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In crystalline materials, low lattice thermal conductivity is often associated with strong anhar-
monicity, which can cause significant deviations from the expected Lorentzian lineshape of phonon
spectral functions. These deviations, occurring in an overdamped regime, raise questions about the
applicability of the Boltzmann transport equation. Furthermore, strong anharmonicity can trig-
ger structural phase transitions with temperature, which cannot be adequately described by the
standard harmonic approximation. To address these challenges, we propose a novel approach for
computing the lattice thermal conductivity. Our method combines the Green-Kubo linear response
theory with the stochastic self-consistent harmonic approximation. The latter allows us to describe
the temperature-dependent evolution of the crystal structure, including first- and second-order phase
transitions, as well as the vibrational properties in highly anharmonic materials. The Green-Kubo
method considers the entire lineshapes of phonon spectral functions in the calculation of the lattice
thermal conductivity, thus eliminating the questionable use of phonon lifetimes in the overdamped
regime, as well as naturally including coherent transport effects. Additionally, we extend our theory
to model complex dynamical lattice thermal conductivity, enhancing our understanding of time-
dependent thermoreflectance experiments. As a practical application, we employ this approach to
calculate the lattice thermal conductivity of CsPbBr3, a complex crystal known for its anomalous
thermal transport behavior with a complex phase diagram. Our method is able to determine the
thermal conductivity across different phases in good agreement with experiments.

I. INTRODUCTION

The thermal conductivity coefficient measures how ef-
ficiently heat is conducted through a material under a
temperature gradient. It has two main contributions,
one from the lattice and another from electrons. Materi-
als with low lattice thermal conductivity find widespread
technological applications. They can serve as thermal
insulators, for example, in internal combustion engines
where they retain heat to enhance efficiency [1, 2]. Lower-
ing the lattice thermal conductivity also improves the ef-
ficiency of thermoelectric materials [3–6]. This efficiency
is quantified using the thermoelectric figure of merit ZT ,
which is inversely proportional to the material’s thermal
conductivity. As a result, cutting-edge thermoelectric
devices utilize materials with exceptionally low lattice
thermal conductivity. For these reasons understanding
the microscopic origin of the lattice thermal conductiv-
ity is essential in order to further improve and optimize
functional materials.

∗ dorde.dangic@ehu.es

In insulating materials where lattice thermal conduc-
tivity is the dominant contribution, most of the heat
is conducted by phonons. Phonons are quasiparticles
that are convenient representations of the atomic vibra-
tions and are well-defined only in perfect crystals with
harmonic interaction between atoms. In these hypo-
thetical systems, they are found as solutions to atomic
equations of motion. This means that their defini-
tion depends heavily on how we represent the interac-
tion between atoms. For example, we can expand the
Born-Oppenheimer energy surface (BOES), which gov-
erns lattice dynamics, into a Taylor series with respect
to atomic displacements and truncate it at the second
order. Phonons that we get by solving equations of mo-
tion parametrized in this way are usually called harmonic
phonons. However, when thermal and quantum atomic
displacements are larger than the region in which this
truncation is reasonable, these harmonic phonons are not
useful representations of the atomic vibrations, and a dif-
ferent basis set is needed. There are different ways to
obtain these alternative basis sets, such as the stochastic
self-consistent harmonic approximation (SSCHA) [7–9]
or temperature-dependent effective potential TDEP [10]
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methods. The relationship between these different basis
sets is discussed in detail in Ref. [11]. In any of these
basis sets (harmonic, SSCHA, TDEP), the physical ob-
servables (scattering cross-sections, thermal conductivity,
etc.) should be the same; however, the better the basis
set the easier it is to obtain them. That is, the better the
basis set, the lower-level theory is needed to obtain the
correct physical observables. For example, in strongly
anharmonic materials one would need to use second-,
third- and fourth-order perturbative force constants to
obtain correct phonon frequencies, while in the SSCHA
and TDEP only effective second-order force constants are
sufficient.

The phonon scattering determines the thermal con-
ductivity of insulating materials. It can arise from crys-
talline imperfections like vacancies [12], impurities [13],
and boundaries [14], or from phonon-phonon interactions
due to the anharmonicity of the Born-Oppenheimer en-
ergy surface (BOES) [15–18]. In perfect crystals, in the
absence of phonon anharmonicity, phonons behave as
infinitely long-lived quasiparticles, exhibiting infinitely
narrow spectral lines in scattering experiments. How-
ever, phonon-phonon interaction, which arises due to
the anharmonicity of the BOES, broadens these spec-
tral lines, limiting phonon lifetimes. This broadened
lineshape can often be well-modeled with a Lorentzian,
with the linewidth inversely proportional to the phonon
lifetime [19]. Increased anharmonicity leads to larger
phonon linewidths (lower phonon lifetimes) and conse-
quently lower lattice thermal conductivities.

The main method for calculating the lattice thermal
conductivity from first principles is the Boltzmann trans-
port equation [16, 17, 20–22], which treats phonons as
a weakly interacting gas of particles diffusing due to a
temperature gradient while scattering from each other.
To calculate the lattice thermal conductivity using this
method, phonon frequencies, group velocities, and life-
times are necessary. These calculations have become
standard in the scientific community and have success-
fully been applied to various systems [3–6].

In the presence of strong anharmonicity two impor-
tant challenges arise. When anharmonicity is low, the
thermal expansion is linear with temperature and this
phenomenon is usually well captured by the quasihar-
monic theory [23, 24]. On the other hand, there are many
systems that undergo displacive structural phase tran-
sitions with increasing temperature, like charge-density
wave [25] or ferroelectric transitions [3], so that the exper-
imentally observed phases are not minima of the BOES,
but are stabilized by quantum or thermal lattice fluctu-
ations. This also implies that the harmonic phonons cal-
culated for the high-temperature phases from the Hessian
of the BOES may be imaginary, impeding any calculation
of the thermal conductivity with the standard method.
Interestingly, many good thermoelectric materials with
low thermal conductivity fall into this category [3–6].
In recent years several first principles approaches have
been developed to correctly model these strongly anhar-

monic situations [7, 10, 26, 27]. One of these alterna-
tives is the so-called stochastic self-consistent harmonic
approximation (SSCHA) method [7–9, 28, 29], which has
been successfully applied to correctly model a number of
first and second-order phase transitions in strongly an-
harmonic materials [4, 30, 31].

The second challenge is related to the treatment of
phonon lifetimes. In cases with strong phonon-phonon
interactions, phonon spectral functions can deviate sub-
stantially from the Lorentzian lineshape leading to over-
damped dynamics of phonon modes [32]. For instance,
in the vicinity of structural phase transitions where an-
harmonicity is the strongest, phonon spectral functions
can develop satellite peaks, as observed in materials like
PbTe or SnTe [33]. In some other cases, anharmonic-
ity is so strong that it leads to complete damping of the
phonon mode, without any noticeable peak structure in
the spectral signature [4, 34, 35]. In such instances, it
becomes challenging to assign meaningful values to ei-
ther phonon lifetimes or energies. This raises an open
question: can the Boltzmann transport equation be used
to model the lattice thermal conductivity in these and
similar systems?

A recent work by some of us addressed this issue for
the calculation of the lattice thermal conductivity in ger-
manium telluride [3]. GeTe undergoes a second-order
phase transition at around 700 K. This phase transition is
marked by the anomalous increase in the lattice thermal
conductivity and complete softening of the zone center
optical phonon mode. To account for the non-Lorentzian
lineshapes and softening of phonon modes, a Green-
Kubo approach in combination with the temperature-
dependent effective potential method for phonon proper-
ties [10] was implemented. The difference between lattice
thermal conductivities calculated with the Green-Kubo
method and Boltzmann transport equation was relatively
low, only around 10% even at the phase transition.

Here we combine the mentioned Green-Kubo linear re-
sponse theory [3] and the SSCHA [7–9, 28, 29], which
is capable of tracking temperature-induced structural
changes and vibrational properties at the same time. By
using the Green-Kubo method, we retain the dependence
of the lattice thermal conductivity on the entire lineshape
of the phonon spectral function, not solely on the phonon
lifetime. Consequently, this method remains applica-
ble even in the regime of strong anharmonicity, where
the phonon quasiparticle picture fails and phonon ener-
gies and lifetimes are not well-defined. Moreover, this
method automatically incorporates the effects of coher-
ent phonon transport [36–41], which has proven crucial
in amorphous materials and complex crystals. Finally,
we propose a way to calculate the complex dynamical
lattice thermal conductivity based on the Green-Kubo
method. We apply this method to study the lattice ther-
mal conductivity of the strongly anharmonic CsPbBr3
compound across several phase transitions, obtaining a
good agreement with experiments.
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II. METHOD

A. The stochastic self-consistent harmonic
approximation

The SSCHA is a variational approach for determining
the structural and vibrational properties of materials at
a finite temperature accounting for the quantum nature
of the ions. At its core, it minimizes the trial free energy
F [ρ̃], which is a functional of the trial density matrix
ρ̃. The Gibbs–Bogoliubov variational principle demon-
strates that the minimum of this trial free energy F [ρ̃] is
an upper bound for the true free energy of the system F :

F [ρ̃] = ⟨K + V ⟩ρ̃ +
1

β
⟨ln ρ̃⟩ρ̃ ≥ F. (1)

Here the first term is the energy, calculated as the quan-
tum statistical average of the ionic kinetic energy K plus
the Born-Oppenheimer potential V , and the second is the
entropic contribution to the free energy given by ρ̃. As
usual β = 1/(kBT ), where kB is Boltzmann’s constant
and T the temperature, and the quantum statistical av-
erage of an operator O means ⟨O⟩ρ̃ = tr[Oρ̃], which, in
case it only depends on the ionic positions R, can be
written as

⟨O⟩ρ̃ =

∫
dRO(R)ρ̃(R). (2)

ρ̃(R) is the ionic probability distribution function defined
by the trial density matrix ρ̃.

This problem is not well defined since there are many
different choices for the trial density matrix ρ̃. An espe-
cially useful approximation that the SSCHA employs is
to restrict the probability distribution defined by the trial
density matrix to be a Gaussian. In this approximation,
we define an auxiliary harmonic Hamiltonian

HR,Φ = K +
1

2

∑
a,b

(Ra −Ra)Φab(Rb −Rb), (3)

parametrized by centroid positions R and auxiliary force
constants Φ, whose associated probability distribution
function is the Gaussian

ρ̃R,Φ(R) =
√

det(Ψ−1/2π)

× exp

1
2

∑
a,b

(Ra −Ra)Ψ
−1
ab (Rb −Rb)

 . (4)

Here Ψ is the displacement-displacement correlation ma-
trix and in the SSCHA it has the closed analytical form

Ψab =
1√

MaMb

∑
j

2nj + 1

2ωj
eaj e

b
j , (5)

where ω2
j and ej are the auxiliary eigenvalues and eigen-

vectors of the mass-scaled SSCHA auxiliary force con-
stants, Φab/

√
MaMb, and nj is the Bose-Einstein factor

for the frequency ωj . The label a above refers to both an
ion index and a Cartesian index. The Gaussian proba-
bility distribution function makes the quantum statistical
average of the kinetic energy and the entropic term ana-
lytical functions of the auxiliary phonon frequencies ωj .

To obtain the desired crystal structure at a given tem-
perature we need to minimize the free energy F [ρ̃R,Φ]
with respect to the two set of parameters: the centroids
R and the auxiliary force constants Φ. After the mini-
mization, the centroid Ra represents the most probable
positions of the ion a. The auxiliary force constants Φab

define the variances of the Gaussians that determine the
ionic probability distribution function and are related to
the uncertainties in determining the true average posi-
tions of the ions. Also, they can be seen as the renormal-
ized second-order force constants due to quantum, tem-
perature and anharmonic effects. The SSCHA method
considers in its optimization of the crystal structure also
the relaxation of the lattice parameters by calculating
the stress tensor from the derivative of the SSCHA free
energy with respect to a strain tensor [29]. Thus the
SSCHA offers a complete relaxation of the crystal struc-
ture considering quantum/thermal fluctuations and the
associated anharmonicity.

