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Abstract

Retrieval-Augmented Generation represents the state-of-the-art approach to perform question-
answering (QA) tasks in the scientific domain. This system combines a powerful generative
component, capable of producing grammatically sound and readable answers, with a retrieval
component that efficiently locates specific information within a large corpus of documents. As
such, RAG systems are particularly well-suited to address the complexities inherent in this task.
However, evaluating the accuracy and quality of the generated answers remains a significant
challenge.

The aim of this thesis was to find an effective method for assessing RAG performance in a
scientific QA task. To this end, we conducted an extensive review of the current automatic eval-
uation metrics in use. The most common approach involves comparing generated answers with
a reference produced by humans. Such comparison can focus on the form (lexical similarity), the
content (semantic similarity), or on a deeper analysis through the use of Large Language Mod-
els (model-based). Each of these approaches has well-documented advantages and drawbacks,
making it necessary to rigorously test their reliability and effectiveness in this context.

To explore this, we selected representative metrics from each category and designed three
progressively complex experiments to challenge them and analyze their behavior: 1) Can the
metrics distinguish between correct and incorrect answers? 2) Can they differentiate between
answers of varying quality, particularly when they deviate in form or content from the reference?
3) Do the metrics align with human preferences?

The strengths and limitations of these metrics were empirically examined. Findings showed
that at the most basic level — distinguishing clearly correct from incorrect answers — all metrics
had a good performance to varying degrees. However, when they faced more nuanced challenges,
as to differentiate between variations in form or content when comparing higher and lower-quality
answers, both lexical and semantic similarity metrics struggled. Therefore, model-based metrics
demonstrated greater flexibility and reliability. Nevertheless, in the final experiment, none of the
evaluation methods—across all categories—aligned consistently with human judgment. In fact,
most of the metrics exhibited divergence from human preferences.

Consequently, no metric met performance expectations in all scenarios. Nonetheless, we were
able to provide a comprehensive analysis of their behavior, strengths, and limitations. As a
conclusion, we propose that for assessing the performance of a RAG system in scientific QA
model-based metrics appear to be the most effective, particularly in distinguishing correct from
incorrect answers and in differentiating varying levels of answer quality. However, further research
is needed to better align these metrics with human judgment. Moreover, findings suggest that
relying solely on human-generated reference answers as benchmarks may not effectively capture
human preferences. Instead, future evaluation frameworks could integrate human preferences
directly into the evaluation process.

By shedding light on the performance of current evaluation methods and advocating for a
shift toward model-based metrics that better incorporate human preferences, this thesis aims
to contribute to the field of QA evaluation and guide future research towards developing more
reliable and robust evaluation frameworks.
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Introduction

In recent years, humanity has witnessed the rise of Artificial Intelligence (AI), which encom-
passes technologies that simulate human intelligence in machines. A significant branch of AI is
Natural Language Processing (NLP), which enables machines to understand and produce human
language. Within NLP, Natural Language Generation (NLG) is dedicated to generating human-
like text by utilizing advanced algorithms trained on extensive data. NLG encompasses many
tasks, including accurately answering to questions posed in natural language, commonly known
as question answering (QA).

To perform QA tasks, specialized models designed to automatically respond to questions
posed in natural language are required, known as QA systems [5] [65] [14]. Traditional QA sys-
tems typically rely on information retrieval techniques, which involve extracting relevant answers
directly from pre-existing texts or databases. These systems use predefined algorithms to locate
and present the most relevant piece of text that answers the user’s question, often resulting in
exact or slightly modified excerpts from the source material.

Furthermore, with the advent of more powerful NLG architectures, such as Large Language
Models (LLMs), there has been a transition from traditional QA to generative QA [50] [45] [39].
This marked a significant evolution in how machines handle and respond to queries. Generative
QA (genQA) leverages advanced models to generate answers from scratch, by synthesizing re-
sponses based on their understanding of the language and context learned from vast amounts of
data. However, despite their sophistication, they present limitations: first, LLMs can’t answer
questions about events which were not included (or occurred after training); second, LLMs cannot
cite their sources; third, LLMs are prone to generating “hallucinations”, fabricated information
that can appear credible. These challenges underscore the need for continued advancements and
hybrid approaches [31] [66] [67].

To address these issues, Retrieval-Augmented Generation (RAG) emerged [53]. RAG
is one of the latest advancements in the field, as it combines generative models with information
retrieval techniques to enhance the accuracy and relevance of answers. This approach first
retrieves relevant passages and then employs generative models to refine or generate answers
based on the retrieved information (further details on Section 0.1).

In order to ensure the quality of the text generated by NLG models for their usefulness and
safety in different applications, evaluation has been fundamental [36] [34]. Reliable evalua-
tion methods are essential, as they help to identify and improve weakness in models, thereby
optimizing their development, and prevent dangers to users, avoiding the generation of counter-
factual or harmful information. Evaluating generated text involves numerous approaches and
can vary significantly based on several factors, including the task being performed, the system
being evaluated, and the specific aspects under scrutiny.
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At a basic level, one can assess readability (fluence and coherence for readers’ compre-
hension) and reliability or accuracy (providing outputs that accurately address the required
task). Particularly, there are various ways to assess whether a generated answer to a question is
correct. For instance, one can evaluate specific criteria such as relevance (the extent to which
the answer directly addresses the question), factual consistency (the accuracy of the informa-
tion in the answer based on the provided context), and completeness (whether the answer fully
addresses all aspects of the question). In a more in-depth analysis, one can analyze truthful-
ness (maintaining factual consistency and preventing hallucinations), robustness (exhibiting
consistent behavior across different inputs and scenarios) and safety and biases (avoiding the
generation of harmful, violent, or biased content) [59] [87].

However, evaluating the accuracy of generated answers on a QA task is non-trivial. It is
very challenging as there is an inherent difficulty in objectively determining if a given answer is
correct [40] [87] [10] [81] and, in human language, the same content can be expressed in countless
ways. Consequently, the evaluation process depends heavily on the type of questions and answers
involved, as well as the QA system used.

QA tasks can be classified based on several dimensions, chiefly the type of questions and
answers involved, their form, content, and choice of topic. Regarding their form, they can be
short (multiple-choice, yes-no, a couple of words) or long-form (a couple of sentences). Regarding
their content, they can address straightforward questions with specific facts or handle complex
questions requiring reasoning and explanations. Additionally, they can pertain to an open domain
(any topic) or a closed domain (specific area). Finally, they can rely on verifiable and objective
data (fact-based) or in subjective opinions. Concerning the method of obtaining answers, they
can be extracted (directly from context) or generated (by the system). A common categorization
distinguishes between closed-book answers, based solely on pre-existing knowledge embedded in
the model, and open-book answers, which rely on external knowledge sources that the system
accesses during the answering process. Evidently, simpler QA forms, such as yes-no or multiple
choice, are easier to assess since it is more straightforward to determine whether the model
produced the correct answer through exact matching. However, with more complex open-domain
questions and long-form answers, the difficulty increases [50] [16].

One of the most challenging QA scenarios is scientific QA, which involves answering ques-
tions based on scientific papers. This particular task has ample applications, both in the industry
and the academia, which leads to a significant incentive to provide high quality performance.
This task is particularly difficult because the scientific domain requires very specific knowledge
and terminology, and it constantly evolves. As a result, not every model can effectively handle it.
RAG systems, in particular, represent the state-of-the-art (SOTA) in QA systems for this task
because they possess the ability to focus on the content of the papers [67]. Scientific QA with
RAG systems ensures that the evaluation is thorough, as it pushes the model to really focus on
the retrieved context rather than relying solely on its pre-existing general knowledge.

Evaluating the accuracy of RAG systems in answering questions based on scientific text in-
volves retrieving the correct pieces of information from the corpus and composing the appropriate
answer. Assuming that the retrieved information is both accurate and sufficient, the key chal-
lenge lies in assessing whether the generated text is a relevant response that faithfully reflects
the information contained within the context. Given the difficulties of assessing “correctness” in
answers, it is generally accepted that a good answer is one that aligns most closely with human
expectations and preferences. There is consensus that human experts are the ultimate authority
in defining any quality aspect of generated text, including the correctness of an answer [39] [66]
[38] [16]. Consequently, human evaluation methods, where human judges assess the quality of
the generated text based on predefined criteria, are considered optimal. In QA task, this would
mean to assess if the answer is acceptable to expert human annotators.
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Unfortunately, these evaluation processes are highly time-consuming and resource-intensive.
As a result, many alternative automatic evaluation metrics have been developed over the
years [40] [16] [10] [85]. The most popular approach involves assuming that humans know the
correct answer and, therefore, using human answers as a reference ground truth and analyzing
the similarity of generated responses to these. This comparison can be based on superficial form
(lexical similarity), content (semantic similarity), or a more complex analysis (using advanced
models and considering the context). Vast and diverse automatic evaluation metrics have been
developed since the early 2000s (see Section 0.2). They are based on varied methodologies
with specific characteristics that have become increasingly complex and sophisticated over time,
as new technologies have been developed. As the pace of developments accelerates daily and
the number of related papers is expanding exponentially, we conducted a comprehensive and
extensive literature review (see Section 0.2), finding that each approach encompasses its own
documented advantages and limitations. However, there is no agreement on a single standardized
evaluation methodology. What is more, different and new projects try to use a variety of this
already questioned metrics (see Section 0.3). This leads to a necessity to critically reflect on and
validate these evaluation methods [49] [101] [7] [10].

Therefore, the objective of this thesis is to analyze the performance of various evaluation
metrics from diverse approaches to empirically compare their behaviors when evaluating RAG
QA systems on a scientific QA task. We will focus on measuring if the produced text is the right
answer to the provided question considering the context, and we will assume that the retrieved
information is accurate and sufficient. That means we will work on an artificially ideal scenario,
where there is only one chunk of context retrieved, and it is the correct one, so only the generative
component will be under evaluation.

The research work will be an exploratory analysis through a series of experiments with in-
creasing complexity to test these metrics and shed light on their effectiveness in this context.
The initial inquiry focuses on a fundamental basic question: 1. Can the metrics distinguish
between correct and incorrect answers? Building on this, we further investigate the metrics sen-
sitivity on a more challenging scenario: 2. Can the metrics differentiate between “better” and
“worse” answers? We examine the sensitivity of these metrics to varying degrees of correctness
and explore whether they can be misled by incorrect answers that appear correct. Finally, to
completely understand the utility of the metrics, we address a key question: 3. How well do
these metrics align with human preferences? These are the core research questions guiding
our experiments.

This thorough review of evaluation metrics is necessary for the field of long from QA. First,
to make it easier and faster for researchers and practitioners to understand the possibilities
and make informed decisions about evaluation methods. But also, having more standardized
procedures could provide a common foundation for comparing different models and approaches,
promoting transparency and fostering a collaborative environment where advancements can be
more effectively shared and built upon. The novelty of this work lies in its focus on the specific
task of long-form QA in the scientific domain using RAG systems. Additionally, this thesis aims
not only to provide a comprehensive description of evaluation metrics, from the oldest to the
most recent, but also to implement, test, and compare their behaviors in practice.

In the remainder of this introduction: 1. we will discuss the specific features of RAG QA
systems and their generative component (LLMs); 2. we will review the existing evaluation metrics
from various approaches, along with a critical documented overview of these metrics; 3. finally,
we will provide a literature review of the work done in this area to date, highlighting the key
challenges and identifying areas where future research is needed.
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0.1. RAG SYSTEM

0.1 RAG system

The field of NLG has produced numerous models for generating human-like text. Initially, it
focused on statistical and rule-based algorithms (like n-gram models and Hidden Markov Mod-
els[74]), which used counting and probability estimation from data to predict the next word.
However, these methods had limitations in context understanding, data sparsity, and handling
ambiguity. The introduction of Neural Networks (NNs) marked significant progress, offering
greater flexibility and accuracy by processing input through multiple layers and adjusting weights
to minimize prediction error. Recurrent Neural Networks (RNNs) [61] specifically handled se-
quential data and learned long-term dependencies. Finally, the advent of attention mechanisms
further improved performance by helping models focus on relevant parts of the input sequence.

Currently, Transformers [92], which use self-attention mechanisms and positional encodings
to weigh the importance of different words in a sequence and maintain the order, are the SOTA
in NLG, enabling the development of highly coherent and contextually relevant text generation
systems like Large Language Models (LLMs)[99] [63]. Based on Transformer architecture and
trained on vast data, LLMs demonstrate unprecedented text generation capabilities. However,
they present limitations as they cannot answer questions about events which were not included
(or occurred after) training, can not cite their sources, and are prone to generating hallucinations.
This motivated the development of Retrieval-Augmented Generation (RAG) systems, a hybrid
architecture approach that combines a retrieval and a generative component [37] [33].

Generative component (LLM): Text generation involves creating coherent, contextually
relevant text based on a given input. A generative model is a machine learning model that
generates new data samples resembling the training data, capturing its underlying distribution
and characteristics. Language modeling involves building a model that predicts the next word
or sequence in a sentence based on the context provided by preceding words. Among the latest
and most advanced generative models are LLMs, which can understand and generate human-like
text. These models are trained on vast, diverse text data and use complex neural networks
to predict the next token in sentences based on input. Traditional LLMs produce appropriate
responses to a wide array of queries, effectively handling QA tasks. However, LLMs rely on
finite training data, leading to challenges like outdated information and hallucinations [59] [36].
RAG systems address these issues by integrating external knowledge into the generation process,
supplementing LLMs’ responses with up-to-date, domain-specific information [64].

Retrieval component: Information retrieval refers to the process of searching for and extract-
ing relevant information from a large text corpus. This process involves sophisticated indexing
and querying mechanisms, which transform raw data into usable chunks of information, stored
in vectorized form, and optimized for quick access and high relevance. A retrieval model is de-
signed to identify and rank documents or text passages that are most relevant to a query. This is
typically achieved through techniques such as keyword matching, semantic search, and the use of
embeddings to capture the meaning of text. Embeddings are numerical vectors in a continuous
space typically generated by machine learning models trained on large datasets, that map text
units to vectors, with each dimension capturing a specific feature of the text. Advanced retrieval
may use vector representations of text, enabling more nuanced and precise matching.

In conclusion, given a query or input, the retrieval component searches for a set of relevant
documents or pieces of information from a pre-existing corpus. These are then used as additional
context by the generative component to produce a coherent and contextually relevant response
to the original query.
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0.2. AUTOMATIC EVALUATION METRICS

Figure 1: Simplified overview of RAG pipeline workflow.

For all this, RAG systems are particularly well-suited for scientific domains, where the integra-
tion of up-to-date knowledge is crucial [67]. Scientific QA tasks require not only accurate retrieval
of domain-specific information, but also the ability to reason over complex content. Therefore,
applying RAG to scientific document reasoning can significantly enhance the interpretability and
verification of model predictions by grounding them in relevant literature. However, challenges
remain in ensuring the relevance and accuracy of the retrieved documents, especially given the
vast and diverse nature of scientific data. The risk of evidence fabrication—where the system
generates plausible but incorrect justifications—poses a significant concern. Furthermore, the
retrieval component may return irrelevant or non-contextual information, which can mislead
the generative model and degrade output quality. The reliance on external data sources also
introduces challenges related to their quality and reliability [33] [32].

To mitigate these risks and ensure the reliable deployment of RAG systems in scientific
applications, ongoing evaluation and refinement are critical. However, as will be discussed,
the evaluation of RAG systems poses significant challenges and there is no consensus on the
optimal evaluation methodology. This underscores the need for a thorough reassessment of
current evaluation frameworks.

0.2 Automatic evaluation metrics

A metric is a standardized measure used to quantitatively evaluate a specific aspect of an output.
An effective metric should be quantifiable (expressed in numerical terms or through a ranking
system, enabling clear and objective comparisons), reliable (produces stable and repeatable re-
sults under consistent conditions) and accurate (correctly measures what it is intended to by
aligning closely with human judgment) [40] [85].

In this thesis, we focus on metrics designed to assess long-form text, where two texts, a refer-
ence and a candidate, are compared. Since the early 2000s, a wide range of these metrics has been
developed, employing diverse methodologies and approaches. However, there is no consensus on
a standardized system for classifying and organizing these metrics based on shared characteris-
tics. To address this, we propose a taxonomy informed by an extensive literature review in the
field. We categorize the metrics into three groups based on the focus of the evaluation: compar-
ing superficial form (lexical similarity), comparing content (semantic similarity), or employing
a more complex reasoning (based on LLMs). Following, each group will be explained in detail,
accompanied by a review of relevant literature highlighting their advantages and limitations.
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0.2. AUTOMATIC EVALUATION METRICS

• Lexical similarity:

These metrics assess lexical similarity between the generated text and a reference ground truth
by measuring the co-occurrence of sequences of ”n” consecutive items (n-grams) at varying levels
of granularity, such as characters, words, specific sequences, full strings, or patterns. Commonly
referred to as traditional metrics due to their long-standing use and algorithmic simplicity, they
are either rule-based or statistical, as they rely on predefined algorithms or probabilistic models
to quantify similarity based on exact matches or statistically identified patterns. Examples of
this type of metrics are BLEU[69], ROUGE[55], METEOR[8], ChrF[72] and TER[82].

