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Abstract

This paper provides a new model of network formation that bridges the gap
between the two benchmark models by Bala and Goyal, the one-way �ow model,
and the two-way �ow model, and includes both as particular extreme cases. As
in both benchmark models, in what we call an �asymmetric �ow�network a link
can be initiated unilaterally by any player with any other, and the �ow through
a link towards the player who supports it is perfect. Unlike those models, in the
opposite direction there is friction or decay. When this decay is complete there is
no �ow and this corresponds to the one-way �ow model. The limit case when the
decay in the opposite direction (and asymmetry) disappears, corresponds to the
two-way �ow model. We characterize stable and strictly stable architectures for
the whole range of parameters of this �intermediate� and more general model.
We also prove the convergence of Bala and Goyal�s dynamic model in this context.
JEL Classi�cation Numbers: A14, C72, D20, J00
Key words: Non-cooperative network formation, Asymmetric �ow, Stability,

E¢ ciency, Dynamics.
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1 Introduction

The seminal paper by Bala and Goyal (2000a) introduced two benchmark models of
network formation: the �one-way �ow�model, and the �two-way �ow�model. In both
models each player can unilaterally create (i.e. initiate and support) links with any
other player.1 These models di¤er in the way that the information, or other bene�ts2

�ow through the resulting network. In the one-way �ow model the �ow through a link
runs only towards the player that supports it, while in the two-way �ow model the
�ow through a link runs in both directions irrespective of who supports it. It is not
surprising that such di¤erent models yield very di¤erent conclusions. In the absence of
friction or decay, the stable (in the sense of Nash equilibrium) networks are merely those
minimally connected in either model, which means completely di¤erent architectures
in either case. The situation is also completely di¤erent in regard to stability in the
strict Nash sense (i.e. where any unilateral deviation of any player means a loss): in
the one-way �ow model the �wheel�is the only strictly stable architecture, while in the
two-way �ow model the only strictly stable architecture is the �center-sponsored star�.
In the presence of decay things become more complicated, but remain very di¤erent
from one model to the other.
Both models have been extended in several directions, but those extensions take one

model or the other as starting point or reference model and ignore the other.3 To the
best of our knowledge, no joint generalization has been provided so far, that is, no model
has been proposed that integrates both models as particular cases. Notwithstanding,
these two benchmark models look like extreme cases in an unspeci�ed sense of an
unspeci�ed model, so di¤erent that comparison is di¢ cult given the lack of intermediate
models. One may, for instance, wonder about how the �transition�from wheels to stars
occurs, but no transition is possible without intermediate situations or models. This
paper provides such an �intermediate�model: a model of network formation that in
fact includes as particular extreme cases the two Bala and Goyal benchmark models.
As in those two benchmark models, in what we call an �asymmetric �ow�network

a link can be initiated unilaterally by any player with any other. As in the one-way
�ow model (without decay), the �ow towards the player who initiates a link is perfect,
without no friction or decay, but in the opposite direction it is not. More precisely,
if player i supports a link with j but player j does not support a link with i, all the

1In Jackson and Wolinsky�s (1996) benchmark model the formation of a link between two players
requires the agreement of both.

2Although other interpretations are possible, we always interpret the �ow in terms of information.
3The two-way �ow model has received more attention, see e.g. Bala and Goyal (2000b), Goyal

and Vega-Redondo (2005), Galeotti et al. (2006), McBride (2006), Feri (2007), Hojman and Szeidl
(2008), Bloch and Dutta (2009). For extensions of the one-way �ow model see Galeotti (2006),
Billand et al. (2008), Derks et al. (2009), Derks and Tennekes (2009). We also address separately
the extension of either model in the presence of constraints (Olaizola and Valenciano, 2011, 2012).
Excellent books surveying this literature are Goyal (2007), Jackson (2008) and Vega-Redondo (2007).
See also Jackson�s (2010) survey.
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information at node j reaches i without friction through this link, but only a fraction
� of the information at node i reaches j through this link. Note that when � = 0 this
is the one-way �ow model, while when � = 1 the asymmetry of �ow disappears and
this is the two-way �ow model. In order to cover it too we include � = 1 in our study
as a limit case. A second parameter of the model is the cost c (which we assume to be
homogeneous across players) of initiating a link. Thus the two benchmark models are
actually the extreme cases of this asymmetric �ow model.
This new model has inherent interest in itself, apart from the nice fact of including

both benchmark models as extreme particular cases. First, it is worth noting that
asymmetry actually occurs in many contexts. In many situations the �ow of informa-
tion between two agents is not equally �uent in both directions, thus taking to some
extent characteristics from both models. For instance, in an interchange between a
boss and a subordinate where the boss is the only one supposed to receive information
(one-way �ow) it is reasonable to expect that some information may also �ow in the op-
posite direction (e.g. about the mood of the boss). Another example is communication
between two people in a language in which they are di¤erently �uent.4 Asymmetry ap-
pears also in telecommunications, where within the bandwidth of a system data speed
or quantity di¤ers from one direction to the other direction. In all these cases one is
in the presence of two-way asymmetric �ow (or �asymmetric �ow�for short).5