It can be shown [28] that for a given position of the
centroids R, the SSCHA auxiliary force constants are
equal to the quantum statistical average of the second
derivatives of the Born-Oppenheimer potential:

Φab(R) =

〈
∂2V

∂Ra∂Rb

〉
ρ̃R,Φ

. (6)

This is the self-consistent equation of the SSCHA. Since
these quantities are positive definite, they can not tell
us anything about the dynamical stability of the system.
For a particular R, it is the Hessian of the total free
energy (DF ) with respect to the centroid positions that
determines the dynamical stability [28]:

DF
ab =

1√
MaMb

∂2F
∂Ra∂Rb

= (
(2)

DR)ab +Πab(0). (7)

Here, we have defined (
(2)

DR)ab = Φab/
√
MaMb and Π is

the SSCHA phonon self energy [28], which in compact
notation is given by

Π(Ω) =
(3)

DR: ΛR(Ω) :

[
1−

(4)

DR: ΛR(Ω)

]−1

:
(3)

DR . (8)

Here
(3,4)

D R have analogous definitions to the
(2)

DR (see
Eq. (6)), meaning they are the ionic mass scaled ensemble
averages of the third and fourth derivatives of the BOES.
The double-dot product X : Y indicates the contraction
of the last two indices of X with the first two indices of Y.
Finally, the Λ fourth-order tensor is given in components
as
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Λabcd
R (Ω) =

∑
jl

1

4ωjωl

[
(ωj − ωl)(nj − nl)

(ωj − ωl)2 − Ω2 + iϵ
− (ωj + ωl)(1 + nj + nl)

(ωj + ωl)2 − Ω2 + iϵ

]
eaj e

b
l e

c
je

d
l . (9)

If the hessian of the total free energy (DF ) has a negative
eigenvalue for a particular set of centroid positions, the
crystal structure is unstable towards a displacive struc-
tural phase transition.

Using the expression for the SSCHA phonon self-
energy, it is possible to define a dynamical extension of
the theory [42, 43]:

Guu(Ω) =

(
Ω2
1−

(2)

DR −Π(Ω)

)−1

. (10)

Here Guu(Ω) is the Green function of the mass scaled
atomic displacement

√
Ma(R

a − Ra) = ua. From this
Green function, we can define phonon lifetimes and spec-
tral functions.

In the current implementation of the thermal conduc-
tivity in the SSCHA code, which will be detailed be-
low, the dynamical properties (phonon spectral func-
tions and lifetimes) are calculated by assuming that
(4)

DR: ΛR(Ω) ≪ 1 and, consequently, neglecting this
term. This so-called bubble approximation is usually
good enough to calculate phonon spectral functions [28].

The inclusion of
(4)

DR, namely fourth-order anharmonic
vertices in the SSCHA self-energy, is straightforward and
will be a focus of future work (see Eq. (8)).

It is pertinent to compare the SSCHA approach with
the traditional perturbative one. In Fig. (1) we can
see a graphical representation of the self-consistent har-
monic approximation. In panel a) we show the Dyson
equation for an SSCHA phonon auxiliary Green’s func-
tion. The full single line is the SSCHA auxiliary phonon
Green function, while the dashed line is the harmonic
one. The SSCHA auxiliary phonon Green function in-
cludes the renormalization due to anharmonicity of the
so-called tadpole and loop lowest-order self-energy dia-
grams, among many others. In panel b) we can see the
Dyson equation for the interacting SSCHA Green’s func-
tion. Again the full line is the SSCHA auxiliary Green’s
function, the double line is the full dynamical Green’s
function, and the circle is the SSCHA self-energy. This
self-energy includes an infinite number of terms as shown
in the panel c). However, in the current implemen-
tation, we are only including the first term (red box),
which only relies on third-order anharmonicity. Equa-
tion (8) will include all the rest of the terms in the expan-
sion that include additionally fourth-order anharmonic
vertices (cyan box). It is important to point out that
these terms considered in the SSCHA theory (cyan box)
are different from the fourth-order anharmonic terms
currently implemented in some other thermal transport
codes [44, 45] (see panel d) of Fig. (1)) [46]. It has been
argued that, at least in some systems, the self-energy

= +

a)

b)

c)

d)

= + + + ...

= + + + ...

Π

Π

FIG. 1. Graphical representation of the Feynman diagrams
included in the stochastic self-consistent harmonic approx-
imation (SSCHA). a) The Dyson equation for the SSCHA
auxiliary phonon Green function. b) The Dyson equation for
the dynamical SSCHA Green function. c) Phonon self-energy
expansion in the SSCHA. d) The self-energy term currently
implemented in some transport codes for the fourth-order an-
harmonicity contribution to the phonon lifetimes. Dashed
lines represent the harmonic phonon Green functions, full
lines SSCHA auxiliary phonon Green functions, double lines
dynamical phonon Green functions, empty symbols are per-
turbative anharmonic vertices in the expansion of BOES and
full symbols are SSCHA anharmonic terms. Circles represent
third-order vertices and squares fourth-order vertices.

term in panel d) of Fig. (1) and those marked in cyan
in panel c) of Fig. (1) should be of comparable size [47–
49]. Benchmarking between these different terms will be
a subject of future studies.

B. Green-Kubo formula for the lattice thermal
conductivity

To derive an expression for the lattice thermal con-
ductivity, we start with Kubo’s well-known results for
the lattice thermal conductivity in the linear response
regime [50, 51]:

κxy(ν) =
NV

kBT 2

∫ ∞

0

dt
eiνt

β

∫ β

0

ds⟨Sx(0)Sy(t+ is)⟩.

(11)
Here x and y are Cartesian directions, NV is the vol-
ume of the crystal, and ⟨Sα(0)Sβ(t + is)⟩ is the heat
autocorrelation function. We use ℏ = 1. ν is the driv-
ing frequency, the frequency of the time modulation of
the temperature gradient. The dynamical lattice thermal
conductivity (ν > 0) can be calculated and compared, for
instance, with time-dependent thermoreflectance exper-
iments [52–54]. The dynamical lattice thermal conduc-
tivity κxy(ν) is actually a complex-valued function. To
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obtain a quantity that is measured in the experiment we
take the ν → 0 limit of the real part of κxy.

First, we need a model for the heat current Sx(t). We
will use the one given by Hardy [55]:

Sx(t) =
1

2NV

∑
q,j,j′

ωq,j′v
x
q,j,j′Aq,j(t)Bq,j′(t). (12)

ωq,j is the SSCHA auxiliary frequency of the phonon with
wave vector q and branch j. vxq,j,j′ is the component of
the generalized phonon group velocity matrix in the xth
direction:

vq,j,j′ =
1

2
√
ωq,jωq,j′

∑
a,b

ea∗q,je
b
q,j′(∇q

(2)

DR (q))ab, (13)

where
(2)

DR (q) is the Fourier transform of
(2)

DR. In the
equation above a and b label now Cartesian and atom
indexes of atoms in the unit cell. We will adopt this
meaning for Latin indexes for all quantities in Fourier
space. Operators A(t) and B(t) are given in Heisenberg’s
picture as:

Aq,j(t) = a†q,j(t)− a−q,j(t) (14)

Bq,j(t) = aq,j(t) + a†−q,j(t), (15)

where aq,j(t) and a†q,j(t) are phonon annihilation and cre-
ation operators. Operators A and B are related to atomic
displacements and momenta operators up to some scal-
ing factor. It is easy to show that this expression for
the heat current in the harmonic approximation simpli-
fies to the more commonly used Peierls’ definition [55].
However, in our case, adopting this approximation will
not simplify the subsequent discussion. Therefore, we
will continue using the slightly more general definition,
as given in Eq. (12). One important note is that the

dynamical matrices used to calculate phonon frequencies
and group velocities in Eq. (12) come from the SSCHA
auxiliary force constants. Hardy derived Eq. (12) assum-
ing a general harmonic Hamiltonian. The SSCHA aux-
iliary Hamiltonian is a better approximation to the full
Hamiltonian compared to the harmonic one due to the
variational minimization procedure.

When we substitute the heat current expression into
Kubo’s formula we end up with a four-operator correla-
tion function. In principle, we should be working with
this correlation function, but in order to make calcu-
lations more tractable we implement Wick’s decoupling
scheme [56]. Giving up on the two phonon Green’s func-
tion means we are neglecting the vertex corrections to
the phonon self-energy and we will not be able to recover
the full solution to the Boltzmann transport equation.
Hence, we will not be able to model the hydrodynamic
phenomena at relatively low temperatures [40]. How-
ever, here we are mostly interested in the modeling of
the transport properties of highly anharmonic materials
at elevated temperatures where hydrodynamic effects are
strongly diminished. With the decoupling procedure, we
approximate the correlation function as

⟨Aq,j(0)Bq,j′(0)Aq′,l(t)Bq′,l′(t)⟩ ≈
⟨Aq,j(0)Bq,j′(0)⟩⟨Aq′,l(t)Bq′,l′(t)⟩+
⟨Aq,j(0)Bq′,l′(t)⟩⟨Bq,j′(0)Aq′,l(t)⟩+
⟨Aq,j(0)Aq′,l(t)⟩⟨Bq,j′(0)Bq′,l′(t)⟩ =

JAB
q,j,q′,l′(t)J

BA
q,j′,q′,l(t) + JAA

q,j,q′,l(t)J
BB
q,j′,q′,l′(t). (16)

The first term in this expansion describes the cor-
relations between phonon displacement and momenta
at the same time and thus it is zero [57]. After
Fourier transformation of the rest of the correlation func-
tions (JAA

q,j,q′,l(t), J
AB
q,j,q′,l′(t), J

BA
q,j′,q′,l(t), J

BB
q,j′,q′,l′(t)) we

obtain:

κxy(ν) = β2kB

16π2NV

∑
q,j,j′

∑
q′,l,l′ ωq,j′v

x
q,j,j′ωq′,l′v

y
q′,l,l′

1
β

∫ β

0
e(Ω1−Ω2)sds

∫∞
0

e−i(Ω1−(Ω2+ν))tdt×∫∞
−∞ dΩ1dΩ2

(
JAA
q,j,q′,l(Ω1)J

BB
q,j′,q′,l′(Ω2) + JAB

q,j,q′,l′(Ω1)J
BA
q,j′,q′,l(Ω2)

)
. (17)

Using the fact that iȦq,j(t) = [Aq,j ,H] = −ωq,jB
†
q,j(t)

and the properties of the spectral representation of the
correlation functions [58], we can represent these four
correlation functions only through JAA [59] (see Supp.
Material [60]). The correlation function JAA will exist
only for the operators at the same wave vector q (or
rather for a pair (q,−q)) and branch index j (so-called
no-mode-mixing approximation). We checked for simple

systems that the full (keeping the off-diagonal terms in
phonon branches of the phonon spectral function for the
same wave vector q) and no-mode-mixing approximation
gives almost the same result for the thermal conductivity
(see Supplementary Material [60]). After evaluating the
integrals over s and t, the no-mode-mixing approximation
simplifies the expression for the real part of the lattice
thermal conductivity to

κxy(ν) =
β2kB

16NV π

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′

eβν − 1

βν

∫ ∞

−∞
dΩΩ(2Ω + ν)eβΩJAA

q,j (Ω + ν)JAA
q,j′(Ω). (18)
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Let us now discuss how to obtain the correlation func-
tions JAA. These correlation functions can be found
as [58]

JAA
q,j (Ω) = − 2

exp(βΩ)− 1
ImGAA

q,j (Ω), (19)

where GAA
q,j (Ω) is the Green function of the operator A.

