the CC protocols with slowly-varying applied current near the
low-current limit of the spiking region.

4.4 Analysis

To see why VC-run time profiles approximate the experimental bifurcation diagram with unstable
stationary states of neurons in CC protocol, we use the formalism of multiple-timescale dynamical
systems. Superimposing the data from VC and CC protocol also gives the first experimental
illustration of slow-fast dissection. The effect of the respective clamps can be understood in a
general conductance-based model for the neuron,

CV̇ =−∑ jI j(x j,V)+ Iext,

ẋ j =
x∞, j(V)− x j

τ j(V)
,

(4.3)

describing the current balance across the neuron’s membrane. The membrane potential is V ,
I j(x j,V) j=1,...,N are the currents across different voltage-gated ion channel types and Iext is the
external current. Each ionic channel type j has an associated gating variable x j with steady-state
gating function x∞, j(V) and relaxation time τ j(V). The observed dynamic effects such as oscil-
lations (firing/spiking) and negative-slope (I,V) characteristics are determined by these channel
coefficients I j, x∞, j and τ j that are traditionally obtained by parameter fitting from VC experiments,
a difficult and mostly ill-posed problem [144].

The VC and CC protocols use different mechanisms for generating Iext(t). The VC protocol is
a closed loop where a voltage source regulates Iext with high gain gc to achieve the slowly varying
hold voltage Ṽ at the voltage source for (4.3), measuring Ivc:

Iext ≈ Ivc = gc(V −Ṽ),

˙̃V = ε∆V ,
(4.4)

which turns (4.3), (4.4) into a multiple-timescale dynamical system with N +1 fast state vari-
ables (V,x j) and one slow state variable Ṽ , corresponding to the feedback reference signal [34].
The speed at which Ṽ varies is ε∆V with ∆V (t) = 0.183 mV/ms, where we extract the dimension-
less small factor ε = 10−2.

In contrast, the CC protocol holds Iext, measuring the generated voltage Vcc, thus, correspond-
ing to an open-loop system, permitting e.g. the spiking seen in Fig. 4.1(b):

4.4. Analysis 57

Iext ≈ Ih,

Vcc ≈V,

İh = ε∆I.

(4.5)

The applied hold current Ih is varied slowly at speed ε∆I with ε = 10−2 and ∆I = 0.66 . . .0.75 pA/ms.
System (4.3), (4.5) is also a slow-fast system with 1+N fast variables (V,x j) and 1 slow variable
Ih. The gain gc in (4.4) is limited by the imperfect conductance across the non-zero spatial extent
of the membrane. Even though (4.3) is for the potential V across the entire membrane and only Ṽ
at the clamp is measured, we approximate Ṽ ,Vcc ≈V for, the membrane potential, and Ih, Ivc ≈ Iext
for the external current in (4.3).

Following a classical multiple-timescale approach, we consider the ε = 0 limit of system (4.3), (4.4),
which corresponds to its (1+N)-dimensional fast subsystem (4.3) with Iext = gc(V − Ṽ), where
Ṽ is now treated as a parameter. For fixed Ṽ and voltages in the range −80 . . .30 mV of inter-
est, system (4.3) has only stable steady states (no limit cycles, that is, no neuronal spikes). For a
fixed hold voltage Ṽ , the steady states of model (4.3) with Iext = gc(V − Ṽ) satisfy the algebraic
equations for (V,x j) j=1,...,N :

∑ jI j(x j,V) = gc(V −Ṽ),

x j = x∞, j(V),
(4.6)

where Ieq(V) = ∑ j I j(x∞, j,V) is the equilibrium current for fixed membrane potential V . The
solutions of (4.6) form a (1D) steady-state curve of system (4.3), (4.4), which is normally hyper-
bolic (transversally attracting) for ε = 0. For ε ̸= 0 the increase of Ṽ with speed ε∆V introduces
a slow variation of all states (V,x j). Hence, V and the feedback current Ivc = gc(V − Ṽ) (as mea-
sured), are not at their steady-state values given by (4.6), but they are changing dynamically. This
results in a difference between the measured curve (Ivc,Ṽ) in Figure 4.1(b) and the (I,V)-values
of the desired steady-state curve (4.6).

Geometrical singular perturbation theory (GSPT) by Fenichel [79] implies that after decay
of initial transients every trajectory of the VC protocol modelled by system (4.3), (4.4) satisfies
equation (4.6) for the steady-state curve up to order ε . The first-order terms in ε are

Ieq(V)− Ivc(V)≈ I′eq(V)V̇ ,
τ1/2

ln2
≲ I′eq(Ṽ)0.2 mV, (4.7)

where τ1/2 is the time for deviations from the transversally stable steady-state curve (4.6) to
decay to half of their initial value. We estimate τ1/2 from recovery transients after disturbances
naturally occuring from imperfections in the voltage clamp during VC runs as τ1/2 ≲ 0.075 s, such

that V̇ τ1/2/ ln2 ≈ ˙̃V τ1/2/ ln2 ≲ 0.2 mV. Thus, the systematic bias between Ivc,sm(Ṽ) in Fig. 4.1(b)
and the true steady state curve Ieq(V) caused by dynamically changing Ṽ is below measurement
disturbances.

Estimate (4.7) can also be tested in silico. Figure 4.4 emulates both VC and CC protocols with
the Morris-Lecar model [6], which is of the form (4.3) with j = 1. For the chosen parameter set
(see 4.2.3), the curves (Ivc(t),Ṽ (t)) and (Ieq(Ṽ (t)),Ṽ (t)) are order ε (≈ 1%) apart.

Consequently, time profile (Ivc(t),Ṽ (t)) follows closely the curve (4.6) of stable steady states
of the fast subsystem (4.3) with VC protocol Iext = gc(V −Ṽ), treating Ṽ as a parameter. We now
connect the curve (4.6) to a curve of fast-subsystem equilibria of the CC protocol, which is in part
unstable. To this end we recast the VC protocol in the form of a CC protocol with non-constant
current ramp speed ε∆I,vc(t) and disturbances: the smoothed time profile Ivc,sm(Ṽ (t)) in Fig. 4.1(b)

58 Chapter 4. Observing hidden neuronal states in experiments

Figure 4.4: VC and CC in silico. Protocol as described for Fig. 4.1 applied to a type-I
Morris-Lecar neuron model [6]; see 4.2.3 for parameter values. The two-dimensional fast
subsystem has a S-shaped steady-state curve satisfying(4.6). The steady-state curve (4.6)
and the (multi-color) S-shaped curve from the VC protocol indistinguishable throughout
the range of input currents Ivc. The orange curve resulting from the CC protocol is very
close to S0 and the VC protocol near its dynamically stable parts.

of the VC run (thick, in blue/brown/red) equals the raw-data measured time profile Ivc(t) (thin blue
curve with fluctuations) plus disturbances ηvc(t), defined by ηvc(t) = Ivc,sm(Ṽ (t))− Ivc(t). After
smoothing, the derivative I′vc,sm(Ṽ) w.r.t. Ṽ is moderate (≲ 20 pA/mV in modulus at its maximum
near Idb), such that the VC protocol implies

Iext ≈ Ivc,sm +ηvc,

İvc,sm = ε∆I,vc(t),
(4.8)

where ∆I,vc(t) = I′vc,sm(Ṽ (t))∆V ≈ I′eq(Ṽ (t))∆V with upper bound maxt |∆I,vc(t)|≲ 3.7 pA/ms
in the range of Fig. 4.1(b). Thus, Ivc,sm is indeed still slow. Hence, except for disturbances ηvc(t),
the external current Iext is slowly varying according to a CC protocol with slowly time-varying
speed ε∆I,vc(t), such that the VC protocol (4.4) is equivalent CC protocol (4.8) with disturbances
ηvc.

Systems (4.3), (4.5) and (4.3), (4.8) without disturbances (ηvc = 0) are both models of CC
protocols. They have the same fast subsystem (4.3) when setting ε = 0 and identifying Ih and
Ivc,sm. The respective fast-subsystem steady states (V,x j) j=1,...,N satisfy

∑ jI j(x j,V) = Ih(= Ivc,sm),

x j = x∞, j(V).
(4.9)

However, systems (4.3), (4.5) and (4.3), (4.8) differ by the nature of their respective slow variables
Ih and Ivc,sm: Ih is an externally applied hold current for (4.5), while Ivc,sm is a measured (and
smoothed) current from the feedback control gc(V − Ṽ) of the voltage source for (4.8). Thus,
while the S-shaped steady-state curve (Ieq(V),V) is identical for both systems, it contains large
unstable segments as a steady-state curve of (4.3), (4.5), while it always stable as a steady-state

4.5. Discussion 59

curve of (4.3), (4.8). The change in stability is caused by the disturbances ηvc, which are current
adjustments generated by the feedback term in (4.4), Ivc = gc(V − Ṽ). Along most of the curve
(Ivc,sm(Ṽ),Ṽ) the ηvc are small fluctuations such that Ivc,sm(Ṽ) ≈ Ivc(Ṽ) and the feedback is ap-
proximately non-invasive [54]. Estimate (4.7) ensures that the measurements Ivc(V) stay close to
Ieq(V). Therefore, we can conclude that the VC protocol (4.4) with slowly varying feedback refer-
ence signal Ṽ reveals the entire family of steady states of a neuron (type 1 or 2) with constant ex-
ternal current Iext, both stable (observable) and unstable (non-observable, hidden). Consequently,
the N-shaped I-V relations for type-1 neurons reported in [137, 138, 141] equal S-shaped steady-
state bifurcation diagrams for these neurons with respect to Iext. They are tractable with a VC
protocol where the current Iext is a sufficiently slowly varying feedback current with sufficiently
small fluctuations ηvc. In particular, this allows us to detect and pass through fold bifurcations
directly in the experiment.

In contrast, for the CC open-loop protocol (4.5) applying a slowly varying electrical current the
neuron dynamically transitions between its observable rest states and its observable (dynamically
stable) spiking states (see Fig. 4.1(b) orange timeprofile). The speed of variation ε∆I ≲ 0.75×
10−3 pA/ms is such that Iext varies by only about 1 pA per spiking period. Transients to step
current responses in the stable spiking region have a half-time for decay τ1/2 ≲ 0.2 s, permitting us
to estimate the systematic bias between true steady-state spiking and the response to dynamically
changing Iext, similar to (4.7) for certain features of the periodic spike train. For example, the bias
in the spike minimum Vmin near Ih = 200 mA is V ′

min(Ih)× İh×τ1/2/ ln2∼ 0.14 mV to first order of
ε . Near the approximate Hopf bifurcation at Ih ≈ Idb in the experiment the bias will exceed order
ε as both, τ1/2 and V ′

min(Ih) approach infinity at Hopf bifurcations. Thus, combining VC protocol,
recast as (4.8) varying Ivc,sm, and the CC protocol (4.5), varying Ih, enables us to interpret the data
sets from both protocols in Fig. 4.1(b) as a bifurcation diagram including unstable states.

For the experimental curves presented in Fig. 4.1(b,c) (and also in Fig. 4.2), the disturbances
ηvc are not small in some unstable parts of the reported steady-state curve (e.g., near Ṽ =−30 mV
in Fig. 4.1(b)), caused by imperfect voltage clamping across the membrane. Furthermore, the
distances between (Ivc,sm(t),Ṽ (t)) in the VC run and (Ih(t),Vcc(t)) in the CC run for the same cell
are visibly larger along parts of the curve corresponding to dynamically stable stationary states.
This is due to the natural drift of the neuron’s physiological properties as it changes dynamically
from one protocol to the other.

4.5 Discussion

Tracking non-observable (hidden) states through their stability boundaries in experimental settings
bridges the gap between real-world phenomena and nonlinear science. Specifically, closed-loop
control methods with slow variations of feedback reference signals enable us to discover unstable
underlying states of nonlinear systems. Future work will focus on employing fully dynamic clamp
electrophysiology [59, 60, 62, 64], which involves two-way real-time communication between
neuronal tissue and computer control, permitting non-invasive feedback control with complex ref-
erence signals. This will allow biologists to validate computational models by comparing their
numerical bifurcation diagrams with experimental ones in parameter regions where the uncon-
trolled spiking response is dynamically unstable or sensitive with respect to system parameters.

This chapter is our first step in the study of bifurcation diagrams obtained throught an elec-
trophysiological experiment. This indicates us that it is indeed possible to obtain approximate
bifurcation diagram from neuron activity, and so giving us information on its excitability thresh-
old, its unstable states and its excitability class. This also means that the bifurcation diagrams
obtained from mathematical models are not just abstract, and can be obtained using the right tools
from experiments.

61

Chapter 5

Control Based Continuation in
Experiments (CBCE)

In the previous chapter we developed a technique for computing a bifurcation diagram from
an experiment, which involves inaccessibility to the underlying equations of the system. Although
this method has the advantage of being easy to apply, it has intermittent fluctuations around un-
stable steady states and is only an approximation. Furthermore, the use of the current clamp (CC)
method obviously does not give access to the exact branches of periodic orbits. In this chapter,
we propose to focus on another approach denoted Control Based Continuation in Experiments
(CBCE) which can be seen as a refinement of an approach presented in Chapter 4, the CBCE has
been developed for non-excitable systems, such as mechanical systems [54, 145]. Here we will
apply CBCE in the context of excitable systems. The CBCE method makes it possible to obtain
the exact branch of stationary points, but also the branch of stable and unstable periodic cycles,
based on control theory [146, 147] and the a path-following approach [18, 38–40].

5.1 Introduction

CBCE provide a solution for the systematic exploration of complex nonlinear dynamic systems
in the field of physical experiments. Just as numerical continuation methods follows solution
branches of differential equations, control-based continuation techniques have emerged as a robust
and versatile approach to studying the behavior of physical systems as key parameters vary [54,
145]. Control-based continuation, unlike traditional methods, allows to track these emerging so-
lution branches and associated bifurcations in parameter spaces, thereby providing insight into
regions of distinct dynamical regime. While numerical continuation methods excel when differen-
tial equations are available, the challenge arises when dealing with experimental setups. Control-
based continuation provides a promising alternative, offering a more efficient and precise way
to navigate through the complex landscape of physical experiences and uncover their underlying
dynamic behaviors.

In Fig. 5.1 we try to give a conceptual intuition of CBCE: an experiment is in real-time
progress, and we can interact with it only through the system parameters (as part of the con-
tinuation we will select a continuation parameter λ), but also through a control term described
as

gc(x,λ)(x− x̃) (5.1)

where x̃ corresponds to the reference signal (or target) that we wish to reach for the continuation,
x is the experiment output, and gc the gain associated with this control. This signal x̃ can be a

62 Chapter 5. Control Based Continuation in Experiments (CBCE)

constant injected into the system in the case of continuation of stationary solutions from experi-
ments, or periodic in the case of continuation of limit cycles from experiments. The term (x− x̃)
corresponds to what is called the residual: this difference makes it possible to evaluate how far
the solution extracted from the experiment is from the reference signal. In the stationnary point
case, the main idea behind this approach is to ensure that lim

t→∞
|x(t)− x̃| → 0. This signifies that the

algorithm has successfully converged towards a solution of the uncontrolled problem. Similarly,
in the case of periodic solutions, we want lim

t→∞
F(x̃,λ ,T) ∈Cp([0,1],Rn) where Cp is the space of

periodic functions, and T , the period (See section 5.3.6). CBCE requires closed-loop protocol,
because we want x̃ to change iteratively.

The closed-loop has intrinsic delay τ . However, herein, we assume small delay τ ≈ 0. Hence
x(x̃,λ ,τ)≡ x(x̃,λ ,0). Moreover, the main assymption is that the experiment is controllable.

Figure 5.1: Feedback-control gc(x,λ)(x− x̃) applied to an experimental protocol. x̃(t) is
the signal of reference, λ is the continuation parameter, gc is the gain, the term in blue is
the residual, and the equation in red represents a model of the controlled experiment.

For the periodic case [54, 145, 148, 149], we need to satisfy two primary assumptions before
to proceed: 1) we assume that we have the ability to project our samples to a functional space,
i.e. a Banach space x(x̃,λ , t) ∈ C(Rn), and 2) the residual F(x̃,λ , t) converges. Thus, in this
chapter, we will first give the different theoretical points necessary to understand the algorithm.
Subsequently, we will explain this algorithm, first in the context of stationary points, then in the
context of periodic solutions.

Moreover, although the output of the experiment is noisy and that the Lipschitz continuity
condition is not satisfied, the CBCE method can be used to compute bifurcation diagram from the
data, because all what is required is that the system is controllable and the residual converges.

5.2 Theoretical context

Before we proceed, I provide some computational algorithms used in the context of continuation.

5.2. Theoretical context 63

5.2.1 Newton’s method

Newton’s method is useful for solving non linear equations and for finding the zeros (or roots)
of non linear functions. Its basic principle is an iterative approximation of the solutions using
the derivatives of the function. In other words, it constructs a sequence of iterates that quickly
converge to the desired solution. The central idea behind Newton’s method is to approximate the
curve of the local function by a linear tangent at each step, and then to find the intersection of
this tangent with the x-axis to obtain a better estimate of the solution. By repeating this iterative
process, Newton’s method converges to the solution with high accuracy, usually much faster than
many other methods.

Algorithm: Let f be a differentiable map from U to Rn, where U is an open subset of Rn.
Newton’s method consists of starting with some guess a0 for a solution of the nonlinear equation
f (x) = 0. Then linearize the equation at a0: replace the increment to the function f (x)− f (a0), by
a linear function of the increment, [D f (a0)](x−a0). Now solve the corresponding linear equation:

f (a0)+D f (a0)(x−a0) = 0 ⇐⇒ D f (a0)(x−a0) =− f (a0) (5.2)

If D f (a0) is invertible:

a1 = a0 − [D f (a0)]
−1 f (a0) (5.3)

Then we iterate this process to find the approximation of the location of the root of f . To stop
the algorithm, we can determine a step limitation number or a criterion of accepting an approxi-
mate solution.

Figure 5.2: Newton’s method principle: we start the process with an initial seed a0, and
we take the corresponding value on the curve. Then, we approximate the curve of the local
function by a linear tangent t0, then find the intersection of this tangent with the x-axis
to obtain a better estimate of the solution, which will be a1. We iterate the process until
convergence.

5.2.2 Broyden’s method

The Broyden’s method, also known as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, is
an important technique in numerical optimisation and the solution of systems of nonlinear equa-
tions. It was developed by Charles W. Broyden, Donald Goldfarb, David F. Shanno and Roger
Fletcher in the 1960s and 1970s [150]. This method is particularly valuable for solving problems

64 Chapter 5. Control Based Continuation in Experiments (CBCE)

where it is necessary to find a minimum (or maximum) of a nonlinear function, or to solve a sys-
tem of nonlinear equations. Unlike Newton’s method, Broyden’s method does not require explicit
calculation of the derivatives of the function, making it applicable to a wide variety of problems,
even when the function is complex or expensive to evaluate.

Algorithm: Consider a system of k nonlinear equations:

f (x) = 0, (5.4)

where f is a vector-valued function of vector x:

x = (x1,x2,x3, ...,xk)

f (x) = (f1(x1,x2,x3, ...,xk), f2(x1,x2,x3, ...,xk), ..., fk(x1,x2,x3, ...,xk))
(5.5)

For such problems, Broyden’s method gives a generalisation of the Newton method, replacing
the derivative by the Jacobian J. The Jacobian is determined iteratively, based on the secant
equation in the finite difference approximation:

Jn(xn − xn−1)≈ f (xn)− f (xn−1) (5.6)

where n is the iteration index. For clarity, let us define:

fn = f (xn)

∆xn = xn − xn−1

∆ fn = fn − fn−1

(5.7)

so the above may be rewritten as:

Jn∆xn ≈ ∆ fn (5.8)

The above equation is underdetermined when k is greater than one. Broyden’s method suggests
using the current estimate of the Jacobian matrix Jn−1 and improving upon it by taking the solution
to the secant equation that is a minimal modification to Jn−1:

Jn = Jn−1 +
∆ fn −Jn−1∆xn

||∆xn||2
∆xT

n (5.9)

We may then proceed with the Newton iteration:

xn+1 = xn −J−1
n f (xn) (5.10)

5.2.3 Spectral decomposition by normalized Fourier series

The Fourier series is a spectral method that exploits the representation in terms of frequencies
to approximate periodic functions. It is part of the broader family of spectral methods, which
encompasses different approaches based on the analysis of the spectral properties of operators or
functions.

5.3. Algorithmes and simulated experiments 65

Suppose an experiment has a periodic output x(t +T) = x(t) for all t, and where T ∈ R is the
period. Moreover, x̃(t +T) = x̃(t). We consider a Fourier representation:

Πq : Cp([0,1];Rn)→ R(2q+1)n, (5.11)

where Πq is the projection operator, (2q+ 1) is the number of Fourier coefficients, and n, the
dimension in which the signal x and x̃ lives. In this chapter, we will only study the voltage output
of our experiment so n = 1. So, if we take a signal x̃(t), and we fix a q value, we will have:
Πq[x̃(t)] = [x̃−q, ..., x̃−1, x̃0, x̃1, ..., x̃q]. Moreover, for a Fourier function, we know how to compute
these coefficients:

x̃− j =
2
T

∫ T

0
x̃(t)cos(jωt)dt

x̃0 =
1
T

∫ T

0
x̃(t)dt

x̃ j =
2
T

∫ T

0
x̃(t)(t)sin(jωt)dt

(5.12)

We will use normalized Fourier coefficients. To do so, we just have to introduce a normaliza-
tion constant 1√

2π
(which will not affect the frequency, but only the amplitude size), such that we

obtain:

x̃− j =
∫ T

0
x̃(t)

√
2
T

cos(2π jt)dt,

x̃0 =
∫ T

0
x̃(t)

√
1
T

dt,

x̃ j =
∫ T

0
x̃(t)

√
2
T

sin(2π jt)dt,

(5.13)

Then the Fourier series associated with these normalized coefficients is:

x̃(t) = x̃0

√
1
T
+

q

∑
j=1

[x̃− j

√
2
T

cos(2 jπt)+ x̃ j

√
2
T

sin(2 jπt)] (5.14)

5.3 Algorithmes and simulated experiments

Here, we introduce our main test case for CBCE, namely the FitzHugh-Nagumo (FHN) model.
We first analyse it analytically and with numerical continuation. Finally, we proceed with CBCE.

5.3.1 Modified FitzHugh Nagumo model

The FHN model [4, 5] is a nonlinear system of differential equations describing a prototypical
neuron. It is a simplified 2D version of the Hodgkin-Huxley model, which captures in a detailed
way both the electrical activity of the membrane potential (via Kirchoff’s law) and the dynamics
of the ion channels of a spiking neuron.

66 Chapter 5. Control Based Continuation in Experiments (CBCE)

The classical version of FHN [151] is defined as follows:

V̇ =V − V 3

3
−W + Iext,

Ẇ = ε(V +α −βW),

(5.15)

where V is the membrane potential, W is the linear recovery variable (mimicking channel dynam-
ics), and Iext is an external current applied to the neuron. Parameters α and β are tuneable and
control the position of the linear nullcline. Finally, 0<ε≪1 is a small parameter that controls the
timescale separation between the two state variables.

Here, we will use a modified version of the system (5.15) on which the construction of an
equivalent analog circuit was based; see [152]. Namely, the modified FHN equations read:

V̇ =−V (V −a)(V −b)−W + Iext ,

Ẇ = ε(cV +dW + e),
(5.16)

where V and W still denote membrane potential and linear recovery, respectively. Parameters a, b,
c, d and e are tuneable. Note that, contrary to the version studied in [152], we retain the possibility
to control the angle of the linear nullcline (as in the original FHN model). System (5.16) has a
cubic V -nullcline and a linear W -nullcline, of equations:

W =−V (V −a)(V −b)+ Iext ,

W =−cV + e
d

,
(5.17)

respectively, from which we can obtain the coordinates of the equilibria. The stability of any of
these equilibria, (V ∗,W ∗) can be assessed through the Jacobian matrix J, which takes the form:

J =

(
−3V ∗2 +2(a+b)V ∗−ab −1

εc εd

)
(5.18)

Figure 5.3: (a) Bifurcation diagram of the modified FHN model (5.16) with respect to
parameter e: stable (resp. unstable) families of equilibria are represented by red (resp.
black) lines; stable (resp. unstable) families of limit cycles are represented in green (resp.
blue). Parameter values are: a = 1.8, b = 0, c = 1, d =−1, Iext = 0, ε = 0.1. (b) Same as
(a) but with ε = 0.6.

We now focus on the bifurcation diagram of the modified FHN model (5.16) with respect to

5.3. Algorithmes and simulated experiments 67

parameter e. The bifurcation diagram shown in Fig 5.3 (a) display two subcritical Hopf bifur-
cations (denoted HB1 and HB2, respectively). From each of them, a branch unstable limit cycles
emerges very “rapidly”, in terms of parameter variations. These families of limit cycles correspond
to canard solutions [34, 72–74], and the fact that they only exist in very narrow intervals of pa-
rameter values implies that one usually refers to these branches as canard explosions. The system
also displays two saddle-node bifurcations, marked as LP1,2 (for Limit Point), as the parameter is
varied.

In Fig 5.3 (b), we have increased the value of the timescale parameter ε , which effectively
makes the explosive behaviour of the branches of limit cycles disappear. It nevertheless maintains
the criticality of the Hopf bifurcations. In this case, the FHN model behaves locally much more
like a standard subcritical Hopf normal form, and it should be easier to compute the associated
bifurcation diagram once in the experimental context.

Adjusting parameters values in system (5.16), one can also change the criticality of both Hopf
bifurcations, and obtain a supercritical scenario on each side, as showcased in Fig. 5.4.

Figure 5.4: (a) Supercritical Hopf scenario in the bifurcation diagram of system (5.16)
with respect to e. Parameter values are: a = 1.8, b = 0, c = 4, d =−1, Iext = 0, ε = 0.05,
which induces a canard explosion near each Hopf bifurcation. (b) Same as (a) but with a
timescale separation due to the parameter value ε = 0.6. The branches of limit cycles are
not explosive because parameter ε is too large.

Now, we want to introduce a feedback control term in the V equation of system (5.16), which
will enable us to predict the behaviour of the associated analog circuit in closed-loop control
model. The modified equations then read:

V̇ =−V (V −a)(V −b)−W +gc(V −Ṽ),

Ẇ = ε(cV +dW + e),
(5.19)

where gc is the control gain, which allows to correct the inputs, and Ṽ is the reference signal. So
the term gc(V −Ṽ) replaces the external current Iext. Then, we can determine the appropriate range
of gc values in order to stabilise system (5.19). The new Jacobian matrix at an equilibrium point
(V ast ,W ast) is:

J =

(
−3V ∗2 +2(a+b)V ∗−ab+gc −1

εc εd

)
(5.20)

The zeros of the trace of J correspond to Hopf bifurcation points. For a large range of gc

values, there are two Hopf points when varying one of the parameters, say e. The condition for

68 Chapter 5. Control Based Continuation in Experiments (CBCE)

such Hopf points to occur is given by:

tr(J) :=−3V ∗2 +2(a+b)V ∗−ab+gc + εd = 0. (5.21)

However, there is a range of gc values for which there are no Hopf bifurcations (and no saddle-
node bifurcations either), hence giving only one stable equilibrium for all values of the primary
parameter. The critical gc value marks the fact that both Hopf points coincide at degenerate Hopf
bifurcation, before disappearing, and that corresponds to when the roots of eq. (5.21) coincide,
namely when

4(a+b)2 = 12(ab−gc − εd),

which can be rearranged into:

gc,dh = ab− εd − 1
3
(a+b)2. (5.22)

On the other hand, system (5.19) can also have saddle-node bifurcations, which will induce insta-
bilities. The condition for such bifurcations is given by the zero of the determinant of J, which
gives the following equation:

det(J) := εd
(
−3V ∗2 +2(a+b)V ∗−ab+gc

)
+ εc = 0. (5.23)

The roots of eq. (5.23) coincide at a cusp bifurcation, that is, when

4ε
2d2(a+b)2 = 12εd (εd(ab−gc)− εc) ,

which simplifies to
d(a+b)2 = 3(d(ab−gc)− c) .

This gives another specific value of gc, namely:

gc,cusp = ab− c
d
− 1

3
(a+b)2. (5.24)

For the parameter values that we have chosen (see Figs. 5.3 and 5.4), it turns out that gc,dh < gc,cusp.
Therefore, for gc < gc,dh, the controlled system (5.19) is always stable.

5.3. Algorithmes and simulated experiments 69

5.3.2 CBCE algorithm for the stationary case

Step 1: Initialization step.
• Choose gc (the gain of the control) such that it stabilize the system. So we assume

u = gc(x− x̃) where u is the control and (x− x̃) is the residual for the control. Choose a
small parameter for the finite-difference approximation of the Jacobian matrix h ∈R, a small
continuation stepsize ∆s ∈ R.

• Suppose we have an initial guess: y0 = (x̃0,λ0) with x̃0 ∈ Rn, λ0 ∈ R, so y0 ∈ Rn+1.
• Choose arbitrarily the direction vector: τ0 = (˙̃x0, λ̇0) = (0,1)

Step 1 end.
Step 2: Prediction step.

• Compute the next point y1 = (x̃1,λ1) by applying a predictor step (Tangent predictor):[
x̃pred
λpred

]
=

[
x̃0
λ0

]
+∆s

[˙̃x0

λ̇0

]
(5.25)

Step 2 end.
Step 3: Correction step

• Run experiment with (x̃(k)1 ,λ
(k)
1), where k is the Newton’s correction iteration, read the

data xi with i = 1, ...,n., and determine the asymptotic regime x∞, usually, for equilibria, the
average of the final xi.

• Evaluate the residual F(x̃(k)1 ,λ
(k)
1) = x(x̃(k)1 ,λ

(k)
1)− x̃pred.

• Construct the extended system:

H(y;∆s) =
[

Fref

(x̃− x̃0) ˙̃x0 +(λ −λ0)λ̇0 −∆s

]
(5.26)

And apply the Newton’s correction step:

[
x̃(k+1)

1

λ
(k+1)
1

]
=

[
x̃(k)1

λ
(k)
1

]
−

[
F(k)

x F(k)
λ

˙̃x0 λ̇0

]−1[
Fref

(x̃(k)1 − x̃0) ˙̃x0 +(λ
(k)
1 −λ0)λ̇0 −∆s

]
(5.27)

When ||Hk(y;∆s)||< tol and when ||

[
x̃(k)1

λ
(k)
1

]
−

[
x̃(k−1)

1

λ
(k−1)
1

]
||< tol,

allocate (x̃1,λ1) = (x̃(kfinal)
1 ,λ

(kfinal)
1). (Convergence)

Step 3 end.
Step 4: direction vector update step.

• Normalize the new direction vector.
• Evaluate next tangent direction:[

Fx̃1 Fλ1
˙̃x0 λ̇0

][˙̃x1

λ̇1

]
=

[
0
1

]
(5.28)

• Rescale afterward the new tangent vector to length 1.
Step 4 end.

5.3.3 Broyden’s Jacobian matrix calculation variant

The computation of the Jacobian matrix of our particular system is quite computationally and time
consuming. In fact, in order to have a complete Jacobian, we have to carry out three experiments

70 Chapter 5. Control Based Continuation in Experiments (CBCE)

to compute three residuals, and thus the two derivatives F(k)
x and F(k)

λ
, for each Newton iteration.

To save time for the experiments, we also propose to replace this way of computing the Jacobian
by Broyden’s method described below.

We want to make a continuation with respect to only one parameter λ , and we consider a small
perturbation h:

5.3. Algorithmes and simulated experiments 71

Step 3: Broyden’s correction step.

If Broyden’s iteration index k equals 1:
• Run experiment with (x̃(k)1 ,λ

(k)
1), read the data xref, i with i = 1, ...,n., and determine

xref,∞, usually, for equilibria, the average of the final xref, i.
• Evaluate the residual Fref(x̃

(k)
1 ,λ

(k)
1) = xref,∞ − x̃pred.

• Do the same with (x̃(k)1 +h,λ (k)
1) and (x̃(k)1 ,λ

(k)
1 +h), and evaluate the residuals

F̃xpert(x̃
(k)
1 +h,λ (k)

1) = xx̃pert,∞ − (x̃pred +h) and Fλpert(x̃
(k)
1 ,λ

(k)
1 +h) = xλpert,∞ − x̃pred.

• Compute the Jacobian matrix:

Jk =

[
F(k)

x = 1
h(F̃xpert −Fref) F(k)

λ
= 1

h(Fλpert −Fref)
˙̃x0 λ̇0

]
(5.29)

• Compute the extended problem:

Hk(y;∆s) =
[

Fref

(x̃− x̃0) ˙̃x0 +(λ −λ0)λ̇0 −∆s

]
(5.30)

Else:
• Run experiment with (x̃(k)1 ,λ

(k)
1), read the data xref, i with i = 1, ...,n., and determine

xref,∞, usually, for equilibria, the average of the final xref, i.
• Evaluate the residual Fref(x̃

(k)
1 ,λ

(k)
1) = xref,∞ − x̃pred.

• Compute the extended problem:

Hk(y;∆s) =
[

Fref

(x̃− x̃0) ˙̃x0 +(λ −λ0)λ̇0 −∆s

]
(5.31)

• Compute the Jacobian matrix:

Jk = Jk−1 +
∆ fk −Jk−1∆xk

||∆xk||2
∆xT

k (5.32)

where:

∆xk =

[
x̃(k)1

λ
(k)
1

]
−

[
x̃(k−1)

1

λ
(k−1)
1

]
∆ fk = Hk(y;∆s)−Hk−1(y;∆s)

(5.33)

Step 3 end.

5.3.4 Secant direction update variant

In step 4 of the CBCE algorithm, we normally calculate the tangent vector of the last computed
point. Because of the noise, even if we compute the average of the asymptotic section of the time
series, the continuation curve may deviate from the correct path. To correct this, we try to calculate
the secant vector as a direction vector as follows:

72 Chapter 5. Control Based Continuation in Experiments (CBCE)

Step 4: Secant direction update step.
• Evaluate next secant direction:[˙̃x1

λ̇1

]
=

[
x̃1
λ1

]
−
[

x̃0
λ0

]
(5.34)

• Rescale afterward the new secant vector to length 1.
Step 4 end.

5.3.5 Trust region and multiple trials

In order to improve the code so that it can produce viable bifurcation diagrams in the presence of
noise, we need to make some adjustments. First, we want to prevent our prediction from jumping
too far due to noise. To do this, we have added the notion of trust region, which allows us to set
a circular zone around the last computed point. If the calculated point is in the trust region, it is
kept, otherwise it is recalculated. The trust region is defined as follows

(V (k)
p −Vp−1)

2 +(λ
(k)
p −λp−1)

2 < R2 + εtol, (5.35)

where R is the distance between the last two computed points (Vp−1,λp−1) and (Vp−2,λp−2) (for
the first point to be computed, we assume a large enough radius for the first guess in order to
reach the first prediction correctly), and εtol is a small parameter allowing some distance variation
between the computed points.

In addition, to refine our diagrams, we have added the ability to calculate multiple trials of a
new point and take the average of the new coordinates for our bifurcation diagram. In this way, if
the calculated point is in the trust region but slightly off the correct direction, the set of calculated
points will allow you to keep the correct heading. The only problem with this method is, of course,
the trade-off between the number of trials we want to compute and the computation time. In fact,
in the case of high noise, it would be necessary to calculate a large number of points to obtain a
good average of the coordinates, but the calculation would be very long. For our case, between 3
and 5 trials per point seems to be a reasonable ratio.

5.3.6 Periodic solution case

In this section 5.3.6, we will discuss how we calculate a periodic branch of a bifurcation diagram.
The algorithm for the periodic case is very similar to the fixed points case but has some additional
considerations. Suppose an experiment has a periodic output x(t +T) = x(t) for all t, and where
T ∈R is the periodic output. During the periodic orbits branch continuation, because each solution
can have different periods, we have to determine T as an unknown in our Newton’s method. To
approximate this periodic output, we will use a category of methods called spectral methods.
This class of representative functions will allow us to represent a periodic solution as a linear
combination of known functions, defined over the entire domain of study. The coefficients of this
linear combination are obtained by projection, and to compute them, we want first so to rescale
the differential equation in such a way that T becomes an explicit parameter:

τ =
t
T

⇐⇒ t(τ) = τT

=⇒ dx
dτ

=
dx
dt

dt
dτ

=⇒ dx
dτ

= T f (x,λ)

(5.36)

5.3. Algorithmes and simulated experiments 73

By expressing explicitely T , the equation ẋ is no longer defined between 0 and T , but 0 and 1,
thus our unknowns (uncluding T) will be computed for this new rescaled period. In this chapter,
we will use the spectral decomposition by Fourier series which allows us to represent a periodic
function efficiently using a finite number of sine and cosine terms. Thus the space generated by
the Fourier basis of periodic functions of period equals to 1 truncated at Q = 2q+1 Fourier modes
is:

ΠQ = {1,cos(ωt),sin(ωt),cos(2ωt),sin(2ωt), · · · ,cos(Qωt),sin(Qωt)}

provided with the scalar product:

< u,v >=
∫ 1

0
u(t)v(t)dt

We then seek an approximation of the solution x of the form of its truncated Fourier series
with 2q+1 modes:

x̂(t) = u0 +
Q

∑
k=1

[x2k−1 cos(kωt)+ x2k sin(kωt)] .

Now, we have so 2q+ 3 unknowns to resolve: the 2q+ 1 residuals coming from the 2q+ 1
Fourier modes, the period T , and the parameter λ . The construction of the extended problem and
the Jacobian matrix for Newton’s method are so different from the fixed point case:

H(y,s) =

 Residuals (2q+1 equations)
Phase condition (1 equation)

Pseudo-arclength condition (1 equation)

 (5.37)

The residuals will take the same form as the residuals in the stationary case, that is to say
Πq[F(x̃,λ ,T)] = Πq[x(x̃,λ ,T)]−Πq[x̃], where Πq is the Fourier decomposition into coefficients
with q modes. In the context q = 1 modes, we have: Π1[F] = {F−1,F0,F1}.

The phase condition specifies how successive cycles of the solution align with each other. A
disturbance or change in the parameters can result in a change in the phase condition, and it is
essential to take this into account to ensure the stability of the continuation. Suppose we have
a previous periodic solution, called x̃i−1. To avoid that the next computed solution is a rotated
version of x̃i−1, we use a phase condition. Hence for example:

[x̃i(0)− x̃i−1(0)] · ˜̇xi−1(0) = 0 (5.38)

74 Chapter 5. Control Based Continuation in Experiments (CBCE)

Figure 5.5: (A) Sketched bifurcation diagram. The black (solid and dotted) lines are
the fixed points and the blue curve is the periodic solutions. We are taking two periodic
solutions x̃i−1 and x̃i. (B) Sketch of the phase condition. The two periodic orbits are
represented in blue, and one point is selected on the periodic orbit x̃i−1 and we want to
force this point to not rotate on the next solution x̃i. To do so, we compute the tangent
vector of this point and we want this vector to be perpendicular to the vector x̃i − x̃i−1.

