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Abstract. In this study we define a cost sharing rule for cost sharing
problems. This rule is related to the serial cost-sharing rule defined by Moulin
and Shenker (1992). We give some formulas and axiomatic characterizations
for the new rule. The axiomatic characterizations are related to some previous
ones provided by Moulin and Shenker (1994) and Albizuri (2010).
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1. Introduction

In this paper we deal with cost-sharing problems where there is a process to produce
a private good which is shared by n agents. Each agent demands a quantity qi of
the good. The cost function is denoted C and a cost sharing rule allocates the total
production cost, that is, C (

∑
i qi), among all the agents.

We define and study a new rule which is related to the serial cost-sharing rule
defined by Moulin and Shenker (1992). First we present the serial cost-sharing rule
and some others to better understand the rule we define in this paper.

The serial cost-sharing rule is as follows. Suppose there are only two agents i and
j, and qi ≤ qj . When the production starts, each unit of the good is equally divided
among the two agents, who share equally the incurred cost. This continues until 2qi
is produced, that is, until agent i is given qi. At this point agent i leaves the system
and the process continues as before, that is, agent j receives the remaining quantity
and pays the associated cost. Consequently, agent i pays C (2qi) /2 and j pays the
rest, that is, C (qj + qi) − C (2qi) /2. In Fig. 1 we draw the associated production
path. The serial cost-sharing rule is obtained when we generalize this process to n
agents.
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Albizuri and Zarzuelo (2007) define the dual serial cost-sharing which equalizes
the quantities left to be allocated to agents. So when the good production starts
each unit goes to agent j, that is, the agent with the highest demand, who pays the
incurred cost. When agent j is served qj − qi units, that is, when both i and j are
short of the same quantity qi, agent j pays C (qj − qi) and agent i enters the picture.
The production process continues and both agents are served simultaneously and pay
equally the cost. Hence, each of the agents pays

C(qj+qi)−C(qj−qi)

2
. In Fig. 2 we see the

associated path. Generalizing this procedure to n agents the dual serial cost-sharing
rule is obtained.
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Figure 3

Notice that in the first case agent i pays only the cost of lowest increments and
in the second case only the cost of highest increments. Albizuri (2010) defines a rule
which allocates agent i both the cost of lowest increments and the cost of highest
increments. This rule is obtained as follows. When the production starts each unit
is equally divided until each agent gets half of his demand, who share equally the
incurred cost. Thereafter units are given equalizing quantities left to be allocated
and agents continue sharing equally the incurred cost (see Fig. 3). So when qi is
produced each agent receives qi/2 and pays C (qi) /2. Since agent i is given half
of his demand agent j is the only one who pays the rest until

qj+qi
2

is produced,
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that is, he pays C
( qj+qi

2

)
− C (qi). From now on quantities left to be allocated are

equalized. Therefore, agent j receives
qj−qi

2
and pays the associated cost increment,

that is, C (qj) − C
( qj+qi

2

)
. Thereafter agents i and j are served simultaneously and

pay equally the incurred cost, so each of i and j receives qi/2 and pays
C(qj+qi)−C(qj)

2
.

If we generalize this procedure to n agents we obtain the self-dual serial cost-sharing
rule. This rule gives the same cost shares in a problem and in its dual one.

But there is also another way to allocate cost by not taking the cost of lowest
increments or the cost of highest increments to determine the allocation for agent i.
It is by taking cost increments which are in the middle, that is, instead of mixing high
and low cost increments, we take middle cost increments. This new rule is obtained
by equalizing first the demands left to be allocated until each agent receives half of
his demand and thereafter units of good are given equally until all the demands are
met. Therefore, first the agent with the highest demand, that is, agent j, receives
qj−qi

2
units and pays C

( qj−qi
2

)
. After that, agent i enters the system, each of the

agents is given qi/2 and pays
C
(

qj+qi
2

)

−C
(

qj−qi
2

)

2
. Since they have met half of their

demands, from now on they receive equally the units and pay the incurred cost until

the demand is met. Hence, each agent is given qi/2 and pays
C
(

qj+qi

2
+qi

)

−C
(

qj+qi

2

)

2
.

Since agent i has met his demand he leaves the picture and agent j is the only one
who pays the rest, that is, C (qj + qi) − C

( qj+qi
2

+ qi
)
. We can see in Fig. 4 the

associated path. Generalizing the procedure to n agents we obtain the new rule. As
the self-dual serial cost-sharing rule does, this rule gives the same allocations in a
problem and in its dual one.
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Figure 4

In this paper we define and give some formulas for this rule. And we give three
axiomatic characterizations. Two of them are related to axiomatic characterizations
given by Albizuri (2010) for the self-dual serial cost-sharing rule. The other is re-
lated to the characterization for the serial cost-sharing rule provided by Moulin and
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Shenker (1994), where they characterize the serial cost-sharing rule by employing
some standard axioms and free lunch, a kind of consistency axiom. Free lunch deals
with cost functions that vanish identically at the beginning of production process of
the good. We see in this paper that if we consider cost sharing functions which are
flat in the middle (production has not cost in the middle), we obtain the rule defined
in this paper.

Moulin (2002) shows that the set of monotonic rationing methods is linearly iso-
morphic to that of additive cost sharing rules. This author gives a list of rationing
methods and cost sharing rules matched by this linear isomorphism. The Uniform
Gains methods gives rise to the serial cost-sharing rule (Moulin and Shenker, 1992)
and the Uniform Loses to the ”dual” serial rule. He writes the resulting cost-sharing
rule from the Talmudic rationing method when there are two or three agents. It turns
out that the self-dual serial cost-sharing rule is the cost sharing rule that matches
with the Talmudic rationing method. Recall that the Talmudic rationing method is
a mixture of the Uniform Gains rule and the Uniform Loses rule. When mixture
is done in the opposite way the reverse Talmud rationing method is obtained (see
Thomson (2008)). And the cost sharing rule that matches with it is the rule defined
in this paper. That is why we call it the reverse self-dual serial cost-sharing rule.

We mention that there are other variations of the serial cost-sharing rule which
allocate cost in decreasing order of demands (see, for instance, Frutos (1998) and
Leroux (2005)).