As we have noted in the previous section, in the SS-
CHA we define Green’s functions in terms of mass-scaled
phonon displacement operators uq,j , which introduces a
factor 2ωq,j . Additionally, if we define phonon spectral
function as σq,j(Ω) = −Ω

π ImGuu
q,j(Ω) and take a ν → 0

limit, we reach the final expression for the lattice thermal
conductivity as implemented in the SSCHA code:

κxy =
2πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

∫ ∞

−∞
dΩ

exp(βΩ)

(exp(βΩ)− 1)
2σq,j(Ω)σq,j′(Ω). (20)

The equation above can be split into two contributions,
the diagonal part in the phonon branch index (j = j′)
and the off-diagonal part (j ̸= j′). The off-diagonal part
of the lattice thermal conductivity describes what was
termed as the coherent contribution to transport [36],
and these two terms will be used interchangeably in the
rest of the paper. To obtain the lattice thermal con-
ductivity, we integrate over the entire phonon spectral
function, thereby avoiding the question of whether the
phonon lifetimes and energies are well defined.

In the limit of small anharmonicity, where phonon
linewidths are much smaller than the phonon frequen-
cies and the phonon shift can be disregarded, the diag-
onal part of the equation above reduces to the solution
of the Boltzmann transport equation in the single relax-
ation time approximation (SRTA). To show this, we start
from the expression for σq,j(Ω) in the no-mode-mixing
approximation [7, 28]:

σq,j(Ω) =
1

2π

[
−ImZq,j(Ω)

(Ω−ReZq,j(Ω))2+ImZ2
q,j(Ω)

+

+
ImZq,j(Ω)

(Ω+ReZq,j(Ω))2+ImZ2
q,j(Ω)

]
, (21)

with Zq,j(Ω) =
√
ω2
q,j +Πq,j(Ω), where Πq,j(Ω) is the

phonon self-energy in the mode basis (see Eq. (8)).The
form of Eq. (21) resembles a Lorentzian function peaked
around ReZq,j(Ω), which in the limit of low anharmonic-
ity is just ωq,j . Since this function has a strong peak in
the limit of low anharmonicity, we can approximate one
of the spectral functions in Eq. (20) as a delta function
δ(Ω−ωq,j), which will annihilate the integral over Ω and
substitute all Ω’s with ωq,j . With this, we obtain:

κxy =
1

NV

∑
q,j

vxq,jv
y
q,jcq,j

−1

2ImZq,j(ωq,j)
. (22)

Here cq,j = kBβ
2ω2

q,jnq,j(nq,j+1) is the heat capacity of
the phonon mode (q, j) and vq,j = vq,jj is its group ve-
locity. From the equation above we identify −1

2ImZq,j(ωq,j)

as the phonon lifetime τq,j . In previous publications [7],

this approximation was called one-shot approximation.
The phonon lifetimes can further be approximated as (as
it is done in most other codes) τq,j = − ωq,j

ImΠq,j(ωq,j)
, which

is what we term perturbative approximation. However,
the best approximation for the phonon lifetime and fre-
quency is obtained by solving self-consistently the equa-
tion

Ωq,j = ReZq,j(Ωq,j) (23)

to get the shifted phonon frequency due to anharmonic-
ity Ωq,j and, then, taking τq,j = − 1

2ImZq,j(Ωq,j)
for the

lifetime.
A similar procedure can be applied in order to get

the off-diagonal contribution in the limit of low anhar-
monicity (see Supp. Material [60]). If we assume that
ImZq,j(Ω) = ImZq,j(ωq,j) = Γq,j , i.e. the lifetime does
not depend on Ω, and that ReZq,j(Ω) = ReZq,j(ωq,j) =
ωq,j , we obtain that the lattice thermal conductivity in
the perturbative limit is split into two terms, κxy =
κxy
R + κxy

A , with

κxy
R =

1

2NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′

(
ωq,j′

cq,j
ωq,j

+ ωq,j
cq,j′

ωq,j′

)
×

× Γq,j + Γq,j′

(ωq,j − ωq,j′)2 + (Γq,j + Γq,j′)2

κxy
A =

1

2NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′

(
ωq,j′

cq,j
ωq,j

+ ωq,j
cq,j′

ωq,j′

)
×

× Γq,j + Γq,j′

(ωq,j + ωq,j′)2 + (Γq,j + Γq,j′)2
. (24)

Here κxy
R is the resonant term and κxy

A the anti-resonant
one. A similar splitting of the off-diagonal terms has
been described in Refs. [39, 61]. The resonant term has a
square of the difference of phonon frequencies in the de-
nominator and, because of this, it is the dominant one.
Additionally, for j = j′ this term reduces to Eq. (22),
the solution of the Boltzmann transport equation in the
single relaxation time approximation. This resonant part
should have a considerable contribution only in the case
when the difference between phonon frequencies is much
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smaller than the phonon linewidths. Current results for
resonant and anti-resonant terms differ slightly from the
ones obtained in Ref. [61]. The difference can be traced
to the approximation scheme employed for the evaluation
of the overlap integrals since the definitions of the lattice
thermal conductivity in the Lorentzian approximation
are identical. The different approximation schemes are
shown in the Supplementary Material. Using the same
approximation scheme yields identical results. It is im-
portant to note that the differences between Eq. (24)
and the one in Ref. [61] get smaller as ωq,j − ωq,j′ → 0,
which is also the case when this transport mode is most
effective. We have compared explicitly different approx-
imations of the off-diagonal contributions to the lattice
thermal conductivity in the Supplementary Material [60].

C. Technical details of the implementation

The calculation of the generalized phonon group veloc-
ities is done by employing the analytical formula [55]:

vxq,j,j′ =
i

2
√
ωq,jωq,j′

∑
a,b

ea∗q,je
b
q,j′

∑
rab

Φab(rab)√
MaMb

rxabe
iqrab .

(25)
Here ω2

q,j and eq,j are eigenvalues and eigenvectors of
the dynamical matrices in reciprocal space constructed
from the SSCHA auxiliary force constants Φab(rab), and
a and b denote Cartesian and atom indexes restricted to
the unit cell. For the Fourier interpolation of phonon fre-
quencies and eigenvectors, we are using the smooth con-
vention for the phase factor [37]. Thus rab is the vector
connecting atoms a and b. We calculate the group veloc-
ities on the entire grid of q points. Then, we symmetrize
the group velocities with respect to the little group of
the wave vector q by applying the point group part of
the spacegroup symmetry to the group velocity vector.
Finally, in Eq. (20) and Eq. (22) we perform the sum
over the whole set of q points and not only over the ir-
reducible zone.

The SSCHA code implements two ways of calculating
the lattice thermal conductivity. It first considers the
use of Eq. (22), which is practically the solution of the
Boltzmann transport equation. The phonon lifetimes can
be calculated in the perturbative limit, one-shot approx-
imation, or self-consistently as described above. In the
case of solving the equation self-consistently, the phonon
self-energy is sampled on a fixed grid of frequencies and
linearly interpolated when needed. In this case, the off-
diagonal contribution to the lattice thermal conductivity
can be calculated using Eq. (24).

The second way of calculating the lattice thermal con-
ductivity is the implementation of the full Green-Kubo
method, see Eq. (20). Similarly to the calculation of self-
consistent lifetimes, in this case the phonon self-energy is
sampled on a fixed grid of frequencies too, and then the
integral in the equation is evaluated numerically. The
spacing between frequencies in this grid should be of the

order of the smallest phonon linewidth, but stable results
should be possible even with larger values. In principle,
the number of frequency steps is an additional conver-
gence parameter in addition to the q-point grid.

In order to obtain the correlation functions from the
phonon Green function we need to take the imaginary
part of the limit limϵ→0 G(Ω) (see Eq. (9)). Here we can
think of ϵ as the smearing parameter. This procedure
we will call Lorentzian smearing. Alternatively, since ϵ
is effectively 0, we can use the following identity 1

x±iϵ =

P 1
x ∓ iπδ(x). Now the imaginary part of the self-energy

contains Dirac delta functions that can be approximated
with a Gaussian function of width ϵ. We refer to this
procedure as Gaussian smearing and, in this case, the
real part of the self-energy is obtained using the Kramers-
Kronig relation.

Next, we would like to discuss the technical issues with
regard to using the Green-Kubo method. From Eq. (20)
we can see that we have a possible divergence in 1

Ω2 as
Ω → 0. This implies that phonon spectral functions have
to decay at least linearly with Ω → 0 to have stable re-
sults. If the decay of the spectral function is slower, or if
the spectral function is not decaying at all (as it happens
in CsPbBr3 at low temperatures in the P4/mbm and
Pm3̄m phases, and at high temperatures in the Pnma
phase, see below), we can have unphysical results. This
is a good thing, because it signals us that the structure is
not stable at the conditions (pressure, temperature) we
are simulating it on. The BTE does not have this tech-
nical issue, but its results are not any more meaningful.

Finally, let us discuss the similarities and differences
between the current implementation and other Green-
Kubo approaches for calculating the lattice thermal con-
ductivity. The most common way to calculate the lattice
thermal conductivity using the Green-Kubo method is
with molecular dynamics (MD) simulations [62–64]. In
this method heat current autocorrelation functions are
directly sampled on an MD trajectory. The main ad-
vantages of the MD method are that it fully includes
anharmonicity and that it goes beyond the harmonic ap-
proximation in the definition of the heat current, which
is our case (see Eq. (12)). Additionally, with MD sim-
ulations it is straightforward to include additional scat-
tering mechanisms such as impurities, grain boundaries,
etc. On the other hand, these calculations are notori-
ously hard to converge and usually not possible with den-
sity functional theory (DFT), although recently there has
been some progress in this area [63]. Moreover, in MD
methods it is difficult to distinguish structures that are
related to temperature-induced displacive phase transi-
tions. Also, determining which are the phonon modes
that contribute the most to the thermal conductivity is
hard in these approaches. In the method presented here,
we do not need to run any MD simulations to consider
anharmonicity at a non-perturbative level, as the basic
ingredients that are needed are provided by the SSCHA,
which further provides a clear way of determining the
crystal structure at any temperature and gives access to
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phonon spectra.
There are derivations of the Green-Kubo approach

in the literature in the same spirit as our implementa-
tion [56, 65, 66]. Our approach uses a different definition
of the heat current for the diagonal part of κ compared to
these previous reports. For the non-diagonal part of the
lattice thermal conductivity, previous studies are using
the same heat current definition as we are [66]. How-
ever, although we are using the same definition for the
non-diagonal part of the lattice thermal conductivity, we
get slightly different results compared to Ref. [66]. This
is due to different expressions for the momentum corre-
lation function (JBB). Our definition of the momentum
correlation function is consistent with the ones obtained
in Refs. [42, 59]. Finally, we extend the theory to de-
rive the expression for the complex dynamical part of
the lattice thermal conductivity (see Supplementary Ma-
terial [60]).

The described methods are implemented in the SSCHA
code within ThermalConductivity method [67].

III. LATTICE THERMAL CONDUCTIVITY OF
CSPBBR3

In this section we present results on the lattice thermal
conductivity of CsPbBr3, using both the Green-Kubo
method and its perturbative limit. We chose CsPbBr3
as our test subject for two main reasons. First, CsPbBr3
exhibits a remarkably rich phase diagram, with at least
three different phases up to 420 K [68–70]. Below 361 K,
CsPbBr3 crystallizes in an orthorhombic Pmna struc-
ture, undergoing a second-order phase transition to a
tetragonal P4/mbm structure at this temperature. Sub-
sequently, around 411 K, there is a first-order phase tran-
sition to the perovskite Pm3̄m cubic structure. As shown
in Fig. (2), the phase transition from perovskite Pm3̄m
to P4/mbm phase is marked by the rotation of Pb-Br
octahedra inside the xy plane, while the phase transition
between tetragonal P4/mbm and orthorhombic Pnma
phases is manifested by the rotation of the same octa-
hedra from the z axis. The high-temperature phases,
P4/mbm and Pm3̄m, are dynamically unstable in the
harmonic approximation (see Fig. (3)) and to correctly
describe them the SSCHA approach is a necessity. Ad-
ditionally, one expects that anharmonicity is very strong
at these temperatures and that this will lead to a strong
renormalization of phonon spectral functions, making it
a prime subject for the Green-Kubo method.