We implement an integral version of the phase condition 5.38 anamely:

1
T

∫ T

0
[x̃i(t +σ)− x̃i−1(t)] · ˜̇xi(t +σ)dt = 0 (5.39)

for every σ . Writing x̃i(t)≡ x̃i(t +σ), gives:

1
Ti−1

∫ Ti−1

0
[x̃i(t)− x̃i−1(t)] · ˜̇xi(t)dt = 0

⇔ 1
Ti−1

∫ Ti−1

0
x̃i(t)T˜̇xi−1(t)dt = 0

(5.40)

Where x̃i(t)T is a transposed vector. This equation fixes the phase of successive computed
periodic orbits. We discretise this condition:

⇔
−q

∑
j=−1

x̃ j,i · ˜̇x j,i−1 −
q

∑
j=0

x̃ j,i · ˜̇x j,i−1 (5.41)

So in the q = 1 case, we have:

⇒ x̃0,i · ˜̇x0,i−1 + x̃−1,i · ˜̇x−1,i−1 − x̃1,i · ˜̇x1,i−1 (5.42)

The last equation of the extended problem, is the pseudo-arclength continuation rule:

1
Ti−1

∫ Ti−1

0
(x̃(k)i (t)− x̃i−1(t)) · ẋi−1(t)+(T (k)

i −Ti−1) · Ṫi−1 +(λ
(k)
i −λi−1) · λ̇i−1 −∆s (5.43)

This new version of the equation takes into consideration the fact that we study Fourier co-
efficients of the periodic signal, but also the period of this solution. Here, we obtain the general
formulation of the extended problem:

5.3. Algorithmes and simulated experiments 75

H(y,∆s) =

 Πq[F(x̃,λ ,T)]
1
T

∫ T
0 x̃i(t)T · ˜̇xi−1(t)dt∫ Ti−1

0 (x̃(k)i (t)−x̃i−1(t))·ẋi−1(t)dt
Ti−1

+(T (k)
i −Ti−1) · Ṫi−1 +(λ

(k)
i −λi−1) · λ̇i−1−∆s

= 0

(5.44)

5.3.7 CBCE algorithm for the periodic case

Step 1: Initialization step.
• Choose q, namely, the number of Fourier modes to approximate the periodic solution.
• Choose gc (the gain of the control) such that it stabilize the system.
• Choose a small parameter for the finite-difference approximation of the Jacobian matrix

h ∈ R, a small continuation stepsize ∆s ∈ R.
• Suppose we have an initial guess: y0 = (x̃0,T0,λ0) with x̃0 ∈ Rn+1, T0 ∈ R, λ0 ∈ R, so

y0 ∈ R2q+3.
• Choose arbitrarily the direction vector: τ0 = (˙̃x0, Ṫ0, λ̇0) = (0,1)

Step 1 end.
Step 2: Prediction step.

• Compute the next point y1 =(x̃1,T1,λ1) by applying a predictor step (Tangent predictor):x̃pred
Tpred
λpred

=

x̃0
T0
λ0

+∆s

 ˙̃x0
Ṫ0

λ̇0

 (5.45)

Step 2 end.
Step 3: Correction step

• Run experiment with (x̃(k)1 ,T (k)
1 ,λ

(k)
1), where k is the Newton’s correction iteration, read

the data, and extract a period xi of the signal, with i = 1, ...,T .
• Apply the spectral decomposition by normalized Fourier coefficients on xi to obtain

x(x̃(k)1 ,T (k)
1 ,λ

(k)
1).

• Evaluate the residual F(x̃,T,λ) = x(x̃(k)1 ,T (k)
1 ,λ

(k)
1)− x̃pred.

• Run experiment with (x̃0,T0,λ0), read the data, and extract a period of the signal. Com-
pute this derivative with respect to the time x∆t(x̃

(k)
0 ,T (k)

0 ,λ
(k)
0), and apply the spectral decom-

position by normalized Fourier coefficients on this signal in order to obtain Πq[x∆t(x̃0,T0,λ0)].
• Construct the extended system:

H(y,∆s) =

Πq[F(x̃,T,λ)]

1
T

∫ T
0 x̃i(t)T · ˜̇xi−1(t)dt

1
Ti−1

∫ Ti−1
0 (x̃(k)i (t)− x̃i−1(t)) · ẋi−1(t)dt...

...+(T (k)
i −Ti−1) · Ṫi−1 +(λ

(k)
i −λi−1) · λ̇i−1 −∆s

 (5.46)

And apply the Newton’s correction step:

76 Chapter 5. Control Based Continuation in Experiments (CBCE)

 x̃(k+1)
1

T (k+1)
1

λ
(k+1)
1

=

 x̃(k)1

T (k)
1

λ
(k)
1

−
 F(k)

x F(k)
T F(k)

λ

Πq[x∆t(x̃0,T0,λ0)] 0 0
˙̃x0 Ṫ0 λ̇0

−1

· · ·

· · ·

Πq[F(x̃,λ ,T)]

1
T

∫ T
0 x̃i(t)T · ˜̇xi−1(t)dt

1
Ti−1

∫ Ti−1
0 (x̃(k)i (t)− x̃i−1(t)) · ẋi−1(t)dt...

...+(T (k)
i −Ti−1) · Ṫi−1 +(λ

(k)
i −λi−1) · λ̇i−1 −∆s

 .
(5.47)

When ||Hk(y;∆s)||< tol and when

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 x̃(k)1

T (k)
1

λ
(k)
1

−
 x̃(k−1)

1

T (k−1)
1

λ
(k−1)
1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣< tol, allocate

(x̃1,T1,λ1) = (x̃(kfinal)
1 ,T (kfinal)

1 ,λ
(kfinal)
1). (Convergence)

Step 3 end.
Step 4: direction vector update step.

• Normalize the new direction vector.
• Evaluate next tangent direction: F(k)

x F(k)
T F(k)

λ

Πq[x∆t(x̃0,T0,λ0)] 0 0
˙̃x0 Ṫ0 λ̇0

 ˙̃x1
Ṫ1

λ̇1

=

0
0
1

 (5.48)

• Rescale afterward the new tangent vector to length 1.
Step 4 end.

5.4 Results

In Fig. 5.6 we place ourselves in the context of a Simulink type experiment with noise generated
using a Band-Limited White Noise block. This block generates normally distributed random num-
bers suitable for use in continuous or hybrid systems.1 To calibrate this noise, we can play with
the power spectral density height parameter. We have chosen a value of 3e-04. We can see that our
method works perfectly for stationary points. It is important to note that Broyden’s method saves
an substantial amount of time in the continuation process. In comparison, in Newton’s method
we are forced to compute a new Jacobian matrix at each iteration and therefore have to extract
data at each iteration. In the Broyden’s method, this step only needs to be done once per point (in
fact, we initialise the Broyden’s method with a first iteration of the Newton’s method), and then
we compute an approximation. On a laptop with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
processor, a continuation that can take more than an hour with Newton’s method will take about
fifteen minutes with Broyden’s method for the same bifurcation diagram. However, the approxi-
mation of the Jacobian matrix can also be a source of error, although it allows us to save a lot of
computing time. It may happen that the newly calculated matrix is singular or has ”NaN” values.
To correct this, at each iteration of Broyden’s method we check that the Jacobian is not singular.
If it is, the iteration is recalculated using Newton’s method.

1Available at https://fr.mathworks.com/help/simulink/slref/bandlimitedwhitenoise.html

https://fr.mathworks.com/help/simulink/slref/bandlimitedwhitenoise.html

5.4. Results 77

Figure 5.6: Bifurcation diagram obtained from 5.19 with the numerical continuation (blue
line) and the CBCE method (black dots). We use the Broyden’s method for the correction
step and a secant direction vector. The parameters are: a = 1.8, b = 0, c = 1, d = −1,
Iext = 0, ε = 0.6,Ṽ0 =−3,e0 =−1.5,ds = 0.05

We now apply the method to the periodic solution branch. Before considering the FHN model,
we consider on a minimal Hopf and saddle-node of limit cycles bifurcation model, namely:

ẋ =−y+ x(µ + x2 + y2 − (x2 + y2)2)+κ(x− x̃),

ẏ = x+ y(µ + x2 + y2 − (x2 + y2)2),
(5.49)

where µ is the only model parameter. In Fig. 5.7 we see that the CBCE method works very well
along the stable and unstable segments of the periodic solution branch. The method also manages
to pass the fold of the branch, which assures us that the method is working. It is important to
note that the solutions of such a model are circular and therefore simple to compute, since their
representation in the Fourier basis is exact with finitely many modes.

78 Chapter 5. Control Based Continuation in Experiments (CBCE)

Figure 5.7: Bifurcation diagram obtained for the periodic continuation of 5.49: stable
(resp. unstable) families of equilibria (extracted from ODE45) are represented by red (resp.
black) dashed lines; stable (resp. unstable) families of limit cycles (extracted from ODE45)
are represented with green (resp. blue) dots. The exact periodic continuation for the chosen
parameter set is represented with unfilled black dot. HB1 denotes the Hopf bifurcation.

In Fig. 5.8 we will first notice that the shape of the limit cycle branch calculated with ODE45
corresponds qualitatively to that of the numerical continuation obtained for the same model: in-
deed, we first find two Hopfs points from which branches of unstable periodic cycles emerge,
which then each form a fold to give rise to a common branch of stable periodic cycle. However,
we will also notice a quantitative type problem, since we observe a diserepancy with the exact
diagram. The Hopf points are not found at the same parameter values as the folds. We conjecture
that this is due to the fact that we are not using enough Fourier modes. However, increasing the
number of Fourier modes makes our implementation of the CBCE algorithm become prohibitise
in terms of computational time.

5.4. Results 79

Figure 5.8: Full bifurcation diagram of 5.19. With the CBCE method, we obtained: (1)
stable (resp. unstable) families of equilibria (extracted from Simulink) are represented
by black solid (resp. dashed) lines; (2) stable (resp. unstable) families of limit cycles
(extracted from ODE45) are represented with green (resp. blue) dots. HB1∗ and HB2∗

are the two Hopf bifurcations found by CBCE. The periodic numerical continuation is
represented with unfilled black dot. HB1 and HB2 are the two Hopf bifurcations obtained
with numerical continuation. The parameters are: a = 1.8, b = 0, c = 1, d =−1, Iext = 0,
ε = 0.6,Ṽ0 =−3,e0 =−1.5,ds = 0.05

Following these results, we perform the following convergence test:

||F(x+ εconv)−F(x)− J(x,hconv)εconv||= O(h2
conv), (5.50)

where hconv corresponds to the finite difference step, and εconv, a small perturbation parameter
which will be varied to see the convergence effect of the finite-difference approximation.

80 Chapter 5. Control Based Continuation in Experiments (CBCE)

Figure 5.9: Convergence test performed for fixed values of (A) hconv = 1e−1, (B) hconv =
1e−4 and (C) hconv = 1e−7 . The orange curve corresponds to a control trace ε ,ε2 where ε ,
and the blue curve corresponds to the result obtained from the convergence test for the fixed
values of h. For better visualization of the data, we propose a logarithmic representation.

What we observe in Fig. 5.9 is that the value of hconv chosen is indeed very important to allow
precise derivatives: from panel (A) to (C), the values of hconv are lower and lower, and thus the
closer the derivatives of the Jacobian matrix are to the exact values sought. This therefore implies
that the convergence is quadratic as expected and that our correction step using Newton’s method
will therefore be more inclined to converge towards the good continuation values.

In order to understand where this quantitative divergence comes from between the periodic
continuation through the CBCE method and the numerical continuation, we propose to calculate
the periodic branches with the CBCE method associated with the harmonic balance method [153,
154]. Harmonic balance is based on the idea that if a dynamic system is subject to a periodic
regime, then its variables can be decomposed into harmonic components, and in our case, these
components will be Fourier series terms, i.e. a finite sum of sinusoids and cosinusoids.

Suppose that the solutions of the FHN system are written by a finite sum of n Fourier terms,
such that:

V (t) =V0 +V1 sin(ωt)+V−1 cos(−ωt)+ ...+Vn sin(nωt)+V−n cos(−nωt)

W (t) =W0 +W1 sin(ωt)+W−1 cos(−ωt)+ ...+Wn sin(nωt)+W−n cos(−nωt)
(5.51)

In the case of periodic continuation, we want to find the solution of the problem V̇ −T FV = 0
and Ẇ −T FW = 0, thus, we will calculate the derivatives V̇ and Ẇ from the equations 5.51:

V̇ =V0 +V1 cos(ωt)+V−1 sin(ωt)+ ...+Vn cos(nωt)+V−n sin(nωt)

Ẇ =W0 +W1 cos(ωt)+W−1 sin(−ωt)+ ...+Wn cos(nωt)+W−n sin(nωt)
(5.52)

5.4. Results 81

Thus, suppose we are studying q = 1 Fourier modes, we can then rewrite V̇ − T FV = 0 as
follow:

(V0 +V1 cos(ωt)+V−1 sin(ωt))−T
(
−(V0 +V1 sin(ωt)+V−1 cos(−ωt))

((V0 +V1 sin(ωt)+V−1 cos(−ωt))−a)((V0 +V1 sin(ωt)+V−1 cos(−ωt))−b)

− (V0 +V1 sin(ωt)+V−1 cos(−ωt))3

3
− (W0 +W1 cos(ωt)+W−1 sin(−ωt))

)
= 0

(5.53)

And Ẇ −T FW = 0 can be rewrite:

(W0 +W1 cos(ωt)+W−1 sin(ωt))

−T
(

C(V0 +V1 cos(ωt)+V−1 sin(ωt))

+D(W0 +W1 cos(ωt)+W−1 sin(−ωt))+E
)
= 0

(5.54)

With these new equations, it is possible to calculate time series, and to calculate the Fourier co-
efficients. We thus find the elements necessary to complete the extended problem and the Jacobian
matrix of the CBCE method.

Figure 5.10: Balance harmonic periodic continuation overlaid with the full bifurcation
diagram 5.8. With the CBCE method, we obtained: (1) stable (resp. unstable) families of
equilibria (extracted from Simulink) are represented by black solid (resp. dashed) lines; (2)
stable (resp. unstable) families of limit cycles (extracted from ODE45) are represented with
green (resp. blue) dots. HB1∗ and HB2∗ are the two Hopf bifurcations found by CBCE.
The periodic numerical continuation is represented with unfilled black dot. HB1 and HB2
are the two Hopf bifurcations obtained with numerical continuation. The parameters are:
a = 1.8, b = 0, c = 1, d =−1, Iext = 0, ε = 0.6,Ṽ0 =−3,e0 =−1.5,ds = 0.05

In Fig. 5.10, we propose to compare the results coming from the CBCE harmonic balance
method, with numerical continuation and the classic CBCE method of periodic branches. First

82 Chapter 5. Control Based Continuation in Experiments (CBCE)

of all, we notice that the Hopf points of the branch of the CBCE harmonic balance continuation
completely match the location of the Hopf points of the numerical continuation. This leads us to
think that there is indeed a problem in our calculation of the periodic branch via classical CBCE,
and not only in our choice of the number of Fourier coefficients. However, we also notice that
the branch of the harmonic balance CBCE continuation has a structure qualitatively similar to that
of the classic CBCE method: the structure is extended at the level of the folds than the classic
CBCE method, and moves away from the structure resulting from numerical continuation. We can
assume here that the problem arises from the number of Fourier coefficients used to calculate the
branches. However, we should not discount the fact that our CBCE code may have some flaws,
and that it is also very sensitive to these parameters and initial conditions.

5.5 Discussion and conclusion

In this chapter, we were interested in obtaining bifurcation diagrams from “simulated” noisy ex-
periments based on ODE models. The whole point was therefore to have an experiment of an
excitable system of which we knew the internal dynamics and therefore the expected solutions, in
order to verify our results. These experiments act like black boxes, in that the experimentalist can
only interact with them through certain parameters, and only read the output of the experiment.

The CBCE method that we implemented, inspired by the pseudo-arclength continuation method,
first allowed us to obtain satisfactory results in the calculation of the branch of stationary points.
Regarding the calculation of the periodic branch, the results are more variable. The algorithm
seems to have no problem calculating periodic branches so the solutions will have circular shapes
(see example of the minimal SNP system). However, in the case of the FHN model, the algorithm
seems to have difficulty finding quantitatively the same results as the numerical continuation. Af-
ter doing some research on the subject, we hypothesized that this problem could come from the
choice of the number of Fourier modes used to approximate the solutions of the experiment, but
also other subtleties of the code implemented could pose a problem.

In terms of perspective, this project could therefore be completed by research into why we
obtain these quantitatively different results from numerical continuation, then when the algorithm
is completely established, apply it on neurons in vitro.

This work complements the previous chapter, and demonstrates that beyond an approximation,
it is possible to obtain the exact bifurcation diagram of an experiment. However, it involves a long
processing time, and technical issues when we want to study more complex systems. To conclude
these two last chapters, the continuation method of Chapter 4 proposes a method which allows
obtaining an approximate bifurcation diagram, but which is easy to use and fast throught a clas-
sic Patch-Clamp setup. Conversely, Chapter 5 proposes a more complex method which requires
knowledge about continuation, but which attempts to produce the exact bifurcation diagram of the
dynamics of the neuron.

83

Chapter 6

Metastable odotopic representations in
mice olfactory bulb

This work was carried out in collaboration with Peter beim Graben 1, Tobias Ackels 2, Andreas
Schaefer2. I participated in the RSA application, the classification and the result analysis.

Having explored extensively experimental and mathematical approaches to understanding neu-
ronal excitability in previous chapters, we now move towards a more computational perspective.
Indeed, the notion of neuronal excitability can be studied through experimental data in order to
understand in more detail the neuronal activation patterns, or the regions of interest in the assimila-
tion of a stimulus. This project therefore aims to study neuronal excitability through data analysis
methods. This final part of our thesis takes us into the realm of data analysis, where we will
closely examine the neuronal responses of the olfactory bulb to various olfactory stimuli. Using
the Recurrence Structure Analysis (RSA) method, we will seek to highlight common structures
in the excitability of olfactory bulb neurons according to different families of odors and we will
build odotopic maps. An odotopic map is a neuronal mapping that represents the relationships
between different regions of the olfactory bulb and olfactory inputs, thus reflecting the neuronal
representation of olfactory stimuli within the olfactory system. This chapter will allow us to con-
clude our exploration of neuronal excitability by highlighting the links between experimental data
and advanced computational analyses.

6.1 Introduction

Calcium imaging is a technique that allows real-time visualisation and monitoring of neuronal
activity by measuring changes in the concentration of calcium ions inside nerve cells: neurons
use calcium as a key intracellular messenger to signal electrical activity and synaptic transmis-
sion. When a neuron is activated, calcium channels open, allowing calcium to enter the cell. This
transient increase in calcium concentration can be detected and quantified using calcium-sensitive
fluorescent markers. This method uses fluorescent probes specifically designed to bind to cal-
cium; see Fig. 6.1. The most commonly used fluorescent markers are calcium-sensitive fluores-
cent proteins (such as GCaMP), which fluoresce when calcium binds to them. These proteins are
genetically expressed in target neurons or injected into brain tissue. Real-time monitoring can be
performed using special microscopes equipped with high-resolution imaging systems. Calcium-
labelled neurons are excited by laser light of a specific wavelength, causing them to emit fluores-
cence. Detectors then capture this fluorescence, which is converted into digital signals for analysis.
Changes in fluorescence over time correspond to changes in calcium concentration, reflecting the
electrical activity of the neurons.

1Bernstein Center for Computational Neuroscience, Germany
2 The Francis Crick Institute, United-Kingdom

84 Chapter 6. Metastable odotopic representations in mice olfactory bulb

Figure 6.1: Calcium imaging experimental procedure: Once cells are labelled with a sensi-
tive calcium indicator, (1) chemicals are presented to a subject connected to a fluorescence
microscope for 30 seconds (2) to record the calcium activity of labelled neurons in the ol-
factory bulb. (3) This recording is done in layers, making it possible to follow the activity
in the olfactory bulb 3D space.

The olfactory bulb is an onion-shaped structure at the base of the brain that processes olfactory
information from olfactory receptors in the nasal cavity [155, 156]. It is made up of several
layers of neurons, each with a specific role in processing olfactory information. In this chapter we
will be interested in tufted cells: they play an important role in processing olfactory signals and
regulating mitral cells, which transmit olfactory signals from the olfactory bulb to other regions
of the brain, including the amygdala and the olfactory cortex [157–162]. Indeed, tufted cells
can modulate mitral cell activity by acting at different levels: synaptic transmission, intrinsic
activity, or synchronisation of neuronal activity. They are also involved in olfactory selection and
discrimination by regulating synaptic plasticity between mitral cells. Tufted cells are located in
the outer layer of the olfactory bulb, they receive olfactory signals from mitral neurons and are
involved in modulating the transmission of olfactory information. Tufted cells have a small cell
body and few branched apical dendrites; see Fig. 6.2.

In this chapter, we will use Recurrence Structure Analysis (RSA), introduced in Chapter 1, to
unravel the behaviour of tufted neurons exposed to different chemicals: these data come from three
mice, whose calcium activity was recorded. Applying the RSA method to these data will involve
a number of steps: 1) Developing a pipeline to enable a comparative study of these data, bearing
in mind that there is as yet no mapping of these neuronal regions of interest (ROI) [163–165]. We
will also want to process the signal to reduce the noise. 2) Parametrising the size of the regions
of interest by optimizing the RSA. 3) Using supervised classifiers to certify that the metastable
states obtained are significantly indicative of the type of chemical being studied. We will compare
several classifiers and try to extract mapping from them.

6.2. Material and methods 85

Figure 6.2: Organisation and function of the olfactory bulb: Olfactory sensory neurons
(OSNs), located in the nasal cavity, detect the odour molecules present in the air we
breathe. Electrical signals are transmitted from each olfactory receptor to an olfactory
neuron via a short axon. Olfactory neurons are grouped together in structures called the
olfactory epithelium. Axons from olfactory neurons converge to form structures called
glomeruli in the olfactory bulb, which is located at the base of the brain. Olfactory infor-
mation is processed in the olfactory bulb by mitral neurons (MC) and tufted cells (TC).
Mitral neurons receive signals from glomerular cells involved in the formation of synapses
between the endings of olfactory neurons (olfactory sensory cells) and the dendrites of mi-
tral cells, and transmit them to other regions of the brain, while tufted cells are involved
in modulating the transmission of olfactory information. Olfactory signals are then trans-
mitted to regions of the brain involved in processing and analysing sensory information,
including the primary olfactory cortex and associated regions of the brain. The granule
cells are known as GCs and the juxtaglomerular neurons, JGNs.

6.2 Material and methods

6.2.1 Experimental context and data pre-processing

A series of 48 chemicals (see Tab. 6.1) were presented to three mice (known as subjects ”C525”,
”C531” and ”C537”) for two seconds each, always in the same order, and with enough time to
allow them to return to the resting state. A complete recording of an odour lasts 30 seconds.
Calcium activity imaging was used to follow tufted cells neuronal activity in the olfactory bulb.
Each time series for each neuron is the average of five tests performed on the same mouse at
sufficiently spaced times.

The recorded number of neurons for each subject is as follows: C525 has 276 tufted cells
recorded, C531 has 195 , C537 has 188. As the number of cells is different in each subject and it
is obvious that they cannot be compared due to the notion of individuality, it is difficult to make a
clear comparison without pre-processing the data.

86 Chapter 6. Metastable odotopic representations in mice olfactory bulb

Acids (5) Alcohols (8) Aldehydes (4)
Nonanoic acid 1-Nonanol 2-Phenylpropion-aldehyde
Hexanoic acid 1-Heptanol Benzaldehyde
Benzyl acetate 2-methyl-4-butanol Valeraldehyde
Isobutyric acid 2-methoxy-4-methylphenol Octanal

Valeric acid Cyclohexanol
Guaiacol
Eugenol
Cineole

Aromatics (4) Esters (14) Ketones (12)
1,2-dimethoxybenzene Ethyl valerate 2-Hydroxyacetophenone

Alpha-terpinene Ethyl heptanoate (+)-Fenchone
4-allylanisole Ethyl butyrate 2-nonanone
R-limonene Ethyl acetate 2-heptanone

Cis-3-hexenyl tiglate Acetophenone
Propyl acetate 4-phenyl-2-butanone

Isoamyl acetate 1,4-cineole
Methyl valerate 5-(+)-carvone

Methyl salicylate 2,4 dimethyl-acetophenone
Methyl butyrate Menthone
Methyl benzoate 2-hexanone
Geranyl acetate 4-methyl acetophenone
Ethyl caproate
Ethyl tiglate

Table 6.1: Chemical signature of the 47 stimuli tested on the olfactory bulb of the three
subjects. The 48th is a mineral oil which is an odourless stimulus and so acts as a control.

In order to study and compare subjects, we decided to segment the space of neuron coordi-
nates of all subjects into ROIs using the K-means methods [65–67]. The K-means method is an
unsupervised machine learning technique used to group data based on similar characteristics. The
basic principle of K-means is to divide the data set into Km homogeneous groups (clusters) by min-
imising the within-cluster variance and maximising the between-cluster variance. To do this, the
algorithm first randomly selects Km initial cluster centres and then assigns each data point to the
closest cluster in terms of Euclidean distance. The data points for each cluster are then averaged
to update the cluster centres, and the assignment and updating steps are repeated until the cluster
centres converge to their final positions.

The trade-off with this type of method is, of course, knowing what value of Km to use. If
Km is too small, there will be too few regions to explore, but if Km is too large, one may end up
with regions where a subject does not have any neurons represented (Fig 6.3). Another important
question is the maximum number of subgroups that can be created to study individuals among
themselve. In fact, the individual with the lowest number of neurons has 188 neurons, while the
largest group has 276. We want to avoid this individual being underrepresented compared to other
mice by having too many subgroups.

6.2. Material and methods 87

Figure 6.3: (A) Neurons of all three subject represented in (X,Y,Z) space, and then (B)
merged into 10 sub-regions using the K-means method. The numbered circles represent
the centre of each sub-region.

In order to normalize the data across the experiments conducted, while retaining the phe-
nomenon related to stimulation, we applied a stochastic process called baseline alignment [68].
First, we suppose that the stimulation accurs at time t = 0 and the signal is described as:

xi(t) = s(t)+ηi(t), (6.1)

where s(t) is assume to be the invariant signal, and η(t) is the noise. We also assume that
before stimulation, there is only noise, hence:

s(t) = 0 for t < 0. (6.2)

Next, we apply a correction of the baseline by first computing the averages of the prestimulus
intervals:

βi = lim
T→∞

1
T

∫ 0

−T
xi(t)dt. (6.3)

Because of (6.2), we have only noise ηi(t) during the pre-stimulation time, so:

βi = lim
T→∞

1
T

∫ 0

−T
ηi(t)dt. (6.4)

Then, we subtract that baseline values from the corresponding time series, namely we consider:

ζi(t) = xi(t)−βi = s(t)+ηi(t)−βi. (6.5)

Using the new signal ζi, we first compute its empirical mean (indicated by the sum), and
subsequently its stochastic expectation:

E(ζi(t)) = E

(
s(t)+

1
N

N

∑
i=1

[ηi(t)−βi]

)
= s(t), (6.6)

88 Chapter 6. Metastable odotopic representations in mice olfactory bulb

where N is the number of time series studied for one of the regions, and E, the estimator. This
formula is true under the assumption of stochastic ergodicity. Thanks to this method we can thus
reduce the noise present in the recordings, while preserving the response to the olfactory stimulus.
Fig. 6.4 illustrates the effect of the alignment process.

Figure 6.4: Tufted cell time series obtained after stimulation with the Nonanoic acid chem-
ical on the subject C525 (the color coding is the same as in Fig 6.3). (A) Before baseline
alignment, (B) after baseline alignment.

6.2.2 Optimal Recurrence Analysis

Consider a trajectory sampled in a discrete way such as X = {xt ∈ RM|0 ≤ t ≤ T}, where T is the
duration and M is the phase-space dimension of the system. In our case, M = Km = 10 and each
time series xi is the tufted cell mean activity in one region of interest. This choice is based on an
optimization of the number and significance of metastable states that we obtain in our results.

The recurrence plot (RP), denoted R, is a binary matrix indicating recurrence events time-by-
time. Two states xi, x j ∈ RM with associated times i > j are said recurrent, when x j lies in a ball
Bε(xi) (for the euclidian distance) of radius ε > 0 centered xi. Then, R is defined by:

Ri j =

{
1 if x j ∈ Bε(xi)

0 else
(6.7)

Herein, we use the cosine distance:

dcos(x,y) = 1− x · y (6.8)

for normalized states, ||x||= ||y||= 1.

6.2. Material and methods 89

According to [22, 23], it is possible to rewrite the time series indices by using the RP (6.17)
as a rewriting grammar, also called recurrence grammar; the procedure is as follow: Suppose two
states at time points i and j (i > j). If the system is recurrent for the states xi and x j (Ri j = 1),
then we will use a grammar rule defined as i → j, which means that we replace, in the sequence s,
the larger time index i by the smallest of the recurrent pattern index j. Suppose now that we have
one more state xk such that i > j > k. If we have the three states in the same recurrent structure
(Ri j = 1,Rik = 1), then the grammar rules will be i → k and j → k, and we will replace i, j by the
the smallest index k. See Fig. 6.5 for an illustration time sketch. Using this grammar at least twice
allows to create and highlight metastable states in the new transformed sequence s′.

Figure 6.5: Representation of the overlapping phenomenon of spheres of radius ε: (A) ε1
is not large enough for the spheres of times i, j and k to overlap. Therefore, a metastable
state cannot be determined. (B) ε2 is large enough for the spheres with center times i, j and
k to overlap. Thus, times i and j are assigned the same symbol as k. These times are part
of the same metastable state.

Therefore, a metastable state, denoted Sk, is defined as a cluster of all states from the trajectory
X that have the same index k in the rewritten sequence s′:

Sk = {xi ∈M|s′i = k}. (6.9)

Thus, it is possible to discretize the phase space and segment X into separated equivalent
classes, i.e., the metastable states. However, this segmentation is dependent on the ball size pa-
rameter ε . Several methods have already been proposed in order to optimize ε [22, 23], but we
will use the Markovian optimization approach [69]. First, we make the assumption that the time
series X can be described by a Markov state model, and hence that we can define a transition
matrix, P = (pi, j), giving the transition from a state S j into state Si:

90 Chapter 6. Metastable odotopic representations in mice olfactory bulb

pi, j(ε) = Pr(xt+1 ∈ Si|xt ∈ S j) (6.10)

where xt is the state at time t and xt+1 the state at time (t +1). Another important assumption
is that the system spends most of the time in each metastable state. This means that the transi-
tions from one metastable state to another one, passing through a transient regime, are uniformly
distributed according to a maximum entropy principle [22, 23]. Combining all these assumptions
allows us to write the following utility function:

u(ε) =
1

n+2
[trP(ε)+hr(ε)+hc(ε)] (6.11)

where trP(ε) is the trace of the transition matrix and

hr =− 1
log(n−1)

n−1

∑
j=1

p′0 jlogp′0 j

hc =− 1
log(n−1)

n−1

∑
i=1

p′i0logp′i0

(6.12)

with hr,c denoting respectively the entropy of the transition matrix row and the transition matrix
column one, with renormalized transition probabilities

p′0 j =
p0 j

∑
n−1
j=1 p0 j

p′i0 =
pi0

∑
n−1
i=1 pi0

(6.13)

An optimal partition is then obtained through

ε
∗ = arg max

ε

u(ε), (6.14)

involving a maximally metastable Markov state model. The ”complexity” of the transition
model, including the transient regime and n− 1 metastable states, is defined by the number of
segments denoted n(ε∗) [69].

Consider now that we are studying the ensemble of N trajectories E = {N|1 ≤ m ≤ N}, which
in our case refers to time series from N = Km = 10 regions of interest. Because the data are
normalized to a unit hypersphere, we can compare the metastable states present in the different
region of interest. To do so, we need first to collect all metastable states S(m)

k from all individuals,
and then calculate their pairwise Hausdorff distances:

Di j = max{max{δ (y,S j)|y ∈ Si},max{δ (y,Si)|y ∈ S j}} (6.15)

according to [70]. The distance between the point x and the compact set A ⊂ X is computed
as follow:

6.2. Material and methods 91

δ (x,A) = min{d(x,y)|y ∈ A} (6.16)

Note that the Hausdorff distance of two overlapping compact sets vanishes. Again, we use the
cosine distance (6.8) for the normalized data here.

Then, imposing a threshold to the distance matrix D with respect to a parameter θ > 0 gives a
new matrix denoted Q which contains the results from the Hausdorff clustering of the metastable
states based on a new recurrence grammar [70]. Namely:

Qi j =

{
1 if Di j < θ

0 else
(6.17)

It is important to choose carefully θ in order to cover with a minimal set of metastable states
the entire ensemble E. Thanks to this methodology, we can therefore study and compare the
recurrence plots that come from different subjects or different experimental contexts. In the present
context, it will be pertinent to compare the results of a stimulus on the three subjects, as well, the
results of all stimuli on one given subject.

6.2.3 Classifiers

The results obtained from RSA, allow us to check whether metastable states for each chemical are
sufficiently significant to be used as a discriminator in a classifier. Since we have access to the
label of each of the studied chemicals (acid, alcohol, aldehyde, aromatic, ester, ketone, control),
we focus only on supervised methods.

The K-Nearest Neighbour3 (KNN) algorithm is a machine learning method used to classify
data [166–168]. It searches for Kneighbours instances in the feature space that are closest to the new
instance (for which we want to predict the class) and determines the majority class among these
Kneighbours neighbours. The distance between instances can be measured using different metrics,
and in our case we will use the cosine dissimilarity distance. The choice of the value of Kneighbours
is important for the performance of the algorithm. Indeed, if Kneighbours is too small, the model
may be too sensitive to noise in the training data and not generalise well to the test data. Similarly,
if Kneighbours is too large, the model may be too insensitive to variations in the data and not capture
the relationships between features and targets well enough. We will also use the Support Vector
Machine (SVM) method [169–171] and the Stochastic Gradient Descent (SGD) method [172] for
comparison with the KNN method.

To improve the classifier results, we will use over-sampling methods. The bootstrap method
[173–177] is the most basic process to generate multiple samples of the original population by
performing sampling with replacement, i.e. each observation in a bootstrap sample may be se-
lected multiple times, and some observations may not be selected at all. Repeating this process
of bootstrapping results in a collection of samples that conserves the distribution of the original
population.

The Synthetic Minority Over-sampling Technique (SMOTE) is also a widely used over-sampling
method designed to address class imbalance in supervised learning datasets [178–180]. It aims to
generate synthetic examples of the minority class to create a balanced dataset [181]. The algorithm
achieves this by creating new examples by interpolating feature values from nearest neighbours of
minority class examples. The basic steps of the SMOTE algorithm are to select an example from
the minority class, randomly select k nearest neighbours from the minority class, and generate a
synthetic example by combining the feature values of the selected example and its neighbours.

3Available at https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

92 Chapter 6. Metastable odotopic representations in mice olfactory bulb

This is done by calculating the differences between the feature values of the selected example and
each neighbour, multiplying these differences by a random number between 0 and 1, and adding
the weighted product to the selected example, resulting in a new synthetic example. These steps
are repeated until the desired number of synthetic examples has been generated. SMOTE effec-
tively increases the size of the minority class by creating synthetic examples along the decision
boundaries between classes. This allows the characteristics of the minority class to be better cap-
tured and reduces the risk of overfitting the existing data. However, care must be taken when using
SMOTE as it may introduce noise due to the generation of synthetic examples.

Finally, to determine which classifiers to study, we used the accuracy, precision and recall as
test scores [167]. We will also examine the confusion matrix of classifiers to visualise the correct
and incorrect predictions for each class. This allows us to highlight the classes that are most
difficult to classify.

6.3 Results

In this study we will use Km = 10 ROIs. We want to be able to compare the response of the three
subjects to each chemical (Fig. 6.6). So we applied the RSA method to the collected data of each
mouse for the different chemicals, and we applied the Hausdorff method to unify the colours of
the metastable states when studying the same odour class. This means that if we study the case
of eugenol, each yellow metastable state is the same state in all three bands. In this figure, we
first notice a general structure through all the chemicals due to our chosen Km parameter value: at
t = 0, before the stimulation, a first metastable state is present and it corresponds to the rest state
of the system. Then we have a transient which gives way to a reaction specific to the chemical
presented. Subsequently we have another transient and finally a return to the resting state. This
general structure therefore tells us that we have calibrated the RSA method well and that we can
now study the different structures specific to the different chemicals. It is important to note that
this demonstration of similar structure between the three subjects is not always possible because
of experimental bias or because of the individuality of the subjects.

In terms of the reaction itself, we note that in the post-stimulation it was possible to highlight
similar structures of metastable states in the three subjects at the same time. In the case of eugenol,
methyl salicylate and 5-(+)-carvone, the structure specific to each of these chemicals is extremely
similar across the three subjects. In the case of 4-allylanisole, ethyl valerate and (+)-fenchone, the
structures are also similar, but the Hausorff algorithm may not recognise one subject’s metastable
state as being the same as that of another subject. However, we can still emphasise that these
metastable states generally occur at the same time. These differences can also be explained by the
variability of the recordings or the subjects studied.

Nevertheless, these results imply that our spatial segmentation into Km = 10 regions of interest
for the three subjects via their coordinates does indeed make it possible to highlight that certain
regions have effects on the dynamics of the system. We now want to know which regions of
interest are the most active or important in representing metastable states, and thus be able to
compare across the three subjects whether this pattern is common or not.

6.3. Results 93

Figure 6.6: Example of the results of the RSA on all the tufted cells of the three subjects,
for 10 subgroups. The Hausdorff threshold is adapted for each individual odour in order
to highlight common states: it is thus possible to compare the colours of the recurrence
states only in the same odour type. The x axis represents time in seconds. The two vertical
lines are the time limits of the stimulation, which is applied for two seconds. (Parameters:
ds = 20, pr = 15)

.

To this aim, we then extracted the centroids of each of the metastable states and plotted
them, for the example of methyl salicylate, first on a simple graph (Fig 6.7 (A)) and then on a
2-dimensional heatmap representing only the x and y axes of the spatial coordinates of the tufted
neurons (Fig 6.7 (B)). (Fig 6.7 (B)) Thus, in panel (A) we can see that the two metastable states
have exactly the same characteristics in terms of centroids. Indeed, for the first metastable state,
which corresponds to the rest state, the centroids seem to be very low compared to the second, but
it seems that the regions of interest 7 and 8 are higher than the others. For the second metastable
state, we see that the same regions of interest are highlighted as the most active, again for the three
subjects. The heatmaps in panel (B) show the same thing and even allow us to study the response
in a spatial way. Once again, we see that the three subjects have the same regions of the olfac-
tory bulb that are activated during the presentation of methyl salicylate. Moreover, comparing the
metastable states of one subject gives us the intuition that the pattern is indeed similar, but with
different intensities. Thus, the neural activation vectors appear to be almost collinear.

94 Chapter 6. Metastable odotopic representations in mice olfactory bulb

Figure 6.7: Study of the centroids extracted from the RSA results for the methyl salicylate
recurrence domains: (A) we first plot the centroids of the metastable states in a simple
graph to have the exact values, and then (B) we plot the same information but in a 2D heat
map where the two axes are the x and y spatial coordinates of the tufted cells. To design
and smooth the heat maps, we used a Gaussian filter with a standard deviation value of
σ = 60 (parameters: ds = 20, pr = 15).

It is important to note that the use of the K-means method is random, although the number of
regions of interest to be studied is fixed, which can lead to variations. However, although there
are variations (not the same ROI labels or not the same neurons in each region), the metastable
state structures as well as the centroids are still very similar across the 3 subjects. We now want to
extract the centroids for all chemicals and subjects in order to classify them.

In this section, we want to classify the 48 chemicals into the correct odour class among the 7
that are present (acid, alcohol, aldehyde, aromatic, ester, ketone, control). We have concatenated
the centroids presented in the last section in a matrix which has a first dimension of 10 (clusters)
and a second dimension which is the product between the number of subjects, the number of
chemicals and the corresponding number of metastable states highlighted by RSA. In the present
case we have a second dimension of 308 (points). Now we want to determine which method is the
best to classify our data.

First of all, we have the labels associated with each point of our data set, which makes the use
of a supervised classifier obvious. We therefore tried different classifiers of this type (Stochastic
Gradient Descent, Support Vector Machine and K-nearest neighbours): we used a training set
(75% of the population) and a test set (25% of the population) to apply these methods and found
that the KNN method gave the best results with an average accuracy of 44.155% (Tab. 6.2, K-
nearest neighbour parameters: Kneighbours = 5).

