

LABORATORIO DE DOCUMENTACIÓN GEOMÉTRICA DEL PATRIMONIO

Grupo de Investigación en Arqueología de la Arquitectura (UPV-EHU)

Aulario de las Nieves, edificio de Institutos Universitarios C/ Nieves Cano 33, 01006 Vitoria-Gasteiz (España-Spain). Tfno: +34 945 013222 / 013264

e-mail: ldgp@ehu.es web: http://www.ldgp.es

ARCHIVO DEL LABORATORIO DE DOCUMENTACIÓN GEOMÉTRICA DEL PATRIMONIO

ARCHIVE OF THE LABORATORY FOR THE GEOMETRIC DOCUMENTATION OF HERITAGE

Sección de memorias / Reports section

6-1

Informació	Información general / General information				
ELEMENTO:	ELEMENTO: Ambrona_Insitu				
TITULO: Levantamiento fotogramétrico del yacimiento paleontológico "Museo situ" de Ambrona (Soria)		:TITLE			
FECHA: Noviembre 2008 / November 2008		:DATE			
NUMERO:	NUMERO: LDGP_mem_006-1				
IDIOMA: español / Spanish		:LANGUAGE			

Resumen		
TITULO:	Levantamiento fotogramétrico del yacimiento paleontológico "Museo in situ" de Ambrona (Soria)	
DESCRIPCION GEOMÉTRICA:	Se trata de un area cubierta de unos 8 x 8 metros (la altura del tecno es de	
DOCUMENTACION:	La documentación se realiza mediante pares fotogramétricos cenitales obtenidos mediante una barra auxiliar para suspender la cámara.	
fotogrametría estereoscópica, topografía		
PRODUCTOS:	 Pares fotogramétricos (fotografías, croquis y coordenadas apoyo). Modelo tridimensional vectorial. Planos. Multimedia. 	
DESCRIPTORES NATURALES:	patrimonio, huesos, paleontología, topografía, fotogrametría	
DESCRIPTORES CONTROLADOS:	(Procedentes del Tesauro UNESCO [http://databases.unesco.org/thessp/])	
	Patrimonio Cultural, Fotogrametría, Paleontología	

Abstract	
TITLE:	Photogrammetric record of the paleontological site "Museo in situ" in Ambrona (Soria, Spain)
GEOMETRIC DESCRIPTION:	A room of 8 x 8 meters square (the heigh of the ceiling is 2.5 meters at the lowest part) over the area several bones are scattered, the most relevant ones are some elephant tusks.
DOCUMENTATION:	The photogrammetric pairs were taken with the help of an auxiliary bar that kept the camera zenithal to the bones.
METHODOLOGIES:	Stereoscopic photogrammetry, surveying
PRODUCTS:	 Photogrammetric pairs (photographs, sketches and coordinates of the control points). Tridimensional wireframe model. Plans. Multimedia.
NATURAL KEYWORDS:	heritage, bones, palaeontology, surveying, photogrammetry
CONTROLLED KEYWORDS:	(From the UNESCO's thesaurus [http://databases.unesco.org/thesaurus/])
	Cultural Heritage, Photogrammetry, Palaeontology

Localización	Localización / Placement				
ELEMENTO PATRIMONIAL:	Yacimiento paleontologico "in-situ" (Ambrona)				
MUNICIPIO:	Ambrona, Soria, España/Spain (Getty TGN: 7033062)	:MUNICIPALITY			
COORDENADAS:	EPSG:4326 WGS84/LatLong 41.16011,-2.4985	:COORDINATES			

Ane LOPETEGI GALARRAGA Miguel MORENO GONZÁLEZ Pablo PÉREZ VIDIFI I A	Equipo de tr	abajo / Staff	
Álvaro RODRÍGUEZ MIRANDA José Manuel VALLE MELÓN	EQUIPO:	Miguel MORENO GONZÁLEZ Pablo PÉREZ VIDIELLA Álvaro RODRÍGUEZ MIRANDA	STAFF

Derechos	/ Rights	
DERECHOS:	Está permitido citar y extractar el texto, siempre que la fuente sea claramente identificada (respecto a la consideración de "no comercial" ver el apartado "otros derechos"). / Permission is granted to quote ant take excerpts from this text, provided that the source of such material is fully acknowledged (for the "non commercial" label see below in "others rights").	:RIGHTS
OTROS:	Esta memoria de actuación corresponde a un trabajo encargado por una institución o empresa que retiene los derechos de explotación de la información aquí contenida y a quienes habrán de dirigirse todos aquellos interesados en ampliar la información aquí contenida, recabar datos adicionales o hacer uso comercial de los datos expuestos. / This report gives an overview of a commissioned work; therefore, their use for commercial purposes may be an infringement of the promoters rights. You are asked to contact the promoters in case you need either further information or to obtain commercial rights.	OTHERS

Reutilización / Re-use

REUTILIZACION:

Los siguientes términos corresponden al Real Decreto 1495/2011, de 24 de octubre por el que se desarrolla la Ley 37/2007, de 16 de noviembre, sobre reutilización de la información del sector público, para el ámbito del sector público estatal.

RE-USE

"Son de aplicación las siguientes condiciones generales para la reutilización de los documentos sometidos a ellas:

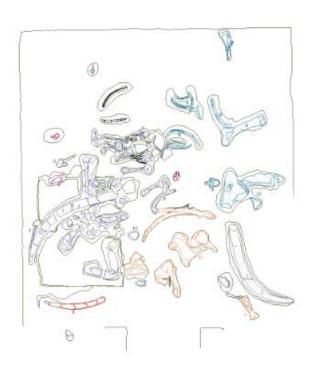
- Está prohibido desnaturalizar el sentido de la información.
- 2. Debe citarse la fuente de los documentos objeto de la reutilización. Esta cita podrá realizarse de la siguiente manera: "Origen de los datos: [órgano administrativo, organismo o entidad del sector público estatal de que se trate]".
- 3. Debe mencionarse la fecha de la última actualización de los documentos objeto de la reutilización, siempre cuando estuviera incluida en el documento original.
- 4. No se podrá indicar, insinuar o sugerir que la [órgano administrativo, organismo o entidad del sector público estatal de que se trate] titular de la información reutilizada participa, patrocina o apoya la reutilización que se lleve a cabo con ella.
- 5. Deben conservarse, no alterarse ni suprimirse los metadatos sobre la fecha de actualización y las condiciones de reutilización aplicables incluidos, en su caso, en el documento puesto a disposición para su reutilización."

The following terms come from the Royal Decree 1495/2011, of 24th October 2011, whereby the Law 37/2007, of November 16, on the re-use of public sector information, is developed for the public state sector.

"The following general terms shall apply to all reusable document availability methods:

- 1. The information must not be distorted.
- The original source of re-usable documents must be cited.
- 3. The date of the latest update of re-usable documents must be indicated when it appears in the original document.
- 4. It must not be mentioned or suggested that the public sector agencies, bodies or entities are involved in, sponsor or support the re-use of information being made.
- 5. Metadata indicating the latest update and the applicable terms of re-use included in re-usable documents made available by public agencies or bodies must not be deleted or altered."

Renuncia	de responsabilidad / Disclaimer	
DESCARGO:	El uso de la información contenida en este documento se hará bajo la completa responsabilidad del usuario. La publicación se ha realizado conforme a los fines docentes y de investigación del Laboratorio de Documentación Geométrica del Patrimonio del Patrimonio de la UPV/EHU y en función de los derechos que corresponden al Laboratorio como autor del contenido. El Laboratorio se compromete a retirar del acceso público tanto este documento como cualquier otro material relacionado en el caso de que los promotores consideren que menoscaban sus derechos de explotación. / The use of the information contained in this document will be under the exclusive responsibility of the user. The aim of this publication is to fulfill the academic goals and research expected from the Laboratory for the Geometric Documentation of Heritage (UPV/EHU) concerning its scientific outcomes. Nevertheless, the Laboratory is bound to the respect of promoters' commercial rights and will take away the contents which are considered against these rights.	DISCLAIMER


Estructura /	Estructura / Framework				
http://hdl.handle.net/10810/7353		:PERMANENT ID			
ESTRUCTURA:	 Idgp_mem006-1_Ambrona_Insitu.pdf: este documento / this document. Idgp_AMB08_fot_insitu?.jpeg: 6 fotografías de documentación / 6 pictures for documentation purposes. 	:FRAMEWORK			

Cita com	Cita completa recomendada / Recomended full citation			
CITA:	Laboratorio de Documentación Geometrica del Patrimonio (Universidad	:CITATION		
	del País Vasco-Euskal Herriko Unibertsitatea UPV/EHU) –LDGP			
	Levantamiento fotogramétrico del yacimiento paleontológico "Museo in			
	situ" de Ambrona (Soria). 2008			

LEVANTAMIENTO FOTOGRAMÉTRICO DEL YACIMIENTO PALEONTOLÓGICO "MUSEO IN SITU"DE AMBRONA (SORIA)

Vitoria, Noviembre de 2008

Equipo:

José Manuel Valle Melón Doctor, Licenciado en Geografía Ingeniero Técnico en Topografía

Pablo Pérez Vidiella

Álvaro Rodríguez Miranda Ingeniero en Geodesia y Cartografía Ingeniero Técnico en Topografía

Miguel Moreno González

Ane Lopetegi Galarraga Ingeniero Técnico en Topografía

LABORATORIO DE DOCUMENTACIÓN GEOMÉTRICA DEL PATRIMONIO

Grupo de Investigación en Arqueología de la Arquitectura (UPV-EHU)

Aulario de Las Nieves, edificio de Institutos Universitarios Nieves Cano 33, 01006 Vitoria-Gasteiz. Tfno. 945-013222/013264 E-mail: <u>im.valle@ehu.es</u> <u>http://www.ldgp.es</u>

INDICE

Págir	าล
1 Antecedentes 5	
2 Localización y descripción del yacimiento	
3 Desarrollo de la intervención	
3.1 Planificación de procesos	
3.2 Procesos topográficos	
3.3 Procesos fotogramétricos	
4 Metadatos y trascendencia de la información	
5 Presentación multimedia	
Anexo I Coordenadas de los puntos de apoyo	
Anexo II Certificado de calibración de la cámara fotográfica	
Anexo III Resultados finales del proceso de orientación del bloque fotogramétrico 32	
Anexo IV Contenido del CD	

LEVANTAMIENTO FOTOGRAMÉTRICO DEL YACIMIENTO PALEONTOLÓGICO "MUSEO IN SITU"DE AMBRONA (SORIA)

1.- Antecedentes

El 25 de febrero de 2008, la consejería de Cultura y Turismo de la Junta de Castilla y León hace público un pliego de prescripciones técnicas para el "Contrato de Restauración de las piezas del -Museo In Situ- de Ambrona y de sus soportes".

La empresa In Situ, S.L., por medio de D. Javier García Vega contactó con el Laboratorio de Documentación Geométrica del Patrimonio (LDGP) de la Universidad del País Vasco, con el fin de estudiar la posibilidad de documentación mediante técnicas fotogramétricas del citado yacimiento, para ello aporto documentación informativa compuesta por un conjunto de fotografías y un informe de intervención realizados por esta empresa sobre el yacimiento, el pliego de cláusulas administrativas y el referido pliego de prescripciones técnicas.

Tras el análisis de esta documentación el LDGP, redacto un proyecto de intervención para la realización del Levantamiento fotogramétrico de los restos del "Museo In Situ" en el que se consideraban el estado y disposición de los restos, las alternativas metodológicas, así como los plazos disponibles.

Aprobado el proyecto por la empresa In Situ, S.L., se giró una visita para la toma de datos precisos para el diseño de elementos auxiliares y distribución de espacios y tareas, procediendo a la ejecución de la fase de campo los días 2, 3 y 4 de julio del presente 2008.

2.- Localización y descripción del yacimiento.

El yacimiento paleontológico objeto de este estudio se encuentra aproximadamente a un kilómetro al sureste de la localidad de Ambrona, perteneciente al municipio de Miño de Medinaceli en la provincia de Soria.

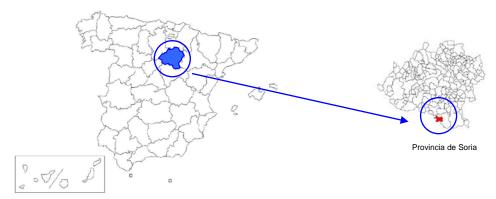


Figura 1. Localización de Miño de Medinaceli en Soria y en España

Para acceder al mismo se puede seguir la carretera SO-P-4164 que parte de Ambrona con dirección a Medinaci, a un kilómetro existe un desvío indicado a mano izquierda, que tras ascender por una ligera pendiente da acceso al museo, donde finaliza.

Figura 2. Emplazamiento del yacimiento respecto a Ambrona

En el pliego de prescripciones técnicas, para el "Contrato de Restauración de las piezas del -Museo In Situ- de Ambrona y de sus soportes" antes referido, pueden encontrarse datos de interés para conocer la disposición y características del yacimiento a documentar.

"El conocido como –Museo in situ- es, en realidad, la cubrición de la parte de la excavación que Clarw Howell y su equipo realizaron en 1963. En ella quedaron un grupo de tres elefantes, -macho, hembra y uno joven-, y restos de otros animales. El diseño fue realizado por Lola Echaine y Emiliano Aguirre. Fue construido en colaboración por el Ministerio de Información y Turismo y la Diputación Provincial de Soria en esos años, concluyéndose en 1.963. El edificio, obra del ingeniero Clemente Sáez García, es rectangular con una superficie de 64 m2, con cubierta a un agua y una pasarela entre las puertas de acceso y salida en el muro más alto. Desde la pasarela, a modo de tribuna, se observan los restos. La luz entra desde la fachada de la pasarela, en la parte más alta y por encima de los visitantes, de modo que los restos no reciben nunca la luz directa. El acceso a la plataforma expositiva que queda a nivel inferior que la pasarela, sólo puede realizarse desde ésta, aproximadamente a 2 m. por encima del nivel arqueológico.

...

Como exposición in situ de una parte de lo excavado, tiene por objetivo la fidelidad al modo estratigráfico de aparición de los hallazgos en el proceso científico de la excavación arqueológica. Es destacable la innovación expositiva y divulgadora de esta iniciativa en fechas tan tempranas, aspecto que pretende ser recuperado tras la intervención en toda su capacidad."

3. Desarrollo de la intervención

La secuencia de procesos ejecutados para obtener el levantamiento fotogramétrico se muestra en el gráfico adjunto, en el que se indican en rojo los procesos de campo, en azul los de gabinete y en verde los productos:

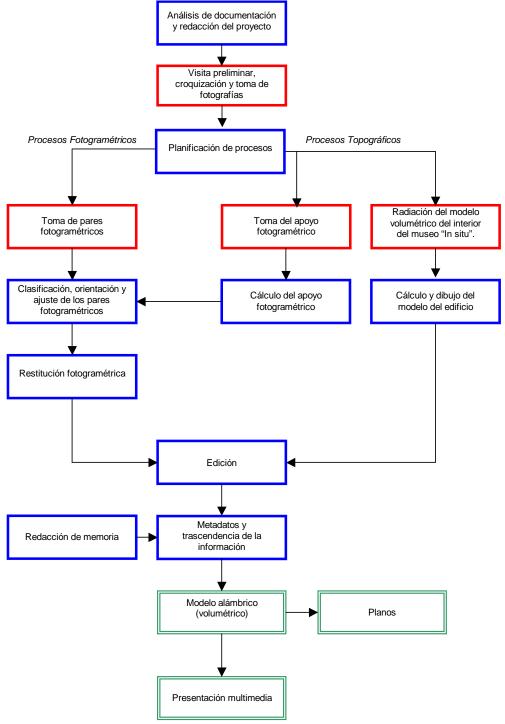


Figura 3. Esquema general de la intervención.