Another compelling reason for selecting CsPbBr3 as
the subject of our study is its manifestation of unusual
thermal transport behavior. The conventional solution
of the Boltzmann transport equation significantly under-
estimates the lattice thermal conductivity of this com-
pound [36, 71]. It has been demonstrated that to accu-
rately model the thermal conductivity (κ) of this mate-
rial, one must incorporate the contributions of so-called
coherent transport [36, 37, 61]. This phenomenon is not

361 K 411 K

FIG. 2. Structure of CsPbBr3 along z direction in three dif-
ferent phases. (a) Thermal expansion of CsPbBr3 calculated
with SSCHA and compared with experiments [68–70]. The
colors of the experimental points match the colors for differ-
ent phases. (b) Helmholtz free energy of CsPbBr3 calculated
with SSCHA with reference to the orthorhombic phase. The
inset shows the lowest eigenvalue of the free energy Hessian
matrix at Z high-symmetry point of the tetragonal phase.

unique to CsPbBr3; it is also expected to have a sub-
stantial impact on amorphous materials [38, 39]. Both
CsPbBr3 and amorphous materials share the charac-
teristic of having a frequency spacing between different
phonon modes comparable to the phonon scattering rate,
leading to the emergence of this specific transport regime.
The Green-Kubo method naturally includes such contri-
butions, making it intriguing to compare its results with
those obtained from coherent transport calculations us-
ing the perturbative limit (which is the same as the Boltz-
mann transport equation).
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FIG. 3. Phonon band structures calculated in the harmonic approximation and with the SSCHA auxiliary force constants for
the three different phases of CsPbBr3 at different temperatures. Structures for which we calculated these phonon dispersions
are minima of SSCHA total free energy. Sideplots show the corresponding phonon density of states.

We model the phase transition in CsPbBr3 using the
stochastic self-consistent harmonic approximation (SS-
CHA). Employing SSCHA enables us to accurately cap-
ture the temperature-dependent evolution of the crystal
structure, including the temperature-dependent second
and third-order force constants as defined in Eq. (6).
However, the orthorhombic phase of CsPbBr3 consists of
20 atoms per primitive unit cell, making it impractical to
use density functional theory (DFT) to obtain the forces,
energies, and stresses required for SSCHA’s minimization
of the total free energy. To overcome this limitation, we
opted to create a machine learning potential based on
Gaussian Approximation Potentials (GAP) [72–74]. The
Supplementary Material contains further details about
the fitting procedure and the thorough testing of the in-
teratomic potential [60].

To calculate the second and third-order force con-
stants, we relaxed CsPbBr3 using SSCHA, enabling
structural changes and atomic position adjustments dur-
ing the minimization of the Helmholtz free energy. We
considered all three possible phases (Pnma, P4/mbm,
and Pm3̄m) at various temperatures. The results are
compared with experimental data in Fig. (2) (a). The
machine learning potential provides good agreement
with experimental lattice constants in the orthorhombic
phase, except for overestimating the largest lattice con-
stant. This overestimation is also present in the tetrag-
onal and cubic phases. The overestimation originates
mainly from the underlying density functional theory
(DFT) data, which overestimates the largest orthorhom-
bic lattice constant. Above 450 K, the anisotropy be-
tween in-plane lattice constants in the orthorhombic cal-
culation disappears, suggesting a transition. Above this
temperature, both orthorhombic and tetragonal struc-
tures display practically identical lattice constants, point-
ing to a second-order phase transition. This is in agree-
ment with the experiments. In contrast, the cubic lattice
constants do not converge to any of the lattice constants
of the orthorhombic and tetragonal phases, suggesting a
first-order phase transition between the tetragonal and
cubic phases.

To investigate the nature of the phase transition

more carefully, we calculated the Helmholtz free energies
for each phase at various temperatures, as depicted in
Fig. (2) (b). Above 450 K, the free energies of the tetrag-
onal and orthorhombic phases coincide within the error
margin allowed by the stochastic sampling of the SSCHA,
confirming a second-order phase transition. This conclu-
sion is corroborated by the behavior of the soft mode in-
ducing the phase transition, shown in the inset of Fig. (2)
(b), where the frequency of the soft mode of the free en-
ergy Hessian becomes real exactly at 450 K. The free
energy Hessians were calculated with the fourth-order
anharmonic contribution for both P4/mbm and Pm3̄m

phases, i.e. including
(4)

DR in Eq. (8). Further, at 550 K,
the free energy of the Pm3̄m phase becomes the lowest,
which together with the results of the thermal expan-
sion (the existence of discontinuity of the values of the
lattice parameters at this temperature) indicates a first-
order phase transition. Concurrently with this crossing of
the free energies, the free energy Hessian associated with
the soft mode M of the cubic structure becomes positive
also at 550 K. Similarly, the Hessian of the tetragonal
phase is as well positive at this temperature. This sug-
gests that even if the cubic phase becomes dynamically
stable exactly at the temperature at which it becomes
the ground state structure, the tetragonal remains still
a local minimum of the free energy at this temperature,
which is a hallmark of the first-order phase transition.
It is important to note that we are overestimating the
phase transition temperatures by approximately 100 K
in both cases. This overestimation can be attributed
to the DFT parametrization used in the training of the
GAP potential due to its impact on one of the in-plane
lattice constants in the Pnma phase. With a smaller
overestimation of the lattice constant, we would expect
a P4/mbm → Pnma phase transition at a lower temper-
ature, leading to a better agreement with experimental
results.

Next, we present the phonon band structures of
CsPbBr3 in the three phases at different temperatures
within their stability ranges (Pnma at 50 K, P4/mbm at
500 K, and Pm3̄m at 550 K) in Fig. (3). We compare the
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results of the harmonic phonons with those obtained from
the SSCHA auxiliary phonon frequencies. This is impor-
tant to show since these are the numbers that are going
into evaluating Eq. 22 and Eq. 24. At 50 K, the phonons
of the orthorhombic phase are relatively unaffected by
anharmonicity and quantum effects, as expected. In con-
trast, at 500 K (the tetragonal structure) and 550 K (the
cubic structure), the harmonic approximation indicates
imaginary frequencies, revealing the dynamical instabil-
ity of these structures in the classical perspective based
on the BOES minima. To investigate further, we cal-
culated the second-order force constants of these struc-
tures at the appropriate temperatures using the SSCHA,
leading to a significant renormalization of phonon quasi-
particles. The SSCHA-calculated auxiliary phonon fre-
quencies demonstrate only modest softening for relevant
q points in both phases (Z in the tetragonal phase, and
M and R in the cubic phase). It is worth noting that in
this and subsequent analyses, we have not accounted for
the effects of the long-range interaction of phonon modes
(LO-TO splitting). These effects primarily influence op-
tical modes close to the Γ point, which generally do not
significantly contribute to thermal transport.

However, SSCHA auxiliary phonons are not real ex-
perimentally observable quantities, but just variational
parameters of the SSCHA minimization. However, they
are a better representation of the vibrational properties
of a material compared to a harmonic approximation due
to the inclusion of anharmonicity in a non-perturbative
way as shown in Fig. 1. Even a better representation
of the vibrational properties of a material is provided
by the SSCHA dynamical Green function (double line in
Fig. 1). For that reason, we show in Fig. 4 spectral func-
tions of soft phonon modes in the tetragonal (Z q point)
and cubic (M and R q points) phases at 500 K and 550

K, respectively, neglecting the
(4)

DR term in the phonon
self-energy (see Fig. (4)). We have fixed the value of the
spectral function to be 0 at Ω = 0 to avoid numerical in-
stabilities. In the tetragonal phase at 500 K, the Z mode
is highly softened. However, it is important to note that
at this temperature, the free energy Hessian (calculated

including
(4)

DR) does not exhibit imaginary frequencies,
indicating that the structure is dynamically stable with
highly damped vibrations. This is consistent with the
first-order phase transition described above between the
tetragonal and cubic phases. The peak of the spectral
function occurs around 0.06 THz, and the value of the
spectral function appears to approach 0 as Ω → 0. The
overdamped dynamics in the cubic phase have been ex-
perimentally observed in M and R points [34], and, at
Γ [75] as well. The R point of the cubic phase folds back
to the Z point of the tetragonal phase, where we observe
this overdamped behavior.

Similarly, in the cubic phase, the soft modes are sig-
nificantly softened compared to their auxiliary frequency
values, although not to the same extent as in the tetrag-
onal P4/mbm structure. All spectral functions exhibit a
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FIG. 4. Phonon spectral functions of soft modes in the tetrag-
onal P4/mbm phase (Z q-point) and the cubic Pm3̄m phase
(M and R q-points). Vertical dashed lines indicate SSCHA
auxiliary frequencies for these modes.

non-Lorentzian lineshape, with the spectral function of
the cubic phase showing satellite peaks at significantly
higher energies. These results clearly indicate that vi-
brations in CsPbBr3 within this temperature range are
overdamped.

We wish to emphasize another technical challenge in-
herent in modeling highly anharmonic materials. Specif-
ically, the orthorhombic phase of CsPbBr3 should, in
theory, exhibit dynamic stability up to the second-
order phase transition to the tetragonal phase (above
450 K). However, our calculations reveal an intrigu-
ing discrepancy: at elevated temperatures (>300 K),
this phase manifests negative total free energy curva-
ture—evidenced by imaginary Hessian frequencies. The
primary factor underpinning this limitation is our omis-

sion of
(4)

DR in the calculation of the free energy Hessian in
this phase due to the substantial computational demands
associated with its inclusion (refer to the Supplementary
Material for details). Including this term would shift the
emergence of negative eigenvalues in the Hessian at 450
K, where the orthorhombic phase undergoes a second-
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order phase transition to the tetragonal phase. Indeed,
this is an example that in a second-order phase transition
also the phonon driving the transition softens in the low-
symmetry phase when increasing the temperature [76].
The pronounced softening of a particular phonon mode,
as discerned through Hessian calculations, will cause nu-
merical instabilities in the computation of the lattice
thermal conductivity via the Green-Kubo method, as we
have explained in the previous section. Similarly, this
exact thing happens for the other two phases (P4/mbm
and Pm3̄m) at lower temperatures. These instabilities
are however limited to a small part of the Brillouin zone
and, hence, do not have a substantial effect on the overall
lattice thermal conductivity.

Before presenting our own findings on the lattice ther-
mal conductivity of CsPbBr3, it is pertinent to analyze
the existing experimental results [71, 77–80]. Most of
these experiments only measured the lattice thermal con-
ductivity in the orthorhombic phase. These experimental
studies can be categorized into two distinct groups, each
yielding markedly different results. The first category in-
volves investigations conducted on CsPbBr3 nanowires,
as detailed in Refs. [71, 77]. These results exhibit a sig-
nificant level of agreement both within the same study
across different samples and also between different stud-
ies. Furthermore, it is worth noting that the lattice ther-
mal conductivity from these experiments displays lim-
ited dependence on the nanowire cross-sectional area (all
nanowires’ cross-section dimensions are > 100 nm), im-
plying that κ should attain the bulk limit. This is fur-
ther confirmed by our calculations of the phonon mean
free path at 250 K which rarely surpasses 10 nm (see
Supp. Material). These nanowire-based investigations
were subjected to comparison with preceding theoreti-
cal findings [36, 81], revealing a good agreement between
theoretical predictions and empirical observations for the
low-temperature orthorhombic phase. Conversely, the
second category of experiments involves examinations of
single crystal samples of CsPbBr3 [78–80]. These results
consistently report higher thermal conductivity values in
comparison to those observed in nanowires. However,
these single-crystal results do not exhibit strong agree-
ment amongst themselves. It is noteworthy that, aside
from one instance [80], the majority of these studies omit
reporting the experimental error, thereby introducing
challenges in the comparison of results across different
experiments. One of the references pertaining to single
crystal results notes that their material is virtually insu-
lating, thereby negating the possibility that the electronic
contribution to the thermal conductivity can explain the
difference in results between nanowires and single crys-
tals. Additionally, while one of the experiments demon-
strates a correlation between higher symmetry structures
and elevated thermal conductivities [79], another study
fails to identify any distinct changes between various
phases [78]. The disparity between the thermal conduc-
tivity results from single-crystal and nanowire examina-
tions, as well as the inconsistencies among the single-

crystal results, underscores the need for further compre-
hensive experimental investigations aimed at elucidating
these discrepancies.