The new goal is to improve this accuracy by preprocessing the data. To do this, we propose two
variants of widely used techniques in machine learning: the bootstrap and the SMOTE methods.
(see section 6.2.3) The bootstrap method is used to increase the size of our dataset to 500 points
(which represents 162 % of the initial population), while maintaining part of the proportionality
of the dataset. We then applied the various KNNs again, and our average accuracy improved to
71.2% with the K-nearest neighbour method (K-nearest neighbour parameters: Kneighbours = 5).
Noteworthy, in the data set studied, not all odours are sparsely represented. Therefore, in order to
increase the average accuracy and to balance the categories in the tufted case, we used the SMOTE

6.3. Results 95

Method Average accuracy (%)
KNN + SMOTE method 74.14 %

KNN + Bootstrap method 71.2 %
KNN 44.155 %

SVM (linear kernel) + Bootstrap method 56.396 %
SVM (linear kernel) 41.403 %

SVM (polynomial kernel) 32.596 %
SGD 31.016 %

Table 6.2: Average accuracy of the different supervised classifiers used to study the con-
catenation of the recurrence domain centres of all the chemicals studied, obtained for the
case of tufted cells. The average is calculated over 100 trials. The training set for each
tested classifier represents 75% of the population. KNN: K-Nearest Neighbours, SVM:
Support Vector Machine, SGD: Stochastic Gradient Descent.

method to obtain 85 samples from each category by creating synthetic samples (the oversampled
dataset represents 192.5% of the original dataset), and we obtained an accuracy of 74.14% with
the KNN method (K-nearest neighbour parameters: Kneighbours = 5). This accuracy is really good
in the context of a data set coming from biological experiments.

From now on, we will choose to study the KNN classification method, with or without prepro-
cessing methods. The choice of the value of Km is made in order to find a compromise between
having enough neighbours and having good score values for our tests.

To see if our results are valid, we then decided to compare the results obtained for the same
KNN method, with their accuracy and their precision. (Fig. 6.8) These results support us in the idea
that the classifiers associated to the two preprocessing methods (SMOTE and Bootstrap) are not
content to classify randomly, but give a good performance in their way of learning and classifying
from the results obtained with the RSA algorithm. (The parameters of the applied KNN method:
Kneighbours = 5).

Figure 6.8: Average accuracy, precision and recall obtained from the K-nearest neighbour
tests with the different processed datasets (raw, SMOTE and bootstrapped). The training
set for each tested classifier represents 75% of the population. The standard deviation is
also shown and calculated over 30 trials.

We also suggest studying the normalised confusion matrices (Fig. 6.9) of the three data sets
shown in Fig. 6.8. These matrices reveal for which odour classes we have misclassifications. If
we do not pre-process the data, we can see that we are indeed not able to correctly classify the
samples in the good categories. If we take into account the bootstrap method, it gives better results
due to the presence of the maximum of predictions on the diagonal. However, the control case is

96 Chapter 6. Metastable odotopic representations in mice olfactory bulb

never well classified. Regarding the SMOTE case, the results are even better than the bootstrap
one, in the sense that there is a less important spread of bad predictions. It also seems that the
control case is better classified in these two cases.

Figure 6.9: Confusion matrices obtained for the data without processing, the data pro-
cessed with bootstrap, and with SMOTE method. The matrices are normalized with the
max/min method for each row independently. The labels are defined as follow: acids
(ACI), alcohol (ALC), aldehyde (ALD), aromatic (ARO), ketone (KET), ester (EST) and
control (CON).

Finally, we propose to recover the good predictions of the classifier associated with SMOTE
and to average these points in 10 dimensions for each category, then to develop the heat maps of the
centroids of each of our populations (Fig 6.10). This allows us to see which are the most important
points for each type of odour class in the olfactory bulb by eliminating bad predictions or outliers.
It should also be noted that the SMOTE + KNN algorithm does not sort the data correctly, so there
are only a few points to be considered in this example. Fig. 6.10 (A) shows that some of the odour
classes seem to have different centroid scales (for example the ketones compared to the alcohols).
The subgroup number 2 seems to be really active for each type of chemical presented, and that for
the three cases.

Next, we will normalise the neuron type cases to their side between 0 and 1. This will allow
us to see which group is more active than the others, and to see the patterns for each of the
odour classes. In Fig. 6.10 (B) we can see that the same groups of neurons are mainly used when
presenting an odour class (subgroups 5, 7, 9 and 10). However, there is a difference in response
intensity. Thus, for the case of ketones and aromas, there is a great activity of the groups of
neurons 7, 9 and 10, whereas for the control case there is almost no activity.

6.4. Discussion 97

Figure 6.10: (A) Representation of the average of the non-normalized centroids for each
odor class of the predictions made correctly by the KNN classifier, with SMOTE type
pre-processing and (B) the representation is in a 2D space and give the importance of
the clusters for all the odor classes, where the coordinate points of the neurons are only
represented on the X and Y axes. The data-sets are normalized separetly between 0 and 1
to understand what are the most active groups spatially. Each colored point is exactly the
same population in every panel. To design this heat-map, we used a Gaussian filter with a
standard deviation value of σ = 60.

6.4 Discussion

In this study, we have tried to develop a pipeline that allows us to compare the activity from
the olfactory bulbs of three different subjects, for which we have no known mapping. We used
different methods that require certain settings. For example, the K-means technique requires a
choice of the number of regions of interest to be created from the original set.

It is also interesting to take a critical look at the data used. It is always important to remember
that data quality can also be affected by factors such as biological variability, experimental error,
measurement bias or sample processing artefacts. We found certain cases where we could not
detect a metastable state with the RSA method, but this is not a problem because we had several
subjects to generate each chemical metastable state with RSA. In addition, the odour classes are
not presented sparingly, which makes it difficult to compare results between categories, but also
to train neural networks in our supervised classifiers. Indeed, it is important to consider that if the
amount of data is not evenly distributed between the different categories, it can bias the results of
the analysis. In our case, if we have a large amount of data for a particular category, it is possible
that the prediction model will be more efficient for that category, while being less efficient for the
other categories. Taking all this into account, the first thing we can do is to increase the size of
the training data by studying the centroids (For a given chemical, we will have several metastable

98 Chapter 6. Metastable odotopic representations in mice olfactory bulb

states ranging from 1 to 4). Enlarging a data set using the bootstrap method can be a useful
approach to improve the performance of a classification algorithm, but it should be noted that this
method also has some limitations. It is important to understand that the bootstrap method creates
a new oversized dataset by taking samples from the original dataset, and it also preserves the
proportionality of the data in each category. This means that some observations may be sampled
several times, while others may never be sampled. However, it is statistically unlikely that this
bias will cause the results to be substantially skewed.

It is also important to note that the bootstrap method cannot create new information from
existing data. In other words, if the original data set does not contain enough information to
solve the classification problem, the bootstrap method will not solve the problem. However, after
carefully increasing the size of the new dataset so as not to over-represent the already large number
of samples, we found that the classifiers were able to learn very well from this dataset, even though
they couldn’t with the original dataset.

The use of the SMOTE algorithm is a good complementary study tool, as it allows us to
introduce synthetic examples in the minority classes in order to rebalance the classes. The use
of this method thus mitigates the overfitting caused by the random oversampling that bootstrap-
ping can introduce, but also prevents the loss of information due to random selection. Of course,
this method also has disadvantages, which we have tried to reduce as much as possible. Firstly,
SMOTE can have difficulties with datasets of too high a dimension, but our dataset has only 308
samples in 10 dimensions, distributed across the different odour classes, which makes SMOTE
easier to use. The second disadvantage is due to the algorithm itself, in that SMOTE does not take
neighbouring samples into account when generating new examples, which can increase the overlap
between classes as we increase the size of our dataset. That’s why we tried to balance the classes
carefully. Thus, thanks to these resampling methods, while minimising the risk of overfitting, we
were able to obtain satisfactory results from the olfactory bulb dataset studied.

Finally, we also used an algorithm to automate the construction and optimization of the classi-
fier learning pipeline [182–184]. This algorithm, called the Tree-based Pipeline Optimisation Tool
(TPOT)4, uses scalable algorithms to automatically explore a pipeline search space, selecting and
configuring the most appropriate data pre-processing steps and machine learning models. With a
cross-validation generated over 5 iterations, in the case of tufted cells with a SMOTE-type prepro-
cessing, better results can be obtained (average accuracy reaching up to 80%), but these involve
the entanglement of several classification methods, each with its own set of parameters. Therefore,
in this study, we concluded that we should focus on simpler supervised classification techniques
that give equally good results.

6.5 Conclusion

In this study, we analysed with olfactory neuron data from three mice, focusing on the study of
tufted neurons. Our main aim was to see if it was possible to identify whether certain groups
of neurons were more active than others in recognising an odour class across individuals. This
involved developing a pipeline to map the olfactory bulbs of the three subjects to allow compar-
ison. To do this, we used a method that combines several data processing techniques: first, we
used the K-means method to group the data from each mouse into clusters. Then we applied a
procedure called baseline alignment, which allowed us to reduce the noise in our recordings. We
then used the RSA method to extract recurrent patterns from our data. We extracted information
about the importance of neuron subgroups in each of the metastables for each of the chemicals and
subjects. We used this information as training data for our supervising classifiers. Using the K-
nearest neighbour method to classify our data, the results were more than convincing for studying

4available at http://epistasislab.github.io/tpot/

http://epistasislab.github.io/tpot/

6.5. Conclusion 99

data from experiments. The classification scores showed that our method is effective in comparing
neuron activity between mice.

Through this pipeline, we were able to construct maps that allow us to compare the inten-
sity of the activity of the different subgroups of the olfactory bulb across the different subjects.
These representations allow us to hypothesize that the areas of the olfactory bulb requisitioned for
the recognition of chemicals are the same for each subject. Furthermore, we were also able to
show that these structures will have the same recurrence patterns and therefore the same way of
processing information for a given chemical.

In conclusion, our method, which combines the K-means, RSA and KNN methods, is effec-
tive to firstly allow the comparative study of subjects when no mapping is known, to highlight
which neuron group is most active following olfactory stimulation and to determine a discrimi-
native feature for learning a classifier for chemical recognition. Overall, this study provides new
insights into the analysis of olfactory neuron data and demonstrates the effectiveness of the pro-
posed method for future studies in this area. This chapter is therefore part of the thesis as an
approach to the study of neuronal excitability through the prism of data analysis, and at the scale
of the neural network.

101

Chapter 7

General Discussion

In conclusion, this thesis proposes an in-depth study of neuronal excitability through different
approaches, ranging from dynamical systems to laboratory experiments with computational ex-
plorations. Each chapter contains novel results on neuronal excitability, as well as validation of
mathematical models as representations of experiments.

In Chapter 2, we undertook a theoretical study, revealing how an integrator type neuron can
have its activity modulated so as to display subthreshold oscillations, like a resonator neuron, by
applying a forced current through a dynamical-clamp type protocol. This work therefore made
it possible to understand that although a neuron is categorized in one way, it can still support a
type of behavior that is not characteristic of it. This information could help us to understand with
more perspective the transmission of information in vitro, but also the plasticity that a neuron
can have when external currents are transmitted to it. Furthermore, this chapter demonstrated
that a neuron model can serve as a basis for the development of protocols that are suitable for
experimental application. It would be so interesting to test experimentally the theorical predictions
we have obtained. In addition, we plan to study the propagation of the electrical signal from such
a resonator-like integrator neuron through a network of standard integrators.

In Chapter 3, we studied the “flipper” behavior of GCs of the dentate gyrus. This work focused
first on the study of the results obtained by our experimental colleagues who induced these cells to
display flipping via a specific sodium current, then on the development of a Hodgkin-Huxley type
model based on this specific sodium current to demonstrate it also exhibits this kind of behavior.
Future work on this project could be to understand the biological role of this unexpected behavior
in GCs that transitions between immature and mature states.

In Chapters 4 and 5, we focused on obtaining bifurcation diagrams from noisy experiments
via numerical continuation methods. Based upon closed-loop feedback control, with an embed-
ded rootfinder algorithm (e.g. Newton’s method), the CBCE method allows to overcome the fact
that we do not a priori know the governing equations associated with the experiment we are study-
ing. In chapter 4, we studied experimental data obtained by subjecting a neuron to two different
patch-clamp electrophysiology protocols: a voltage clamp with slow ramp on the hold voltage
(VC), and a current-clamp with slow ramp on the hold current (CC). The result of the VC protocol
provided a (current, voltage) curve resembling a steady-state bifurcation diagram. What is more,
once superimposed onto the result of the CC protocol, the two datasets interacted in a similar
manner as a full systems solution overlaid onto a fast-subsystem steady-state bifurcation diagram.
That is, a slow-fast dissection effect. In this chapter, we explained why this simplified method
works, and we pose hypotheses on the question of the noise obtained around the unstable parts of
the critical manifold. Thus, this method, which is akin to a simplified revision of CBCE (without
the Newton part) allows us to obtain a viable approximation of an experimental steady-state bifur-
cation diagram, and also it can validate the underlying neuron model as a good representation of
the real neuron. In the near future, we would like to apply this method to more types of neurons
in order to show the robustness of the method.

In Chapter 5, we focused on applying a complete version of the CBCE method on experi-
ments simulated via Simulink. This complete version is closer to accurate results when it comes

102 Chapter 7. General Discussion

to obtaining curves of stationary points (regardless of the model simulated as an experiment in
Simulink). Regarding branches of periodic solutions, the method can calculate them easily when
the oscillations are “simple enough”, i.e, in normal form type models. However, when the oscil-
lations are more nonlinear as in the FitzHugh-Nagumo model, the method seems to have more
problems in approximating the correct branch. With the harmonic balance method, we were able
to pose new hypotheses as to the origin of this discrepancy: in fact, these results show us that the
problem can come from the number of Fourier coefficients that we use to approximate the solu-
tions, or else, certain subtleties coming from the algorithm itself. In the near future, we would to
further explore the reason behind this discrepancy, and then apply it on a real neuron.

Chapter 6 presented a data-analytic study on the olfactory bulb of mice. Namely we analysed
calcium imaging data coming from 3 mice subjected to different chemicals. We developed a
pipeline to study the data: first we segmented the real coordinate space of the neurons with the k-
means method, then we produced the average of the neurons of each segment for each individual.
Then, we pre-processed the data with the baseline alignment method, and then applied the RSA
method. These first results showed us that there are indeed patterns of recurrence of these olfactory
recognitions. Next, having segmented the data into subgroups based on the coordinates of neurons
in the olfactory bulb allows us to compare the centroids of these metastable states. These results
are summarized in odotopic maps which demonstrate that the same areas of the olfactory bulb
are activated for the same chemical. In addition, we also demonstrate that for the different types
of chemicals the same areas are used for recognition but at different intensity levels. Finally, we
propose the learning of a supervised classifier of these centroids to show that they are significantly
sufficient to discriminate them. These results could be supplemented with more complete data,
either by having more individuals, or with more trials for each chemical.

During this PhD, we also carried out an analysis of a Morris-Lecar analog neuromorphic cir-
cuit (Appendix 8) in order to try to apply our algorithms for continuation or integrator/resonator
transition, in the context of computer-controlled closed-loop experiments. In open-loop setup, the
experiment worked well, however, with the closed-loop setup we encountered problems that could
not be fixed. Namely, delays between the application of the given current to the experiment, and
reading the output. The circuit analysis results are presented in the appendix to this thesis.

This thesis therefore shows that the study of neuronal excitability through a combination of
mathematical, computational and experimental approaches is crucial for understanding the func-
tioning of the nervous system. Mathematics provides the essential framework for modelling the
complex behaviour of neurons, allowing us to generate abstract representations and quantitative
predictions that guide our experiments. Computation enhances this ability by providing us with
sophisticated tools to simulate and analyse models, and to explore datasets. Experiments provide
valuable and tangible data that ground our understanding in biological reality. Combining these
approaches is still an ongoing research topic, with novel results up for grab, allowing us to con-
tribute to the understanding of neural activity. The CBCE method is an example of contribution as
a way to bridge the gap between models and experiments, reveal unstable neural states and their
role.

103

Chapter 8

Appendix: Morris-Lecar analog circuit
dynamical study

8.1 Introduction

In this Appendix, we focus on the study of a neuromorphic circuit based on the Morris-Lecar
model. A neuromorphic circuit is a type of electronic circuit designed to reproduce the operation
of neural networks in the human brain: this includes the generation of action potentials, synaptic
transmission, and other processes electrical and chemical linked to neuronal activity. The interest
in studying a single-neuron neuromorphic circuit in this thesis was to have a controlled experiment
in which we know the equations which lead the behavior of the model. What we hoped for was to
be able to apply our methodologies developed during the thesis on this circuit in order to calibrate
them, but also to work on the notion of real-time experience, which was a new challenge for these
methods. Indeed, the use of methods based on control theory, such as those seen in chapters 2,
4 and 5, are dependent on a cell voltage feedback term. The presence of a bad interaction in
terms of time for this term obviously leads to false results. If this chapter is only present in the
appendix, it is because we encountered this difficulty with our equipment and we were unable to
resolve this problem. However, as this work is in line with the study of neuronal excitability from
an experimental point of view, we decided to present the study of the circuit in this thesis.

In this chapter, we will therefore first present the Morris-Lecar model used, the electronic
circuit and its configuration, then the results obtained with it.

8.2 Material and methods

8.2.1 The Morris-Lecar neuromorphic circuit

There are several advantages to studying an electronic circuit of which we know the exact compo-
nents compared to studying the dynamics of a neuron in vitro: in the case of an electronic circuit,
we can completely control all the components and parameters, which allows high precision in
measurements and experiments. On the other hand, neurons are complex biological systems and
it is difficult to control their dynamics. Furthermore, electronic circuits are simple mathematical
models of physical systems, which facilitates the analysis and understanding of their behavior.
On the other hand, neurons are complex biological systems and modeling their dynamics is often
very difficult. Moreover, electronic circuits are often less expensive to manufacture and test than
in vitro studies of neurons, because there is no need to maintain cell cultures or use expensive
laboratory equipment. And finally, electronic circuits can be easily modified to explore different
hypotheses and scenarios, while in vitro studies on neurons can be limited by technical constraints
and experimental protocols.

Of course, electronic circuits are abstract models of physical systems, which do not always
accurately reflect the complexity of the real world. Therefore, conclusions drawn from the study
of electronic circuits may not apply to other more complex systems. Moreover, they are often

104 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

Figure 8.1: General setup.

simplified models of physical systems, which do not take into account all interactions and potential
influences. Therefore, the conclusions drawn from the study of electronic circuits may be limited
by this oversimplification. However, this does not pose a problem for this thesis project since what
we want is to study the dynamics of an experiment whose mathematical nature we know.

The neuromorphic circuit is based on a modified version of the Morris-Lecar model [185]:

CV̇ =−g∗CaM∞(Vm)(Vm −VCa)−g∗KN(Vm −VK)−gLN(Vm −VL)+ I

Ṅ = τ
−1(−N +G(Vm))

(8.1)

where Vm is the membrane voltage, N is the activation variable of the slow potassium channels,
and I is an external tonic current delivered to the neuron. g∗Ca and g∗K are the maximal conductances
of the calcium and potassium channels, respectively, and gL is a constant leak conductance. VCa,
VK and VL are reversal potential of relevant ion species. Parameter C is the membrane capacitance
and τ , the time constant associated with N.

The nonlinear functions M∞(Vm) and G(Vm) are defined as follows:

M∞(V) = 0.5(1+ tanh
(

Vm −V1

V2

)
,

G(V) = 0.5(1+ tanh
(

Vm −V3

V4

)
,

(8.2)

where V1, V2, V3 and V4 will be considered as adjustable and tuneable parameters for steady
state and time constant. In fact, the circuit has two outputs (Vm, the membrane voltage, N, the
second variable of the Morris-Lecar model, i.e. the recover variable) and one input (Iext , the
external current). It is possible to modify the conductances and the ion equilibrium potentials
from the circuit physically, while the parameters V1, V2, V3 and V4 will be modified directly from a
suitable software. The fact that all the parameters cannot be modified via the appropriate software
is a disadvantage, however, it does not prevent from producing the results we are looking for.

8.2. Material and methods 105

x gx

I +502.5Ω

L +500.5Ω

K +126.7Ω

Ca +250.1Ω

S +286.3Ω

Table 8.1: Table of conductances used during the experiments for each of the ions.

x Vx

Ca +1.955V
K -0.729Ω

L -0.516Ω

S -0.4433Ω

Table 8.2: Table of equilibrium potential used during the experiments for each of the ions.

8.2.2 Additional informations on the setup

For our experiments, we used a data acquisition device produced by National Instruments. The
model is NI 781003-01 - USB-6212 BNC Bus Powered M Series, and it allows a communication
between the computer and the circuit. It can send a potential to the circuit and read back the
potential coming from the Morris-Lecar output. However, it can send only a Voltage signal going
from −5V until 5V . 1 This device is supposed to be able to support real-time interactions between
the PC and the experience.

We also used an homemade electronic board which allowed us to convert the potential coming
from the NI-DaQ into a current signal for the Morris-Lecar analog circuit. It has a resistance of
1kΩ, and a conversion table can be find bellow (Table 8.3). It is possible to change the resistance
on the electronic board. If we chose to use a resistance of 1kΩ, this is because when designing the
circuit, the company used this set-up to convert the incoming potential. This electronic board is
power supplied by a double station device.

8.2.3 Studying the circuit dynamic

In this subsection, we provide a summary of the set-up needed to capture the dynamic a Morris-
Lecar analog circuit.

In Fig. 8.2, the protocol main steps about how to use the circuit are explained: (1) with Python,
we send the voltage value we want the NIDaQ to generate, (2) and at the same time, we calibrate
the Morris-Lecar parameters via the laboratory computer. (3) the generated voltage is sent to the
electronic board to be converted in current, (4) meanwhile it is powered by the power supply. (5)
This current is sent to the Morris-Lecar circuit and (6) to be sure about the current we are sending
to the circuit, we check with the electrometer the exact current value produced. (7) Through the
oscilloscope, we can read the Morris-Lecar dynamics, and with the NIDaQ connection, we can
also read the membrane voltage input on the computer. This configuration will be kept throughout
the experiments presented below.

1https://www.ni.com/es-es/support/documentation/dimensional-drawings/model.usb-6212.html

https://www.ni.com/es-es/support/documentation/dimensional-drawings/model.usb-6212.html

106 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

INPUT (Voltage) OUTPUT (Ampere)

-5V -1.358mA
-4V -1.086mA
-3V -0.814mA
-2V -0.521mA
-1V -0.269mA
0 V +0.002mA
+1V +0.269mA
+2V +0.521mA
+3V +0.814mA
+4V +1.086mA
+5V +1.358mA

Table 8.3: Conversion table from the electronic board input (Voltage) into the current
output (Ampere).

Figure 8.2: Minimum set-up to study the Morris-Lecar dynamics with the circuit. (A) is
the data acquisition card which generates the potential via a Python command. (B) is the
plug which allows the computer to calibrate the circuit, (C) are all the outputs of the circuit,
and (D) the current input.

8.3. Results 107

Figure 8.3: A: experimental nullclines. Parameters values are: I = −1 mA, V1 = 0.0 V,
V2 = 4.477 V, V3 = 0.0 V, V4 = 4.441 V, τ = 3.78 ms, C = 1.025 µF, g∗Ca = 2.508 mS,
VCa = 1.955 V, g∗K = 1.253 mS, VK = −0.729 V, gL = 1.0 mS, VL = −0.516 V, B: model
nullclines. Parameter values are: I = 0.0 mA, V1 = 0.0 V, V2 = 0.15 V, V3 = −0.05 V,
V4 = 0.02 V, τ = 2 ms, C = 1.025 µF, g∗Ca = 4.0 mS, VCa = 1.0 V, g∗K = 8.0 mS, VK =−0.66
V, gL = 2.0 mS, VL = 0.5 V.

8.3 Results

8.3.1 Dynamical behavior

During the first experiments on the circuit, were aimed at highlighting the behaviors and the most
common mathematical objects that can be obtained with the Morris-Lecar model.

Thus, we obtained the experimental nullclines shown on Fig. 8.3 A. These experimental null-
clines are obtained from a ramp dependent on one of the two variables, which means that this
dynamic is off, while measuring the equilibrium value of the other variable. This method has
the drawback of not allowing the calculation of unstable branches of the nullcline. They can be
compared with the ones obtained through the model; see Fig. 8.3 B. It is hence possible to obtain
a N-nullcline very similar from the model one, but the experimental V -nullcline is not exhibiting
this unstable part. Indeed, the solution jumps at the nullcline folds due to the ramp method.

It was also possible to highlight robust behaviors of the 8-shaped solution (which effectively
displays two canard segments) featuring stable focus points near the V -nullcline folds and a saddle
point. In this studied case, we then have a canard solution which displays this behavior at the two
folds. This type of scenario is also possible to obtain in the Morris Lecar model, however it
is difficult to obtain. Indeed, when the sigmoid nullcline passes close to the folds of the cubic
nullcline, it is possible to have these stable focus points, but because the model is not symmetrical,
the model requires precise calibration.

Canard solutions have the property of existing over a very small range of parameter values,
which justifies the term canard explosion [53, 80]. Thus the noise of the parameters of the elec-
tronic circuit allows us to observe the appearance of canard solutions for well-chosen base values.
Indeed, an alternation between small canard solutions and large canard solutions is observable in
Fig. 8.5 A. Moreover, it is also possible to see that these data show a slight trend of 8-shaped
solution.

We have applied a rotation from the coordinates of the data, in order to mimic the observed
8-shaped experimental traces.

To obtain the Fig. 8.5 (C) and (D), we applied a rotation matrix on the differential equation
system (eq. 8.1): [

V̇r

Ṅr

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
V̇
Ṅ

]
, (8.3)

108 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

Figure 8.4: Example of experimental double-canard behavior. (A): experimental phase
plane projection of the measurement. (B) time series for both measured output of the
circuit, namely V and N. Parameters values are: I = −0.8319 mA, V1 = 0.0 V, V2 = 4.44
V, V3 = 0.0 V, V4 = 4.44 V, τ = 6.27 ms, C = 1.025 µF, g∗Ca = 2.508 mS, VCa = 1.7 V,
g∗K = 1.253 mS, VK =−0.729 V, gL = 1.0 mS, VL =−0.516 V.

Figure 8.5: (A) Experimental apparition of canard behavior phenomena on a phase plane,
and (B) the corresponding time series, (C) Apparition of canard behavior phenomena on a
Morris-Lecar model phase plane (Rotated with a value of θ = 0.4 radian). (D) Correspond-
ing time series for each cycle. Parameters values are: I = 0.5 mA, V1 = 0.0 V, V2 = 1.0
V, V3 = 0.0 V, V4 = 1.0 V, τ = 0.7 ms, C = 1.025 µF, g∗Ca = 2.508 mS, VCa = 1.992 V,
g∗K = 1.253 mS, VK =−0.729 V, gL = 1.0 mS, VL =−0.516 V.

8.3. Results 109

Figure 8.6: (A) phase plan of a circuit experiment involving a rampe for the applied cur-
rent. (B) 3D phase plan of the same conditions. Parameters values are: I = 0.0 mA to
−1.0 mA, V1 = 0.0 V, V2 = 4.44 V, V3 = 0.0 V, V4 = 4.44 V, τ = 3.78 ms, C = 1.025
µF, g∗Ca = 2.508 mS, VCa = 1.992 V, g∗K = 1.253 mS, VK = −0.729 V, gL = 1.0 mS,
VL =−0.516 V.

where θ corresponds to the angle of the rotation. This matrix defined in eq. (8.3) rotates
points through an angle θ with respect to the positive x-axis about the origin of a two-dimensional
Cartesian coordinate system. The final rotated system is as follow:

V̇r = cos(θ)V̇ − sin(θ)Ṅ

Ṅr = sin(θ)V̇ + cos(θ)Ṅ
(8.4)

We used an increasing ramp for the current applied on the circuit (Fig. 8.6 (A) and (B)), which
allows us to highlight the presence and the effect of the Hopf bifurcation point present in the
system (Fig. 8.7).

In order to show that this behavior is possible even in a model, we also used a FitzHugh-
Nagumo model, i.e. a simplified model of the Hodgkin-Huxley model, which can have a sym-
metrical phase portrait; this makes it easier to get the behavior. In Fig. 8.7, for both cases, it is
possible to observe 8-shaped canard solution, due to the presence of Hopf bifurcations leading to
canard explosion near each fold of the critical manifold.

This kind of behavior can only appear for a small range of parameter, so to study it we com-
puted the bifurcation diagram of these models.

In Fig. 8.8, a bifurcation diagram of the Morris-Lecar model is provided according to the pa-
rameter V3, with also a zoom on the parameter range which is giving the particular behavior which
can observe in Fig. 8.7 B. Two families of unstable cycles (blue line) are observable, coming from
each Hopf bifurcation, HB1 and HB2, and both terminating at two homoclinic bifurcations, HM1
and HM2, involving a saddle point lovated on the middle branch of the critical manifold. The fam-
ily of large and stable cycles (green line) terminates on both sides at homoclinic bifurcation with
the associated homoclinic connections being large, each of them involving a saddle equilibrium
(for two nearby values of V3) located on the middle branch of the critical manifold.

In Fig. 8.8 C, the bifurcation diagram of the FitzHugh Nagumo model, according to the pa-
rameter b, is showing also where the 8-shaped solution can appear in this model: from the Hopf
points HB3 and HB4, unstable periodic cycle branches born, then undergo a canard explosion, and
stop at the point HM5 and HM6. At HM7, a new branch of limit cycle born and it is still unstable,
before to become stable: it is during this unstable branch that appear this 8-shaped solution.

110 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

Figure 8.7: Morris-Lecar phase plan with small canard solutions. Orange curve: V -
nullcline, green curve: N-nullcline. Parameters values are: I =−0.23395 mA, V1 = 0.0 V,
V2 = 0.2 V, V3 = −0.0542782 V, V4 = 1.581236360973563 V, τ = 10 ms, C = 1.025 µF,
g∗Ca = 4.0 mS, VCa = 1.0 V, g∗K = 8.0 mS, VK =−0.66 V, gL = 2.0 mS, VL = 0.5 V.

8.3.2 Sensitivity analysis

Sensitivity analysis is a mathematical technique used to assess the impact of parameter variations
on the results of a mathematical model, particularly in the context of systems of differential equa-
tions. In a system of differential equations, the variables often depend on unknown parameters.
Sensitivity analysis explores how variations in these parameters influence system results. More
precisely, the sensitivity analysis makes it possible to quantify the relative importance of each
parameter for the variation of the solution of the system of differential equations.

For this analysis, we use the package Uncertainpy2, which is a Python library for sensitivity
analysis and optimization of stochastic models, based on Bayesian inference methods. This library
is used to calculate sensitivity indices for stochastic models from numerical simulations. It also
provides tools for optimizing model parameters and for performing statistical analyzes on simula-
tion results. Uncertainpy supports several types of stochastic models, such as Markov processes,
diffusion processes, and jump processes.

In Fig. 8.9, we propose a sensitivity analysis of the system according to two parameters V3 and
V4, which are involved in the N-equation, and to the parameter set which is giving us the particular
double canard behavior. The methodology used implements polynomial chaos expansions using
point collocation method. This polynomial chaos expansion method have support for the rosenblatt
transformation to handle dependent input parameters. It is feature based, i.e., if applicable, it
recognizes and calculates the uncertainty in features of the model, as well as the model itself. In
our study, the two parameters follow a uniform distribution of ±1 or ±0.1 around their basis value.
It is possible to observe that the 8-shaped cycles are not robust, even with a small variation.

8.3.3 Attempt to apply our methods

In this section, we wish to illustrate two problems encountered when applying our methods on
the Morris-Lecar circuit. First of all, we want to try to apply our slow and controlled forcing on

2Available at https://uncertainpy.readthedocs.io/en/latest/

https://uncertainpy.readthedocs.io/en/latest/

8.3. Results 111

Figure 8.8: A: Morris-Lecar bifurcation diagram with respect to parameter V3. The chosen
solution measure for limit cycles is the max and min of V . Equilibria are represented by
the solid black line (stable) and dashed black line (unstable). Limit cycles are represented
in green (stable) and blue (unstable). Hopf bifurcation points are represented by black
dots, and homoclinic bifurcations by red dots. B: Zoom on the periodic branches which
correspond to eight-shaped solutions. Parameter values are: I = −0.23395 mA, V1 = 0.0
V, V2 = 0.2 V, V3 = −0.0542782 V, V4 = 1.581236360973563 V, τ = 10 ms, C = 1.025
µF, g∗Ca = 4.0 mS, VCa = 1.0 V, g∗K = 8.0 mS, VK = −0.66 V, gL = 2.0 mS, VL = 0.5 V.
C: FitzHugh-Nagumo bifurcation diagram with respect to parameter b. Parameters values
are: I = 0.0 mA, a = 0, ε = 0.1.

112 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

Figure 8.9: Sensitivity analysis for the Morris-Lecar system with respect to the two pa-
rameters V3 and V4 and with different range of uniform variation. A (V -component of the
solution) and B (N-component): V3 and V4 have an uniform distribution of ±1 around the
parameter value. C (V -component) and D (N-component): V3 and V4 have an uniform vari-
ation of ±0.1 around the parameter value. E: V3 and V4 without any variation of parameter.
Parameters values are: I = −0.23395 mA, V1 = 0.0 V, V2 = 0.2 V, V3 = −0.0542782 V,
V4 = 1.581236360973563 V, τ = 10 ms, C = 1.025 µF, g∗Ca = 4.0 mS, VCa = 1.0 V, g∗K = 8.0
mS, VK =−0.66 V, gL = 2.0 mS, VL = 0.5 V.

the circuit in order to bring out a resonator behavior on this integrator type neuron. Obviously,
the basic Morris-Lecar model makes it possible to bring out this kind of behavior numerically. In
Fig. 8.10, we present an attempt to obtain this resonator behavior, via tests of multiple values of
I0 in Chapter 3. What we notice is that we find the addition of spikes in the trains, but that no
sub-threshold oscillation is visible. It is therefore impossible here to change the circuit behavior.

Then, we propose to try to apply the continuation of the rudimentary type on our electronic
circuit (Fig. 8.11), and what comes out of it is that the algorithm has no difficulty in following
the branch of stable stationary points, but at the time of passing to the branch of stationary point
unstable, see even before passing the fold, the behavior becomes erratic. This behavior seems
indeed under the influence of the oscillatory characteristics of the model, and thus does not make
it possible to obtain the desired rudimentary continuation.

8.4 Discussion and conclusion

We were able to highlight the different possible dynamics of the system, compare them with the
model, but also the characteristics that are specific to the circuit. These specific dynamics do not

8.4. Discussion and conclusion 113

Figure 8.10: Integrator neuron (8.1) not acting as a resonator with the slow forced
current. Parameter values are: V1 = 0.0 V, V2 = 0.2 V, V3 = −0.0542782 V, V4 =
1.581236360973563 V, τ = 10 ms, C = 1.025 µF, g∗Ca = 4.0 mS, VCa = 1.0 V, g∗K = 8.0
mS, VK =−0.66 V, gL = 2.0 mS, VL = 0.5 V, J0 = 1.8, ε = 0.2, α =−3.5, and I0 is varying
between 0.1354 and 0.1283.

Figure 8.11: Morris-Lecar circuit current-clamp with slow ramp (blue curve) overlaid with
the voltage-clamp with a slow ramp (red curve). Parameter values are: V1 = 0.0 V, V2 = 0.2
V, V3 =−0.0542782 V, V4 = 1.581236360973563 V, τ = 10 ms, C = 1.025 µF, g∗Ca = 4.0
mS, VCa = 1.0 V, g∗K = 8.0 mS, VK =−0.66 V, gL = 2.0 mS, VL = 0.5 V, K = 3, ε = 0.2

harm the study of the Morris-Lecar model, however for other reasons it was impossible for us
to extract results which go in the direction of the transformation integrator to resonator, of the
rudimentary continuation or of the CBCE.

In all cases, the main problem came from the possibility of interacting in ”real time” with the
circuit. Indeed, during our experiments, it was possible to see that involving a control term in our

114 Chapter 8. Appendix: Morris-Lecar analog circuit dynamical study

equations induced erratic solutions, this being in fact due to a delay between the reading of the
information, and the sending. We obviously tried different software to interact with the circuit,
namely LabView, Python or Matlab packages. Our main assumption about this delay would come
from our way of converting the potential coming out of our acquisition device into current going
into the circuit. This hypothesis is even reinforced by the fact we have been already being able to
obtain a good rudimentary continuation curve on real neurons, so the problem is probably coming
from the material.

In addition, it is important to note that not all of the parameters were adjustable via the com-
puter insofar as certain parameters had to be modified physically on the circuit. Thus, we could
not do a continuation on the whole set of parameters.

In conclusion, this study falls perfectly within the scope of the thesis, insofar as we experi-
mentally study the behavior of a circuit which is supposed to have the behavior of a mathematical
model of a single neuron. However, our experimental setup was limited for the study of the meth-
ods presented in this thesis.

115

Chapter 9

Appendix: Code scripts

In this chapter, all the codes used to complete this thesis are provided. The codes are sorted by
chapter for better orientation.