The paper is structured as follows. Section 2 is a preliminary one. In Section 3
we give the definition of the new rule and a formula for it. In Section 4 we provide
other formulas for both the reverse self-dual serial cost-sharing rule and the self-dual
serial cost-sharing rule. In Section 5 we give a characterization for the reverse self-
dual serial cost-sharing rule which is related to the characterization for the serial
cost-sharing rule provided by Moulin and Shenker (1994). In Section 6 we provide
axiomatic characterizations for the new rule which are related to the ones given by
Albizuri (2010) for the self-dual serial cost-sharing rule. Finally, in Section 7 some
examples are presented.

2. Preliminaries

Let U denote a set of potential agents. Given a non-empty finite subset N of U ,
by RN we write the |N |-dimensional euclidean space whose axes are labelled with
the members of N , RN

+ = {x ∈ RN : xi ≥ 0} and R+ = {x ∈ R : x ≥ 0}. We
denote 1N the vector in RN

+ such that (1N)i = 1 for all i ∈ N . If x ∈ R then
x+ = max {x, 0}. Given q ∈ RN

+ , we denote Q =
∑

i∈N qi, and if N = {1, 2, . . . , n}
and q1 ≤ q2 ≤ · · · ≤ qn, we write q0 = 0 and qj = (n− j + 1) qj + qj−1 + ... + q1 for
every j ∈ N . And if S ⊆ N then qS ∈ RS

+ satisfies (qS)i = qi for all i ∈ S.

A triple (N, q, C) is called a cost sharing problem, if N is a non-empty finite subset
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of U (the set of agents involved in the problem), q ∈ RN
+ (the demand profile of the

cost sharing problem) and C is a nondecreasing function defined on [0, Q] such that
C (0) = 0 (the cost function of the cost sharing problem).

Let ΓU denote the set of all cost sharing problems with the foregoing properties.

A cost sharing rule σ on a subset Γ of ΓU associates with each (N, q, C) ∈ Γ a
vector σ(N, q, C) ∈ RN

+ satisfying

∑

i∈N

σi(N, q, C) = C (Q) (efficiency).

Hence, a cost sharing rule allocates total cost among the n agents.
Along the paper, if not say otherwise, cost sharing rules are defined on ΓU .
Moulin and Shenker (1992) define the serial cost-sharing rule. To present an

explicit formula of this rule (and the following ones) assume that N = {1, 2, . . . , n}
and q1 ≤ q2 ≤ · · · ≤ qn. The serial cost-sharing rule of (N, q, C), denoted ϕ, is defined
by

ϕi(N, q, C) =

i∑

j=1

Cq
j − Cq

j−1

n− j + 1
(1)

for all i ∈ {1, . . . , n}, where
Cq

j = C
(
qj
)

(2)

for all j ∈ {0, ..., i}. Moulin and Shenker (1994) characterize the serial cost-sharing
rule on ΓU by means of five properties: additivity, ranking, separable costs, free lunch
and continuity. The first axiom is a well known axiom. Ranking requires that the
cost sharing rule should respect the ordering of the demands. Under separable costs,
if costs are separable they should be so allocated. Free lunch is a kind of consistency
axiom which we describe in more details in Section 5 and the fifth property requires
the continuity for the topology of pointwise convergence.

Albizuri and Zarzuelo (2007) define the dual serial cost-sharing rule. The dual
serial cost-sharing rule of (N, q, C), denoted ϕ∗, is defined by

ϕ∗
i (N, q, C) =

i∑

j=1

Ĉq
j−1 − Ĉq

j

n− j + 1
(3)

for all i ∈ {1, . . . , n}, where
Ĉq

j = C
(
Q− qj

)
(4)

for all j ∈ {0, ..., i} .
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Given a problem (N, q, C), we define its dual cost function by DqC (t) = C (Q)−
C (Q− t) 1 and its dual problem by (N, q,DqC). It follows that

ϕ∗(N, q, C) = ϕ(N, q,DqC),

that is, the dual serial cost sharing-rule of a cost sharing problem is the serial cost-
sharing rule of the dual problem.

Finally, Albizuri (2010) defines the self-dual serial cost-sharing rule. The self-dual
serial cost-sharing rule of (N, q, C), denoted ϕS, is defined by

ϕS
i (N, q, C) =

i∑

j=1

C
q/2
j − C

q/2
j−1

n− j + 1
+

i∑

j=1

Ĉ
q/2
j−1 − Ĉ

q/2
j

n− j + 1
(5)

for all i ∈ {1, . . . , n}, where

C
q/2
j = C

(
qj

2

)
(6)

and

Ĉ
q/2
j = C

(
Q− qj

2

)
(7)

for all j ∈ {0, ..., i} .
Albizuri (2010) gives two axiomatic characterizations of the self-dual serial cost-

sharing rule. On the one hand, it is characterized by means of additivity, self duality
and partially serial. The second axiom says that the allocations are the same in a
problem and in its dual one. And partially serial requires that if the cost up to total
demand Q is less than the cost of half of the demands then the cost shares to be equal
to the cost shares determined by means of the serial cost-sharing rule when half of
the demands are required.

On the other hand, the self-dual serial cost-sharing rule is characterized by means
of anonymity, independence of null demands and translated equal changes in payoff.
Anonymity requires the cost shares associated with two demands to be permuted if
the two demands are permuted. Independence of null demands says that the payoffs
of the agents are independent of the agents who demand nothing. The third axiom
requires the change of the cost shares to be the same for all the agents if we consider
some translated axiom instead of the original one.

1We have defined cost function C on [0, Q] not to define arbitrarily this cost function beyond Q.
We could have chosen to define C and DqC on R+ and all the results in this paper would be valid.

The same happens for the definition of C̃Q in Section 4.
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3. The reverse self-dual serial cost-sharing rule

We describe first the serial cost-sharing rule of Moulin and Shenker (1992). Let
(N, q, C) be a cost sharing problem with q1 ≤ q2 ≤ · · · ≤ qn. When the production
starts, each unit of the good is equally divided between the agents, who share equally
the incurred cost. When quantity q1 is produced, since agent 1 has met all his
demand, he stops receiving the good and leaves the picture. And the process goes on
in the same way. The production continues and each additional unit is divided equally
among the remaining n− 1 agents, who share equally the incurred cost. When agent
2 has met his demand, that is, when quantity q2 is produced, agent 2 stops receiving
the good, he leaves the picture and the production continues for the remaining agents.
These agents pay equally until agent 3 has met his demand and so on.