This model raises questions about stable, strictly stable and e¢ cient architectures
and the answers go beyond the dichotomy of �wheels versus stars�. Here again wheels
and center-sponsored stars are encountered (for certain con�gurations of values of the
two parameters, � and c), but so are new richer structures such as oriented trees, with
the line as an extreme case among them, and other more complex architectures. We
study the ranges for the parameters where such architectures are strictly stable, which
of them overlap and where (in particular this may be the case for wheels and stars for
certain ranges of these parameters). In fact all these structures, including the wheel
and the center-sponsored star, turn out to be particular cases of a general architecture
precisely described and characterized as the only one for which strict stability may hold.
A similar study about non-strict stability yields a characterization of the architecture
of Nash networks. We also study the e¢ ciency of these architectures and see how in
general stability and e¢ ciency do not go together.
Finally, we address the extension in this setting of Bala and Goyal�s dynamic model

and results. This extension is achieved at the cost of a lengthy algorithmic constructive
proof of the existence of a sequence of best responses which, starting from an arbitrary
network, yields a strict Nash network.
A brief discussion of the conclusions of stability for the simplest case, a three-player

4Including formal languages, such as mathematical formalism in di¤erent �elds or programming
languages.

5To our surprise, entering the term �asymmetric �ow�in Google yielded a large number of scienti�c
works in physics, informatics, medicine or sociology. In informatics the term �two-way �ow networks�
appears in regard to these situations.
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Figure 1: Strict Nash networks for n = 3

society, provides an easy advance illustration of the general model and results presented
and proved in subsequent sections. Consider a three-player society and assume that
(i) each node has an information of value 1 for the other players; (ii) information �ows
through a link without loss in the direction of the player that supports it, but only a
fraction � (0 � � � 1) �ows in the opposite direction; (iii) the cost of initiating a link is
c (0 < c < 1). It can easily be checked that the only architectures that can be strict Nash
are the oriented wheel, the center-sponsored star and the oriented line (each of them
for a certain range of the parameters � and c). These three structures are represented
in Figure 1 along with the payo¤ of each player, the condition for strict stability of
each structure and the aggregate payo¤.6 Figure 2 shows the regions where each of
these three architectures is a strict Nash network. When c < 2� 2� only the wheel is
strictly stable, but beyond this straight line, i.e. when c > 2�2�, the center-sponsored
star is also strictly stable. This situation persists as long as c < 2� �� �2, but when
c = 2����2 a player in a wheel is indi¤erent between keeping or deleting her/his link,
that is to say both structures wheel and line are stable but not strictly stable. Beyond
this point, when c > 2� � � �2 the line is strict Nash but the wheel is not. In short,
parabola c = 2 � � � �2 divides the region of possible values of the parameters into
two disjoint regions: below it the wheel is strict Nash but the line is not, and above it
the line is strict Nash but the wheel is not. The third structure, the center-sponsored
star, is strictly stable above the straight line c = 2 � 2�, thus sharing strict stability
�rst with the wheel and then with the line. Finally, as mentioned previously, it is easy
to check that no other architecture is strict Nash for any value of the parameters. Note
also that the points with the form (0; c) in the rectangle represented correspond to the
one-way �ow model, where the only strict Nash architecture is the wheel, and those
with the form (1; c) correspond to the two-way �ow model, where the only strict Nash
architecture is the center-sponsored star.
As to non-strict Nash stability, the only architecture apart from the three considered

above that can be stable consists of four links, where one player links with the other

6As in all �gures, nodes are represented by dots (without labels unless convenient), and links by
arrows between them with the convention that the node at the tip of the arrow supports it.
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Figure 2: Ranges of strict stability for n = 3

two and s/he is linked by both. This structure is stable for c � 1� �.
Now consider e¢ ciency in the sense of aggregate payo¤. The following conclusions

may be reached for the three possible architectures of a strict Nash network. The
aggregate payo¤ of the wheel is W = 6 � 3c, that of the center-sponsored star is
S = 2 + 4� � 2c, and that of the line is L = 3 + 2� + �2 � 2c. Which of these
networks is most e¢ cient depends on the parameters. As represented in Figure 3,
the rectangle containing all possible pairs (�; c) is divided into three regions by the
parabola c = 3� 2�� �2 and the straight line c = 4� 4�:
- below the parabola: W > L > S;
- between the parabola and the straight line: L > W > S;
- above the straight line, as long as � < 1: L > S > W:

Moreover, it can easily be checked that in the �rst region the wheel is more e¢ cient
than any other network, while in the other two regions it is the oriented line. But
observe that in view of the analysis of strict stability, in the region between parabolas
c = 2 � � � �2 (dotted line in Figure 3) and c = 3 � 2� � �2, although the wheel is
e¢ cient it is not strictly stable. Note also that for � = 1 both the line and the star are
e¢ cient but only the latter is strictly stable.
As the reader may guess, things become more complex when the number of players

increases. Nevertheless, we show that things remain tractable and results extend in a
smooth and clear way. In particular, oriented wheels and root-oriented trees are stable
for certain ranges of values of the parameters,7 but other more complex structures
appear as Nash and as strict Nash networks for certain values of the parameters,
though they are all particular cases of a general pattern.
The rest of the paper is organized as follows. Section 2 outlines the basic model

7Observe that for the three-player case the center-sponsored star and the oriented line are the only
root-oriented trees, while in general they are only the two extreme cases: the shortest and the longest
oriented trees.
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Figure 3: Ranges of e¢ ciency for n = 3

and gives the necessary notation and terminology. Section 3 studies stability and strict
stability. E¢ ciency is dealt with in Section 4. Section 5 applies Bala and Goyal�s
dynamic model to this setting. Finally, Section 6 summarizes the main conclusions.