Traditional metrics have been widely used for over two decades, proving useful and reliable
for tasks like machine translation, where the goal is to achieve the closest match to the reference.
During their development, efforts were made to gradually overcome their restrictiveness, allowing
for more flexible considerations of matching. However, it is intuitive to recognize that for more
complex tasks these traditional metrics are not optimal.

Key research projects have empirically reviewed the strengths and limitations of these metrics
[68] [57]. These studies, evaluating ROUGE, BLEU, METEOR, and TER, concluded in general
that: 1. these metrics exhibit low correlation with human judgment; 2. they display a length
bias, unfairly penalizing added supportive tokens; and 3. they assign low scores to answers
that are lexically different from the reference, even if the content is the same (example: using
synonyms), due to a lack of semantic understanding. Future research, as we will demonstrate,
also compares their behavior with newer metrics, showing they are consistently outperformed.

• Semantic similarity:

Given the primary disadvantage of traditional metrics—lack of semantic understanding—there
has been a shift towards semantic similarity metrics. These metrics assess the similarity between
generated text and the reference by analyzing their semantic equivalence. To do this, both
texts are represented with embeddings, as they effectively encode the semantic meaning, with
similar meanings resulting in vectors that are close to each other in the vector space. The
degree of similarity or dissimilarity between texts is then measured by calculating the distance
between these embeddings using mathematical distance metrics. Semantic similarity metrics
differ in their approach by utilizing embeddings at various levels of granularity: static word
embeddings (fixed representation of a word regardless of the context in which it appears, like the
popular Word2Vec[62] and GloVe[70]); static sentence embeddings (aggregate word embeddings
to represent entire sentences as single vectors, such as Sentence-Bert); and contextual embeddings
(capture the meaning of the word or sentence within the context in which they appear, typically
generated by LLMs). They also employ different methods for calculating distances, such as
Cosine Similarity or Euclidean Distance. Notable examples include Mover’s Distance[22][47],
BERTScore[98], and WISDM[11]. Despite their strength in capturing semantic content,
these metrics still have limitations. A key issue is that a single vector may represent multiple
meanings, leading to less accurate representations as the complexity of meanings increases. In the
literature, for instance, the QAEv study [17] demonstrates that for more complex generative QA
tasks, where context comprehension and factual accuracy are crucial, semantic similarity metrics
do not significantly outperform traditional ones. Similarly, Sellam et al. (2020) [80] highlights
the shortcomings of embedding-based methods in capturing factual correctness and coherence.
Additionally, both Celikyilmaz et al. (2020) [15] and Yeh et al. (2021) [96] studies reveal that
these metrics struggle with long-form text, primarily due to computational complexity and the
loss of sentence relations. These findings suggest the need for metrics that can better handle
challenging responses and deeper contextual understanding, incorporating both the question and
the context into the evaluation.
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0.2. AUTOMATIC EVALUATION METRICS

• LLM based:

Finally, with the advent and widespread adoption of sophisticated model architectures, evaluation
metrics have also evolved to leverage these new technologies and address emerging challenges.
Mainly, they move beyond assessing lexical similarity through superficial matching or semantic
similarity through embeddings. Instead, these powerful models, trained on vast datasets, learn
patterns that account for both the original question and the context when evaluating. Cur-
rently, these metrics are typically based on Transformer architectures, whether open-source or
proprietary, such as BERT[26], LLAMA [91], and GPT [75] models.

These metrics can be divided into two groups: “learned” and “prompt-based”. Learned
metrics involve models specifically trained or fine-tuned to evaluate the quality of generated
text, utilizing either widely available QA datasets or custom datasets designed for specific needs.
Examples include BLEURT[79], BEM[13], GPT-Judge[56], and Prometheus[46]. On
the other hand, prompt-based metrics use generative models that respond to direct or multi-
prompt inputs to compute a score, such as RAGAS[29]. Furthermore, prompt-based metrics
can be further classified into three types: metrics where the generated answer, the question, and
the reference are provided as inputs, and the model is prompted to directly output a score based
on specific evaluation criteria (scoring rubric); probabilistic metrics that calculate the likelihood
or probability of the output text being correct or appropriate according to a model; and, finally,
metrics that simulate pairwise comparisons (human preference) and compute the win rate of a
model’s answers when compared with answers generated by other models or written by humans.

Research indicates that metrics based on Transformer models often surpass traditional eval-
uation methodologies, demonstrating a higher correlation with human judgment [100] [27] [60]
[94] [83]. However, despite their advantages, research also highlights several significant challenges
associated with these metrics [41]. One significant issue is that metrics based on pre-trained mod-
els and specialized datasets often inherit the biases present in those models, and they run the
risk of having been exposed to certain data during training that they are intended to evaluate
afterwards [88] [94]. In addition, these metrics exhibit scoring biases. For example, there is a
length bias, where shorter text is frequently favored. They also tend to prioritize responses with
superficial qualities—such as verbosity or formality—over the actual quality of the content. This
raises concerns about factual inconsistency, as some studies warn that these metrics may assign
high scores to linguistically polished but factually incorrect answers [20]. Another issue is low
granularity, where scores are often unreasonably uniform, failing to capture nuanced differences
[19] [86] [54]. Furthermore, there is a bias stemming from model familiarity, where responses
generated by similar models are preferred. Due to these issues, LLM-based metrics have been
shown to lack robustness, with low agreement observed across different datasets and tasks. This
inconsistency may be attributed to their high sensitivity to variations in prompts and data, which
has been well-documented [9] [93]. In conclusion, there is a pressing need for empirical reviews
and meta-evaluations to ensure the reliability and accuracy of these evaluation metrics [6] [49]
[18].

Overall, there are numerous metrics designed to measure various aspects of performance in
different ways. Understanding the strengths and weaknesses of each methodology is essential to
selecting those that best fit the specific needs of a project. Therefore, to choose the most appro-
priate method for assessing the performance of a RAG system in answering scientific questions
based on papers, it is crucial to have a deep understanding of these metrics. With that in mind,
we will now present a review of the relevant literature on the topic.
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0.3 Related Work

• Surveys on evaluation metrics and evaluation malpractices:

As the various evaluation paradigms exhibit discrepancies that significantly impact the final
evaluation results, systematic reviews are imperative. These should be both comprehensive,
encompassing the widest range of metrics and the latest methodologies; and empirical, involving
experiments to test and validate these metrics, to effectively guide developers and researchers.

To the best of our knowledge, there is no empirical metrics evaluation survey specifically
assessing long-form QA in the scientific domain using a RAG system. Although good surveys
on LLM evaluation methodologies exist [59] [36] [16] [101] [64] [49], they either focus on LLM
evaluation in general without deeply addressing QA tasks, or they remain theoretical without
empirical implementation. Some works, such as [87] [43] [3] [24] effectively assess the QA task.
However, they have certain limitations: they consider only short-form answers, do not specifically
address the scientific domain, and/or omit some of the newest metrics.

Nevertheless, their key takeaways are significant. These works, along with others such as
[87] [7] [10], which also reflect on the evaluation process, malpractices and best practices, yield
some overall conclusions: 1. evaluating long-form generated text is undoubtedly challenging,
necessitating a review of current metrics and their reliability, likely requiring a multiple metrics
approach; 2. a key problem in assessing generated text is that the same content can be expressed
in various forms, highlighting the intrinsic disadvantage of reference-based metrics that rely on
a gold standard answer; 3. this leads to the problematic necessity of incorporating costly human
judgement into the evaluation; 4. finally, there is a need for unified and standardized evaluation
protocols in the field, addressing concerns such as the lack of clear and detailed reports on
evaluation setups for reproducibility and the lack of access to raw model outputs.

• RAG QA system evaluation: the gap on evaluation practices:

Initial efforts to augment QA systems by incorporating various retrieval methodologies [50] [37]
[45], utilized Exact Match (EM) as the evaluation metric. EM requires the predicted answer to
precisely match the ground truth answer, including all words in their exact order, making it a
stringent and precise measure of a system’s accuracy in retrieving correct answers. Similarly, the
paper introducing the RAG architecture [53] employed this metric and also included traditional
ones like BLEU and ROUGE. While these offer more flexibility, they still depend on superficial
lexical matching. Subsequent research on generative QA [39] [31] [66] continued to use them,
with some incorporating semantic similarity metrics such as BERTScore and BLEURT.

More recent studies on specific RAG QA systems [42] [48] have predominantly relied on com-
puting accuracy and F1 scores based on the restrictive EM, using data from various benchmarks
and datasets. Some works [35] propose a combination of metrics from different approaches,
integrating both traditional metrics (EM, ROUGE, BLEU) and semantic ones (BERTScore).
Additionally, Aksoy et al. (2024) [4] introduces the novel “answer correctness” metric from
RAGAS [29], which combines semantic similarity with a prompt-based methodology based on
LLMs. Lastly, RAG QA Arena [38] represents a significant and necessary attempt to assess RAG
QA systems using proper human-written long-form answers and a pairwise preference approach
conducted by both humans and LLMs.

Overall, this literature review reveals that despite the well-documented disadvantages, most
work still relies on similarity metrics. More importantly, there is no unified criterion for evalu-
ation, neither for the metrics nor for the data, which is understandable given the rapid pace of
developments. This inconsistency highlights a significant gap in current QA system evaluation
practices and underscores the urgent need to critically reflect on these evaluation methods.
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Methodology

The main objective of this thesis is to examine the effectiveness of various evaluation metrics in
assessing RAG question-answering systems, particularly within the domain of scientific question-
answering tasks. To achieve this, we developed three progressively complex experiments to eval-
uate the metrics’ performance. Table 4 provides a quick overview of the experiments, including
the datasets and generative models used in each of them.

This section is divided into four subsections, each addressing a key aspect of the research
process. First, we introduce the foundations of the three experiments designed to observe the
metrics’ behavior in different scenarios. Next, we describe the generative models and QA datasets
employed for each experiment. Finally, we explain the selected evaluation metrics, grouped into
three categories as discussed in 0.2, which will be tested across the experiments.

Table 1: Summary of experiments. This table outlines the goals, procedures, data, models,
and metrics used across the three experiments performed on this thesis.
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1.1. EXPERIMENTS

1.1 Experiments

To test the different evaluation metrics under diverse and comprehensive conditions, we con-
ducted three experiments of increasing complexity to progressively challenge the metrics and
analyze their behavior. The specificities of the models and datasets mentioned will be explained
in the following subsections.

The primary motivation behind the experiments was to assess the effectiveness and usefulness
of the metrics. At the most fundamental level, we asked: Can the metrics reliably distinguish
between entirely “correct” and completely “incorrect” answers? Building on this, we sought
to evaluate the metrics in greater detail by investigating their sensitivity to varying degrees
of correctness. Specifically, we asked: Can the metrics differentiate between better and worse
correct answers? and Can they be misled by incorrect answers that appear correct? Finally, to
conclude our analysis, we questioned: Do the metrics align with human preferences?

1.1.1 Experiment 1

For the first analysis, the objective was to test whether the metrics would assign higher scores
to “correct” answers compared to “incorrect” ones. To create this specific scenario, we based
our approach on a very basic logic. We assumed that the answers generated by the LLAMA 2
13b model to the QASPER and QASA datasets were the “correct” answers. Then, to generate
“incorrect” answers we randomly shuffled the data, therefore the answer generated for a specific
questions were paired with random questions, to which we expected they were not the answer.
Then the metrics were calculated for the answers in these two scenarios:

• Aligned data (= ”correct” answers): each question was paired with its corresponding
answer generated by the LLAMA 2 13b model.

• Shuffled data (= ”incorrect” answers): each question was paired with a random answer
from a different question. We assumed that randomizing the answers, they will mostly be
paired with questions to which they are not the correct answer.

Consequently, it is expected that the metrics would yield higher scores for aligned data. To
assess this, we contrasted the following measures:

1. Win rate: this is the proportion of cases in which the metric gave a higher score to the
expected condition out of the total cases where the metric could compute a score. It was
calculated by counting the instances where the metric gave a higher score to the better
condition and dividing that number by the total instances that the metric was able to
compute a score on.

2. Cohen’s d: this is the measure of effect size when comparing the means assigned by each
metric to the different conditions [23]. It was computed using the pooled standard deviation
of the two groups. This method of calculating Cohen’s d accounts for the magnitude of
the difference between the group means, providing a standardized measure of effect size.
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1.1. EXPERIMENTS

Afterward, to gain deeper insights on the metrics’ behavior, we used the same models and
data to conduct some additional evaluations. These focused on the following aspects:

• Qualitative and Length Analysis: we conducted a qualitative review of specific exam-
ples to better understand the behavior of the metrics. This review included: the top three
instances with the lowest and highest overall scores (averaged across all metrics); and the
top three instances with the lowest and highest standard deviation in their general scores.
This approach allowed us to observe patterns in scoring. Based on this and previous ob-
servations, an additional analysis was conducted to examine the correlation (Spearman
Correlation[84]) between the number of tokens in the answers and the scores.

• Metric Variation and Coverage: for each metric, we analyzed the standard deviation
(std) of the scores to evaluate the metric’s variation. For this, we calculated theCoefficient
of Variation, which is a statistical measure of the relative variability of data, expressed
as the ratio of the standard deviation to the mean. It provides insight into the relative
variability of the data compared to its mean, allowing to assess consistency and stability.
Additionally, we examined for how many instances of the total amount, the metric was
able to compute a score. We express this as a percentage.

• Correlation Analysis: we examined the correlation between metrics to determine how
closely they relate to each other, particularly when measuring the same or similar con-
structs (we only consider the scores assigned to QASA and QASPER dataset in aligned
condition with answers generated by LLAMA 2 model). Ideally, metrics measuring the
same construct should show a moderate to high correlation. To evaluate these relation-
ships, we used Spearman Correlation [84], chosen for its flexibility in handling data that
does not meet the assumptions of parametric tests. Spearman Correlation measures rank
correlation and assesses the monotonic relationship between two variables, allowing us to
understand the degree of association between the metrics.

1.1.2 Experiment 2

The objective of this experiment was to conduct a more in-depth analysis to know if the metrics
could distinguish between “better” and “worse” answers. We wanted assess the sensitivity of
the metrics to various answer variations, how sensitive the metrics could be to different levels
of “correctness” of an answer, and if they could be tricked by incorrect answers that resemble
correct ones in their form or content. To achieve this, we performed two analysis:

• Analysis 1 - large vs. small model:

Firstly, we aimed to create a scenario with generally “better” and “worse” answers. For this,
we based on the documented hypothesis that larger models generally produce better responses
than smaller ones [44][12]. Therefore, we utilized the LLAMA 3.1 model in its two version (70
billion and 8 billion parameters) to create two sets of “correct” but different answers. Large
model (= ”better” answer): answers generated by the LLAMA 3.1 70b were considered the
correct ”better” ones. Small model (= ”worse” answer): answers generated by the LLAMA
3.1 8b were considered the correct ”worse” ones.

Metrics were calculated for these two conditions, and it was hypothesized that the answers
generated by the larger model would receive higher scores than those generated by the smaller
one. To assess this, we used the same measures as in Experiment 1 that were already explained:
Win rate and Cohen’s d.
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1.1. EXPERIMENTS

• Analysis 2 - sensitivity data set:

To gain more granular information about the metrics sensitivity to different degrees of “cor-
rectness” and to know specifically if they would get tricked by incorrect answers that resembled
the correct ones for their form or content, we decided to create an ad hoc dataset. We will call
this the “Sensitivity” dataset, in which each question has six different answers with varying levels
of “correctness” by somehow resembling or not the correct answer in content or form (details in
Section 1.4.2). The analysis focused on:

• Metrics Sensitivity Index: this aspect evaluates whether the metrics assign higher
scores to correct answers compared to incorrect ones. To measure this, we calculated the
average score given to correct answers and the average score given to incorrect answers, then
subtracted the incorrect score from the correct score. A positive result indicates that the
metrics are working as expected, with higher values demonstrating stronger differentiation
between correct and incorrect answers.

• Metrics Sensitivity Pattern: this aspect examines whether the metrics can detect vary-
ing levels of granularity within the correct and incorrect answer sets. Bar charts are used
to visualize the scores assigned by each metric across six categories: correct perfect, cor-
rect similar, correct different, incorrect similar, incorrect related, and incorrect unrelated.
Ideally, correct answers should consistently receive higher scores than incorrect answers,
and the chart should display a descending trend, with “correct perfect” having the highest
score and “incorrect unrelated” the lowest.