3.1. Planificación de procesos

A partir de la información proporcionada por la empresa In Situ, S.L., los pliegos de condiciones técnicas y cláusulas administrativas, junto con los datos recogidos en campo el día 25 de junio de 2008 -día en el que se visito el yacimiento acompañados por Dña. Lucrecia Villar y D. Javier García Vega- se realizó la planificación de la fase de campo del proceso, siguiendo la fase de gabinete el planteamiento desarrollado en el proyecto que se presentó a In Situ, S.L.

Las especiales circunstancias en las que se encuentra el yacimiento, junto con los requerimientos específicos de las técnicas fotogramétricas, han obligado a planificar detalladamente la toma de datos de campo, debiendo prever desde la alimentación eléctrica de los equipos informáticos, hasta el diseño y fabricación del sistema de suspensión vertical de la cámara sobre el yacimiento.

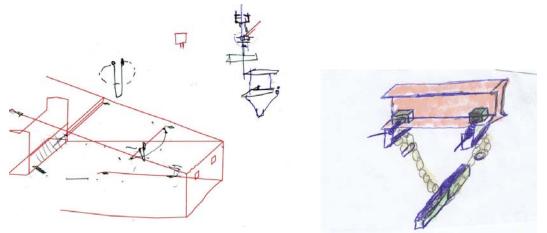


Figura 4. Bocetos del diseño del sistema de suspensión vertical de la cámara fotogramétrica

3.2. Procesos topográficos

El sistema de coordenadas diseñado es un sistema local, en el que se ha definido una red de coordenadas propias del proyecto que parten de una estación en la puerta del museo, a partir de la cual se han radiado un conjunto de referencias en el interior del edificio, materializadas con dianas como la que se acompaña en la figura 5. Cada una de ellas dispone de coordenadas con precisión de entre 1 y 2 mm, lo que permite realizar orientaciones sucesivas a partir de ellas, utilizando el método de intersección inversa múltiple resuelta por mínimos cuadrados, que dotan a la estación total de coordenadas en el mismo sistema de coordenadas con una precisión similar a la de las dianas, con la ventaja de poder disponer la posición de la estación en cualquier lugar del yacimiento.

Figura 5. Ejemplo de señal de puntería de 4 cm de lado colocadas como referencia en el interior del museo.

Puntos		Coordenadas	
Pullos	X	Υ	Z
108B	198,611	299,719	500,612
109B	200,518	301,613	500,653
110B	204,000	301,568	497,176
111B	207,142	298,477	499,185
112B	208,110	295,834	497,373
113B	205,009	292,696	498,776
114B	201,695	293,334	497,033
115B	198,731	296,239	498,945
116B	204,445	305,871	498,440
117B	216,756	319,962	498,369

Tabla 1. Coordenadas de las señales de referencia.

Partiendo de estas coordenadas se procedió al estacionamiento del instrumental topográfico en los lugares exentos de restos óseos en los que además no se interfería la toma fotográfica. Desde estas estaciones se obtuvieron las coordenadas de los puntos de apoyo, puntos materializados sobre el yacimiento mediante dianas de 3 cm de lado sobre soporte rígido de metacrilato que se colocaron simplemente por gravedad.

Para su correcta identificación, ahora y en el futuro se procedió a codificarlos, de manera que cada uno de los puntos se nombra de la siguiente manera: PA_f_n, donde PA ha referencia a que se trata de un punto de apoyo, "f" al nº de fila de los puntos de apoyo y "n" de diana dentro de la fila.

El instrumental topográfico utilizado es una estación total Leica TCR 1205, cuyas características son las siguientes:

Apreciación: 20^{cc}
 Sensibilidad: 20"
 Aumentos: 30x

Distanciómetro: 2mm +2ppm

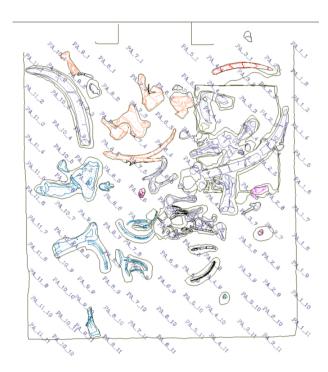


Figura 6. Ubicación de los puntos de apoyo respecto a los restos óseos.

Figura 7. Imagen en la que pueden apreciarse las dianas de referencia, rodeadas de rojo y los puntos apoyo fotogramétrico, alguno de los cuales se han rodeado en verde.

Las coordenadas correspondientes a cada uno de estos puntos de apoyo, imprescindibles en el proceso de restitución fotogramétrica pueden encontrarse en el anexo I.

3.3. Procesos fotogramétricos

Toma de pares fotogramétricos

El proceso fotogramétrico requiere de la toma de fotografías en condiciones particulares de recubrimiento entre imágenes consecutivas, perpendicularidad al plano medio del terreno, así como de conocimiento de los parámetros de la cámara fotográfica. Empezando por este punto, hay que indicar que la cámara utilizada para el registro de las imágenes fotográficas es una cámara digital de la marca CANON, modelo 5 D, cuyas características y certificado de calibración (también necesario para el proceso de restitución) puede encontrarse en el anexo II.

Como se ha indicado, las particularidades de la disposición de la cámara y el aseguramiento de la posición de unas tomas respecto a otras obligó al diseño y construcción de una estructura móvil que se sustentaba entre la barandilla que protege la pasarela y una cadena de longitud variable suspendida mediante sargentos de la viga IP que sujeta la cubierta del museo.

La estructura está formada por tubos cuadrados de acero de 4 cm de lado empalmados por otros de 3,5 cm, por cuyo interior discurre una cuerda que, a través de unas carruchas, permite desplazar la cámara en sentido paralelo a la guía, obteniendo fotografías a intervalos predefinidos. Al mismo tiempo, la toma de este tipo de fotografías y el cuidado puesto en que las sucesivas posiciones de la guía fueran paralelas entre sí, ha facilitado la generación, cálculo y compensación de todos los datos como un único bloque, lo que dota a los resultados de una homogeneidad en la precisión muy superior a la que se hubiera obtenido de trabajar con modelos independientes.

Figura 8. Diversos momentos del montaje y utilización de la estructura para la suspensión vertical de la cámara fotográfica.

Para calcular la distancia entre tomas, y el solape o recubrimiento entre ellas se ha de considerar la focal, el formato del sensor de la cámara y el alejamiento al que se encontrará la cámara respecto al plano medio del terreno en cada toma. Como este último parámetro es variable, se preparó una tabla en el que se calculaban el resto de los datos de interés para la toma en función, precisamente del alejamiento.

Planificación de párametros para la toma de datos en AMBRONA (Soria)

Fecha	Cámara	Focal (mm)	Format	to (mm)	Margen (%)
30/06/2008	CANON 5D	35	36	24	3

Alejamiento	Esc. fotog.	Esc. plano	Espacio (Objeto (m)	Bas	e (m)	Espacio mod.	. horizon. (m)	Esp. mod.
d (m)	(1/n)	(1/n)	hor.	ver.	max (1/3 d)	mín. (1/10 d)	mín.	max	vertical (m)
1,00	29	6	1,03	0,69	0,33	0,10	0,63	0,87	0,64
1,25	36	7	1,29	0,86	0,42	0,13	0,79	1,08	0,81
1,50	43	9	1,54	1,03	0,50	0,15	0,95	1,30	0,97
1,75	50	10	1,80	1,20	0,58	0,18	1,11	1,52	1,13
2,00	57	11	2,06	1,37	0,67	0,20	1,27	1,73	1,29
2,25	64	13	2,31	1,54	0,75	0,23	1,43	1,95	1,45
2,50	71	14	2,57	1,71	0,83	0,25	1,58	2,17	1,61
2,75	79	16	2,83	1,89	0,92	0,28	1,74	2,38	1,77
3,00	86	17	3,09	2,06	1,00	0,30	1,90	2,60	1,93
3,25	93	19	3,34	2,23	1,08	0,33	2,06	2,82	2,09
3,50	100	20	3,60	2,40	1,17	0,35	2,22	3,03	2,26
3,75	107	21	3,86	2,57	1,25	0,38	2,38	3,25	2,42
4,00	114	23	4,11	2,74	1,33	0,40	2,53	3,47	2,58

Tabla 2. Planificación de los parámetros de la toma del registro fotogramétrico

Clasificación, orientación, ajuste y restitución de los pares fotogramétricos

La toma fotográfica se ha visto condicionada por la variación de las condiciones de iluminación a lo largo del proceso de registro fotográfico, a pesar de realizar la misma en el momento próximo al solsticio de verano en el que los días son largos (ya que el edificio carece de iluminación artificial) y por otro lado, que el sol se encuentre en su momento más alto, lo que limita la entrada directa de luz. Aun así la variación lumínica a lo largo del día aconsejó realizar al menos dos imágenes desde cada posición de la cámara, una con alta sensibilidad y tiempo largo de exposición y otra con sensibilidad menor y también menor tiempo de exposición. Las dos colecciones se incorporan en el CD que acompaña esta memoria; por otro lado, en la presentación multimedia se ha incluido la de mayor calidad visual que es la que se ha utilizado para la restitución.

El proceso de clasificación comienza con la separación de las imágenes en las dos series de fotografías indicadas, y dentro de cada serie por cada una de las pasadas, lo que facilita la localización y gestión de las mismas.

El programa de restitución fotogramétrica utilizado es Softplotter que dispone de herramientas tanto para la orientación, como para el ajuste de bloques y restitución y edición.

Proceso de generación del bloque

Una vez ordenadas y codificadas las fotografías se transforma una copia de las mismas en formato *.TIF sin comprimir que es el utilizado por el programa Softplotter. También es necesario aportar los parámetros de calibración de la cámara (anexo II) y las coordenadas de los puntos de apoyo (anexo I), por medio de un fichero de texto en el que las mismas aparece la información organizada por columnas separadas por tabulaciones, con el siguiente formato:

NºPunto CoordenadaX CoordenadaY CoordenadaZ

Con esta información de partida es posible generar un nuevo proyecto en Softplotter, en el que se indicarán una serie de parámetros, como son el tipo de sistema de coordenadas (cartesianas tridimensionales), los solapes entre fotografías (longitudinal y transversal). Además se importan las fotografías y el fichero con las coordenadas de los puntos de apoyo.

El proceso de orientación, propiamente dicho comienza con la orientación interior de cada imagen, en la que se reconstruye el haz de rayos formado por cada perspectiva cónica fotográfica utilizando para ello los datos del certificado de calibración. Para la cámara utilizada, las marcas fiduciales que determinan los límites geométricos se corresponden con las cuatro celdillas que forman las esquinas de la fotografía, para que exista relación entre la imagen fotográfica y el correspondiente certificado de calibración se realiza la identificación manual, sobre la pantalla de cada uno de estos cuatro puntos.

Una vez realizadas todas las orientaciones interiores se proceden a realizar las orientaciones externas, es decir la orientación en el espacio de cada uno de los haces formados, para lo que se identifican de forma monoscópica los puntos de apoyo en cada imagen, de manera que, seguidamente es posible realizar el ajuste en un paso de forma simultánea para todo el bloque.

Aunque el ajuste final no se realizará hasta después de haber marcado los puntos de apoyo en todas las fotografías, se pueden ir calculando ajustes provisionales a medida que se van midiendo fotografías y pasadas para ir comprobando que el ajuste no presenta problemas, como por ejemplo puntos que han de descartarse o zonas en las que es necesario añadir puntos de paso o enlace.

Antes de dar por finalizado el ajuste es necesario comprobar que el criterio de ponderación sea adecuado, para ello hay que analizar el valor de la varianza a posteriori suministrada por el ajuste, este valor debe mantenerse cercano a la unidad (el valor límite concreto se obtiene de la tabla de la función F-Fisher en función de los grados de libertad), en caso de que no se satisfaga esta condición es necesario revisar la ponderación asignada, esta revisión puede afectar a:

- Puntos de apoyo.
- Fotocordenadas.
- Centros de proyección.

Estos valores de precisiones han de ser coherentes con la realidad de los datos disponibles.

Una descripción más detallada del proceso de orientación, así como los resultados obtenidos, puede consultarse en el anexo III.

Restitución fotogramétrica

El proceso de restitución fotogramétrica consiste en la identificación estereoscópica de los elementos que conforman la morfología de los restos óseos del yacimiento plasmando su geometría en un archivo de dibujo CAD, a partir del cual se confeccionan los planos necesarios, en concreto se han generado uno a escala 1:20 y otro a escala 1:50, en dos versiones, con y sin curvas de nivel.

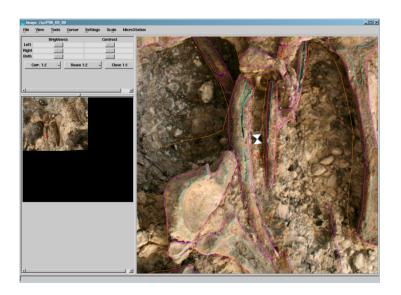


Figura 9. Imagen del proceso de restitución con extracción estereoscópica de la geometría tanto de los huesos como del terreno sobre el que se asientan.

La información obtenida del proceso de restitución se estructura en niveles de información o capas en el archivo CAD. Mediante la activación o desactivación de estas capas, se pueden generadar las combinaciones de información oportunas que constituirán la base para la producción de los mapas temáticos correspondientes.

La información se estructura en las siguientes capas

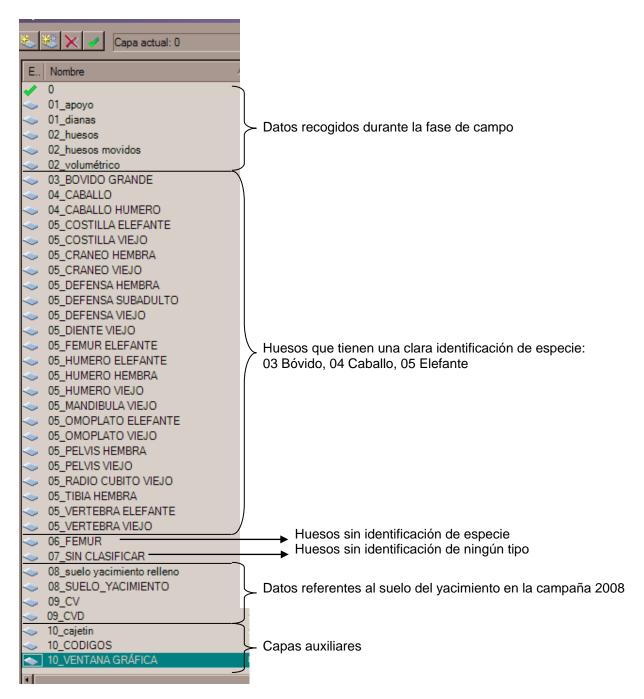


Figura 10. Listado de capas del fichero de dibujo.