In our study, we have computed the lattice thermal
conductivity of CsPbBr3 across the entire temperature
range for all three structural phases, regardless of their
stability at each temperature. However, in Fig. (5) we
only represent the results of the total lattice thermal
conductivity (particle plus coherent part) in x Cartesian
direction for the structures that are the minimum of the
total free energy at that temperature. The computed val-
ues of the lattice thermal conductivity exhibit a consis-
tent trend: for all temperatures, the cubic Pm3̄m phase
shows the highest thermal conductivity, followed by the
tetragonal P4/mbm phase, and finally the orthorhom-
bic Pnma phase, in agreement with measurements [79]
and recent theoretical results [81]. The greater phonon
lifetimes for low-frequency modes in both the cubic and
tetragonal structures contribute to their higher thermal
conductivities (κ). Additionally, the cubic phase displays
larger phonon group velocities compared to the tetrago-
nal phase, further enhancing its κ. Notably, our results
fall within the spectrum between nanowire and single-
crystal samples. While overestimating the experimental
results could potentially be attributed to factors such as
isotope scattering, grain boundaries, and crystalline im-
purities, explaining the underestimation relative to single
crystal samples poses a significant challenge, particularly
considering the assertion by the authors of Ref. [78] that
they possess an insulating crystal. One possible solution
to this discrepancy could be the contribution of the an-
harmonic heat flux which we do not include here [55].
This contribution might be considerable in strongly an-
harmonic materials and could lead to the observed dis-
crepancy between our results and single crystal measure-
ments. Finally, we also compare our results with previ-
ously reported ones in Ref. [36]. Our results differ slightly
from these ones because the force constants that are be-
ing used in these two studies are different, and because
in Ref. [36] isotope scattering is included.

Green-Kubo results consistently give larger values for
the lattice thermal conductivity compared to the per-
turbative limit given by Eqs. 22 and 24 (10 %-25 %),
similar to the case of GeTe [3]. The main reason for
that is the larger effective heat capacities in the Green-
Kubo method due to the shift of the quasiparticle peak
to lower frequencies. The inclusion of the fourth-order
scattering would probably shift the peaks of the phonon
spectral functions to higher frequencies and lead to a
lower lattice thermal conductivity. This would increase
the agreement with nanowire samples and further de-
crease the agreement with single-crystal results unless the
fourth-order scattering beyond the SSCHA self-energy
significantly increases the coherent transport contribu-
tion. These extra terms in the self-energy would increase
phonon linewidths [81], which would lead to a larger
overlap between spectral functions of different phonon
branches, thus increasing the coherent contribution. In
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FIG. 5. The bar above the graph represents the experimental
phase diagram of CsPbBr3 from Ref. [68]. The background
color shows the phase diagram as obtained by the SSCHA
and corresponds to the colors for the experimental bar above
the graph. (a) Total lattice thermal conductivity of CsPbBr3
calculated for different phases in perturbative limit (full lines)
and Green-Kubo method (dashed lines) in x Cartesian direc-
tion. The presented values contain both diagonal and non-
diagonal contributions. The magenta line is the theoretical
result from Ref. [36]. Experiments are given with empty sym-
bols from Refs. [71, 77–80]. (b) The coherent part of the lat-
tice thermal conductivity was calculated for different phases
in the perturbative limit using Eq. (24) (full lines) and with
the Green-Kubo method (dashed lines).

the orthorhombic phase, we have small anisotropy be-
tween κ in-plane and out-of-plane values, while in the
tetragonal phase, this anisotropy is larger (see Supp. Ma-
terial for more information).

As we previously highlighted, the influence of coher-
ent transport on the calculated lattice thermal conduc-
tivity in CsPbBr3 can be substantial [36, 81]. Fig. (5)
(b) presents our results for this phonon transport mech-
anism, calculated for all phases using both the Green-
Kubo method and the perturbative limit. Notably, we
observe a non-monotonic variation of the coherent term

with temperature in the perturbative limit. This finding
contradicts earlier calculations and is likely due to the
structure and temperature dependence of the SSCHA
interatomic force constants. Intriguingly, the coherent
transport contribution reaches its maximum at 150 K
within the perturbative limit for all phases. The Green-
Kubo method consistently yields larger coherent trans-
port values across all phases and temperatures. In the
perturbative limit, a large contribution to the coherent
transport is expected only when two harmonic frequen-
cies are similar in magnitude. The Green-Kubo method
does not have that limitation and instead calculates the
overlap between spectral functions of different phonon
modes with the same wavevector. This leads to a larger
contribution to the coherent transport. It is noteworthy
that the magnitude of the coherent transport contribu-
tion is most pronounced in the Pnma phase and weakest
in the Pm3̄m phase, thus displaying an inverse correla-
tion with the overall κ. This can be explained by the
fact that the total lattice conductivity is inversely pro-
portional to the phonon linewidth, while the coherent
part is directly proportional to it.

In Fig. (6) we present our results on the dynamical
lattice thermal conductivity. We see a characteristic de-
cay of the lattice thermal conductivity with increasing
frequency, as it is observed for Si and Ge [54]. The imag-
inary part of the AC conductivity was obtained by the
Kramers-Kronig relation. If we take an analogy with
the Drude model for electrical conductivity, the peak of
the imaginary part can be associated with the inverse
of the characteristic transport lifetime. As expected, the
Pm3̄m phase has the highest characteristic lifetime (1.05
ps), while P4/mbm and Pnma phases have similar effec-
tive phonon lifetimes (0.89 and 0.92 ps respectively). The
real part of the lattice thermal conductivity, however,
does not fit well with the Drude model with constant re-
laxation time. If we assume that the relaxation time is
inversely proportional to the frequency the fit improves
significantly (see Supp. Material [60]). Fitted values of
characteristic lifetimes are slightly larger than those ex-
tracted from the imaginary part of κ, but overall agree
qualitatively.

Now we analyze the results for the diagonal and off-
diagonal contributions to the AC lattice thermal conduc-
tivity, see the inset of Fig. (6). The diagonal part does
not show any structure in the high-frequency range and
has a shape expected from the Drude model. On the
other hand, the off-diagonal lattice thermal conductiv-
ity contribution shows a much more interesting behavior
(see the inset of Fig. (6)). It does not fall to zero with
increasing frequency but rather has a structure that does
not resemble any other signatures of the lattice thermal
conductivity (phonon density of states or spectral lat-
tice thermal conductivity). From the analysis of the per-
turbative limit of dynamical lattice thermal conductiv-
ity (see Supp. Mat. [60]), we can see that the structure
comes from the spectral density of the frequency spac-
ing between phonon modes with the same wave vector.
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FIG. 6. AC conductivity of CsPbBr3 at 250 K for all phases
(only diagonal contribution). Full lines are the real part of the
conductivity, while dashed lines represent the imaginary part
of the lattice thermal conductivity. The inset shows diago-
nal and off-diagonal contributions for the AC lattice thermal
conductivity of Pnma phase of CsPbBr3 at 250 K.

Since it significantly deviates from the diagonal part at
high frequencies, this fact could be used to experimen-
tally study this mode of heat transport. It is important
to point out that the current experiments can only probe
dynamical lattice thermal conductivity up to 100 MHz,
while the appreciable changes in dynamical lattice ther-
mal conductivity happen around 1 THz. An interesting
avenue of development might be the experimental inves-
tigation of the lattice thermal conductivity in the GHz
and maybe THz range, where the interesting behavior
happens in these highly anharmonic materials.

Finally, it is worth exploring what is the consequence
of accounting for the temperature and structure depen-
dence of the interatomic force constants in the phonon
self-energy, as in the SSCHA self-energy, compared to
those obtained directly as derivatives of the BOES as in
perturbation theory and not as expectation values. We
calculated perturbative second and third-order force con-
stants for the orthorhombic phase for the structure that
minimizes the Born-Oppenheimer energy surface by us-
ing finite difference approaches as implemented in the
PHONOPY/PHONO3PY code [20]. With these force
constants, we calculated the lattice thermal conductivity
for the same temperature range as in the SSCHA study,
see Fig. (7). In the perturbative limit, we see that the lat-
tice thermal conductivity using force constants obtained
from numerical derivatives is lower at higher tempera-
tures. This is due to the fact that temperature tends to
reduce SSCHA non-perturbative force constants, as it has
been already observed in GeTe [3] (see Supp. Material
for more details [60]). Remarkably, the Green-Kubo re-
sults for the diagonal contribution to κ agree remarkably
well between finite difference and SSCHA force constants
below 400 K. This shows that the quasiparticle picture
holds up very well up to this temperature, roughly until
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FIG. 7. (a) Diagonal part and (b) the coherent part of the
lattice thermal conductivity of CsPbBr3 calculated for the or-
thorhombic Pnma phase with the perturbative limit of the
Green-Kubo approach (Eqs. 22 and 24 full lines) and the
Green-Kubo method (dashed lines) in x Cartesian direction
with temperature and structure-dependent SSCHA force con-
stants and perturbative force constants obtained by finite dif-
ference.

the orthorhombic structure is the minimum of the total
free energy. For the off-diagonal contribution, there is
a significant difference between finite difference and SS-
CHA force constants in the Green-Kubo approach, with
the finite difference approach giving much larger values.
This can be viewed as a result of the stronger dampen-
ing of the phonon modes in the case of finite difference
force constants, which increases the overlap between the
spectral functions of different phonon modes for the same
wave vector q.

IV. CONCLUSIONS

In this paper, we presented the Green-Kubo method
for calculating the lattice thermal conductivity of highly
anharmonic materials, which is capable of handling sit-
uations with the presence of displacive phase transi-
tions. This Green-Kubo method uses the same ingredi-
ents as the standard Boltzmann transport equation ap-
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proach, i.e. second and third-order force constants. How-
ever, in contrast to the perturbative limit, the Green-
Kubo method uses phonon spectral functions, rather
than phonon lifetimes, to describe the lattice thermal
conductivity. This means that the Green-Kubo method is
applicable even in the case of overdamped phonon modes,
where a clear definition of phonon lifetimes and ener-
gies is impossible. The Green-Kubo method naturally
includes the off-diagonal in phonon branches contribution
to the lattice thermal conductivity, meaning it is able to
model coherent transport, which is the dominant contri-
bution in complex crystals and amorphous materials. We
extended the theory to calculate the complex dynamical
lattice thermal conductivity. The results of the dynam-
ical lattice thermal conductivity can be used to analyze
time-dependent thermoreflectance measurements.

We apply the Green-Kubo method to calculate the
lattice thermal conductivity of CsPbBr3 across different
crystal structures. We model the phase transitions in
this material with the stochastic self-consistent harmonic
approximation. Our results overestimate the transition
temperatures by around 100 K, which is a consequence
of the parametrization of the exchange-correlation func-
tional used in the training of the machine learning po-
tential we employ. Strong softening of the phonon modes
and departure from Lorentzian lineshape of phonon spec-
tral functions is observed in P4/mbm and Pm3̄m phases
in their stability range of temperatures.

We calculate the lattice thermal conductivity of all
three phases of interest (Pnma, P4/mbm, and Pm3̄m)
in the entire temperature range (50 K - 600 K). We find
that Pm3̄m phase has the highest lattice thermal con-
ductivity in the entire temperature range, followed by
the P4/mbm phase, with Pnma having the lowest κ.

The reason for this hierarchy is the longer phonon life-
times and higher group velocities the higher the symme-
try. We compared our SSCHA results for the orthorhom-
bic phase with results obtained with perturbative force
constants. In the perturbative limit κ is smaller at high
temperatures for perturbative force constants since the
SSCHA reduces third-order force constants considerably.
The Green-Kubo method on the other hand shows re-
markable agreement between the two approaches for the
diagonal part of the conductivity.