1.1.3 Experiment 3

The goal of this final experiment was to compare the performance of the evaluation metrics
against actual human preferences to know if the metrics align with human preference and how
well they do it. To achieve this, we created a random sample of 25 QA pairs from the QASPER
and QASA datasets, as well as a proprietary dataset of Iris.AI (specifically 4 from QASPER, 12
from QASA and 9 from a property dataset from Iris.AI). Each of the questions was answered
by six different models (Phi 3, LLAMA 3.1 8b and 70b, Mistral and Gemma 2 9b and 27b),
resulting in a diverse set of responses.

These question-answer pairs were then uploaded to Qualtrics platform 3 for distribution
among expert annotators, given that the questions and answers were specific to the fields of
Machine Learning and Natural Language Processing. We specifically sought knowledgeable an-
notators, which is why the survey was targeted at employees of Iris.AI and students from the
Master’s program in Language and Communication Technologies. Annotators were asked to
evaluate and rank the answers from each model on a scale from 1 (poor answer) to 5 (excellent
answer), reflecting their preferences for the quality of each response. The exact task provided to
the annotators is shown on Figure 2.

A total of 55 participants contributed, each of them was asked to rank the answers of only
5 questions. Only 30 participants replied to all the questions, we considered all the collected
data to establish a human preference ranking for the different models. Subsequently, we applied
each of our automatic evaluation metrics to the same set of question-answer pairs. The primary
objective was to compare the humans rankings of model responses with themetrics rankings,
providing insights into how closely the metrics align with human judgment, for this we manually
inspect and compared the rankings, and also computed Spearman Correlation between rankings
(by metrics and by humans).

3https://www.qualtrics.com/
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Figure 2: Survey Task. Exact task provided to the annotators on Experiment 3.

1.2 Evaluation Metrics

Assessing all existing and available metrics is an impractical endeavor due to their sheer number
and the continuous development of new methodologies. Such a comprehensive evaluation would
far exceed the scope of this thesis, as well as the constraints imposed by available resources and
time. Consequently, we have strategically selected a couple of metrics from each category dis-
cussed in Section 0.2. This selection process was driven by the metrics’ significance as exemplars
of their respective approaches, coupled with the accessibility of their code and the feasibility of
implementation. Below, we provide a high-level overview of the operational principles of these
metrics. Table 2 outlines the classification criteria adopted, derived from our literature review,
and highlights the selected representative metrics from each category.

1.2.1 Lexical Similarity

• Bilingual Evaluation Understudy (BLEU):

BLEU [69] is a metric for evaluating the quality of machine-translated text by calculating n-
gram precision for different values of n (typically 1 to 4). It measures how many n-grams in the
candidate translation appear in the reference translations. To avoid rewarding repeated phrases,
BLEU uses “clipping,” where each n-gram is counted only as many times as it appears in the
reference. It also applies a “brevity penalty” to prevent short translations from receiving high
scores for using a few common words correctly. Finally, BLEU combines the n-gram precision
scores using a geometric mean, which favors lower values, and multiplies by the brevity penalty
to produce the final score.
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Table 2: Classification of Evaluation Metrics. The table categorizes evaluation metrics into
three main types: Lexical Similarity, Semantic Similarity, and Contextual Understanding.

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE):

ROUGE [55] is a set of metrics used to evaluate automatic summarization and machine transla-
tion by comparing generated text to reference summaries.

It includes four variants, although the most commonly used are: ROUGE-N (N-gram Co-
Occurrence Statistics): measures the overlap of n-grams (contiguous sequences of n items)
between the generated and reference summaries. ROUGE-1, ROUGE-2, and ROUGE-3 are
examples where n equals 1, 2, and 3 respectively. ROUGE-L (Longest Common Subse-
quence): measures the longest common subsequence (LCS) between the generated and reference
summaries. It captures sentence-level structure similarity. For each of them, you can measure:
precision (indicates the accuracy of the generated text in terms of relevant information); recall
(indicates how much of the relevant information from the reference is captured by the generated
text); f-score (provides a balanced harmonic mean of precision and recall).

• Metric for Evaluation of Translation with Explicit Ordering (METEOR):

METEOR [8] was developed to address some weaknesses of BLEU, particularly around synonyms
and word order.

METEOR evaluates a translation by aligning it to a reference translation and considering
several factors: exact match (it looks for exact word matches between the machine translation
and the reference); stem match (it matches words that share a common root or stem); synonym
match (it matches words that are synonyms using resources like WordNet); paraphrase match
(it matches phrases that mean the same thing); ordering (it considers the order of words and
phrases, penalizing translations where the order is significantly different from the reference).

The metric scores translations based on these factors and combines them into a final score
using a weighted harmonic mean of precision and recall. Additionally, METEOR includes a
penalty for longer mismatches in word order.
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• ChrF (++):

ChrF [72] and ChrF++ [73] are evaluation metrics introduced to provide a more flexible and
potentially more accurate alternative to traditional word-based metrics like BLEU. These metrics
are based on character n-grams and were designed to better handle the diverse range of languages
and translation peculiarities.

ChrF calculates the F-score (harmonic mean) of precision and recall over character n-grams.
Precision and recall are calculated by comparing the n-grams (sequences of characters) of the
machine translation output with the reference translation. It allows for different weighting of n-
grams of various lengths, providing flexibility in capturing different granularities of the translation
quality. The F-score can be adjusted with a beta parameter to balance the importance of precision
and recall according to specific needs.

ChrF++ extends ChrF by incorporating word n-grams along with character n-grams. This
combination aims to leverage the benefits of both character-level and word-level evaluation, cap-
turing both fine-grained and more global translation errors. The metric considers both precision
and recall of character and word n-grams, allowing a more comprehensive assessment of transla-
tion quality.

• Translation Edit Rate (TER):

TER [82] was introduced to provide a more intuitive measure of machine translation quality. It
calculates the number of edits required to change a system output into one of the references. The
edits include insertions, deletions, substitutions, and shifts (i.e., reordering of words or phrases).

First, the machine-translated sentence is aligned with the reference sentence. Then, the
number of edits needed to make the machine-translated sentence match the reference sentence
is calculated. The types of edits are: insertions (adding a word or phrase); deletions (removing
a word or phrase); substitutions (replacing one word or phrase with another); shifts (moving a
contiguous sequence of words to a different location. Finally, the TER score is calculated as the
ratio of the total number of edits to the average length of the reference translations.

1.2.2 Semantic Similarity

• Word Movers Distance (WMD):

WMD [47] is a measure developed to quantify the dissimilarity between two text documents.
It leverages the concept of word embeddings, where words are represented as vectors in a high-
dimensional space. It leverages the concept of the Earth Mover’s Distance (EMD) from optimal
transport theory.

First, each word in the documents is represented as a vector using a pre-trained word embed-
ding model (like Word2Vec) to capture semantic similarities between words. WMD formulates
the problem of comparing two documents as an optimal transport problem [71]. The goal is to
find the most cost-effective way to transform one document into the other. The cost of trans-
forming one word into another is given by the Euclidean Distance between the embeddings. A
cost matrix is constructed, where each entry represents the distance between the embedding of
a word in the first document and the embedding of a word in the second one. Then, it finds
a flow matrix that minimizes the total transport cost. Each entry in the flow matrix indicates
how much of one word’s embedding is transported to another word’s embedding. The total cost
associated with the optimal flow matrix is the WMD. Mathematically, WMD is computed as the
sum of the product of the flow matrix entries and the corresponding entries in the cost matrix.
For consistency and to be able to compare it with other metrics, on this work, the WMD was
subtracted from 1 to obtain the Word Mover’s Similarity (WMS).

15



1.2. EVALUATION METRICS

• Sentence Movers Distance (SMD):

SMD [22] follows the same logic and computation procedure than WMD but using sentence
embeddings. It is a metric used to measure the similarity between two texts by considering how
sentences in the first text are mapped onto sentences in the second text one.

Sentences are first represented using word embeddings, typically pre-trained vectors (like
Word2Vec, GloVe, or more recent models like BERT). Each word in the sentence is mapped
to a high-dimensional vector. The idea is to measure the cost of transforming the distribution
of embeddings in one sentence into the distribution of embeddings in another sentence. A cost
matrix is constructed, where each element represents the distance between an embedding from
the first sentence and an embedding from the second sentence. This distance is often calculated
using cosine similarity or Euclidean distance between the word vectors. The goal is to find a
flow matrix that minimizes the total transportation cost. The flow matrix indicates how much
“weight” should be moved from one sentence in the first text to one sentence in the second
text. The SMD is the minimum total cost required to transform one sentence’s word embedding
distribution into the other. This involves solving a linear programming problem to find the
optimal flow matrix that minimizes the total cost defined by the cost matrix. For consistency
and to be able to compare it with other metrics, on this work, the SMD was subtracted from 1
to obtain the Word Mover’s Similarity (SMS).

• Word importance-based similarity of documents metric (WISDM):

WISDM [11] is a method for measuring the similarity between documents that focuses on
information-carrying words. It selects the most informative words from the documents using
a combination of TF-IDF and word embeddings, which helps to focus on the key terms that are
most relevant. It combines the advantages of traditional count-based models like TF-IDF with
modern word embeddings techniques, making it both efficient and precise.

First, each document is tokenized into words or phrases (tokens). Tokens are scored using the
TF-IDF (Term Frequency-Inverse Document Frequency)[78] method. TF-IDF scores represent
the importance of tokens in the document relative to a larger corpus. Then, tokens with a
TF-IDF score above a certain threshold are selected. These high-scoring tokens are considered
to carry the most significant information about the document. For each selected key-token, its
vector representation is retrieved from a pre-trained word2vec model. Word embeddings capture
the semantic meaning of words in a high-dimensional space. The document is represented as a
matrix, where each row corresponds to the word2vec embedding of a key-token. To measure the
similarity between two documents, the RV coefficient is used [77]. This coefficient computes the
correlation between the matrices and represents the “similarity/closeness” between them.

• BERTScore:

BERTScore [98] evaluates text generation models by comparing the contextual embeddings of
the candidate and reference sentences, providing a more nuanced and context-aware assessment
than traditional metrics. BERT (Bidirectional Encoder Representations from Transformers)
embeddings are used in this metric. BERT is a transformer-based model that provides deep
contextual embeddings for words in a sentence, capturing the context around each word, which
is crucial for understanding nuanced meanings. The embedding of each text can be computed
either by averaging its word embeddings or by directly using sentence embeddings [76]. Then,
the metric computes the Cosine Similarity between them.

For each word in the candidate (generated) sentence, BERTScore finds the most similar word
in the reference (ground truth) sentence using cosine similarity of their BERT embeddings. This
similarity is calculated for each pair of words, and these scores are then aggregated to provide a
final similarity score
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1.2.3 LLM based

Learned metrics

• Bilingual Evaluation Understudy with Representations from Transformers (BLEURT):

BLEURT [79] is a metric designed to evaluate the quality of machine-generated text. BLEURT is
a trained regression model that predicts quality scores based on rating data. It utilizes a BERT-
like architecture, pre-trained on a vast corpus of text to understand the nuances of language,
including syntax and semantics. The pre-trained model is then fine-tuned on a dataset specifically
created for evaluation tasks. This dataset includes human-rated examples where text pairs are
annotated with quality scores, allowing the model to learn to predict these scores accurately.
When given a pair of sentences—one being the reference and the other the candidate—BLEURT
processes them using its fine-tuned BERT-like model. The model computes a similarity score
that reflects the quality of the candidate text. This score considers how fluent the candidate text
is and how well it conveys the intended meaning of the reference text.

• BERT Matching (BEM):

BEM [13] is a metric developed to evaluate the quality of answers generated by question answering
systems.

The BEM metric operates by leveraging the powerful language understanding capabilities
of BERT. The BERT model, pre-trained on a large corpus of text, captures the syntax and
semantics of language. BEM further fine-tunes this pre-trained BERT model on a specifically
created dataset that includes human-rated answer equivalence annotations. This dataset consists
of human judgments where candidate answers produced by QA systems are compared with
reference answers and rated for their semantic equivalence. To compute the BEM score, the
model processes the context, question, reference answer, and candidate answer. The fine-tuned
BERT model then predicts whether the candidate answer is equivalent to the reference answer
based on the learned understanding of answer equivalence. The output is a similarity score
that reflects the degree to which the candidate answer is considered equivalent to or better
than the reference answer. This score takes into account the context and question to ensure a
comprehensive evaluation.

• BARTScore:

BARTScore [97] is a metric that leverages BART (Bidirectional and Auto-Regressive Transform-
ers)[52], a pre-trained transformer model that excels at text generation tasks.

BARTScore uses the BART model to compute the likelihood of a generated text given a ref-
erence text. This is done by measuring how well the BART model can reconstruct one text given
the other. Specifically, BARTScore calculates the conditional log-likelihood of the generated text
given the reference text. This means it measures how probable the generated text is, considering
the reference text as input, thereby providing a quantitative measure of text quality based on
the BART model’s understanding and generation capabilities.
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• Prometheus:

Prometheus [46] is an advanced metric designed to evaluate the quality of long-form responses
generated by language models.

Originally, the Prometheus fine-tuned model leverages a fine-tuned version of the Llama-2-
Chat-13B, utilizing a comprehensive dataset known as the FEEDBACK COLLECTION. This
dataset includes detailed score rubrics, reference answers, instructions, and feedback generated
by GPT-4. The FEEDBACK COLLECTION consists of 1,000 fine-grained score rubrics, 20,000
instructions, and 100,000 responses, making it a robust resource for training the model. The eval-
uation process in Prometheus involves providing customized score rubrics and reference answers
alongside the responses to be evaluated. The model processes these inputs to generate feedback
and assign a score from 1 to 5 based on the specified criteria. Furthermore, prometheus-eval
is a prompt based approach that uses this same logic of score rubrics, reference answers, instruc-
tions, and feedback but can utilize any LLMs, particularly, on this thesis we utilized LLAMA
3 70b (for more detail see Section 1.3) and that is why we will consider Prometheus a “prompt
based” metric. We acknowledge that using this model may introduce biases in the experiments
where LLAMA family models are used to generate answers. However, it was selected due to its
demonstrated effectiveness, as well as its accessibility and cost-free availability.

Prompt based metrics

• LLMScore:

Many proposed metrics use some variation of OpenAI GPT models to obtain the evaluation
score. For example, Gpt-score [30] evaluates the quality of generated texts by calculating the
conditional probability that these texts adhere to given instructions and contextual information
using GPT-3 [12]. Gpt-judge [56] also uses a fine-tuned GPT-3 model to classify answers to
questions as either true or false. Another metric, g-eval [58] evaluates generated outputs by
directly prompting GPT-4 [2]. Based on this, it was decided to develop our own implementation
to simply prompt an LLM and asking to output a score. We specifically utilized LLAMA 3.1 70b,
which again we acknowledge the limitations of using a model that is also utilized to generate
answers, but again, chose it due to its demonstrated effectiveness, accessibility and cost-free
availability. (more details about implementation and prompt used in Appendix M.1).

• RAGAS:

The RAGAS [29] framework aims to evaluate RAG pipelines. It includes many metrics to
evaluate both the generation component and the retrieval component, leveraging power LLMs
(mainly OpenAI models). In this thesis, we consider the following metrics:

Faithfulness: measures the factual consistency of the generated answer against the given
context. To calculate this, a set of claims from the generated answer is first identified. Then each
of these claims is cross-checked with the given context to determine if it can be inferred from
the context. Specifically, the metric uses a predefined prompt to instruct the language model to
break down the complex answer into simpler, fully understandable statements without pronouns;
then, it uses another predefined prompt to instruct the LLM to evaluate each simpler statement
against the context, the LLM checks if each statement can be directly inferred from the context;
finally, it calculates the faithfulness score as the ratio of faithful statements (faithful statements
/ total statements) to the total number of statements.
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Relevance: focuses on assessing how pertinent the generated answer is to the given prompt.
It is defined as the mean cosine similarity of the original question to a number of artificial
questions, which were generated (reverse engineered) based on the answer. The LLM is prompted
to generate an appropriate question for the generated answer multiple times, and the mean
cosine similarity between these generated questions and the original question is measured. The
underlying idea is that if the generated answer accurately addresses the initial question, the LLM
should be able to generate questions from the answer that align with the original question.

Similarity: assess the semantic resemblance between the generated answer and the ground
truth. Particularly, the metric calculates the cosine similarity between the normalized embed-
dings of the ground truth and generated answer.

Correctness: gauges the accuracy of the generated answer when compared to the ground
truth. Answer correctness encompasses two critical aspects: semantic similarity (already ex-
plained), as well as factual similarity. For the latter, the metric uses a prompt to instruct the
LLM to break down the texts into simpler statements. Then it uses another prompt to instruct
the LLM to classify each statement as True Positive (statements in the answer that are directly
supported by the ground truth) False Positive (statements are not supported), False Negative
(statements from ground truth are missing in the answer). Then, it calculates an F1-like score
based on the counts of TP, FP, and FN statements. These aspects are combined with the
similarity using a weighted scheme to formulate the answer correctness score.