The dual serial cost-sharing rule defined by Albizuri and Zarzuelo (2007) is as
follows. This rule equalizes quantities left to be allocated to agents, who share equally
the incurred cost. When the production starts, each unit is given to agent n, the agent
with the highest demand. When agent n is given qn − qn−1 units, that is, Q − qn−1

units, then both n and n−1 are short of the same quantity. Agent n pays the incurred
cost, that is, C (Q− qn−1) , and the production process continues by sharing the good
equally among agents n and n− 1, who pay equally the incurred cost. When each of
them is given qn−1 − qn−2 then agents n, n− 1 and n− 2 are left to be allocated the
same quantity of good. So n and n− 1 share equally the corresponding cost, that is,

each one pays
C(Q−qn−2)−C(Q−qn−1)

2
and the process continues in the same way. Units

are given simultaneously to agents n, n−1 and n−2 until they are short of the same
quantity of demand and so on.

As pointed in the Introduction, when Albizuri (2010) defines the self-dual cost-
sharing rule agents with low demands not only pay cost increments associated with
low demands as it happens with the serial cost-sharing rule but also to high demands.
And hence, agents with high demands are not the only ones to pay cost increments
associated with high demands. And by comparing with the dual serial cost-sharing
rule, agents with low demands not only pay cost increments associated with high
demands but also to low demands. So agents with high demands are not the only
ones to pay cost increments associated with low demands.

Think for example of a convex cost function. The self-dual serial cost-sharing
rule makes agents with low demands pay both low increments (as the serial cost-
sharing rule does) and high increments (as the dual serial cost-sharing rule does).
But notice that there is also another way to make agents with lower demands pay not
so few (as it could happen with the serial cost-sharing rule) and hence agents with
higher demands pay less. Or make agents with lower demand pay not so much (as it
could happen with the dual serial cost-sharing rule) and therefore agents with higher
demands pay more. It can be done by taking for agents with low demands middle
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increments instead of mixing low and high increments.
To define the new rule we equalize first the demands left to be allocated until each

agent is given half of his demand and then units of good are given equally until all
the demands are met. So, first the agent with the highest demand, agent n, receives
qn−qn−1

2
units, that is, Q

2
− qn−1

2
units, and pays C

(
Q
2
− qn−1

2

)
. Since n and n − 1

are short of the same quantity of demand with respect to their half demands (qn−1/2
each of them) then agent n − 1 enters the picture. Both n and n − 1 are served
simultaneously and pay equally until agents n, n−1 and n−2 are left to be allocated
the same quantity of good with respect to their half demands. That happens when
each of n and n− 1 is given qn−1−qn−2

2
units of good. They share equally the incurred

cost, that is, each of n and n− 1 pays

C
(

Q
2
− qn−2

2

)
− C

(
Q
2
− qn−1

2

)

2
.

Afterwards, agent n − 2 enters the system. Agents n, n − 1 and n − 2 are served
simultaneously and share equally the incurred cost until they are short of the same
demand with respect their half demands and so on. Agents incorporate one by one
until n, n−1, ..., 1 are given half of their demands and the corresponding cost is paid.
Now all the agents are served simultaneously and pay the incurred cost until the
entire demands are met. Hence, first each agent is given q1/2 and pays

C
(

Q
2
+ q1

2

)
− C

(
Q
2

)

n
.

At this point agent 1 has met his demand and leaves the production process. And
agents 2, ..., n are served simultaneously and share equally the incurred cost until
agent 2 has met his demand. It happens when each of them is given q2−q1

2
. So each

of 2, ..., n pays

C
(

Q
2
+ q2

2

)
− C

(
Q
2
+ q1

2

)

n− 1

and agent 2 leaves the system. The process continues in the same way until all the
agents meet their demands.

We call the resulting rule the reverse self-dual serial cost-sharing rule. If we denote
it by ϕR, then

ϕR
i (N, q, C) =

i∑

j=1

R̂C
q/2

j−1 − R̂C
q/2

j

n− j + 1
+

i∑

j=1

RC
q/2
j −RC

q/2
j−1

n− j + 1
(8)
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for all i ∈ {1, ..., n}, where

RC
q/2
j = C

(
Q

2
+

qj

2

)
(9)

and

R̂C
q/2

j = C

(
Q

2
− qj

2

)
(10)

for all j ∈ {0, ..., i} .
In the following proposition we give an equality for the allocations given by the

reverse self-dual serial cost-sharing rule that involves the cost function of the cost
sharing problem and its dual cost function. More precisely, it is shown that the cost
share determined by the reverse self-dual serial cost-sharing rule for an agent in a
cost sharing problem coincides with the sum of the cost share determined by the dual
serial cost-sharing rule with the same cost function and half of the demands and the
cost share determined by the dual serial cost-sharing rule with the dual cost function
(associated with q) and half of the demands.

Proposition 1.

ϕR
i (N, q, C) = ϕ∗

i (N, q/2, C) + ϕ∗
i (N, q/2, DqC) ,

where DqC (t) = C (Q)− C (Q− t).

Proof. By expressions (3), (4) and (10) , it is clear that ϕ∗
i (N, q/2, C) coincides

with the first sum in expression (8). So we only have to prove that ϕ∗
i (N, q/2, DqC)

coincides with the second sum in (8), that is,

i∑

j=1

(
D̂qC

)q/2
j−1

−
(
D̂qC

)q/2
j

n− j + 1
=

i∑

j=1

RC
q/2
j − RC

q/2
j−1

n− j + 1
,

where
(
D̂qC

)q/2
j−1

and
(
D̂qC

)q/2
j

are given by (4), and RC
q/2
j and RC

q/2
j−1 by (9) .

So it is sufficient to prove that

(
D̂qC

)q/2
j−1

−
(
D̂qC

)q/2
j

= RC
q/2
j − RC

q/2
j−1

for each j ∈ {1, ..., i}.
We have
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(
D̂qC

)q/2
j−1

−
(
D̂qC

)q/2
j

= (DqC)

(
Q

2
− qj−1

2

)
− (DqC)

(
Q

2
− qj

2

)

= C

(
Q

2
+

qj

2

)
− C

(
Q

2
+

qj−1

2

)
= RC

q/2
j − RC

q/2
j−1,

where in the first equality we have taken into account (4), in the second equality the
definition of DqC and in the third one equality (9) . And the proof is complete.

Observe that if we substitute in the equality of Proposition 1 the dual serial cost-
sharing rule by the serial cost-sharing rule, then we obtain Proposition 1 by Albizuri
(2010).