4.- Metadatos y trascendencia de la información

Los ficheros informáticos que se presentan cuentan con documentación interna que permite su identificación y describe sus características, esto facilita su clasificación dentro del conjunto de proyectos (sobre diferentes yacimientos) además de ponerlo en relación con el resto de documentos del propio proyecto en el caso de que se acceda a ellos de forma descontextualizada.

La forma de incluir esta información depende de las posibilidades del formato de almacenamiento, así, en los modelos geométricos (formatos .dwg y .dxf) se utiliza la posibilidad de incluir propiedades (menú [Archivo] [Propiedades del dibujo]) como se muestra a continuación:

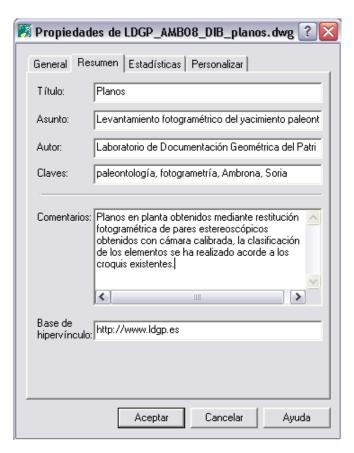


Figura 11. Información asociada a los ficheros de dibujo.

Otro aspecto de gran importancia consiste en garantizar que la documentación entregada va a seguir disponible a lo largo del tiempo; en efecto, la dinámica del mercado informático hace que tanto los equipos como los programas y los formatos vayan evolucionando, de tal forma que van quedando obsoletos en unos pocos años, siendo sustituidos por nuevas versiones más potentes. El problema que acarrea a la información que se encuentra almacenada en los formatos antiguos es que, en ocasiones, ya no son reconocidos por los programas disponibles en el mercado.

Por ejemplo, el formato .dwg, que en su versión de Autocad® 2000 es el que se ha utilizado para la realización del modelo geométrico, es propiedad de la empresa Autodesk, por lo que su continuidad depende de esta empresa. Por el contrario, el formato .dxf esta abierto, es decir, su definición está disponible y cualquier programa o usuario puede utilizarlo libremente. Por este motivo, el modelo geométrico que se presenta se encuentra, además de en su formato original .dwg, en .dxf (también en versión de Autocad® 2000). El CD que acompaña este proyecto, contiene una carpeta "útil" donde se ha incluido la descripción del formato .dxf.

El multimedia se ha realizado en lenguaje HTML que corresponde al estándar (ISO/IEC 15445:2000) y los documentos a los que se accede a través de él están en formato .pdf de amplia distribución en la web.

Respecto a las imágenes, en el CD adjunto se encuentra una carpeta denominada "Fotogrametría" donde se han incluido las tomas originales. La cámara las captura en formato .jpeg y se presentan varias tomas de cada imagen con diferentes parámetros de exposición. Por otro lado, la carpeta "Multimedia" contiene a su vez una subcarpeta denominada "fotografías" donde se dispone de la mejor toma para cada posición almacenada en formato .png (formato de imagen recomendado por el Wold Wide Web Consortium [W3C] consorcio internacional que produce estándares para la web).

5.- Presentación multimedia

La información del proyecto se presenta también en un multimedia que permite navegar cómodamente por los diferentes documentos generados:

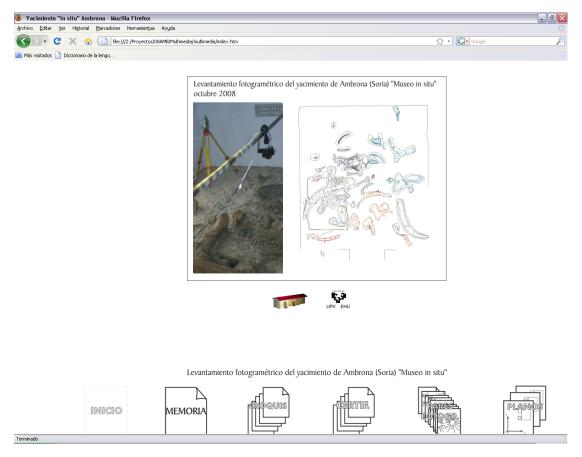


Figura 12. Aspecto de la página inicial del multimedia.

A partir de este multimedia se puede acceder a la memoria, croquis de situación y coordenadas de los puntos de apoyo, certificados de calibración de la cámara y estación, las fotografías utilizadas para la documentación (organizadas por pasadas) y versiones en .pdf de los planos generados.

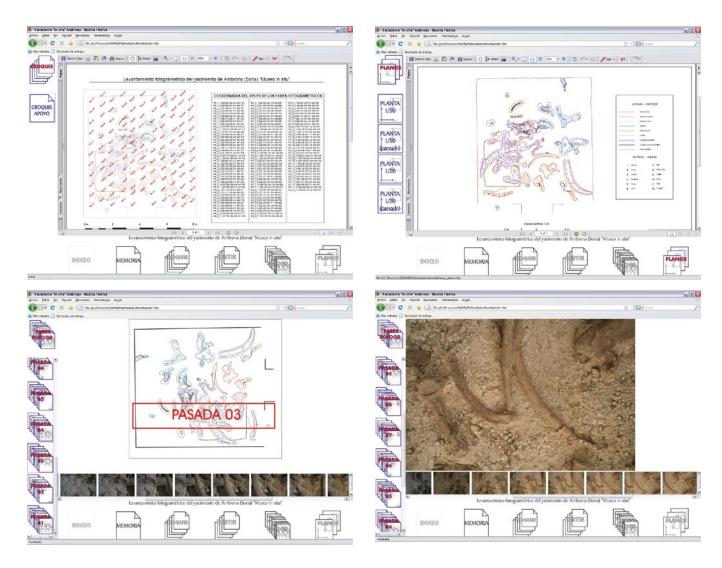


Figura 13. Diferentes pantallas del multimedia, en la parte superior se puede ver el croquis de situación de los puntos de apoyo con sus coordenadas y el acceso a los planos. En la parte inferior el acceso a las fotografías.

ANEXO I
Coordenadas de los puntos de apoyo

Levantamiento fotogramétrico del yacimiento paleontológico "Museo In Situ"de Ambrona (Soria)

En primer lugar, se presenta el certificado de contrastación del instrumental topográfico empleado:

Certificado de Verificación y Control

Nº de Certificado

300478361

Fecha

07.01.2008

Leica Geosystems, s.l. Ibarrekolanda, 36 48015 Bilbao - Deusto Fax +34 94 447 3393 www.leica-geosystems.com

UNIVERSIDAD DEL PAIS VASCO E.U.I.T. Ind. e Ing.Tec.Topog. NIEVES CANO, 12

01006 VITORIA

Número de cliente

50198

Instrumento

TCR1205 R300, taquímetro + EDM sin ref.

Nº de Serie 213379

Técnico

110336

Proceso de Verificación y Control:

El instrumento ha sido verificado y controlado conforme a los procedimientos establecidos por Leica Geosystems, S.L. según el manual del instrumento en cuestión.

Resultados:

Temperatura durante la verificación (°C): 24

	Entrodo	Televenie	0-114-	
	Entrada	Tolerancia	Salida	Incertidumbre
Desviación Hz (Gon)	0.0003	0.0015	0.0001	0.0004
Desviación Vt (Gon)	0.0008	0.0015	0.0002	0.0002
Desviación distancia (mm)	0.1	2mm + 2ppm	0.1	0.1
(Distanciómetro infrarrojo)		7.0		
Desviación distancia (mm)	0.1	3mm + 2ppm	0.1	0.1
(Distanciómetro láser)				

Patrones empleados:

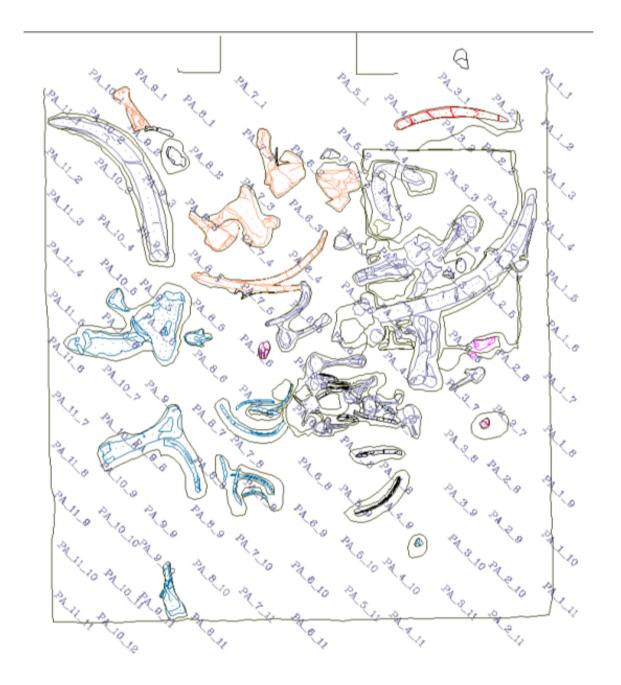
Angulos:

Colimador de ejes: Wild nº 9694 (Incertidumbre asociado con el patrón: 0.0005 gon)

Leica DI2002 nº 181130 (incertidumbre asociada con el patrón: 0.7 mm)

Los resultados se refieren al momento y condiciones en que se efectuaronlas mediciones y poseen trazabilidad a patrones nacionales o a patrones extranjeros

No se permite la reproducción parcial de este certificado sin la aprobación por escrito de Leica Geosystems, s.l.


www.leica-geosystems.com

1/1

- when it has to be right

Los puntos de apoyo se distribuyen según el siguiente esquema:

Seguidamente, se presentan las coordenadas. La información se estructura en cuatro columnas, la primera de las cuales corresponde al nombre del punto, la segunda a la coordenada X, la tercera a la coordenada Y y la cuarta y última a la coordenada Z.

Puntos		Coordenadas	
apoyo	X	Υ	Z
PA_1_1	203,096	302,343	496,705
PA_1_2	203,632	301,803	496,747
PA_1_3	204,164	301,31	496,867
PA_1_4	204,693	300,752	496,995
PA_1_5	205,27	300,248	496,98
PA_1_6	205,802	299,724	496,983
PA_1_7	206,317	299,141	497,024
PA_1_8	206,875	298,579	497,011
PA_1_9	207,39	298,031	497,034
PA_1_10	207,957	297,439	496,941
PA_1_11	208,515	296,905	497,012
PA_2_1	202,857	301,555	496,66
PA_2_2	203,259	300,935	496,831
PA_2_3	203,82	300,4	496,472
PA_2_4	204,454	299,883	497,05
PA_2_5	204,763	299,421	497,049
PA_2_6	205,574	298,894	496,973
PA_2_7	206,121	298,267	497,048
PA_2_8	206,645	297,614	497,027
PA_2_9	207,196	297,1	497,066
PA_2_10	207,716	296,561	497,039
PA_2_11	208,231	296,036	497,048
PA_3_1	202,061	301,215	496,619
PA_3_2	202,589	300,757	496,675
PA_3_3	203,145	300,269	496,482
PA_3_4	203,704	299,754	496,447
PA_3_5	204,139	299,213	496,872
PA_3_6	204,875	298,594	496,497
PA_3_7	205,353	298,046	496,98
PA_3_8	205,877	297,493	497,045
PA_3_9	206,438	296,913	497,022
PA_3_10	207,006	296,426	497,087
PA_3_11	207,466	295,816	497,092

Puntos		Coordenadas	
apoyo	Χ	Υ	Z
PA_4_1	201,713	300,433	496,611
PA_4_2	202,211	299,946	496,682
PA_4_3	202,638	299,367	497,006
PA_4_4	203,25	298,737	496,719
PA_4_5	203,838	298,146	496,73
PA_4_6	204,405	297,684	496,841
PA_4_7	204,984	297,113	497,072
PA_4_8	205,519	296,473	496,993
PA_4_9	205,89	296,105	497,236
PA_4_10	206,565	295,485	497,071
PA_4_11	207,188	294,988	497,029
PA_5_1	200,992	300,155	496,655
PA_5_2	201,57	299,583	496,692
PA_5_3	201,876	299,295	496,719
PA_5_4	202,623	298,536	496,687
PA_5_5	203,224	297,983	496,713
PA_5_6	203,643	297,347	496,676
PA_5_7	204,26	296,912	496,866
PA_5_8	204,836	296,337	496,893
PA_5_9	205,33	295,808	496,941
PA_5_10	205,891	295,276	496,98
PA_5_11	206,449	294,785	497,031
PA_6_2	201,25	298,909	496,736
PA_6_3	201,808	298,311	496,739
PA_6_4	202,342	297,764	496,715
PA_6_5	202,882	297,249	496,775
PA_6_6	203,514	296,691	496,756
PA_6_7	204	296,172	496,74
PA_6_8	204,614	295,669	496,828
PA_6_9	205,059	295,122	496,845
PA_6_10	205,628	294,494	496,926
PA_6_11	206,176	293,941	496,914

Puntos		Coordenadas	
apoyo	X	Y	Z
PA_7_1	199,942	299,048	496,726
PA_7_2	200,571	298,572	496,744
PA_7_3	201,072	298,04	496,72
PA_7_3	201,072	298,04	496,718
PA_7_4	201,657	297,434	496,645
PA_7_5	202,163	296,925	496,935
PA_7_6	202,705	296,362	496,655
PA_7_7	203,227	295,813	496,608
PA_7_8	203,66	295,189	496,733
PA_7_9	204,255	294,866	496,832
PA_7_10	204,752	294,192	496,8
PA_7_11	205,345	293,67	496,818
PA_8_1	199,588	298,306	496,751
PA_8_2	200,197	297,833	496,675
PA_8_3	200,701	297,235	496,61
PA_8_4	201,272	296,728	496,651
PA_8_5	201,822	296,238	496,759
PA_8_6	202,375	295,711	496,633
PA_8_7	202,933	295,12	496,503
PA_8_8	203,49	294,578	496,846
PA_8_9	203,978	294,034	496,657
PA_8_10	204,57	293,474	496,731
PA_8_11	205,108	292,889	496,821
PA_9_1	198,805	298,078	496,841
PA_9_2	199,302	297,426	496,751
PA_9_3	199,992	297,036	496,846
PA_9_4	200,475	296,435	496,618
PA_9_5	201,058	295,898	496,692
PA_9_6	201,447	295,571	496,813
PA_9_7	202,183	294,883	496,419
PA_9_8	202,668	294,136	496,875
PA_9_9	203,48	293,541	496,612
PA_9_10	203,772	293,124	496,601
PA 9 11	204,336	292,564	496,726