• Tonic:

Tonic 4 is a framework developed to evaluate RAG. It includes many metrics to evaluate both
the generation component and the retrieval component. In this thesis, we consider the following:

Consistency: measures the percentage of the answer that can be attributed to retrieved
context, ensuring that the generated answer maintains factual accuracy and relevance. The
metric takes an answer and context and performs the following steps: the LLM is prompted to
create a bulleted list of the main points in the RAG system answer. This step uses a predefined
prompt to instruct the LLM to break down the complex answer into simpler, fully understandable
statements; each main point is evaluated to determine if it can be attributed to the retrieved
context. The LLM uses another predefined prompt to assess the faithfulness of each simpler
statement against the context, checking if each statement can be directly inferred from the
context. The LLM generates a list of verdicts for each statement, where each verdict is either
1 (the statement is faithful to the context) or 0 (the statement is not faithful to the context);
the final score is calculated as the ratio of faithful statements to the total number of statements.
This score represents the percentage of the answer that is consistent with the context.

Similarity: measures how well the answer corresponds in meaning to a reference answer.
The LLM is prompted to grade how well the RAG LLM response matches the reference response
on a scale from 0 to 5. This is done using a predefined similarity score prompt to instruct the
LLM to evaluate the similarity.

To streamline the experimental process and ensure a consistent evaluation across all metrics, a
dedicated python module was developed for the automatic computation of all selected metrics’
scores. Such module takes as input a data with sets of question, reference answer, and reference
context and outputs all the metrics scores for each input, general statistics on the data and
correlation values among different metrics (more technical details about the implementation of
the metrics and the module can be found in Appendix M.1).

4No published paper available. Information about their metrics can be found on their website:
https://docs.tonic.ai/validate/about-rag-metrics/tonic-validate-rag-metrics-reference
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1.3 Generative Models

The main models used on this thesis belong to the LLAMA (Large Language Model Meta AI)
family, a group of advanced open-source language models developed by Meta AI. The LLAMA
models are known for their large-scale transformer architecture, which allows them to handle
complex language tasks, and are pre-trained on extensive datasets and fine-tuned to generate
human-like text with high coherence and relevance. They were particularly chosen as these
models support the engine behind the generative component of Iris.AI 5 Chat-Tool.

Particularly, we will use the LLAMA 2 13b model [90] (in Experiments 1 and 2) and the
LLAMA 3.1 8b and 70b [28] (in the Experiment 2 and 3). Finally, for Experiment 3, the
following models were also included for comparison: Phi3 developed by Microsoft [1]; Gemma
2 (9b and 27b parameters) by Google [89]; and Mistral 7b by Mistral.ai 6.

Specifically, the LLAMA 2 model 13 billion parameter version, is a notable member of
the LLAMA family. It features a large-scale transformer architecture that has been optimized
for enhanced performance in language generation tasks. This model is designed to process
vast amounts of text data and generate highly coherent and contextually appropriate responses.
LLAMA 2 13b is widely used in various applications, making it a versatile choice for natural
language generation. The model was deployed on AWS SageMaker, a managed service by Amazon
Web Services (AWS) 7 that supports building, training, and deploying machine learning models
at scale, ensuring robust performance and scalability.

Moreover, LLAMA 3.1 represents the latest iteration in the LLAMA series, bringing fur-
ther improvements in language understanding and generation capabilities. The 3.1 version was
released in 2024 with multiple variants, including models with 8 billion and 70 billion param-
eters. These models build upon the architecture of their predecessors, incorporating advanced
training techniques and a larger, more diverse dataset to enhance language comprehension and
response generation.

We acknowledge that the use of a single model across all experiments would have allowed
for more direct and consistent comparisons of results. However, the selection of models was
primarily driven by practical considerations, including the availability of computational resources
and the preferences of our industry collaborator, Iris.ai. Incorporating multiple models, despite
this limitation, enriches the scope of our study by offering a broader evaluation across diverse
architectures.

In particular, the decision to employ both the LLAMA 2 model in certain experiments and
the LLAMA 3.1 model in others was influenced by timing and performance factors. At the
outset of our research, only LLAMA 2 was available. When LLAMA 3 was released in July 2024,
we identified the improved performance of LLAMA 3.1 and decided to include it in subsequent
experiments to provide a more thorough and up-to-date assessment. Additionally, logistical
constraints prevented the continued use of LLAMA 2, further justifying the shift to LLAMA 3.1.
Finally, for Experiment 3, all models were selected by Iris.ai in alignment with their research
goals.

5(Iris.AI is the industry collaborator sponsoring this work (more info at https://iris.ai/)
6No publication available. Information in: https://mistral.ai/news/announcing-mistral-7b/
7https://aws.amazon.com/
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1.4 Question-Answering Datasets

Regardless of the metric used, a critical component in the evaluation methodology is the data.
The reviewed evaluation metrics rely on a reference ground truth answer, and some also require
a reference context, including the specific content necessary to answer the question. In any case,
the quality of this data is paramount when evaluating a system’s performance in QA; biases or
inconsistencies can skew the results and mislead conclusions.

The analyses conducted in this thesis required the use of two different types of datasets: 1.
existing pairs of scientific questions, contexts, and a single correct answer manually created and
curated by humans; 2. an ad hoc generated set of questions, contexts, and multiple answers,
including varying degrees of correctness and incorrectness.

1.4.1 Existing data: QASPER and QASA

Ideally, the data necessary to assess a scientific QA task would include questions derived from
scientific papers, one or more reference answers created by humans, and a relevant reference
context. For the specific purpose of this thesis, such answers should be in the form of long texts,
meaning a composition of at least one fully elaborated sentence rather than a few isolated words
or simple yes-no responses. Moreover, a comprehensive dataset should encompass questions of
diverse and increasing complexity. With these criteria in mind, we reviewed publicly available
QA datasets to evaluate their relevance for this study and selected the most suitable ones. More
than thirty QA datasets were examined (for more detail, see Appendix ??). Those that included
answers consisting of only a few words or those not originating from the scientific domain were
excluded. Consequently, two datasets were chosen, which we will now explain in detail:

• Question Answering over Scientific Research Papers (QASPER):

The QASPER [25] dataset was designed to tackle the challenge of building question-answering
systems capable of handling complex reasoning across entire research papers, rather than just
factoid-based questions. QASPER includes 5,049 question-answer pairs generated from 1,585
NLP research papers. Questions were created by NLP practitioners who read only the title and
abstract of each paper and then formulated queries that required detailed answers found within
the full text. The answering process was conducted by a different set of NLP practitioners, who
also provided supporting evidence from the papers. This dataset was constructed to support
a broad spectrum of question types, including those that necessitate evidence synthesis across
multiple paragraphs, tables, and figures.

• Question Answering on Scientific Articles (QASA):

The QASA [51] dataset was created to address the limitations of existing question-answering
datasets by focusing on full-stack reasoning, encompassing associative thinking and logical rea-
soning. The dataset includes 1,798 question-answer pairs generated from AI and ML research
papers. These questions were formulated by AI/ML practitioners through a think-aloud study,
ensuring a diverse range of question types such as surface, testing, and deep questions. Annota-
tors, consisting of both general readers and authors, were asked to read entire papers or specific
sections, formulate questions, and provide detailed, evidence-based answers. This process aimed
to capture the complexity and depth required for advanced question answering, necessitating the
synthesis of information across multiple paragraphs and sections. 8

8More detail on how the datasets were processed and used on the Appendix M.3.

21



1.4. QUESTION-ANSWERING DATASETS

The following images explain the compositional process of elaborating the question-context-
answer pairs9:

On one hand, Figure ?? shows an example taken from QASPER: a question about the paper
is written after reading only the title and the abstract. To arrive at the answer, one finds
relevant evidence, which can be spread across multiple paragraphs. In this example, to answer
the question about “baselines”, the reader must realize from evidence from Sections 3 and 4 that
“context documents” come pre-ranked in the dataset and the paper’s “baselines” select from
these “context documents”. On the other hand, Figure ?? shows an example instance taken
from QASA: a question that the reader/author asks about the paper while reading the paper.
To formulate the answer, one classifies whether the paragraph contains evidence to answer the
question. Evidential rationales are written for each evidential paragraph and are systematically
composed into a comprehensive answer.

Figure 3: Example instances from QASPER and QASA datasets. These figures illustrate
example instances from the QASPER (to the left) and QASA (to the right) datasets, where ques-
tions are generated based on scientific papers. They were taken from their original publications
[25] [51]. In QASPER, questions are posed after reading only the title and abstract, requiring the
identification and synthesis of relevant evidence from multiple sections of the paper. In QASA,
questions arise during the reading process, with paragraphs evaluated to determine their eviden-
tial value in answering the question. Both figures demonstrate the challenges of extracting and
composing information systematically from scientific texts to provide comprehensive answers.

For Experiment 1 the full QASPER and QASA datasets were used and populated with
answers generated by the LLAMA 2 13b model. For Experiment 3, we used a sample of 25
question-context-answer pairs randomly chosen (4 from QASPER, 12 from QASA and 9 from
a property dataset from Iris.AI), they were populated by answer generated by other 6 models.
Experiments will be explained in detail at the end of this chapter.

9These images were extracted from the original papers where the dataset were presented [25][51].
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1.4.2 Ad hoc data: Sensitivity Dataset

This dataset was specifically created to address the second research question: are the metrics
sensitive to different levels of “correctness” of an answer? can they be tricked by incorrect
answers that seem correct?, and test the metrics’ sensitivity to variations in answers. This
dataset includes a set of synthetically generated and verified QA pairs. To encompass questions of
varying complexity, two types of questions were generated: fact-checking questions (where the
answer is a composition based on only one substring of the context, that can be used directly as
it is written in the context) and deep reasoning questions (where the answer is a composition
based on a more elaborated understanding made from more than one substring of the context, and
substrings can not be used exactly as they are written, it requires a deeper understanding of the
content). Considering the reproducibility, all questions are derived from scientific papers retrieved
from PubMed[95], which abstracts served as reference context. Finally, unlike traditional datasets
with a single correct answer, this dataset includes six types of answers with varying levels of
correctness: correct perfect, correct similar, correct different, incorrect similar, incorrect related
and incorrect unrelated. Their definition can be found in Table 3.

Table 3: Sensitivity Dataset definitions. This table defines the six types of answers with
varying levels of correctness used in the Sensitivity Dataset. The answers are categorized as
correct (Perfect, Similar, Different) and incorrect (Similar, Related, Unrelated).

To automate the creation of this dataset, a python module was developed. In a nutshell, this
module retrieves abstracts from papers from PubMed (according to specific queries provided by
the user) and automatically generates a validates fact-checking and reasoning questions based
on them. Then, it also generates and validates the six different answers from each question. The
flow diagram of the sensitivity data generation module is shown below on Figure 4:
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Figure 4: Workflow of module for Sensitivity data generation. The image illustrates
the pipeline workflow of the sensitivity data generation module developed to create an ad hoc
dataset for testing metric sensitivity. The module retrieves abstracts from PubMed based on
user-provided queries and generates two types of questions: fact-checking questions and deep
reasoning questions. The module then generates and validates six types of answers with varying
correctness levels: correct perfect, correct similar, correct different, incorrect similar, incorrect
related, and incorrect unrelated, enabling comprehensive testing of answer quality and sensitivity.

After the creation of the module, a pilot study was conducted to test various models and
prompts, aiming to identify the optimal ones for generating data. The models tested included
GPT-3.5[12], GPT-4[2], and LLAMA 3.1 70b[28] (see Section 1.3). Various prompts were used
to generate each data item (including questions and all answer types), and the outputs were
manually reviewed and verified. Overall, the GPT and LLAMA models demonstrated similar
performances, with two notable differences: the LLAMA model adhered more rigorously to the
query instructions (for instance, when asked to paraphrase without repeating any terms, GPT
repeated more words than LLAMA); additionally, the performance of GPT was somewhat more
variable, producing both higher and lower quality outputs across different instances, whereas
LLAMA consistently produced outputs of uniform quality throughout the process. Other note-
worthy conclusions from this study include: all models struggled to generate variations for an-
swers involving numbers or short names; they all tended to add a brief introductory phrase at
the beginning of their responses (such as ”Here is your answer:”); and GPT models generally
provided more concise answers, while LLAMA produced longer responses. Additionally, given
that GPT models are proprietary and LLAMA is open-source, the decision was made to use
LLAMA 3.1 70b.
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On the same line, the prompts to be used were selected based on those that provided the
output that best aligned with our expectations (see prompts used on Appendix M.4). In most
cases, the prompt includes only the instruction and the necessary inputs, with some particular
request for each question type. For the “correct different” answer, two examples were included
in the prompt, as it was noticed that this improved the models’ performance. As validation, the
question and the incorrect answers also used a step of prompting the model to check their quality.
The correct perfect answer doesn’t have validation, the other two correct answers (similar and
different) use as validation a function that: tokenize the two answers (ground truth and correct
similar or different), count the tokens overlap, and returns True if correct similar shares 3 or
more and correct different share 2 or less, otherwise returns false. The “correct unrelated” is not
generated, instead, a random answer from other questions is used.

Using the developed module, and the chosen model and prompts, already explained in pre-
vious sections, one sample data set was created to use in Analysis 2. The queries chosen were:
“chemistry”, “environment”, “sports”, “plants”, “linguistics”, and “medicine”. It was set to
retrieve 10 abstract per query and 6 questions per abstract (a total of 60 abstracts, and 360
questions, of which 180 are fact-checking and 180 deep-reasoning). The following Table 4 shows
one instance as example:

Table 4: Sensitivity Dataset example instance. This table presents a sample instance from
the Sensitivity Dataset created using the developed module, showcasing the structure of the
dataset used in Analysis 2. The table includes an abstract retrieved from PubMed, a fact-checking
question generated based on the abstract, and various answer types classified according to their
correctness: Correct Perfect, Correct Similar, Correct Different, Incorrect Similar, Incorrect
Related, and Incorrect Unrelated. Each answer type demonstrates varying degrees of correctness
and relevance to the question, highlighting the nuanced approach of the dataset in testing QA
system sensitivity.
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Results

2.1 Experiment 1

Can the metrics reliably distinguish between “correct” and “incorrect” answers?
The first experiment tested whether the metrics could assign a higher score to correct over
incorrect answers. Metrics were computed over QASPER and QASA datasets populated by
the LLAMA 2 13b model 10. The preferred conditions should be aligned answers (answer
generated by the LLAMA 2 13b paired with their corresponding question) over shuffled answers
(randomly paired). Table 5 shows the results, metrics were evaluated by win rate (percentage of
how often the superior condition was preferred) and Cohen’s d (effect size between conditions).

Category Metric Win Rate Cohen’s d

Lexical
Similarity

BLEU 80 0,09
ROUGE-1 83 0,60
ROUGE-2 70 0,81
ROUGE-L 83 1,18
ChrF 86 0,41
ChrF++ 87 0,43
METEOR 83 1,20
TER 64 0,56

Semantic
Similarity

BERTScore 93 2,10
WMS 88 1,14
SMS 94 2,13
WISDM 87 1,41

LLM based
Fine-tuned

BLEURT 96 1,56
BEM 94 1,68
BARTScore 80 0,74

LLM based
Prompt

Prometheus 91 3,91
LLMScore 98 5,31
Faithfulness 76 1,64
Relevancy 94 0,89
Correctness 73 0,73
R similarity 94 2,01
Consistency 89 2,47
T similarity 89 2,36

Table 5: Comparing aligned vs. shuffled data on the QASPER and QASA datasets.
Results include win rates (percentage of how often the superior condition was preferred, darker
if >90) and Cohen’s d (effect size between conditions, in gray if > 1). Separated results of each
dataset can be found in Appendix R.1.

10Due to resource constraints, in some cases model-based metrics were calculated on a subsample of 100 instances
from each dataset assuming results would roughly generalize on the same direction.
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The criteria for interpreting the results was: win rate above 50% indicates good performance
favoring the better condition, with results over 80% distinguished as very good; win rate below
50% indicates poor performance, with higher scores given to the worst condition. Effect sizes
were considered small for Cohen’s d values below 1, moderate 1-3, and large for values above 3,
with the sign (+ or -) indicating the direction of the effect. Results reveal the following:

• Win-rate: most metrics achieved a win rate above 70%. LLMScore (98%) and BLEURT
(96%) had the highest win rates, followed by Ragas similarity and Relevancy, SMS and
BEM (94%). Only TER had a lower win rate (64%), being the “lexical similarity” group
the one with lowest win-rate on average, although the values remained satisfactory.

• Cohen’s d: the effect sizes varied across the metrics, with values ranging from small
to large, indicating different levels of ability to differentiate between aligned and shuffled
conditions. The metric with the strongest effect size was LLMScore (5,31) followed by
Prometheus (3,91). Most model-based metrics had a Cohen’s d greater than 1, and, in
some cases, over 2. Exceptions included BARTScore (0,74) and Ragas Relevancy (0,89)
and Correctness (0,73). Similar patterns were observed in the “sentence similarity” metric
group, where all metrics achieved values over 1 and 2. In contrast, the “lexical similarity”
metrics generally failed this test, with effect sizes below 1 standard deviation. Notable
exceptions were ROUGE-L (1,18) and METEOR (1,20), with values slightly above 1.