4. The reverse self-dual serial cost-sharing rule as a serial rule

In this section we show that the cost shares determined by the reverse self-dual cost-
sharing rule in a cost sharing problem coincide with the cost shares determined by the
serial-cost sharing rule in an associated cost sharing problem. We also prove that the
dual serial cost-sharing rule of that associated problem coincides with the self-dual
cost-sharing rule of the original one.

Given a cost sharing problem (N, q, C), the cost sharing problem we associate

with is
(
N, q, C̃Q

)
, where

C̃Q (t) = C

(
Q

2
+

t

2

)
− C

(
Q

2
− t

2

)
. (11)

As we can see in Fig. 5, C̃Q (t) measures the cost of t units which are just in the
middle of production process, that is, when the quantity to be produced is the same
as the quantity produced.

QQ
2

Q−t
2

Q+t
2

C̃(t)
C

Figure 5
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Proposition 2.

ϕR
i (N, q, C) = ϕi

(
N, q, C̃Q

)
,

where C̃Q is defined in (11).

Proof. By expressions (1) and (8), we have to prove that

i∑

j=1

R̂C
q/2

j−1 − R̂C
q/2

j +RC
q/2
j − RC

q/2
j−1

n− j + 1
=

i∑

j=1

(
C̃Q
)q
j
−
(
C̃Q
)q
j−1

n− j + 1
,

where R̂C
q/2

j−1 and R̂C
q/2

j are given by expression (10), RC
q/2
j and RC

q/2
j−1 are given by

(9), and
(
C̃Q
)q
j
and

(
C̃Q
)q
j−1

by (2).

So it suffices to prove that

R̂C
q/2

j−1 − R̂C
q/2

j +RC
q/2
j −RC

q/2
j−1 =

(
C̃Q
)q
j
−
(
C̃Q
)q
j−1

for all j ∈ {1, ..., i} .
We have

R̂C
q/2

j−1 − R̂C
q/2

j +RC
q/2
j − RC

q/2
j−1

= C

(
Q

2
− qj−1

2

)
− C

(
Q

2
− qj

2

)
+ C

(
Q

2
+

qj

2

)
− C

(
Q

2
+

qj−1

2

)

= C̃Q
(
qj
)
− C̃Q

(
qj−1

)
=
(
C̃Q
)q
j
−
(
C̃Q
)q
j−1

,

as was to be proved. We have employed (9) and (10) in the first equality, the definition

of C̃Q in the second equality and (2) in the third one.

And as written above, if we take the dual serial cost-sharing rule instead of the
serial cost sharing-rule, then the self-dual serial cost-sharing rule is obtained.

Proposition 3.

ϕS
i (N, q, C) = ϕ∗

i

(
N, q, C̃Q

)
,

where C̃Q is defined in (11).
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Proof. Taking into account expressions (3) and (5), we have to show

i∑

j=1

C
q/2
j − C

q/2
j−1 + Ĉ

q/2
j−1 − Ĉ

q/2
j

n− j + 1
=

i∑

j=1

(̂
C̃Q
)q

j−1
−
(̂
C̃Q
)q

j

n− j + 1
,

where C
q/2
j and C

q/2
j−1 are given by (6), Ĉ

q/2
j−1 and Ĉ

q/2
j are given by (7), and

(̂
C̃Q
)q

j−1

and
(̂
C̃Q
)q

j
are given by (4).

Therefore, it is sufficient to prove that

C
q/2
j − C

q/2
j−1 + Ĉ

q/2
j−1 − Ĉ

q/2
j =

(̂
C̃Q
)q

j−1
−
(̂
C̃Q
)q

j

for all j ∈ {1, ..., i} .
We have

C
q/2
j − C

q/2
j−1 + Ĉ

q/2
j−1 − Ĉ

q/2
j = C

(
qj

2

)
− C

(
qj−1

2

)
+ C

(
Q− qj−1

2

)
− C

(
Q− qj

2

)

= C̃Q
(
Q− qj−1

)
− C̃Q

(
Q− qj

)
=
(̂
C̃Q
)q

j−1
−
(̂
C̃Q
)q

j
,

where in the first equality we have taken into account (6) and (7), in the second

equality the definition of C̃Q and in the third one equality (4). And the proof is
complete.

5. A characterization for the reverse self-dual serial cost-sharing

rule

In this section we provide a characterization for the new rule which is related to the
one given by Moulin and Shenker (1994). As written in the Introduction, they char-
acterize the serial cost-sharing rule by means of five properties: continuity, additivity,
ranking, separable costs and free lunch. The first axiom requires continuity for the
topology of pointwise convergence and the other ones are formalized as follows.

Let σ be a cost sharing rule.

Additivity:

σi (N, q, C1 + C2) = σi (N, q, C1) + σi (N, q, C2) for all (N, q, C1), (N, q, C2) ∈ ΓU .

Ranking requires the order of cost shares to coincide with the order of demands.
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Ranking: If qi ≤ qj , then

σi (N, q, C) ≤ σj (N, q, C)

for all q and all i, j ∈ N.

According to the following axiom, if costs are separable then they are so allocated.

Separable costs: If there exists λ ≥ 0 such that C (t) = λt for all t ≥ 0 then

σi (N, q, C) = λqi

for all i ∈ N.

And the last axiom is a kind of consistency axiom. To write it we give the following
notation. Given a cost function C and a, δ ∈ R+, we define the cost function Ca,δ by

Ca,δ (t) =

{
C (t) if t ≤ a,

C (t+ δ)− C (a+ δ) + C (a) otherwise.

As we can see in Fig. 6, Ca,δ is the cost function which results from C when δ
units from a to a+ δ have been removed together with their associated cost, that is,
C (a+ δ)− C (a) .

a a+ δ Q
t

C

Figure 6

Q− δa
t

Ca,δ

Free lunch: If C (nqi) = 0 for some i ∈ N, then σi (N, q, C) = 0 and

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

0,qi
)

for all j ∈ N\{i}.

According to free lunch, if nqi units of the good have no cost, then any agent
whose demand is qi pays nothing and if that agent leaves the system the cost shares
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for the remaining agents do not change. Notice that when qi goes out then the new
cost function is C0,qi since agent i is given qi and pays C (qi), that is, zero.