		<u> </u>	
Puntos		Coordenadas	
apoyo	X	Υ	Z
PA_10_1	198,314	297,595	496,89
PA_10_2	198,706	297,173	496,801
PA_10_3	199,315	296,716	496,725
PA_10_4	199,936	296,142	496,656
PA_10_5	200,43	295,701	496,636
PA_10_6	201,014	295,149	496,547
PA_10_7	201,57	294,599	496,51
PA_10_8	202,056	294,071	496,442
PA_10_9	202,551	293,549	496,511
PA_10_10	203,011	293,044	496,538
PA_10_11	203,729	292,442	496,669
PA_10_12	204,109	291,906	496,723
PA_11_1	198,086	296,926	496,865
PA_11_2	198,682	296,307	496,753
PA_11_3	199,142	295,879	496,661
PA_11_4	199,682	295,332	496,576
PA_11_5	200,22	294,821	496,523
PA_11_6	200,693	294,321	496,587
PA_11_7	201,308	293,794	496,455
PA_11_8	201,831	293,259	496,486
PA_11_9	202,368	292,751	496,515
PA_11_10	202,94	292,253	496,538
PA_11_11	203,432	291,687	496,637

Levantamiento fotogramétrico del yacimiento paleontológico "Museo In Situ"de Ambrona (Soria)
ANEXO II
Certificado de calibración de la cámara fotográfica

Parámetros internos

<u>Cámara</u>: Canon DS-12691 (EOS-5D), nº serie: 219063

Fecha: 26 de junio de 2007

Parámetros geométricos (en celdillas):

- Caso I: distancia focal más adecuada para una perspectiva perfecta.
 - o Formato: 4.368 x 2.912 celdillas
 - o Distancia focal (f): 4.480 celdillas (emc: 23 celdillas)
- Caso 2: distancia focal, punto principal y distorsión radial simétrica.
 - o Formato: 4.368 x 2.912 celdillas
 - o Distancia focal (f): 4.324'5 celdillas (emc: 9'5 celdillas)
 - o Distorsión radial simétrica (k₁): -2'86 e-9 (emc: 1'1e-10)
 - \circ Punto principal (x_p , y_p): 23 celdillas (emc: 4 cel), 15'5 celdillas (emc: 4 cel)
- Caso 3: distancia focal y distorsión radial simétrica.
 - o Formato: 4.368 x 2.912 celdillas
 - o Distancia focal (f): 4.310 celdillas (emc: 11 celdillas)
 - o Distorsión radial simétrica (k₁): -3'0 e-9 (emc: 1'2e-10)

Parámetros geométricos (en milímetros):

- Caso I: distancia focal más adecuada para una perspectiva perfecta.
 - o Formato: 36 x 24 mm
 - o Distancia focal (f): 36'9 mm (emc: 0'2 mm)
- Caso 2: distancia focal, punto principal y distorsión radial simétrica.
 - o Formato: 36 x 24 mm
 - o Distancia focal (f): 35'64 mm (emc: 0'08 mm)
 - o Distorsión radial simétrica (k₁): -4'2 e-5 (emc: 1'6e-6)
 - \circ Punto principal (x_p , y_p): 0'19 mm (emc: 0'03 mm), 0'13 mm (emc: 0'03 mm)
- Caso 3: distancia focal y distorsión radial simétrica.
 - o Formato: 36 x 24 mm
 - o Distancia focal (f): 35'52 mm (emc: 0'09 mm)
 - o Distorsión radial simétrica (k₁): -4'4 e-5 (emc: 1'8e-6)

NOTAS:

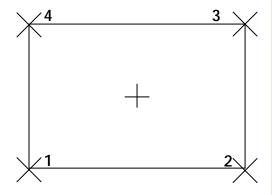
- La función de distorsión radial simétrica: $\Delta r = k_1 r^3 + k_2 r^5 + k_3 r^7$, donde Δr es el valor de distorsión; k_1 , k_2 , k_3 son los parámetros de distorsión y r la distancia del punto respecto al punto principal. Para cualquier punto sobre la imagen, se calcula su distancia al punto principal (r) y el valor de distorsión que le corresponde (Δr), este valor se restará del valor de r original para obtener el valor corregido: $r_{corregido} = r \Delta r$.
- Lamentablemente, no existe consenso respecto a la forma de realizar la corrección por distorsión, en algunos programas de fotogrametría, se utiliza la expresión opuesta, es decir: $r_{corregido} = r + \Delta r$. Si este fuese el caso, se debería cambiar el signo del parámetro suministrado (ej. del caso 2 en milímetros, k_1 : +2'86 e-5).
- En la prueba realizada no se han obtenido valores significativos de k_2 o k_3 por lo que se recomienda dejarlo a cero.
- Se presenta una versión sólo con focal y otra con focal y kl sin punto principal para poder adaptarlo a las características del programa de restituidor a utilizar.

Valores en milímetros

Gráfica de distorsión:

Las líneas discontinuas representan la variación debida a 2 veces el error medio cuadrático de la distorsión.

Distancia Radial	Distorsión
(mm)	(mm)
0	0'000
5	-0'005
10	-0'042
15	-0'142
20	-0'336
25	-0'656

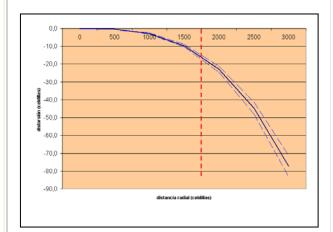

NOTA: Aplicar con precaución esta corrección, especialmente en los bordes del formato, donde los valores pueden no corresponder a las distorsiones reales.

Es válida hasta $19\ \text{mm}$ y se debe tomar con precaución a partir de los $14^{\circ}5\ \text{mm}$ (ver apartado siguiente).

Coordenadas de las marcas fiduciales:

Distribución:

Marca	X(mm)	Y(mm)
I	18'0	-12'0
2	18'0	-12'0
3	18'0	12'0
4	18'0	12'0



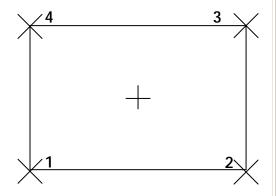
NOTA: Las marcas fiduciales coinciden con las esquinas del formato de 36 x 24 milímetros.

Valores en celdillas

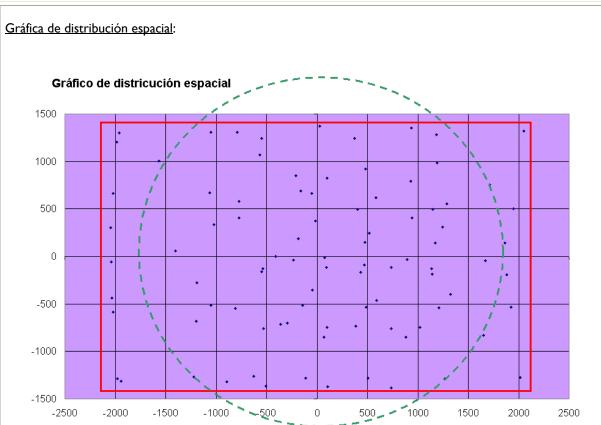
Gráfica de distorsión:

Las líneas discontinuas representan la variación debida a 2 veces el error medio cuadrático de la distorsión.

Distancia Radial (celdillas)	Distorsión (celdillas)
0	0'0
500	-0'4
1.000	-2'9
1.500	-9'7
2.000	-22'9
2.500	-44'7
3.000	-77'2


NOTA: Aplicar con precaución esta corrección, especialmente en los bordes del formato, donde los valores pueden no corresponder a las distorsiones reales.

Es válida hasta 2.300 celdillas y se debe tomar con precaución a partir de los 1.750 mm (ver apartado siguiente).


Coordenadas de las marcas fiduciales:

Distribución:

Marca	X(mm)	Y(mm)
	-2.184'0	-1.456'0
2	2.184'0	-1.456'0
3	2.184'0	1.456'0
4	-2.184'0	1.456'0

NOTA: Las marcas fiduciales coinciden con las esquinas del formato de 4.368 x 2.912 celdillas.

Esta gratica muestra la distribucion de las 70 medidas utilizadas en el ajuste sobre el formato de la imagen, el círculo verde indica la distancia radial que deja fuera 20 medidas y que corresponde aproximadamente a 1750 celdillas (14'5 mm) desde el centro del formato, hasta esta distancia se cuenta con una gran redundancia de valores por lo que los parámetros calculados se pueden considerar de gran exactitud. Más allá, se puede dibujar otra línea que deje fuera sólo las cinco medidas más extremas y que se sitúa a 2340 celdillas (19'3 mm) del centro del formato, a partir de esta distancia, no existen muestras suficientes para garantizar que los valores presentados en este informe sean significativos.

NOTA: La <u>distorsión</u> en este certificado se entiende como la cantidad que debe <u>restarse</u> a las coordenadas medidas para obtener las corregidas. El origen de coordenadas está situado en el centro del formato siendo el eje –X- positivo hacia la derecha y el eje –Y- hacia arriba.

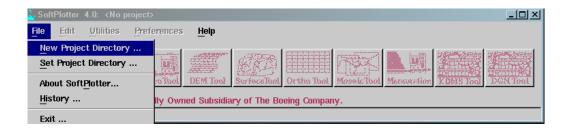
Ficha Técnica

Fecha de tomas fotográficas: 26 de Junio de 2007

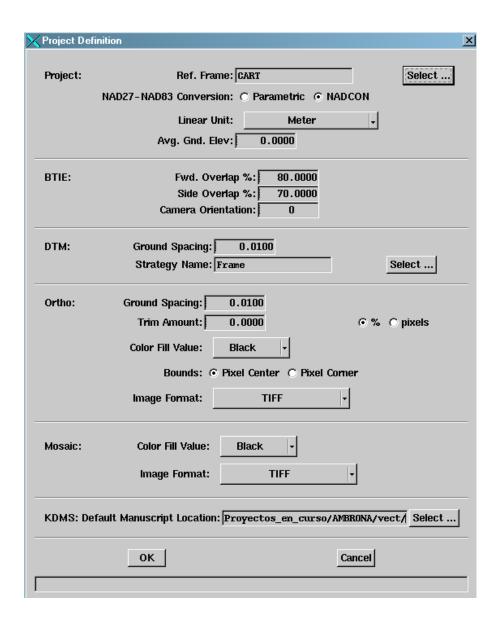
Realizado por: Laboratorio de Documentación Geométrica del Patrimonio (UPV-EHU)

Método de cálculo: Autocalibración

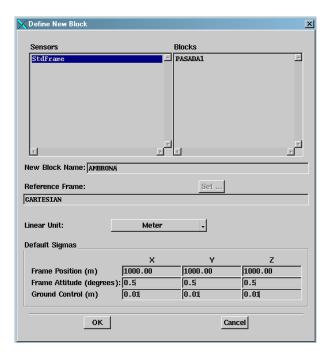
<u>Notas</u>: Datos obtenidos a partir de 6 tomas fotográficas en un polígono de calibración situado en el Laboratorio de Fotogrametría de la UPV-EHU. El cálculo se ha realizado con programas propios del LDGP, ver página web del Laboratorio (http://www.vc.ehu.es/docarq).


Levantamiento fotogramétrico del yacimiento paleontológico "Museo In Situ"de Ambrona (Soria)
ANEXO III
Resultados finales del proceso de orientación del bloque
Resultados finales del proceso de orientación del bioque
fotogramétrico

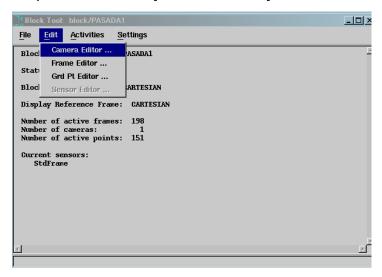
PROCESO DE GENERACIÓN DEL BLOQUE


En primer lugar, se ordenan y codifican las fotografías por pasadas y se convierten a formato *.TIF sin comprimir que es el utilizado por el programa de restitución. Por otro lado, se va a utilizar un fichero con las coordenadas de los puntos de apoyo, se trata de un archivo de texto organizado por columnas separadas por tabulaciones con el siguiente formato:

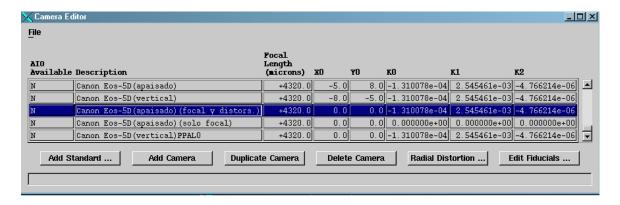
NºPunto CoordenadaX CoordenadaY CoordenadaZ


Abrimos el programa de restitución y creamos un proyecto nuevo:

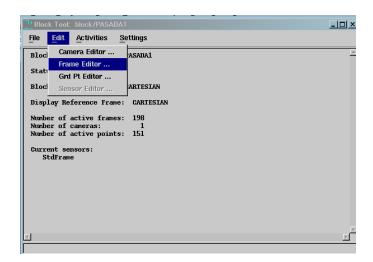
Al crear el proyecto, se definen los parámetros del mismo. Entre estos parámetros que se le indican está el tipo de sistema de coordenadas (cartesianas tridimensionales), los solapes entre fotografías (longitudinal y transversal). También permite definir los parámetros que se van a utilizar para otros productos como los modelos digitales de elevación (DTM) y las ortofotografías, como no se han realizado estos productos, se muestran los valores por defecto.

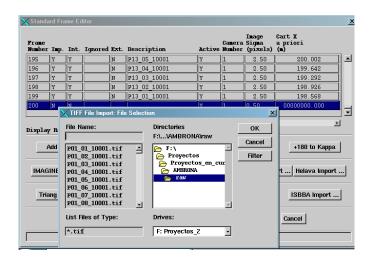


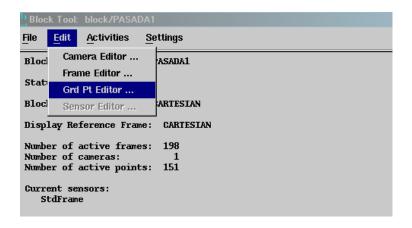
A continuación se confecciona el bloque fotogramétrico. El bloque corresponde a todas las fotografías que van a orientarse de forma conjunta. Para empezar, es necesario rellenar algunos valores como el tipo de sensor (StdFrame es una fotografía convencional frente a otras opciones como imágenes SPOT), nombre del bloque, unidades y las precisiones (sigmas) que utilizará por defecto en el cálculo. Estas precisiones (errores medios cuadráticos) hacen referencia a las coordenadas de la cámara, los giros y las coordenadas de los puntos de control:

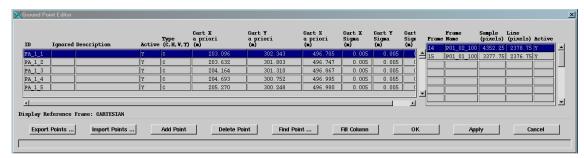


Estos valores de precisiones se van a utilizar para la ponderación del ajuste por lo que es importante que sean valores coherentes o el ajuste no será satisfactorio. En principio podemos estimar bastante bien el correspondiente a los puntos de apoyo (coordenadas medidas en campo y suministradas mediante el fichero antes descrito) que puede dejarse en 1 cm ó 5 mm por coordenada. Las precisiones de los centros de proyección son más complicadas porque, en principio, no se dispone de los valores aproximados y será nesario esperar a que los calcule el propio restituidor durante el proceso de ajuste, así que más adelante habrá que reajustarlos.