Differences between perturbative limit and GK results
are of the order of 20%, larger than the differences com-
ing from the temperature renormalization of the force
constants. However, in the case of CsPbBr3 it is hard
to discern whether the Green-Kubo approach leads to
a practical increase in the predictive power for the lat-
tice thermal conductivity. More studies focusing on the
application of the Green-Kubo method are needed in or-
der to definitely gauge the impact of the non-Lorentzian
lineshapes on the lattice thermal conductivity.
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I. COMPUTATION DETAILS

To calculate atomic energies, forces, and stresses we used Gaussian Approximation Potentials trained on SSCHA
data iteratively. We started with harmonic dynamical matrices available from Ref. [1] (in Pmna structure) and gen-
erated ensembles of atomic configurations at several different temperatures for which we calculated density functional
theory (DFT) forces, energies, and stresses. With this first training set, we generated the first iteration of the GAP
potential. We then relaxed SSCHA structures at different temperatures and different phases using this GAP potential.
We then extracted several atomic configurations for each of the relaxed structures, recalculated them in DFT, added
them to the training and test sets, and repeated the fitting of the interatomic potential. We continued doing this
procedure until we reached the desired accuracy of the interatomic potential.

The DFT calculations were performed with the PBE-SOL parameterization of the generalized gradient approxi-
mation exchange-correlation functional [2] using the Quantum Espresso software [3–5]. The valence electrons were
represented using Vanderbilt ultrasoft pseudopotentials [6]. The electronic wave functions were expanded into a plane
wave basis set with a 50 Ry energy cutoff. To maintain constant sampling density of k points through different phases,
we used 0.005× 2π Å−1 density of k points for all calculations. To generate and manipulate atomic structures during
the fitting procedure we used the Atomic Simulation Environment [7].

The hyperparameters used for fitting the GAP potentials are given in Supp. Table I.
In order to check the applicability of our GAP potential we show the comparison between DFT and GAP structures

that minimize the Born-Oppenheimer energy surface in Supp. Table II. The agreement we obtained between GAP

Cutoff radius 6.42 Å

Cutoff transition width 0.8 Å

Energy regularization 0.0009 eV per atom

Force regularization 0.03 eVÅ−1

Stress regularization 0.03 eVÅ−3

nsparse 3200

(lmax, nmax) (5,10)

Supplementary Table I. The values of hyperparameters that were used for fitting of the GAP potential.

∗ dorde.dangic@ehu.es
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a (Å) b (Å) c (Å)

Pnma (DFT) 7.9636 8.3889 11.6312

Pnma (GAP) 7.9619 8.3904 11.6398

P4/mbm (DFT) 8.1021 8.1021 5.9554

P4/mbm (GAP) 8.1215 8.1215 5.9463

Pm3̄m (DFT) 5.8675 5.8675 5.8675

Pm3̄m (GAP) 5.8673 5.8673 5.8673

Supplementary Table II. The comparison between the lattice parameters of the structures that minimize the Born-Oppenheimer
energy surface calculated with GAP and DFT.
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Supplementary Figure 1. Differences between forces, energies, and stresses calculated using GAP and DFT. The first row shows
these quantities calculated in GAP vs calculated in DFT. The perfect agreement would have all points lying on y = x line
(black in the figure). The second row shows histograms of errors.

and DFT is very good. This suggests that the overestimation of the phase transition temperature is due to the
underlying DFT approximation.

Finally, we show the errors for the GAP calculated forces, energies, and stresses, see Supp. Fig. 1. Importantly, the
structures for which we calculate these errors are not the ones that are included in the training set. All errors have
Gaussian-like distribution centered at 0, meaning the potential does not have a bias and is appropriate for the study.

We minimized the total free energy for structures of all phases with the stochastic self-consistent harmonic approx-
imation. The supercell used were 2×2×2 for P4/mbm (80 atoms) and Pnma (160 atoms) phases and 3×3×3 for
Pm3̄m (135 atoms) phase. During the minimization process, we used 2000 configurations per population for Pm3̄m
phase, and 4000 configurations for P4/mbm and Pnma phases. In some edge cases, we increased these numbers
to ease the minimization process. To calculate the free energy of relaxed structure we used 4000 configurations for
Pm3̄m and P4/mbm phases and 8000 configurations for Pnma phase and calculated the auxiliary harmonic part of
free energy on an interpolated 24× 24× 24 q point grid.

To calculate the Hessian of the free energy and third-order force constants we used 25000 configurations for Pm3̄m,
30000 configurations for P4/mbm and 40000 configurations for Pnma phase. The Hessian and third-order force
constants were calculated on 2 × 2 × 2 supercells for Pm3̄m to capture the soft phonon modes. The Hessians of
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the free energy for Pm3̄m and P4/mbm phases were calculated including
(4)

DR (see main text). For the rest of the
calculations, including phonon spectral functions and lattice thermal conductivity calculations, we did not include
(4)

DR.
To calculate the lattice thermal conductivity we interpolated second and third-order dynamical matrices onto

25 × 25 × 25 q grid for the Pm3̄m phase, 15 × 15 × 20 q grid for the P4/mbm phase and 13 × 13 × 9 q grid for
the Pnma phase. We used an adaptive Gaussian smearing with a smearing scale of 1.0 for the calculation of phonon
lifetimes [8]. Similarly, we used a 1.0 smearing scale for the Lorentzian smearing in order to calculate phonon spectral
functions for the Green-Kubo method. We sampled phonon spectral functions on 2000 frequency steps.
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II. EXPRESSION FOR THE DYNAMICAL LATTICE THERMAL CONDUCTIVITY

First, we define the Fourier transform of the ⟨Aq,j(0)A−q,l(t)⟩:

⟨Aq,j(0)A−q,l(t)⟩ =
1

2π

∫ ∞

−∞
JAA
q,j,l(Ω)e

−iΩtdΩ.

Then using the equation of motion for operator A, we get the Fourier transform of ⟨Aq,j(0)Bq,l(t)⟩:

−ωq,l⟨Aq,j(0)Bq,l(t)⟩ = i⟨Aq,j(0)Ȧ−q,l(t)⟩ =
1

2π

∫ ∞

−∞
ΩJAA

q,j,l(Ω)e
−iΩtdΩ.

Next, using the properties of the spectral representation of the correlation function [9], we get ⟨Bq,j(0)Aq,l(t)⟩:

⟨Bq,j(0)Aq,l(t)⟩ = − 1

2π

1

ωq,j

∫ ∞

−∞
eβΩΩJAA

q,l,j(Ω)e
iΩtdΩ.

Finally, taking the derivative once more of the operator A, we obtain the correlation function for ⟨Bq,j(0)Bq,l(t)⟩:

⟨Bq,j(0)B−q,l(t)⟩ = − 1

2π

1

ωq,jωq,l

∫ ∞

−∞
eβΩΩ2JAA

q,l,j(Ω)e
iΩtdΩ.

Substituting these expressions into the definition of the heat current, we end up with two integrals that we can evaluate
analytically. The first one:

1

β

∫ β

0

e(Ω1−Ω2)sds =
e(Ω1−Ω2)β − 1

(Ω1 − Ω2)β
,

and the second one over time (we are keeping the driving frequency (ν)):∫ ∞

0

e−i(Ω1−(Ω2+ν))t = i lim
ϵ→0

1

(Ω1 − (Ω2 + ν)) + iϵ
= P i

(Ω1 − (Ω2 + ν))
+ πδ(Ω1 − (Ω2 + ν)). (1)

We are only interested in the real part of the expression. The Dirac delta function will annihilate one of the frequency
integrals that come from the Fourier transform of the correlation function and leave us with the final expression for
the dynamical lattice thermal conductivity (we cast correlation functions in terms of phonon spectral functions):

κxy(ν) =
πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

eβν − 1

βν

∫ ∞

−∞
dΩ(1 +

Ω

Ω+ ν
)

eβΩ

(eβΩ − 1)
(
eβ(Ω+ν) − 1

)σq,j′(Ω)σq,j(Ω + ν).

(2)

Obviously, in the limit ν → 0 we obtain Eq. (20) in the main part. Strictly, this is the real part of the lattice thermal
conductivity because of Eq. 1. The imaginary part of κ would be Kramer-Kronig’s transformation of the real part.
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Supplementary Figure 2. Lattice thermal conductivity of GeTe calculated with Green-Kubo method in mode-mixing (Eq. 4)
and no mode-mixing (Eq. 6) approximation.

III. VALIDITY OF NO MODE-MIXING APPROXIMATION

We checked the applicability of the no mode-mixing approximation in the case of Germanium Telluride, a highly
anharmonic material. We calculated second and third-order SSCHA force constants at 300 K for a structure that is
a minimum of SSCHA free energy at that temperature. To calculate energies, forces, and stresses we used a machine
learning potential developed in one of our previous works [10, 11]. Results for the lattice thermal conductivity at
different temperatures are shown in Figure 2. We can see that the differences between mode-mixing and no mode-
mixing results are minimal.
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IV. PERTURBATIVE LIMIT FOR THE LATTICE THERMAL CONDUCTIVITY

A. Diagonal terms

Let us show the perturbative limit for the diagonal part of the lattice thermal conductivity. In the perturbative
limit we assume that the real part of the self-energy does not have a shift, i.e. ReZq,j(Ω) = ωq,j . Then the imaginary
part of the self-energy is constant with frequency ImZq,j(Ω) = Γq,j . In that case the phonon spectral function is
simple Lorentzian:

σq,j(Ω) =
1

2π

(
−Γq,j

(Ω− ωq,j)2 + Γ2
q,j

+
Γq,j

(Ω + ωq,j)2 + Γ2
q,j

)
. (3)

This function strongly peaks in ±ωq,j and we can approximate it with Dirac delta function (σq,j(Ω) =
1
2δ(Ω−ωq,j)).

We can substitute this in the definition of the lattice thermal conductivity (Eq. 20. of the main part) to obtain:

κxy =
πβ2kB
NV

∑
q,j

vxq,jv
y
q,jω

2
q,j

∫ ∞

−∞
dΩ

exp(βΩ)

(exp(βΩ)− 1)
2 δ(Ω− ωq,j)σq,j(Ω). (4)

The Dirac delta function will annihilate the integral over Ω and replace all Ω with ωq,j . This substitution will simplify
the spectral function to:

σq,j(ωq,j) =
1

2π

(
−Γq,j

Γ2
q,j

+
Γq,j

4ω2
q,j + Γ2

q,j

)
.

In case the anharmonicity is small the second term in the brackets will be much smaller than the first which leaves
us with the final result for the diagonal term of the lattice thermal conductivity in the perturbative limit (Eq. 22 of
the main part):

κxy =
β2kB
NV

∑
q,j

vxq,jv
y
q,jω

2
q,j

exp(βωq,j)

(exp(βωq,j)− 1)
2

−1

2Γq,j
. (5)

B. Off-diagonal terms

Here we will show how to get the perturbative limit for the off-diagonal terms of the lattice thermal conductivity
starting with Eq. (21) in the main part. First we will assume that in the limit of small anharmonicity Γq,j = ImZq,j(Ω)
and ωq,j = ReZq,j(Ω). This simplifies the definition of the phonon spectral function to:

σq,j(Ω) =
1

2π

(
−Γq,j

(Ω− ωq,j)2 + Γ2
q,j

+
Γq,j

(Ω + ωq,j)2 + Γ2
q,j

)
.

Substituting this expression for the phonon spectral function in Eq. (20) we come to four terms inside the Ω integral.
We will look at each of them separately.

The first two terms involve parts of spectral functions with the pole in the same part of Ω number line (either both
poles are in the positive or negative part). We show the calculation for the poles in the positive part of Ω and the
second case is analogous. The Ω integral in this case is:

1

4π2

∫ ∞

−∞

−Γq,j

(Ω− ωq,j)2 + Γ2
q,j

−Γq,j′

(Ω− ωq,j′)2 + Γ2
q,j′

exp (βΩ)

(exp (βΩ)− 1)2
dΩ. (6)

We now introduce the substitution Ω′ = Ω− ωq,j , which changes the integral to:

1

4π2

∫ ∞

−∞

Γq,j

Ω′2 + Γ2
q,j

Γq,j′

(Ω′ + ωq,j − ωq,j′)2 + Γ2
q,j′

exp (β(Ω′ + ωq,j))

(exp (β(Ω′ + ωq,j))− 1)2
dΩ′.