To characterize the reverse self-dual serial cost-sharing rule we also consider con-
tinuity, additivity, ranking and separable costs. But we do not require free lunch.
First notice that in free lunch the authors require the cost of the first nqi units to be
zero and agent i to be given the first qi units. But this might not be the case. Agent
i might be given qi units which are not at the beginning. We propose an axiom in
which we also suppose that the cost of nqi units is zero, but not the cost of the first
nqi units, but the one of those in the middle of production. Graphically see Fig. 7.

QQ
2

Q−nqi
2

Q+nqi
2

C

t

Figure 7

When agent i leaves the system he is given qi units which are in the middle of
production and does not pay anything for them. And the allocations for the remaining
agents do not change.

We formalize the property as follows.

Free middle: If

C

(
Q

2
+

nqi
2

)
− C

(
Q

2
− nqi

2

)
= 0

for some i ∈ N , then σi (N, q, C) = 0 and

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

Q−qi
2

,qi
)

for all j ∈ N\{i}.

Notice that in this case C
Q−qi

2 ,qi
(t) =

{
C (t) if t ≤ Q/2− qi/2,

C (t + qi) otherwise.
Observe that in free middle agent i has to satisfy Q − nqi ≥ 0, so in general it

cannot be applied to all agents. Obviously it can be applied to the agent with the

lowest demand. We could have supposed C
(

Q
2
+ qi

2

)
−C

(
Q
2
− qi

2

)
= 0 in free middle,
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that is, taken qi instead of nqi, and all the results in this paper would be valid. But
we have preferred to be closer to the writing of free lunch by Moulin and Shenker
(1994). We point out that it can be easily checked that in their characterization it is
sufficient to satisfy free lunch for the agent with the lowest demand. We employ that
fact to prove the following characterization for the reverse self-dual serial cost-sharing
rule.

We show below that the reverse self-dual serial cost-sharing rule satisfies free
middle. In fact this rule is the unique one which satisfies continuity, additivity,
ranking, separable costs and free middle. Notice that we do not require self duality,
but it is implied by the other axioms.

First we show free middle is satisfied and a previous lemma, and then the char-
acterization theorem.

Lemma 4. The reverse self-dual serial cost-sharing rule satisfies free middle.

Proof. If

C

(
Q

2
+

nqi
2

)
− C

(
Q

2
− nqi

2

)
= 0

for some i ∈ N , then C̃Q (nqi) = 0. Since ϕ satisfies free lunch we get ϕi

(
N, q, C̃Q

)
=

0 and

ϕj

(
N, q, C̃Q

)
= ϕj

(
N\ {i} , qN\{i},

(
C̃Q
)0,qi)

for all j ∈ N\{i}. Applying Proposition 2 we have ϕR
i (N, q, C) = 0 and

ϕR
j (N, q, C) = ϕj

(
N\ {i} , qN\{i},

(
C̃Q
)0,qi)

for all j ∈ N\{i}. And taking into account

(
C̃Q
)0,qi

=
˜(
C

Q−qi
2

,qi
)Q−qi

,

we write the equality above as follows

ϕR
j (N, q, C) = ϕj

(
N\ {i} , qN\{i},

˜(
C

Q−qi
2

,qi

)Q−qi
)
.

And Proposition 2 implies

ϕR
j (N, q, C) = ϕR

j

(
N\ {i} , qN\{i}, C

Q−qi
2

,qi
)
,
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as was to be proved.

In the following lemma we employ cost-sharing problems (N, q, λΛa) , (N, q, λΛ′
a) ,

where λ ∈ R+, a ∈ [0, Q], Λa (t) = (t− a)+ and Λ′
a (t) = min {t, a} .

Lemma 5. If a cost-sharing rule σ satisfies additivity, ranking, separable costs and
free middle, then

σ
(
N, q, λΛQ/2

)
=

λq

2
= σ

(
N, q, λΛ′

Q/2

)
.

Proof. Let q ∈ RN
+ and suppose without loss of generality that N = {1, ..., n} and

q1 ≤ q2 ≤ · · · ≤ qn. We prove this lemma by induction on i = 1, ..., n. Define

∆nq1
2

= ΛQ
2
− ΛQ+nq1

2
.

By efficiency we have
n∑

i=1

σi

(
N, q, λ∆nq1

2

)
=

nλq1
2

,

and ranking implies σ1

(
N, q, λ∆nq1

2

)
≤ λq1

2
. Taking into account free middle we get

σ1

(
N, q, λ∆nq1

2

)
= σ1

(
N, q, λΛQ

2

)
,

and therefore,

σ1

(
N, q, λΛQ

2

)
≤ λq1

2
. (12)

If we define
∆′

nq1
2

= Λ′
Q

2

− Λ′
Q−nq1

2

,

reasoning as above we get

σ1

(
N, q, λΛ′

Q

2

)
≤ λq1

2
. (13)

Since σ satisfies additivity and separable costs it follows that

σ1

(
N, q, λΛQ

2

)
+ σ1

(
N, q, λΛ′

Q

2

)
= σ1 (N, q, λΛ0) = λq1.

And taking into account expressions (12) and (13) we can deduce

σ1

(
N, q, λΛQ

2

)
=

λq1
2

= σ1

(
N, q, λΛ′

Q

2

)
.
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Now suppose that if i < j then

σi

(
N, q, λΛQ

2

)
=

λqi
2

= σi

(
N, q, λΛ′

Q
2

)
,

and let us prove the two equalities for agent j.
Define

∆ qj

2

= ΛQ
2
− ΛQ+qj

2

.

Since σ satisfies efficiency, then

n∑

i=1

σi

(
N, q, λ∆ qj

2

)
=

λqj

2
. (14)

Let us prove that

σi

(
N, q, λΛQ+qj

2

)
= 0 (15)

if i ∈ {1, ..., j}. Free middle implies σ1

(
N, q, λΛQ+qj

2

)
= 0 and

σi

(
N, q, λΛQ+qj

2

)
= σi

(
N\ {1} , qN\{1}, λΛQ−q1

2
+

qj−q1
2

)

if i ∈ {2, ..., j}. Applying again free middle, on the one hand we obtain

σ2

(
N\ {1} , qN\{1}, λΛQ−q1

2
+

qj−q1
2

)
= 0,

and thus σ2

(
N, q, λΛQ+qj

2

)
= 0, and on the other hand

σi

(
N\ {1} , qN\{1}, λΛQ−q1

2
+

qj−q1
2

)
= σi

(
N\ {1, 2} , qN\{1,2}, λΛQ−q1−q2

2
+

qj−q1−q2
2

)

if i ∈ {3, ..., j}. Applying free middle repeatedly, if i ≤ j it follows that

σi

(
N, q, λΛQ+qj

2

)
=

= · · · = σi

(
N\ {1, 2, ..., i− 1} , qN\{1,2,...,i−1}, λΛQ−q1−···−qi−1

2
+

qj−q1−···−qi−1
2

)
= 0,

and equality (15) is proved.
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From additivity, equality (14) and equality (15) for i ∈ {1, ..., j − 1} we have

j−1∑

i=1

σi

(
N, q, λΛQ

2

)
+

n∑

i=j

σi

(
N, q, λ∆ qj

2

)
=

λqj

2
.