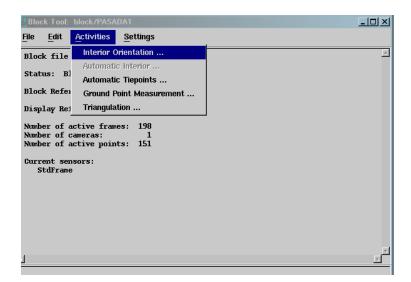

El menú [Edit] permite definir la cámara (o cámaras) [Camera Editor] utilizadas en el proyecto, las fotografías que forman el bloque [Frame Editor] e importar las coordenadas de los puntos de control [Ground Pt Editor].


Empezando por la cámara, en el caso del proyecto de Ambrona, la cámara utilizada fue la Canon Eos 5D, se introducen sus parámetros del certificado de calibración y se selecciona para el proyecto:

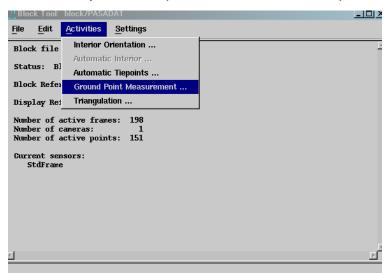

El siguiente paso es importar las fotografías, no es necesario importarlas todas de una sola vez, se pueden ir importando por pasadas:



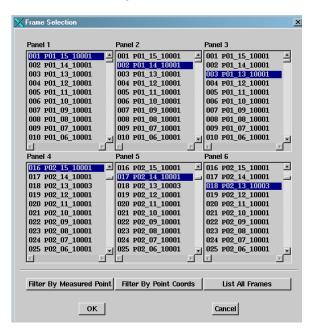
Cada vez que se importa una fotografía se han de pulsar los botones "Add Frame" y "TIFF Import" y se van seleccionando las fotos con las que se trabajará:



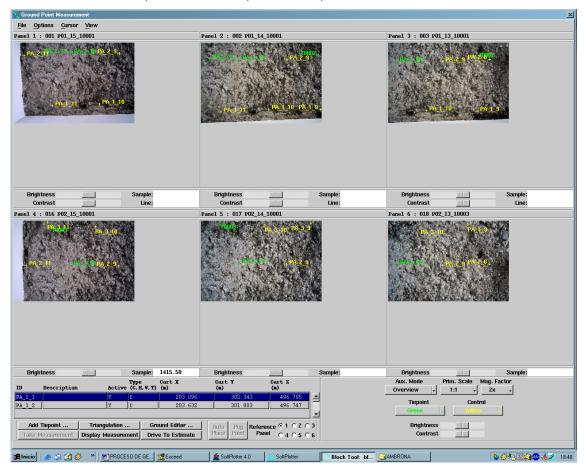
Una vez seleccionadas las fotografías, se importa el fichero con las coordenadas de los puntos de apoyo:

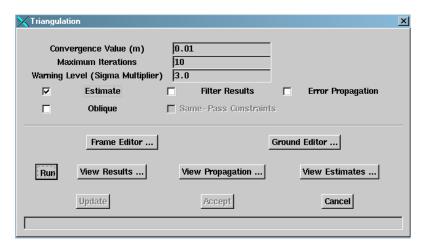


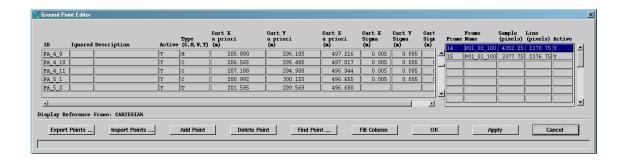
Ya se dispone de toda la información necesaria para empezar a orientar el bloque, en primer lugar se realiza la orientación interior de cada imagen:



Para la cámara que hemos utilizado, las marcas fiduciales se corresponden con las cuatro esquinas de la fotografía. En la ventana correspondiente se van identificando de forma manual.


Una vez realizadas todas las orientaciones interiores se proceden a realizar las orientaciones externas. Este programa no realiza orientaciones relativas, sino que hay que identificar de forma monoscópica los puntos de apoyo en cada imagen para posteriormente realizar el ajuste en un paso de forma simultánea para todo el bloque.


El programa permite visualizar de forma simultánea hasta seis imágenes, aprovechamos esta posibilidad para ir presentando en pantalla no sólo la imagen con la que se está trabajando sino también la anterior y posterior de la misma pasada y las tres correspondientes de la pasada siguiente.


Una vez cargadas las imágenes, se identifican los puntos de apoyo que aparecen en cada foto, utilizando para ello el croquis de campo.

Como se ha indicado, aunque el ajuste final no se realizará hasta después de haber marcado los puntos de apoyo en todas las fotografías, se pueden ir calculando ajustes provisionales a medida que se van midiendo fotografías y pasadas para ir comprobando que el ajuste no presenta problemas como puntos que han de descartarse o zonas en las que es necesario añadir puntos de paso o enlace.

Pulsando el botón "View Results", se examina el comportamiento de cada punto y dependiendo del error que ocasione, es posible eliminarlo del cálculo total o parcialmente, pulsando en el botón "Ground Editor":

Como se puede observar en la columna Type, se pueden organizar los puntos de apoyo utilizados por categorías:

- C: Completo, se utilizan las tres coordenadas del punto en el cálculo.
- H: Horizontal, se utilizan las coordenadas X e Y del punto en el cálculo.
- V: Vertical, se utiliza la coordenada Z del punto en el cálculo.
- T: El punto adquiere la categoría de "punto de paso", no se utilizan las coordenadas del fichero en el cálculo, sólo la identificación en las fotografías en las que se haya medido.

Antes validar el ajuste es necesario comprobar que el criterio de ponderación sea adecuado, para ello hay que analizar el valor de la varianza a posteriori suministrada por el ajuste, este valor debe mantenerse cercano a la unidad (el valor límite concreto se obtiene de la tabla de la función F-Fisher en función de los grados de libertad), en caso de que no se satisfaga esta condición es necesario revisar la ponderación asignada, esta revisión puede afectar a:

- Puntos de apoyo: entrando en [Ground Editor] se van modificando los valores de "Cart X sigma", "Cart Y sigma" y "Cart Z sigma" aumentando o disminuyendo la precisión.
- Fotocoordenadas: en [Frame Editor] se modifica "Image sigma (píxels)" indicando la precisión que tiene el marcado sobre la imagen (hay que tener en cuenta que dentro de esta precisión se incluyen las limitaciones del certificado de calibración).

Centros de proyección: coordenadas y giros de los puntos de toma de las fotografías. Como se ha comentado, al principio no se tiene información sobre estos valores por lo que hay que pedir al programa que los calcule, pero en una segunda fase ya se pueden coger estas estimaciones como valores aproximados y ajustar algo más las precisiones (a unos pocos centímetros en coordenadas y por debajo del grado en giros).

Estos valores de precisiones han de ser coherentes con la realidad de los datos disponibles.

Tras haber refinado la orientación parcial, se van añadiendo fotografías y pasadas hasta finalizar todo el bloque. Finalmente se acepta el ajuste del bloque completo.

A continuación, se muestran los resultados finales del ajuste completo como bloque del conjunto de fotografías y puntos de apoyo.

La información se estructura en apartados, en el primero de los cuales se muestra el resultado del ajuste de los fotogramas, organizándose la información de la siguiente manera:

- Frame: Indica el nº de la foto en el bloque
- Description: Nombre que tiene la imagen siguiendo el siguiente patrón (PNN_MM_KKKKK) en el que:
 - P= Indicativo de pasada.
 - NN= Número de la pasada.
 - o MM= Número de la foto en la pasada.
 - o KKKKK= Serie de fotografías con diferentes parámetros.
- Camera: En todas las fotografías la cámara utilizada ha sido la misma 1.
- Frame Parameters (Unit is Meter and degrees: Parámetros de la imagen con unidades en metros y en grados.
 - o X, Y, Z: Coordenadas del centro de proyección de la cámara (metros).
 - Omega, Phi, Kappa: Ángulos de giro el haz fotográfico (en grados centesimales).

A continuación se presenta una tabla con las incertidumbres correspondientes a los parámetros de posición y giros de los puntos de toma de las fotografías.

Finalmente, se hace referencia a las precisiones de las coordenadas de los puntos de apoyo obtenidas en el ajuste de haces perspectivos, se indican los errores en coordenadas y los valores de correlación. En esta tabla, se han incluido también los puntos de paso (cuyo nombre empieza por "T").

Ratio

Sigma0

Ajuste de los fotogramas: coordenadas de los puntos de toma

Category VTPV

Statistics Summary

Number of Equations: 4160 Number of Unknowns: 1632 Degrees of Freedom: 2528

Standard Deviation of Unit Weight: 1.065098

Sum

	a priori photo		1162 722		1.428	0.002		
	a priori photo			1163.723		0.992		
	a priori point			163.498		0.603		
	collinearity equations		1540.62	29	0.884	0.781		
Frame	Description	Cam	X	Υ	Z	Omega	Phi	Kappa
1	01_15_10001	1	207.950	296.886	498.865	0.590188	-1.430970	133.561969
2	01_14_10001	1	207.805	297.026	498.878	0.803757	2.215690	133.306952
3	01_13_10001	1	207.440	297.377	498.911	0.337504	1.760198	133.376856
4	01_12_10001	1	207.074	297.747	498.929	-0.573037	1.247727	133.446985
5	01_11_10001	1	206.708	298.108	498.939	-1.045463	0.817220	133.421094
6	01_10_10001	1	206.388	298.468	498.950	-0.519102	0.760930	134.383457
7	01_09_10001	1	206.054	298.750	498.963	-2.519974	-1.062798	133.530491
8	01_08_10001	1	205.695	299.110	498.963	-2.954908	-0.866909	133.490058
9	01_07_10001	1	205.332	299.470	498.957	-2.617220	-1.106736	133.591143
10	P01_06_10001	1	204.972	299.826	498.954	-3.162513	-0.443537	133.503390
11	P01_05_10001	1	204.626	300.181	498.957	-2.713507	0.126007	133.648310
12	P01_04_10001	1	204.273	300.533	498.963	-1.824112	-0.047064	133.808648
13	P01_03_10001	1	203.923	300.887	498.973	-1.460603	0.076327	133.838928
14	P01_02_10001	1	203.559	301.243	498.988	-1.755728	0.710883	133.632071
15	P01_01_10001	1	203.199	301.599	499.005	-1.388021	0.533860	133.731283
16 17	P02_15_10001	1 1	207.552	296.645	498.901	-2.897360	-2.025041	134.389682
	P02_14_10001	1	207.477	296.746	498.903	0.973568	1.101019	135.072170
18	P02_13_10003 P02 12 10001	1	207.113	297.102	498.928	0.077643	1.016618 0.546810	134.734783 135.296600
19 20		1	206.749 206.377	297.438 297.846	498.946	0.145052	1.024601	
21	P02_11_10001	1	206.377	298.150	498.944 498.940	-1.289391		134.965530
22	P02_10_10001 P02_09_10001	1	205.636	298.496	498.939	-0.081016 -2.158613	-3.567333 -1.951420	134.416679 134.148575
23	P02_09_10001 P02_08_10001	1	205.030	298.843	498.937	-1.854183	-2.084638	134.682104
24	P02_00_10001 P02_07_10001	1	203.270	299.191	498.937	-1.687640	-1.637681	134.301930
25	P02_06_10001	1	204.513	299.551	498.939	-1.519724	-1.666886	134.638110
26	P02_05_10001	1	204.184	299.898	498.943	-1.197997	-1.367648	134.736969
27	P02_04_10001	1	203.835	300.233	498.954	-0.651301	-0.701521	134.812597
28	P02_03_10001	1	203.489	300.575	498.965	-0.313729	-0.150680	134.370199
29	P02_02_10001	1	203.119	300.934	498.984	-0.155478	-0.097012	134.823895
30	P02_01_10001	1	202.752	301.295	499.002	0.061418	-0.186387	134.595957
31	P03_15_10001	1	207.195	296.259	498.863	-1.040704	-2.624703	134.658164
32	P03_14_10001	1	206.866	296.609	498.895	0.640831	-0.270046	135.014166
33	P03_13_10001	1	206.501	296.954	498.917	0.102140	-0.323772	134.613273
34	P03_12_10003	1	206.153	297.297	498.928	-0.379780	-0.948791	135.050926
35	P03_11_10001	1	205.806	297.629	498.938	-1.194103	-0.681930	135.528512
36	P03_10_10001	1	205.417	298.042	498.946	-1.072596	0.136017	135.451123
37	P03_09_10001	1	205.066	298.382	498.934	-0.840263	0.331409	135.380025
38	P03_08_10001	1	204.701	298.728	498.943	-0.809267	0.658966	135.271304
39	P03_07_10001	1	204.323	299.088	498.941	-0.823311	0.535782	135.428207
40	P03_06_10001	1	203.956	299.438	498.949	-0.640803	0.651719	135.391455
41	P03_05_10001	1	203.586	299.786	498.954	-0.702553	1.213456	135.842206
42	P03_04_10001	1	203.242	300.119	498.965	-0.002712	1.645523	135.246745
43	P03_03_10001	1	202.879	300.462	498.984	0.328786	1.843559	135.329729
44	P03_02_10001	1	202.509	300.818	499.004	0.351701	1.892165	135.108601
45	P03_01_10001	1	202.140	301.171	499.020	0.048380	1.804641	135.080494
46	P04_16_10002	1	206.772	295.855	498.874	-2.295459	-1.060097	134.239986
47	P04_15_10001	1	206.627	296.032	498.888	-1.076403	0.198181	134.357896
48	P04_14_10001	1	206.253	296.385	498.916	-1.499637	-0.408914	134.244853
49 50	P04_13_10001	1 1	205.895	296.729	498.934	-1.910146	-0.405374 -1.002800	134.275657
50	P04_12_10001 P04_11_10001		205.539	297.090 297.437	498.944 498.932	-3.584778		134.318599
52	P04_11_10001 P04_10_10001	1 1	205.188 204.811	297.785	498.930	-2.455079 -2.182799	-2.546753 -2.866834	134.550784 134.040658
53	P04_09_10001	1	204.466	298.141	498.930	-2.232108	-2.228025	133.975478
54	P04_09_10001 P04_08_10001	1	204.400	298.492	498.932	-2.988641	-1.515468	133.598666
55	P04_00_10001	1	203.733	298.843	498.933	-1.918592	-2.240225	134.066347
56	P04_06_10001	1	203.734	298.843	498.933	-1.958523	-2.187628	134.052346
57	P04_05_10001	1	203.388	299.202	498.945	-2.229765	-1.332036	133.887563
58	P04_04_10001	1	203.021	299.555	498.960	-2.012995	-0.583534	134.043015
59	P04_03_10001	1	202.657	299.902	498.974	-1.849312	-0.411602	134.024118
60	P04_02_10001	1	202.300	300.246	498.994	-1.343389	-0.251836	134.064990
61	P04 01 10001	1	201.926	300.600	499.015	-1.041624	-0.532119	134.594481
62	P05_15_10001	1	206.365	295.445	498.858	-0.092261	-0.727310	134.692228
63	P05_14_10001	1	205.974	295.818	498.893	0.592154	-0.355266	134.865623
64	P05_13_10001	1	205.605	296.174	498.917	0.134290	-0.993489	135.028630
65	P05_12_10001	1	205.219	296.540	498.934	-0.478051	-1.859785	135.026786
66	P05_11_10002	1	204.800	296.928	498.957	-0.541156	-0.240192	134.674899