From here we recognize that the above integral is the convolution of two Lorentzians aside from the multiplicative
term involving the exponential functions. We approximate this exponential part for the value Ω′ = 0, meaning we
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take it in the limit of auxiliary phonon frequency ωq,j . Since this part is now constant it is taken in front of the
integral and we evaluate the convolution analytically to obtain:

1

4π

exp (βωq,j)

(exp (βωq,j)− 1)2
Γq,j + Γq,j′

(ωq,j − ωq,j′)2 + (Γq,j + Γq,j′)2
.

We have arbitiraly decided to perform the substitution Ω′ = Ω− ωq,j . An equally valid one would be Ω′ = Ω− ωq,j′ .
In that case the only difference would be in the exponential part, which would be evaluated at ωq,j′ instead of ωq,j .
To account for this we will average between these two options to obtain the final result:

1

2

1

4π

(
exp (βωq,j)

(exp (βωq,j)− 1)2
+

exp (βωq,j′)

(exp (βωq,j′)− 1)2

)
Γq,j + Γq,j′

(ωq,j − ωq,j′)2 + (Γq,j + Γq,j′)2
.

The result follows the same for the product of spectral functions with a positive pole part. This makes the factor of
1
2 of the above equation to disappear.

The second two terms involve the product of parts of the phonon spectral function with poles of different signs. We
will show the result for one of the terms and the second one will follow the same process. We start with the product
of spectral function parts like in the previous case:

1

4π2

∫ ∞

−∞

−Γq,j

(Ω− ωq,j)2 + Γ2
q,j

Γq,j′

(Ω + ωq,j′)2 + Γ2
q,j′

exp (βΩ)

(exp (βΩ)− 1)2
dΩ.

We apply the same substitution Ω′ = Ω− ωq,j and obtain:

− 1

4π2

∫ ∞

−∞

Γq,j

Ω′2 + Γ2
q,j

Γq,j′

(Ω′ − ωq,j − ωq,j′)2 + Γ2
q,j′

exp (β(Ω′ + ωq,j))

(exp (β(Ω′ + ωq,j))− 1)2
dΩ′.

We again pick the exponential part only at ωq,j . This is again the convolution of Lorentzian functions, which can be
evaluated analytically, and gives:

1

4π

exp (βωq,j)

(exp (βωq,j)− 1)2
Γq,j + Γq,j′

(ωq,j + ωq,j′)2 + (Γq,j + Γq,j′)2
.

Again our substitution is arbitrary and we could have chosen Ω′ = Ω+ωq,j′ . As in the previous case, we will average
between these two values:

1

4π

(
exp (βωq,j)

(exp (βωq,j)− 1)2
+

exp (βωq,j′)

(exp (βωq,j′)− 1)2

)
Γq,j + Γq,j′

(ωq,j + ωq,j′)2 + (Γq,j + Γq,j′)2
.

We now substitute these terms inside the expression for the lattice thermal conductivity in Eq. (20). We obtain two
distinct terms:

κxy
R =

1

2NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′

(
ωq,j′

cq,j
ωq,j

+ ωq,j
cq,j′

ωq,j′

)
Γq,j + Γq,j′

(ωq,j − ωq,j′)2 + (Γq,j + Γq,j′)2
,

κxy
A =

1

2NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′

(
ωq,j′

cq,j
ωq,j

+ ωq,j
cq,j′

ωq,j′

)
Γq,j + Γq,j′

(ωq,j + ωq,j′)2 + (Γq,j + Γq,j′)2
.

These two terms are analogous to the resonant and antiresonant terms in Ref. [12, 13]. They are very similar to
the ones obtained in Caldarelli et al. [13]. The main reason for the discrepancy is the approximation scheme used
to evaluate integrals of the type featured in Supp. Eq. 6. To show that, we go back to the definition of the lattice
thermal conductivity:

κxy =
2πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

∫ ∞

−∞
dΩ

exp(βΩ)

(exp(βΩ)− 1)
2σq,j(Ω)σq,j′(Ω)

Next, we substitute the definition of the Wigner group velocities [13]:

vxq,j,j′ =
ωq,j + ωq,j′

2
√
ωq,jωq,j′

vxq,j,j′
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and obtain:

κxy =
2πβ2kB
NV

∑
q,j,j′

(ωq,j + ωq,j′)
2

4
vxq,j,j′v

y∗
q,j,j′

∫ ∞

−∞
dΩ

exp(βΩ)

(exp(βΩ)− 1)
2σq,j(Ω)σq,j′(Ω)

Next, we take one of the sums of frequencies and multiply it with the integral. Then we pick up the value of the
exponential part ( exp(βΩ)

(exp(βΩ)−1)2
) at the frequency that we multiplied it with, to obtain:

κxy =
2πβ2kB
NV

∑
q,j,j′

(ωq,j + ωq,j′)

4
vxq,j,j′v

y∗
q,j,j′

(
ωq,j exp(βωq,j)

(exp(βωq,j)− 1)
2 +

ωq,j′ exp(βωq,j′)

(exp(βωq,j′)− 1)
2

)∫ ∞

−∞
dΩσq,j(Ω)σq,j′(Ω).

The evaluation of the integral follows the same as in our case and introducing the definition of the phonon mode heat
capacity we obtain for the resonant part the same expression as in Refs. [13, 14]:

κxy
R =

1

NV

∑
q,j,j′

(ωq,j + ωq,j′)

4
vxq,j,j′v

y∗
q,j,j′

(
cq,j
ωq,j

+
cq,j′

ωq,j′

)
Γq,j + Γq,j′

(ωq,j − ωq,j′)2 + (Γq,j + Γq,j′)2
.

Here we are labeling the imaginary part of the self-energy as Γq,j , which is different from Ref. [13] (there it was labeled
as γq,j). Clearly, the different results between the current work and the previous one [13], come from the different
ways of approximating the exponential part inside of the integral in Supp. Eq. 6. However, as we mentioned in the
main part, in the limit ωq,j = ωq,j′ results are identical as one would expect.

In Supp. Fig. 3 we compare the numerical results for different definitions of the off-diagonal part of the lattice
thermal conductivity. Green-Kubo results stand for calculations done with the Green-Kubo approach using proper
anharmonic spectral functions (as defined in Eq. 21 of the main text). Green-Kubo LA refers to the calculations done
with the Green-Kubo method, but using phonon spectral functions as defined in Supp. Eq. 3. SRTA Isaeva results
stand for results obtained using equations from Ref. [12], while SRTA Simoncelli results were obtained using equations
from Refs. [13, 14]. Finally, SRTA Pert. results were calculated using equations obtained in the perturbative limit of
the Green-Kubo result, Eqs. 22 and 24 of the main part.

Results for the diagonal part of the lattice thermal conductivity are identical for all approaches, except for the
full Green-Kubo. The discrepancy involving Green-Kubo can be explained by the fact it is the only approach that
accounts for the softening of phonon modes due to anharmonicity.

For the off-diagonal contribution, we find that equations from Refs. [12, 14] give identical results. These results
are not far away from our perturbative limit derived in this section. The perturbative limit follows more closely
the Green-Kubo LA approximation compared to approaches from mentioned references. Finally, the full Green-Kubo
method is the most different, and again it is probably the consequence of the softening of the phonon mode frequencies
that are captured with this method.



9

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Th

er
m

al
 c

on
du

ct
iv

ity
 (W

m
1 K

1 )

Pnma

Diagonal

Green-Kubo
Green-Kubo LA
SRTA Pert.
SRTA Isaeva
SRTA Simoncelli

0.10

0.12

0.14

0.16

0.18

0.20

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

1 K
1 )

Pnma

Off-diagonal

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

1 K
1 )

P4/mbm

Green-Kubo
Green-Kubo LA
SRTA Pert.
SRTA Isaeva
SRTA Simoncelli

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

1 K
1 )

P4/mbm

100 200 300 400 500 600
Temperature (K)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

1 K
1 )

Pm3m

Green-Kubo
Green-Kubo LA
SRTA Pert.
SRTA Isaeva
SRTA Simoncelli

100 200 300 400 500 600
Temperature (K)

0.05

0.06

0.07

0.08

0.09

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
m

1 K
1 )

Pm3m

Supplementary Figure 3. Comparing different approaches for the diagonal and off-diagonal part of the lattice thermal conduc-
tivity.
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Supplementary Figure 4. (a) Averaged phonon group velocities by frequency bins in CsPbBr3 for different phases. (b) Averaged
phonon lifetimes by frequency bins in CsPbBr3 for different phases.

V. PHONON PROPERTIES AT 250 K

In order to elucidate the origin of the hierarchy of the lattice thermal conductivity for different phases at a given
temperature, we check phonon properties at 250 K. Although only the orthorhombic phase is stable at this temper-
ature, we can still calculate the lattice thermal conductivity in all phases. This is possible since SSCHA auxiliary
phonon frequencies are always positive by definition. The results for the other two, unstable, phases are not physically
relevant but will reveal the causes for the different values of κ in different phases. In Supp. Fig. 4 (a) we show the
norm of the phonon group velocities for different phases at 250 K. To make a comparison between different phases
easier we bin phonon modes by frequencies in 15 bins and then average the phonon group velocity inside the bin. The
largest group velocities are in Pm3̄m cubic phase which is the main reason for the largest lattice thermal conductivity
of this phase. However, overall group velocities are quite similar for different phases and the increase in the cubic
phase is only visible in a particular frequency range (1.0-2.0 THz).

In Supp. Fig. 4 (b) we show the average phonon lifetimes for different phases of CsPbBr3. As for phonon group
velocities, we average phonon lifetimes inside distinct frequency bins. In the low-frequency limit (up to 0.5 THz), the
P4/mbm tetragonal phase surprisingly has the highest phonon lifetimes. Between 0.5-1.8 THz the Pnma phase has
the highest phonon lifetimes, while above 1.8 THz Pm3̄m phase phonon lifetimes dominate. The hierarchy of phonon
lifetimes for different phases explains why the Pnma phase has the lowest lattice thermal conductivity at any given
temperature.

In Supp. Fig. 5 we present the mean free path of phonon for all three phases at 250 K. Almost all phonon modes
(except the low-lying acoustic modes in P4/mbm and Pm3̄m phases) have mean free path less than 100 nm which
is the size of the nanowires synthesized in experiments that measured the lattice thermal conductivity [15, 16]. A
large number of phonon modes in all phases has a mean free path much smaller than the lattice constant at that
temperature, indicating the possibility that the coherent contribution to the transport might be important.

Analyzing the results for the Green-Kubo method is more challenging since we do not have a well-defined transport
quantity such as phonon lifetimes. For this reason, we are showing the spectral decomposition of the lattice thermal
conductivity in Supp. Fig. 6. The spectral lattice thermal conductivity is given by:

κxy(Ω) =
4πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

exp(βΩ)

(exp(βΩ)− 1)
2σq,j(Ω)σq,j′(Ω). (7)

Importantly, this frequency dependence is not the same as in the dynamical lattice thermal conductivity and this
quantity can be defined for any ν of the dynamical lattice thermal conductivity. Integrating κ(Ω) over the positive
frequency range will give us the lattice thermal conductivity [17]. Sum over phonon branches j, j′ can be split into
diagonal j = j′ and non-diagonal j ̸= j′ parts. Additionally, we can define the cumulative κ:
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Supplementary Figure 5. Mean free path of phonons calculated for (a) Pnma, (b) P4/mbm and (c) Pm3̄m phase at 250 K.
The dashed line represents the characteristic lattice constant at that temperature.

0 2 4 6
Frequency (THz)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ec

tra
l 

 (
)

Diagonal contribution

250 K

Pnma
P4/mbm
Pm3m

0 2 4 6
Frequency (THz)

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ec

tra
l 

 (
)

Non-diagonal contribution

250 K

Pnma
P4/mbm
Pm3m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
um

ul
at

iv
e 

 (
C

)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
um

ul
at

iv
e 

 (
C

)

Supplementary Figure 6. (a) Spectral decomposition of the diagonal part of the lattice thermal conductivity for xx component
calculated with Green-Kubo method. (a) Spectral decomposition of the non-diagonal part of the lattice thermal conductivity
for xx component calculated with Green-Kubo method.