Regarding the win rates, these findings suggest that all metrics demonstrated their
ability to consistently prefer the expected superior condition. However, when taking in
consideration the effect size, we see that prompt-based metrics present the most signifi-
cant differentiation between the conditions, and therefore the most effective performance.
The highlight of the group were LLMScore and Prometheus, although the possible bias of these
metrics based on the fact that they utilize a model from the LLAMA family to score should be
taken into consideration before jumping to conclusions. The exceptions are Ragas Relevancy and
Correctness, further analysis in following results will shed more light on the specific behavior of
these metrics.

Similar patterns were observed in the “sentence similarity” metric group, where all metrics
demonstrated particularly strong effects. Interestingly, BertScore and SMS showed even better
performance than model based “learned” metrics. In contrast, the “lexical similarity” metrics
had the worst performance on this analysis, with win-rates and effect size lower than the
other groups, suggesting that even though in most cases they gave a higher score to the preferred
condition, their differentiation between aligned and shuffled data was more limited. Notable
exceptions were ROUGE-L and METEOR. Like this, METEOR proves to be the most advanced
and sophisticated method of its group.

After conducting the initial analysis, we wanted to have a deeper understanding of their
behavior. Therefore, we decided to extend our analysis through a qualitative review of specific
examples. From both the QASPER and QASA datasets in the aligned condition (answers paired
with their corresponding question), we selected the top three instances with the lowest and highest
overall scores (averaged across all metrics), and the top three instances with the lowest and highest
standard deviation in their overall scores. For details on these examples, see Appendix R.2. This
qualitative approach allowed us to identify a possible pattern in the evaluation metrics’ behavior,
where shorter answers tended to have lower scores and lower standard deviation. First, we
checked the length of the reference and generated answers in both datasets finding that the
average amount of words per answer was: 17,61 for the reference and 18,78 for the generated
answer on QASPER; and 38,96 for the reference and 31,97 for the generated answer on QASA.
The QASPER data was fairly balanced, on QASA the generated answers were shorter, according
to the hypothesis they should have gotten lower scores, but that was not the case.
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Based on these, we performed an additional analysis examining the correlation between an-
swers length and metric scores. Specifically, we assessed whether there was any significant asso-
ciation between the number of tokens in the answers generated by the LLAMA 2 13b and the
evaluation scores assigned by the metrics, we used Spearman correlation coefficients. The results
of this analysis are presented in Table 9. Our interpretation of the magnitude of the correlation
will be as follows through all this work: 0,00-0,19 very weak or no correlation and 0,20-0,39 weak
(marked in red color); 0,40-0,59 moderate (marked in yellow color); 0,60-0,79 strong and 0,80-1,00
very strong (marked in green color). Additionally, only significant correlation will be considered,
that is those with p-values < 0.05 (marked in the Table with a (*) next to the coefficient).

Category Metrics
Spearman
Correlation

Lexical
Similarity

BLEU -0,42*
ROUGE-1 -0,16*
ROUGE-2 -0,05
ROUGE-l -0,13
ChrF -0,44*
ChrF++ -0,44*
METEOR 0,13
TER 0,54*

Semantic
Similarity

BERTScore -0,07
WMS -0,02
SMS 0,01
WISDM 0,02

LLM based
Fine-tuned

BLEURT 0,03
BEM -0,03
BARTScore 0,04

LLM based
Prompt

Prometheus 0,11
LLMScore 0,06
Faithfulness 0,03
Relevancy 0,24*
Correctness 0,04
R Similarity -0,10
Consistency 0,05
T Similarity 0,07

Table 6: Analysis answer length - score. This table shows the Spearman Coefficient com-
puted between answer length generated by LLAMA 2 13b and scores. Sign (*) indicates signifi-
cance in the statistics, p-value < 0,05. Grade of color indicates the strength of the correlation.

It can be observed that for most of the metrics, the correlation is non-significant, with many
coefficients near zero and p-values over 0.05. Only the “lexical similarity” group and Relevancy
showed significant correlation, although moderate to weak on strength. From this group, the
correlation between answer length and metric scores is sometimes positive (which will indicate
they increase together) and sometimes negative (which will indicate when one increases, the
other variable decreases). Particularly, BLEU, ChrF (++) and TER, showed the strongest
correlation, although still moderate.

This balanced mix of positive and negative correlations could suggest that answer length can
sometimes lead to higher scores and sometimes to lower ones on specific metrics. However, the low
correlation strengths and non-significance (p-values > 0,05) in the majority of the cases indicate
that the relationship between length and scores is weak or negligible for most metrics. Counter
to what was expected, this reinforces the idea that answer length does not significantly
impact the evaluation outcomes, and overall, the metrics appear not to exhibit substantial
biases based on answer length.
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Afterward, we wanted to further assess the performance of the metrics. Therefore, variation
and coverage were analyzed. To capture Coverage, we computed the percentage of instances that
the metric succeed to score over the total amount. Variation was assessed using the Coefficient
of Variation (CV), calculated as the standard deviation of the scores divided by the mean. A
lower CV indicates lower variation, and vice versa. Results are displayed in table 7.

Category Metric Variation Coverage %

Lexical
Similarity

BLEU 5,25 99,6
ROUGE-1 0,91 99,6
ROUGE-2 1,76 99,6
ROUGE-L 0,95 99,6
ChrF 0,73 99,6
ChrF++ 0,74 99,6
METEOR 0,78 99,6
TER 1,13 99,6

Semantic
Similarity

BERTScore 0,40 99,6
WMS 0,43 100
SMS 0,41 100
WISDM 0,38 72,2

LLM based
Fine-tuned

BLEURT 0,74 99,3
BEM 0,70 99,3
BARTScore 2,08 100

LLM based
Prompt

Prometheus 0,22 100
LLMScore 0,23 95,3
Faithfulness 0,41 74
Relevancy 0,23 99,1
Correctness 0,30 99,1
R Similarity 0,05 99,2
Consistency 0,44 100
T Similarity 0,59 100

Table 7: Metrics Variation and Coverage. The table shows coverage (% of instances the
metric was able to compute) and variation (Coefficient of Variation: shades represent the strength
of variation. Lightest represents lower values, while darker shades represent higher values).

• Coverage: most metrics successfully computed scores for the majority of instances, show-
ing robust coverage. However, WISDM and Faithfulness exhibited lower coverage.
WISDM struggled with short answer strings, while Faithfulness depended on specific con-
textual elements that were not always present. This underscores the need to apply these
metrics in contexts where their input requirements are met for meaningful evaluations.

• Variation: BLEU, Bart, ROUGE-2, and TER showed the highest Coefficient of
Variation (CV) values, all above 1, indicating stronger score fluctuations. Assuming that
both QASPER and QASA datasets contain all answers of similar quality (as authors express
they were carefully and systematically curated by humans), these results suggest that these
metrics may provide less reliable results, as there shouldn’t have been such variability.
A moderate variation can be desirable, as it indicates the metrics aren’t systematically
giving similar scores. In contrast, the remaining metrics had CV values below 1, showing
more consistent performance with scores close to their means. While this consistency is
beneficial if all dataset instances are of similar quality, it could be problematic with diverse
data, indicating a bias toward assigning similar scores. Overall, lexical similarity and
learned metrics were the most variable, while semantic similarity and prompt-
based metrics showed the least variability.

29



2.1. EXPERIMENT 1

Finally, the last analysis aimed to determine whether there was any correlation between the
evaluation metrics. The goal was to explore the level of agreement within each category and
determine if simpler metrics correlate with more sophisticated ones. Since advanced metrics
typically require more computational resources and time, identifying strong correlations could
suggest that using basic metrics—if they perform similarly—would be more efficient, offering a
cost-effective and time-saving alternative without compromising evaluation quality.

Figure 5 illustrates the Spearman correlation heatmap. Spearman correlation was chosen for
its ability to capture the strength and direction of monotonic relationships between variables,
regardless of the distribution of the data. Each cell in the heatmap contains the Spearman
correlation coefficient, with an asterisk (*) indicating statistically significant correlations (p-value
≤ 0,05).

Figure 5: Spearman Correlation among metrics. The heatmap presents the relationships
between various metrics applied to LLAMA 2-generated answers on QASPER and QASA. Cells
marked with an asterisk (*) indicate statistically significant correlations (p-value ≤ 0.05). For a
more granular breakdown of the results for each dataset individually, refer to Appendix R.3. R.3.
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This analysis sheds light on the extent to which metrics designed to assess similar aspects
of answer quality behave consistently across different datasets. The heatmap reveals varying
correlations among metrics, indicating different degrees of overlap in what each measures. High
Spearman correlations suggest metrics capture similar aspects of answer quality, while low cor-
relations indicate distinct evaluations.

• Lexical similarity Metrics: metrics like ROUGE-1, ROUGE-2, and ROUGE-L showed
strong correlations (Spearman ¿ 0.8, significant), confirming their overlap in measuring
surface-level lexical similarity, as they all rely on n-gram matching. BLEU, ChrF, and
ChrF++ displayed moderate to strong correlations with the ROUGE family, highlighting
their shared focus on word and phrase overlap. In contrast, TER had little to no signifi-
cant correlation with other lexical metrics, except for a mild correlation with METEOR,
indicating TER’s distinct focus on edit distance rather than n-gram similarity.

• Semantic similarity Metrics: metrics like BERTScore, WMS, SMS, and WISDM ex-
hibited low correlations, suggesting they capture different facets of semantic similarity.
Notable exceptions include moderate correlations between BERTScore, SMS, and WMS,
indicating some shared evaluation of meaning. BERTScore also showed moderate corre-
lations with lexical metrics, likely due to its partial reliance on token embeddings, bridging
lexical and semantic evaluations.

• Model-Based Metrics: learned metrics such as BLEURT, BEM, and BARTScore showed
no significant correlations with each other or with lexical metrics, reflecting their dis-
tinct approaches to evaluating answer quality. However, prompt-based metrics had low
and mild correlations in general, with R Similarity (Ragas similarity) being the ex-
ception, showing strong correlations with both lexical and semantic metrics. This suggests
that R Similarity captures both surface-level and deeper contextual similarities, making it
a hybrid metric.

Interclass Correlations:

• Lexical and Semantic similarity: correlations between these two types of metrics were
generally low, with BERTScore as an exception, showing strong correlations with most
lexical metrics except TER. This suggests BERTScore captures both lexical overlap and
contextual meaning.

• Lexical similarity and Model-Based Metrics: model-based metrics had weak cor-
relations with lexical metrics, except for R Similarity, which showed strong correlations,
indicating it captures aspects from both categories.

• Semantic similarity and Model-Based Metrics: model-based metrics showed weak
correlations with semantic metrics, again with RSimilarity being an exception, correlating
with BERTScore and SMS.

This correlation analysis highlights the complexity of evaluating answer quality with diverse
metrics. Metrics designed to measure similar constructs tend to correlate strongly, but the
variation among others emphasizes the need for a combination of metrics to fully assess answer
quality. Lexical metrics reliably measure word overlap, while semantic and model-based metrics
offer deeper insights into fluency, coherence, and meaning. Low correlations among metrics
suggest they each provide unique perspectives.
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2.2 Experiment 2

Can the metrics reliably distinguish between “better” and “worst” answers? After
analyzing the results of Experiment 1, we realized we needed a way to evaluate the metrics in
greater detail, with a more challenging test than a simple distinction between clearly correct and
incorrect answers. For this, we developed two analysis:

• Analysis 1 - large vs. small model:

Table 8 shows the results when comparing scores assigned to answers generated by a larger
model (LLAMA 3.1 70b), considered “better”, and a smaller model (LLAMA 3.1 8b) considered
“worse”, although both presumably correct 11. Metrics were evaluated by win rate (percentage
of instances where superior condition was preferred) and Cohen’s d (effect size).

Category Metric Win Rate Cohen’s d

Lexical
Similarity

BLEU 14 -0,26
ROUGE-1 16 -0,32
ROUGE-2 11 -0,23
ROUGE-L 17 -0,29
ChrF 24 -0,28
ChrF++ 24 -0,28
METEOR 16 -0,29
TER 11 -0,37

Semantic
Similarity

BERTScore 22 -0,31
WMS 34 -0,18
SMS 23 -0,29
WISDM 30 -0,20

LLM based
Fine-tuned

BLEURT 36 -0,08
BEM 36 -0,08
BARTScore 33 -0,06

LLM based
Prompt

Prometheus 15 -0,22
LLMScore 23 -0,05
Faithfulness 14 0,09
Relevancy 35 0,02
Correctness 42 -0,12
R similarity 32 -0,28
Consistency 11 -0,13
T similarity 14 -0,25

Table 8: Comparing large vs. small model answers on the QASPER and QASA
datasets. Results include Cohen’s d (bold if positive) and win rates (darker if >30). Separated
results of each dataset can be found in Appendix R.1.

• Win-rate: most metrics exhibited win rates below 30%, often favoring the smaller 8B
model. Then, all learned Metrics, WMS, WISDM and Relevancy, Correctness and R
Similarity had relatively higher win rates but still always preferred the worst condition
(smaller model). This could suggest a slightly better performance of model based metrics,
but still not desirable.

• Cohen’s d: effect sizes were generally small (all below 1 in absolute value), with many
metrics showing negligible values. Notably, even though most values are negative (indicat-
ing the effect was in favor of the smaller model), Ragas Faithfulness (0,09) and Relevancy
(0,02) were exceptions, which showed very modest but positive effects.

11Similar to experiment 1, due to resource constraints, in some cases model-based metrics were calculated on a
subsample of 100 instances from each dataset assuming results would roughly generalize on the same direction.
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Overall, the analysis revealed persistently low win rates for most metrics, underscoring met-
rics exhibited a preference for the outputs of the smaller model, counter to expectations.
Additionally, the small effect sizes observed across all metrics further emphasize their difficulty
in robustly differentiating between the performance of the larger and smaller models,
undermining the assumption that the larger model should produce superior outputs.

This pattern may suggest a shortcoming in current metrics’ ability to detect meaningful
performance differences based on model size. Alternatively, it could be due to dataset charac-
teristics, as these metrics rely heavily on reference answers, and ground truth quality may affect
their performance. The bias toward smaller models may reflect the metrics’ sensitivity to answer
features like length or complexity. Further qualitative analysis could help identify patterns in the
answers produced by each model version. According to the literature [44][12], larger models tend
to produce longer, more nuanced responses, so we explored whether answer length influenced
evaluations, possibly explaining the metrics’ preference for shorter, smaller-model outputs.

In our analysis of the word count, we observed that in the QASPER dataset, the larger
model generated answers with an average length of 3,50 words, while the smaller model produced
longer answers, averaging 8,53 words. A similar pattern emerged with the QASA dataset, where
the smaller model’s answers averaged 10,40 words, compared to the larger model’s average of
8,79 words. These findings consistently show that, contrary to expectations, the smaller model
tended to generate longer answers across both datasets. Consequently, we computed Spearman
Correlation between answer length and scores for this data; results are displayed in Table9.

Category Metrics
Spearman
Correlation

Lexical
Similarity

ROUGE - 1 0,56*
ROUGE - 2 0,45*
ROUGE - L 0,28*
BLEU 0,28*
ChrF 0,59*
ChrF ++ 0,58*
METEOR 0,45*
TER 0,68*

Semantic
Similarity

BERTScore 0,52*
WMS 0,28*
SMS 0,49*
WISDM 0,25*

LLM based
Fine-tuned

BLEURT 0,17*
BEM 0,17*
BARTScore 0,36*

LLM based
Prompt

Prometheus 0,28*
LLMScore 0,22*
Faithfulness 0,08
Relevancy 0,36*
Correctness 0,12*
R Similarity 0,47*
Consistency 0,40*
T Similarity 0,39*

Table 9: Analysis answer length - score. This table shows the Spearman Coefficient com-
puted between answer length generated by LLAMA 3.1 model (8 and 70b) and scores. Sign (*)
indicates significance in the statistics, p-value < 0,05. Grade of color indicates the strength of
the correlation, only significant ones were considered.
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The findings of this length bias analysis do not align entirely with those from the one made on
Experiment 1. In this case, almost all metrics (except Faithfulness) present a positive correlation
of varying degrees (indicating the longer the answer is the higher score it would get).

Particularly, lexical similarity metrics exhibit a moderate and statistically significant positive
correlation, suggesting that longer answers tend to receive slightly higher scores. Notably, BLEU
shows a weak correlation, while TER demonstrates a strong one. On the other hand, semantic
similarity and model-based metrics generally reveal a low but positive correlation, indicating
that while longer answers may achieve higher scores, the effect is relatively modest. Metrics such
as BERTScore, SMS, R-similarity, and Consistency, however, show a more moderate correlation.
This pattern may suggest why the metrics favored the smaller model, which produced longer
answers on average, though the correlations are not strong enough to draw definitive conclusions.