And by induction hypothesis

n∑

i=j

σi

(
N, q, λ∆ qj

2

)
=

(n− (j − 1)) λqj
2

.

Taking into account ranking we can deduce

σj

(
N, q, λ∆ qj

2

)
≤ λqj

2
.

And applying additivity and equality (15) for i = j it follows that

σj

(
N, q, λΛQ

2

)
≤ λqj

2
. (16)

If we take ∆′
qj

2

= Λ′
Q

2

− Λ′
Q−qj

2

, reasoning in a similar way we get

σj

(
N, q, λΛ′

Q

2

)
≤ λqj

2
.

And additivity, separable costs and (16) imply

σj

(
N, q, λΛQ

2

)
=

λqj
2

= σj

(
N, q, λΛ′

Q

2

)
,

as was to be proved.

Theorem 6. The reverse self-dual serial cost-sharing rule is the unique cost-sharing
rule that satisfies continuity, additivity, ranking, separable costs and free middle.

Proof. By Lemma 4 the reverse self-dual serial cost-sharing rule satisfies free
middle. And it is straightforward to prove the other axioms.

For uniqueness we consider an allocation rule σ satisfying the five properties above.
Given (N, q, C), we define

C1 (t) =

{
C (t) if t ≤ Q/2,

C (Q/2) otherwise
(17)
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and

C2 (t) =

{
0 if t ≤ Q/2,

C (t)− C (Q/2) otherwise.
(18)

It is clear that (N, q, C1) and (N, q, C2) are cost sharing problems, and moreover
C = C1+C2. By additivity it suffices to show uniqueness for (N, q, C1) and (N, q, C2).
Notice that C2 vanishes identically from 0 to Q/2 and that C1 is constant from Q/2
to Q. Therefore, we have to prove uniqueness on that kind of cost functions.

To prove uniqueness on cost functions which vanish identically from 0 to Q/2 let
us define cost sharing rule σ′ on ΓU by

σ′ (N, q, C) = σ
(
N, q, CQ

)
,

where

CQ (t) =

{
0 if t ≤ Q/2,

C
(
2
(
t− Q

2

))
otherwise.

Since σ satisfies continuity, additivity, and ranking, then σ′ also satisfies these axioms.
Let us show σ′ satisfies separable costs and free lunch.

To show σ′ satisfies separable costs we have to prove σ′ (N, q, C) = λq when
C (t) = λt for some λ ≥ 0. Notice that

CQ (t) = 2λ

(
t− Q

2

)

+

.

Applying Lemma 5 we get σ
(
N, q, CQ

)
= λq, and hence σ′ (N, q, C) = λq.

Finally, let us prove that σ′ satisfies satisfies free lunch for agent i such that
Q − nqi ≥ 0. Let (N, q, C) be a cost sharing problem which satisfies C (nqi) = 0 for
some i ∈ N such that Q− nqi ≥ 0. Then by definition of CQ it follows that

CQ

(
Q

2
+

nqi
2

)
− CQ

(
Q

2
− nqi

2

)
= 0.

And σi

(
N, q, CQ

)
= 0 for σ satisfies free middle. That is, σ′

i (N, q, C) = 0. Moreover,

σj

(
N, q, CQ

)
= σj

(
N\ {i} , qN\{i},

(
CQ
)Q−qi

2
,qi

)

for all j ∈ N\{i}. If we take into account that

(
CQ
)Q−qi

2
,qi

=
(
C0,qi

)Q
,

the equality above turns into

σj

(
N, q, CQ

)
= σj

(
N\ {i} , qN\{i},

(
C0,qi

)Q)
.
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Therefore, σ′
j (N, q, C) = σ′

j

(
N\ {i} , qN\{i}, C

0,qi
)
and free lunch is satisfied restricted

to agents i such that Q− nqi ≥ 0.
Since σ′ satisfies continuity, additivity, ranking, separable costs and the restricted

free lunch, then it is determined for all cost sharing problems (it coincides with the
serial cost-sharing rule). And the definition of σ′ implies σ is determined for all
cost sharing problems in which cost function vanishes from 0 to Q/2, for all of them
coincides with some CQ.

To prove uniqueness on cost functions which are constant from Q/2 to Q we define
cost-sharing rule σ∗ on ΓU by

σ∗ (N, q, C) = σ
(
N, q,DqCQ

)
.

Observe that if C (t) = λt for some λ ≥ 0 then DqCQ (t) = 2λmin {t, Q/2} . It can
be proved in a similar way as above that σ∗ satisfies continuity, additivity, ranking,
separable costs and the restricted free lunch. Hence, σ is determined for all cost
sharing problems in which cost function is constant from Q/2 to Q, and the proof is
complete.

Remark 1. Moulin and Shenker (1994) also give a characterization for the serial
cost sharing-rule on a smaller domain than ΓU : the domain of differences of convex
cost functions. For that characterization continuity is not needed. Continuity allows
to characterize the serial cost-sharing rule for all cost sharing-rules. In our case we
cannot restrict the domain to differences of convex cost functions (or to concave cost
functions) since in the proof not all cost functions are convex (or concave).

6. Other characterizations for the reverse self-dual serial

cost-sharing rule

We propose two characterizations for the reverse self-dual serial cost-sharing rule
which are related to the ones provided by Albizuri (2010) for the self-dual serial
cost-sharing rule.

First we characterize the reverse self-dual cost-sharing rule by means of additivity
and the following two axioms. Let σ be a cost sharing rule and (N, q, C) be a cost
sharing problem.

Self duality:
σi (N, q, C) = σi (N, q,DqC) ,

where DqC (t) = C (Q)− C (Q− t) .