2 The asymmetric �ow model

Let N = f1; 2; ::; ng denote the set of nodes or players. Each player may initiate and
support links with other players. Let gij 2 f0; 1g denote the existence (gij = 1) or
not (gij = 0) of a link connecting i and j initiated by i. When such a link exists

it is referred to as �link
 
ij�. It is assumed that a link

 
ij allows the transmission of

information or other bene�ts without friction from j to i, but with decay � (0 � � � 1)
from i to j. Vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es the links supported by i and
is referred to as a strategy of player i. Gi := f0; 1gNnfig denotes the set of i�s strategies
and GN = G1 � G2 � :: � Gn the set of strategy pro�les. A strategy pro�le g 2 GN
determines a directed N -network (N;�g), where

�g := f(i; j) 2 N �N : gij = 1g;

which is identi�ed with g and referred to as network g. If M � N then g jM denotes
the M-network (M;�gjM ) with

�gjM := f(i; j) 2M �M : gij = 1g;

which we refer to as the M -subnetwork of g. As N is usually clear from the context,
we generally write just �network�instead of �N -network�.
Given a network g, �gij := maxfgij; gjig de�nes the non-directed network �g whose

links represent the existence of communication, perfect or otherwise but direct, between
nodes in g. A path of length k from j to i in g is a sequence of k+1 players j0; j1; ::; jk,
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s.t. j = j0, i = jk, and for all l = 1; ::; k, �gjl�1jl = 1. A reversed link on such a path
is a pair jl�1jl in the path s.t. gjljl�1 = 0. If the path does not contain any reversed
links it is called i-oriented and written as i

g � j. The distance between two nodes is
the length of the shortest path connecting them. The discounted length of a path from
j to i in g is de�ned as follows: 0 if it is i-oriented or � = 1; the number of reversed
links on the path if � > 0; and 1 if � = 0 and there is at least one reversed link.
It is assumed that each node contains a particular type of information valuable to

other players, and as a link
 
ij transmits information from j to i without friction but

with decay � from i to j, the best communication channel from node j to i is not the
shortest path but the path with the smallest discounted length. This motivates the
following de�nition.

De�nition 1 The �discounted distance� from node j to node i (i 6= j) in a network
g, denoted by �(i; j; g), is the discounted length of the path from j to i for which the
discounted length is minimal. If no path between i and j exists we write �(i; j; g) =1,
and we set �(i; i; g) = 0.

Thus, if there is an i-oriented path from j to i then �(i; j; g) = 0. Note that the
discounted distance is not symmetric, i.e. it may well be the case that �(i; j; g) 6=
�(j; i; g).8 In Figure 4 an example illustrates the notion of discounted distance.
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Figure 4: Discounted distance

A weak (strong) component of a network g is a subnetwork g jC , where C � N ,
such that for any two players i; j 2 C, �(i; j; g) <1 (�(i; j; g) = 0), and no set strictly
containing C meets this condition. We say that g is weakly (strongly) connected if g
is the unique weak (strong) component of g. A weak (strong) component of a network
is minimal if for all i; j s.t. gij = 1, the number of weak (strong) components of g is
smaller than the number of weak (strong) components of g � ij, where g � ij is the
network that results from replacing gij = 1 by gij = 0 in g. A network is minimally
weakly (strongly) connected if it is weakly (strongly) connected and minimal. Note that
when 0 < � < 1, weak (strong) connectedness means the existence of a path (oriented

8Note that �(�; �; g), though not a metric, satis�es the triangle inequality, i.e. �(i; k; g) � �(i; j; g)+
�(j; k; g).
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path) between any two players. When � = 0 (one-way �ow) or � = 1 (two-way �ow)
the following is obtained:

�(i; j; g) <1, �(i; j; g) = 0;

therefore in both cases weak component and strong component are equivalent notions,
and consequently those of (minimally or not) weakly connected network and strongly
connected network are also equivalent. In fact, both variants of these notions are
equivalent and coincide with what in the context of one-way and two-way �ow models
is called a component, connectedness and minimal connectedness in Bala and Goyal
(2000a).
The set of players with whom i supports a link is denoted by Nd(i; g), its cardinality

by �di (g), and the set of players at a �nite discounted distance from i by

N(i; g) := fj 2 N : �(i; j; g) <1g:

Thus each node i receives some information from all nodes at a �nite discounted dis-
tance from it. Let vij > 0 be the payo¤ that player i derives from j when �(i; j; g) = 0,
and cij > 0 the cost for player i of initiating a link with j. As vii and cii play no role
in the strategic analysis, it is assumed that vii = cii = 0. Thus, the payo¤ of player i
in g is

�i(g) =
X

j2N(i;g)

vij�
�(i;j;g) �

X
j2Nd(i;g)

cij:

In what follows costs and bene�ts are assumed to be homogeneous across players
(i.e. vij = v and cij = c, for all i 6= j). It is also assumed that v > c, so that connecting
with new nodes (i.e. those at discounted distance 1) is always pro�table. Without
loss of generality it is assumed that v = 1. In short, the following is assumed:

�i(g) =
X

j2N(i;g)

��(i;j;g) � c�di (g) (c < 1): (1)

The �rst term on the right-hand side of (1) represents the information that reaches
player i through network g and the second its cost. Denoting them by

Ii(g) :=
X

j2N(i;g)

��(i;j;g); Ci(g) := c�
d
i (g);

(1) can be rewritten as

�i(g) = Ii(g)� Ci(g) (c < 1);

that is: Payo¤ = Information - Cost.
One network is said to be more e¢ cient than another when the aggregate payo¤ is

greater. A network is e¢ cient if it maximizes the aggregate payo¤.