• Analysis 2 - sensitivity dataset:

As the results from Experiment 2 were not satisfactory, we strengthen our analysis by utiliz-
ing a dataset specifically crafted to challenge the metrics, with answers presenting controlled and
different levels of Correctness (see 1.4.2). Like this, we hoped to obtained more specific infor-
mation about the metrics behavior when having to assess diverse answers, specifically: correct
perfect (ground truth), correct similar (similar in form to ground truth), correct different (similar
in content but not in form to ground truth), incorrect similar (similar in form to ground truth
but incorrect), incorrect related (similar in content to ground truth but incorrect) and incorrect
unrelated (completely different to ground truth).

Category Metrics
Sensitivity

Index

Lexical
Similarity

BLEU 0,15
ROUGE-1 0,17
ROUGE-2 0,15
ROUGE-L 0,18
ChrF 0,12
ChrF++ 0,13
METEOR 0,18
TER 0,31

Semantic
Similarity

BERTScore 0,30
WMS 0,12
SMS 0,30
WISDM 0,20

LLM based
Fine-tuned

BLEURT 0,34
BEM 0,12
BARTScore 0,18

LLM based
Prompt-based

Prometheus 0,50
LLMScore 0,57
Faithfulness 0,36
Relevancy 0,05
Correctness 0,25
R similarity 0,09
Consistency 0,005
T similarity 0,68

Table 10: Sensitivity Index. The table shows the Sensitivity Index values for various metrics,
indicating their effectiveness in differentiating between correct and incorrect answers based on
the sensitivity dataset. The color shade agrees with value strength.
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We propose that an ideal metric would: 1. give higher scores to all the correct answers
over all the incorrect ones, 2. present a slope in which the answers will get progressively lower
scores as they get farther in form and content from the ground truth. Based on the metrics logic
and procedure to score, we expected to be able to show that more rudimentary evaluation ap-
proaches (as lexical and semantic similarity metrics) would show the worst and more undesirable
performance; while more advanced approaches (model based) would show more flexibility, and
therefore a performance closer to the desired one.

The results of this analysis are summarized in Table 10, which presents the Sensitivity Index
of various metrics. This index measures the ability of each metric to differentiate between
correct and incorrect answers based on the sensitivity dataset, and we computed as the average
score assigned to all correct answers minus the average score assigned to all incorrect answers.
A positive Sensitivity Index indicates that the metric assigns higher scores to correct answers
compared to incorrect ones, with larger values reflecting a stronger ability to distinguish between
these answer types. To be able to compare this numbers with each other, the values of the
metrics with a range that was not from 0 to 1 were normalized (BLEU, ChrF and ChrF++ were
divided by 100, Prometheus and Tonic similarity were divided by 5).

Based on this Index, it can be observed that all metrics gave on average higher score
to the correct group of metrics rather than the incorrect group. This is confirmed as
all the Index values are positive. This aligns properly with the findings of the first experiment.
However, the degree of distinction between the two conditions differs from metric to metric, as
reflected in the different values obtained.

T. similarity, LLMScore, and Prometheus, from the model prompt-based group, were
the most sensitive metrics, generally assigning higher scores to correct answers compared to
incorrect ones. These were followed by R. Faithfulness, BLEURT, TER, BERTScore,
and SMS. The metrics with the least sensitivity, that is the lowest Index indicating they did
not significantly differentiate between correct and incorrect answers, were T. Consistency, R.
Relevancy, and R. similarity from the model prompt based group as well.

In terms of categories, the “lexical similarity” group had the lowest Index values. Follow by
“semantic similarity” and model based learned metrics.

To explore this further, a more detailed analysis was conducted. Bar charts were created for
each metric to illustrate their sensitivity across different categories of answers. Bar charts are
displayed on figures from 6 to 28. In these charts, the Y-axis represents the mean score assigned
by each metric to each answer category, which is displayed on the X-axis. All green bars refer
to correct answers and red bars incorrect ones. These visualizations provide a comparative view
of how each metric scores the six predefined answer categories, highlighting their performance in
distinguishing between correct and incorrect answers.
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Figure 6: BLEU Sensitivity Figure 7: ROUGE 1 Sensitivity

Figure 8: ROUGE 2 Sensitivity Figure 9: ROUGE L Sensitivity

Figure 10: ChrF Sensitivity Figure 11: ChrF + Sensitivity

Figure 12: METEOR Sensitivity Figure 13: TER Sensitivity
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Figure 14: WMS Sensitivity Figure 15: SMS Sensitivity

Figure 16: WISDM Sensitivity Figure 17: BERTScore Sensitivity

Figure 18: BLEURT Sensitivity Figure 19: BEM Sensitivity

Figure 20: BARTScore Sensitivity Figure 21: Prometheus Sensitivity
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Figure 22: Faithfulness Sensitivity Figure 23: Ragas Relevancy Sensitivity

Figure 24: Ragas similarity Sensitivity Figure 25: Ragas Correctness Sensitivity

Figure 26: Tonic similarity Sensitivity Figure 27: Tonic Consistency Sensitivity

Figure 28: LLMScore Sensitivity
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We identified five distinct “patterns” in the behavior of the metrics:

1. High Score Only for the “Correct Perfect” Answer (Ground Truth): In this
pattern, metrics are highly conservative and assign a high score solely to the “correct
perfect” answer, which matches the ground truth exactly. All other answer categories,
even those that are correct but differ slightly from the perfect answer (e.g., correct similar
or correct different), are penalized with lower scores. This behavior indicates that these
metrics are rigid in their evaluation, heavily prioritizing answers that resemble the reference
answer in both structure and content. As a result, answers that may be semantically
correct but vary in phrasing, structure, or detail are unfairly penalized. This rigidity
can be problematic for tasks that require flexibility in how correct answers are expressed.
Metrics following this pattern include: TER, BARTScore, and Tonic Consistency. These
metrics prioritize surface-level similarity (word choice or structure) over deeper semantic
Correctness.

2. High Scores for “Correct Perfect” and “Incorrect Similar” Answers: Metrics
exhibiting this pattern assign high scores to both the “correct perfect” and “incorrect
similar” answers. This means they value surface-level similarity, even when it leads to
incorrectly identifying answers as correct. For example, an answer that is factually incorrect
but shares significant lexical overlap with the correct answer would still receive a high score.
This pattern reveals that such metrics have a bias toward lexical similarity, making them
prone to over-rewarding incorrect answers if they appear similar on the surface. Metrics
following this pattern include: BLEU, all ROUGE metrics, ChrF, and ChrF++.

3. Descending Score Pattern Within Categories: In this pattern, metrics show a de-
scending score trend within each category: correct perfect > correct similar > correct
different and incorrect similar > incorrect related > incorrect unrelated. Although “cor-
rect perfect” and “incorrect similar” receive the highest scores, other categories still obtain
meaningful scores, suggesting that the metrics recognize gradations of Correctness or sim-
ilarity. This behavior is a middle ground, capturing the relative quality of answers rather
than strictly favoring either perfect Correctness or surface similarity. Metrics following this
pattern include: METEOR, WMS, SMS, Bert, WISDM, BLEURT, and BEM.

4. Mild Descending Slope with Generally High Scores, Even for Incorrect An-
swers: These metrics exhibit a mild descending slope, but all scores remain relatively
high, even for incorrect answers. This suggests that the metrics struggle to differenti-
ate strongly between correct and incorrect answers, leading to high scores being assigned
across the board. This pattern may indicate that the metrics are not sufficiently sensitive
to factual Correctness and tend to overestimate the quality of incorrect answers. Metrics
following this pattern include: Ragas Relevancy and Correctness.

5. Higher Scores for Correct Answers and Lower Scores for Incorrect Answers:
Considered the most desirable behavior, this pattern demonstrates that metrics consistently
assign higher scores to correct answers, regardless of their variations from the ground truth,
and lower scores to incorrect answers. These metrics appear to capture a balance between
rewarding Correctness and flexibility, showing a more comprehensive understanding of the
answers’ content. Metrics following this pattern include: LLMScore, Tonic similarity,
Ragas similarity and Faithfulness, and Prometheus.
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Upon analyzing the patterns of metrics from each evaluation category, the following observa-
tions were made:

• Lexical similarity Metrics: these metrics generally assign the highest scores to “cor-
rect perfect” and “incorrect similar” responses, while scoring other categories significantly
lower. The exception is TER, which consistently scores only “correct perfect” responses
highly. This behavior indicates that lexical metrics are highly sensitive to surface-
level variations that deviate from the ground truth and are easily misled by answers that
resemble the correct response superficially, even when they contain incorrect information.

• Semantic similarity Metrics: these metrics generally assign higher scores across all
correct answers, demonstrating a greater tolerance for variations compared to lexical
metrics. They effectively recognize correct answers that differ from the original ground
truth, distinguishing themselves by rewarding variations that are still accurate. However,
this tolerance also extends to incorrect answers, leading to high scores not only for “cor-
rect” responses but also for “incorrect similar” and “incorrect related” ones. Although
“incorrect unrelated” answers typically receive the lowest scores, the metrics still tend to
overestimate the quality of superficially similar incorrect responses, reducing
their effectiveness in clearly distinguishing between correct and incorrect answers.

• Learned Metrics: BEM exhibits behavior similar to lexical metrics, showing limited
ability to differentiate based on answer quality. BLEURT performs reasonably well but
is often misled by “incorrect similar” responses, assigning high scores to answers that
are superficially similar but incorrect. BARTScore tends to favor ground truth responses
disproportionately, failing to generalize well to other correct answers. This variability
within the “learned metrics” group highlights their differing effectiveness, influenced by
distinct training and fine-tuning approaches.

• Prompt-Based Metrics: Ragas Relevance and similarity perform poorly, often assigning
high scores indiscriminately to both correct and incorrect answers, thus failing to distin-
guish effectively between them. Ragas Correctness shows potential with a descending score
trend, yet the small difference between correct and incorrect answers makes it prone to
misleading evaluations. Tonic similarity aligns with the pattern observed in lexical met-
rics, lacking strong differentiation capabilities. The top-performing metrics in this group
are Prometheus, Ragas Faithfulness, Tonic Consistency, and LLMScore, which
clearly distinguish correct answers by consistently assigning significantly higher scores to
them while scoring incorrect answers much lower. This behavior is the most desirable in
evaluation metrics, as it effectively separates correct from incorrect responses, demonstrat-
ing superior utility and reliability.

40



2.3. EXPERIMENT 3

2.3 Experiment 3

Do the metrics align with human preferences? Figure 29 presents the results of Exper-
iment 3, where we compared the performance of the metrics against human preference rankings
for a random sample of 25 question-and-answer pairs (4 from QASPER, 12 from QASA and
9 from a property dataset from Iris.AI). These answers were generated by six different models
(Gemma 2 9B, Gemma 2 27B, LLAMA 3.1 8B, LLAMA 3.1 70B, Mistral 7b, and Phi3), the
original reference answer from the corresponding dataset was also included. Then the different
answers were ranked by human annotators based on their preferences, forming a human judg-
ment baseline. Metrics were computed on the same data, and we created a ranking from each
one as well. Metrics’ and humans’ ranks were then compared.

The chart visualizes the rankings, with the first column showing human rankings from 1st to
7th position for each answer. The subsequent columns display the rankings assigned by different
evaluation metrics, allowing us to assess how well each metric’s ranking aligns with human
preferences. Colors in the chart represent answers generated by different models, including the
reference answer.

Figure 29: Human and Metrics Ranks on Survey. This graph compares the ranks assigned
by the metrics to those assigned by human annotators for a subsample of 25 QA pairs. The
answers were generated by six different models. A reference answer was also included. The
first column represents the ranks given by human, while the remaining columns show the ranks
assigned by metrics. Each color corresponds to a specific model, and the rows represent rank
positions from 1st to 7th.

As shown in the graph, most metrics ranked the reference answers (the original ones from the
datasets) in the highest position, with two notable exceptions: Ragas Relevance and LLMScore,
which placed the reference in third. This was expected, as most metrics rely on the reference
answer for evaluation, making it the natural top choice. The exception in Ragas Relevance is
understandable since it is one of the few metrics that does not depend on the reference answer,
instead evaluating based on the question and candidate answer alone. While Ragas Faithfulness
could have exhibited a similar behavior, it did not. A similar outcome was observed with the
LLMScore. Although the metric takes a reference answer as input, the prompt used in this
specific experiment did not account for it. As a result, the model was not explicitly instructed
to prioritize aligning with the reference answer (see Appendix M.1).
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Many metrics ranked answers from the Mistral and Phi3 models in second and third positions,
except for ChrF and ChrF++, which placed LLAMA 3.1 70b higher (as humans did), and Ragas
Faithfulness and Relevancy, which favored LLAMA 3.1 8b. For the LLAMA 3.1 model, the 8b
version was often ranked 4th or 5th by most metrics, while the 70b version performed better
in lexical and semantic similarity metrics but ranked lower with LLM-based metrics. Notably,
Prometheus and LLMScore did not exhibit a bias towards the LLAMA family models, including
LLAMA 3.1 70B, the model upon which these metrics are based. This alleviated concerns about
potential bias, confirming that these metrics fairly assess answers without favoring the model
used to compute the score. Finally, both versions of Gemma, however, consistently placed at the
bottom of most rankings, with few exceptions: SMS, Ragas Correctness, and LLMScore rated
the 9b version slightly higher.

Interestingly, the metrics showed significant divergence from human judgment.
None of the metrics aligned with human preferences for the top or bottom ranks. In particular,
no metric placed the top three or bottom two models in the same order as the human annotators.
Some metrics did show agreement in the middle ranks: WISDM, BEM, Bart, Prometheus, Ragas
Consistency, and Tonic similarity assigned the 4th position similarly to humans, while Ragas
Faithfulness matched the human ranking for 5th.

What stands out even more is that the answer ranked highest by most metrics—the refer-
ence answer—was actually placed at the bottom by human experts. This is particularly
notable because the foundational assumption behind all the metrics we evaluated is that the ref-
erence, being a human-produced answer, should be the gold standard for comparison. However,
this finding suggests that a human-produced answer is not always the most preferred according
to human judgment.

Interestingly, LLAMA 3.1 70B, the model rated highest by human evaluators, was ranked in
the middle or lower positions by most metrics. Lexical and semantic similarity metrics awarded
it relatively high rankings, while model-based metrics consistently placed it near the bottom.
This result is noteworthy because, in the previous experiments, lexical similarity metrics had
shown the least desirable performance. Yet, in this experiment, they demonstrated the strongest
alignment with human judgments. Furthermore, when disregarding the reference answer (since
these metrics tend to favor it by default), it becomes evident that this group of metrics posi-
tioned LLAMA 3.1 70B—humans’ preferred model—at the top. This highlights their unexpected
reliability in reflecting human preferences.

This clear divergence is significant: the answers that metrics rated highly, such as the reference
and Phi3, were at the bottom of human preference, while the models that metrics ranked lowest,
like Gemma, were favored by humans. Metrics and human preferences only showed partial
agreement for the Mistral and LLAMA 8b models, which consistently placed around the middle
of the rankings.

To conduct a more detailed analysis, we calculated the Spearman correlation between the
rankings assigned by each metric and those assigned by human experts, as presented in Ta-
ble 11. The results show correlations ranging from moderately negative (between -0,4 and
-0,7) to strongly negative (below -0,7), with many correlations being statistically significant
(p-value < 0,05). Notably, the metrics exhibiting the strongest negative correlations—ROUGE-
2, METEOR, BERT, SMS, WISDM, BARTScore, and all prompt-based metrics except LLM-
Score—were also those with statistical significance. In overall, all metrics demonstrated
negative correlations with human rankings, indicating poor alignment.
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Although in general the analysis revealed that automatic evaluation metrics generally do not
align well with human judgments, somo specifications and distinctions can be made.

Firstly, most lexical similarity and learned metrics showed moderate negative correlations,
which were often not statistically significant. This suggests these metrics are insufficient in cap-
turing human preferences, but, at the least, in this experiment they got the least undesirable
performance. Conversely, semantic similarity and prompt-based metrics displayed the strongest
negative correlations, with statistically significant p-values (below 0,05). This indicates a signif-
icant inverse relationship between these metrics’ rankings and human preferences, meaning they
tend to rank answers in opposition to human experts’ evaluations, which for this occasion was
the most undesirable.

Interestingly, even state-of-the-art metrics, including some of the most advanced methods,
showed high negative correlations with human rankings. This highlights that even the most
recent metrics may diverge significantly from human judgments. This finding suggest that using
answers produced by humans as reference might not be the optimal approach, as they might
diverge from answers actually preferred by humans’ judgement.