Frame	Description	Cam	X	Υ	Z	Omega	Phi	Карра
67	P05_10_10001	1	204.443	297.273	498.951	-0.892679	0.251095	134.296181
68 69	P05_09_10001 P05_08_10001	1 1	204.073 203.702	297.619 297.979	498.951 498.949	-0.962018 -0.643313	0.143969 -0.229010	134.254576 134.341934
70	P05_07_10001	1	203.363	298.361	498.945	-0.687060	0.410155	134.576691
71	P05_06_10001	1	202.988	298.685	498.956	0.071127	0.507513	134.572347
72 73	P05_05_10001 P05_04_10001	1 1	202.622 202.255	299.025 299.380	498.966 498.981	0.288018 0.468278	0.961565 0.798912	134.305359 134.391140
74	P05_03_10001	1	201.894	299.738	498.999	0.632297	1.071919	134.396305
75	P05_02_10001	1	201.513	300.107	499.013	0.321613	0.778620	134.460811
77 78	P06_15_10001	1 1	205.949	294.995 294.994	498.888	-1.301444 1.581201	-2.351732 0.368395	133.137689
78 79	P06_14_10001 P06_13_10001	1	205.940 205.831	295.105	498.888 498.900	1.052070	0.616280	132.960203 132.779962
80	P06_12_10001	1	205.467	295.469	498.928	0.316103	0.147503	132.878316
81	P06_11_10001	1 1	205.110	295.830	498.943	0.586649	0.952773	133.051620
82 83	P06_10_10001 P06_09_10003	1	204.752 204.370	296.187 296.517	498.954 498.956	1.019393 -1.971745	-0.075040 -1.331143	133.992783 133.220180
84	P06_09_10001	1	203.995	296.871	498.952	-2.615555	-1.162721	133.069909
85	P06_08_10001	1	203.674	297.244	498.947	-2.034170	-1.283093	133.796529
86 87	P06_07_10001 P06_06_10001	1 1	203.289 202.940	297.587 297.959	498.946 498.946	-2.988963 -1.738996	-0.393993 -1.286050	133.074565 133.805328
88	P06_04_10002	1	202.225	298.662	498.958	-0.872278	-0.412185	133.606933
89	P06_03_20001	1	201.861	299.027	498.967	-0.904690	-0.610047	133.710086
90 91	P06_02_10001 P06_01_10001	1 1	201.520 201.161	299.376 299.741	498.984 498.999	-0.558444 -0.641633	-0.005650 -0.049559	133.760778 133.885605
92	P07_15_10001	1	205.597	294.643	498.885	-3.928881	-1.481424	133.084597
93	P07_14_10001	1	205.591	294.669	498.885	0.668943	3.571936	133.467919
94 95	P07_13_10001 P07_12_10001	1 1	205.478 205.114	294.765 295.123	498.893 498.923	0.064905 -0.621243	4.416957 3.272524	133.248705 133.162943
96	P07_11_10001	1	203.114	295.487	498.940	-0.021243	2.089053	133.217100
97	P07_10_10001	1	204.410	295.835	498.949	-0.354494	1.936425	133.296608
98	P07_09_10001	1	204.029	296.160	498.954	-1.604448	-1.563706	133.888895
99 100	P07_08_10001 P07_07_10001	1 1	203.651 203.304	296.534 296.872	498.950 498.945	-2.579190 -2.174566	-1.198699 -1.713245	133.746124 134.409472
101	P07_06_10001	1	202.960	297.218	498.944	-2.045410	-1.111340	134.351686
102	P07_05_10001	1	202.590	297.578	498.945	-1.887895	-1.128746	133.990900
104 105	P07_03_10001 P07_02_10001	1 1	201.871 201.508	298.280 298.637	498.955 498.968	-1.454158 -1.244298	-0.218506 -0.095470	134.498165 134.241228
106	P07_01_10001	i 1	201.151	298.988	498.983	-1.663874	0.819798	133.800772
107	P07_00_10001	1	200.796	299.339	499.001	-0.959221	0.426575	134.444325
108 109	P08_15_10001 P08_14_10001	1 1	205.201 205.111	294.275 294.378	498.871 498.881	0.578771 0.393303	-2.803295 -2.552015	133.343326 132.910757
110	P08_13_10001	1	204.742	294.720	498.913	-1.233547	-2.011966	132.955128
111	P08_12_10001	1	204.389	295.095	498.929	-0.540127	-3.034094	133.781322
112 113	P08_11_10001 P08_10_10001	1 1	204.010 203.723	295.445 295.856	498.940 498.943	-0.820348 -0.849944	-3.574660 -2.772834	133.495818 134.511852
114	P08_09_10001	1	203.371	296.213	498.939	-1.117865	-2.792426	134.499988
115	P08_08_10001	1	202.990	296.533	498.937	-0.298290	-3.108802	134.785806
116 117	P08_07_10001 P08_06_10003	1 1	202.627 202.248	296.884 297.227	498.940 498.937	-0.717511 -0.228296	-2.450140 -2.555169	134.535748 134.738774
118	P08_05_10003	1	202.246	297.589	498.941	-0.502588	-2.862791	134.553311
119	P08_04_10002	1	201.529	297.924	498.950	-0.675060	-0.740596	134.995867
120	P08_03_10002	1 1	201.152	298.288	498.965	-1.007802 -0.373050	-0.292565 0.338077	134.834510
121 122	P08_02_10002 P08_01_10001	1	200.797 200.424	298.626 298.982	498.983 499.000	-0.373050 -0.243660	-0.328077 -0.373786	135.372596 134.924223
123	P09_16_10001	1	204.877	293.991	498.882	0.662224	-2.105774	133.505117
124 125	P09_15_10001	1 1	204.796	294.064	498.889	0.879350	-2.330166 -2.771654	133.501168
126	P09_14_10001 P09_13_10001	1	204.418 204.033	294.432 294.772	498.913 498.931	-0.159887 1.651711	-2.771654 -2.848751	133.357833 133.927159
127	P09_12_10001	1	203.681	295.122	498.939	1.296748	-2.825164	133.532662
128	P09_11_10001	1	203.665	295.123	498.941	0.282465	-0.860204	134.395325
129 130	P09_10_10001 P09_09_10001	1 1	203.252 202.913	295.409 295.748	498.948 498.947	-2.799411 -2.222632	-0.825790 -1.447793	133.994767 133.797307
131	P09_08_10001	1	202.559	296.130	498.940	-2.707858	-1.112127	133.839408
132	P09_07_10001	1	202.220	296.453	498.954	-1.853047	-0.677839	133.748874
133 134	P09_06_10001 P09_05_10001	1 1	201.908 201.498	296.835 297.213	498.957 498.942	-2.350184 -2.783192	0.795019 -0.176907	133.634201 133.956379
135	P09_04_10001	1	201.108	297.502	498.960	-0.620902	-0.544200	133.736084
136	P09_03_20001	1	200.404	298.236	498.990	-0.945784	-0.045328	133.725822
137 138	P09_03_10001 P09_01_10001	1 1	200.753 200.409	297.877 298.233	498.973 498.989	-1.119748 -1.020780	-0.457518 0.031716	133.726335 133.709822
139	P09_00_10001	1	200.041	298.592	499.007	-0.885428	-0.101769	133.722827
140	P10_14_10001	1	204.335	293.501	498.882	0.468945	0.554419	133.283936
141 142	P10_13_10001 P10_12_10001	1 1	204.271 203.890	293.567 293.912	498.887 498.920	0.147267 -0.275995	0.876415 0.398215	132.975054 132.853366
143	P10_11_10001	1	203.516	294.279	498.939	-0.354468	-0.428995	133.140564
144	P10_10_10001	1	203.167	294.624	498.946	-1.448945	-0.265413	132.835696
145 146	P10_09_10001 P10_08_10001	1 1	202.878 202.511	295.029 295.380	498.940 498.939	-2.245376 -1.851027	-1.127690 -1.702979	133.720179 133.824185
147	P10_07_10001	1	202.145	295.730	498.941	-2.114380	-1.172265	133.628923
148	P10_06_10001	1	201.795	296.083	498.944	-1.519569	-1.530080	134.325910
149 150	P10_05_10001 P10_04_10003	1 1	201.413 201.062	296.429 296.793	498.947 498.950	-2.366272 -1.157622	-0.479620 -1.362242	133.581558 134.409595
150	P10_04_10003 P10_04_10001	1	201.002	290.793	498.959	-0.909678	-0.441314	134.445957
152	P10_03_10001	1	200.342	297.508	498.972	-0.884396	-0.403223	134.436005
153	P10_02_10001	1	199.983	297.839	498.994	-1.209922	0.646648	133.643047

Frame	Description	Cam	Х	Υ	Z	Omega	Phi	Карра
154	P10_01_10001	1	199.633	298.197	499.014	-0.275228	0.177505	134.168452
155	P11_14_10001	1	204.011	293.173	498.887	0.642931	0.592285	134.352707
156	P11_13_10001	1	203.941	293.237	498.893	0.520569	0.361787	134.334559
157	P11_12_10001	1	203.553	293.586	498.920	0.432737	-0.193248	134.607296
158	P11_11_10001	1	203.190	293.934	498.935	-0.257173	-0.670766	134.414742
159	P11_10_10001	1	202.825	294.281	498.943	-1.209583	-0.494203	134.014997
160	P11_09_10001	1	202.497	294.695	498.943	-2.125100	-1.751276	133.905560
161	P11_08_10001	1	202.143	295.029	498.941	-2.821033	-0.953995	133.563265
162	P11_07_10001	1	201.789	295.386	498.940	-1.793526	-1.761245	134.327647
163	P11_06_10001	1	201.422	295.738	498.940	-1.599064	-1.726262	133.963131
164	P11_05_10001	1	201.055	296.094	498.941	-1.560607	-1.458155	134.234702
165	P11_04_10001	1	200.697	296.448	498.948	-1.392459	-1.178050	134.338997
166	P11_03_10001	1	200.338	296.801	498.957	-1.203769	-0.637768	134.468843
167	P11_02_10001	1	199.986	297.147	498.971	-0.991659	-0.351688	134.464193
168	P11_01_10001	1	199.618	297.497	498.989	-0.610597	-0.206836	134.268316
169	P11_00_10001	1	199.266	297.845	499.008	-0.532239	-0.236320	134.428025
170	P12_15_10001	1	203.672	292.820	498.891	0.978058	0.213362	134.192906
171	P12_14_10001	1	203.598	292.886	498.897	1.011042	0.168334	133.935508
172	P12_13_10001	1	203.215	293.245	498.921	0.221036	-0.248638	133.950617
173	P12_12_10001	1	202.862	293.586	498.936	-0.469372	-0.514757	133.679271
174	P12_11_10001	1	202.500	293.938	498.943	-0.533286	-1.082932	134.028152
175	P12_10_10001	1	202.123	294.305	498.941	-2.943540	-2.399467	134.120218
176	P12_09_10001	1	201.772	294.659	498.940	-2.740007	-2.564849	134.214424
177	P12_08_10001	1	201.410	295.007	498.939	-3.501821	-1.400905	133.621067
178	P12_07_10001	1	201.041	295.346	498.937	-2.164990	-2.548578	134.239640
179	P12_06_10001	1	200.703	295.703	498.937	-1.890885	-1.311563	134.316551
180	P12_05_10001	1	200.322	296.070	498.944	-1.864814	-1.367144	134.308072
181	P12_04_10001	1	199.961	296.425	498.953	-1.194087	-0.733370	134.302704
182	P12_03_10001	1	199.590	296.767	498.969	-1.090444	-0.152729	133.600638
183	P12_02_10001	1	199.239	297.116	498.986	-1.580375	0.544451	133.457691
184	P12_01_10001	1	198.871	297.495	499.003	-0.637119	-0.306642	134.277908
185	P13_15_10001	1	203.275	292.438	498.892	-0.301378	-2.411591	133.808748
186	P13_14_10001	1	203.232	292.487	498.894	2.661425	0.623660	134.034714
187	P13_13_10001	1	202.871	292.876	498.917	0.899013	0.839394	133.778126
188	P13_12_10001	1	202.513	293.234	498.931	0.298371	0.445329	134.110495
189	P13_11_10000	1	202.147	293.595	498.939	-0.183599	0.254274	133.896951
190	P13_10_10001	1	201.793	293.927	498.941	-3.399662	-1.827046	133.586892
191	P13_09_10001	1	201.433	294.279	498.938	-2.601615	-2.802635	134.224715
192	P13_08_10001	1	201.085	294.610	498.936	-2.350319	-2.589721	134.183305
193	P13_07_10001	1	200.721	294.987	498.934	-2.529758	-2.309109	133.845298
194	P13_06_10001	1	200.366	295.332	498.937	-2.395337	-2.079566	134.222736
195	P13_05_10001	1	200.002	295.678	498.943	-2.024237	-1.869333	134.345438
196	P13_04_10001	1	199.642	296.046	498.952	-1.990162	-1.244275	134.343517
197	P13_03_10001	1	199.292	296.403	498.965	-1.943708	-0.803247	134.209652
198	P13_02_10001	1	198.926	296.748	498.982	-1.659250	-0.874056	134.349390
199	P13_01_10001	1	198.568	297.104	499.000	-1.540372	-0.672199	134.305797