7



3 Stability

Following Bala and Goyal (2000a), we consider two notions of stability. Let g�i denote
the network where all links supported by i in g are deleted, and (g�i; g0i) the strategy
pro�le and network that results from replacing gi by g0i in g.

De�nition 2 A Nash network is a network g that is stable in the following sense: for
all i 2 N :

�i(g) � �i(g�i; g0i) for all g0i 2 Gi: (2)

When (2) holds, gi is said to be a best response of i to g�i. The stability notion can
be re�ned in the strict sense:

De�nition 3 A strict Nash network is a Nash network g that is stable in the following
stronger sense: for all i 2 N :

�i(g) > �i(g�i; g
0
i) for all g0i 2 Gi (g0i 6= gi): (3)

Thus, in a strict Nash network a unilateral change of strategy means a loss for the
player who makes it. We �rst focus our attention on the strict stability, only when this
issue is solved do we address the question of non-strict stability.
As a term of reference we �rst establish the range of values for the parameters

within which the oriented wheel, the center-sponsored star and the oriented line are
strict Nash networks. An oriented wheel, a wheel for short,9 is a network g s.t. for a
certain permutation of N , i1; i2; ::; in, we have gikik+l = 1 (k = 1; ::; n� 1), and gn1 = 1,
and no other links exist. A center-sponsored star, a star for short, consists of a node
(the center) that supports a link with each of the others and no other links exist. An
oriented line, a line for short, is a network g s.t. for a certain permutation of N ,
i1; i2; ::; in, we have gikik+l = 1 (k = 1; ::; n� 1), and no other links exist.

Proposition 1 In a society with n players where payo¤s are given by (1) :
(i) The oriented wheel is strict Nash if and only if c < n� 1� �� �2 � :::� �n�1.
(ii) The center-sponsored star is strict Nash if and only if c > n� 1� (n� 1)�.
(iii) The oriented line is strict Nash if and only if c > n� 1� �� �2 � :::� �n�1.

Proof. (i) In an oriented wheel all players receive all the information in the network
without friction paying a single link each, i.e. a payo¤ of n � 1 � c. Thus the only
possible best response of a player is to delete her/his single link, which would mean a
payo¤ of � + �2 + ::: + �n�1 for the player doing so. Therefore, the oriented wheel is

9In the literature the adjective �oriented� is often omitted, so an oriented wheel is usually called
just a wheel. But given the importance of its oriented nature we choose to use the term at least in the
statement of the results, omitting it sometimes in the text for the sake of brevity. The same applies
for oriented lines and trees as de�ned bellow.
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strictly stable if n�1�c > �+�2+ :::+�n�1; which yields the necessary and su¢ cient
condition.
(ii) In a center-sponsored star the center has no best response given that c < 1

and consequently deleting a link would mean a loss. The payo¤ of each spoke agent
is (n� 1)�, while initiating the most rewarding link, i.e. with the center, would mean
n�1�c. Thus, the center-sponsored star is a strict Nash network if (n�1)� > n�1�c,
which yields the necessary and su¢ cient condition.
(iii) In an oriented line, given that c < 1; deleting a link would mean a loss. The

less demanding best response would be that of the player supporting no link and would
consist of initiating a link with the player that receives all, i.e. n� 1; without friction.
The condition for this not to be a best response is the exact reverse of the one obtained
for the oriented wheel. Observe that the only di¤erence between the oriented wheel
and the oriented line is whether or not a link exists.

//
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Figure 5: Ranges of strict stability for n � 3

Figure 5 shows the regions where each of these three architectures is strictly stable.
The wheel is strict Nash below the polynomial function c = n� 1����2� :::��n�1
(i.e. in regions I and II), the center-sponsored star above the straight line c = (n �
1)� (n� 1)� (regions II and III), so that both are strict Nash between these two lines
(region II). The line becomes strictly stable just where the wheel ceases to be so (region
III). As the number of players grows, the range of values of the parameters for which
the wheel is strictly stable widens while those for the line and the star shrink.
Note that Figure 2 represents the particular case for n = 3 of Figure 5. For n = 3

there are no more strict stable architectures but this is not so for n > 3. In particular,
many more oriented trees other than the center-sponsored star and the oriented line
appear, each of them strictly stable for a certain range of the parameters as we presently
show. A root-oriented tree is a network where there is a single node i0, called the root,
such that for any other node j there is a unique path from j to i0, and that path is
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i0-oriented. Observe that in a root-oriented tree all the information in the tree reaches
the root without friction (at the cost of as many links as the root supports), while all
other nodes receive some of the information in the network with some loss. Note also
that on going further down the tree away from the root by any path the amount of
information that reaches a node diminishes. In particular, a terminal node pays no link
but receives less information than its predecessors closer to the root. The following
notation proves useful. Let g be an i0-oriented tree, i a node and assume that the
length of the path connecting i0 and i is r. Notice that then the maximal discounted
distance from any node in the tree to i is r. Then there is a partition of Nni into r
disjoint sets Ni0; Ni1; Ni2; ::; Nir, where

Nis := fj 2 Nni : �(i; j; g) = sg:

Thus, denoting the cardinality of Nis by nis, the payo¤ of a node i in a root-oriented
tree is given by

�i(g) = ni0 + ni1�+ ni2�
2 + :::+ nir�

r � c�di (g): (4)

Note that for a terminal node in the tree, as ni0 = 0 and �di (g) = 0, the following is
obtained

�i(g) = Ii(g) = ni1�+ ni2�
2 + :::+ nir�

r: (5)

Then the following result emerges concerning the stability of trees.