Category Metric
Spearman
Correlation

Lexical
Similarity

BLEU -0.60
ROUGE-1 -0.64
ROUGE-2 -0.75*
ROUGE-L -0.64
ChrF -0.42
ChrF++ -0.42
METEOR -0.85*
TER -0.60

Semantic
Similarity

BERTScore -0.75*
WMS -0.60
SMS -0.92*
WISDM -0.85*

LLM based
Fine-tuned

BLEURT -0.60
BEM -0.46
BARTScore -0.92*

LLM based
Prompt

Prometheus -0.85*
LLMScore -0.60
Faithfulness -0.71
Relevancy -0.85*
Correctness -0.92*
R similarity -0.75*
Consistency -0.82*
T similarity -0.78*

Table 11: Correlation between human rank and metric ranks. This table shows the
Spearman correlation coefficients between answers’ rank generated by human experts and an-
swers’ ranks generated by the different metrics. Only significant correlations (p < 0.05) are
colored, the darker colors show higher values, therefore the strongest correlation.
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Discussion

The primary goal of this thesis was to analyze the effectiveness of various evaluation metrics in
assessing RAG systems, particularly within the domain of a scientific QA tasks. We classified the
metrics into three categories: lexical similarity, semantic similarity, and model-based (see Section
0.2), and designed a series of experiments of increasing complexity to evaluate their performance.
The results were thoroughly analyzed in the previous chapter. Building on the findings, we will
now engage in assessing which evaluation methodology appears most suitable for measuring the
performance of RAG systems in answering scientific questions derived from research papers.

Figure 30: Overview of metrics’ performance. Look at the reference for more detailed
explanation. The strength of the color indicates better performance.
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Figure 30 shows a summary of the performance of all metrics on different experiments. To
decide if a metric performance was above expectation, desirable, or non-desirable, we took in
consideration the criteria already explained in the previous chapter and the analysis provided
there. Based on these findings, we can now revisit our research questions:

• Can the metrics distinguish between “correct” and “incorrect” answers? When
presented with the simplest task of distinguishing between correct and incorrect answers,
under the conditions already explained and taking into account win rate, Cohen’s d and
sensitivity index, all metrics could do it. However, it was noticeable that as the metrics
were more advanced and elaborated, they performed better, with a stronger and more
reliable distinction among conditions. That is, lexical similarity metrics showed the poorest
differentiation between correct and incorrect, and model based the best one. In general,
semantic similarity and prompt based metrics showed the best performance as a group.
Specifically, LLM Score and Prometheus appeared to be the best metrics at this task.

• Can the metrics reliably distinguish between “better” and “worse” answers?
Since all metrics failed in the initial analysis by assigning higher scores to the answers of the
smaller model, the results from the second analysis will address this question. The findings
suggest that most lexical and semantic similarity metrics are overly rigid, heavily reliant
on the reference answer. As a result, when these metrics encounter correct answers that
differ in form or content from the ground truth, or incorrect answers that closely resemble
it, they are often misled. In contrast, the metrics that performed best in this task were the
model-based metrics, particularly LLM Score, Tonic Similarity, Ragas Similarity,
and Prometheus. These metrics demonstrated greater robustness in evaluating answers
more effectively, irrespective of misleading similarities to the reference answer.

• Do the metrics align with human preferences? No metric aligned perfectly with hu-
man preferences, as reflected in the ranking generated by expert annotator scores. However,
if we were to select a group of metrics for tasks where alignment with human judgment is
crucial, the findings suggest that lexical similarity metrics, despite their limitations, showed
the smallest—albeit not statistically significant—correlation. Notably, these metrics man-
aged to rank the human-preferred answer higher, with ChrF on its two versions performing
best in this regard.

Based on the analysis of all experiments, the metric that demonstrated the best overall per-
formance was LLM-Score, derived from a straightforward prompting of the LLAMA 3.1 70B
model, as detailed in Section 1.2. It effectively differentiated between correct and incorrect an-
swers, showed strong coverage and reliability, and consistently assigned higher scores to correct
answers despite misleading form or content modifications. Although its correlation with human
judgments was moderately negative, it was not statistically significant. Following closely was
the Prometheus metric, which also involved model prompting but used a more specific scor-
ing rubric. Prometheus matched LLM-Score in most areas and even surpassed it in coverage.
However, it exhibited a significant negative correlation with human judgments.

Overall, these metrics seem to offer the most effective approach for assessing RAG systems,
though their alignment with human judgment remains an area for further exploration. It is
also important to note that, although these more advanced metrics tend to perform better, they
are considerably more resource-intensive in terms of time and computational requirements. In
contrast, simpler metrics, such as those based on lexical and semantic similarity, are significantly
easier to implement, faster to compute, and typically free. Despite it was not covered on this work,
this trade-off should be carefully considered when selecting metrics for practical applications.
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3.1 Analysis per category

One of the motivations behind this thesis was the desire to understand the strengths and weak-
nesses of different evaluation methodologies. Based on the findings of each experiment, we will
provide a comprehensive discussion of the performance of each category of metrics, exploring
their respective strengths and limitations:

• Lexical Similarity metrics:

1. Lexical similarity metrics demonstrated some desirable properties, though their overall
performance in distinguishing correct from incorrect answers was poor. While these metrics
generally assigned marginally higher scores to correct answers (both in the “aligned vs.
shuffled” test and the “sensitivity index”), the effect sizes and index values indicated a
weak distinction between correct and incorrect answers. This suggests a limited capacity
to reliably differentiate between them.

2. These metrics also exhibited high sensitivity to superficial variations between the generated
answers and the reference ground truth. They frequently assigned high scores to incorrect
answers that closely resembled the ground truth and penalized correct answers that de-
viated in form. While this sensitivity is not ideal for evaluating Retrieval-Augmented
Generation (RAG) systems in scientific question-answering (QA) tasks, it may be useful in
other specific applications.

3. Interestingly, when comparing the rankings produced by these metrics with human judg-
ments, the correlation was negative (as observed for all metrics), with the lexical similarity
group showing the lowest correlation, which was statistically non-significant. This out-
come was unexpected, given that this group had performed poorly in prior experiments
but exhibited the most favorable result in this particular comparison. This finding warrants
further investigation to better understand the reasons behind this behavior.

4. Among this group, METEOR stood out as the most refined metric, showing better dis-
tinction between correct and incorrect answers and a better sensitivity pattern, indicating
greater flexibility to answer variations. Nevertheless, it was sometimes misled by incorrect
answers that resembled the ground truth.

• Semantic Similarity metrics:

1. This group of metrics performed noticeably better than the lexical similarity metrics in
terms of differentiating between correct and incorrect answers. They achieved higher win
rates and displayed a stronger, though still moderate, effect size and sensitivity index.

2. In terms of sensitivity, all metrics in this group exhibited a descending slope, indicating
they were still somewhat misled by incorrect but semantically similar answers. Therefor,
while these metrics showed improvement over lexical similarity metrics, their ability to
distinguish more complex answers remained limited, which is again not ideal for evaluating
RAG systems in scientific QA tasks.

3. Furthermore, their correlation with human judgments was negatively stronger and statis-
tically significant, suggesting that while these metrics were useful, they didn’t always align
with human evaluations.

4. In this group, the performance of all metrics was relatively similar.
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• Model learned based metrics:

1. Learned metrics behaved in a way that was similar to semantic similarity metrics, managing
to differentiate between correct and incorrect answers with a moderate effect size and
sensitivity.

2. The sensitivity pattern of learned metrics was comparable to that of semantic similarity
metrics, as they were still susceptible to being misled by incorrect but superficially correct
variations of the ground truth.

3. The correlation with human judgment for this group was closer to that of lexical similarity
metrics—negative but moderate, and not statistically significant. BARTScore was an ex-
ception in this group, as it behaved more like lexical similarity metrics, showing suboptimal
performance and struggling to make meaningful distinctions.

4. Among this group, the metric with the best performance in overall was BLEURT.

• Model prompt based metrics:

1. This group showed the best performance in distinguishing between correct and incorrect
answers, with effect sizes ranging from moderate to large (except for Ragas Faithfulness)
and the largest sensitivity index values. Therefor, this group of metrics proved to be the
best on this task.

2. Model-based metrics were the only group where some metrics achieved the ideal sensitivity
pattern, scoring all correct answers higher and all incorrect ones lower, indicating they could
be particularly useful and powerful. This would make them the best evaluation approach
to assess the performance of a RAG system in scientific QA task. An exception was
Tonic Consistency, which showed high sensitivity to superficial variations from the ground
truth, similar to lexical similarity metrics. Ragas Relevancy, Correctness, and Similarity
also displayed unusual behavior; although they followed the expected slope, they generally
assigned high values across the board.

3. Surprisingly, this group also exhibited the strongest and most significant negative correla-
tion with human judgment, underscoring their alignment with more objective assessments.
The exception was the LLM Score, which had a moderate and non-significant correlation.
This is not a desirable behavior on an evaluation metric, and further analysis should be
done regarding this.

4. Among this group, the metrics with the best performance were LLMScore and Prometheus.

In summary, the findings of this thesis indicate that no single metric demonstrated con-
sistently optimal performance across all evaluated scenarios. Instead, metrics from different
categories—lexical, semantic, and model-based—showed varying strengths and weaknesses de-
pending on the specific task or evaluation context. This outcome aligns with the insights from
the literature, which highlight the limitations inherent in each type of metric. Despite these
limitations, metrics continue to be employed in complementary ways, leveraging their unique
advantages to provide a more holistic assessment. The diverse performance of these metrics
underscores the importance of a multifaceted evaluation approach, especially when assessing
complex systems like RAG in scientific QA tasks. This study reaffirms the need for continued
development and refinement of evaluation metrics to address specific challenges.
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Conclusions

The primary aim of this thesis was to find a metric to assess the performance of a RAG system
within the context of scientific QA tasks. Our objective was to identify automatic evaluation
metrics capable of assessing the correctness of generated answers, taking as reference human
preferences, and analyze and compare their behavior. In the literature, we identified three main
approaches to evaluation, each employing human-written answers as ground truth. Comparison
with generated answers could be made based on form (lexical similarity), content (semantic
similarity), or utilizing Large Language Models, either fine-tuning or directly prompting them.

While these approaches have well-documented advantages and limitations, they are still com-
monly used, often in combination, to leverage their respective strengths. Therefore, we under-
stood the necessity to investigate their reliability and determine whether they are suitable for
evaluating RAG system performance in QA tasks. To achieve this, we designed a set of ex-
periments to address the following questions: 1. Can the metrics distinguish between correct
and incorrect answers? 2. Can the metrics differentiate between “better” and “worse” answers?
3. How well do these metrics align with human preferences? Through these experiments, we
explored the metrics’ ability to differentiate between varying degrees of correctness, as well as
their potential to be misled by incorrect answers that appear superficially correct. Moreover, we
assessed the degree of alignment between metric outputs and human evaluative preferences.

The results of our experiments revealed a notable disparity between the anticipated perfor-
mance of current evaluation metrics and their actual effectiveness. While all metrics performed
adequately in distinguishing between clearly correct and incorrect answers, model-based metrics
demonstrated superior performance, followed by semantic similarity metrics and lastly, lexical
similarity metrics. However, when the task became more challenging—such as distinguishing
between better and worse correct answers, especially in complex scenarios involving misleading
answers with variations in form and content—many metrics encountered difficulties. Lexical and
semantic similarity metrics, in particular, proved to be rigid and highly dependent on ground
truth, making them susceptible to manipulation by surface-level differences in form or con-
tent. In contrast, model-based metrics exhibited greater robustness in handling these variations.
Nonetheless, in our third experiment, we observed an unexpected negative correlation between
the rankings produced by the metrics and those determined by human experts. Strikingly, the
most advanced model-based metrics showed the strongest negative correlation with human judg-
ments, followed by semantic similarity metrics. Interestingly, lexical similarity metrics did not
exhibit a significant negative correlation. This finding suggests that even the most sophisticated
methods frequently fail to align with human preferences, highlighting a critical challenge.

In conclusion, the findings from the experiments suggest that no single metric demonstrated
optimal performance across all evaluation scenarios. Instead, metrics from different categories —
lexical, semantic, and model-based—demonstrated variable strengths and weaknesses depending
on the task or context in which they were applied.
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This aligns with insights from the literature that emphasize the limitations inherent in each
type of metric. Despite these shortcomings, metrics continue to be used in complementary ways,
with their unique advantages contributing to a more holistic evaluation. These findings under-
score the importance of employing a multifaceted evaluation strategy, particularly when assessing
the performance of complex systems like RAG in scientific QA tasks. This work reaffirms the
need for further refinement of evaluation metrics to address specific challenges and encourages
the use of multiple metrics to achieve more comprehensive and nuanced evaluations.

Reflecting on these results, it is clear that new evaluation approaches are necessary and
further research is required to develop metrics that capture the true nuances of answer quality
as perceived by humans. Notably, most of the metrics evaluated in this study were benchmarked
against human-generated reference answers, which may inherently limit their ability to fully
capture the subtleties of human judgment. This became particularly evident in Experiment 3,
where human-generated answers, traditionally considered the gold standard, were poorly ranked
by human annotators.

Our findings challenge the assumption that human-written reference answers serve as the
optimal standard for evaluation. Alternatively, other approaches can be explored. On one hand,
the question or context itself could serve as a reference (as attempted by metrics like RAGAS
and Tonic), though their performance has been inconsistent, and further research is needed. On
the other hand, human judgment may provide a more reliable basis for evaluating answer quality.
The top-performing metrics in our experiments—such as LLM-Score and Prometheus—utilized
model prompting to assess the contextual quality of answers, rather than relying solely on direct
comparisons with reference texts.

These insights suggest a pivotal shift in QA evaluation, moving beyond static reference an-
swers toward metrics that directly integrate human preferences and judgments. Future research
should explore models that simulate human preferences, such as pairwise comparison models fine-
tuned on human feedback, as it is done in Reinforcement Learning from Human Feedback [21].
Such approaches could offer more dynamic and adaptable evaluations, ensuring closer alignment
between model performance and human expectations.

The quest for effective evaluation metrics in QA is complex, and this thesis critically as-
sesses current approaches, highlighting both strengths and limitations. Recognizing that human
judgment, rather than static references, should serve as the benchmark for quality represents a
potential paradigm shift in how AI-generated content is evaluated. Adopting this shift will be
crucial for advancing the field and ensuring AI systems are held to the evolving standards of
human expectations.

In conclusion, this thesis offers several key insights regarding the evaluation of QA systems,
particularly in the context of scientific tasks: 1. model-based metrics have shown the most
promise in assessing generated answers, as they successfully overcome the limitations of tradi-
tional similarity-based metrics that rely heavily on a single reference text. This is important
because there can be many valid variations of a correct answer, and model-based approaches
capture this nuance; 2. the persistent gap between metric performance and human judgment
highlights the need for continued research. Metrics must evolve to better capture the subtleties
of human preferences and evaluative criteria; 3. a paradigm shift may be required, moving away
from reference-based evaluations and toward methods that incorporate human preferences, such
as pairwise comparison models fine-tuned on human judgment. This shift could enable the de-
velopment of more adaptable, robust, and trustworthy evaluation frameworks, ensuring that QA
systems align with the complexity and variability of human expectations.

49



4.1. LIMITATIONS AND FUTURE DIRECTIONS

4.1 Limitations and Future Directions

This thesis presents several limitations that warrant acknowledgment, and also highlights promis-
ing directions for future research. First, the study did not encompass the full spectrum of
evaluation metrics available in the field. The selection of metrics was constrained by practical
considerations, such as accessibility, ease of implementation, and time constraints. As a result,
some metrics that could have provided valuable insights were not included, potentially limiting
the scope of the analysis. Moreover, the datasets employed in this research may not fully capture
the complexity and diversity of real-world scientific QA scenarios. During the analysis, certain
data points did not sufficiently represent the nuanced challenges inherent in these contexts, po-
tentially impacting the robustness of the findings R.2. This reliance on a limited dataset raises
concerns about the generalizability of the results.

Additionally, the study primarily focused on two models within the same family—LLAMA.
Expanding the analysis to include a broader range of models from different architectures could
provide insights into whether the findings generalize across diverse model families. Such compar-
isons are crucial for determining whether evaluation metrics behave consistently across various
model types, which remains a key area for future research. In Experiment 2, we also encountered
a methodological limitation: we evaluated the performance of metrics based on model-generated
answers, introducing a circular challenge. Although we manually inspected the generated an-
swers to mitigate potential inaccuracies, this limitation persisted. Furthermore, some metrics
relying on language models were implemented using the same LLAMA models being assessed,
which could have introduced bias, though Experiment 3 addressed this concern to some extent.

Another area of improvement involves the survey analysis, where the guidelines provided to
human annotators for evaluating answers were somewhat general. A more detailed and specific
instruction set could yield more consistent and reliable human annotations.