Partially dual serial: If C (t) ≤ C (Q/2) when 0 ≤ t ≤ Q then
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σi (N, q, C) = ϕ∗
i (N, q/2, C) .

Self duality requires the cost shares in a problem to be the same in the problem
and in its dual one. And the third axiom requires that if the cost is always less than
the cost of half of the demands then the cost shares to be equal to the cost shares
determined by the dual serial cost-sharing rule when half of the demands are required.

Theorem 7. The reverse self-dual serial cost-sharing rule is the unique cost-sharing
rule that satisfies additivity, self duality and partially dual serial.

Proof. Let us prove ϕR satisfies the foregoing axioms.
Expression (8) implies ϕR satisfies additivity.
By Proposition 1, we get

ϕR
i (N, q,DqC) = ϕ∗

i (N, q/2, DqC) + ϕ∗
i (N, q/2, Dq (DqC)) .

And since Dq (DqC) = C, employing again Proposition 1 self duality is obtained.
Finally, if C (t) ≤ C (Q/2) when 0 ≤ t ≤ Q, then DqC(q) = 0 when 0 ≤ t ≤ Q/2.

Hence, ϕ∗
i (N, q/2, DqC) = 0 and Proposition 1 implies ϕR

i (N, q, C) = ϕ∗
i (N, q/2, C).

Now we prove uniqueness. Let σ be an allocation rule satisfying the three prop-
erties. Given (N, q, C) let C1 and C2 be defined respectively by expressions (17) and
(18). We get C = C1 + C2. Hence, by additivity it only suffices to prove uniqueness
for (N, q, C1) and (N, q, C2) .

On the one hand, partially dual serial implies

σ (N, q, C1) = ϕ∗ (N, q/2, C1) .

On the other hand, from self duality it follows that

σ (N, q, C2) = σ (N, q,DqC2) .

Since DqC2 (t) = C2 (Q) when Q
2
≤ t ≤ Q, partially dual serial implies

σ (N, q, C2) = ϕ∗ (N, q/2, DqC2)

and the proof is complete.

As written in Preliminaries, Albizuri (2010) characterizes the self-dual cost-sharing
rule by means of additivity, self duality and partially serial. So if we compare our
axiomatic characterization with that one, partially serial is considered instead of
partially dual serial.
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In the second characterization we use the following three axioms. Let σ be a cost
sharing rule and (N, q, C) be a cost sharing problem.

Anonymity: Let π : N → N be a one-to-one mapping and πq ∈ RN
+ such that

(πq)i = qπ−1(i) for all i ∈ N . Then

σi (N, πq, C) = σπ−1(i) (N, q, C)

for all i ∈ N.

Independence of null demands: If qi = 0 for some i ∈ N , then

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

)

for all j ∈ N\{i}.

Both axioms are well known. By anonymity the identity of agents is irrelevant,
the individuals are not distinguished by anything other than their demands. Under
independence of null demands the payoffs of the agents do not depend on the demands
of the agents who demand nothing. These two axioms have been employed in the
characterizations of the self-dual serial cost-sharing rule by Albizuri (2010).

And the last axiom is the following one.

Middle equal changes in payoff : Let T ∈ R+ be such that T ≤ min {qi}i∈N . Then

σi (N, q, C)− σi

(
N, q − T · 1N , C

Q

2
−nT

2
,nT
)

= σj (N, q, C)− σj

(
N, q − T · 1N , C

Q

2
−nT

2
,nT
)

for all i, j ∈ N.

According to this axiom, if every agent is given T units and they pay

C

(
Q

2
+

nT

2

)
− C

(
Q

2
− nT

2

)
,

that is, they pay the cost increment from Q
2
− nT

2
to Q

2
+ nT

2
(the cost of nT units in

the middle of production process), and we calculate what they still have to pay, then
the allocations change in the same quantity for every agent.

Albizuri (2010) characterizes the serial cost-sharing rule by means of anonymity,
independence of higher demands and translated equal changes in payoff. We obtain
translated equal changes in payoff if we substitute in middle equal changes in payoff
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C
Q

2
−nT

2
,nT by C0,nT . That is, if we remove the amount nT from the beginning of

production and not from the middle. To prove Proposition 8, we employ the fact
that the serial cost-sharing rule satisfies translated equal changes in payoff . On the
other hand, Albizuri (2010) characterizes the self-dual serial cost-sharing rule by a
translation axiom in which the new cost function is obtained when half of the amount
nT has been removed at the beginning of production process and the other half of
nT at the end.

We provide the axiomatic characterization in two steps.

Proposition 8. The reverse self-dual serial cost-sharing rule satisfies anonymity, in-
dependence of null demands and middle equal changes in payoff.

Proof. It is clear that the reverse self-dual serial cost-sharing rule satisfies ano-
nymity and independence of null demands. To prove that it also satisfies middle
equal changes in payoff let T ∈ R+ be such that T ≤ min {qi}i∈N . If we denote

C0 = C
Q
2
−nT

2
,nT and i, j ∈ N we have

ϕR
i (N, q, C)− ϕR

i (N, q − T · 1N , C0) = ϕi

(
N, q, C̃Q

)
− ϕi

(
N, q − T · 1N , C̃0

Q−nT
)

= ϕi

(
N, q, C̃Q

)
− ϕi

(
N, q − T · 1N ,

(
C̃Q
)0,nT)

= ϕj

(
N, q, C̃Q

)
− ϕj

(
N, q − T · 1N ,

(
C̃Q
)0,nT)

= ϕR
j (N, q, C)− ϕR

j (N, q − T · 1N , C0) ,

where the first equality holds by Proposition 2, the second since C̃0

Q−nT
=
(
C̃Q
)0,nT

and the third because ϕ satisfies translated equal changes in payoff.

Theorem 9. The reverse self-dual serial cost-sharing rule is the unique cost-sharing
rule that satisfies anonymity, independence of null demands and middle equal changes
in payoff.

Proof. By Proposition 8 the reverse self-dual serial cost-sharing rule satisfies the
foregoing axioms. We show uniqueness by induction on |{i ∈ N : qi 6= 0}|.