Proposition 2 A root-oriented tree g is a strict Nash network if and only if: � = 1
and g is a center-sponsored star; or � < 1 and Ii(g) > n� 1� c for all terminal nodes.

Proof. Let g be a root-oriented tree. As c < 1 no deletion can be a part of a best
response. If � = 1 and there is a path, i2, i1, i0, of length 2 from a node i2 to the
root i0, then replacing its link with i1 by a link with i2 is a best response of i0 (same
payo¤) and g is not strict Nash. Therefore if � = 1 the only root-oriented tree that is
strict Nash is the center-sponsored star. If � < 1 the root has no best response, and
the only possible best response of a player other than the root is to initiate a link with
the root. For this not to be a best response, the current payo¤ must be greater than
what s/he would receive by initiating that link. That is, using (4), for all nodes other
than the root must be

ni0 + ni1�+ ni2�
2 + :::+ nir�

r � c�di (g) > n� 1� c� c�di (g);

or equivalently
ni0 + ni1�+ ni2�

2 + :::+ nir�
r > n� 1� c:

That is, Ii(g) > n � 1� c. The same condition is necessary for all players other than
the root, but it is terminal players whose payo¤s would improve most if they initiate
a link with the root (they receive less information than their predecessors). In other

10



words it is for terminal players that this condition is most demanding. Thus, g is a
strict Nash network if and only if the following condition holds for all terminal node i:

Ii(g) = ni1�+ ni2�
2 + :::+ nir�

r > n� 1� c: (6)

Note that when � = 0 this condition cannot be met, i.e. no root-oriented tree is strict
Nash in this case.
Observe that because the oriented line and the center-sponsored star are root-

oriented trees parts (ii) and (iii) of Proposition 1 are now corollaries of Proposition 2.
Nevertheless, the range of strict stability which has been established for each of the
three architectures in Proposition 1 allows a clearer idea of the ranges of the new ones
yet to be established. In particular, Figure 5 region II gives upper and lower bounds
for the region where any other root-oriented tree can be strictly stable. Note that the
bound for the cost c in terms of � for any root-oriented tree is of the form

c > n� 1� (ni1�+ ni2�2 + :::+ nir�r);

for a terminal node, but observe that whatever the root-oriented tree is, for all �
(0 < � < 1):

�+ �2 + :::+ �n�1 < ni1�+ ni2�
2 + :::+ nir�

r < (n� 1)�: (7)

For this, observe that the three terms that appear in (7) are polynomials whose coe¢ -
cients are positive integers that add up to n� 1, given that each of them is the result
of adding each of n � 1 nodes times its discounted distance to the terminal node of
a root-oriented tree.10 Therefore the concave curve above which a root-oriented tree
is strictly stable is between the straight line corresponding to the center-sponsored star
and the curve corresponding to the oriented line, i.e. it is within region II in Figure 5.
In sum, at this stage it results that oriented wheels and root-oriented trees are strict

Nash networks for certain ranges of values of the parameters. As we show below, there
is a still more complex architecture that can be stable, in fact an architecture that
incorporates all the preceding ones as particular cases, which we call �wheel of trees�
or �hybrid vortex�. A wheel of trees or hybrid vortex is a network which consists of a
set of nodes i1; i2; ::; ik (k � 1) arranged as an oriented wheel if k > 1 (i.e., gilil�1 = 1
for l = 2; ::; k, gi1ik = 1 and no more links between them exist), plus a �tributary� il-
rooted root-oriented tree til for some of them (see Figure 6). That is, each il belonging
to the central wheel can be the root of a root-oriented tree til. Let wil denote the
�weight�(i.e. the number of nodes) of tree til, with wil = 1 if no tree hangs from il.
In a minimally weakly connected network with such an architecture all nodes in the
central wheel (and they alone in the network if � < 1) receive all the information from

10The particular structure of such polynomials makes it easy to make comparisons within the interval
0 < � < 1, where � > �2 > �3:: . Note that given one such polynomial, any �transfer of weight�from
a coe¢ cient of, say �k, to that of smaller power �l (l < k) increases its value.
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all the nodes through the tributary trees without loss.11 Observe also that this structure
includes the oriented wheel (when no tree hangs from any node in the central wheel
or, equivalently, if k = n), and the oriented tree (when the central wheel collapses into
a single node or, equivalently, if k = 1). In terms of this notation and terminology the
following result emerges.

q q
q

qq
q
�A

AK

�
��

-
A
AU

�
��

qqqq HHj-
��*-

qq
?

A
AU

qq�
HHY

q q� �
q

���
q�
q

���

q6
Figure 6: A wheel of trees

Proposition 3 A wheel of trees g consisting of a wheel with nodes i1; i2; ::; ik and
tributary trees til (l = 1; 2; ::; k) is strict Nash if and only if

n� 1� (Ij(til) + ��(j;il;til )
X
r 6=l

wir) < c < n� (wp(i1) + wp(i2)�+ :::+ wp(ik)�k�1); (8)

for all l = 1; 2; ::; k, all terminal node j 2 til, and all cyclic permutation p of the �nite
sequence i1; i2; ::; ik.