9.1 Chapter 2: Integrator and resonator neurons

This first code is written for the software XPPAUT. It gives the 2-dimensional Morris-Lecar model,
plus the 2-dimensional slow oscillator in order to obtain the integrator dynamic:

1 dV / d t = (I − g l * (V−El) − gna * Minf (V) * (V−Ena) − gk*N*(V − Ek)) / C
2 dN / d t = (Ninf (V) −N) / t a u n
3 dI / d t = eps *(− J)
4 dJ / d t = eps * (I − I0)
5

6 # g a t i n g f u n c t i o n s
7 Minf (V) = 1 / (1 + exp ((Vmhalf −V) /Km))
8 Ninf (V) = 1 / (1 + exp ((Vnhalf −V) / Kn))
9

10

11 # p a r a m e t e r v a l u e s
12

13 p a r I0 = −5.48
14 p a r C=1 , t a u n =1
15 p a r El =−80
16 p a r Ena=60
17 p a r Ek=−90
18 p a r g l =8
19 p a r gna =20
20 p a r gk=10
21 p a r Vmhalf=−20
22 p a r Km=15
23 p a r Vnha l f =−25
24 p a r Kn=5
25 p a r eps =0.001
26

27 # i n i t i a l c o n d i t i o n s
28 i n i t V= −76 , N=3e −5 , I = −5.43 , J =10
29

30

31 # n u m e r i c s
32 @ t o t a l =10000 , d t =0 .01

116 Chapter 9. Appendix: Code scripts

33 @ meth= rk4
34 @ xp=I , yp=V, x l o = −200 , x h i =200 , y l o = −120 , y h i =0
35 @ bounds =9000000 , maxs to r =9000000
36 done

Then, we propose the same model, but with the feedback control included in the slow oscilla-
tor, in order to obtain a resonator behavior:

1 dV / d t = (I − g l * (V−El) − gna * Minf (V) * (V−Ena) − gk*N*(V − Ek)) / C
2 dN / d t = (Ninf (V) −N) / t a u n
3 dI / d t = eps * (a l p h a *V−J)
4 dJ / d t = eps * (I − I0)
5

6 # g a t i n g f u n c t i o n s
7 Minf (V) = 1 / (1 + exp ((Vmhalf −V) /Km))
8 Ninf (V) = 1 / (1 + exp ((Vnhalf −V) / Kn))
9

10

11 # p a r a m e t e r v a l u e s
12

13 p a r I0 =−4
14 p a r a l p h a =−4
15 p a r C=1 , t a u n =1
16 p a r El =−80
17 p a r Ena=60
18 p a r Ek=−90
19 p a r g l =8
20 p a r gna =20
21 p a r gk=10
22 p a r Vmhalf=−20
23 p a r Km=15
24 p a r Vnha l f =−25
25 p a r Kn=5
26 p a r eps =0.001
27

28 # i n i t i a l c o n d i t i o n s
29 i n i t V= −61.81 , N=3e −5 , I = −4 , J =240.75
30

31

32 # n u m e r i c s
33 @ t o t a l =5000 , d t =0 .01
34 @ meth= rk4
35 @ xp=I , yp=V, x l o = −200 , x h i =200 , y l o = −120 , y h i =0
36 @ bounds =9000000 , maxs to r =9000000
37 done

9.2 Chapter 3: Immature neuron excitability

In this section, we propose to see first the XPPAUT code which gives the 3-states dynamicn with
no flipper behavior:

1 # Model o f h ippocampa l p y r a m i d a l n e u r o n s

9.2. Chapter 3: Immature neuron excitability 117

2 # Ref . : Chizhov & Graham , PRE 75 , 2007 .
3 # r e d u c e d v e r s i o n
4

5 # ODEs
6 V’ = (I a p p l −INa −IDR−IA−IL −s *(V−Vus)) / C
7 x1 ’ = A31*(1 − x1−x2) −x1 *(A12+A13)
8 x2 ’ = A12*x1−x2*A23
9 n ’ = (n i n f (V) −n) / t a u n (V)

10 yK’ = (yKinf (V) −yK) / tauyK (V)
11 nA’ = (nAinf (V) −nA) / taunA (V)
12 lA ’ = (l A i n f (V) −lA) / t a u l A (V)
13

14

15 # F u n c t i o n s f o r e q u a t i o n s o f xi , i ={1 ,2 ,3}
16 p a r A12 =3 .0
17 A13 = 1 / (tau13min +1/ exp ((V− V13ha l f) / k13))
18 A31 = 1 / (tau31min +1/ exp ((V− V31ha l f) / k31))
19 A23 = 1 / (tau23min + 1 / (1 / (tau23max − tau23min) +exp ((V− V23ha l f) / k23)))
20

21 # A d d i t i o n a l p a r a m e t e r s f o r t h e above f u n c t i o n s
22 p a r tau13min =0 .33333 , V13ha l f = −51.0 , k13 = −2.0
23 p a r tau31min =0 .33333 , V31ha l f = −42.0 , k31 =1 .0
24 p a r tau23min = 1 . 0 , V23ha l f = −53.0 , k23 = −1.0 , tau23max =100.0
25

26 # A c t i v a t i o n & I n a c t i v a t i o n f u n c t i o n s
27 an (V) =0 .17* exp ((V+5) * 0 . 0 9)
28 bn (V) =0.17* exp (−(V+5) * 0 . 0 2 2)
29 t a u n (V) = 1 / (an (V) +bn (V)) +0 .8
30 n i n f (V) =an (V) / (an (V) +bn (V))
31 tauyK (V) =300
32 yKinf (V) =1 / (1+ exp ((V+68) * 0 . 0 3 8))
33 anA (V) =0.08* exp ((V+41) * 0 . 0 8 9)
34 bnA (V) =0.08* exp (−(V+41) * 0 . 0 1 6)
35 nAinf (V) =anA (V) / (anA (V) +bnA (V))
36 taunA (V) = 1 / (anA (V) +bnA (V)) +1
37 alA (V) =0.04* exp (−(V+49) * 0 . 1 1)
38 blA (V) =0 .04
39 l A i n f (V) =alA (V) / (alA (V) +blA (V))
40 t a u l A (V) = 1 / (alA (V) +blA (V)) +2
41

42 # C u r r e n t s
43 INa=gbarNa *x1 *(V−VNa)
44 IDR=gbarDR*n*yK*(V−VK)
45 IA=gbarA *nAˆ4* lA ˆ 3 * (V−VK)
46 IL=gbarL *(V−VL)
47 aux NaI=gbarNa *x1 *(V−VNa)
48 aux DRI=gbarDR*n*yK*(V−VK)
49 aux AI=gbarA *nAˆ4* lA ˆ 3 * (V−VK)
50 aux LI=gbarL *(V−VL)
51

52 # R e v e r s a l p o t e n t i a l s and maximum c o n d u c t a n c e s

118 Chapter 9. Appendix: Code scripts

53 p a r VNa= 6 5 . 0 , VK= −70.0 , VL= −64.96
54 p a r gbarNa = 2 . 2 8 , gbarDR = 0 . 7 6 , gbarA = 4 . 3 6 , gbarL =0.048
55 p a r s = 0 . 2 , Vus = −60.0
56

57 # I n i t i a l C o n d i t i o n s
58 i n i t V= −65 , x1 =0 , x2 =0 , n =0 .0012818 , yK=0.46631
59 i n i t nA=0 .078559 , lA =0.84545
60

61

62 # F ixed a p p l i e d c u r r e n t
63 p a r I a p p l =3 .2
64

65 # Membrane c a p a c i t a n c e
66 p a r C=0.70
67

68 # I n i t i a l C o n d i t i o n s
69 i n i t V= −65 , x1 =0 , x2=0
70

71 # Numerics
72 @ t o t a l =2000 , method=rk4 , d t =0 .01
73 @ x h i =200 , y l o = −80 , y h i =40
74 @ maxs to r =1000000
75 @ bounds =10000000
76

77 done

Then the 4-states case, so with the flipper phenomena:

1 # Model o f h ippocampa l p y r a m i d a l n e u r o n s
2 # Ref . : Chizhov & Graham , PRE 75 , 2007 .
3

4 # ODEs
5 V’ = (I a p p l −INa −IDR−IA−IL −s *(V−Vus)) / C
6 x1 ’ = A21*x2+A31*x3+A41*(1 − x1−x2−x3) −x1 *(A12+A13+A14)
7 x2 ’ = A12*x1+A32*x3+A42*(1 − x1−x2−x3) −x2 *(A21+A23+A24)
8 x3 ’ = A13*x1+A23*x2+A43*(1 − x1−x2−x3) −x3 *(A31+A32+A34)
9 n ’ = (n i n f (V) −n) / t a u n (V)

10 yK’ = (yKinf (V) −yK) / tauyK (V)
11 nA’ = (nAinf (V) −nA) / taunA (V)
12 lA ’ = (l A i n f (V) −lA) / t a u l A (V)
13

14 # F ixed a p p l i e d c u r r e n t
15 p a r I a p p l =3 .2
16

17 # R e v e r s a l p o t e n t i a l s and maximum c o n d u c t a n c e s
18 p a r gbarNa = 2 . 2 8 , VNa= 6 5 . 0 , VK= −70.0 , VL= −64.96
19 p a r gbarDR = 0 . 7 6 , gbarA = 4 . 3 6 , gbarL =0.048
20 p a r s = 0 . 2 , Vus = −60.0
21

22 # Membrane c a p a c i t a n c e
23 p a r C=0.70
24

9.2. Chapter 3: Immature neuron excitability 119

25 # P a r a m e t e r s f o r e q u a t i o n s o f xi , i ={1 ,2 ,3}
26 p a r A12 = 3 . 0 , A21 = 0 . 0 , A24 = 0 . 0 , A32 = 0 . 0 , A42 = 0 . 0 , A43 =0 .0
27

28 # F u n c t i o n s f o r e q u a t i o n s o f xi , i ={1 ,2 ,3}
29 A13= f113 (V)
30 A14= f114 (V)
31 A23= f223 (V)
32 A31= f131 (V)
33 A34= f234 (V)
34 A41= f141 (V)
35 f113 (V) = 1 / (tau13min +1/ exp ((V− V13ha l f) / k13))
36 f114 (V) = 1 / (tau14min +1/ exp ((V− V14ha l f) / k14))
37 f131 (V) = 1 / (tau31min +1/ exp ((V− V31ha l f) / k31))
38 f141 (V) = 1 / (tau41min +1/ exp ((V− V41ha l f) / k41))
39 f223 (V) = 1 / (tau23min + 1 / (1 / (tau23max − tau23min) +exp ((V− V23ha l f) / k23

)))
40 f234 (V) = 1 / (tau34min + 1 / (1 / (tau34max − tau34min) +exp ((V− V34ha l f) / k34

)))
41

42 # A d d i t i o n a l p a r a m e t e r s f o r t h e above f u n c t i o n s
43 p a r tau13min =0 .33333 , V13ha l f = −51 , k13=−2
44 p a r tau14min =0 .33333 , V14ha l f = −57 , k14=−2
45 p a r tau23min =1 , V23ha l f = −53 , k23 = −1 , tau23max =100
46 p a r tau31min =0 .33333 , V31ha l f = −42 , k31=1
47 p a r tau34min =1 , V34ha l f = −60 , k34 = −1 , tau34max =100
48 p a r tau41min =0 .33333 , V41ha l f = −51 , k41=1
49

50 # A c t i v a t i o n & I n a c t i v a t i o n f u n c t i o n s
51 an (V) =0 .17* exp ((V+5) * 0 . 0 9)
52 bn (V) =0.17* exp (−(V+5) * 0 . 0 2 2)
53 t a u n (V) = 1 / (an (V) +bn (V)) +0 .8
54 n i n f (V) =an (V) / (an (V) +bn (V))
55 tauyK (V) =300
56 yKinf (V) =1 / (1+ exp ((V+68) * 0 . 0 3 8))
57 anA (V) =0.08* exp ((V+41) * 0 . 0 8 9)
58 bnA (V) =0.08* exp (−(V+41) * 0 . 0 1 6)
59 nAinf (V) =anA (V) / (anA (V) +bnA (V))
60 taunA (V) = 1 / (anA (V) +bnA (V)) +1
61 alA (V) =0.04* exp (−(V+49) * 0 . 1 1)
62 blA (V) =0 .04
63 l A i n f (V) =alA (V) / (alA (V) +blA (V))
64 t a u l A (V) = 1 / (alA (V) +blA (V)) +2
65

66 # C u r r e n t s
67 INa=gbarNa *x1 *(V−VNa)
68 IDR=gbarDR*n*yK*(V−VK)
69 IA=gbarA *nAˆ4* lA ˆ 3 * (V−VK)
70 IL=gbarL *(V−VL)
71 aux NaI=gbarNa *x1 *(V−VNa)
72 aux DRI=gbarDR*n*yK*(V−VK)
73 aux AI=gbarA *nAˆ4* lA ˆ 3 * (V−VK)

120 Chapter 9. Appendix: Code scripts

74 aux LI=gbarL *(V−VL)
75

76 # I n i t i a l C o n d i t i o n s
77 i n i t V= −65 , x1 =0 , x2 =0 , x3 =0 , n =0 .0012818 , yK=0.46631
78 i n i t nA=0 .078559 , lA =0.84545
79

80 # Numerics
81 @ t o t a l =2000 , method=rk4 , d t =0 .01
82 @ x h i =200 , y l o = −80 , y h i =40
83 @ maxs to r =1000000
84 @ bounds =10000000
85

86 done

9.3 Chapter 4: Rudimentary continuation

This XPPAUT code provides both at the same time, the current-clamp and the voltage-clamp pro-
tocol applied on a Morris-Lecar model. It is possible to overlay them by following this command:
”Graphic stuff” -¿ ”(A)dd curve” -¿ ”X-axis: IAPPL, Y-axis: Vi”.

1 # ODEs v o l t a g e clamp
2 V’=(− gL *(V−VL) −gK*w*(V−VK) −gCa* minf (V) * (V−VCa) +k *(V− V t i l d e)) / C
3 w’= eps *lamw (V) *(winf (V) −w)
4 V t i l d e ’= d e l t a
5 # ODEs c u r r e n t clamp
6 Vi ’=(− gL *(Vi−VL) −gK*wi * (Vi−VK) −gCa* m i n f i (Vi) * (Vi−VCa) + I a p p l) / C
7 wi ’= eps * lamwi (Vi) * (w i n f i (Vi) −wi)
8 I a p p l ’= d e l t a i
9

10

11 aux Iapp lV =k *(V− V t i l d e)
12

13 # Eq c u r v e i n (IapplV ,V) :
14 I app lV =gL *(V−VL) +gK* winf (V) * (V−VK) +gCa* minf (V) * (V−VCa)
15

16 # (i n) a c t i v a t i o n f u n c t i o n s
17 minf (V) =0 .5* (1+ t a n h ((V−V1) / V2))
18 winf (V) =0 .5* (1+ t a n h ((V−V3) / V4))
19 lamw (V) = cosh ((V−V3) / (2 * V4))
20 m i n f i (Vi) =0 .5* (1+ t a n h ((Vi−V1) / V2))
21 w i n f i (Vi) =0 .5* (1+ t a n h ((Vi−V3) / V4))
22 lamwi (Vi) = cosh ((Vi−V3) / (2 * V4))
23

24 # P a r a m e t e r s
25 p a r C=20
26 p a r gK=8.0
27 p a r gL =2 .0
28 p a r eps =0.067
29 p a r V3=11 .0
30 p a r V4=17 .4
31 p a r VK=−74

9.4. Chapter 5: Continuation Based on Controled Experiments 121

32 p a r VL=−60
33 p a r VCa=80
34 p a r V1= −0.5
35 p a r V2=14 .0
36 p a r k = −20.0
37

38 # ramp −up p a r a m e t e r s
39 p a r d e l t a = 0 . 0 1 , d e l t a i = 0 . 0 1 , gCa =5 .0
40

41 # I n i t i a l c o n d i t i o n s (ramp −up)
42 i n i t V= −99.0 , w=5 .1 e −05 , V t i l d e = −100.0
43 i n i t Vi = −99.0 , wi =5 .1 e −05 , I a p p l = −40.0
44

45 # Numerics ramp up
46 @ t o t a l =12000.0
47 @ method=rk4 , d t =0 .005
48 @ xp=IapplV , yp=V, x l o = −10 , x h i =150 , y l o = −80 , y h i =20
49 @ maxs to r =900000
50 @ bounds =900000
51 done

9.4 Chapter 5: Continuation Based on Controled Experiments

9.4.1 Part 1: Fixed point case

In this part, the Matlab code is written to be used in interaction with a FitzHugh-Nagumo Simulink
model which is not provided here. You can anyway make the choice to change the inputs and the
parameters of the following code.

The main advantages of this Simulink model is that you can consider it as an external experi-
ment from what you have to import the data to your workspace like a real experiment and that it
is possible to add noise (Gaussian noise or band-limited white noise.)

For our experiments, we use the band-limited white noise block with different noise power
level. This block generates normally distributed random numbers that are suitable to use in con-
tinuous system. For the integration of the signal, we use the Integrator block.

We propose now to give all the functions, we used during the process.
This first function allows to initialize the Simulink model with the good parameters. This

function takes as input all the needed parameters, and doesn’t have any output.

1 f u n c t i o n X = INITIALISATION (A, B , C , D, E , EPS , K, V TILDE , V0 ,
W0, NOISE)

2 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / n o i s e ON OFF ’ , ’ Value ’ ,
s t r i n g (NOISE)) ;

3 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / a ’ , ’ Value ’ , s t r i n g (A))
;

4 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / b ’ , ’ Value ’ , s t r i n g (B))
;

5 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / c ’ , ’ Value ’ , s t r i n g (C))
;

6 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / d ’ , ’ Value ’ , s t r i n g (D))
;

122 Chapter 9. Appendix: Code scripts

7 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / e ’ , ’ Value ’ , s t r i n g (E))
;

8 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / e p s i l o n ’ , ’ Value ’ ,
s t r i n g (EPS)) ;

9 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / g a i n ’ , ’ Value ’ , s t r i n g (
K)) ;

10 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / t a r g e t ’ , ’ Value ’ ,
s t r i n g (V TILDE)) ;

11 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / v0 ’ , ’ Value ’ , s t r i n g (V0
)) ;

12 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / w0 ’ , ’ Value ’ , s t r i n g (W0
)) ;

13 end

The next function extract the data from Simulink.
The inputs are:

• Vtilde : the target for V,

• E : the bifurcation parameter,

• t :the pause time to extract the data from Simulink (obligated),

• range : the range of samples we want to extract from the end of real-time series in order to
compute a mean value.

Outputs:

• V : the potential mean of the real-time time series,

• STD : the standard deviation of the studied range.

1 f u n c t i o n [V, STD] = SIMULATION(V t i l d e , E , t , r a n g e)
2 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / t a r g e t ’ , ’ Value ’ ,

s t r i n g (V t i l d e)) ;
3 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t / e ’ , ’ Value ’ , s t r i n g (E))

;
4 pause (t) ;
5 s e t p a r a m (’ F i t z h u g h N a g u m o c i r c u i t ’ , ’ SimulationCommand ’ ,

’ Wr i t eDataLogs ’) ;
6 v o u t p u t = e v a l i n (’ ba se ’ , ’ v o u t p u t ’) ;
7 [V, STD] = r e s u l t s s i m (v o u t p u t , r a n g e) ; %E x t r a c t i n g V
8 end

The next function compute the mean and the standard deviation of the recorded signal.
The inputs are:

• x output : the recorded signal,

• range : the range of samples we want to extract from the end of real-time series in order to
compute a mean value.

Outputs:

• X : the mean of the last time series values,

9.4. Chapter 5: Continuation Based on Controled Experiments 123

• Y : the standard deviation of the same time series last values.

1 f u n c t i o n [X,Y] = r e s u l t s s i m (x o u t p u t , r a n g e)
2 %X = x o u t p u t . Data (l e n g t h (x o u t p u t . Data)) ;
3 X = mean (x o u t p u t . Data ((l e n g t h (x o u t p u t . Data) − r a n g e :

l e n g t h (x o u t p u t . Data)))) ;
4 Y = s t d (x o u t p u t . Data ((l e n g t h (x o u t p u t . Data) − r a n g e :

l e n g t h (x o u t p u t . Data)))) ;
5 end

The next function gives the residual computation.
Inputs:

• X exp : the value extracted from the experiment,

• X pred: the predicted value of the same variable.

Outputs:

• F : the computed residual.

1 f u n c t i o n F = RESIDUAL(X exp , X pred)
2 F = X exp − X pred ;
3 end

The next function computes the prediction step.
Inputs:

• MODEL guess : vector containing the guesses for V and E,

• MODEL dv : the 2-dimensional direction vector,

• ds : the continuation step.

Outputs:

• MODEL pred : vector containing the predictions for V and E.

1 f u n c t i o n MODEL pred = PREDICTION (MODEL guess , MODEL dv , ds)
2 MODEL pred = [MODEL guess (1) +ds *MODEL dv (1) ;
3 MODEL guess (2) +ds *MODEL dv (2)] ;
4 end

The next function computes the direction vector udpate with the secant method.
Inputs:

• MODEL V : vector of all the calculated values with the algorithm for V,

• MODEL L : the same type of vector but for the parameter E,

• p : the studied point,

Outputs:

• direct v : the updated 2-dimensional direction vector,

124 Chapter 9. Appendix: Code scripts

1 f u n c t i o n d i r e c t v = UPDATE SECANT(MODEL V, MODEL L, p)
2 d i r e c t v = [MODEL V(p) − MODEL V(p −1) ;
3 MODEL L(p) − MODEL L(p −1)] ;
4 d i r e c t v = d i r e c t v / norm (d i r e c t v) ;
5 end

The next function computes the finite differences.
Inputs:

• F REF : the residual based on the unperturbed experiments,

• F PERT : the residual based on the perturbed case,

• H : the perturbation value.

Ouputs:

• Fx :the finite difference value.

1 f u n c t i o n Fx = DERIVATIVE (F REF , F PERT , H)
2 Fx = 1 /H * (F PERT − F REF) ; % Fx (k) = 1 / h * (F (x t i l d e +

h , lambda) −F (x t i l d e , lambda))
3 end

The next function computes the direction vector udpate with the tangent method.
Inputs:

• Fx : the Jacobian matrix extracted from the Newton’s or Broyden’s method.

Outputs:

• direct v : the updated direction vector.

1 f u n c t i o n d i r e c t v = UPDATE TANGENT(Fx)
2 vec = z e r o s (l e n g t h (Fx) , 1) ;
3 vec (l e n g t h (Fx) , 1) = 1 ;
4 d i r e c t v = Fx\ vec ;
5 d i r e c t v = d i r e c t v / norm (d i r e c t v) ;
6 end

The next function computes the Newton’s iteration method.
Inputs:

• MODEL pred : vector containing the predictions for V and E,

• MODEL dv : the 2-dimensional direction vector,

• MODEL guess : vector containing the guesses for V and E,

• t :the pause time to extract the data from Simulink (obligated),

• ITER : the number of iteration for the iteration method,

• range : the range of samples we want to extract from the end of real-time series in order to
compute a mean value.

9.4. Chapter 5: Continuation Based on Controled Experiments 125

• H : the perturbation parameter,

• ds : the continuation step,

• tol : the tolerance threshold to break the iteration method.

Outputs:

• V REF : the mean of the last time series values,

• V STD : the standard deviation of the same time series last values,

• MODEL pred : updated vector containing the predictions for V and E,

• Fx : the Jacobian matrix extracted from the Newton’s method,

• Hx : the extended problem.

1 f u n c t i o n [V REF , V STD , MODEL pred , Fx , Hx] = NEWTON METHOD(
MODEL pred , MODEL dv , MODEL guess , t , ITER , range , H, ds , t o l
)

2 f o r i t e r =1 : ITER
3

4 %% V REFERENCE => F (V t i l d e , lambda)
5 [V REF , V STD] = SIMULATION(MODEL pred (1) , MODEL pred (2)

, t , r a n g e) ; % S i m u l a t i n g wi th new p a r a m e t e r s
6

7 %% V REFERENCE => F (V t i l d e +H, lambda)
8 [V PERT Vtilde , ˜] = SIMULATION(MODEL pred (1) +H,

MODEL pred (2) , t , r a n g e) ; % S i m u l a t i n g wi th new
p a r a m e t e r s

9

10 %% V REFERENCE => F (V t i l d e , lambda+H)
11 [V PERT L , ˜] = SIMULATION(MODEL pred (1) , MODEL pred (2) +

H, t , r a n g e) ; % S i m u l a t i n g wi th new p a r a m e t e r s
12

13 %% RESIDUALS :
14 F REF = RESIDUAL(V REF , MODEL pred (1)) ;
15 F PERT Vt i lde = RESIDUAL(V PERT Vtilde , MODEL pred (1) +H)

;
16 F PERT L = RESIDUAL(V PERT L , MODEL pred (1)) ;
17

18 %% DERIVATIVES :
19 F x V t i l d e = DERIVATIVE (F REF , F PERT Vti lde , H) ;
20 Fx L = DERIVATIVE (F REF , F PERT L , H) ;
21 Fx = [[F x V t i l d e , Fx L] ;
22 MODEL dv . ’] ;
23

24 %% EXTENDED MATRIX :
25 H V t i l d e = (MODEL pred (1) −MODEL guess (1)) * MODEL dv (1) ;
26 H L = (MODEL pred (2) −MODEL guess (2)) * MODEL dv (2) ;
27 Hx = [F REF ;
28 H V t i l d e + H L − ds] ;

126 Chapter 9. Appendix: Code scripts

29

30 %% NEWTON :
31 MODEL pred previous = MODEL pred ;
32 MODEL pred = MODEL pred − (Fx\Hx) ;
33

34 %% CONDITION TO BREAK :
35 i f norm (Hx)< t o l && norm (MODEL pred − MODEL pred previous

)< t o l
36 % Checking b a l l s i z e :
37 b r e a k
38 end % For t h e c o n d i t i o n o f b r e a k
39 end
40

41 end

The next function computes the Broyden’s iteration method.
Inputs:

• MODEL pred : vector containing the predictions for V and E,

• MODEL dv : the 2-dimensional direction vector,

• MODEL guess : vector containing the guesses for V and E,

• t :the pause time to extract the data from Simulink (obligated),

• ITER : the number of iteration for the iteration method,

• range : the range of samples we want to extract from the end of real-time series in order to
compute a mean value.

• H : the perturbation parameter,

• ds : the continuation step,

• tol : the tolerance threshold to break the iteration method.

Outputs:

• V REF : the mean of the last time series values,

• V STD : the standard deviation of the same time series last values,

• MODEL pred : updated vector containing the predictions for V and E,

• Fx : the Jacobian matrix extracted from the Newton’s method,

1 f u n c t i o n [V REF , V STD , MODEL pred , Fx] = BROYDEN METHOD(
MODEL pred , MODEL dv , MODEL guess , t , ITER , range , H, ds , t o l
)

2 f o r i t e r =1 : ITER
3 i f i t e r == 1
4 [V REF , V STD , MODEL pred , Fx , Hx] = NEWTON METHOD(

MODEL pred , MODEL dv , MODEL guess , t , 1 , range , H
, ds , t o l) ;

5 e l s e

9.4. Chapter 5: Continuation Based on Controled Experiments 127

6 %% V REFERENCE => F (V t i l d e , lambda)
7 [V REF , V STD] = SIMULATION(MODEL pred (1) ,

MODEL pred (2) , t , r a n g e) ; % S i m u l a t i n g wi th new
p a r a m e t e r s

8

9 %% RESIDUALS :
10 F REF = RESIDUAL(V REF , MODEL pred (1)) ;
11

12 %% EXTENDED MATRIX :
13 H V t i l d e = (MODEL pred (1) −MODEL guess (1)) * MODEL dv

(1) ;
14 H L = (MODEL pred (2) −MODEL guess (2)) * MODEL dv (2) ;
15 Hx = [F REF ;
16 H V t i l d e + H L − ds] ;
17

18 %% DERIVATIVES :
19 dFn = Hx − Hx PREVIOUS ;
20 dXn = MODEL pred − MODEL pred PREVIOUS ;
21 Fx = Fx PREVIOUS + ((dFn−Fx PREVIOUS*dXn) / norm (dXn)

ˆ 2) *dXn . ’ ;
22

23 end
24

25 [U, S ,V] = svd (Fx) ;
26 Fx = U*(S+1e −04) *V’ ;
27

28 i f any (i s n a n (Fx) , ’ a l l ’) | | r ank (Fx)<min (Fx , [] , ’ a l l ’)
29 [V REF , V STD , MODEL pred , Fx , Hx] = NEWTON METHOD(

MODEL pred , MODEL dv , MODEL guess , t , 1 , range , H
, ds , t o l) ;

30 end
31

32 %% NEWTON :
33 MODEL pred PREVIOUS = MODEL pred ;
34 Fx PREVIOUS = Fx ;
35 Hx PREVIOUS = Hx ;
36 MODEL pred = MODEL pred − (Fx\Hx) ;
37

38 %% CONDITION TO BREAK :
39 i f norm (Hx)< t o l && norm (MODEL pred − MODEL pred PREVIOUS

)< t o l
40 b r e a k
41 end % For t h e c o n d i t i o n o f b r e a k
42 end
43

44 end

The next code is the main script to launch the experiment:

1 c l o s e a l l
2 c l e a r a l l
3 f o r m a t longg

128 Chapter 9. Appendix: Code scripts

4

5 % DEBUG PARAMETER :
6 % 0 : No Debug Mode / 1 : Debug mode .
7 DEBUG = 0 ;
8 SHOW CONV = 1 ; % Showing Convex Hu l l .
9 SHOW STD = 0 ; % Showing e r r o r s .

10 SHOW VARIATION = 0 ; % Showing e r r o r s .
11 % TIME OF PROCESS :
12 t i c
13

14 %% SIMULATION PARAMETERS :
15 % The e q u a t i o n s a r e :
16 % y ’ (1) = −y (1) *(− a+y (1)) *(− b+y (1)) −y (2) +K*(y (1) − v t i l d e)
17 % y ’ (2) = eps * (c *y (1) +d*y (2) +e)
18

19 A = 1 . 8 ;
20 B = 0 . 0 ;
21 C = 1 . 0 ;
22 D = − 1 . 0 ;
23 EPS = 0 . 6 ;
24 K = −2; % Gain f o r t h e c o n t r o 1
25 V0 = 0 . ;
26 W0 = 0 . ;
27

28 %% NOISE :
29 % For t h e S i m u l i n k e x p e r i m e n t : Noise power : [3 e −04]
30 % I f Noise == 1 : ON, I f Noise == 0 : OFF ,
31 NOISE = 1 ;
32 Noise Power = 3e −04;
33

34 %% CONTINUATION PARAMETERS :
35

36 VECTOR TYPE = ” S e c a n t ” ; % d i r e c t i o n v e c t o r t y p e : ”
Tangen t ” , ” S e c a n t ”

37 ITERATION METHOD = ”BROYDEN” ; % ”NEWTON” OR ”BROYDEN”
38 t = 0 . 1 ; % Pause t ime : 0 . 2 / 0 . 0 2
39 r a n g e = 200 ; % S i z e o f t h e sample a t t h e

a s y m p t o t i c s o l u t i o n : 250 / 25 n o i s e
40 H = 0 . 0 0 1 ; % D e r i v a t i v e p a r a m e t e r
41 t o l = 1e −05; % T o l e r a n c e t o b r e a k t h e loop
42 N b p o i n t c l o u d = 3 ; % Number o f p o i n t computed i n

o r d e r t o make t h e mean p o s i t i o n .
43 e p s c i r c l e = 0 . 0 5 ; % Smal l p a r a m e t e r f o r t h e t r u s t

r e g i o n around t h e l a s t computed p o i n t . e p s c i r c l e = 0 . 5 .
44

45 i f VECTOR TYPE == ” Tangen t ”
46 V TILDE = −1; % S t a r t i n g v a l u e f o r c o n t i n u a t i o n
47 E = − 1 . 5 ; % C o n t i n u a t i o n p a r a m e t e r lambda
48 ds = 0 . 0 5 ; % Step f o r t h e c o n t i n u a t i o n : 0 .005
49 p o i n t s = 5 0 ; % Nb of p o i n t s f o r c o n t i n u a t i o n : 400
50 ITER = 7 5 ; % Nb of i t e r a t i o n f o r Newton : 20

9.4. Chapter 5: Continuation Based on Controled Experiments 129

51 e l s e i f VECTOR TYPE == ” S e c a n t ”
52 V TILDE = 3 ; % S t a r t i n g v a l u e f o r c o n t i n u a t i o n
53 E = − 1 . 2 ; % C o n t i n u a t i o n p a r a m e t e r lambda
54 ds = 0 . 0 5 ; % Step f o r t h e c o n t i n u a t i o n : 0 .005
55 p o i n t s = 5 0 ; % Nb of p o i n t s f o r c o n t i n u a t i o n : 400
56 ITER = 7 5 ; % Nb of i t e r a t i o n f o r Newton : 20
57 end
58

59 %% INITIALIZE THE SIMULINK MODEL :
60 % B ef o r e t o a p p l y t h e code on t h e S i m u l i n k model , we i n i t i a l i z e

i t w i th t h e
61 % b a s i c p a r a m e t e r s .
62 INITIALISATION (A, B , C , D, E , EPS , K, V TILDE , V0 , W0, NOISE) ;
63 pause (1)
64

65 %% I n i t i a l i s a t i o n o f t h e m o d e l l i n g c o n t i n u a t i o n
66 MODEL guess = [V TILDE ; E] ; % F i r s t g u e s s
67 MODEL dv = [0 ; 1] ; % Tangen t d i r e c t i o n
68 MODEL dv stock = MODEL dv ; % Stock t a n g e n t d i r e c t i o n s

f o r p l o t .
69 MODEL V = [V TILDE] ; % Sav ing V d a t a
70 MODEL STD = [0] ; % Sav ing S t a n d a r d d e v i a t i o n

o f t h e r a n g e V.
71 MODEL VARIATION = [0 ; 0] ; % Saving t h e s t a n d a r d

d e v i a t i o n o f t h e computed p o i n t s .
72 MODEL CONV = [] ; % Sav ing p o i n t s f o r Convex

Hu l l
73 MODEL Vtilde = [MODEL guess (1)] ; % Sav ing V t i l d e d a t a
74 MODEL L = [MODEL guess (2)] ; % Sav ing L d a t a
75 MODEL STABILITY = [0] ; % Saving s t a b i l i t y o f t h e

p o i n t
76 MODEL NATURE = [0] ; % Saving n a t u r e o f t h e p o i n t
77

78 f o r p =2: p o i n t s % Loop f o r t h e number o f p o i n t s , we want t o
compute .

79

80 V mean = [] ; % Empty l i s t o f t h e N b p o i n t c l o u d V REF v a l u e s
computed f o r t h e new p o i n t .

81 STANDARD mean = [] ; % Empty l i s t o f t h e N b p o i n t c l o u d
S t a n d a r d d e v i a t i o n v a l u e s computed f o r t h e new p o i n t .

82 MODEL pred mean = [] ; % Empty l i s t o f t h e N b p o i n t c l o u d
V t i l d e and Lambda c o o r d i n a t e s computed f o r t h e new p o i n t .

83 MODEL Fx mean = [[0 , 0] ; [0 , 0]] ; % Saving mean f o r J a c o b i a n
m a t r i x f o r s t a b i l i t y

84

85 %% PREDICTION STEP
86 MODEL pred = PREDICTION (MODEL guess , MODEL dv , ds) ; %

PREDICTION
87

88 f o r c l o u d =1: N b p o i n t c l o u d % Loop f o r t h e number o f t r y we
want t o compute f o r one new p o i n t s , t h e n making t h e mean .

130 Chapter 9. Appendix: Code scripts

89 i f ITERATION METHOD == ”NEWTON”
90 [V REF , V STD , MODEL pred , Fx , Hx] = NEWTON METHOD(

MODEL pred , MODEL dv , MODEL guess , t , ITER , range
, H, ds , t o l) ;

91 e l s e i f ITERATION METHOD == ”BROYDEN”
92 [V REF , V STD , MODEL pred , Fx] = BROYDEN METHOD(

MODEL pred , MODEL dv , MODEL guess , t , ITER , range
, H, ds , t o l) ;

93 end
94

95 %% T r u s t Region c o m p u t a t i o n :
96 % We want t o check i f t h e new computed p o i n t i s

c o n t a i n e d i n t h e
97 % c i r c l e c e n t e r e d on t h e p r e v i o u s computed p o i n t . So we

compute
98 % (x−a) ˆ2 − (y−b) ˆ2 < R ˆ 2 . For R , we f i x i t a t R=2 f o r

t h e f i r s t
99 % computed p o i n t , t h e n R w i l l be e q u a l t o t h e d i s t a n c e

between t h e
100 % two l a s t p o i n t s p l u s a smal p a r a m e t e r f o r t h e

v a r i a t i o n o f
101 % d i s t a n c e between two computed p o i n t s .
102

103 i f p==2
104 R = 2 ;
105 e l s e
106 R = s q r t ((MODEL V(p −1)−MODEL V(p −2)) ˆ2 + (MODEL L(p

−1)−MODEL L(p −2)) ˆ 2) + e p s c i r c l e ;
107 end
108 i f s q r t ((MODEL pred (1) −MODEL V(p −1)) ˆ2 + (MODEL pred (2) −

MODEL L(p −1)) ˆ 2)<R
109 V mean = [V mean , V REF] ;
110 STANDARD mean = [STANDARD mean , V STD] ;
111 MODEL pred mean = [MODEL pred mean , MODEL pred] ;
112 MODEL Fx mean = MODEL Fx mean + Fx ;
113 e l s e
114 V mean = [V mean , NaN] ;
115 STANDARD mean = [STANDARD mean , NaN] ;
116 MODEL pred mean = [MODEL pred mean , [NaN ; NaN]] ;
117 end
118 end
119

120 %% STABILITY :
121

122 Fx = MODEL Fx mean / N b p o i n t c l o u d ;
123 [S t a b i l i t y , N a t u r e] = STABILITY (Fx) ;
124 MODEL STABILITY = [MODEL STABILITY , S t a b i l i t y] ;
125 MODEL NATURE = [MODEL NATURE, Na tu r e] ;
126

127 %% ALLOCATING :

9.4. Chapter 5: Continuation Based on Controled Experiments 131

128 % Here , we compute t h e mean of t h e N b p o i n t c l o u d t r i e s
computed f o r t h e new

129 % p o i n t and we a l l o c a t e t h e d a t a i n our l i s t s .
130

131 % Mean of t h e d i f f e r e n t t r i a l s :
132 V REF = nanmean (V mean) ;
133 V STD = nanmean (STANDARD mean) ;
134 MODEL pred = nanmean (MODEL pred mean , 2) ;
135

136 % For t h e u n c e r t a i n t y :
137 MODEL CONV = [MODEL CONV; [MODEL pred mean]] ;
138 MODEL VARIATION = [MODEL VARIATION, n a n s t d (MODEL pred mean ,

0 , 2)] ;
139 MODEL STD = [MODEL STD, V STD] ;
140

141 % A l l o c a t i n g t h e r e s u l t s f o r t h e i t e r a t i o n s :
142 MODEL V = [MODEL V, V REF] ;
143 MODEL Vtilde = [MODEL Vtilde , MODEL pred (1)] ;
144 MODEL L = [MODEL L, MODEL pred (2)] ;
145 MODEL guess = MODEL pred ;

%NEW
GUESSES

146

147 %% VECTOR UPDATE :
148 i f VECTOR TYPE == ” Tangen t ”
149 MODEL dv = UPDATE TANGENT(Fx) ;

%NEW
GUESSES

150 e l s e i f VECTOR TYPE == ” S e c a n t ”
151 MODEL dv = UPDATE SECANT(MODEL V, MODEL L, p) ; % To

u p d a t e t h e s e c a n t , we j u s t have t o t a k e t h e two l a s t
computed p o i n t s : [x (p) − x (p −1) ; y (p) − y (p −1)]

152 end
153

154 MODEL dv stock = [MODEL dv stock , MODEL dv] ;
155

156 end
157

158 %% ####################
159 %% ODE45 CONTINUATION :
160 %% ####################
161 % To compare our r e s u l t s we compute t h e Tangen t c o n t i n u a t i o n ,

w i th t h e
162 % Newton ’ s method , on t h e e q u a t i o n s .
163 %% SIMULATION PARAMETERS :
164 A = 1 . 8 ;
165 B = 0 . 0 ;
166 C = 1 . 0 ;
167 D = − 1 . 0 ;
168 E = − 1 . 0 ;
169 EPS = 0 . 6 ;

132 Chapter 9. Appendix: Code scripts

170 K = −2; % Gain f o r t h e c o n t r o l
171 V TILDE = −1; % S t a r t i n g v a l u e f o r c o n t i n u a t i o n
172 V0 = 0 . ;
173 W0 = 0 . ;
174

175 %% CONTINUATION PARAMETERS :
176 ds = 0 . 0 5 ; % Step f o r t h e c o n t i n u a t i o n : 0 .005
177 H = 0 . 0 0 1 ; % D e r i v a t i v e p a r a m e t e r
178 t o l = 1e −04; % T o l e r a n c e t o b r e a k t h e loop
179 p o i n t s = 4 0 ; % Nb of p o i n t s f o r c o n t i n u a t i o n : 400
180 ITER = 100 ; % Nb of i t e r a t i o n f o r Newton : 20
181 r a n g e = 250 ; % S i z e o f t h e sample a t t h e a s y m p t o t i c

s o l u t i o n : 250 / 25 n o i s e
182 t = 0 . 2 ; % Pause t ime : 0 . 2 / 0 . 0 2
183

184 [RESULTS , TS , EQ FX] = ODE45 Cont inua t ion (A, B , C , D, E , EPS , K,
V TILDE , V0 , W0, ds , H, t o l , p o i n t s , ITER , r a n g e) ;

185 EQ V = RESULTS (1 , :) ;
186 EQ L = RESULTS (2 , :) ;
187

188 %% ##################
189 %% PLOTTING RESULTS :
190 %% ##################
191

192 f p r i n t f (”\ n ”)
193

194 f i g u r e
195 ho ld on
196 x l a b e l (’E ’)
197 y l a b e l (’V’)
198 t i t l e (” SIMULINK : B i f u r c a t i o n d iagram (Jan ’ s C o n t i n u a t i o n) ”)
199 p1 = p l o t (MODEL L (3 : end) , MODEL V(3 : end) , ’−− r * ’) ;
200 p2 = p l o t (EQ L (3 : end) , EQ V (3 : end) , ’b−−o ’) ;
201 p2 . Co lo r (4) = . 0 2 ;
202 i f SHOW CONV == 1
203 f o r CONV = [1 : 2 : l e n g t h (MODEL CONV)]
204 TOP = MODEL CONV(CONV, :) ;
205 TOP(i s n a n (TOP)) = nanmean (TOP) ;
206 BOT = MODEL CONV(CONV+ 1 , :) ;
207 BOT(i s n a n (BOT)) = nanmean (BOT) ;
208 P = [TOP ;BOT] . ’ ;
209 [k , av] = c o n v h u l l (P) ;
210 p l o t (P (: , 2) , P (: , 1) , ’ *k ’)
211 ho ld on
212 p l o t (P (k , 2) , P (k , 1) , ’−−k ’)
213 end
214 end
215 i f SHOW VARIATION == 1
216 xpos = MODEL VARIATION (2 , :) ;
217 xneg = −MODEL VARIATION (2 , :) ;
218 ypos = MODEL VARIATION (1 , :) ;

9.4. Chapter 5: Continuation Based on Controled Experiments 133

219 yneg = −MODEL VARIATION (1 , :) ;
220 e r r o r b a r (MODEL L (3 : end) , MODEL V(3 : end) , yneg (3 : end) , ypos (3 :

end) , xneg (3 : end) , xpos (3 : end) , ’ ok ’)
221 end
222 i f SHOW STD == 1
223 e r r o r b a r (MODEL L (3 : end) , MODEL V(3 : end) ,MODEL STD (3 : end) , ’ ok

’ , ’ h o r i z o n t a l ’)
224 end
225 l e g e n d (” S i m u l i n k ”+VECTOR TYPE+” C o n t i n u a t i o n ” , ”ODE45 Tangen t

C o n t i n u a t i o n ”) ;
226 ho ld o f f
227

228 f i g u r e
229 ho ld on
230 x l a b e l (’E ’)
231 y l a b e l (’V’)
232 t i t l e (” SIMULINK : B i f u r c a t i o n d iagram (Jan ’ s C o n t i n u a t i o n) ”)
233 yl im ([−1 2])
234 xl im ([− 0 . 2 4 − 0 . 0 6])
235 p3 = p l o t (MODEL L (2 : end) , MODEL V(2 : end) , ’−− r * ’) ;
236 p4 = p l o t (EQ L (3 : end) , EQ V (3 : end) , ’b−−o ’) ;
237 p4 . Co lo r (4) = . 0 2 ;
238 i f SHOW CONV == 1
239 f o r CONV = [1 : 2 : l e n g t h (MODEL CONV)]
240 TOP = MODEL CONV(CONV, :) ;
241 TOP(i s n a n (TOP)) = nanmean (TOP) ;
242 BOT = MODEL CONV(CONV+ 1 , :) ;
243 BOT(i s n a n (BOT)) = nanmean (BOT) ;
244 P = [TOP ;BOT] . ’ ;
245 [k , av] = c o n v h u l l (P) ;
246 p l o t (P (: , 2) , P (: , 1) , ’ *k ’)
247 ho ld on
248 p l o t (P (k , 2) , P (k , 1) , ’−−k ’)
249 end
250 end
251 i f SHOW VARIATION == 1
252 xpos = MODEL VARIATION (2 , :) ;
253 xneg = −MODEL VARIATION (2 , :) ;
254 ypos = MODEL VARIATION (1 , :) ;
255 yneg = −MODEL VARIATION (1 , :) ;
256 e r r o r b a r (MODEL L (3 : end) , MODEL V(3 : end) , yneg (3 : end) , ypos (3 :

end) , xneg (3 : end) , xpos (3 : end) , ’ ok ’)
257 end
258 i f SHOW STD == 1
259 e r r o r b a r (MODEL L (3 : end) , MODEL V(3 : end) ,MODEL STD (3 : end) , ’ ok

’ , ’ h o r i z o n t a l ’)
260 end
261 l e g e n d (” S i m u l i n k ”+VECTOR TYPE+” C o n t i n u a t i o n ” , ”ODE45 Tangen t

C o n t i n u a t i o n ”) ;
262 ho ld o f f
263

134 Chapter 9. Appendix: Code scripts

264 f i g u r e
265 ho ld on
266 x l a b e l (’E ’)
267 y l a b e l (’V’)
268 t i t l e (” SIMULINK : B i f u r c a t i o n d iagram (Jan ’ s C o n t i n u a t i o n) ”)
269 p1 = p l o t (MODEL L (3 : end) , MODEL V(3 : end) , ’−− r * ’) ;
270 f o r i =3 : l e n g t h (MODEL L)
271 i f MODEL STABILITY (i) == 0 % S t a b l e
272 p2 = s c a t t e r (MODEL L(i) , MODEL V(i) , ” r e d ” , ” f i l l e d ”) ;
273 e l s e i f MODEL STABILITY (i) == 1 % U n s t a b l e
274 p2 = s c a t t e r (MODEL L(i) , MODEL V(i) , ” b l a c k ” , ” f i l l e d ”) ;
275 e l s e i f MODEL STABILITY (i) == 2 % N e u t r a l
276 p2 = s c a t t e r (MODEL L(i) , MODEL V(i) , ” b l u e ” , ” f i l l e d ”) ;
277 end
278 end
279 l e g e n d (” S i m u l i n k ”+VECTOR TYPE+” C o n t i n u a t i o n ” , ” S t a b l e p o i n t ” ,

” U n t a b l e p o i n t ”) ;
280 ho ld o f f
281

282 % TIME PROCESS :
283 TimeElapsed = t o c

We also propose a version of the code based on the Matlab ODE45 function, i.e. a differential
equation solving method.