Let σ be a cost sharing rule that satisfies the three axioms.
If |{i ∈ N : qi 6= 0}| = 0, by anonymity and efficiency σi (N, q, C) = 0 for all

i ∈ N .
Suppose that σ (N, q, C) is determined when |{i ∈ N : qi 6= 0}| < m and suppose

|{i ∈ N : qi 6= 0}| = m.
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Let j = min {i ∈ N : qi 6= 0} and S = {1, ..., j − 1}. Independence of null de-
mands implies

σi (N, q, C) = σi

(
N\S, qN\S, C

)

for all i ∈ N\S.
Thus, by efficiency and anonymity it only suffices to show σi

(
N\S, qN\S , C

)
is

determined for all i ∈ N\S.
Let i ∈ N\S. By middle equal changes in payoff we have

σi

(
N\S, qN\S, C

)
− σi

(
N\S, qN\S − qj · 1N\S, C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj

)

= σj

(
N\S, qN\S , C

)
− σj

(
N\S, qN\S − qj · 1N\S , C

Q
2
−

(n−|S|)qj
2

,(n−|S|)qj

)
. (19)

If we write α = σj

(
N\S, qN\S , C

)
−σj

(
N\S, qN\S − qj · 1N\S, C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj
)
,

equality (19) implies

σi

(
N\S, qN\S , C

)
− σi

(
N\S, qN\S − qj · 1N\S, C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj

)
= α (20)

for all i ∈ N\S.
By adding all the equalities in (19) we get

∑

i∈N\S

σi

(
N\S, qN\S, C

)
−
∑

i∈N\S

σi

(
N\S, qN\S − qj · 1N\S, C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj

)

= (n− |S|) · α.
By efficiency this equality turns into

α =

C

(
∑

i∈N\S

qi

)
− C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj

(
∑

i∈N\S

(qi − qj)

)

n− |S| .

And given that
∑

i∈N\S

(qi − qj) = Q− (n− |S|) qj ≥ Q/2− (n− |S|) qj/2, then

α =

C

(
∑

i∈N\S

qi

)
− C

(
∑

i∈N\S

qi

)
+ C̃Q ((n− |S|) qj)

n− |S| =
C̃Q ((n− |S|) qj)

n− |S| .
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Thus, in equality (20) parameter α is determined and by induction

σi

(
N\S, qN\S − qj · 1N\S, C

Q

2
−

(n−|S|)qj
2

,(n−|S|)qj

)

is determined. Therefore, so σi

(
N\S, qN\S , C

)
is and the proof is complete.

7. Examples

Under convex cost functions agents with lower demands are better with the serial
cost-sharing rule than with the dual serial cost-sharing rule. And on the contrary,
with concave cost functions the dual serial cost-sharing rule is better for agents with
higher demands. If we employ both the reverse self-dual serial cost-sharing rule and
the self-dual serial cost-sharing rule, we see that under convex cost functions agents
with low demands are not as well as with the serial cost-sharing rule and that with
concave cost functions agents with higher demands are not as well as with the dual
serial cost-sharing rule. As an illustration we give some examples which involve
all the rules. In these examples we can see that in some cases agents with lower
(resp. higher) demands are better (resp. worse) with the reverse self-dual serial cost-
sharing rule than with the self-dual rule and that in other cases the opposite holds.
The first happens if the middle cost increments are smaller than the average of the
cost increments at the beginning and at the end of the production, and the second
does in the opposite case. Observe also that not always the reverse self-dual serial
cost-sharing rule and the self-dual serial cost-sharing rule give cost shares in between
the cost shares given by the serial and the dual serial cost-sharing rule.

Consider N = {1, ..., 5}, q = (5, 15, 20, 50, 70) and cost functions C1(t) =
√
t

and C2(t) = t3/1000. The following table summarizes the allocations prescribed by
the serial cost-sharing rule, the dual serial cost-sharing rule, the self-dual serial cost-
sharing rule and the reverse self-dual serial cost-sharing rule. Note that the first cost
function is concave and the other convex.

C1 C2

ϕ (1, 1.77, 2.06, 3.50, 4.32) (3.13, 67.88, 147, 1263, 2615)
ϕ∗ (0.21, 0.67, 0.94, 3.18, 7.65) (327.13, 727. 88, 843, 1095, 1103)
ϕS (0.81, 1.56, 1.88, 3.64, 4.76) (177.78, 469.97, 594.75, 1233.75, 1619.75)
ϕR (0.28, 0.86, 1.16, 3.39, 6.96) (96.78, 304.97, 420.75, 1275.75, 1997.75)

And for cost functions C3(t) = min {t, 100} and C4(t) = t1.5, respectively concave
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and convex,

C3 C4

ϕ (5, 15, 20, 30, 30) (25, 124.76, 188.59, 659.07, 1026.43)
ϕ∗ (0, 1.25, 6.25, 36.25, 56.25) (91.06, 251.71, 321.85, 634.90, 724.34)
ϕS (2.5, 7.5, 10, 30, 50) (55.33, 178.53, 242.81, 639.51, 907.67)
ϕR (5, 11.875, 14.375, 29.375, 39.375) (67.01, 199.71, 264.94, 636.91, 855.28)

Notice that for C3 and C4, rules ϕ
S and ϕR order the allocations in the opposite way

as they do for C1 and C2.

8. References

ALBIZURI, M. J. (2010). “The Self-Dual Serial Cost-Sharing Rule”, Theory and
Decision, 69, 555-567.
ALBIZURI, M. J. and ZARZUELO, J. M. (2007). “The Dual Serial Cost-Sharing
Rule”, Mathematical Social Sciences, 53, 150-163.
de FRUTOS, M. A. (1998). “Decreasing serial cost sharing under economies of scale”,
Journal of Economic Theory, 79, 245-275.
LEROUX, J. (2005). “Strategy Proof Profit Sharing in Partnerships: Improving
Upon Autarky”, Rice University.
MOULIN, H. and SHENKER, S., (1992). “Serial Cost Sharing”, Econometrica, 60,
1009–1037.
MOULIN, H. and SHENKER, S., (1994). “Average cost Pricing versus Serial Cost
Sharing: an Axiomatic Comparison”, Journal of Economic Theory, 64, 178–201.
MOULIN, H., (2000). “Priority Rules and Other Asymetric Rationing Methods”,
Econometrica, 68, 643–684.
MOULIN, H., (2002). “Axiomatic Cost and Surplus Sharing”, in Handbook in Social
Choice and Welfare Vol. 1. Eds. K. J. Arrow, A. IK. Sen, and K. Suzumura. Elsevier
Science.
THOMSON, W., (2008). “Two families of rules for the adjudication of conflicting
claims”, Social Choice and Welfare, 31, 667-692.