Proof. In a wheel of trees there are only two possible types of best response: that
of a player in the wheel deleting her/his wheel-link, and that of a player not in the
wheel initiating a link with any player in the wheel. For the �rst action not to be a
best response the condition is similar to the one obtained for the wheel in Proposition
1, but now each of the nodes in the wheel has a �weight�other than 1 if a tree hangs
from it. In order for a player, say i1, in the wheel to lose by deleting her/his wheel-link
the following inequality must hold

wi1 � 1 + wi2�+ :::+ wik�k�1 < n� 1� c;

or equivalently
c < n� (wi1 + wi2�+ :::+ wik�k�1):

11We have been compelled to invent a name for these new structures. �Wheel of trees� seems a
rather descriptive name, while �vortex�was suggested by their similarity to a spinning �ow of �uid,
and �hybrid�because of their mixed character. We have chosen to use the �rst of these names in the
rest of the paper.
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Thus, this condition must hold for all the nodes in the wheel (i.e. replacing i1
by any other ir in the role of �deleter�). In other words, it must hold for any cyclic
permutation of i1; i2; ::; ik which yields the upper bound for c.
As to the players not in the wheel, since each of them is in one of the tributary

trees a condition similar to the one obtained in Proposition 2 for the trees emerges,
but now the root, say ik, accumulates a weight of wi1 + wi2 + ::: + wik�1 . Again the
most demanding condition is for some of the terminal nodes. Namely, the following
condition is needed: for any node il in the wheel and any terminal node j in that tree
til whose information received from the tributary tree it belongs to is Ij(til)

Ij(til) + �
�(j;il;til )

X
r 6=l

wir > n� 1� c;

must hold, or equivalently

c > n� 1� (Ii(til) + ��(j;il;til )
X
r 6=l

wir);

which yields the lower bound for c.

Remarks: (i) Note that a wheel of trees shares to some extent the natures of both a
tree and a wheel. Thus we obtain for c both a lower bound (as for oriented trees) and
an upper bound (as for the oriented wheel).
(ii) In fact, Proposition 3 contains Propositions 1 and 2. To see this note that

when the central wheel collapses into a node (i.e. k = 1), only the lower bound for c
remains in (8) and becomes exactly that for terminal nodes in Proposition 2. When
no tree hangs from any node in the central wheel (i.e. k = n) only the upper bound
for c remains in (8) and, as all weights are 1, this bound becomes exactly that in (i) in
Proposition 1.
(iii) At �rst sight the bounds for c between which a wheel of trees remains strict Nash

may seem somewhat obscure. However, it is easy to see exploiting their polynomial
form that both bounds lie within region II in Figure 5 (between the straight line c =
n� 1� (n� 1)� and the polynomial function c = n� 1� �� �2 � :::� �n�1) where
the wheel and the center-sponsored stars are strictly stable. In other words, the region
where a wheel of trees is strictly stable is contained within the region where both the
wheel and the center-sponsored star are strictly stable.
(iv) It may well be the case that for a certain wheel of trees the lower bound for

c is greater than the upper bound for any � (0 < � < 1), in which case it is never a
strict Nash network. For instance, in the three-player case the wheel of trees where
one player supports a link with each of the other two and only one of them supports a
link with it is not a strict Nash network whatever the values of the parameters.
(v) For the interval de�ned by (8), within which a wheel of trees is strictly stable, not

to be empty a delicate trade-o¤balance is required. Some examples help to understand
this better.
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Example 1: Consider them(n+1)-node wheel of trees consisting ofm nodes arranged
as an oriented wheel and each of them supporting links with n di¤erent nodes. Given
the symmetry of the network, conditions (8) yield the following conditions on the
parameters for such an architecture to be a strict Nash network:

(mn+m� 1)(1� �) < c < mn+m� (n+ 1)(1 + �+ �2 + :::+ �m�1):

Which, for instance, if m = 6, n = 3 and � = 0:97, gives that this architecture is strict
Nash for any cost in the interval12 0:69 < c < 1:

Example 2: Consider the (m+n)-node wheel of trees consisting of m nodes arranged
as an oriented wheel and only one of them supporting links with n nodes. In this case
(8) yield the following conditions on the parameters:

(mn+m� 1)(1� �) < c < m� (1 + �+ �2 + :::+ �m�1):

By comparing the two curves within the interval 0 � � � 1, it is easy to conclude that
there is room between them only if m3 � 3m > 2n � 2. Thus, for instance, if m = 6,
then it must be that n < 10 for the above interval to be nonempty. As a numerical
example, if m = n = 6 and � = 0:95, this architecture is strictly stable within the
interval of cost 0:55 < c < 0:70184:

Proposition 3 gives the range of parameters for which a wheel of trees is strict Nash.
We now show that this is the only possible architecture of a strict Nash asymmetric
�ow network. The following straightforward lemma is most useful in characterizing
strict Nash networks.

Lemma 1 If g is a strict Nash network then no three nodes i; j; k exist such that
gik = gjk = 1.

Proof. Assume gik = gjk = 1 with i 6= j. Then all the information that reaches k also
reaches j without decay through link

 
jk, and player i can replace link

 
ik by link

 
ij

without loss. Therefore g is not a strict Nash network.

Theorem 1 In the asymmetric �ow model a network is strict Nash if and only if it is
a weakly connected wheel of trees that satis�es (8).