This method is also based on the FitzHugh Nagumo model as follow:

1 f u n c t i o n dyd t = e q u a t i o n s (t , y , a , b , c , d , e , eps , K, v t i l d e)
2 dyd t = [− y (1) *(− a+y (1)) *(− b+y (1)) −y (2) +K*(y (1) − v t i l d e) ;
3 eps * (c *y (1) +d*y (2) +e)] ;
4 end

And this is the main script:

1 f u n c t i o n [X, Y, EQ FX] = ODE45 Cont inua t ion (A, B , C , D, E , EPS , K
, V TILDE , V0 , W0, ds , H, t o l , p o i n t s , ITER , r a n g e)

2

3 % a c c u r a c y of t h e d i s c r e t i s a t i o n o f t h e ODE
4 o p t i o n s = o d e s e t (’ Re lTo l ’ ,1 e −08 , ’ AbsTol ’ ,1 e −08) ;
5

6 %% PARAMETER INITIALIZATION
7 y0 = [V0 , W0] ;
8 t s p a n = 0 : 0 . 1 : 3 0 ;
9

10 %% I n i t i a l i s a t i o n o f t h e m o d e l l i n g c o n t i n u a t i o n
11 MODEL guess = [V TILDE ; E] ; % F i r s t g u e s s
12 MODEL dv = [0 ; 1] ; % Tangen t d i r e c t i o n
13 MODEL V = [V0] ; % Saving V d a t a
14 MODEL Vtilde = [MODEL guess (1)] ; % Sav ing V t i l d e d a t a
15 MODEL L = [MODEL guess (2)] ; % Sav ing L d a t a
16 PLOT TS V = [] ;
17 PLOT TS W = [] ;
18 EQ FX = [] ;
19

9.4. Chapter 5: Continuation Based on Controled Experiments 135

20 f o r p =2: p o i n t s
21

22 %% CONTINUATION
23 % P r e d i c t i o n :
24 MODEL pred = PREDICTION (MODEL guess , MODEL dv , ds) ; %

PREDICTION
25

26 f o r i t e r =1 : ITER
27

28 %% V REFERENCE => F (V t i l d e , lambda)
29 % dyd t = e q u a t i o n s (t , y , a , b , c , d , e , eps , K,

v t i l d e)
30 [t , y] = ode45 (@(t , y) e q u a t i o n s (t , y , A, B , C , D,

MODEL pred (2) , EPS , K, MODEL pred (1)) , t s p a n , y0)
;

31 V REF = mean (y (l e n g t h (y) − r a n g e : l e n g t h (y) , 1)) ;
32 y0 = [y (l e n g t h (y) , 1) , y (l e n g t h (y) , 2)] ;
33

34 PLOT TS V = [PLOT TS V ; y (l e n g t h (y) , 1)] ;
35 PLOT TS W = [PLOT TS W ; y (l e n g t h (y) , 2)] ;
36

37 %% V REFERENCE => F (V t i l d e +H, lambda)
38 [t , y] = ode45 (@(t , y) e q u a t i o n s (t , y , A, B , C , D,

MODEL pred (2) , EPS , K, MODEL pred (1) +H) , t s p a n ,
y0) ;

39 V PERT Vti lde = mean (y (l e n g t h (y) − r a n g e : l e n g t h (y) , 1))
;

40 y0 = [y (l e n g t h (y) , 1) , y (l e n g t h (y) , 2)] ;
41

42 %% V REFERENCE => F (V t i l d e , lambda+H)
43 [t , y] = ode45 (@(t , y) e q u a t i o n s (t , y , A, B , C , D,

MODEL pred (2) +H, EPS , K, MODEL pred (1)) , t s p a n ,
y0) ;

44 V PERT L = mean (y (l e n g t h (y) − r a n g e : l e n g t h (y) , 1)) ;
45 y0 = [y (l e n g t h (y) , 1) , y (l e n g t h (y) , 2)] ;
46

47 %% RESIDUALS :
48 F REF = RESIDUAL(V REF , MODEL pred (1)) ;
49 F PERT Vt i lde = RESIDUAL(V PERT Vtilde , MODEL pred

(1) +H) ;
50 F PERT L = RESIDUAL(V PERT L , MODEL pred (1)) ;
51

52 %% DERIVATIVES :
53 F x V t i l d e = DERIVATIVE (F REF , F PERT Vti lde , H) ;
54 Fx L = DERIVATIVE (F REF , F PERT L , H) ;
55 Fx = [[F x V t i l d e , Fx L] ;
56 MODEL dv . ’] ;
57 EQ FX = [EQ FX , norm (Fx)] ;
58

59 %% EXTENDED MATRIX :

136 Chapter 9. Appendix: Code scripts

60 H V t i l d e = (MODEL pred (1) −MODEL guess (1)) * MODEL dv
(1) ;

61 H L = (MODEL pred (2) −MODEL guess (2)) * MODEL dv (2) ;
62 Hx = [F REF ;
63 H V t i l d e + H L − ds] ;
64

65 %% NEWTON :
66 MODEL pred previous = MODEL pred ;
67 MODEL pred = MODEL pred − (Fx\Hx) ;
68

69 %% CONDITION TO BREAK :
70 i f norm (Hx)< t o l && norm (MODEL pred −

MODEL pred previous)< t o l
71 b r e a k
72 end % For t h e c o n d i t i o n o f b r e a k
73

74 end
75

76 %% ALLOCATING :
77 MODEL V = [MODEL V, V REF] ;
78 MODEL Vtilde = [MODEL Vtilde , MODEL pred (1)] ;
79 MODEL L = [MODEL L, MODEL pred (2)] ;
80 MODEL guess = MODEL pred ;

%NEW
GUESSES

81

82 %% TANGENT VECTOR :
83 MODEL dv = UPDATE TANGENT(Fx) ;
84 end
85

86 X = [MODEL V; MODEL L] ;
87 Y = [PLOT TS V , PLOT TS W] ;
88

89 end

9.4.2 Part 2: Periodic case

In this section, we will provide the code which made it possible to code the continuation on the
periodic branch of the FHN model simulated with the ODE45 function of Matlab. Some functions
are the same as those in the part on stationary points: these will not be given again in this part and
it is therefore enough to copy them from this part to make the code work.

In this code, we are interested in a continuation based on q = 2 calculated Fourier modes, and
the studied model is a FitzHugh Nagumo model.

Inputs:

• t : the time used for ODE45,

• s : the solution computed for ODE45,

• a, b, c, d ,e : FHN parameters,

• x0, x1, x 1, x2, x 2 : the 5 Fourier coefficients,

9.4. Chapter 5: Continuation Based on Controled Experiments 137

• T : the period,

• K : the gain of the control,

Outputs:

• dydt : the solution after simulation of the model,

1 f u n c t i o n dyd t = FHN ODE(t , s , eps , a , b , c , d , e , x0 , x1 , x 1 ,
x2 , x 2 , T , K)

2

3 x = s (1) ;
4 y = s (2) ;
5 dyd t = z e r o s (2 , 1) ;
6

7 i f K ˜= 0
8 x t i l d e = s q r t (1 / T) * x0 ;
9 x t i l d e = x t i l d e + (x1 * s q r t (2 / T) * s i n ((2 * p i / T) *

t)) ;
10 x t i l d e = x t i l d e + (x 1 * s q r t (2 / T) * cos (− (2 * p i / T)

* t)) ;
11 x t i l d e = x t i l d e + (x2 * s q r t (2 / T) * s i n ((2 * p i / T) *

2 * t)) ;
12 x t i l d e = x t i l d e + (x 2 * s q r t (2 / T) * cos (− (2 * p i / T)

* 2 * t)) ;
13 e l s e
14 x t i l d e = 0 ;
15 end
16

17 dyd t (1) = −x *(x−a) * (x−b) − y + K * (x− x t i l d e) ;
18 dyd t (2) = eps * (c *x + d*y + e) ;
19

20 end

The next function computes the Newton’s iteration method for the periodic case.
Inputs:

• MODEL pred : vector containing the predictions for V and E,

• MODEL dv : the 2-dimensional direction vector,

• MODEL guess : vector containing the guesses for V and E,

• deriv coeffs : the Fourier coefficients of the previous computed point derivative,

• ITER : the number of iteration for the iteration method,

• H : the perturbation parameter,

• ds : the continuation step,

• tol : the tolerance threshold to break the iteration method,

• K : the gain of the control,

• y0 : the initial conditions for ODE45,

138 Chapter 9. Appendix: Code scripts

Outputs:

• MODEL pred : updated vector containing the predictions for the coefficients x0, x1, x−1, x2,
x−2, T and E,

• Fx : the Jacobian matrix extracted from the Newton’s method,

• Hx : the extended problem.

1 f u n c t i o n [MODEL pred , Fx , Hx] = NEWTON METHOD PERIOD(MODEL pred ,
MODEL dv , MODEL guess , d e r i v c o e f f s , ITER , H, ds , t o l , K, y0

)
2

3 g l o b a l t s p a n
4 %g l o b a l y0
5 g l o b a l n b s a m p l e s
6 g l o b a l DEBUG
7 g l o b a l o p t i o n s
8

9 g l o b a l A
10 g l o b a l B
11 g l o b a l C
12 g l o b a l D
13 g l o b a l EPS
14

15 f o r i t e r =1 : ITER
16

17 a l l o c = num2ce l l (MODEL pred) ;
18 [x0 , x1 , x 1 , x2 , x 2 , T , lambda] = a l l o c { : } ;
19

20 %% REFERENCE SIMULATION :
21 % O b t a i n i n g t h e n o r m a l i z e d c o e f f i c i e n t s from a r e f e r e n c e

s i m u l a t i o n .
22 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D, lambda

, x0 , x1 , x 1 , x2 , x 2 , T , K) , t s p a n , y0) ;
23 n o r m s i g n a l = d e v a l (s o l , (l i n s p a c e (t s p a n (2) −T , t s p a n (2) ,

n b s a m p l e s)) , 1) ;
24 n o r m c o e f f s = MY NORM COEFFS(n o r m s i g n a l , l i n s p a c e (t s p a n

(2) −T , t s p a n (2) , n b s a m p l e s)) ; % NORMALIZED
COEFFICIENTS

25 F r e f = n o r m c o e f f s − MODEL pred (1 : 5) ;
26

27 %% EXTENDED PROBLEM FORMATION :
28 % R e s i d u a l s :
29 Hx = F r e f ;
30 % Phase c o n d i t i o n :
31 Hx = [Hx ; n o r m c o e f f s . ’ * d e r i v c o e f f s] ;
32 % Pseudo − a r c l e n g t h r u l e :
33 Hx = [Hx ; ((MODEL pred−MODEL guess) . ’ * MODEL dv) − ds] ;
34

35 %% DIFFERENCES JACOBIAN TYPE :

9.4. Chapter 5: Continuation Based on Controled Experiments 139

36 Fx = DIFF JAC (MODEL pred , MODEL dv , F re f , d e r i v c o e f f s ,
H, K, y0) ;

37

38 %% NEWTON :
39 MODEL pred previous = MODEL pred ;
40 MODEL pred = MODEL pred − (Fx\Hx) ;
41

42 %% CONDITION TO BREAK :
43 i f norm (Hx)< t o l && norm (MODEL pred − MODEL pred previous

)< t o l
44 b r e a k
45 end
46 end
47

48 end

The next function is computing the derivative of a signal, and then, the normalized Fourier
coefficients of this derivative for q = 2 modes.

Inputs:

• signal : the time series,

• time : the corresponding time.

Outputs:

• deriv coeffs : the coefficients of the derivative solution.

1 f u n c t i o n d e r i v c o e f f s = MY DERIVATIVE NORM SIGNAL(s i g n a l , t ime)
2

3 t ime = t ime − t ime (1) ; % s h i f t t ime i n t e r v a l t o s t a r t a t 0 :
[0 , T]

4

5

6 d e r i v s i g n a l = z e r o s (1 , l e n g t h (t ime) −1) ;
7 f o r i =1 : l e n g t h (d e r i v s i g n a l)
8 d e r i v s i g n a l (1 , i) =(s i g n a l (1 , i +1)− s i g n a l (1 , i)) / (t ime (1 , i +1)−

t ime (1 , i)) ;
9 end

10 %
11 t ime2 = t ime (1 : end −1) ;
12 %
13 d e r i v c o e f f s = MY NORM COEFFS(d e r i v s i g n a l , t ime2) ; %

NORMALIZED COEFFICIENTS
14

15 end

The next function is computing the normalized Fourier coefficients of a signal for q= 2 modes.
Inputs:

• signal : the time series,

• time : the corresponding time.

140 Chapter 9. Appendix: Code scripts

Outputs:

• coeffs : the normalized Fourier coefficients of a solution.

1 f u n c t i o n c o e f f s = MY NORM COEFFS(s i g n a l , t ime)
2

3

4 t ime = t ime − t ime (1) ; % s h i f t t ime i n t e r v a l t o s t a r t a t 0 :
[0 , T]

5 T = t ime (end) ;
6

7 % For mode = 0 :
8 F0 = s q r t (1 / T) * s i g n a l ;
9 FS0 = t r a p z (t ime , F0) ;

10

11 % For mode = 1 :
12 F1 = s q r t (2 / T) * s i g n a l . * s i n ((2 * p i / T) * t ime) ;
13 FS1 = t r a p z (t ime , F1) ;
14

15 % For mode = −1 :
16 F 1 = s q r t (2 / T) * s i g n a l . * cos ((−2* p i / T) * t ime) ;
17 FS 1 = t r a p z (t ime , F 1) ;
18

19 % For mode = 2 :
20 F2 = s q r t (2 / T) * s i g n a l . * s i n ((2 * p i / T) * 2 * t ime) ;
21 FS2 = t r a p z (t ime , F2) ;
22

23 % For mode = −2 :
24 F 2 = s q r t (2 / T) * s i g n a l . * cos ((−2* p i / T) * 2 * t ime) ;
25 FS 2 = t r a p z (t ime , F 2) ;
26

27 % F o u r i e r c o e f f i c i e n t s
28 c o e f f s = [FS0 ; FS1 ; FS 1 ; FS2 ; FS 2] ;
29

30 end

The next function computes the Jacobian matrix for the Newton’s problem thanks to ODE45.
Inputs:

• MODEL pred : vector containing the predictions for V and E,

• MODEL dv : the 2-dimensional direction vector,

• Fref : the residual obtained from the experiment without any parameter perturbation,

• deriv coeffs : the Fourier coefficients of the previous computed point derivative,

• H : the perturbation parameter,

• K : the gain of the control,

• y0 : the initial conditions for ODE45,

Outputs:

9.4. Chapter 5: Continuation Based on Controled Experiments 141

• Fx : the Jacobian matrix extracted for the Newton’s method,

1 f u n c t i o n Fx = DIFF JAC (MODEL pred , MODEL dv , F re f , d e r i v c o e f f s
, H, K, y0)

2

3 g l o b a l t s p a n
4 %g l o b a l y0
5 g l o b a l n b s a m p l e s
6

7 g l o b a l A
8 g l o b a l B
9 g l o b a l C

10 g l o b a l D
11 g l o b a l EPS
12

13 Fx = z e r o s (l e n g t h (MODEL pred)) ;
14 a l l o c = num2ce l l (MODEL pred) ;
15 [x0 , x1 , x 1 , x2 , x 2 , T , lambda] = a l l o c { : } ;
16

17 %% PERTURBATION ON COEFFS SIMULATION :
18 f o r j =1:7
19

20 i f j == 1
21 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0+H, x1 , x 1 , x2 , x 2 , T , K) , t s p a n , y0)
;

22 P e r t = [H; 0 ; 0 ; 0 ; 0] ;
23 e l s e i f j == 2
24 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0 , x1+H, x 1 , x2 , x 2 , T , K) , t s p a n , y0)
;

25 P e r t = [0 ; H; 0 ; 0 ; 0] ;
26 e l s e i f j == 3
27 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0 , x1 , x 1 +H, x2 , x 2 , T , K) , t s p a n , y0)
;

28 P e r t = [0 ; 0 ; H; 0 ; 0] ;
29 e l s e i f j == 4
30 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0 , x1 , x 1 , x2+H, x 2 , T , K) , t s p a n , y0)
;

31 P e r t = [0 ; 0 ; 0 ; H; 0] ;
32 e l s e i f j == 5
33 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0 , x1 , x 1 , x2 , x 2 +H, T , K) , t s p a n , y0)
;

34 P e r t = [0 ; 0 ; 0 ; 0 ; H] ;
35 e l s e i f j == 6
36 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda , x0 , x1 , x 1 , x2 , x 2 , T+H, K) , t s p a n , y0)
;

142 Chapter 9. Appendix: Code scripts

37 P e r t = [0 ; 0 ; 0 ; 0 ; 0] ;
38 e l s e i f j == 7
39 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D,

lambda+H, x0 , x1 , x 1 , x2 , x 2 , T , K) , t s p a n , y0)
;

40 P e r t = [0 ; 0 ; 0 ; 0 ; 0] ;
41 end
42 n o r m s i g n a l = d e v a l (s o l , (l i n s p a c e (t s p a n (2) −T , t s p a n (2) ,

n b s a m p l e s)) , 1) ;
43 c o e f f s p e r t = MY NORM COEFFS(n o r m s i g n a l , l i n s p a c e (t s p a n

(2) −T , t s p a n (2) , n b s a m p l e s)) ;
44 F p e r t = c o e f f s p e r t − (MODEL pred (1 : 5) + P e r t) ; % added

p a r e n t h e s e a round t h e s u b t r a c t e d te rm
45 Fx (1 : 5 , j) = 1 /H * (F p e r t − F r e f) ;
46 %norm (d e v a l (s o l , [l i n s p a c e (t s p a n (2) −2*T , t s p a n (2) −T ,

n b s a m p l e s)] , 1) − n o r m s i g n a l) ;
47 end
48

49 %% PHASE CONDITION DERIVATIVES :
50 Fx (6 , 2) = d e r i v c o e f f s (2) ;
51 Fx (6 , 3) = d e r i v c o e f f s (3) ;
52 Fx (6 , 4) = d e r i v c o e f f s (4) ;
53 Fx (6 , 5) = d e r i v c o e f f s (5) ;
54

55 %% PSEUDO−ARC LENGTH DERIVATIVES :
56 Fx (7 , :) = MODEL dv . ’ ;
57

58 end

The next code is the main script to launch the experiment:

1 c l o s e a l l
2 c l e a r a l l
3 f o r m a t longg
4

5 g l o b a l t s p a n
6 %g l o b a l y0
7 g l o b a l n b s a m p l e s
8 g l o b a l norm t ime
9 g l o b a l DEBUG

10 g l o b a l o p t i o n s
11

12 g l o b a l A
13 g l o b a l B
14 g l o b a l C
15 g l o b a l D
16 g l o b a l EPS
17

18 DEBUG = 0 ;
19 o p t i o n s = o d e s e t (’ Re lTo l ’ ,1 e −08 , ’ AbsTol ’ ,1 e −08) ;
20

21 %% SIMULATION PARAMETERS :

9.4. Chapter 5: Continuation Based on Controled Experiments 143

22 A = 1 . 8 ;
23 B = 0 . 0 ;
24 C = 1 . 0 ;
25 D = − 1 . 0 ;
26 EPS = 0 . 6 ;
27 y0 = [0 . 8 0 . 8] ;
28 T = 1 8 ; % P e r i o d
29 n b s a m p l e s = 700 ; % Number o f samples f o r ODE45 t ime

s e r i e s .
30 t s p a n = [0 n b s a m p l e s *T] ;
31 norm t ime = l i n s p a c e (0 , 1 , n b s a m p l e s) ;
32

33 %% CONTINUATION PARAMETERS :
34 % We f i x q = 2 i n t h i s code .
35

36 E = − 0 . 1 7 ;
37 K = −25; % Gain f o r t h e c o n t r o 1
38 lambda = E ; % C o n t i n u a t i o n p a r a m e t e r lambda
39 ds = 0 . 0 0 5 ; % Pseudo − a r c l e n g t h s t e p s i z e
40 H = 0 . 0 0 1 ; % For t h e d e r i v a t i v e s
41

42 METHOD = ”NEWTON” ; % USED METHOD : ”NEWTON” / ”BROYDEN”
43 VECTOR TYPE = ”SECANT” ; % VECTOR COMPUTATION METHOD : ”

TANGENT” / ”SECANT”
44 ITER = 2 0 ; % NEWTON/BROYDEN i t e r a t i o n
45 t o l = 1e −06; % T o l e r a n c e f o r i t e r a t i o n method .
46 p o i n t s = 3 ; % Number o f p o i n t s f o r c o n t i n u a t i o n

45
47 %% ALLOCATIONS :
48

49 % Computing a p r e v i o u s s i g n a l w i th t h e i n i t i a l c o e f f i c i e n t s f o r
t h e

50 % d e r i v a t i v e c a l c u l a t i o n :
51 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D, E , 0 , 0 , 0 , 0 ,

0 , 0 , 0) , t s p a n , y0 , o p t i o n s) ;
52 p r e v i o u s s i g n a l = d e v a l (s o l , (l i n s p a c e (t s p a n (2) −T , t s p a n (2) ,

n b s a m p l e s)) , 1) ;
53 p r e v i o u s t i m e = l i n s p a c e (t s p a n (2) −T , t s p a n (2) , n b s a m p l e s) ;
54 % y0= s o l . y (: , end) ’ ;
55

56 c o e f f i n i = MY NORM COEFFS(p r e v i o u s s i g n a l , p r e v i o u s t i m e) ; %
x0 , x1 , x−1

57 MODEL guess = [c o e f f i n i ; T ; lambda] ; % F i r s t g u e s s :
c o e f f i c i e n t s + T + PARAMETER

58 MODEL dv = z e r o s (l e n g t h (MODEL guess) , 1) ; %
D i r e c t i o n v e c t o r i n i t i a l i z a t i o n

59 MODEL dv(l e n g t h (MODEL guess)) = 1 ; %
D i r e c t i o n v e c t o r i n i t i a l i z a t i o n : [0 0 0 0 1]

60

61 % Saving a r r a y s f o r each pos t − i t e r a t i o n p r o c e s s :
62 MODEL pred previous = MODEL guess ;

144 Chapter 9. Appendix: Code scripts

63 MODEL pred stock = [MODEL guess] ;
64

65 % Saving a r r a y s f o r t h e max and t h e min of t h e good s i g n a l :
66 MAX = [max (p r e v i o u s s i g n a l)] ;
67 MIN = [min (p r e v i o u s s i g n a l)] ;
68

69 f o r p = 1 : p o i n t s
70 %% PREDICTION :
71 MODEL pred = MODEL guess+ds *MODEL dv ;
72

73 %% DERIVATIVE OF THE PREVIOUS SIGNAL :
74 d e r i v c o e f f s = MY DERIVATIVE NORM SIGNAL(p r e v i o u s s i g n a l ,

p r e v i o u s t i m e) ;
75

76 %% ITERATION METHOD :
77 % A p p l i c a t i o n o f Newton or Broyden .
78 i f METHOD==”NEWTON”
79 [MODEL pred , Fx , ˜] = NEWTON METHOD PERIOD(MODEL pred ,

MODEL dv , MODEL guess , d e r i v c o e f f s , ITER , H, ds , t o l
, K, y0) ;

80 e l s e i f METHOD == ”BROYDEN”
81 [MODEL pred , Fx] = BROYDEN METHOD PERIOD(MODEL pred ,

MODEL dv , MODEL guess , d e r i v c o e f f s , ITER , H, ds , t o l
, K) ;

82 end
83

84 %% VECTOR UPDATE :
85 i f VECTOR TYPE == ”TANGENT”
86 MODEL dv = UPDATE TANGENT(Fx) ;

%NEW
GUESSES

87 e l s e i f VECTOR TYPE == ”SECANT”
88 MODEL dv = UPDATE SECANT(MODEL pred , MODEL pred previous

) ; % To u p d a t e t h e s e c a n t , we j u s t have t o t a k e t h e
two l a s t computed p o i n t s : [x (p) − x (p −1) ; y (p) − y (p
−1)]

89 end
90

91 %% STORAGE OF DATA:
92 MODEL pred previous = MODEL pred ;
93 MODEL guess = MODEL pred ;
94 MODEL pred stock = [MODEL pred stock , MODEL pred] ;
95

96 %% E x t r a c t i n g t h e max and t h e min of t h e s e v a l u e s :
97 s o l = ode45 (@(t , y) FHN ODE(t , y , EPS , A, B , C , D, MODEL pred

(7) , MODEL pred (1) , MODEL pred (2) , MODEL pred (3) ,
MODEL pred (4) , MODEL pred (5) , MODEL pred (6) , K) , t s p a n ,
y0) ;

98 p r e v i o u s s i g n a l = d e v a l (s o l , (l i n s p a c e (t s p a n (2) −MODEL pred
(6) , t s p a n (2) , n b s a m p l e s)) , 1) ;

99

9.5. Chapter 6: Recurrence Structure Analysis 145

100 MAX = [MAX, max (p r e v i o u s s i g n a l)] ;
101 MIN = [MIN, min (p r e v i o u s s i g n a l)] ;
102

103 d i s p (” P o i n t ” + s t r i n g (p) + ” computed . ”)
104

105 end
106

107 f i g u r e
108 ho ld on
109 g r i d on
110 t i t l e (” P e r i o d i c b i f u r c a t i o n d iagram t e s t ”)
111

112 s c a t t e r (MODEL pred stock (l e n g t h (MODEL guess) , :) , MAX(:) , ’ b ’ , ’
f i l l e d ’) ;

113 s c a t t e r (MODEL pred stock (l e n g t h (MODEL guess) , :) , MIN (:) , ’ g ’ , ’
f i l l e d ’) ;

114

115 E s t a t = c s v r e a d (’ E model . c sv ’) ;
116 V s t a t = c s v r e a d (’ V model . c sv ’) ;
117 XPPAUT = l o a d (”XPPAUT FHN . d a t ”) ;
118 p l o t (E s t a t (2 : end) , V s t a t (2 : end) , ’k−− ’) ;
119 s c a t t e r (XPPAUT(1 0 0 0 : 2 : end , 1) , XPPAUT(1 0 0 0 : 2 : end , 2) , ’ k ’) ;
120 s c a t t e r (XPPAUT(1 0 0 0 : 2 : end , 1) , XPPAUT(1 0 0 0 : 2 : end , 3) , ’ k ’) ;
121 xl im ([− 0 . 2 5 − 0 . 0 9]) ;
122 %yl im ([− 1 . 1 1 . 1]) ;
123 l e g e n d (” Max” , ”Min ”)
124 ho ld o f f

9.5 Chapter 6: Recurrence Structure Analysis

This session will be written half in Python and Matlab. The data processing will be in Python, and
the Recurrence Structure Analysis will be applied in Matlab.

9.5.1 Part 1: Reading the data, applying the K-means method, and applying the
baseline alignment method.

We first propose to take a look to the importations:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t g lob
4 i m p o r t os
5 i m p o r t s c i p y . i o
6 from s c i p y . i o i m p o r t savemat
7 from s k l e a r n . c l u s t e r i m p o r t KMeans
8 i m p o r t m a t p l o t l i b . f o n t m a n a g e r a s f o n t m a n a g e r

Then we define some functions for the preprocessing of the data:

1 d e f f u l l f i l l s y m m e t r i c (m a t r i x) :
2 n = m a t r i x . shape [0]
3 f o r i i n r a n g e (n) :

146 Chapter 9. Appendix: Code scripts

4 f o r j i n r a n g e (i +1 , n) :
5 m a t r i x [i , j]= m a t r i x [j , i]
6 r e t u r n m a t r i x
7

8 d e f N e u r o n f o r e a c h o d o r s (avg) :
9

10 f o r neuron i n r a n g e (l e n (avg)) :
11 i f neuron == 0 :
12 Ma t r ix = []
13 f o r odor i n r a n g e (l e n (avg [neuron])) :
14 Ma t r ix . append ([avg [neuron] [odor] . r a v e l ()])
15 e l s e :
16 f o r odor i n r a n g e (l e n (avg [neuron])) :
17 Ma t r ix [odor] . append (avg [neuron] [odor] . r a v e l ())
18

19 r e t u r n M a t r i x
20

21 d e f d i s t a n c e m a t r i x (d a t a) :
22

23 m a t r i x = np . z e r o s ((l e n (d a t a) , l e n (d a t a)))
24

25 f o r coord1 i n r a n g e (l e n (d a t a)) :
26 f o r coord2 i n r a n g e (l e n (d a t a)) :
27 s q u a r e d d i s t = np . sum ((d a t a [coord1] − d a t a [coord2])

**2 , a x i s =0)
28 d i s t = np . s q r t (s q u a r e d d i s t)
29 m a t r i x [coord1] [coord2] = d i s t
30

31 r e t u r n m a t r i x

We propose first a script in order to extract the time series from the initial files:

1 p r i n t (”DATA SET STUDIED \n ”)
2

3 p a t h = ” . / . . / A n d r e a s S c h n e i d e r / Calc iumImaging / ”
4

5 # ###
6

7 f i l e C 5 2 5 = s c i p y . i o . l oadma t (p a t h + ’ C525 da ta . mat ’)
8

9 mean C525 = f i l e C 5 2 5 [’ meanImagesS ing le ’]
10 t r i a l C 5 2 5 = f i l e C 5 2 5 [’ t r i a l I n t ’]
11 avg C525 = f i l e C 5 2 5 [’ t r i a l I n t a v g ’]
12 type C525 = s c i p y . i o . l oadma t (p a t h + ’ C 5 2 5 c e l l T y p e I d x . mat ’) [’

C 5 2 5 c e l l T y p e I d x ’]
13

14 avg C52 5 Tuf t ed = []
15 a v g C 5 2 5 M i t r a l = []
16

17 t r i a l C 5 2 5 T u f t e d = []
18 t r i a l C 5 2 5 M i t r a l = []
19

9.5. Chapter 6: Recurrence Structure Analysis 147

20 f o r i i n r a n g e (l e n (type C525)) :
21 i f type C525 [i] [0] == 0 :
22 avg C52 5 Tuf t ed . append (avg C525 [i])
23 t r i a l C 5 2 5 T u f t e d . append (t r i a l C 5 2 5 [i])
24 i f type C525 [i] [0] == 1 :
25 a v g C 5 2 5 M i t r a l . append (avg C525 [i])
26 t r i a l C 5 2 5 M i t r a l . append (t r i a l C 5 2 5 [i])
27

28 avg C52 5 Tuf t ed = N e u r o n f o r e a c h o d o r s (a vg C52 5 Tuf t ed)
29 a v g C 5 2 5 M i t r a l = N e u r o n f o r e a c h o d o r s (a v g C 5 2 5 M i t r a l)
30 avg C525 = N e u r o n f o r e a c h o d o r s (avg C525)
31

32 t r i a l C 5 2 5 T u f t e d = N e u r o n f o r e a c h o d o r s (t r i a l C 5 2 5 T u f t e d)
33 t r i a l C 5 2 5 M i t r a l = N e u r o n f o r e a c h o d o r s (t r i a l C 5 2 5 M i t r a l)
34

35 p r i n t (”C525 DATA SHAPE \n\
nmeanImagesS ing le : ” , np . shape (mean C525))

36 p r i n t (” t r i a l I n t : ” , np . shape (t r i a l C 5 2 5))
37 p r i n t (” t r i a l I n t T u f t e d : ” , np . shape (t r i a l C 5 2 5 T u f t e d))
38 p r i n t (” t r i a l I n t M i t r a l : ” , np . shape (t r i a l C 5 2 5 M i t r a l))
39 p r i n t (” t r i a l I n t a v g : ” , np . shape (avg C525))
40 p r i n t (” t r i a l I n t a v g T u f t e d : ” , np . shape (avg C52 5 Tuf t ed))
41 p r i n t (” t r i a l I n t a v g M i t r a l : ” , np . shape (a v g C 5 2 5 M i t r a l) , ”\n ”)
42

43 f o r m a t T u f t e d = {” a ” : avg C525 Tuf ted , ” l a b e l ” : ” C525 Tuf ted ”}
44 f o r m a t M i t r a l = {” a ” : a v g C 5 2 5 M i t r a l , ” l a b e l ” : ” C 5 2 5 M i t r a l ”}
45

46 t r i a l T u f t e d = {” a ” : t r i a l C 5 2 5 T u f t e d , ” l a b e l ” : ” C525 Tuf ted ”}
47 t r i a l M i t r a l = {” a ” : t r i a l C 5 2 5 M i t r a l , ” l a b e l ” : ” C 5 2 5 M i t r a l ”}
48

49 savemat (” m a t l a b C 5 2 5 T u f t e d . mat ” , f o r m a t T u f t e d)
50 savemat (” m a t l a b C 5 2 5 M i t r a l . mat ” , f o r m a t M i t r a l)
51

52 savemat (” m a t l a b C 5 2 5 t r i a l T u f t e d . mat ” , t r i a l T u f t e d)
53 savemat (” m a t l a b C 5 2 5 t r i a l M i t r a l . mat ” , t r i a l M i t r a l)
54

55 # ###
56

57 f i l e C 5 3 1 = s c i p y . i o . l oadma t (p a t h + ’ C531 da ta . mat ’)
58

59 mean C531 = f i l e C 5 3 1 [’ meanImagesS ing le ’]
60 t r i a l C 5 3 1 = f i l e C 5 3 1 [’ t r i a l I n t ’]
61 avg C531 = f i l e C 5 3 1 [’ t r i a l I n t a v g ’]
62 type C531 = s c i p y . i o . l oadma t (p a t h + ’ C 5 3 1 c e l l T y p e I d x . mat ’) [’

C 5 3 1 c e l l T y p e I d x ’]
63

64 avg C53 1 Tuf t ed = []
65 a v g C 5 3 1 M i t r a l = []
66

67 t r i a l C 5 3 1 T u f t e d = []
68 t r i a l C 5 3 1 M i t r a l = []

148 Chapter 9. Appendix: Code scripts

69

70 f o r i i n r a n g e (l e n (type C531)) :
71 i f type C531 [i] [0] == 0 :
72 avg C53 1 Tuf t ed . append (avg C531 [i])
73 t r i a l C 5 3 1 T u f t e d . append (t r i a l C 5 3 1 [i])
74 i f type C531 [i] [0] == 1 :
75 a v g C 5 3 1 M i t r a l . append (avg C531 [i])
76 t r i a l C 5 3 1 M i t r a l . append (t r i a l C 5 3 1 [i])
77

78 avg C53 1 Tuf t ed = N e u r o n f o r e a c h o d o r s (a vg C53 1 Tuf t ed)
79 a v g C 5 3 1 M i t r a l = N e u r o n f o r e a c h o d o r s (a v g C 5 3 1 M i t r a l)
80 avg C531 = N e u r o n f o r e a c h o d o r s (avg C531)
81