Precisiones en la posición (metros) y giros (grados) de los fotogramas

Frame	Description	Cam	X	Y	Z	Omega	Phi	Kappa
	P01_15_10001	1	0.011	0.010	0.003	0.283965	0.321651	0.077886
2	P01_14_10001 P01_13_10001	1	0.010 0.009	0.009 0.009	0.003	0.260788 0.261661	0.286793 0.254205	0.065882 0.059184
4	P01_13_10001 P01_12_10001	1	0.009	0.010	0.003	0.274501	0.254897	0.059184
5	P01_11_10001	1	0.012	0.014	0.003	0.399030	0.341903	0.068611
6	P01_10_10001	1	0.010	0.009	0.003	0.262401	0.291131	0.051891
7	P01_09_10001	1	0.010	0.010	0.003	0.282066	0.290662	0.058495
8 9	P01_08_10001 P01_07_10001	1 1	0.008	0.008 0.009	0.002 0.003	0.233796 0.249419	0.233136 0.303171	0.047688 0.053991
10	P01_06_10001	1	0.011 0.010	0.010	0.003	0.287320	0.286658	0.062954
11	P01_05_10001	1	0.006	0.008	0.003	0.202530	0.146726	0.065450
12	P01_04_10001	1	0.005	0.008	0.002	0.197225	0.134479	0.050138
13 14	P01_03_10001	1	0.012 0.010	0.006 0.007	0.003	0.159632 0.167348	0.296767 0.242239	0.070317 0.065220
15	P01_02_10001 P01_01_10001	1	0.010	0.007	0.003	0.171641	0.213436	0.063220
16	P02_15_10001	1	0.010	0.010	0.003	0.291003	0.301097	0.068641
17	P02_14_10001	1	0.008	0.016	0.004	0.470680	0.252965	0.065716
18	P02_13_10003 P02 12 10001	1	0.008	0.010 0.009	0.003	0.282836	0.245960	0.054633 0.052826
19 20	P02_12_10001 P02_11_10001	1 1	0.010 0.009	0.009	0.003	0.270730 0.271625	0.278688 0.266398	0.047322
21	P02_10_10001	1	0.010	0.008	0.002	0.236968	0.273298	0.047570
22	P02_09_10001	1	0.007	0.007	0.003	0.193069	0.201244	0.053584
23	P02_08_10001	1	0.006	0.007	0.002	0.192639	0.170131	0.046185
24 25	P02_07_10001 P02_06_10001	1	0.007 0.005	0.006 0.004	0.003	0.168804 0.117457	0.174576 0.131826	0.053659 0.051734
26	P02_05_10001	1	0.007	0.007	0.003	0.172377	0.174259	0.069545
27	P02_04_10001	1	0.007	0.006	0.002	0.150968	0.179069	0.046608
28	P02_03_10001	1	0.009	0.008	0.003	0.173442	0.201019	0.061059
29 30	P02_02_10001 P02_01_10001	1 1	0.007 0.010	0.007 0.008	0.003 0.004	0.164789 0.192617	0.162578 0.240088	0.051472 0.068465
31	P03_15_10001	1	0.010	0.009	0.004	0.283168	0.306528	0.069229
32	P03_14_10001	1	0.009	0.009	0.003	0.276173	0.268292	0.053284
33	P03_13_10001	1	0.008	0.009	0.002	0.264593	0.243169	0.048042
34	P03_12_10003	1	0.009	0.013	0.004	0.387970	0.277977	0.059372
35 36	P03_11_10001 P03_10_10001	1 1	0.010 0.010	0.009 0.009	0.003	0.269618 0.248342	0.275297 0.265721	0.049804 0.103779
37	P03_09_10001	1	0.008	0.012	0.004	0.315072	0.225135	0.067984
38	P03_08_10001	1	0.007	0.013	0.003	0.324476	0.203210	0.087488
39	P03_07_10001	1	0.006	0.006	0.002	0.145064	0.153243	0.052577
40 41	P03_06_10001 P03_05_10001	1 1	0.009 0.013	0.008 0.010	0.005 0.003	0.193415 0.228167	0.220352 0.296563	0.074269 0.082331
42	P03_04_10001	1	0.013	0.015	0.003	0.345934	0.233736	0.082331
43	P03_03_10001	1	0.006	0.008	0.002	0.194141	0.139118	0.046374
44	P03_02_10001	1	0.009	0.009	0.003	0.202541	0.199550	0.054886
45	P03_01_10001	1	0.011	0.010	0.004	0.242396	0.252316	0.071077
46 47	P04_16_10002 P04_15_10001	1 1	0.010 0.009	0.011 0.006	0.003 0.002	0.313122 0.182602	0.300655 0.266322	0.065436 0.051648
48	P04_14_10001	1	0.007	0.006	0.002	0.185660	0.207027	0.044766
49	P04_13_10001	1	0.006	0.011	0.002	0.298102	0.184091	0.045624
50	P04_12_10001	1	0.006	0.006	0.002	0.163290	0.183434	0.034778
51 52	P04_11_10001 P04_10_10001	1 1	0.008 0.007	0.007 0.008	0.002 0.002	0.207766 0.211992	0.210212 0.185365	0.041424 0.059873
53	P04_09_10001	1	0.010	0.009	0.002	0.229511	0.257325	0.059387
54	P04_08_10001	1	0.007	0.012	0.002	0.301323	0.172495	0.040794
55	P04_07_10001	1	0.007	0.006	0.002	0.157209	0.180986	0.043187
56 57	P04_06_10001 P04_05_10001	1 1	0.007 0.010	0.006 0.004	0.002 0.002	0.157146 0.099671	0.180940 0.235187	0.043150 0.035117
58	P04_04_10001	1	0.007	0.005	0.002	0.125120	0.156041	0.033117
59	P04_03_10001	1	0.005	0.010	0.003	0.238563	0.117843	0.044842
60	P04_02_10001	1	0.005	0.008	0.002	0.189716	0.113292	0.042563
61 62	P04_01_10001 P05_15_10001	1 1	0.009 0.009	0.014 0.009	0.004	0.317384 0.263631	0.200787 0.257556	0.062476 0.078873
63	P05_14_10001	1	0.007	0.009	0.003	0.228682	0.192253	0.050979
	P05_13_10001	1	0.009	0.007	0.003	0.208746	0.252565	0.060778
	P05_12_10001	1	0.006	0.008	0.002	0.215654	0.178334	0.043067
66 67	P05_11_10002	1 1	0.006	0.009	0.002 0.004	0.259451	0.168049	0.052016 0.089514
67 68	P05_10_10001 P05 09 10001	1	0.010 0.010	0.013 0.012	0.004	0.345264 0.302949	0.258778 0.264438	0.052416
69	P05_08_10001	1	0.013	0.009	0.002	0.231682	0.326765	0.045933
70	P05_07_10001	1	0.014	0.011	0.003	0.280275	0.352306	0.048657
71 72	P05_06_10001 P05_05_10001	1 1	0.007 0.007	0.011 0.006	0.002 0.002	0.285577 0.160397	0.182617 0.173630	0.048123 0.040744
73	P05_04_10001	1	0.008	0.006	0.002	0.140154	0.212832	0.045818
74	P05_03_10001	1	0.010	0.008	0.002	0.190317	0.243504	0.063742
75	P05_02_10001	1	0.017	0.016	0.003	0.375095	0.408477	0.086011
77 78	P06_15_10001	1	0.007	0.008	0.003	0.219168	0.201597	0.064005
78 79	P06_14_10001 P06 13 10001	1 1	0.007 0.007	0.007 0.008	0.003	0.191412 0.209332	0.199671 0.197379	0.058883 0.056957
80	P06_12_10001	1	0.008	0.007	0.003	0.199967	0.208515	0.045560
81	P06_11_10001	1	0.006	0.008	0.002	0.226654	0.160740	0.043261
82	P06_10_10001	1	0.008	0.006	0.002	0.167948	0.221763	0.042005
83 84	P06_09_10003 P06_09_10001	1	0.009 0.019	0.010 0.011	0.003 0.004	0.249324 0.272447	0.226013 0.480968	0.044858 0.056019
85	P06_08_10001	1	0.017	0.008	0.002	0.193255	0.426533	0.042669
86	P06_07_10001	1	0.011	0.012	0.004	0.297238	0.281929	0.057476
87	P06_06_10001	1	0.009	0.012	0.002	0.301479	0.218275	0.040987
88 89	P06_04_10002 P06_03_20001	1 1	0.006 0.009	0.007 0.007	0.002 0.003	0.163799 0.173781	0.150655 0.216679	0.031538 0.040972
90	P06_03_20001	1	0.009	0.007	0.003	0.171518	0.262566	0.047806
91	P06_01_10001	1	0.014	0.016	0.004	0.389197	0.335157	0.069908
92	P07_15_10001	1	0.006	0.008	0.003	0.211178	0.153229	0.051427
93 94	P07_14_10001 P07_13_10001	1 1	0.006 0.006	0.007 0.010	0.003	0.188245 0.275481	0.158528 0.162428	0.050508 0.054651
95	P07_13_10001 P07_12_10001	1	0.005	0.010	0.003	0.178219	0.102428	0.034031
96	P07_11_10001	1	0.007	0.007	0.002	0.172057	0.172467	0.038321
97	P07_10_10001	1	0.006	0.005	0.002	0.131707	0.150846	0.032848

98	P07 09 10001	1	0.008	0.007	0.002	0.178843	0.214286	0.041647
99	P07_08_10001	1	0.007	0.006	0.002	0.154822	0.164060	0.035898
100	P07_07_10001	1	0.007	0.005	0.002	0.119981	0.175480	0.033749
101	P07 06 10001	1	0.006	0.005	0.002	0.116851	0.153196	0.031230
102	P07_05_10001	1	0.006	0.005	0.002	0.124319	0.134664	0.030669
104	P07_03_10001	1	0.007	0.005	0.002	0.126081	0.179883	0.031866
105	P07_02_10001	1	0.006	0.005	0.002	0.126300	0.140562	0.030842
106	P07_01_10001	1	0.007	0.006	0.002	0.140865	0.170350	0.041025
107	P07_00_10001	1				0.147449	0.220921	0.049099
			0.009	0.006	0.002	0.244762	0.223801	
108	P08_15_10001	1	0.009	0.009				0.059859
109	P08_14_10001	1	0.008	0.009	0.003	0.233019	0.199837	0.052507
110	P08_13_10001	1	0.011	0.007	0.003	0.173996	0.289741	0.045022
111	P08_12_10001	1	0.008	0.009	0.002	0.222350	0.207017	0.040669
112	P08_11_10001	1	0.006	0.009	0.002	0.224234	0.160149	0.040140
113	P08_10_10001	1	0.008	0.007	0.002	0.181612	0.193780	0.039640
114	P08_09_10001	1	0.009	0.010	0.002	0.240142	0.224647	0.041678
115	P08_08_10001	1	0.009	0.007	0.002	0.177077	0.210995	0.040638
116	P08_07_10001	1	0.008	0.005	0.002	0.135739	0.186409	0.033415
117	P08_06_10003	1	0.008	0.007	0.002	0.168580	0.203619	0.041251
118	P08_05_10002	1	0.006	0.010	0.002	0.259927	0.158113	0.039020
119	P08_04_10002	1	0.012	0.008	0.002	0.190874	0.300576	0.043871
120	P08_03_10002	1	0.010	0.009	0.002	0.217205	0.236271	0.043186
121	P08_02_10002	1	0.008	0.010	0.002	0.237893	0.202123	0.044206
122	P08_01_10001	1				0.220324	0.357044	0.059145
			0.015	0.009	0.004			
123	P09_16_10001	1	0.009	0.009	0.003	0.213376	0.223348	0.056135
124	P09_15_10001	1	0.008	0.008	0.003	0.194014	0.210593	0.048780
125	P09_14_10001	1	0.007	0.008	0.003	0.193729	0.189128	0.040630
126	P09_13_10001	1	0.006	0.006	0.002	0.154215	0.136852	0.036109
127	P09_12_10001	1	0.006	0.006	0.002	0.143810	0.153000	0.038146
128	P09_11_10001	1	0.006	0.006	0.002	0.144128	0.154043	0.037512
129	P09_10_10001	1	0.007	0.010	0.002	0.243827	0.162694	0.044402
130	P09_09_10001	1	0.012	0.010	0.003	0.244397	0.283997	0.046409
131	P09_08_10001	1	0.013	0.009	0.003	0.224413	0.322077	0.057713
132	P09_07_10001	1	0.007	0.009	0.002	0.228811	0.174536	0.035220
133	P09_06_10001	1	0.009	0.009	0.002	0.210791	0.222211	0.036736
134	P09_05_10001	1	0.009	0.008	0.002	0.194555	0.224042	0.037468
135	P09_04_10001	1	0.008	0.011	0.002	0.261665	0.194816	0.037152
136	P09 03 20001	1	0.012	0.008	0.002	0.199060	0.292912	0.046981
137	P09_03_10001	1	0.009	0.008	0.002	0.197515	0.226237	0.039548
	P09_01_10001		0.012		0.002		0.292852	
138 139	P09_01_10001 P09_00_10001	1		0.008		0.199131		0.047123
		1	0.011	0.013	0.004	0.323035	0.252089	0.058102
140	P10_14_10001	1	0.009	0.009	0.003	0.220695	0.232164	0.057607
141	P10_13_10001	1	0.012	0.009	0.003	0.223751	0.290003	0.060801
142	P10_12_10001	1	0.008	0.010	0.003	0.250688	0.198745	0.048093
143	P10_11_10001	1	0.008	0.006	0.002	0.138781	0.198469	0.041472
144	P10_10_10001	1	0.006	0.006	0.002	0.140263	0.142915	0.039530
145	P10_09_10001	1	0.009	0.007	0.002	0.164333	0.198567	0.043288
146	P10_08_10001	1	0.008	0.006	0.002	0.138741	0.175635	0.035285
147	P10_07_10001	1	0.007	0.008	0.002	0.189641	0.155271	0.048833
148	P10_06_10001	1	0.008	0.006	0.002	0.147239	0.189104	0.042221
149	P10_05_10001	1	0.006	0.008	0.002	0.189187	0.150609	0.032974
150	P10_04_10003	1	0.008	0.006	0.002	0.150713	0.186586	0.037001
151	P10_04_10001	1	0.013	0.006	0.002	0.155643	0.311167	0.040230
152	P10_03_10001	1	0.009	0.008	0.003	0.204679	0.218253	0.049816
153	P10_02_10001	1	0.007	0.013	0.003	0.322286	0.172244	0.054871
154	P10_01_10001	1	0.011	0.010	0.004	0.259446	0.263841	0.068039
	P11 14 10001	1		0.010				
155			0.009		0.003	0.212001	0.226058	0.057093
156	P11_13_10001	1	0.011	0.009	0.003	0.213307	0.277851	0.056092
157	P11_12_10001	1	0.005	0.006	0.002	0.139341	0.126039	0.035843
158	P11_11_10001	1	0.005	0.004	0.002	0.104132	0.108786	0.032286
159	P11_10_10001	1	0.004	0.004	0.002	0.100663	0.098163	0.029664
160	P11_09_10001	1	0.006	0.006	0.002	0.143489	0.133023	0.038063
161	P11_08_10001	1	0.005	0.006	0.002	0.148961	0.119805	0.031656
162	P11_07_10001	1	0.005	0.005	0.002	0.108833	0.116020	0.032357
163	P11_06_10001	1	0.005	0.004	0.002	0.103917	0.116502	0.031139
164	P11_05_10001	1	0.005	0.005	0.002	0.113095	0.113326	0.029451
165	P11_04_10001	1	0.006	0.004	0.002	0.104760	0.133122	0.028004
166	P11_03_10001	1	0.007	0.005	0.002	0.117874	0.164863	0.033029
167	P11_02_10001	1	0.005	0.006	0.002	0.145304	0.129654	0.036758
168	P11_01_10001	1	0.006	0.005	0.002	0.117085	0.138230	0.037850
169	P11_00_10001	1	0.010	0.008	0.004	0.203244	0.252348	0.050611
170	P12_15_10001	1	0.012	0.013	0.003	0.317158	0.281568	0.066385
171	P12_14_10001	1	0.012	0.013	0.003	0.320471	0.285482	0.066902
172	P12_13_10001	1	0.008	0.010	0.002	0.231309	0.190930	0.049116
173	P12_12_10001	1	0.006	0.009	0.002	0.219808	0.136060	0.045815
174	P12_11_10001	1	0.006	0.006	0.002	0.132701	0.133641	0.037359
175	P12_10_10001	1	0.010	0.007	0.003	0.152616	0.241750	0.056691
176	P12_09_10001	1	0.006	0.006	0.002	0.131615	0.146018	0.037210
177	P12_08_10001	1	0.006	0.006	0.002	0.145267	0.151715	0.047069
178	P12 07 10001	1	0.007	0.009	0.002	0.204624	0.160414	0.049528
179	P12_06_10001	1	0.013	0.008	0.002	0.197536	0.309644	0.049743
180	P12_05_10001	1	0.008	0.006	0.002	0.151927	0.188511	0.041042
181	P12_04_10001	1	0.007	0.012	0.002	0.303968	0.181787	0.041042
182	P12_03_10001	1	0.009	0.012	0.003	0.254803	0.210700	0.050668
183	P12_03_10001 P12_02_10001	1	0.011	0.010	0.002	0.179924	0.262193	0.049308
184	P12_02_10001 P12_01_10001	1	0.001	0.007	0.002	0.244460	0.262193	0.053832
		1	0.010		0.004			
185	P13_15_10001	1		0.013		0.301720	0.236362	0.069681
186	P13_14_10001		0.011	0.013	0.004	0.321029	0.257772	0.067816
187	P13_13_10001	1	0.010	0.014	0.003	0.319545	0.229621	0.057012
188	P13_12_10001	1	0.010	0.011	0.003	0.260301	0.239131	0.049296
189	P13_11_10000	1	0.011	0.010	0.002	0.219190	0.238215	0.044390
190	P13_10_10001	1	0.014	0.011	0.003	0.245439	0.318290	0.053951
191	P13_09_10001	1	0.010	0.010	0.002	0.225036	0.224087	0.043542
192	P13_08_10001	1	0.009	0.013	0.003	0.298324	0.214803	0.053185
193	P13_07_10001	1	0.009	0.009	0.002	0.202480	0.198263	0.047644
194	P13_06_10001	1	0.008	0.011	0.002	0.249817	0.196790	0.047051
195	P13_05_10001	1	0.009	0.012	0.003	0.283806	0.206230	0.051660
196	P13_04_10001	1	0.010	0.008	0.002	0.197045	0.237765	0.050468
197	P13_03_10001	1	0.012	0.009	0.002	0.218059	0.306485	0.062530
198	P13_02_10001	1	0.009	0.012	0.003	0.298548	0.219916	0.060919
199	P13_01_10001	1	0.012	0.010	0.004	0.238815	0.311848	0.069304
	-							