The findings of this thesis underscore the need for future research to focus on evaluation met-
rics that more directly capture human preferences, addressing the limitations of static reference-
based comparisons. Current practices that rely on predefined reference answers often fail to align
with human judgment, as evidenced by the negative correlation between certain automatic met-
rics and human evaluations observed in our experiments. Future research should prioritize the
refinement of existing model-based evaluation methods or explore more ambitious approaches,
such as developing novel metrics that learn directly from human rankings and preferences.

Promising approaches could include fine-tuning models on datasets curated to reflect human
preferences or developing interactive evaluation systems that incorporate real-time human feed-
back during assessments. These systems should aim to create adaptive, human-aligned metrics
that dynamically respond to the complexities and nuances inherent in human judgment, setting
a new standard for quality assessment in QA systems and beyond.

Moreover, several unexplored avenues remain that could contribute valuable insights. While
this study focused solely on the generative component of retrieval-augmented generation (RAG)
systems, future research should also evaluate the impact of the retrieval component on overall
system performance. Additionally, in Experiment 3, incorporating deliberately incorrect answers
could help assess whether human evaluators can distinguish these errors more effectively than
the metrics, addressing the vulnerability to misleading answers seen in Experiment 2.

In conclusion, we hope that this research has contributed to a deeper understanding of eval-
uation metrics for generated text in the context of question answering (QA). We aspire for this
work to serve as a foundation for the development of more comprehensive and generalizable
frameworks for evaluating Retrieval-Augmented Generation (RAG) systems in QA. By advanc-
ing this area, future efforts can focus on creating metrics that better align with human judgment,
ultimately driving the field toward more robust and reliable evaluation methods.

50



Bibliography

[1] Marah Abdin et al. “Phi-3 technical report: A highly capable language model locally on
your phone”. In: arXiv preprint arXiv:2404.14219 (2024).

[2] Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774 (2023).

[3] Vaibhav Adlakha et al. “Evaluating correctness and faithfulness of instruction-following
models for question answering”. In: arXiv preprint arXiv:2307.16877 (2023).
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Appendix Methodology

M.1 Evaluation Module (Metrics Implementation)

The evaluation module is designed to automatically compute the performance of specified metrics
on each instance of a given dataset, generating detailed statistics and correlation values for
these metrics. The development of this module prioritizes reproducibility, user-friendliness, and
adaptability, making it suitable for diverse datasets and evaluation scenarios in both research
and practical applications.

The module primarily consists of two main classes, EvaluationPipeline and Genera-
tionEvaluation, which coordinate the evaluation process. These classes are supported by several
data types, functions, and metric implementations to streamline the evaluation workflow.

The EvaluationPipeline class orchestrates the evaluation process by dynamically loading
and configuring the specified metrics based on user-provided settings. This class is initialized with
a configuration object (EvaluationPipelineConfig) that defines which metrics and environment
variables are needed for the evaluation.

• Initialization: During the initialization, the module loads the specified metrics using their
class names and configures them accordingly. Metrics are categorized as general metrics or
those requiring a language model for evaluation.

• Metric Preparation: The init method prepares the metrics, setting up any necessary con-
nections to language models when required. For instance, some metrics, like ContextSensitivity,
are configured with a model and a prompt template, whereas simpler metrics are initialized
directly.

• Running Evaluation: The run method evaluates the provided data using the initialized
metrics, generating scores for each metric. The method handles exceptions gracefully,
ensuring that missing data or evaluation errors do not interrupt the overall process.

The GenerationEvaluation class handles the core data processing and evaluation tasks,
including reading input data, evaluating metrics, and saving the results. This class interacts with
the dataset, converting it into a format suitable for evaluation and performing the computations.

• Data Processing: the read data method converts input data into a list of RAGExample

instances, which encapsulate each question, its associated context, the generated answer,
and the correct answer. This structured approach ensures that all necessary information
is available for evaluation.

• Input Handling: the read input method supports reading data from CSV and JSON files,
logging the process to maintain transparency and traceability. This flexibility allows users
to work with different data formats, facilitating easy integration into various workflows.
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• Data Evaluation: the evaluate data method is the core evaluation component, comput-
ing metric scores for each data instance. It calculates various statistical values, such as
mean, standard deviation, minimum, and maximum scores for each metric. Additionally,
it computes correlations between the metrics using Spearman’s rank correlation and agree-
ment scores using Cohen’s kappa, offering insights into the relationships and consistencies
between different evaluation criteria. The method is designed to handle missing or invalid
data gracefully, ensuring that the results are robust and reliable.

The module supports a wide range of metrics, each with specific implementation details.
Table 12 summarizes the source and implementation approach for each metric:

Metric Implementation Details
Bleu SacreBLEU library available on PyPi.
Rouge ROUGE library available on PyPi. We considered only the f-score.
Meteor “meteor score” function of the NLTK library, available on PyPi.
Chrf (++) SacreBLEU library. For the chrF++ version, the word order was set to 2.
Ter SacreBLEU library available on PyPi.

WMD and SMD

In the repository, both Mover’s Distance metrics are implemented as follows.
MoversDistance class is a general framework for computing the movers distance between two sets of strings.
This process involves two primary steps: calculates a cost matrix representing the distance
between each string in the first set and each string in the second set, utilizing Euclidean Distance;
and uses the linear sum assignment algorithm from the Scipy library to find the optimal
one-to-one mapping between elements of the two sets, minimizing the total cost.
The class is designed to be extended and requires subclasses to implement two methods:
get embeddings (converts text into numerical embeddings), and parse text (processes and tokenizes text).
The WordMoversDistance and SentenceMoversDistance classes extend Movers Distance but differ in the embeddings they use:
WMD embeddings for each token are obtained using a word analyzer;
SMD embeddings for each sentence are obtained using a specified sentence transformer model.
Finally, WordMoversSimilarity and SentenceMoversSimilarity are extensions
of the respective distance classes designed to compute similarity scores instead of distance.
The similarity score is simply one minus the distance score.

Wisdm Internal implementation of Iris.AI company.

BertScore
It uses the SentenceTransformer model (”sentence-transformers/all-MiniLM-L6-v2”) to obtain embeddings.
Then, cosine similarity is calculated using the pytorch cos sim function.

Bleurt BleuRT library available on GitHub.
BEM BEM model is hosted on Kaggle, and the code to compute this score is based on the directions given in its documentation.

Prometheus

It uses the PrometheusEval class with the LiteLLM model initialized using groq/llama-3.1-70b-versatile.
The specific criteria and score rubric is:
criteria: Is the model proficient in generating a relevant, faithful, and complete answer to the question?
score1 description: The generated answer is not relevant to the user query and reference answer.
score2 description: The generated answer is similar to the reference answer but not relevant to the user query.
score3 description: The generated answer is relevant to the user query and reference answer but contains mistakes.
score4 description: The generated answer is relevant to the user query and is similar to the reference answer but is not as concise.
score5 description: The generated answer is relevant to the user query and fully correct according to the reference answer.

BartScore It uses the BART model (”facebook/bart-large-cnn”) from the Transformers library.

LLMscore

class LLMscore allows choosing an OpenAI or Meta and prompt it to perform an evaluation. We used LLAMA 3.1 70 billion.
The exact prompt for Experiment 1 was:
“You will be provided with a question and a context from a scientific paper.
Then, you will be given a reference right answer and a candidate answer.
Your task is to evaluate how good the candidate answer is in relation to this question,
taking into consideration the original question, the context, and the reference answer.
1. Question: {question} 2. Context: {context} 3. Reference answer: {sentence1} 4. Answer to evaluate: {sentence2}
Output only a numerical value from 0 (poor answer) to 1 (excellent answer)” (for Experiment 3 reference was not provided

RAGAS All the code used to compute these metrics comes from the ragas library available on GitHub.
TONIC All the code used to compute these metrics comes from the tonic validate library available on GitHub.

Table 12: Metrics Implementation. The table describes how the code to compute each of the
metrics was obtained or developed.

M.2 Datasets Table

Table 13 shows a brief summary of information from different QA datasets that were considered
to be used on this thesis.
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M.3 Datasets Processing

The generation and processing of all the data is available in the repository on the folder “data”,
organized as follows:

“Qasa and Qasper” folder contains: 1. the original .json files; 2. the notebooks where data
was load as pandas data frame, processed, and outputted as .csv file; 3. the notebooks where
the .csv files were populated with answers generated by the LLAMA 2 model; 4. the notebooks
where the .csv files were shuffled to pair questions with random answers; 5. the notebooks where
.csv files were populated with the LLAMA 3.1 model with 8 and 70 billion parameters.

• QASPER : The data was downloaded as two .json files from their Hugging Face repository.
Then, it was load and processed as follows: from the files were extracted the content of the
keys “question” as the question, “free form answer” as the answer and “evidence” as the
context; consequently, the final data frame from QASPER data finally had 968 instances;
correct answers and contexts that were originally stored as lists were merged into one single
answer and context string for each row; it was saved as qasper.csv file.

• QASA: The data was downloaded as a .json file from their GitHub repository. Then,
it was loaded and processed as follows: unnecessary columns were removed (’paper id’,

’title’, ’question id’, ’question section’, ’question trigger sentence’, ’arxiv id’,

’s2orc url’, ’arxiv url’, ’s2orc id’); columns ’composition’ and ’evidential info’

were renamed as ’correct answer’ and ’context’ for clarity; the contexts, which were
saved as a dictionary with multiple pieces of evidential information, were unified into a
single string for each row; in the ’question type’ column, values’ names were unified to
’complex question’, ’shallow question’, and ’testing question’; lines with miss-
ing information (mainly where no context was provided) were removed. In conclusion, the
final data frame included 1543 examples (589 complex, 486 shallow, and 468 testing) with
the columns: question, question type, context, and correct answer; it was saved as the
qasa.csv file.

The code used to populate qasa.csv and qasper.csv with answers generated by the Iris
Chat Tool is located in the \populate data: generate answers" folder of the \data" sec-
tion in the repository, under the filename \generate answer iris.py". This script generates
answers for questions based on provided contexts using the Iris model deployed on AWS Sage-
Maker. The process begins with loading AWS credentials and configuring the Llama 2 model.
The script then defines data structures to handle examples with context and annotated ex-
amples, reads data from CSV files, generates answers for each example, and post-processes
these answers to remove unnecessary text. Finally, the script saves the annotated examples
with model-generated answers back into CSV files, specifically populated qasper.csv and
populated qasa.csv. Additionally, these files were cleaned to remove initial phrases gener-
ated by the model that were not part of the actual answers, including: \Sure! Here’s the

answer to your question:", \Sure! Here’s my answer:", \The answer is:", and \Sure!

Here’s the answer to your question based on the given/provided context:".

M.4 Sensitivity Prompts

Table 14 provides the prompts utilized on the generation of the sensitivity dataset used on
Experiment 2.
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Table 14: Sensitivity Dataset Prompt. This table presents the prompts used to generate
data on the Sensitivity Dataset generation module.
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Appendix Results

R.1 Statistics QASPER and QASA

The following tables show the results for the first analysis of the Experiment 1 and 2, for QASPER
and QASA datasets separately, Tables 15 and 16 respectively.

aligned vs. shuffled 8b vs. 70b parameters
Metrics

difference Cohen’s d Win-rate % difference Cohen’s d Win-rate %
Bleu -0,70 -0,72 41 -5,00 -0,22 7

Rouge-1 0,01 0,07 50 -0,13 -0,22 10
Rouge-2 0,01 0,56 30 -0,05 -0,21 6
Rouge-L 0,05 1,27 68 -0,12 -0,20 11
Chrf -2,71 -0,25 37 -15,73 -0,21 21

Chrf++ -2,26 -0,26 38 -15,28 -0,20 17
Meteor 0,07 1,27 76 -0,13 -0,24 11
Ter 0,00 1,16 66 -0,01 -0,34 7
Bert 0,30 1,99 89 -0,26 -0,27 17
WMS 0,25 1,02 81 -0,18 0,01 26
SMS 0,39 2,20 92 -0,25 -0,25 18

Wisdm 0,25 1,32 83 -0,02 -0,10 27
Bleurt 0,29 1,56 96 -0,02 -0,06 38
BEM 0,38 1,68 94 -0,02 -0,06 38

Prometheus 2,41 4,25 94 -0,23 -0,19 15
Bart 0,01 0,61 77 0,00 -0,03 35
LLM 0,78 5,54 99 -0,06 -0,13 20

Faithfulness 0,58 1,89 83 0,79 0,21 19
Relevancy 0,15 1,01 95 0,04 0,10 35
Correctness 0,16 0,73 74 -0,02 -0,08 42
R Similarity 0,07 1,74 91 -0,01 -0,23 36
Consistency 0,68 2,37 88 -0,16 -0,13 11
T Similarity 2,67 2,37 88 -0,95 -0,19 13

Table 15: QASPER results. This table summarizes the performance of the evaluation metrics
comparing aligned vs. shuffled data and the 8 billion vs. 70 billion parameter on the QASPER
dataset. The results include the mean difference, Cohen’s d, and win rate percentage for each
metric (under 30%: red, 30-60%: yellow, over 60%: green), highlighting their ability to discrim-
inate between better and worse conditions.
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R.2. EXAMPLES INSTANCES.

aligned vs. shuffled 8b vs. 70b parameters
Metrics

difference Cohen’s d Win-rate % difference Cohen’s d Win-rate %
Bleu 6,22 0,89 80 -1,36 -0,29 17

Rouge-1 0,19 1,13 83 -0,06 -0,42 18
Rouge-2 0,10 1,06 70 -0,02 -0,24 13
Rouge-L 0,16 1,09 83 -0,04 -0,38 20
Chrf 18,25 1,07 86 -5,60 -0,35 26

Chrf++ 17,55 1,12 87 -5,03 -0,35 27
Meteor 0,18 1,13 83 -0,04 -0,34 19
Ter 0,00 -0,04 64 0,00 -0,39 13
Bert 0,47 2,21 93 -0,09 -0,34 25
WMS 0,23 1,25 88 -0,01 -0,36 38
SMS 0,42 2,06 94 -0,08 -0,32 26

Wisdm 0,26 1,49 87 -0,05 -0,30 30
Bleurt 0,29 1,56 96 -0,03 -0,10 33
BEM 0,38 1,68 94 -0,03 -0,10 33

Prometheus 2,35 3,56 91 -0,26 -0,24 14
Bart 0,02 0,87 80 0,00 -0,08 31
LLM 0,78 5,08 98 0,02 0,04 26

Faithfulness 0,54 1,39 76 -0,01 -0,04 9
Relevancy 0,17 0,76 94 -0,02 -0,06 34
Correctness 0,16 0,73 73 -0,04 -0,15 41
R Similarity 0,13 2,27 94 -0,02 -0,33 28
Consistency 0,00 2,56 89 -0,07 -0,13 11
T Similarity 2,72 2,35 89 -0,50 -0,30 15

Table 16: QASA results. Performance of the evaluation metrics comparing aligned vs. shuffled
data and the 8 billion vs. 70 billion parameter on the QASA dataset. The results include the
mean difference, Cohen’s d, and win rate percentage for each metric (under 30%: red, 30-60%:
yellow, over 60%: green)

R.2 Examples Instances.

The following images provide the examples obtained when filtering the QASPER and QASA
datasets to analyze the top 3 instances with the highest and lowest general score (average among
all metrics); and the highest and lowest std based on the general score.
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R.2. EXAMPLES INSTANCES.

Figure 31: Top 3 instances with the highest general score - QAPER.
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R.2. EXAMPLES INSTANCES.

Figure 32: Top 3 instances with the highest general score - QASA.
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R.2. EXAMPLES INSTANCES.

Figure 33: Top 3 instances with the lowest general score - QAPER.
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R.2. EXAMPLES INSTANCES.

Figure 34: Top 3 instances with the lowest general score - QASA.
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R.2. EXAMPLES INSTANCES.

Figure 35: Top 3 instances with the highest std - QAPER.
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R.2. EXAMPLES INSTANCES.

Figure 36: Top 3 instances with the highest std - QASA.
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R.2. EXAMPLES INSTANCES.

Figure 37: Top 3 instances with the lowest std - QAPER.
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R.2. EXAMPLES INSTANCES.

Figure 38: Top 3 instances with the lowest std - QASA.
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R.3. SPEARMAN CORRELATION QASPER AND QASA

R.3 Spearman Correlation QASPER and QASA

The following figures show the heatmaps of the last analysis on Experiment 1 for QASPER and
QASA datasets separately, Figures 39 and 40 respectively.

Figure 39: Spearman Correlation QASPER dataset. Spearman correlation heatmap for
the QASPER dataset, showing the relationships between various evaluation metrics applied to
answers generated by the LLAMA 2 model.
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R.3. SPEARMAN CORRELATION QASPER AND QASA

Figure 40: Spearman Correlation QASA dataset. Spearman correlation heatmap for the
QASA dataset, showing the relationships between various evaluation metrics applied to answers
generated by the LLAMA 2 model.
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