Proof. As su¢ ciency was established in Proposition 3, it only remains to show ne-
cessity. Let g be a strict Nash network. Assume that g contains a sequence of players
i1; i2; ::; ik, arranged as a wheel (i.e. �gilil�1 = 1 for l = 2; ::; k, �gi1ik = 1). From Lemma
1 it follows that they must form an oriented wheel. If it contains all players we are
done. Otherwise, as g is strict Nash and c < 1, any other node must be connected
to the wheel and, again by Lemma 1, this connection must be by an il-oriented path

12In fact, the upper bound given by (8) is 1:729, but the model assumes c < 1.
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with an il in the wheel. Moreover, for each player not in the wheel the oriented path
connecting it to the wheel must be unique, otherwise Lemma 1 would be contradicted.
Thus the architecture implied is that of a wheel of trees. Now assume that g does not
contain a sequence of players arranged as a wheel. Let Prd (for �predecessor�) be the
binary relation de�ned by

i Prd j , i
g � j or i = j:

This relation is re�exive, antisymmetric (note that i
g � j and j g � i would imply

the existence of a wheel) and transitive. As g is strict Nash, there must be a path
connecting any two players i and j. From Lemma 1, necessarily either i

g � j or
j

g � i or there is a third player k s.t. i g�! k
g � j. In other words, for any two

players there is a common predecessor. But then there must be a unique predecessor
of all players, i.e. a player i0 such that for every other player j there is a path i0

g � j.
And from Lemma 1 that path must be unique. Thus g is an i0-oriented tree.

Conclusion 1 Summarizing the study of strict Nash asymmetric �ow networks the
following picture emerges as one moves from south-west to north-east in the rectangle
containing all pairs of values of the two parameters of the model (or from � = 0 to
� = 1 along any horizontal straight line c = constant). First only the oriented wheel
is strict Nash (region I in Figure 5), then the center-sponsored star becomes also strict
Nash. Then, as one goes further right, other oriented trees also become strict Nash until
the last tree, i.e. the oriented line, also becomes strict Nash. In this range of values for
the parameters (region II) where oriented wheels and trees coexist as strict Nash some
wheels of trees also appear as strict Nash but, unlike the oriented trees that remain
strict Nash as � increases, these hybrid creatures remain strict Nash only ephemerally
for a narrow subset13 of values within region II. Finally, as soon as the last tree (the
oriented line) joins the set of strict Nash networks the wheel abandons it. All oriented
trees remain strict Nash in region III, but when � = 1 a brusque discontinuity occurs
and only the center-sponsored star survives as strict Nash.

Remark: It is worth noting the di¤erent images of the two limiting cases, � = 0 and
� = 1, from the point of view provided by the asymmetric �ow model. The case � = 0
appears as just the case of maximal asymmetry and the conclusions about strict Nash
networks for this case (i.e. the one-way�ow model) remain unchanged for a wide range
of values of the parameters. In contrast, when asymmetry disappears for � = 1 a
brusque discontinuity occurs: for values of � slightly smaller than 1 all oriented trees
are strict Nash, but only the center-sponsored star remains strict Nash for � = 1.

We now address the structure of non-strict Nash networks. As c < 1, the obvious
�rst conclusion is that Nash networks are weakly connected. The following weak version
of Lemma 1 is rich in implications about their architecture.
13Note that this �narrowness�concerns particularly to �, but for each � within that narrow interval

it may well be the case that a wheel of trees remains strictly stable for a relatively wide range of cost.
See, for instance, Example 1.
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Lemma 2 If g is a Nash network and gik = gjk = 1 for three nodes i; j; k, then link
 
ik

is part of an oriented wheel and link
 
jk is part of another oriented wheel.

Proof. Let g be a Nash network and assume gik = gjk = 1. As all the information

that reaches k also reaches j without decay through link
 
jk, player i can replace link

 
ik by link

 
ij without loss. But also without gain given that g is a Nash network. This

implies that k receives the unit of j�s worth without decay in g. Thus, there is a path

j
g�! k that with

 
jk completes a wheel. The same conclusion is obtained similarly for

link
 
ik.
The following lemma provides information about the structure of Nash networks.

Lemma 3 Let g be a Nash network. If g contains two oriented wheels, W and W 0,
there is a sequence of oriented wheels W1; ::;Wk s.t. W \W1 6= ?, W 0 \Wk 6= ?, and
Wl \Wl+1 6= ? (l = 1; ::; k � 1).

Proof. If W \W 0 6= ? we are done. Assume W \W 0 = ?. Assume �rst 0 < � < 1.
As g is weakly connected, there must exist a node i 2 W and a node i0 2 W 0 connected
by a path i0; i1; ::; ik, s.t. i = i0, i0 = ik, and for all l = 0; ::; k � 1, �gilil+1 = 1. Assume
�rst that this path is oriented, say, without loss of generality, i0-oriented, then i = i0
is linked by a node in W and by i1. Then, by Lemma 2, link