82 t r i a l C 5 3 1 T u f t e d = N e u r o n f o r e a c h o d o r s (t r i a l C 5 3 1 T u f t e d)
83 t r i a l C 5 3 1 M i t r a l = N e u r o n f o r e a c h o d o r s (t r i a l C 5 3 1 M i t r a l)
84

85 p r i n t (”C531 DATA SHAPE \n\
nmeanImagesS ing le : ” , np . shape (mean C531))

86 p r i n t (” t r i a l I n t : ” , np . shape (t r i a l C 5 3 1))
87 p r i n t (” t r i a l I n t T u f t e d : ” , np . shape (t r i a l C 5 3 1 T u f t e d))
88 p r i n t (” t r i a l I n t M i t r a l : ” , np . shape (t r i a l C 5 3 1 M i t r a l))
89 p r i n t (” t r i a l I n t a v g : ” , np . shape (avg C531))
90 p r i n t (” t r i a l I n t a v g T u f t e d : ” , np . shape (avg C53 1 Tuf t ed))
91 p r i n t (” t r i a l I n t a v g M i t r a l : ” , np . shape (a v g C 5 3 1 M i t r a l) , ”\n ”)
92

93 f o r m a t T u f t e d = {” a ” : avg C531 Tuf ted , ” l a b e l ” : ” C531 Tuf ted ”}
94 f o r m a t M i t r a l = {” a ” : a v g C 5 3 1 M i t r a l , ” l a b e l ” : ” C 5 3 1 M i t r a l ”}
95

96 t r i a l T u f t e d = {” a ” : t r i a l C 5 3 1 T u f t e d , ” l a b e l ” : ” C531 Tuf ted ”}
97 t r i a l M i t r a l = {” a ” : t r i a l C 5 3 1 M i t r a l , ” l a b e l ” : ” C 5 3 1 M i t r a l ”}
98

99 savemat (” m a t l a b C 5 3 1 T u f t e d . mat ” , f o r m a t T u f t e d)
100 savemat (” m a t l a b C 5 3 1 M i t r a l . mat ” , f o r m a t M i t r a l)
101

102 savemat (” m a t l a b C 5 3 1 t r i a l T u f t e d . mat ” , t r i a l T u f t e d)
103 savemat (” m a t l a b C 5 3 1 t r i a l M i t r a l . mat ” , t r i a l M i t r a l)
104

105 # ###
106

107

108

109 f i l e C 5 3 7 = s c i p y . i o . l oadma t (p a t h + ’ C537 da ta . mat ’)
110

111 mean C537 = f i l e C 5 3 7 [’ meanImagesS ing le ’]
112 t r i a l C 5 3 7 = f i l e C 5 3 7 [’ t r i a l I n t ’]
113 avg C537 = f i l e C 5 3 7 [’ t r i a l I n t a v g ’]
114 type C537 = s c i p y . i o . l oadma t (p a t h + ’ C 5 3 7 c e l l T y p e I d x . mat ’) [’

C 5 3 7 c e l l T y p e I d x ’]
115

116 avg C53 7 Tuf t ed = []
117 a v g C 5 3 7 M i t r a l = []

9.5. Chapter 6: Recurrence Structure Analysis 149

118

119 t r i a l C 5 3 7 T u f t e d = []
120 t r i a l C 5 3 7 M i t r a l = []
121

122 f o r i i n r a n g e (l e n (type C537)) :
123 i f type C537 [i] [0] == 0 :
124 avg C53 7 Tuf t ed . append (avg C537 [i])
125 t r i a l C 5 3 7 T u f t e d . append (t r i a l C 5 3 7 [i])
126 i f type C537 [i] [0] == 1 :
127 a v g C 5 3 7 M i t r a l . append (avg C537 [i])
128 t r i a l C 5 3 7 M i t r a l . append (t r i a l C 5 3 7 [i])
129

130 avg C53 7 Tuf t ed = N e u r o n f o r e a c h o d o r s (a vg C53 7 Tuf t ed)
131 a v g C 5 3 7 M i t r a l = N e u r o n f o r e a c h o d o r s (a v g C 5 3 7 M i t r a l)
132 avg C537 = N e u r o n f o r e a c h o d o r s (avg C537)
133

134 t r i a l C 5 3 7 T u f t e d = N e u r o n f o r e a c h o d o r s (t r i a l C 5 3 7 T u f t e d)
135 t r i a l C 5 3 7 M i t r a l = N e u r o n f o r e a c h o d o r s (t r i a l C 5 3 7 M i t r a l)
136

137 p r i n t (”C537 DATA SHAPE \n\
nmeanImagesS ing le : ” , np . shape (mean C537))

138 p r i n t (” t r i a l I n t : ” , np . shape (t r i a l C 5 3 7))
139 p r i n t (” t r i a l I n t T u f t e d : ” , np . shape (t r i a l C 5 3 7 T u f t e d))
140 p r i n t (” t r i a l I n t M i t r a l : ” , np . shape (t r i a l C 5 3 7 M i t r a l))
141 p r i n t (” t r i a l I n t a v g : ” , np . shape (avg C537))
142 p r i n t (” t r i a l I n t a v g T u f t e d : ” , np . shape (avg C53 7 Tuf t ed))
143 p r i n t (” t r i a l I n t a v g M i t r a l : ” , np . shape (a v g C 5 3 7 M i t r a l) , ”\n ”)
144

145 f o r m a t T u f t e d = {” a ” : avg C537 Tuf ted , ” l a b e l ” : ” C537 Tuf ted ”}
146 f o r m a t M i t r a l = {” a ” : a v g C 5 3 7 M i t r a l , ” l a b e l ” : ” C 5 3 7 M i t r a l ”}
147

148 t r i a l T u f t e d = {” a ” : t r i a l C 5 3 7 T u f t e d , ” l a b e l ” : ” C537 Tuf ted ”}
149 t r i a l M i t r a l = {” a ” : t r i a l C 5 3 7 M i t r a l , ” l a b e l ” : ” C 5 3 7 M i t r a l ”}
150

151 savemat (” m a t l a b C 5 3 7 T u f t e d . mat ” , f o r m a t T u f t e d)
152 savemat (” m a t l a b C 5 3 7 M i t r a l . mat ” , f o r m a t M i t r a l)
153

154 savemat (” m a t l a b C 5 3 7 t r i a l T u f t e d . mat ” , t r i a l T u f t e d)
155 savemat (” m a t l a b C 5 3 7 t r i a l M i t r a l . mat ” , t r i a l M i t r a l)
156

157 # ###
158

159 p r i n t (”\nDATA LOADED ”)

We propose now to extract the euclidian coordinates from the files:

1 D i s t m a t r i c e s = []
2 D i s t t u f t e d = []
3 D i s t m i t r a l = []
4 n a m e d i s t = [”C525” , ”C531” , ”C537”]
5

6

150 Chapter 9. Appendix: Code scripts

7 d a t a c o o r d C 5 2 5 = s c i p y . i o . l oadma t (p a t h + ’ C 5 2 5 R O I c o o r d i n a t e s .
mat ’)

8 C o o r d i n a t e s C 5 2 5 = d a t a c o o r d C 5 2 5 [’ C 5 2 5 R O I c o o r d i n a t e s ’]
9

10 C o o r d i n a t e s C 5 2 5 T u f t e d = []
11 C o o r d i n a t e s C 5 2 5 M i t r a l = []
12

13 f o r i i n r a n g e (l e n (type C525)) :
14 i f type C525 [i] [0] == 0 :
15 C o o r d i n a t e s C 5 2 5 T u f t e d . append (C o o r d i n a t e s C 5 2 5 [i])
16 i f type C525 [i] [0] == 1 :
17 C o o r d i n a t e s C 5 2 5 M i t r a l . append (C o o r d i n a t e s C 5 2 5 [i])
18

19 C o o r d i n a t e s C 5 2 5 T u f t e d = np . a r r a y (C o o r d i n a t e s C 5 2 5 T u f t e d)
20 C o o r d i n a t e s C 5 2 5 M i t r a l = np . a r r a y (C o o r d i n a t e s C 5 2 5 M i t r a l)
21

22 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 2 5))
23 C o o r d i n a t e s C 5 2 5 [i n d s] = 0
24 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 2 5)
25 D i s t m a t r i c e s . append (m a t r i x)
26

27

28 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 2 5 T u f t e d))
29 C o o r d i n a t e s C 5 2 5 T u f t e d [i n d s] = 0
30 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 2 5 T u f t e d)
31 D i s t t u f t e d . append (m a t r i x)
32

33

34 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 2 5 M i t r a l))
35 C o o r d i n a t e s C 5 2 5 M i t r a l [i n d s] = max (C o o r d i n a t e s C 5 2 5 M i t r a l

[: , 2])
36 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 2 5 M i t r a l)
37 D i s t m i t r a l . append (m a t r i x)
38

39

40 # ###
41 d a t a c o o r d C 5 3 1 = s c i p y . i o . l oadma t (p a t h + ’ C 5 3 1 R O I c o o r d i n a t e s .

mat ’)
42 C o o r d i n a t e s C 5 3 1 = d a t a c o o r d C 5 3 1 [’ C 5 3 1 R O I c o o r d i n a t e s ’]
43

44 C o o r d i n a t e s C 5 3 1 T u f t e d = []
45 C o o r d i n a t e s C 5 3 1 M i t r a l = []
46

47 f o r i i n r a n g e (l e n (type C531)) :
48 i f type C531 [i] [0] == 0 :
49 C o o r d i n a t e s C 5 3 1 T u f t e d . append (C o o r d i n a t e s C 5 3 1 [i])
50 i f type C531 [i] [0] == 1 :
51 C o o r d i n a t e s C 5 3 1 M i t r a l . append (C o o r d i n a t e s C 5 3 1 [i])
52

53 C o o r d i n a t e s C 5 3 1 T u f t e d = np . a r r a y (C o o r d i n a t e s C 5 3 1 T u f t e d)
54 C o o r d i n a t e s C 5 3 1 M i t r a l = np . a r r a y (C o o r d i n a t e s C 5 3 1 M i t r a l)

9.5. Chapter 6: Recurrence Structure Analysis 151

55

56

57 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 1))
58 C o o r d i n a t e s C 5 3 1 [i n d s] = 0
59 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 1)
60 D i s t m a t r i c e s . append (m a t r i x)
61

62

63 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 1 T u f t e d))
64 C o o r d i n a t e s C 5 3 1 T u f t e d [i n d s] = 0
65 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 1 T u f t e d)
66 D i s t t u f t e d . append (m a t r i x)
67

68

69 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 1 M i t r a l))
70 C o o r d i n a t e s C 5 3 1 M i t r a l [i n d s] = max (C o o r d i n a t e s C 5 2 5 M i t r a l

[: , 2])
71 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 1 M i t r a l)
72 D i s t m i t r a l . append (m a t r i x)
73

74 # ###
75

76 d a t a c o o r d C 5 3 7 = s c i p y . i o . l oadma t (p a t h + ’ C 5 3 7 R O I c o o r d i n a t e s .
mat ’)

77 C o o r d i n a t e s C 5 3 7 = d a t a c o o r d C 5 3 7 [’ C 5 3 7 R O I c o o r d i n a t e s ’]
78

79 C o o r d i n a t e s C 5 3 7 T u f t e d = []
80 C o o r d i n a t e s C 5 3 7 M i t r a l = []
81

82 f o r i i n r a n g e (l e n (type C537)) :
83 i f type C537 [i] [0] == 0 :
84 C o o r d i n a t e s C 5 3 7 T u f t e d . append (C o o r d i n a t e s C 5 3 7 [i])
85 i f type C537 [i] [0] == 1 :
86 C o o r d i n a t e s C 5 3 7 M i t r a l . append (C o o r d i n a t e s C 5 3 7 [i])
87

88 C o o r d i n a t e s C 5 3 7 T u f t e d = np . a r r a y (C o o r d i n a t e s C 5 3 7 T u f t e d)
89 C o o r d i n a t e s C 5 3 7 M i t r a l = np . a r r a y (C o o r d i n a t e s C 5 3 7 M i t r a l)
90

91

92 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 7))
93 C o o r d i n a t e s C 5 3 7 [i n d s] = 0
94 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 7)
95 D i s t m a t r i c e s . append (m a t r i x)
96

97 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 7 T u f t e d))
98 C o o r d i n a t e s C 5 3 7 T u f t e d [i n d s] = 0
99 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 7 T u f t e d)

100 D i s t t u f t e d . append (m a t r i x)
101

102

103 i n d s = np . where (np . i s n a n (C o o r d i n a t e s C 5 3 7 M i t r a l))

152 Chapter 9. Appendix: Code scripts

104 C o o r d i n a t e s C 5 3 7 M i t r a l [i n d s] = max (C o o r d i n a t e s C 5 2 5 M i t r a l
[: , 2])

105 m a t r i x = d i s t a n c e m a t r i x (C o o r d i n a t e s C 5 3 7 M i t r a l)
106 D i s t m i t r a l . append (m a t r i x)

We propose now a code to plot all the coordinates :

1 f i g = p l t . f i g u r e (f i g s i z e =(20 , 18) , d p i =80)
2 ax = f i g . a d d s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)
3 ax . s c a t t e r (C o o r d i n a t e s C 5 2 5 T u f t e d [: , 0] , C o o r d i n a t e s C 5 2 5 T u f t e d

[: , 1] , C o o r d i n a t e s C 5 2 5 T u f t e d [: , 2] , s =100 , l a b e l = ” T u f t e d
C525”)

4 ax . s c a t t e r (C o o r d i n a t e s C 5 3 1 T u f t e d [: , 0] , C o o r d i n a t e s C 5 3 1 T u f t e d
[: , 1] , C o o r d i n a t e s C 5 3 1 T u f t e d [: , 2] , s =100 , l a b e l = ” T u f t e d
C531”)

5 ax . s c a t t e r (C o o r d i n a t e s C 5 3 7 T u f t e d [: , 0] , C o o r d i n a t e s C 5 3 7 T u f t e d
[: , 1] , C o o r d i n a t e s C 5 3 7 T u f t e d [: , 2] , s =100 , l a b e l = ” T u f t e d
C537”)

6

7

8 p l t . r c (’ t e x t ’ , u s e t e x =True)
9

10 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =3)
11 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =2)
12 p l t . l o c a t o r p a r a m s (a x i s =” z ” , n b i n s =2)
13 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
14 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35)
15 ax . t i c k p a r a m s (a x i s = ’ z ’ , l a b e l s i z e =35)
16 xLabe l = ax . s e t x l a b e l (’X ’ , l i n e s p a c i n g =15 , f o n t s i z e =45)
17 yLabe l = ax . s e t y l a b e l (’Y ’ , l i n e s p a c i n g =5 , f o n t s i z e =45)
18 z La be l = ax . s e t z l a b e l (’ Z ’ , l i n e s p a c i n g =5 , f o n t s i z e =45)
19 ax . d i s t = 10
20

21 p l t . l e g e n d (prop ={ ’ s i z e ’ : 35})
22

23 p l t . show ()

We propose now a code apply the K-means:

1 # Here , I am c o n c a t e n a t i n g my c o o r d i n a t e s .
2 # F i r s t C525 , t h e n C531 , and C537 .
3

4 C o o r d i n a t e s T u f t e d = np . c o n c a t e n a t e ((C o o r d i n a t e s C 5 2 5 T u f t e d ,
C o o r d i n a t e s C 5 3 1 T u f t e d) , a x i s =0)

5 C o o r d i n a t e s T u f t e d = np . c o n c a t e n a t e ((C o o r d i n a t e s T u f t e d ,
C o o r d i n a t e s C 5 3 7 T u f t e d) , a x i s =0)

6

7 X=np . c o l u m n s t a c k ((C o o r d i n a t e s T u f t e d [: , 0] , C o o r d i n a t e s T u f t e d
[: , 1]))

8

9 # I am a p p l y i n g h e r e t h e Kmeans method . We d e t e r m i n e f i r s t t h e K
number o f g ro up s we want t o form .

10 # At each i t e r a t i o n t h e Kmeans r e s u l t s a r e d i f f e r e n t s .

9.5. Chapter 6: Recurrence Structure Analysis 153

11

12 K = 10 # THIS THE PARAMETER TO CHANGE TO MODULATE THE NUMBER OF
REGIONS OF INTEREST .

13 kmeans = KMeans (n c l u s t e r s =K, r a n d o m s t a t e =10) . f i t (X)
14 p r i n t (”Number o f sub − g ro up s : ” , max (kmeans . l a b e l s) +1)
15

16 f i g = p l t . f i g u r e (f i g s i z e =(20 , 18) , d p i =80)
17 p l t . s u b p l o t (1 , 2 , 1) # row 1 , c o l 2 i n d e x 1
18 p l t . s c a t t e r (C o o r d i n a t e s T u f t e d [: , 0] , C o o r d i n a t e s T u f t e d [: , 2] , c=

kmeans . l a b e l s , s =10)
19 # p l t . a x h l i n e (y = C o o r d i n a t e s T u f t e d [: , 1] , c o l o r =” r ” , l i n e s t y l e

=” −”)
20 p l t . t i t l e (” F i r s t view ”)
21 p l t . x l a b e l (”X− a x i s ”)
22 p l t . y l a b e l (”Z− a x i s ”)
23

24 p l t . s u b p l o t (1 , 2 , 2) # i n d e x 2
25 p l t . s c a t t e r (C o o r d i n a t e s T u f t e d [: , 1] , C o o r d i n a t e s T u f t e d [: , 2] , c=

kmeans . l a b e l s , s =10)
26 # p l t . a x h l i n e (y= C o o r d i n a t e s T u f t e d [: , 1] , c o l o r =” r ” , l i n e s t y l e

=” −”)
27 p l t . t i t l e (” Second view ”)
28 p l t . x l a b e l (”Y− a x i s ”)
29 p l t . y l a b e l (”Z− a x i s ”)
30

31 C o o r d i n a t e s s u b = np . z e r o s ((K, 3))
32 denom = 0
33 f o r i i n kmeans . l a b e l s :
34 f o r j i n r a n g e (l e n (kmeans . l a b e l s)) :
35 i f i == kmeans . l a b e l s [j] :
36 C o o r d i n a t e s s u b [i] += C o o r d i n a t e s T u f t e d [j]
37 denom +=1
38 C o o r d i n a t e s s u b [i] = C o o r d i n a t e s s u b [i] / denom
39 denom = 0
40

41 f i g = p l t . f i g u r e (f i g s i z e =(20 , 18) , d p i =80)
42 ax = f i g . a d d s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)
43 ax . s c a t t e r (C o o r d i n a t e s T u f t e d [: , 0] , C o o r d i n a t e s T u f t e d [: , 1] ,

C o o r d i n a t e s T u f t e d [: , 2] , s =100 , a l p h a = 0 . 4 , c=kmeans . l a b e l s
)

44 ax . s c a t t e r (C o o r d i n a t e s s u b [: , 0] , C o o r d i n a t e s s u b [: , 1] ,
C o o r d i n a t e s s u b [: , 2] , c o l o r = ” r e d ” , s =700 , l a b e l = ” C e n t e r s ”
)

45 ax . s e t x l a b e l (’X Labe l ’)
46 ax . s e t y l a b e l (’Y Labe l ’)
47 ax . s e t z l a b e l (’Z Labe l ’)
48 p l t . l e g e n d ()
49 p l t . show ()
50

51

52 f i g = p l t . f i g u r e (f i g s i z e =(20 , 18) , d p i =80)

154 Chapter 9. Appendix: Code scripts

53 ax = f i g . a d d s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)
54 ax . s c a t t e r (C o o r d i n a t e s s u b [: , 0] , C o o r d i n a t e s s u b [: , 1] ,

C o o r d i n a t e s s u b [: , 2] , c o l o r = ” r e d ” , a l p h a = 0 . 5 , s =500 ,
l a b e l = ” C e n t e r s ”)

55 f o r a r e a i n np . a r a n g e (0 ,K) :
56 ax . t e x t (C o o r d i n a t e s s u b [a rea , 0] , C o o r d i n a t e s s u b [a rea , 1] ,

C o o r d i n a t e s s u b [a rea , 2] , ’%s ’ % (s t r (a r e a)) , s i z e =20 ,
z o r d e r =1 , c o l o r = ’ k ’)

57 ax . s e t x l a b e l (’X Labe l ’)
58 ax . s e t y l a b e l (’Y Labe l ’)
59 ax . s e t z l a b e l (’Z Labe l ’)
60 p l t . l e g e n d ()
61 p l t . show ()

And a good representation of the K-means results:

1 c o l o r s = [” r e d ” , ” o r an ge ” , ” y e l l o w ” , ” l ime ” , ” g r e e n ” , ” cyan ” , ”
b l u e ” , ” p u r p l e ” , ” c r imson ” , ” p ink ”]

2

3 f i g = p l t . f i g u r e (f i g s i z e =(20 , 18) , d p i =80)
4 ax = f i g . a d d s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)
5 f o r i i n r a n g e (l e n (kmeans . l a b e l s)) :
6 ax . s c a t t e r (C o o r d i n a t e s T u f t e d [i , 0] , C o o r d i n a t e s T u f t e d [i , 1] ,

C o o r d i n a t e s T u f t e d [i , 2] , c o l o r = c o l o r s [kmeans . l a b e l s [i
]] , s =100 , a l p h a = 0 . 5)

7 f o r i i n r a n g e (l e n (C o o r d i n a t e s s u b)) :
8 ax . s c a t t e r (C o o r d i n a t e s s u b [i , 0] , C o o r d i n a t e s s u b [i , 1] ,

C o o r d i n a t e s s u b [i , 2] , c o l o r = c o l o r s [i] , s =700 ,
e d g e c o l o r s = ’ k ’ , l i n e w i d t h =3 , l a b e l = ” C e n t e r ” + s t r (i +1))

9 f o r a r e a i n np . a r a n g e (0 ,K−1) :
10 ax . t e x t (C o o r d i n a t e s s u b [a rea , 0] + 5 , C o o r d i n a t e s s u b [a rea , 1] + 5 ,

C o o r d i n a t e s s u b [a rea , 2] + 5 , ’%s ’ % (s t r (a r e a +1)) , s i z e
=50 , z o r d e r =10000 , c o l o r = ’ k ’)

11 ax . t e x t (C o o r d i n a t e s s u b [K−1 ,0]+5 , C o o r d i n a t e s s u b [K−1 ,1]+5 ,
C o o r d i n a t e s s u b [K−1 ,2]+10 , ’%s ’ % (s t r (K−1+1)) , s i z e =50 ,
z o r d e r =10000 , c o l o r = ’ k ’)

12 p l t . r c (’ t e x t ’ , u s e t e x =True)
13

14 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =3)
15 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =2)
16 p l t . l o c a t o r p a r a m s (a x i s =” z ” , n b i n s =2)
17 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
18 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35)
19 ax . t i c k p a r a m s (a x i s = ’ z ’ , l a b e l s i z e =35)
20 xLabe l = ax . s e t x l a b e l (’X ’ , l i n e s p a c i n g =15 , f o n t s i z e =45)
21 yLabe l = ax . s e t y l a b e l (’Y ’ , l i n e s p a c i n g =5 , f o n t s i z e =45)
22 z La be l = ax . s e t z l a b e l (’ Z ’ , l i n e s p a c i n g =5 , f o n t s i z e =45)
23 ax . d i s t = 10
24

25

26 p l t . show ()

Then we compute the region of interest new time series based on the mean of all their neurons:

9.5. Chapter 6: Recurrence Structure Analysis 155

1 ODORS = 48
2

3 f u l l C 5 2 5 a c t i v i t y = []
4 f u l l C 5 3 1 a c t i v i t y = []
5 f u l l C 5 3 7 a c t i v i t y = []
6

7 f o r STUDIED ODOR i n r a n g e (ODORS) :
8 C 5 2 5 a c t i v i t y = []
9 C 5 3 1 a c t i v i t y = []

10 C 5 3 7 a c t i v i t y = []
11

12 # ######### C525 :
13

14 end = l e n (av g C52 5 Tuf t ed [STUDIED ODOR])
15 C 5 2 5 l a b e l = kmeans . l a b e l s [: end]
16

17 denom = 0
18 f o r i i n np . a r a n g e (0 ,K) :
19 t s = np . z e r o s (l e n (avg C52 5 Tuf t ed [STUDIED ODOR] [0]))
20 f o r j i n r a n g e (l e n (avg C52 5 Tuf t ed [STUDIED ODOR])) :
21 i f i == C 5 2 5 l a b e l [j] :
22 t s = t s + avg C52 5 Tuf t ed [STUDIED ODOR] [j]
23 denom +=1
24 C 5 2 5 a c t i v i t y . append (t s / denom)
25 denom = 0
26

27 # ######### C531 :
28

29 s t a r t = end
30 end = s t a r t + l e n (av g C53 1 Tuf t ed [STUDIED ODOR])
31 C 5 3 1 l a b e l = kmeans . l a b e l s [s t a r t : end]
32

33 denom = 0
34 f o r i i n np . a r a n g e (0 ,K) :
35 t s = np . z e r o s (l e n (avg C53 1 Tuf t ed [STUDIED ODOR] [0]))
36 f o r j i n r a n g e (l e n (avg C53 1 Tuf t ed [STUDIED ODOR])) :
37 i f i == C 5 3 1 l a b e l [j] :
38 t s = t s + avg C53 1 Tuf t ed [STUDIED ODOR] [j]
39 denom +=1
40 C 5 3 1 a c t i v i t y . append (t s / denom)
41 denom = 0
42

43 # ######### C537 :
44

45 s t a r t = end
46 end = s t a r t + l e n (av g C53 7 Tuf t ed [STUDIED ODOR])
47 C 5 3 7 l a b e l = kmeans . l a b e l s [s t a r t : end]
48

49 denom = 0
50 f o r i i n np . a r a n g e (0 ,K) :
51 t s = np . z e r o s (l e n (avg C53 7 Tuf t ed [STUDIED ODOR] [0]))

156 Chapter 9. Appendix: Code scripts

52 f o r j i n r a n g e (l e n (avg C53 7 Tuf t ed [STUDIED ODOR])) :
53 i f i == C 5 3 7 l a b e l [j] :
54 t s = t s + avg C53 1 Tuf t ed [STUDIED ODOR] [j]
55 denom +=1
56 C 5 3 7 a c t i v i t y . append (t s / denom)
57 denom = 0
58

59 f u l l C 5 2 5 a c t i v i t y . append (C 5 2 5 a c t i v i t y)
60 f u l l C 5 3 1 a c t i v i t y . append (C 5 3 1 a c t i v i t y)
61 f u l l C 5 3 7 a c t i v i t y . append (C 5 3 7 a c t i v i t y)

And so the baseline alignment method with some visualisations :

1 # Removing t h e NaN v a l u e s .
2

3 f o r odor i n r a n g e (l e n (f u l l C 5 2 5 a c t i v i t y)) :
4 f o r t s i n r a n g e (l e n (f u l l C 5 2 5 a c t i v i t y [odor])) :
5 f u l l C 5 2 5 a c t i v i t y [odor] [t s] [np . i s n a n (f u l l C 5 2 5 a c t i v i t y

[odor] [t s])] = 0
6

7 f o r odor i n r a n g e (l e n (f u l l C 5 3 1 a c t i v i t y)) :
8 f o r t s i n r a n g e (l e n (f u l l C 5 3 1 a c t i v i t y [odor])) :
9 f u l l C 5 3 1 a c t i v i t y [odor] [t s] [np . i s n a n (f u l l C 5 3 1 a c t i v i t y

[odor] [t s])] = 0
10

11 f o r odor i n r a n g e (l e n (f u l l C 5 3 7 a c t i v i t y)) :
12 f o r t s i n r a n g e (l e n (f u l l C 5 3 7 a c t i v i t y [odor])) :
13 f u l l C 5 3 7 a c t i v i t y [odor] [t s] [np . i s n a n (f u l l C 5 3 7 a c t i v i t y

[odor] [t s])] = 0
14

15 # Apply ing t h e B a s e l i n e Al ignment on t h e s u b j e c t C525 :
16

17 P r e t i m e = 8
18 Ze ta = np . copy (f u l l C 5 2 5 a c t i v i t y)
19

20 f o r odor i n r a n g e (l e n (Ze t a)) :
21 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
22 Bi = np . mean (Ze t a [odor] [t s] [: P r e t i m e])
23 Ze ta [odor] [t s] = Ze t a [odor] [t s] − Bi
24 Mean through N = np . mean (Ze t a [odor] , a x i s = 0)
25 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
26 Ze ta [odor] [t s] = Ze t a [odor] [t s] + Mean through N
27

28 f u l l C 5 2 5 a c t i v i t y = np . copy (Ze t a)
29

30 # Apply ing t h e B a s e l i n e Al ignment on t h e s u b j e c t C531 :
31

32 Ze ta = np . copy (f u l l C 5 3 1 a c t i v i t y)
33

34 f o r odor i n r a n g e (l e n (Ze t a)) :
35 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
36 Bi = np . mean (Ze t a [odor] [t s] [: P r e t i m e])

9.5. Chapter 6: Recurrence Structure Analysis 157

37 Ze ta [odor] [t s] = Ze t a [odor] [t s] − Bi
38 Mean through N = np . mean (Ze t a [odor] , a x i s = 0)
39 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
40 Ze ta [odor] [t s] = Ze t a [odor] [t s] + Mean through N
41

42 f u l l C 5 3 1 a c t i v i t y = np . copy (Ze t a)
43

44 # Apply ing t h e B a s e l i n e Al ignment on t h e s u b j e c t C537 :
45

46 Ze ta = np . copy (f u l l C 5 3 7 a c t i v i t y)
47

48 f o r odor i n r a n g e (l e n (Ze t a)) :
49 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
50 Bi = np . mean (Ze t a [odor] [t s] [: P r e t i m e])
51 Ze ta [odor] [t s] = Ze t a [odor] [t s] − Bi
52 Mean through N = np . mean (Ze t a [odor] , a x i s = 0)
53 f o r t s i n r a n g e (l e n (Ze t a [odor])) :
54 Ze ta [odor] [t s] = Ze t a [odor] [t s] + Mean through N
55

56 f u l l C 5 3 7 a c t i v i t y = np . copy (Ze t a)
57

58 ODOR = 0
59

60 t ime = (np . a r a n g e (0 , l e n (f u l l C 5 2 5 a c t i v i t y [ODOR] [0])) / 5) *2
61

62 f i g d i m s = (2 0 , 10)
63 f i g , ax = p l t . s u b p l o t s (f i g s i z e = f i g d i m s)
64 f o r i i n np . a r a n g e (0 ,K) :
65 p l t . p l o t (t ime , np . t r a n s p o s e (f u l l C 5 2 5 a c t i v i t y [ODOR] [i]) ,

l a b e l = ” Subgroup ” + s t r (i +1))
66

67 ax . axvspan ((8 / 5) *2 , (1 3 / 5) *2 , a l p h a = 0 . 2 , c o l o r = ’ r e d ’)
68

69 p l t . r c (’ t e x t ’ , u s e t e x =True)
70

71 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =3)
72 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =2)
73 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
74 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35)
75 p l t . x l a b e l (” Time (s) ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
76 p l t . y l a b e l (” Calcium a c t i v i t y ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
77 p l t . t i t l e (”C525 a f t e r p r o c e s s ” , f o n t s i z e =40)
78 p l t . l e g e n d (f o n t s i z e =20)
79 p l t . show ()
80

81 f i g d i m s = (2 0 , 10)
82 f i g , ax = p l t . s u b p l o t s (f i g s i z e = f i g d i m s)
83 f o r i i n np . a r a n g e (0 ,K) :
84 p l t . p l o t (t ime , np . t r a n s p o s e (f u l l C 5 3 1 a c t i v i t y [ODOR] [i]) ,

l a b e l = ” Subgroup ” + s t r (i +1))
85

158 Chapter 9. Appendix: Code scripts

86 ax . axvspan ((8 / 5) *2 , (1 3 / 5) *2 , a l p h a = 0 . 2 , c o l o r = ’ r e d ’)
87

88 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =3)
89 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =2)
90 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
91 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35)
92 p l t . x l a b e l (” Time (s) ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
93 p l t . y l a b e l (” Calcium a c t i v i t y ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
94 p l t . t i t l e (”C531 a f t e r p r o c e s s ” , f o n t s i z e =40)
95 p l t . l e g e n d (l o c = 1 , f o n t s i z e =20)
96 p l t . show ()
97

98 f i g d i m s = (2 0 , 10)
99 f i g , ax = p l t . s u b p l o t s (f i g s i z e = f i g d i m s)

100 f o r i i n np . a r a n g e (0 ,K) :
101 p l t . p l o t (t ime , np . t r a n s p o s e (f u l l C 5 3 7 a c t i v i t y [0] [i]) ,

l a b e l = ” Subgroup ” + s t r (i +1))
102

103 ax . axvspan ((8 / 5) *2 , (1 3 / 5) *2 , a l p h a = 0 . 2 , c o l o r = ’ r e d ’)
104

105 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =3)
106 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =2)
107 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
108 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35)
109 p l t . x l a b e l (” Time (s) ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
110 p l t . y l a b e l (” Calcium a c t i v i t y ” , l i n e s p a c i n g =5 , f o n t s i z e =35)
111 p l t . t i t l e (”C537 a f t e r p r o c e s s ” , f o n t s i z e =40)
112 p l t . l e g e n d (f o n t s i z e =20)
113 p l t . show ()

At the end, we record the data into matlab files for the RSA code :

1 fo rmat C525 = {” a ” : f u l l C 5 2 5 a c t i v i t y , ” l a b e l ” : ” C525 Tuf ted ”}
2 savemat (” . / RSA/ m a t l a b C 5 2 5 p e t e r 1 0 . mat ” , fo rmat C525)
3

4 fo rmat C531 = {” a ” : f u l l C 5 3 1 a c t i v i t y , ” l a b e l ” : ” C531 Tuf ted ”}
5 savemat (” . / RSA/ m a t l a b C 5 3 1 p e t e r 1 0 . mat ” , fo rmat C531)
6

7 fo rmat C537 = {” a ” : f u l l C 5 3 7 a c t i v i t y , ” l a b e l ” : ” C537 Tuf ted ”}
8 savemat (” . / RSA/ m a t l a b C 5 3 7 p e t e r 1 0 . mat ” , fo rmat C537)

9.5.2 Part 2: Creating the centroid heatmaps for one odor and for all subjects.

For this part, the importations are:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t pandas as pd
4 i m p o r t g lob
5 i m p o r t os
6 i m p o r t s c i p y . i o
7 i m p o r t m a t p l o t l i b . f o n t m a n a g e r a s f o n t m a n a g e r
8 from m a t p l o t l i b i m p o r t cm as cm

9.5. Chapter 6: Recurrence Structure Analysis 159

9 from m p l t o o l k i t s . a x e s g r i d 1 i m p o r t AxesGrid
10

11 from s c i p y . i o i m p o r t savemat
12 from skimage i m p o r t measure
13 from s k l e a r n . c l u s t e r i m p o r t KMeans
14 from s c i p y . ndimage . f i l t e r s i m p o r t g a u s s i a n f i l t e r
15

16 from s k l e a r n i m p o r t p r e p r o c e s s i n g

After applying the RSA, we extract the centroids, we keep the same variables than in the
previous subsection and we represent the metastable centroid heatmap for one subject:

1 #### CHOOSE THE ODOR AND SUBJECT :
2 df = pd . r e a d c s v (’ . . / C e n t r o i d s / S u b j e c t 1 E s t e r 2 8 c e n t r o i d . csv ’ ,

h e a d e r = None)
3 df = df . to numpy ()
4

5 s = 60 # P a r a m e t e r f o r t h e G a u s s i a n f i l t e r
6 b i n s =1000 # P a r a m e t e r f o r t h e heatmap r e p r e s e n t a t i o n
7

8 f i g = p l t . f i g u r e (f i g s i z e =(35 , 12) , d p i =80)
9 ax = f i g . gca ()

10

11 LABEL = np . a r a n g e (1 , l e n (d f [0]) +1) . a s t y p e (s t r)
12 f o r i i n r a n g e (l e n (LABEL)) :
13 LABEL[i] = ” M e t a s t a b l e s t a t e ” + LABEL[i]
14 p l t . p l o t (np . a r a n g e (1 , 1 1) , df , l a b e l = LABEL)
15 p l t . p l o t (np . a r a n g e (1 , 1 1) , np . z e r o s (l e n (np . a r a n g e (1 , 1 1))) , ’ k−− ’ ,

a l p h a = 0 . 5)
16

17 p l t . r c (’ t e x t ’ , u s e t e x =True)
18 p l t . x l im ([1 , 1 0])
19 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =10)
20 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =3)
21 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =45)
22 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =45)
23 xLabe l = ax . s e t x l a b e l (’K group ’ , l i n e s p a c i n g =3 , f o n t s i z e =50)
24 yLabe l = ax . s e t y l a b e l (’ C e n t e r o f r e c u r r e n c e v a l u e ’ , r o t a t i o n

=90 , l i n e s p a c i n g =3 , f o n t s i z e =56)
25 ax . d i s t = 10
26 p l t . l e g e n d (prop ={ ’ s i z e ’ : 35})
27 p l t . show ()
28

29 # ###
30

31 s = 60
32

33 i f np . shape (d f) [1] == 1 :
34 f i g = p l t . f i g u r e (f i g s i z e = (8 , 6) , d p i =80) # 2
35 i f np . shape (d f) [1] == 2 :
36 f i g = p l t . f i g u r e (f i g s i z e =(10 , 9) , d p i =80) # 2
37 i f np . shape (d f) [1] == 3 :

160 Chapter 9. Appendix: Code scripts

38 f i g = p l t . f i g u r e (f i g s i z e =(10 , 9) , d p i =80) # 2
39 i f np . shape (d f) [1] == 4 :
40 f i g = p l t . f i g u r e (f i g s i z e =(25 , 23) , d p i =80) # 4
41

42 f o r s t a t e i n r a n g e (l e n (d f [0])) :
43

44

45 #### CHOOSE THE METASTABLE STATE :
46 c e n t r o i d = df [: , s t a t e]
47

48 x = l i s t (map (i n t , C o o r d i n a t e s T u f t e d [: , 0]))
49 y = l i s t (map (i n t , C o o r d i n a t e s T u f t e d [: , 1]))
50 z = np . z e r o s (l e n (x))
51

52 heatmap , xedges , yedges = np . h i s t o g r a m 2 d (x , y , b i n s = b i n s)
53

54 f o r i i n r a n g e (l e n (z)) :
55 z [i] = c e n t r o i d [kmeans . l a b e l s [i]]
56

57 x c e n t e r = x − np . min (x)
58 y c e n t e r = y − np . min (y)
59

60 Z = np . z e r o s ((np . max (x) −np . min (x) +30 , np . max (y) −np . min (y)
+30))

61

62 f o r i i n r a n g e (l e n (x c e n t e r)) :
63 Z [x c e n t e r [i]] [y c e n t e r [i]] = z [i]
64

65

66 # ###
67

68 ax = p l t . s u b p l o t (1 , l e n (d f [0]) , s t a t e +1)
69

70 heatmap = Z
71 heatmap = g a u s s i a n f i l t e r (heatmap , s igma=s) . T
72 e x t e n t = [xedges [0] , xedges [− 1] , yedges [0] , yedges [− 1]]
73 p l t . imshow (heatmap , o r i g i n = ’ lower ’ , cmap=cm . j e t)
74 c b a r = p l t . c o l o r b a r (f r a c t i o n = 0 . 0 4 6 , pad = 0 . 0 4 , o r i e n t a t i o n = ’

h o r i z o n t a l ’)
75 i f np . shape (d f) [1] == 1 :
76 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =25)
77 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =20)
78 i f np . shape (d f) [1] == 2 :
79 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =40)
80 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =20)
81 i f np . shape (d f) [1] == 3 :
82 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =25)
83 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =15)

9.5. Chapter 6: Recurrence Structure Analysis 161

84 i f np . shape (d f) [1] == 4 :
85 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =35)
86 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =30)
87 # p l t . c l im (−0 . 0002 , 0 . 1 5)
88