Precisión de los puntos del terreno según el ajuste de haces

Point ID	Point Description X	Standard Deviations Y	and Correla	tions (Un	it is Mete	r) YZ
PA_1_1 PA_1_2	0.002	0.002	0.004	-0.1148 -0.0236	-0.1290	-0.3607
PA_1_3	0.001	0.001	0.003	-0.0381	-0.2881	-0.3521
PA_1_4	0.001	0.002	0.003	-0.0723	-0.3234	-0.2984
PA_1_5 PA_1_6	0.001	0.001	0.003	0.1072	-0.3746 -0.2733	-0.1820 -0.2631
PA_1_7	0.001	0.001	0.003	-0.0737	-0.2733	-0.1811
PA_1_8	0.001	0.001	0.003	0.1675	-0.2804	-0.2525
PA_1_9 PA_1_10	0.001	0.002	0.003	-0.0561 0.0794	-0.1376 -0.1500	-0.2511
PA_1_11	0.002	0.002	0.004	-0.0116	-0.3506	0.0388
PA_2_1	0.001	0.001	0.003	-0.1139	0.2641	-0.3066
PA_2_2 PA_2_3	0.001	0.001	0.002	-0.0366	-0.0016 -0.1410	-0.1153
PA_2_4	0.001	0.001	0.002	-0.1493	-0.0902	-0.0463
PA_2_5	0.001	0.001	0.002	-0.0827	-0.1770	0.0628
PA_2_6 PA 2 7	0.001	0.001	0.002	-0.1535 -0.1768	-0.1247	-0.0255 0.0781
PA_2_8	0.001	0.001	0.002	-0.0539	-0.0169	-0.0159
PA_2_9	0.001	0.001	0.002	-0.0526	-0.0050	0.0130
PA_2_10 PA_2_11	0.001	0.001	0.003	-0.0451	-0.1023	0.1276
PA_3_1	0.001	0.001	0.003	-0.0799	0.2399	-0.2414
PA_3_2	0.001	0.001	0.002	0.0255	0.0705	-0.0890
PA_3_3 PA_3_4	0.001	0.001	0.002	0.0239	-0.0293	0.0367
PA_3_5	0.001	0.001	0.002	0.0146	-0.1967	0.0228
PA_3_6 PA_3_7	0.001	0.001	0.005	0.0991	-0.3668 -0.1607	0.1912
PA_3_8	0.001	0.001	0.002	-0.0734	-0.1271	0.0070
PA_3_9	0.001	0.001	0.002	-0.0229	-0.0651	0.0129
PA_3_10 PA_3_11	0.001	0.001	0.002	-0.0468 -0.222	-0.0461 -0.3292	0.0602
PA_3_11 PA_4_1	0.002	0.001	0.003	-0.1540	0.2582	-0.1538
PA_4_2	0.001	0.001	0.002	-0.0761	0.0181	0.0723
PA_4_3 PA_4_4	0.001	0.001	0.002	-0.0643	0.0111	0.0662
PA_4_5	0.001	0.001	0.002	-0.1932	-0.1463	0.2064
PA_4_6	0.001	0.001	0.002	-0.2496	-0.2645	0.1863
PA_4_7 PA 4 8	0.001	0.001	0.002	-0.0821	-0.0407	0.1220
PA_4_9	0.001	0.001	0.002	-0.0621	0.0582	0.1099
PA_4_10 PA_4_11	0.001	0.001	0.003	-0.0534	-0.1047	0.2180
PA_4_11 PA_5_1	0.002	0.002	0.004	-0.3378	0.2676	-0.3560
PA_5_2	0.001	0.001	0.002	-0.0185	0.0503	-0.1062
PA_5_3 PA_5_4	0.001	0.001	0.002	-0.0006	0.0297	-0.1078
PA_5_4 PA_5_5	0.001	0.001	0.002	-0.0272	-0.1039	0.0575
PA_5_6	0.001	0.001	0.002	-0.0166	-0.2620	-0.0384
PA_5_7 PA_5_8	0.001	0.001	0.002	-0.0978 -0.1391	-0.2375 -0.1762	-0.0208 -0.2568
PA_5_9	0.001	0.001	0.002	-0.0401	-0.1860	-0.1307
PA_5_10	0.001	0.001	0.003	-0.0939	-0.2459	0.1346
PA_5_11 PA_6_2	0.002	0.002	0.007	0.0333	0.0697	-0.0716
PA_6_3	0.001	0.001	0.002	-0.0211	-0.1002	0.0457
PA_6_4 PA_6_5	0.001	0.001	0.002	-0.0206	-0.0723	-0.0635
PA_6_6	0.001	0.001	0.002	-0.0541	-0.1151	-0.0319
PA_6_7	0.001	0.001	0.002	-0.0569	-0.1499	-0.0581
PA_6_8 PA_6_9	0.001	0.001	0.002	-0.0461	-0.1644	0.0060
PA_6_10	0.001	0.001	0.004	-0.0670	-0.4533	0.3129
PA_6_11	0.002 0.001	0.003 0.001	0.006	-0.5266 -0.1805	-0.6586 0.3615	0.5775 -0.2443
PA_7_1 PA_7_2	0.001		0.003	0.0568	0.1297	-0.2443
PA_7_3	0.001	0.001	0.002	-0.0430	0.0541	-0.0377
PA_7_4 PA_7_5	0.001 0.001	0.001 0.001	0.002	-0.0359 0.0868	0.0054 0.2732	0.0496 0.2610
PA_7_6	0.001	0.001	0.002	-0.0068	-0.0116	0.1034
PA_7_7	0.001	0.001	0.002	-0.0303	-0.0620	0.0219
PA_7_8 PA_7_9	0.001 0.001	0.001 0.001	0.002	-0.0050 -0.0005	-0.1313 -0.2362	0.0288 0.0590
PA_7_10	0.001		0.003	0.0569	-0.1805	0.1849
PA_7_11	0.002	0.002	0.005	-0.3510	-0.5784	0.5500
PA_8_1 PA 8 2	0.001 0.001	0.001 0.001	0.003	-0.0207 0.0226	0.3292 0.0819	-0.2850 -0.0467
PA_8_3	0.001	0.001	0.002	-0.0307	-0.0079	-0.0234
PA_8_4	0.001	0.001	0.002	-0.0478	-0.0423 -0.1361	-0.0467 -0.1050
PA_8_5 PA_8_6	0.001 0.001		0.002	-0.0384 -0.0710	-0.1361	-0.1050
PA_8_7	0.001	0.001	0.002	-0.0139	-0.0992	-0.0701
PA_8_8 PA_8_9	0.001 0.001	0.001 0.001	0.001 0.002	-0.0048 -0.0594	-0.1676 -0.2137	0.0107 0.0569
PA_8_9 PA_8_10	0.001	0.001	0.002	-0.0594	-0.2137	0.0569
PA_8_11	0.002	0.003	0.006	-0.5463	-0.5888	0.5925
PA_9_1 PA_9_2	0.002 0.001	0.001 0.001	0.003	-0.1442 0.0352	0.3600 0.1414	-0.3030 -0.0047
PA_9_3	0.001	0.001	0.001	-0.0275	0.0491	-0.0381
PA_9_4	0.001	0.001	0.002	-0.0121	0.0644	0.0321
PA_9_5 PA_9_6	0.001 0.001	0.001 0.001	0.001 0.001	-0.0437 -0.0496	0.0383	0.0205 0.0261
PA_9_7	0.001	0.001	0.002	0.0269	-0.0152	0.0284
PA_9_8 PA_9_9	0.001 0.001	0.001 0.001	0.001 0.002	0.0158 -0.0407	0.0442 -0.0997	0.0696 0.0752
1.EL_J_J	0.001	0.001	0.002	0.040/	0.0331	0.0/32

PA_9_10	0.001	0.001	0.002	-0.0440	-0.1190	0.1150
PA_9_11	0.002	0.002	0.005	-0.2227	-0.3835	0.5472
PA_10_1	0.002	0.002	0.003	-0.1048	0.3914	-0.2493
PA_10_2	0.001	0.001	0.003	0.0090	0.2385	-0.1218
PA_10_3	0.001	0.001	0.002	-0.0149	0.0853	0.0093
PA_10_4	0.001	0.001	0.002	-0.0193	0.1234	0.0286
PA_10_5	0.001	0.001	0.002	-0.0253	0.0963	0.0102
PA_10_6	0.001	0.001	0.002	0.0162	0.0672	0.0171
PA_10_7	0.001	0.001	0.002	0.0097	0.0673	0.0688
PA_10_8	0.001	0.001	0.002	0.0451	0.0160	0.0939
PA_10_9	0.001	0.001	0.002	0.0055	-0.0104	0.0160
PA_10_10	0.001	0.001	0.002	0.0163	-0.0111	0.0878
PA_10_11	0.001	0.002	0.004	-0.1412	-0.2399	0.3808
PA_11_1	0.002	0.002	0.004	0.1318	0.3673	0.0008
PA_11_2	0.001	0.001	0.003	0.0473	0.3087	0.1008
PA_11_3	0.001	0.001	0.003	0.0349	0.2342	0.1571
PA_11_4	0.001	0.001	0.003	0.1039	0.2373	0.1209
PA_11_5	0.001	0.001	0.003	0.0340	0.1958	0.1686
PA_11_6	0.001	0.001	0.004	0.0448	0.3800	0.4468
PA_11_7	0.001	0.001	0.003	0.0949	0.1920	0.2397
PA_11_8	0.001	0.001	0.003	-0.0251	0.1644	0.1815
PA_11_9	0.001	0.001	0.003	0.0531	0.0984	0.2055
PA_11_10	0.001	0.002	0.006	0.0896	0.0681	0.3881
PA_11_11	0.002	0.004	0.014	-0.2903	-0.4065	0.7986
T0002	0.004	0.001	0.009	-0.5170	0.9073	-0.5220
T0004	0.001	0.002	0.005	-0.4484	-0.4931	0.8323
T0009	0.001	0.001	0.004	-0.0140	-0.5173	0.2051
T0010	0.002	0.004	0.011	0.1200	-0.1519	-0.8374
T0012	0.001	0.001	0.003	-0.0386	0.0129	-0.0388
T0013	0.001	0.001	0.003	-0.0436	-0.4922	0.0549
T0014	0.002	0.002	0.007	-0.4998	-0.6114	0.7592
T0015	0.001	0.003	0.008	0.0405	0.0217	0.9207
T0016	0.001	0.001	0.002	0.0576	0.0292	0.1709
T0017	0.001	0.001	0.005	-0.0425	-0.0131	0.6398
T0020	0.001	0.001	0.004	-0.1079	-0.4605	-0.0762
T0021	0.001	0.004	0.010	-0.2146	-0.2343	0.9276
T0022	0.001	0.002	0.004	0.0968	0.2329	0.7111
T0023	0.001	0.001	0.002	-0.0244	-0.1432	0.0380
T0024	0.001	0.001	0.004	-0.1204	0.3364	-0.3312
T0025	0.001	0.001	0.002	-0.0488	-0.2290	-0.1266
T0027	0.001	0.001	0.004	-0.0390	-0.4846	0.1161
T0028	0.002	0.002	0.006	-0.4183	-0.7178	0.4965
T0033	0.001	0.001	0.002	-0.0333	-0.3098	-0.3112
T0034	0.001	0.001	0.002	0.0126	-0.1982	0.0294
T0035	0.001	0.001	0.002	-0.0309	-0.1565	-0.0609
T0036	0.001	0.001	0.002	-0.0015	-0.1219	-0.0263
T0038	0.002	0.001	0.005	0.2933	-0.7656	-0.3916
T0039	0.001	0.001	0.002	0.0020	0.0515	0.0395
T0040	0.001	0.002	0.008	0.5709	-0.6579	-0.8822
T0051	0.001	0.001	0.002	-0.0334	-0.0675	-0.1623
T0054	0.002	0.002	0.004	-0.3112	-0.4898	0.4786
T0055	0.001	0.001	0.004	0.0888	0.1518	0.2810
T0056	0.001	0.003	0.009	0.2705	-0.3160	-0.9227
T0057	0.004	0.005	0.011	-0.7603	-0.7442	0.8011

Levantamiento fotog	ramétrico del yacir	miento paleontológico	"Museo In Situ"de	Ambrona (Soria)
			Δ	NEXO IV
			Contenid	
			Contenio	o dei CD

El contenido de este CD se estructura en las siguientes carpetas:

- Documentación procesos: incluye fotografías tanto del yacimiento como de las labores de documentación en campo.
- Fotogrametría: colección de imágenes fotográficas del yacimiento (se presentan varias copias de cada imagen con diferentes valores de exposición).
- ModeloGeométrico: incluye el modelo y los planos de la presente campaña en formato .dwg (AutoCAD 2000) y en .dxf para intercambio.
- Multimedia: presentación multimedia (en formato web HTML) del proyecto.
- Útil: incluye la descripción del formato .dxf

Debido al volumen de información generada, no es posible almacenar todo en un solo disco por lo que el Multimedia se presenta en un DVD aparte.

LABORATORIO DE DOCUMENTACIÓN GEOMÉTRICA DEL PATRIMONIO Grupo de Investigación en Arqueología de la Arquitectura (UPV-EHU)

Aulario de las Nieves, edificio de Institutos Universitarios C/ Nieves Cano 33, 01006 Vitoria-Gasteiz (España-Spain).

Tfno: +34 945 013222 / 013264

e-mail: ldgp@ehu.es web: http://www.ldgp.es