κxy(ΩC) =
4πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

∫ ΩC

0

dΩ
exp(βΩ)

(exp(βΩ)− 1)
2σq,j(Ω)σq,j′(Ω). (8)

The spectral decomposition reveals that all modes in CsPbBr3 contribute to the lattice thermal conductivity,
without a frequency range that dominates. Another important fact is that for cubic and tetragonal phases we see
a divergence of the spectral κ for low frequencies. This comes from the strong softening of phonon modes at this
temperature, which makes the phonon spectral functions non-zero for Ω close to zero. The divergence comes from the
exponential function. This situation is unphysical and the numbers we get for these phases at 250 K are not really
good estimates for the lattice thermal conductivity. However, we already know that the tetragonal and cubic phases
are not dynamically stable at this temperature and this calculation is purely an exercise.



12

200 400 600
Temperature (K)

0.2

0.0

0.2

0.4

0.6

0.8
2  (

TH
z2 )

 (a)

SSCHA

B2g

Ag

0 200 400 600
Temperature (K)

1.0

0.5

0.0

0.5

1.0

2  (
TH

z2 )

 (b)

Finite difference

B2g

Ag

Supplementary Figure 7. (a) Temperature dependence of the Hessian frequency of soft modes in orthorhombic Pnma phase of
CsPbBr3 calculated with SSCHA. (b) Temperature dependence of the Hessian frequency of soft modes in orthorhombic Pnma
phase of CsPbBr3 calculated with finite difference force constants.

VI. STABILITY OF THE ORTHORHOMBIC Pnma PHASE

In Supp. Fig. 7 we are showing the temperature dependence of the Hessian frequency of two soft modes for the
orthorhombic Pnma phase of CsPbBr3. This calculation includes also the third-order anharmonicity calculated by
finite difference with the statical dressed bubble approximation. At temperatures around 300 K, the square of the
frequency of these modes becomes negative indicating possible dynamical instability. Ag mode is symmetry preserving
mode, while B2g mode drives the system to the monoclinic P21/m structure. Nevertheless, it can also be a signature
of gaining symmetry, meaning that the softening of one of the modes indicates a second-order phase transition to the
tetragonal phase.

In Supp. Fig. 7 (a) we are showing results obtained fully with SSCHA. This means we used SSCHA temperature-
dependent force constants and changed the structure with temperature. In Supp. Fig. 7 (b) however, we used
finite difference force constants obtained for the structure that minimizes Born-Oppenheimer energy surface. Using
SSCHA delays the phase transition for about 100 K, but can not ultimately suppress it. Since we know that Pnma
should be stable at these temperatures, the reason for this softening of particular phonon modes at unexpectedly low

temperatures is the fact that we are not including
(4)

DR for this phase.
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Supplementary Figure 8. Temperature dependence of the Hessian frequency of soft modes in cubic Pm3̄m phase of CsPbBr3
calculated with SSCHA at M and R point.

VII. STABILITY OF THE CUBIC Pm3̄m PHASE

Here we will present results for the Hessian of the cubic phase. The harmonic approximation predicts two main
instabilities in the cubic Pm3̄m phase, in M (0.5,0.5,0.0) and R (0.5, 0.5, 0.5) high-symmetry point. The condensation
of the unstable M phonon would lead to the tetragonal P4/mbm phase which is the one that we find in CsPbBr3.
The R point folds back to the Z point of the tetragonal phase, which is the mode that drives the phase transition
between the tetragonal and orthorhombic phases. In Supp. Fig. 8 we show results for the Hessian of these two modes
including the fourth-order anharmonicity. The R mode becomes stable at a lower temperature (500 K). On the other
hand, the frequency of the M mode becomes positive at a higher temperature of 550 K, the same temperature at
which we have a first-order phase transition. This is an intriguing situation where we fulfill the main requirement for
the second-order phase transition (a condensation of the soft mode), but still have the first-order phase transition as
evidenced by the discontinuity of the lattice parameters, pointing to a small order-disorder character of the transition.
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Supplementary Figure 9. Total ((a) in x direction, (b) in y direction, (c) in z direction) and coherent ((d) in x direction, (e)
in y direction, (f) in z direction) part of the lattice thermal conductivity calculated for three different phases of CsPbBr3.
The shaded area of the background shows the calculated phase diagram for CsPbBr3. The bar above the graph shows the
experimental phase diagram. The color codes between lines and background are the same (Pnma green, P4/mbm blue, and
Pm3̄m red). Full lines represent results obtained with the Boltzmann transport equation, while dashed lines are results obtained
with the Green-Kubo method.

VIII. COMPARING RESULTS FOR DIFFERENT PHASES

In Supp. Fig. 9 we compare the calculated lattice thermal conductivity for different phases. As we have noted in
the main text, the Pnma phase has the lowest lattice thermal conductivity, followed by P4/mbm, and Pm3̄m has
the highest κ. For the coherent part of the thermal conductivity, we see the opposite trend.
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Supplementary Figure 10. Real part of the dynamical lattice thermal conductivity at 250 K of (a) Pnma, (b) P4/mbm, and (c)
Pm3̄m phase. Points are Green-Kubo calculations, while full lines are fitted with two versions of the Drude model explained
in the text. In the bottom panels, we show calculated phonon lifetimes of (d) Pnma, (e) P4/mbm, and (f) Pm3̄m phase
compared to the fitted value of the lifetimes in the Drude model.

IX. DRUDE MODEL FOR DYNAMICAL LATTICE THERMAL CONDUCTIVITY

Drude model for electrical conductivity (σ) assumes a constant relaxation time (τ) for electrons. The real and
imaginary parts of the AC conductivity are then given by:

Reσ(ν) =
σ0

1 + ν2τ2
Imσ(ν) = ντ

σ0

1 + ν2τ2
.

We fitted this function to the real part of the lattice thermal conductivity, see Supp. Fig. 10 (blue line). The fitting
produces a value of phonon lifetime a bit larger than the one obtained from the peak of the imaginary part of the
lattice thermal conductivity. However, the fit is quite bad and it does not give a correct value for static lattice thermal
conductivity σ0.

We then assumed that phonon lifetimes are inversely proportional to the frequency τ = A
ν +B and used this definition

in the Drude model. This fit produced much better agreement with the actual calculation, correctly predicting both
the tail and the static lattice thermal conductivity.

To try and disentangle why this is the case let us try to derive the perturbative limit for the diagonal part of the
dynamical lattice thermal conductivity starting from Supp. Eq. 2:

κxy(ν) =
πβ2kB
NV

∑
q,j,j′

vxq,j,j′v
y∗
q,j,j′ωq,jωq,j′

eβν − 1

βν

∫ ∞

−∞
dΩ(1 +

Ω

Ω+ ν
)

eβΩ

(eβΩ − 1)
(
eβ(Ω+ν) − 1

)σq,j′(Ω)σq,j(Ω + ν).

The spectral functions are then just Lorentzians centered around ωq,j and with width Γqj , see Supp. Eq. 3. We will
then multiply all of the parts of the spectral functions which will give us four separate terms:

σq,j′(Ω)σq,j(Ω + ν) =
1

4π2

(
−Γq,j′

(Ω− ωq,j′)2 + Γ2
q,j′

+
Γq,j′

(Ω + ωq,j′)2 + Γ2
q,j′

)(
−Γq,j

(Ω + ν − ωq,j)2 + Γ2
q,j

+
Γq,j

(Ω + ν + ωq,j)2 + Γ2
q,j

)
Then for each of these terms, we will approximate the value of the part of the integrand that does not contain the
spectral function ((1 + Ω

Ω+ν )
eβΩ

(eβΩ−1)(eβ(Ω+ν)−1)
) with its value at the poles of the spectral function. This allows us

then to use the convolution of two Lorentzians to get rid of the integral. The solution for the diagonal part of the
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lattice thermal conductivity is then:

κ(ν) = κ1(ν) + κ2(ν) + κ3(ν) (9)

with:

κ1(ν) =
1

NV

∑
q,j

C1(ν, ωq,j)
κq,j

ν2τ2q,j + 1

κ2(ν) = − 1

NV

∑
q,j

(C1(ν, ωq,j) + C2(ν, ωq,j))
κq,j

(ν2 + 2ωq,j)τ2q,j + 1

κ3(ν) =
1

NV

∑
q,j

C2(ν, ωq,j)
κq,j

ν2τ2q,j + 1
.

Here κq,j is the contribution to the lattice thermal conductivity by (q, j) mode. The functions C1(ν, ωq,j)/C2(ν, ωq,j)
are coming from the part of the integrand that we approximated by the value at the pole of the spectral function:

C1(ν, ωq,j) =
1

4

eβν − 1

βν
(1 +

ωq,j

ωq,j + ν
)

eβωq,j − 1

eβ(ωq,j+ν) − 1

C2(ν, ωq,j) =
1

4

eβν − 1

βν
(1 +

ωq,j + ν

ωq,j
)

e−βωq,j − 1

eβν(e−β(ωq,j+ν) − 1)
(10)

In the limit ν → 0 both of these functions take the value of 0.5.
Assuming for a second that we have a constant relaxation time and that we take C functions in the small frequency

limits we obtain a Drude model clearly explaining why the fit to Drude model of the results of the full equation 2
works. However, even results by this perturbative limit fit better with a frequency-dependent phonon lifetime. Since
in this case (Supp. Eq. 9) the phonon mode linewidth is a constant we can exclude the frequency dependence of the
phonon self-energy as the reason behind better fit for the ν dependent lifetimes.

Another source of this apparent frequency dependence of fitted phonon lifetime could be C functions, see Supp.
Eq. 10. However, results with constant C = 0.5, give virtually the same result which still shows better fitting to
the frequency-dependent lifetimes. This leaves a better fit with a frequency-dependent lifetime of dynamical lattice
thermal conductivity an open question.

Finally, let us briefly discuss the question of the perturbative limit of the non-diagonal in phonon bands contribution
to the dynamical lattice thermal conductivity. Here we would again have three parts contributing to the dynamical
κ:

κ1(ν) ∼
(Γq,j + Γq,j′)

(ωq,j − ωq,j′ + ν)2 + (Γq,j + Γq,j′)2

κ2(ν) ∼
(Γq,j + Γq,j′)

(ωq,j + ωq,j′ + ν)2 + (Γq,j + Γq,j′)2

κ3(ν) ∼
(Γq,j + Γq,j′)

(ωq,j′ − ωq,j + ν)2 + (Γq,j + Γq,j′)2
.

This tells us why there are peaks in the coherent contribution to the dynamical lattice thermal conductivity. Whenever
the driving frequency ν is the same as the frequency spacing between phonon modes, we have a resonance and that
shows up as a structure in the dynamical lattice thermal conductivity.
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Supplementary Figure 11. (a) Harmonic second order force constants calculated with finite difference and auxiliary SSCHA
force constants at different temperatures. To present results we binned the norms of second-order force constants with respect
to the atom-atom distance and plot the maximum norm inside the bin. (b) The same study as in (a) but for third-order force
constants. Force constants were binned with respect to the distance between the first and second atoms. The numbers in the
legend signify the sum of all norms in the supercell.

X. COMPARING FINITE DIFFERENCE AND SSCHA RESULTS

We calculated the harmonic and perturbative third-order force constants for the orthorhombic phase of CsPbBr3
using the finite difference method as implemented in Phonopy [18]. We then calculated the lattice thermal conductivity
of CsPbBr3 using these force constants and compared it to SSCHA results (which uses renormalized force constants
due to temperature and structure change). The comparison between the two results is given in Figure 5 of the main
part.

Here we will explain the lower values of thermal conductivity obtained with finite difference force constants. In Supp.
Fig. 11 we show the second and third-order force constants calculated with finite difference method and with SSCHA
at different temperatures for the orthorhombic Pnma phase. The force constants in SSCHA are lower, especially
the third-order ones, leading to stronger scattering between phonons and lower phonon lifetimes. This situation
culminates in lower total thermal conductivity calculated with finite difference force constants. This addresses the
important role played by higher-order terms that are captured by the SSCHA force constants.
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