89 # f o r i i n r a n g e (l e n (x)) :
90 # p l t . s c a t t e r (x [i] , y [i] , c o l o r = c o l o r s [kmeans . l a b e l s [i

]] , s =100)
91

92 f o r i i n r a n g e (l e n (C o o r d i n a t e s s u b)) :
93 p l t . s c a t t e r (C o o r d i n a t e s s u b [i , 0] , C o o r d i n a t e s s u b [i , 1] ,

c o l o r = c o l o r s [i] , s =400 , e d g e c o l o r s = ’ k ’ , l i n e w i d t h
=3 , l a b e l = ” C e n t e r ” + s t r (i +1))

94 # f o r a r e a i n np . a r a n g e (0 ,K) :
95 # p l t . t e x t (C o o r d i n a t e s s u b [a rea , 0] + 1 5 , C o o r d i n a t e s s u b [

a rea , 1] + 3 5 , ’%s ’ % (s t r (a r e a +1)) , s i z e =35 , z o r d e r =10000 ,
c o l o r = ’ k ’)

96 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =25)
97 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =25)
98 p l t . x t i c k s ([])
99 p l t . y t i c k s ([])

100

101 f i g . t i g h t l a y o u t ()
102 # Put a l e g e n d t o t h e r i g h t o f t h e c u r r e n t a x i s
103 ax . l e g e n d (l o c = ’ c e n t e r l e f t ’ , b b o x t o a n c h o r = (1 . , 0 . 5) , p rop ={ ’

s i z e ’ : 25})
104 p l t . show ()

9.5.3 Part 3: Creating the centroid heatmaps for reach odor type.

For this part, the importations are:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t pandas as pd
4 i m p o r t g lob
5 i m p o r t os
6 i m p o r t s c i p y . i o
7 from m a t p l o t l i b i m p o r t cm as cm
8 from m p l t o o l k i t s . a x e s g r i d 1 i m p o r t AxesGrid
9 i m p o r t m a t p l o t l i b . f o n t m a n a g e r a s f o n t m a n a g e r

10 from m a t p l o t l i b i m p o r t cm as cm
11 from m p l t o o l k i t s . a x e s g r i d 1 i m p o r t AxesGrid
12

13 from s k l e a r n . d a t a s e t s i m p o r t make b lobs
14 from s k l e a r n . c l u s t e r i m p o r t KMeans
15 from s k l e a r n . m e t r i c s i m p o r t s i l h o u e t t e s c o r e
16 from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r
17 from s k l e a r n . c l u s t e r i m p o r t S p e c t r a l C l u s t e r i n g
18 from s c i p y . ndimage . f i l t e r s i m p o r t g a u s s i a n f i l t e r

162 Chapter 9. Appendix: Code scripts

19

20 i m p o r t s e a b o r n as s n s
21 from s k l e a r n i m p o r t svm
22 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
23 from s k l e a r n i m p o r t m e t r i c s
24 from s c i p y . s t a t s i m p o r t b o o t s t r a p
25

26 # I mp or t r e s a m p l i n g and model ing a l g o r i t h m s
27 from s k l e a r n . u t i l s i m p o r t r e s a m p l e # f o r B o o t s t r a p s a m p l i n g
28 from s k l e a r n . l i n e a r m o d e l i m p o r t L o g i s t i c R e g r e s s i o n
29 from s k l e a r n . t r e e i m p o r t D e c i s i o n T r e e C l a s s i f i e r
30 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
31 from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e
32 from s k l e a r n . n e i g h b o r s i m p o r t N e a r e s t N e i g h b o r s
33 from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
34

35 #KFold CV
36 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t KFold , LeaveOneOut
37 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t c r o s s v a l s c o r e
38 from s k l e a r n . l i n e a r m o d e l i m p o r t S G D C l a s s i f i e r
39 from s k l e a r n . n a i v e b a y e s i m p o r t GaussianNB
40 from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
41 from s k l e a r n i m p o r t p r e p r o c e s s i n g
42 from s k l e a r n . m e t r i c s . p a i r w i s e i m p o r t c o s i n e s i m i l a r i t y
43 from s k l e a r n . p r e p r o c e s s i n g i m p o r t Labe lEncode r
44

45 i m p o r t t p o t
46 from t p o t i m p o r t T P O T C l a s s i f i e r
47 from s k l e a r n . d a t a s e t s i m p o r t l o a d d i g i t s
48 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
49 from c o l l e c t i o n s i m p o r t Coun te r
50 from i m b l e a r n . o v e r s a m p l i n g i m p o r t SMOTE
51

52 i m p o r t w a r n i n g s
53

54 w a r n i n g s . f i l t e r w a r n i n g s (” i g n o r e ”)
55

56 MODE = [’ a c c u r a c y ’ , ’ p r e c i s i o n m i c r o ’ , ’ r e c a l l m i c r o ’]
57 c o l o r s = [” r e d ” , ” o r an ge ” , ” y e l l o w ” , ” l ime ” , ” g r e e n ” , ” cyan ” , ”

b l u e ” , ” p u r p l e ” , ” b l a c k ” , ” p ink ”]

After applying the RSA, we extract the centroids again, we keep the same variables than
in 9.5.1 and we represent the proportions of each category:

1 p a t h = ” . / . . / C e n t r o i d s / ”
2 m o t i f = ” S u b j e c t * . csv ”
3

4 LABEL = []
5

6 f o r f i c h i e r i n g lob . i g l o b (os . p a t h . j o i n (pa th , m o t i f)) :
7 i f os . p a t h . i s f i l e (f i c h i e r) :
8 s t r i n g = f i c h i e r [2 5 :]

9.5. Chapter 6: Recurrence Structure Analysis 163

9 n e w s t r i n g = ’ ’ . j o i n ([i f o r i i n s t r i n g i f n o t i . i s d i g i t
()])

10 name = n e w s t r i n g [: − 1 4]
11

12 df = pd . r e a d c s v (f i c h i e r , h e a d e r = None)
13 df = df . to numpy ()
14

15 f o r i i n r a n g e (np . shape (d f) [1]) :
16 LABEL . append (name)
17

18 LABEL = np . a s a r r a y (LABEL)
19 p r i n t (”NUMBER OF NAME : ” , np . shape (LABEL))
20

21 LABEL NUM = np . z e r o s (l e n (LABEL))
22

23 A = 0
24 B = 0
25 C = 0
26 D = 0
27 E = 0
28 F = 0
29 G = 0
30

31 f o r i i n r a n g e (l e n (LABEL)) :
32 i f LABEL[i] == ” Acid ” :
33 A += 1
34 i f LABEL[i] == ” Alcoho l ” :
35 B += 1
36 i f LABEL[i] == ” Aldehyde ” :
37 C += 1
38 i f LABEL[i] == ” Aromat ic ” :
39 D += 1
40 i f LABEL[i] == ” E s t e r ” :
41 E += 1
42 i f LABEL[i] == ” Ketone ” :
43 F += 1
44 i f LABEL[i] == ” C o n t r o l ” :
45 G += 1
46

47 p r i n t (”PROPOTIONS”)
48 p r i n t (” Acid : ” , A/ l e n (LABEL) *100 , ” %”)
49 p r i n t (” Alcoho l : ” , B / l e n (LABEL) *100 , ” %”)
50 p r i n t (” Aldehyde : ” , C / l e n (LABEL) *100 , ” %”)
51 p r i n t (” Aromat ic : ” , D/ l e n (LABEL) *100 , ” %”)
52 p r i n t (” E s t e r : ” , E / l e n (LABEL) *100 , ” %”)
53 p r i n t (” Ketone : ” , F / l e n (LABEL) *100 , ” %”)
54 p r i n t (” C o n t r o l : ” , G/ l e n (LABEL) *100 , ” %”)
55

56 s i z e s = np . a r r a y ([A, B , C , D, E , F ,G])
57

58 p r i n t (”\nIMBALANCED RATIO : ” , np . max (s i z e s) / np . min (s i z e s))

164 Chapter 9. Appendix: Code scripts

59 p r i n t (” With t h i s d e f i n i t i o n , Imba l ance r a t i o >= 1 , t h e v a l u e 1
c o r r e s p o n d i n g t o p e r f e c t l y b a l a n c e d d a t a . In our example , i t
i s 9 9 . 9 / 0 . 1 = 9 9 9 . ”)

60

61

62 p r i n t (”\nBOOTSTRAP REPRESENTATION AFTER RESAMPLING OF 500 : ” ,
500*100 /308 , ” %”)

63

64 f i g 1 , ax1 = p l t . s u b p l o t s (f i g s i z e =(20 , 18) , d p i =80)
65 p l t . r cPa rams . u p d a t e ({ ’ f o n t . s i z e ’ : 22})
66 ax1 . p i e (s i z e s , l a b e l s =[”ACIDS” , ”ALCOHOLS” , ”ALDEHYDES” , ”

AROMATICS” , ”KETONES” , ”ESTERS” , ”CONTROLS”] , a u t o p c t = ’ %1.1 f
%%’ ,

67 shadow= F a l s e , s t a r t a n g l e =20)
68 ax1 . a x i s (’ e q u a l ’) # Equal a s p e c t r a t i o e n s u r e s t h a t p i e i s

drawn as a c i r c l e .
69 p l t . r c (’ t e x t ’ , u s e t e x =True)
70 ax1 . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
71 ax1 . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35 , r o t a t i o n = 1)
72 # p l t . l e g e n d (prop ={ ’ s i z e ’ : 20})
73 p l t . show ()

Then, we apply the SMOTE methodology on our new data set:

1 p a t h = ” . / . . / C e n t r o i d s / ”
2 m o t i f = ” S u b j e c t * . csv ”
3

4 DATA = []
5 LABEL = []
6

7 f o r f i c h i e r i n g lob . i g l o b (os . p a t h . j o i n (pa th , m o t i f)) :
8 i f os . p a t h . i s f i l e (f i c h i e r) :
9 s t r i n g = f i c h i e r [2 5 :]

10 n e w s t r i n g = ’ ’ . j o i n ([i f o r i i n s t r i n g i f n o t i . i s d i g i t
()])

11 name = n e w s t r i n g [: − 1 4]
12

13 df = pd . r e a d c s v (f i c h i e r , h e a d e r = None)
14 df = df . to numpy ()
15

16 f o r i i n r a n g e (np . shape (d f) [1]) :
17 DATA. append (d f [: , i])
18 LABEL . append (name)
19

20 DATA = np . a s a r r a y (DATA)
21 LABEL = np . a s a r r a y (LABEL)
22 p r i n t (”DATA SHAPE : ” , np . shape (DATA))
23 p r i n t (”NUMBER OF NAME : ” , np . shape (LABEL))
24

25 LABEL = Labe lEncode r () . f i t t r a n s f o r m (LABEL)
26 # summarize d i s t r i b u t i o n
27 c o u n t e r = Coun te r (LABEL)

9.5. Chapter 6: Recurrence Structure Analysis 165

28 f o r k , v i n c o u n t e r . i t e m s () :
29 p e r = v / l e n (LABEL) * 100
30 p r i n t (’ C l a s s=%d , n=%d (%.3 f%%) ’ % (k , v , p e r))
31 # p l o t t h e d i s t r i b u t i o n
32 p l t . b a r (c o u n t e r . keys () , c o u n t e r . v a l u e s ())
33 p l t . show ()
34

35 # l a b e l encode t h e t a r g e t v a r i a b l e
36 LABEL = Labe lEncode r () . f i t t r a n s f o r m (LABEL)
37 # t r a n s f o r m t h e d a t a s e t
38 o v e r s a m p l e = SMOTE()
39 DATA, LABEL = o v e r s a m p l e . f i t r e s a m p l e (DATA, LABEL)
40 # summarize d i s t r i b u t i o n
41 c o u n t e r = Coun te r (LABEL)
42 f o r k , v i n c o u n t e r . i t e m s () :
43 p e r = v / l e n (LABEL) * 100
44 p r i n t (’ C l a s s=%d , n=%d (%.3 f%%) ’ % (k , v , p e r))
45 # p l o t t h e d i s t r i b u t i o n
46 p l t . b a r (c o u n t e r . keys () , c o u n t e r . v a l u e s ())
47 p l t . show ()

And we apply the KNN classifier on the resampled data-set with the confusion matrices:

1 # S p l i t d a t a s e t i n t o t r a i n i n g s e t and t e s t s e t
2 X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (DATA, LABEL,

t e s t s i z e = 0 . 2 5) # 70% t r a i n i n g and 30% t e s t
3

4 # C r e a t e a svm C l a s s i f i e r
5 c l f = K N e i g h b o r s C l a s s i f i e r (n n e i g h b o r s =4 , m e t r i c = ’ c o s i n e ’)
6

7 # T r a i n t h e model u s i n g t h e t r a i n i n g s e t s
8 c l f . f i t (X t r a i n , y t r a i n)
9

10 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
11 y p r e d = c l f . p r e d i c t (X t e s t)
12 y p r o b = c l f . p r e d i c t p r o b a (X t e s t)
13

14 # Model Accuracy : how o f t e n i s t h e c l a s s i f i e r c o r r e c t ?
15 p r i n t (” Accuracy : ” , m e t r i c s . a c c u r a c y s c o r e (y t e s t , y p r e d))
16 p r i n t (” P r e c i s i o n Score : ” , m e t r i c s . p r e c i s i o n s c o r e (y t e s t , y p red

, p o s l a b e l = ’ p o s i t i v e ’ , a v e r a g e = ’ micro ’))
17 p r i n t (” R e c a l l Sco re : ” , m e t r i c s . r e c a l l s c o r e (y t e s t , y p red ,

p o s l a b e l = ’ p o s i t i v e ’ , a v e r a g e = ’ micro ’))
18

19 CONF = m e t r i c s . c o n f u s i o n m a t r i x (y t e s t , y p r e d)
20 NEW CONF = np . z e r o s ((l e n (CONF) , l e n (CONF)))
21

22 f o r i i n r a n g e (l e n (CONF)) :
23 dfmin = np . min (CONF[i])
24 dfmax = np . max (CONF[i])
25 f o r j i n r a n g e (l e n (CONF[i])) :
26 NEW CONF[i] [j] = (CONF[i] [j] − dfmin) / (dfmax − dfmin)

166 Chapter 9. Appendix: Code scripts

27

28

29 XNAME = [”ACI” , ”ALC” , ”ALD” , ”ARO” , ”KET” , ”EST” , ”CON”]
30 YNAME = [”ACI” , ”ALC” , ”ALD” , ”ARO” , ”KET” , ”EST” , ”CON”]
31

32 f i g = p l t . s u b p l o t s (f i g s i z e =(20 , 18) , d p i =80)
33 p l t . r cPa rams . u p d a t e ({ ’ f o n t . s i z e ’ : 22})
34 ax = s n s . heatmap (NEW CONF, x t i c k l a b e l s = XNAME, y t i c k l a b e l s =

YNAME)
35

36

37 ax . c o l l e c t i o n s [0] . c o l o r b a r . s e t l a b e l (’ Normal ized r e p r e s e n t a t i o n ’
, l a b e l p a d =20 , f o n t s i z e =14)

38

39 ax . f i g u r e . axe s [− 1] . y a x i s . l a b e l . s e t s i z e (7 0)
40

41

42 # use m a t p l o t l i b . c o l o r b a r . C o l o r b a r o b j e c t
43 c b a r = ax . c o l l e c t i o n s [0] . c o l o r b a r
44 # h e r e s e t t h e l a b e l s i z e by 20
45 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =50)
46

47 p l t . r c (’ t e x t ’ , u s e t e x =True)
48 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =35)
49 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =35 , r o t a t i o n = 1)
50 xLabe l = ax . s e t x l a b e l (’ True l a b e l ’ , l i n e s p a c i n g =10 , f o n t s i z e

=70)
51 yLabe l = ax . s e t y l a b e l (’ P r e d i c t e d l a b e l ’ , r o t a t i o n =90 ,

l i n e s p a c i n g =10 , f o n t s i z e =70)
52 ax . d i s t = 10
53 p l t . l e g e n d (prop ={ ’ s i z e ’ : 20})
54 p l t . show ()

Now, we propose a code to compute the heatmaps based on the good classifications for each
odor category (acid, alcohol, aldehyde, aromtic, ketone, ester, control) :

1 # S p l i t d a t a s e t i n t o t r a i n i n g s e t and t e s t s e t
2 X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (DATA, LABEL,

t e s t s i z e = 0 . 2 5) # 70% t r a i n i n g and 30% t e s t
3

4 # C r e a t e a svm C l a s s i f i e r
5 c l f = K N e i g h b o r s C l a s s i f i e r (n n e i g h b o r s =5 , m e t r i c = ’ c o s i n e ’)
6

7 # T r a i n t h e model u s i n g t h e t r a i n i n g s e t s
8 c l f . f i t (X t r a i n , y t r a i n)
9

10 # P r e d i c t t h e r e s p o n s e f o r t e s t d a t a s e t
11 y p r e d = c l f . p r e d i c t (X t e s t)
12

13 A = np . z e r o s (1 0)
14 B = np . z e r o s (1 0)
15 C = np . z e r o s (1 0)

9.5. Chapter 6: Recurrence Structure Analysis 167

16 D = np . z e r o s (1 0)
17 E = np . z e r o s (1 0)
18 F = np . z e r o s (1 0)
19 G = np . z e r o s (1 0)
20

21 Ac = 0
22 Bc = 0
23 Cc = 0
24 Dc = 0
25 Ec = 0
26 Fc = 0
27 Gc = 0
28

29 f o r i i n r a n g e (l e n (y p r e d)) :
30 i f y p r e d [i] == y t e s t [i] :
31 i f y p r e d [i] == 0 :
32 A += np . a r r a y (X t e s t) [i]
33 Ac += 1
34 i f y p r e d [i] == 1 :
35 B += np . a r r a y (X t e s t) [i]
36 Bc += 1
37 i f y p r e d [i] == 2 :
38 C += np . a r r a y (X t e s t) [i]
39 Cc += 1
40 i f y p r e d [i] == 3 :
41 D += np . a r r a y (X t e s t) [i]
42 Dc += 1
43 i f y p r e d [i] == 4 :
44 E += np . a r r a y (X t e s t) [i]
45 Ec += 1
46 i f y p r e d [i] == 5 :
47 F += np . a r r a y (X t e s t) [i]
48 Fc += 1
49 i f y p r e d [i] == 6 :
50 G += np . a r r a y (X t e s t) [i]
51 Gc += 1
52

53 A = A/ Ac
54 B = B / Bc
55 C = C / Cc
56 D = D/ Dc
57 E = E / Ec
58 F = F / Fc
59 G = G/ Gc
60

61 df = np . a r r a y ([A, B , C , D, E , F , G])
62 LABEL = np . a r r a y ([”ACIDS” , ”ALCOHOLS” , ”ALDEHYDES” , ”AROMATICS” ,

”KETONES” , ”ESTERS” , ”CONTROLS”])
63

64 s = 60
65 b i n s =1000

168 Chapter 9. Appendix: Code scripts

66

67 # G e n e r a t e some t e s t d a t a
68 x = C o o r d i n a t e s [: , 0]
69 y = C o o r d i n a t e s [: , 1]
70 z = np . z e r o s (l e n (x))
71

72 heatmap , xedges , yedges = np . h i s t o g r a m 2 d (x , y , b i n s = b i n s)
73

74 maxi = np . max (d f)
75 mini = np . min (d f)
76

77 df norm = np . copy (d f)
78 df norm = (df norm −np . min (df norm)) / (np . max (df norm) −np . min (

df norm))
79

80 f i g = p l t . f i g u r e (f i g s i z e =(35 , 12) , d p i =80)
81 ax = f i g . gca ()
82

83 f o r i i n r a n g e (l e n (df norm)) :
84 p l t . p l o t (np . a r a n g e (1 , 1 1) , d f norm [i] , l i n e w i d t h = 5 , l a b e l =

LABEL[i])
85 p l t . p l o t (np . a r a n g e (1 , 1 1) , np . z e r o s (l e n (np . a r a n g e (1 , 1 1))) , ’ k−− ’ ,

a l p h a = 0 . 5)
86

87 p l t . r c (’ t e x t ’ , u s e t e x =True)
88 p l t . x l im ([1 , 1 0])
89 p l t . y l im ([− 0 . 1 , 1 . 1])
90 p l t . l o c a t o r p a r a m s (a x i s =” x ” , n b i n s =10)
91 p l t . l o c a t o r p a r a m s (a x i s =” y ” , n b i n s =3)
92 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =45)
93 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =45)
94 xLabe l = ax . s e t x l a b e l (’K group ’ , l i n e s p a c i n g =3 , f o n t s i z e =50)
95 yLabe l = ax . s e t y l a b e l (’ C e n t e r o f r e c u r r e n c e v a l u e ’ , r o t a t i o n

=90 , l i n e s p a c i n g =3 , f o n t s i z e =56)
96 ax . d i s t = 10
97 # p l t . l e g e n d (prop ={ ’ s i z e ’ : 35})
98 p l t . show ()
99

100 # ###
101

102 s = 60
103

104

105 f o r s t a t e i n r a n g e (l e n (df norm)) :
106

107 f i g = p l t . f i g u r e (f i g s i z e =(75 , 75) , d p i =80) # 4
108

109 #### CHOOSE THE METASTABLE STATE :
110 c e n t r o i d = df norm [s t a t e]
111

112 x = l i s t (map (i n t , C o o r d i n a t e s [: , 0]))

9.5. Chapter 6: Recurrence Structure Analysis 169

113 y = l i s t (map (i n t , C o o r d i n a t e s [: , 1]))
114 z = np . z e r o s (l e n (x))
115

116 f o r i i n r a n g e (l e n (z)) :
117 z [i] = c e n t r o i d [kmeans . l a b e l s [i]]
118

119 x c e n t e r = x − np . min (x)
120 y c e n t e r = y − np . min (y)
121

122 Z = np . z e r o s ((np . max (x) −np . min (x) +30 , np . max (y) −np . min (y)
+30))

123

124 f o r i i n r a n g e (l e n (x c e n t e r)) :
125 Z [x c e n t e r [i]] [y c e n t e r [i]] = z [i]
126 Z [x c e n t e r [i − 1]] [y c e n t e r [i]] = z [i]
127 Z [x c e n t e r [i]] [y c e n t e r [i − 1]] = z [i]
128 Z [x c e n t e r [i − 1]] [y c e n t e r [i − 1]] = z [i]
129

130

131

132 # ##
133

134 ax = p l t . s u b p l o t (1 , l e n (df norm [0]) , s t a t e +1)
135

136 heatmap = Z
137 heatmap = (heatmap −np . min (heatmap)) / (np . max (heatmap) −np . min

(heatmap))
138 # p r i n t (heatmap [np . nonze ro (heatmap))
139 heatmap = g a u s s i a n f i l t e r (heatmap , s igma=s) . T
140 e x t e n t = [xedges [0] , xedges [− 1] , yedges [0] , yedges [− 1]]
141 p l t . imshow (heatmap , o r i g i n = ’ lower ’ , cmap=cm . j e t ,

i n t e r p o l a t i o n =” g a u s s i a n ”)
142

143 c b a r = p l t . c o l o r b a r (f r a c t i o n = 0 . 0 4 6 , pad = 0 . 0 0 4 , o r i e n t a t i o n = ’
h o r i z o n t a l ’)

144 i f np . shape (df norm) [1] == 1 :
145 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =25)
146 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =20)
147 i f np . shape (df norm) [1] == 2 :
148 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =40)
149 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =20)
150 i f np . shape (df norm) [1] == 3 :
151 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =25)
152 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =15)
153 i f np . shape (df norm) [1] == 4 :
154 p l t . t i t l e (” M e t a s t a b l e s t a t e ” + s t r (i n t (s t a t e +1)) ,

f o n t s i z e =35)
155 c b a r . ax . t i c k p a r a m s (l a b e l s i z e =30)

170 Chapter 9. Appendix: Code scripts

156 p l t . c l im (0 , 0 . 0 2 5)
157

158 # f o r i i n r a n g e (l e n (x)) :
159 # p l t . s c a t t e r (x [i] , y [i] , c o l o r = c o l o r s [kmeans . l a b e l s [i

]] , s =100)
160

161 f o r i i n r a n g e (l e n (C o o r d i n a t e s s u b)) :
162 p l t . s c a t t e r (C o o r d i n a t e s s u b [i , 0] , C o o r d i n a t e s s u b [i , 1] ,

c o l o r = c o l o r s [i] , s =400 , e d g e c o l o r s = ’ k ’ , l i n e w i d t h
=3 , l a b e l = ” C e n t e r ” + s t r (i +1))

163 # f o r a r e a i n np . a r a n g e (0 ,K) :
164 # p l t . t e x t (C o o r d i n a t e s s u b [a rea , 0] + 1 5 , C o o r d i n a t e s s u b [

a rea , 1] + 3 5 , ’%s ’ % (s t r (a r e a +1)) , s i z e =35 , z o r d e r =10000 ,
c o l o r = ’ k ’)

165 ax . t i c k p a r a m s (a x i s = ’ x ’ , l a b e l s i z e =25)
166 ax . t i c k p a r a m s (a x i s = ’ y ’ , l a b e l s i z e =25)
167 p l t . x t i c k s ([])
168 p l t . y t i c k s ([])
169 p l t . t i t l e (LABEL[s t a t e])
170 ax . s e t x l i m (0 , 4 7 4)
171 ax . s e t y l i m (0 , 4 5 4)
172

173 f i g . t i g h t l a y o u t ()
174 # Put a l e g e n d t o t h e r i g h t o f t h e c u r r e n t a x i s
175 ax . l e g e n d (l o c = ’ c e n t e r l e f t ’ , b b o x t o a n c h o r = (1 . , 0 . 5) , p rop

={ ’ s i z e ’ : 25})
176 p l t . show ()

For the bootstrap method, we use simply this method:

1 m = l e n (DATA)
2 nsample = 500
3 X NEW DATA = []
4 Y NEW DATA = []
5

6 f o r n i n r a n g e (nsample) :
7 i d x = np . random . r a n d i n t (0 ,m)
8 X NEW DATA . append (DATA[i d x])
9 Y NEW DATA . append (LABEL NUM[i d x])

10

11 X NEW DATA = np . a s a r r a y (X NEW DATA)
12 Y NEW DATA = np . a s a r r a y (Y NEW DATA)

171

Bibliography

[1] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and
its application to conduction and excitation in nerve”. The Journal of Physiology 117.4
(1952), pp. 500–544.

[2] A. L. Hodgkin and B. Katz. “The effect of sodium ions on the electrical activity of the
giant axon of the squid”. The Journal of Physiology 108 (1949), pp. 37–77.

[3] A. L. Hodgkin, A. F. Huxley, and B. Katz. “Measurement of current-voltage relations
in the membrane of the giant axon of Loligo”. The Journal of Physiology 116.4 (1952),
pp. 424–448.

[4] R. FitzHugh. “Impulses and Physiological States in Theoretical Models of Nerve Mem-
brane”. Biophysical journal 1.6 (1961), pp. 445–66.

[5] J. Nagumo, S. Arimoto, and S. Yoshizawa. “An Active Pulse Transmission Line Simulat-
ing Nerve Axon”. Proceedings of the IRE 50.10 (1962), pp. 2061–2070.

[6] C. Morris and H. Lecar. “Voltage Oscillations in the Barnacle Giant Muscle Fiber”. Bio-
physical Journal 35.1 (1981), pp. 193–213.

[7] G. Girier, M. Desroches, and S. Rodrigues. “From integrator to resonator neurons: A
multiple-timescale scenario”. Nonlinear Dynamics 111 (2023), pp. 16545–16556.

[8] C. Schmidt-Hieber, P. Jonas, and J. Bischofberger. “Enhanced synaptic plasticity in newly
generated granule cells of the adult hippocampus”. Nature 429.6988 (2004), pp. 184–187.

[9] S. Ge et al. “GABA sets the tempo for activity-dependent adult neurogenesis”. Trends in
Neurosciences 30.1 (2007), pp. 1–8.

[10] J. B. Aimone, W. Deng, and F. H. Gage. “Resolving new memories: a critical look at the
dentate gyrus, adult neurogenesis, and pattern separation”. Neuron 70.4 (2011), pp. 589–
596.

[11] A. Marı́n-Burgin et al. “Unique processing during a period of high excitation/inhibition
balance in adult-born neurons”. Science 335.6073 (2012), pp. 1238–1242.

[12] C. V. Dieni et al. “Distinct Determinants of Sparse Activation during Granule Cell Matu-
ration”. Journal of Neuroscience 33.49 (2013), pp. 19131–19142.

[13] J. Brunner et al. “Adult-born granule cells mature through two functionally distinct states”.
Elife 3 (2014), e03104.

[14] C. V. Dieni et al. “Low excitatory innervation balances high intrinsic excitability of imma-
ture dentate neurons”. Nature Communications 7.1 (2016), pp. 1–13.

[15] J. Danielewicz et al. “Complex excitability and “flipping” of granule cells: an experimental
and computational study”. HAL e-print hal-04232000. Oct. 2023.

[16] Y. A. Kuznetsov. Elements of applied bifurcation theory. 2nd ed. Applied Mathematical
Sciences 112. Berlin: Springer, 1998.

[17] E. L. Allgower and K. Georg. Numerical continuation methods: an introduction. Springer
Verlag, 1990.

http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1113/jphysiol.1949.sp004310
http://dx.doi.org/10.1113/jphysiol.1949.sp004310
http://dx.doi.org/https://doi.org/10.1113/jphysiol.1952.sp004716
http://dx.doi.org/https://doi.org/10.1113/jphysiol.1952.sp004716
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1016/S0006-3495(81)84782-0
http://dx.doi.org/10.1007/s11071-023-08687-1.
http://dx.doi.org/10.1007/s11071-023-08687-1.
http://dx.doi.org/10.1038/nature02553
http://dx.doi.org/10.1038/nature02553
http://dx.doi.org/https://doi.org/10.1016/j.tins.2006.11.001
http://dx.doi.org/10.1016/j.neuron.2011.05.010
http://dx.doi.org/10.1016/j.neuron.2011.05.010
http://dx.doi.org/10.1126/science.1214956
http://dx.doi.org/10.1126/science.1214956
http://dx.doi.org/10.1523/JNEUROSCI.2289-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.2289-13.2013
http://dx.doi.org/10.7554/eLife.03104
http://dx.doi.org/10.1038/ncomms11313
http://dx.doi.org/10.1038/ncomms11313
https://hal.science/hal-04232000
http://dx.doi.org/10.1007/978-1-4757-3978-7

172 Bibliography

[18] E. J. Doedel. “AUTO: A program for the automatic bifurcation analysis of autonomous
systems”. Congressus Numerantium 30 (1981), pp. 265–284.

[19] D. Amakhin et al. “Observing hidden neuronal states in experiments”. arXiv e-print 2308.15477.
Aug. 2023.

[20] H. Poincaré. “Sur le problème des trois corps et les équations de la dynamique”. Acta
Math. 13.1 (1890), A3–A270.

[21] J.-P. Eckmann, S. Kamphorst, and D. Ruelle. “Recurrence Plots of Dynamical Systems”.
Europhysics Letters 4.9 (1987), pp. 973–977.

[22] P. beim Graben and A. Hutt. “Detecting recurrence domains of dynamical systems by
symbolic dynamics”. Physical Review Letters 110.15 (15 2013), p. 154101.

[23] P. beim Graben and A. Hutt. “Detecting event-related recurrences by symbolic analysis:
Applications to human language processing”. Philosophical Transactions of the Royal
Society A 373.2034 (2015), p. 20140089.

[24] P. beim Graben et al. “Metastable resting state brain dynamics”. Frontiers in Computa-
tional Neuroscience 13 (2019), p. 62.

[25] T. Tošić et al. “Statistical frequency-dependent analysis of trial-to-trial variability in single
time series by recurrence plots”. Frontiers in Systems Neuroscience 9.184 (2016), p. 184.

[26] M. Desroches et al. “Mixed-Mode Oscillations with Multiple Time Scales”. SIAM Review
54.2 (2012), pp. 211–288.

[27] M. Desroches, M. Krupa, and S. Rodrigues. “Spike-adding in parabolic bursters: The role
of folded-saddle canards”. Physica D: Nonlinear Phenomena 331 (2016), pp. 58–70.

[28] M. Desroches et al. “Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-
Linear Slow-Fast Systems”. SIAM Review 58.4 (2016), pp. 653–691.

[29] E. M. Izhikevich. “Neural excitability, spiking and bursting”. International Journal of Bi-
furcation and Chaos 10.06 (2000), pp. 1171–1266.

[30] E. M. Izhikevich. “Resonate-and-fire neurons”. Neural Networks 14.6-7 (2001), pp. 883–
894.

[31] S. Prescott et al. “Pyramidal Neurons Switch From Integrators In Vitro To Resonators
Under In Vivo-Like Conditions”. Journal of Neurophysiology 100.6 (2008), pp. 3030–
3042.

[32] L. F. Abbott. “Lapicque’s Introduction of the Integrate-and-Fire Model Neuron (1907)”.
Brain Research Bulletin 50.5-6 (1999), pp. 303–304.

[33] A. L. Hodgkin. “The Local Electric Changes Associated with Repetitive Action in a Non-
Myelinated Axon”. The Journal of Physiology 107.2 (1948), pp. 165–181.

[34] E. Izhikevich. Dynamical Systems in Neuroscience. Computational neuroscience Dynam-
ical systems in neuroscience. MIT Press, 2007.

[35] E. J. Doedel. In: Numerical Continuation Methods for Dynamical Systems. Ed. by B.
Krauskopf, H. M. Osinga, and J. G. Vioque. New York: Springer, 2007. Chap. 1, pp. 1–49.

[36] J.-P. Dedieu. “Newton-Raphson Method”. Encyclopedia of Applied and Computational
Mathematics. Ed. by B. Engquist. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 1023–1028.

[37] H. Keller, A. Nandakumaran, and M. Ramaswamy. “Lectures on Numerical Methods in
Bifurcation Problems”. Lectures on Mathematics and Physics. Tata Institute of Fundamen-
tal Research, 1987.

https://arxiv.org/abs/2308.15477
http://dx.doi.org/10.1209/0295-5075/4/9/004
http://dx.doi.org/10.1103/PhysRevLett.110.154101
http://dx.doi.org/10.1103/PhysRevLett.110.154101
http://dx.doi.org/10.1098/rsta.2014.0089
http://dx.doi.org/10.1098/rsta.2014.0089
http://dx.doi.org/10.3389/fncom.2019.00062
http://dx.doi.org/10.3389/fnsys.2015.00184
http://dx.doi.org/10.3389/fnsys.2015.00184
http://dx.doi.org/10.1137/100791233
http://dx.doi.org/10.1016/j.physd.2016.05.011
http://dx.doi.org/10.1016/j.physd.2016.05.011
http://dx.doi.org/10.1137/15M1014528
http://dx.doi.org/10.1137/15M1014528
http://dx.doi.org/10.1142/S0218127400000840
http://dx.doi.org/10.1016/S0893-6080(01)00078-8
http://dx.doi.org/10.1152/jn.90634.2008
http://dx.doi.org/10.1152/jn.90634.2008
http://dx.doi.org/10.1016/s0361-9230(99)00161-6
http://dx.doi.org/10.1113/jphysiol.1948.sp004260
http://dx.doi.org/10.1113/jphysiol.1948.sp004260
http://dx.doi.org/10.7551/mitpress/2526.001.0001

Bibliography 173

[38] E. Doedel, H. B. Keller, and J. P. Kernevez. “Numerical Analysis and Control of Bifurca-
tion Problems (I): Bifurcation in Finite Dimensions”. International Journal of Bifurcation
and Chaos 01.03 (1991), pp. 493–520.

[39] E. Doedel, H. B. Keller, and J. P. Kernevez. “Numerical Analysis and Control of Bifurca-
tion Problems (II): Bifurcation in Infinite Dimensions”. International Journal of Bifurca-
tion and Chaos 01.04 (1991), pp. 745–772.

[40] E. Doedel. An Introduction to Numerical Continuation Methods with Applications. IIMAS-
UNAM, 2014.

[41] C. Kirst et al. “Fundamental structure and modulation of neuronal excitability: synaptic
control of coding, resonance, and network synchronization”. bioRxiv e-print 10.1101/022475.
July 2015.

[42] J.-M. Fellous et al. “Frequency Dependence of Spike Timing Reliability in Cortical Pyra-
midal Cells and Interneurons”. Journal of Neurophysiology 85.4 (2001), pp. 1782–7.

[43] G. Yi et al. “Exploring how extracellular electric field modulates neuron activity through
dynamical analysis of a two-compartment neuron model”. Journal of Computational Neu-
roscience 36 (2013), pp. 383–399.

[44] J. Feldmann et al. “All-optical spiking neurosynaptic networks with self-learning capabil-
ities”. Nature 569.7755 (2019), pp. 208–214.

[45] J. Roach et al. “Acetylcholine Mediates Dynamic Switching Between Information Coding
Schemes in Neuronal Networks”. Frontiers in Systems Neuroscience 13 (2019), p. 64.

[46] I. Al-Darabsah and S. Campbell. “M-current induced Bogdanov–Takens bifurcation and
switching of neuron excitability class”. The Journal of Mathematical Neuroscience 11
(2021), p. 5.

[47] R. Guantes and G. Polavieja. “Variability in noise-driven integrator neurons”. Physical
Review E 71.1 (2005), p. 011911.

[48] C. Kirst, A. Herz, and M. Stemmler. “From Integrator to Resonator: The Effect of Den-
dritic Geometry on Neuronal Excitability”. Frontiers in Computational Neuroscience 2
(2008). Poster presentation.

[49] Z. Zhao and H.-G. Gu. “Transitions between classes of neuronal excitability and bifurca-
tions induced by autapse”. Scientific Reports 7 (2017), p. 6760.

[50] B. Hutcheon and Y. Yarom. “Resonance, oscillation and the intrinsic frequency prefer-
ences of neurons”. Trends in Neurosciences 23.5 (2000), pp. 216–222.

[51] O. Macherey et al. “A Dual-Process Integrator–Resonator Model of the Electrically Stimu-
lated Human Auditory Nerve”. Journal of the Association for Research in Otolaryngology
: JARO 8 (2007), pp. 84–104.

[52] R. Muresan and C. Savin. “Resonance or Integration? Self-Sustained Dynamics and Ex-
citability of Neural Microcircuits”. Journal of Neurophysiology 97.3 (2007), pp. 1911–
1930.

[53] J. Mitry and M. Wechselberger. “Folded saddles and faux canards”. SIAM Journal on
Applied Dynamical Systems 16.1 (2017), pp. 546–596.

[54] J. Sieber et al. “Experimental Continuation of Periodic Orbits through a Fold”. Physical
Review Letters 100.24 (2008), p. 244101.

[55] G. Marmont. “Studies on the axon membrane. I. A new method”. Journal of Cellular and
Comparative Physiology 34.3 (1949), pp. 351–382.

[56] K. S. Cole. “Ions, potentials and the nerve impulse”. In : Electrochemistry in Biology and
Medicine. Ed. by T. Shedlovsky. 1955, pp. 121–140.

http://dx.doi.org/10.1142/S0218127491000397
http://dx.doi.org/10.1142/S0218127491000397
http://dx.doi.org/10.1142/S0218127491000555
http://dx.doi.org/10.1142/S0218127491000555
http://users.encs.concordia.ca/~doedel/courses/comp-6361/slides.pdf
https://www.biorxiv.org/content/10.1101/022475v1
http://dx.doi.org/10.1152/jn.2001.85.4.1782
http://dx.doi.org/10.1152/jn.2001.85.4.1782
http://dx.doi.org/10.1007/s10827-013-0479-z
http://dx.doi.org/10.1007/s10827-013-0479-z
http://dx.doi.org/10.1038/s41586-019-1157-8
http://dx.doi.org/10.1038/s41586-019-1157-8
http://dx.doi.org/10.3389/fnsys.2019.00064
http://dx.doi.org/10.3389/fnsys.2019.00064
http://dx.doi.org/10.1186/s13408-021-00103-5
http://dx.doi.org/10.1186/s13408-021-00103-5
http://dx.doi.org/10.1103/PhysRevE.71.011911
http://dx.doi.org/10.3389/conf.neuro.10.2008.01.072
http://dx.doi.org/10.3389/conf.neuro.10.2008.01.072
http://dx.doi.org/10.1038/s41598-017-07051-9
http://dx.doi.org/10.1038/s41598-017-07051-9
http://dx.doi.org/10.1016/S0166-2236(00)01547-2
http://dx.doi.org/10.1016/S0166-2236(00)01547-2
http://dx.doi.org/10.1007/s10162-006-0066-3
http://dx.doi.org/10.1007/s10162-006-0066-3
http://dx.doi.org/10.1152/jn.01043.2006
http://dx.doi.org/10.1152/jn.01043.2006
http://dx.doi.org/10.1137/15M1045065
http://dx.doi.org/10.1103/PhysRevLett.100.244101
http://dx.doi.org/10.1002/jcp.1030340303
http://dx.doi.org/10.1149/1.2430369

174 Bibliography

[57] O. P. Hamill et al. “Improved patch-clamp techniques for high-resolution current recording
from cells and cell-free membrane patches”. Pflügers Archiv 391 (1981), pp. 85–100.

[58] E. Neher and B. Sakmann. “The Patch Clamp Technique”. Scientific American 266.3
(1992), pp. 44–51.

[59] A. A. Sharp et al. “The dynamic clamp: artificial conductances in biological neurons”.
Trends in Neurosciences 16.10 (1993), pp. 389–394.

[60] A. Chizhov et al. “Firing clamp: a novel method for single-trial estimation of excita-
tory and inhibitory synaptic neuronal conductances”. Frontiers in Cellular Neuroscience
8 (2014), p. 86.

[61] R. Grashow, T. Brookings, and E. Marder. “Reliable neuromodulation from circuits with
variable underlying structure”. Proceedings of the National Academy of Sciences 106.28
(2009), pp. 11742–11746.

[62] E. Marder et al. “Memory from the dynamics of intrinsic membrane currents”. Proceed-
ings of the National Academy of Sciences 93.24 (1996), pp. 13481–13486.

[63] J.-M. Goaillard et al. “Slow and persistent postinhibitory rebound acts as an intrinsic short-
term memory mechanism”. Journal of Neuroscience 30.13 (2010), pp. 4687–4692.

[64] H. Ori et al. “Dynamic clamp constructed phase diagram for the Hodgkin and Huxley
model of excitability”. Proceedings of the National Academy of Sciences 117.7 (2020),
pp. 3575–3582.

[65] J. B. MacQueen. “Some Methods for Classification and Analysis of MultiVariate Observa-
tions”. Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability.
Vol. 1. University of California Press, 1967, pp. 281–297.

[66] J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A K-Means Clustering Algorithm”.
Applied Statistics 28.1 (1979), pp. 100–108.

[67] A. K. Jain. “Data clustering: 50 years beyond K-means”. Pattern Recognition Letters 31.8
(2010), pp. 651–666.

[68] P. beim Graben et al. “Symbolic dynamics of event-related brain potentials”. Physical
review E 62.4 (2000), pp. 5518–41.

[69] P. beim Graben et al. “Optimal estimation of recurrence structures from time series”. Eu-
rophysics Letters 114 (2016), p. 38003.

[70] A. Hutt and P. beim Graben. “Sequences by metastable attractors: interweaving dynamical
systems and experimental data”. Frontiers in Applied Mathematics and Statistics 3 (2017),
p. 11.

[71] J. Rinzel and G. B. Ermentrout. “Analysis of neural excitability and oscillations”. In:
Methods in neuronal modeling, Second Edition. Ed. by C. Koch and I. Segev. Vol. 2.
1998, pp. 251–292.

[72] E. Benoı̂t et al. “Chasse au canard”. Collectanea Mathematica 32.1-2 (1981), pp. 37–119.

[73] M. Desroches, M. Krupa, and S. Rodrigues. “Inflection, canards and excitability threshold
in neuronal models”. Journal of Mathematical Biology 67.4 (2013), pp. 989–1017.

[74] M. Wechselberger, J. Mitry, and J. Rinzel. “Canard theory and excitability”. In: Nonau-
tonomous dynamical systems in the life sciences. Ed. by P. Kloeden and C. Pötzsche.
Vol. 2102. Lecture Notes in Mathematics. Springer, 2013, pp. 89–132.

[75] V. Krinskiı̆ and I. M. Kokoz. “Analysis of the equations of excitable membranes. I. re-
duction of the hodgkins-huxley equations to a 2d order system”. Biofizika 18.3 (1973),
pp. 506–511.

http://dx.doi.org/10.1007/BF00656997
http://dx.doi.org/10.1007/BF00656997
http://dx.doi.org/10.1038/scientificamerican0392-44
http://dx.doi.org/https://doi.org/10.1016/0166-2236(93)90004-6
http://dx.doi.org/10.3389/fncel.2014.00086
http://dx.doi.org/10.3389/fncel.2014.00086
http://dx.doi.org/10.1073/pnas.0905614106
http://dx.doi.org/10.1073/pnas.0905614106
http://dx.doi.org/10.1073/pnas.93.24.13481
http://dx.doi.org/10.1523/JNEUROSCI.2998-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.2998-09.2010
http://dx.doi.org/10.1073/pnas.1916514117
http://dx.doi.org/10.1073/pnas.1916514117
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1103/PhysRevE.62.5518
http://dx.doi.org/10.1209/0295-5075/114/38003
http://dx.doi.org/10.3389/fams.2017.00011
http://dx.doi.org/10.3389/fams.2017.00011
http://dx.doi.org/10.1007/s00285-012-0576-z
http://dx.doi.org/10.1007/s00285-012-0576-z

Bibliography 175

[76] J. Rinzel. “On repetitive activity in nerve”. Federation proceedings 37.14 (1978), pp. 2793–
2802.

[77] J. Moehlis. “Canards for a reduction of the Hodgkin-Huxley equations”. Journal of Math-
ematical Biology 52 (2006), pp. 141–153.

[78] B. Ermentrout. “Type I Membranes, Phase Resetting Curves, and Synchrony”. Neural
Computation 8.5 (1996), pp. 979–1001.

[79] N. Fenichel. “Geometric singular perturbation theory for ordinary differential equations”.
Journal of Differential Equations 31.1 (1979), pp. 53–98.

[80] M. Desroches and V. Kirk. “Spike-Adding in a Canonical Three-Time-Scale Model: Su-
perslow Explosion and Folded-Saddle Canards”. SIAM Journal on Applied Dynamical
Systems 17.3 (2018), pp. 1989–2017.

[81] J. Rinzel. “A Formal Classification of Bursting Mechanisms in Excitable Systems”. In-
ternational Congress of Mathematicians, Berkeley, California, USA, August 3-11, 1986.
Vol. II. Providence, RI (USA): American Mathematical Society, 1987, pp. 1578–1593.

[82] R. Amir, M. Michaelis, and M. Devor. “Burst Discharge in Primary Sensory Neurons:
Triggered by Subthreshold Oscillations, Maintained by Depolarizing Afterpotentials”. The
Journal of Neuroscience 22.3 (2002), pp. 1187–1198.

[83] H. Ori et al. “Dynamic clamp constructed phase diagram for the Hodgkin and Huxley
model of excitability”. Proceedings of the National Academy of Sciences 117.7 (2020),
pp. 3575–3582.

[84] A. A. Sharp et al. “Dynamic clamp: computer-generated conductances in real neurons”.
Journal of Neurophysiology 69.3 (1993), pp. 992–995.

[85] M. Wechselberger. “Existence and Bifurcation of Canards in R3 in the Case of a Folded
Node”. SIAM Journal on Applied Dynamical Systems 4.1 (2005), pp. 101–139.

[86] R. Haiduc. “Horseshoes in the forced van der Pol system”. Nonlinearity 22.1 (2008),
pp. 213–237.

[87] S. J. Schiff et al. “Controlling chaos in the brain”. Nature 370.6491 (1994), pp. 615–620.

[88] P. Faure and H. Korn. “Is there chaos in the brain? I. Concepts of nonlinear dynamics
and methods of investigation”. Comptes Rendus de l’Académie des Sciences-Series III-
Sciences de la Vie 324.9 (2001), pp. 773–793.

[89] H. Korn and P. Faure. “Is there chaos in the brain? II. Experimental evidence and related
models”. Comptes Rendus Biologies 326.9 (2003), pp. 787–840.

[90] I. Erchova and D. J. McGonigle. “Rhythms of the brain: An examination of mixed mode
oscillation approaches to the analysis of neurophysiological data”. Chaos: An Interdisci-
plinary Journal of Nonlinear Science 18.1 (2008), p. 015115.

[91] D. A. McCormick and D. Contreras. “On The Cellular and Network Bases of Epileptic
Seizures”. Annual Review of Physiology 63.1 (2001), pp. 815–846.

[92] M. A. Dichter and G. F. Ayala. “Cellular Mechanisms of Epilepsy: A Status Report”.
Science 237.4811 (1987), pp. 157–164.

[93] A. A. Grace et al. “Dopamine-cell depolarization block as a model for the therapeutic
actions of antipsychotic drugs”. Trends in Neurosciences 20.1 (1997), pp. 31–37.

[94] D. Bianchi et al. “On the mechanisms underlying the depolarization block in the spiking
dynamics of CA1 pyramidal neurons”. Journal of Computational Neuroscience 33 (2012),
pp. 207–25.

http://dx.doi.org/10.1007/s00285-005-0347-1
http://dx.doi.org/10.1162/neco.1996.8.5.979
http://dx.doi.org/https://doi.org/10.1016/0022-0396(79)90152-9
http://dx.doi.org/10.1137/17M1143411
http://dx.doi.org/10.1137/17M1143411
http://dx.doi.org/10.1523/JNEUROSCI.22-03-01187.2002
http://dx.doi.org/10.1523/JNEUROSCI.22-03-01187.2002
http://dx.doi.org/10.1073/pnas.1916514117
http://dx.doi.org/10.1073/pnas.1916514117
http://dx.doi.org/10.1152/jn.1993.69.3.992
http://dx.doi.org/10.1137/030601995
http://dx.doi.org/10.1137/030601995
http://dx.doi.org/10.1088/0951-7715/22/1/011
http://dx.doi.org/10.1038/370615a0
http://dx.doi.org/10.1016/S0764-4469(01)01377-4
http://dx.doi.org/10.1016/S0764-4469(01)01377-4
http://dx.doi.org/10.1016/j.crvi.2003.09.011
http://dx.doi.org/10.1016/j.crvi.2003.09.011
http://dx.doi.org/10.1063/1.2900015
http://dx.doi.org/10.1063/1.2900015
http://dx.doi.org/10.1146/annurev.physiol.63.1.815
http://dx.doi.org/10.1146/annurev.physiol.63.1.815
http://dx.doi.org/10.1126/science.3037700
http://dx.doi.org/https://doi.org/10.1016/S0166-2236(96)10064-3
http://dx.doi.org/https://doi.org/10.1016/S0166-2236(96)10064-3
http://dx.doi.org/10.1007/s10827-012-0383-y
http://dx.doi.org/10.1007/s10827-012-0383-y

176 Bibliography

[95] A. Kuznetsova et al. “Regulation of Firing Frequency in a Computational Model of a Mid-
brain Dopaminergic Neuron”. Journal of Computational Neuroscience 28 (2010), pp. 389–
403.

[96] K. Tucker et al. “Pacemaker Rate and Depolarization Block in Nigral Dopamine Neurons:
A Somatic Sodium Channel Balancing Act”. The Journal of Neuroscience 32.42 (2012),
pp. 14519–31.

[97] K. Qian et al. “Mathematical analysis of depolarization block mediated by slow inactiva-
tion of fast sodium channels in midbrain dopamine neurons”. Journal of Neurophysiology
112.11 (2014), pp. 2779–2790.

[98] M. N. Economo, F. R. Fernandez, and J. A. White. “Dynamic clamp: alteration of response
properties and creation of virtual realities in neurophysiology”. Journal of Neuroscience
30.7 (2010), pp. 2407–2413.

[99] M. S. Espósito et al. “Neuronal differentiation in the adult hippocampus recapitulates em-
bryonic development”. Journal of Neuroscience 25.44 (2005), pp. 10074–10086.

[100] S. Ge et al. “GABA regulates synaptic integration of newly generated neurons in the adult
brain”. Nature 439.7076 (2006), pp. 589–593.

[101] N. Toni et al. “Neurons born in the adult dentate gyrus form functional synapses with
target cells”. Nature Neuroscience 11.8 (2008), pp. 901–907.

[102] L. O. Wadiche et al. “GABAergic signaling to newborn neurons in dentate gyrus”. Journal
of Neurophysiology 94.6 (2005), pp. 4528–4532.

[103] Y. Tozuka et al. “GABAergic Excitation Promotes Neuronal Differentiation in Adult Hip-
pocampal Progenitor Cells”. Neuron 47.6 (2005), pp. 803–815.

[104] P. Bielefeld et al. “Insult-induced aberrant hippocampal neurogenesis: Functional con-
sequences and possible therapeutic strategies”. Behavioural Brain Research 372 (2019),
p. 112032.

[105] K. Hüttmann et al. “Seizures preferentially stimulate proliferation of radial glia-like as-
trocytes in the adult dentate gyrus: Functional and immunocytochemical analysis”. The
European Journal of Neuroscience 18.10 (2003), pp. 2769–2778.

[106] C. L. Indulekha et al. “Seizure induces activation of multiple subtypes of neural progen-
itors and growth factors in hippocampus with neuronal maturation confined to dentate
gyrus”. Biochemical and Biophysical Research Communications 393.4 (2010), pp. 864–
871.

[107] L. A. Mongiat et al. “Reliable activation of immature neurons in the adult hippocampus”.
PloS one 4.4 (2009), e5320.

[108] H. Van Praag et al. “Functional neurogenesis in the adult hippocampus”. Nature 415.6875
(2002), pp. 1030–1034.

[109] J. M. Parent et al. “Dentate granule cell neurogenesis is increased by seizures and con-
tributes to aberrant network reorganization in the adult rat hippocampus”. Journal of Neu-
roscience 17.10 (1997), pp. 3727–3738.

[110] M. Desroches, J. Rinzel, and S. Rodrigues. “Classification of bursting patterns: A tale of
two ducks”. PLoS Computational Biology 18.2 (2022), e1009752.

[111] L. J. Borg-Graham. “Interpretations of Data and Mechanisms for Hippocampal Pyramidal
Cell Models”. In: Models of Cortical Circuits. Ed. by P. S. Ulinski, E. G. Jones, and A.
Peters. Boston, MA: Springer US, 1999, pp. 19–138.

http://dx.doi.org/10.1007/s10827-010-0222-y
http://dx.doi.org/10.1007/s10827-010-0222-y
http://dx.doi.org/10.1523/JNEUROSCI.1251-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.1251-12.2012
http://dx.doi.org/10.1152/jn.00578.2014
http://dx.doi.org/10.1152/jn.00578.2014
http://dx.doi.org/10.1523/JNEUROSCI.5954-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.5954-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.3114-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.3114-05.2005
http://dx.doi.org/10.1038/nature04404
http://dx.doi.org/10.1038/nature04404
http://dx.doi.org/10.1038/nn.2156
http://dx.doi.org/10.1038/nn.2156
http://dx.doi.org/10.1152/jn.00633.2005
http://dx.doi.org/https://doi.org/10.1016/j.neuron.2005.08.023
http://dx.doi.org/https://doi.org/10.1016/j.neuron.2005.08.023
http://dx.doi.org/https://doi.org/10.1016/j.bbr.2019.112032
http://dx.doi.org/https://doi.org/10.1016/j.bbr.2019.112032
http://dx.doi.org/10.1111/j.1460-9568.2003.03002.x
http://dx.doi.org/10.1111/j.1460-9568.2003.03002.x
http://dx.doi.org/https://doi.org/10.1016/j.bbrc.2010.02.101
http://dx.doi.org/https://doi.org/10.1016/j.bbrc.2010.02.101
http://dx.doi.org/https://doi.org/10.1016/j.bbrc.2010.02.101
http://dx.doi.org/10.1371/journal.pone.0005320
http://dx.doi.org/10.1038/4151030a
http://dx.doi.org/10.1523/JNEUROSCI.17-10-03727.1997
http://dx.doi.org/10.1523/JNEUROSCI.17-10-03727.1997
http://dx.doi.org/10.1371/journal.pcbi.1009752
http://dx.doi.org/10.1371/journal.pcbi.1009752

Bibliography 177

[112] N. Jiang et al. “Impaired plasticity of intrinsic excitability in the dentate gyrus alters spike
transfer in a mouse model of Alzheimer’s disease”. Neurobiology of Disease 154 (2021),
p. 105345.

[113] P. Ambrogini et al. “Morpho-functional characterization of neuronal cells at different
stages of maturation in granule cell layer of adult rat dentate gyrus”. Brain Research
1017.1-2 (2004), pp. 21–31.

[114] M. N. Nenov et al. “Cognitive enhancing treatment with a PPARγ agonist normalizes
dentate granule cell presynaptic function in Tg2576 APP mice”. Journal of Neuroscience
34.3 (2014), pp. 1028–1036.

[115] C. Monier et al. “Orientation and direction selectivity of synaptic inputs in visual cortical
neurons: a diversity of combinations produces spike tuning”. Neuron 37.4 (2003), pp. 663–
680.

[116] A. Chizhov and L. Graham. “A strategy for mapping biophysical to abstract neuronal net-
work models applied to primary visual cortex”. PLoS Computational Biology 17.8 (2021),
e1009007.

[117] A. Pokrovskii. “Effect of synapse conductivity on spike development”. Biofizika 23.4
(1978), 649–653.

[118] O. Shriki, D. Hansel, and H. Sompolinsky. “Rate models for conductance-based cortical
neuronal networks”. Neural Computation 15.8 (2003), pp. 1809–1841.

[119] A. Destexhe and T. Bal, eds. Dynamic-clamp: From principles to applications. New York:
Springer, 2009.

[120] L. J. Graham and A. Schramm. “In Vivo Dynamic-Clamp Manipulation of Extrinsic and
Intrinsic Conductances: Functional Roles of Shunting Inhibition and IBK in Rat and Cat
Cortex”. In: Dynamic-clamp: From principles to applications. Ed. by T. Bal and A. Des-
texhe. New York: Springer, 2009.

[121] E. Smirnova et al. “The domain of neuronal firing on a plane of input current and conduc-
tance”. Journal of Computational Neuroscience 39.2 (2015), pp. 217–233.

[122] F. R. Fernandez and J. A. White. “Reduction of spike afterdepolarization by increased
leak conductance alters interspike interval variability”. The Journal of Neuroscience 29.4
(2009), pp. 973–986.

[123] F. R. Fernandez and J. A. White. “Gain control in CA1 pyramidal cells using changes in
somatic conductance”. The Journal of Neuroscience 30.1 (2010), pp. 230–241.

[124] P. Mishra and R. Narayanan. “Heterogeneities in intrinsic excitability and frequency-
dependent response properties of granule cells across the blades of the rat dentate gyrus”.
Journal of Neurophysiology 123.2 (2020), pp. 755–772.

[125] D. G. Amaral, H. E. Scharfman, and P. Lavenex. “The dentate gyrus: fundamental neu-
roanatomical organization (dentate gyrus for dummies)”. In: The Dentate Gyrus: A Com-
prehensive Guide to Structure, Function, and Clinical Implications. Ed. by H. E. Scharf-
man. Vol. 163. Progress in Brain Research. Elsevier, 2007, pp. 3–790.

[126] H. Ori, E. Marder, and S. Marom. “Cellular function given parametric variation in the
Hodgkin and Huxley model of excitability”. Proceedings of the National Academy of Sci-
ences 115.35 (2018), E8211–E8218.

[127] D. Levenstein, G. Buzsáki, and J. Rinzel. “NREM sleep in the rodent neocortex and hip-
pocampus reflects excitable dynamics”. Nature Communications 10 (2019), p. 2478.

[128] J. Hesse et al. “Temperature elevations can induce switches to homoclinic action poten-
tials that alter neural encoding and synchronization”. Nature Communications 13 (2022),
p. 3934.

http://dx.doi.org/https://doi.org/10.1016/j.nbd.2021.105345
http://dx.doi.org/https://doi.org/10.1016/j.nbd.2021.105345
http://dx.doi.org/https://doi.org/10.1016/j.brainres.2004.05.039
http://dx.doi.org/https://doi.org/10.1016/j.brainres.2004.05.039
http://dx.doi.org/10.1523/JNEUROSCI.3413-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.3413-13.2014
http://dx.doi.org/10.1016/s0896-6273(03)00064-3
http://dx.doi.org/10.1016/s0896-6273(03)00064-3
http://dx.doi.org/10.1371/journal.pcbi.1009007
http://dx.doi.org/10.1371/journal.pcbi.1009007
http://www.mitpressjournals.org/doi/abs/10.1162/08997660360675053
http://www.mitpressjournals.org/doi/abs/10.1162/08997660360675053
http://dx.doi.org/10.1007/s10827-015-0573-5
http://dx.doi.org/10.1007/s10827-015-0573-5
http://dx.doi.org/10.1523/JNEUROSCI.4195-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.4195-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.3995-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.3995-09.2010
http://dx.doi.org/10.1152/jn.00443.2019
http://dx.doi.org/10.1152/jn.00443.2019
http://dx.doi.org/https://doi.org/10.1016/S0079-6123(07)63001-5
http://dx.doi.org/https://doi.org/10.1016/S0079-6123(07)63001-5
http://dx.doi.org/10.1073/pnas.1808552115
http://dx.doi.org/10.1073/pnas.1808552115
http://dx.doi.org/10.1038/s41467-019-10327-5
http://dx.doi.org/10.1038/s41467-019-10327-5
http://dx.doi.org/10.1038/s41467-022-31195-6
http://dx.doi.org/10.1038/s41467-022-31195-6

178 Bibliography

[129] V. Sip et al. “Characterization of regional differences in resting-state fMRI with a data-
driven network model of brain dynamics”. Science Advances 9 (2023), eabq7547.

[130] J. Ladenbauer et al. “Inferring and validating mechanistic models of neural microcircuits
based on spike-train data”. Nature Communications 10 (2019), p. 4933.

[131] L. Renson et al. “Application of control-based continuation to a nonlinear structure with
harmonically coupled modes”. Mechanical Systems and Signal Processing 120 (2019),
pp. 449–464.

[132] R. M. Neville et al. “Shape Control for Experimental Continuation”. Physical Review Let-
ters 120.25 (2018), p. 254101.

[133] I. Panagiotopoulos, J. Starke, and W. Just. “Control of collective human behavior: Social
dynamics beyond modeling”. Physical Review Research 4.4 (2022), p. 043190.

[134] A. P. Willis et al. “Surfing the edge: using feedback control to find nonlinear solutions”.
Journal of Fluid Mechanics 831 (2017), 579–591.

[135] I. de Cesare et al. “Control-Based Continuation: A New Approach to Prototype Synthetic
Gene Networks”. ACS Synthetic Biology 11.7 (2021), pp. 2300–2313.

[136] M. Blyth et al. “Numerical methods for control-based continuation of relaxation oscilla-
tions”. Nonlinear Dynamics 111 (2023), pp. 1–18.

[137] P. C. Schwindt and W. E. Crill. “Properties of a persistent inward current in normal and
TEA-injected motoneurons.” Journal of Neurophysiology 43.6 (1980), pp. 1700–24.

[138] H. M. Fishman and R. I. Macey. “The N-Shaped Current-Potential Characteristic in Frog
Skin: I. Time Development during Step Voltage Clamp”. Biophysical Journal 9.2 (1969),
pp. 127–139.

[139] D. Johnston, J. J. Hablitz, and W. A. Wilson. “Voltage clamp discloses slow inward current
in hippocampal burst-firing neurones”. Nature 286.5771 (1980), pp. 391–393.

[140] M. R. Blatt. “Potassium-dependent, bipolar gating of K+ channels in guard cells”. Journal
of Membrane Biology 102 (1988), pp. 235–246.

[141] K. Vervaeke et al. “Contrasting Effects of the Persistent Na+ Current on Neuronal Ex-
citability and Spike Timing”. Neuron 49.2 (2006), pp. 257–70.

[142] J. Rinzel. “A Formal Classification of Bursting Mechanisms in Excitable Systems”. Math-
ematical Topics in Population Biology, Morphogenesis and Neurosciences: Proceedings
of an International Symposium held in Kyoto, November 10-15, 1985. Ed. by E. Teramoto
and M. Yamaguti. Vol. 71. Lecture Notes in Biomathematics. Springer Berlin Heidelberg,
1987, pp. 267–281.

[143] D. Amakhin et al. “Insertion of Calcium-Permeable AMPA Receptors during Epilepti-
form Activity In Vitro Modulates Excitability of Principal Neurons in the Rat Entorhinal
Cortex”. International Journal of Molecular Sciences 22.22 (2021), p. 12174.

[144] I. Magrans de Abril, J. Yoshimoto, and K. Doya. “Connectivity inference from neural
recording data: Challenges, mathematical bases and research directions”. Neural Networks
102 (2018), pp. 120–137.

[145] J. Sieber and B. Krauskopf. “Control based bifurcation analysis for experiments”. Nonlin-
ear Dynamics 51 (2008), pp. 365–377.

[146] K. Pyragas. “Continuous control of chaos by self-controlling feedback”. Physics Letters A
170.6 (1992), pp. 421–428.

[147] K. Pyragas. “Control of Chaos via an Unstable Delayed Feedback Controller”. Physical
Review Letters 86.11 (2001), pp. 2265–2268.

http://dx.doi.org/10.1126/sciadv.abq7547
http://dx.doi.org/10.1126/sciadv.abq7547
http://dx.doi.org/10.1038/s41467-019-12572-0
http://dx.doi.org/10.1038/s41467-019-12572-0
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.10.008
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.10.008
http://dx.doi.org/10.1103/PhysRevLett.120.254101
http://dx.doi.org/10.1103/PhysRevResearch.4.043190
http://dx.doi.org/10.1103/PhysRevResearch.4.043190
http://dx.doi.org/10.1017/jfm.2017.656
http://dx.doi.org/10.1021/acssynbio.1c00632
http://dx.doi.org/10.1021/acssynbio.1c00632
http://dx.doi.org/10.1007/s11071-023-08288-y
http://dx.doi.org/10.1007/s11071-023-08288-y
http://dx.doi.org/10.1152/JN.1980.43.6.1700
http://dx.doi.org/10.1152/JN.1980.43.6.1700
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(69)86374-5
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(69)86374-5
http://dx.doi.org/10.1038/286391a0
http://dx.doi.org/10.1038/286391a0
http://dx.doi.org/10.1007/BF01925717
http://dx.doi.org/10.1016/j.neuron.2005.12.022
http://dx.doi.org/10.1016/j.neuron.2005.12.022
http://dx.doi.org/10.1007/978-3-642-93360-8_26
http://dx.doi.org/10.3390/ijms222212174
http://dx.doi.org/10.3390/ijms222212174
http://dx.doi.org/10.3390/ijms222212174
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2018.02.016
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2018.02.016
http://dx.doi.org/10.1007/s11071-007-9217-2
http://dx.doi.org/https://doi.org/10.1016/0375-9601(92)90745-8
http://dx.doi.org/10.1103/PhysRevLett.86.2265

Bibliography 179

[148] C. Marschler et al. “Implicit Methods for Equation-Free Analysis: Convergence Results
and Analysis of Emergent Waves in Microscopic Traffic Models”. SIAM Journal on Ap-
plied Dynamical Systems 13.3 (2014), pp. 1202–1238.

[149] I. Panagiotopoulos et al. “Continuation with Non-invasive Control Schemes: Revealing
Unstable States in a Pedestrian Evacuation Scenario”. SIAM Journal on Applied Dynami-
cal Systems 22.1 (2023), pp. 1–36.

[150] C. G. Broyden. “A Class of Methods for Solving Nonlinear Simultaneous Equations”.
Mathematics of Computation 19.92 (1965), pp. 577–593.

[151] E. M. Izhikevich and R. FitzHugh. “FitzHugh-Nagumo model”. Scholarpedia 1.9 (2006),
p. 1349.

[152] S. Morfu et al. “A nonlinear electronic circuit mimicking the neuronal activity in presence
of noise”. 2013 22nd International Conference on Noise and Fluctuations (ICNF). 2013,
pp. 1–4.

[153] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods. Society for Indus-
trial and Applied Mathematics, 1977.

[154] Z. Peng et al. “Comparisons between harmonic balance and nonlinear output frequency
response function in nonlinear system analysis”. Journal of Sound and Vibration 311.1
(2008), pp. 56–73.

[155] G. M. Shepherd. “The Synaptic Organization of the Brain”. Oxford University Press, 2004.

[156] N. Miyasaka et al. “From the Olfactory Bulb to Higher Brain Centers: Genetic Visual-
ization of Secondary Olfactory Pathways in Zebrafish”. Journal of Neuroscience 29.15
(2009), pp. 4756–4767.

[157] G. Lepousez, A. Nissant, and P.-M. Lledo. “Adult neurogenesis and the future of the reju-
venating brain circuits”. Neuron 86.2 (2014), pp. 387–401.

[158] O. Gschwend et al. “Neuronal pattern separation in the olfactory bulb improves odor dis-
crimination learning”. Nature Neuroscience 18.10 (2015), pp. 1474–1482.

[159] H. K. Kato et al. “Parvalbumin-expressing interneurons linearly transform cortical re-
sponses to visual stimuli”. Neuron 73.1 (2013), pp. 159–170.

[160] S. D. Burton and N. N. Urban. “Greater excitability and firing irregularity of tufted cells
underlies distinct activation of the olfactory bulb output”. PLoS Biology 13.8 (2015),
e1002318.

[161] A. Li, D. H. Gire, and T. Bozza. “The olfactory bulb encodes odor valence and type in
parallel pathways”. Cell Reports 22.9 (2018), pp. 2634–2645.

[162] A. M. Boyd et al. “Cortical feedback control of olfactory bulb circuits”. Neuron 76.6
(2012), pp. 1161–1174.

[163] K. Mori and H. Sakano. “How Is the Olfactory Map Formed and Interpreted in the Mam-
malian Brain?” Annual Review of Neuroscience 34.1 (2011), pp. 467–499.

[164] D. D. Stettler and R. Axel. “Representations of odor in the piriform cortex”. Neuron 63.6
(2009), pp. 854–861.

[165] M. Wachowiak. “All in a sniff: olfaction as a model for active sensing”. Neuron 71.6
(2011), pp. 962–973.

[166] T. Cover and P. Hart. “Nearest neighbor pattern classification”. IEEE Transactions on
Information Theory 13.1 (1967), pp. 21–27.

[167] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction. Springer Series in Statistics. Springer, 2001.

http://dx.doi.org/10.1137/130913961
http://dx.doi.org/10.1137/130913961
http://dx.doi.org/10.1137/22M1482032
http://dx.doi.org/10.1137/22M1482032
http://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
http://dx.doi.org/10.4249/scholarpedia.1349
http://dx.doi.org/10.1137/1.9781611970425
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2007.08.035
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2007.08.035
http://dx.doi.org/10.1093/acprof:oso/9780195159561.001.1
http://dx.doi.org/10.1523/JNEUROSCI.0118-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.0118-09.2009
http://dx.doi.org/10.1016/j.neuron.2015.01.045
http://dx.doi.org/10.1016/j.neuron.2015.01.045
http://dx.doi.org/10.1038/nn.4107
http://dx.doi.org/10.1038/nn.4107
http://dx.doi.org/10.1016/j.neuron.2011.12.013
http://dx.doi.org/10.1016/j.neuron.2011.12.013
http://dx.doi.org/10.1371/journal.pbio.1002318
http://dx.doi.org/10.1371/journal.pbio.1002318
http://dx.doi.org/10.1016/j.celrep.2018.02.067
http://dx.doi.org/10.1016/j.celrep.2018.02.067
http://dx.doi.org/10.1016/j.neuron.2012.11.005
http://dx.doi.org/10.1146/annurev-neuro-112210-112917
http://dx.doi.org/10.1146/annurev-neuro-112210-112917
http://dx.doi.org/10.1016/j.neuron.2009.09.005
http://dx.doi.org/10.1016/j.neuron.2011.08.030
http://dx.doi.org/10.1109/TIT.1967.1053964
https://books.google.es/books?id=VRzITwgNV2UC
https://books.google.es/books?id=VRzITwgNV2UC

180 Bibliography

[168] D. W. Aha, D. Kibler, and M. K. Albert. “Instance-based learning algorithms”. Machine
Learning 6.1 (1991), pp. 37–66.

[169] C. Cortes and V. Vapnik. “Support-vector networks”. Machine learning 20.3 (1995), pp. 273–
297.

[170] C. M. Bishop. Pattern Recognition and Machine Learning. Vol. 4. Information Science
and Statistics. Springer, 2006.

[171] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge Uni-
versity Press, 2004.

[172] S. Ruder. “An overview of gradient descent optimization algorithms”. arXiv e-print 1609.04747.
2016.

[173] R. Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection”. Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2. IJCAI’95. Montreal, Quebec, Canada: Morgan Kaufmann Pub-
lishers Inc., 1995, 1137–1143.

[174] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.

[175] B. Efron. “Bootstrap Methods: Another Look at the Jackknife”. The Annals of Statistics
7.1 (1979), pp. 1–26.

[176] T. J. DiCiccio and B. Efron. “Bootstrap confidence intervals”. Statistical Science 11.3
(1996), pp. 189–228.

[177] M. Chernick and R. LaBudde. An Introduction to Bootstrap Methods with Applications to
R. Wiley, 2014.

[178] H. Han, W. Wang, and B. Mao. “Borderline-SMOTE: A New Over-Sampling Method in
Imbalanced Data Sets Learning”. In: Advances in Intelligent Computing, International
Conference on Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Pro-
ceedings, Part I. Ed. by D.-S. Huang, X.-P. Zhang, and G.-B. Huang. Vol. 3644. Lecture
Notes in Computer Science. 2005, pp. 878–887.

[179] T. Maciejewski and J. Stefanowski. “Local neighbourhood extension of SMOTE for min-
ing imbalanced data”. In: Proceeding of the 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM 2011). Ed. by N. Chawla, I. King, and A. Sperduti.
2011, pp. 104–111.

[180] G. Batista, R. Prati, and M.-C. Monard. “A Study of the Behavior of Several Methods for
Balancing machine Learning Training Data”. ACM SIGKDD Explorations Newsletter 6.1
(2004), pp. 20–29.

[181] N. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. Journal of Ar-
tificial Intelligence Research 16 (2002), pp. 321–357.

[182] R. S. Olson et al. “Automating Biomedical Data Science Through Tree-Based Pipeline
Optimization”. In: Applications of Evolutionary Computation: 19th European Conference,
EvoApplications 2016, Porto, Portugal, March 30 - April 1, 2016, Proceedings, Part I. Ed.
by G. Squillero and P. Burelli. Springer International Publishing, 2016, pp. 123–137.

[183] R. S. Olson et al. “Evaluation of a Tree-based Pipeline Optimization Tool for Automating
Data Science”. Proceedings of the Genetic and Evolutionary Computation Conference
2016. Ed. by T. Friedrich. GECCO ’16. Denver, Colorado, USA: ACM, 2016, pp. 485–
492.

[184] T. T. Le, W. Fu, and J. H. Moore. “Scaling tree-based automated machine learning to
biomedical big data with a feature set selector”. Bioinformatics 36.1 (2019), pp. 250–256.

http://dx.doi.org/10.1023/A:1022689900470
http://dx.doi.org/10.1023/A:1022627411411
https://link.springer.com/in/book/9780387310732
http://dx.doi.org/10.1017/CBO9780511809682
https://arxiv.org/abs/
http://dx.doi.org/10.1201/9780429246593
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/SS/1032280214
https://books.google.es/books?id=P0xYBAAAQBAJ
https://books.google.es/books?id=P0xYBAAAQBAJ
http://dx.doi.org/10.1007/11538059_91
http://dx.doi.org/10.1007/11538059_91
http://dx.doi.org/10.1109/CIDM.2011.5949434
http://dx.doi.org/10.1109/CIDM.2011.5949434
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://dx.doi.org/10.1145/2908812.2908918
http://dx.doi.org/10.1145/2908812.2908918
http://dx.doi.org/10.1093/bioinformatics/btz470
http://dx.doi.org/10.1093/bioinformatics/btz470

Bibliography 181

[185] A. Wagemakers et al. “Building electronic bursters with the Morris–Lecar neuron model”.
International Journal of Bifurcation and Chaos 16.12 (2006), pp. 3617–3630.

http://dx.doi.org/10.1142/S0218127406017014

	2eaf9deb02b61d4715023d7650d7d290038397f8272f7a2940fe0f40c0f2272a.pdf
	64896b2139c43223138950d2d6b01cd97ded856aacc6b838e42e7c983c2ddefe.pdf
	Introduction
	General objectives
	Neuronal Excitability
	Biological background
	Mathematical background
	Integrator and resonator neurons
	Immature neurons

	Excitability in an experimental context
	Control Based Continuation in Experiments (CBCE)
	Simulink: from equations to first simulated experiments
	Patch-Clamp: application to neurons
	Recurrence Structure Analysis: A way to detect metastable states

	Thesis organization

	From integrator to resonator neurons
	Introduction
	Theoretical context
	Slow-fast dynamics
	Desingularized Reduced System

	Izhikevich's INa/IK model.
	Under constant external current
	Applying a slow sinusoidal external current

	Integrator neuron with resonator behaviour
	The eigenvalue ratio of the DRS's saddle equilibrium
	Slow forcing with feedback from the voltage

	A multiple-timescale scenario for the reverse switch: from resonator to integrator
	Discussion

	Complex excitability and flipping of granule cells
	Introduction
	Materials and methods
	Animals and treatment
	Preparation of brain slices
	Electrophysiology
	Statistical analysis
	Computational Modelling

	Results
	Intrinsic properties, firing pattern and depolarization block
	Effect of extra channels
	``Flipping'' cells
	``Flipping'' in a computational model
	Bifurcation analysis of ``flipping''

	Discussion

	Observing hidden neuronal states in experiments
	Introduction
	Material and methods
	Animals and treatment
	Electrophysiology
	Equations and parameters for the simulations of the Morris-Lecar model

	Results
	Analysis
	Discussion

	Control Based Continuation in Experiments (CBCE)
	Introduction
	Theoretical context
	Newton's method
	Broyden's method
	Spectral decomposition by normalized Fourier series

	Algorithmes and simulated experiments
	Modified FitzHugh Nagumo model
	CBCE algorithm for the stationary case
	Broyden's Jacobian matrix calculation variant
	Secant direction update variant
	Trust region and multiple trials
	Periodic solution case
	CBCE algorithm for the periodic case

	Results
	Discussion and conclusion

	Metastable odotopic representations in mice olfactory bulb
	Introduction
	Material and methods
	Experimental context and data pre-processing
	Optimal Recurrence Analysis
	Classifiers

	Results
	Discussion
	Conclusion

	General Discussion
	Appendix: Morris-Lecar analog circuit dynamical study
	Introduction
	Material and methods
	The Morris-Lecar neuromorphic circuit
	Additional informations on the setup
	Studying the circuit dynamic

	Results
	Dynamical behavior
	Sensitivity analysis
	Attempt to apply our methods

	Discussion and conclusion

	Appendix: Code scripts
	Chapter 2: Integrator and resonator neurons
	Chapter 3: Immature neuron excitability
	Chapter 4: Rudimentary continuation
	Chapter 5: Continuation Based on Controled Experiments
	Part 1: Fixed point case
	Part 2: Periodic case

	Chapter 6: Recurrence Structure Analysis
	Part 1: Reading the data, applying the K-means method, and applying the baseline alignment method.
	Part 2: Creating the centroid heatmaps for one odor and for all subjects.
	Part 3: Creating the centroid heatmaps for reach odor type.

	Bibliography