 �
i1i0 is part of an oriented

wheelW1. By reiterating this step, applying Lemma 2 repeatedly, the desired sequence
of wheels is proved to exist. If the path connecting i and i0 is not oriented, then at a
node il in the path either gil�1il = gil+1il = 1 (case 1), or gilil�1 = gilil+1 = 1 (case 2). In
the �rst case Lemma 2 applies to both links, and can be repeatedly applied in either
direction as far as the links have the same orientation as the preceding ones until either
W or W 0 is reached or an inverted link is met, but then the second case arises. In this
case the reversed link has its tail closer to a wheel than its tip, so that the subsequent
links either all have this orientation until the wheel is reached and Lemma 2 can be
applied as in the oriented case, or at some point case 1 emerges again. Thus, whatever
the path connecting i and i0, each of its links belongs to an oriented wheel. Now assume
� = 0. In this case, weak connectedness is equivalent to strong connectedness, so that
there is an oriented path connecting any two players. This is the �rst case considered
when 0 < � < 1, and by an identical argument the same conclusion is obtained. As to
the case � = 1, the lemma holds trivially given that no wheel can be part of a Nash
network in this case.
Thus, a Nash network either contains no oriented wheel or they are all intercon-

nected. A maze of oriented wheels within a network is referred to as a subnetwork
consisting of a set of oriented wheels such that for any two wheels W and W 0 in this
set there is a sequence of oriented wheels in the set s.t. the �rst is W , the last is W 0,
and any two consecutive wheels in the sequence share at least one node. In order to
simplify the statement of the next result the degenerate case of a single node is included
as a maze of oriented wheels. This gives the following result.
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Theorem 2 In the strictly asymmetric �ow model the only possible architecture of a
Nash network is that of a weakly connected network with at most one strong component
(consisting of a maze of wheels which is minimally strongly connected) plus a number
of root-oriented trees whose roots belong to the maze.

Proof. First assume that g contains an oriented wheel. Therefore, from Lemma 3 all
oriented wheels are interconnected and form a maze of wheels. If the maze contains all
nodes we are done. Otherwise, by reasoning exactly as in Theorem 1, the conclusion
is that any other player lies in a root-oriented tree whose root belongs to the maze. If
the network does not contain any oriented wheels, in view of Lemma 2 no three nodes
i; j; k exist such that gik = gjk = 1. But this was the conclusion of Lemma 1 for any
strict Nash network. So by reasoning exactly as in Theorem 1, it can be concluded
that g is a root-oriented tree.

Remarks: (i) Theorem 2 establishes the only possible architecture of a Nash network
in the strictly asymmetric �ow model,14 but not every network with this architecture
is a Nash network. As was the case for strict Nash networks, for this to be true some
conditions involving the parameters must hold. First, every terminal node of the trees
sets a lower bound for c similar to the one in (8), but now with non-strict inequality.
Second, every link in the maze sets an upper bound for c, but now the variety of mazes
makes it impossible to formulate them as precisely as for a strict Nash network beyond
the following general condition: for every node i in the maze, and every j 2 Nd(i; g),

�i(g � ij) = Ii(g � ij)� c(�di (g)� 1) � n� 1� c�di (g),

or equivalently, c � n� 1� Ii(g � ij):
(ii) Observe that a strict Nash network is a Nash network whose �maze�consists

of at most one single oriented wheel.
(iii) In a Nash network the nodes in the maze receive all the information from the

network without decay (i.e. Ii(g) = n� 1 for all i in the maze), while in the periphery
of tributary oriented trees each node receives without decay only the information from
the nodes in the lower part of the tree that it belongs to, while information from all
other nodes is received with decay.
(iv) When � = 0 the weak and strong variants of minimal connectedness are equiv-

alent to minimal connectedness, which eliminates the trees. Thus the conclusion of
Theorem 2 can be rewritten like this for this particular case:

Corollary 1 When � = 0 (i.e. in the one-way �ow model) a Nash network is a maze
of wheels minimally connected.

14For instance, for the tree-player case discussed in the introduction the only non-strict Nash network
(for c � 1��) consists of four links, where one player links with the other two and is linked by both,
but note that this is a maze consisting of two two-player wheels.
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4 E¢ ciency

A comparative study of the relative e¢ ciency of the oriented wheel, the center-sponsored
star and the oriented line such as the one in the introduction yields the following results.
In an n-player society the aggregate payo¤ of the oriented wheel is

W =
X
wheel

ui = n(n� 1� c);

the aggregate payo¤ of the center-sponsored star is

S =
X
star

ui = (n� 1)(n� 1)�+ (n� 1)(1� c);

and the aggregate payo¤ of the oriented line is

L =
X
star

ui = (n� 1)�+ (n� 2)�2 + :::+ 2�n�2 + �n�1 +
n(n� 1)

2
� (n� 1)c;

which for � 6= 1 can be rewritten as

L =
n(n� 1)

2
+
(n� 1)�
1� � � (1� �

n�1)�2

(1� �)2 � (n� 1)c:

//

6 //

-

6

I II

III IV

0 1�

1

c

c = n2 � 2n+ 1� (n� 1)2�

c = n(n�1)
2 � (n�1)�

1�� + (1��n�1)�2
(1��)2

��

?

J
J
J
J
J
J
J
J
J
J
J
J
J
J

Figure 7: Ranges of e¢ ciency for n > 3

Comparing these �gures, W , S and L, the situation described on Figure 7 emerges.
The rectangle of possible values of the parameters is divided into four regions. In region
I, when � < �, where � is the solution of (n�1)(n�2)�2(n�1)

2�
2

+ (n�1)�
1�� �

(1��n�1)�2
(1��)2 = 0,15

we have
W > L > S:

15Equating L and S yields this equation, which has a unique solution in the interval (0; 1).
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In region II, when � > � and c < n2 � 2n+ 1� (n� 1)2�:

W > S > L:

In region III, when n2 � 2n+ 1� (n� 1)2� < c < n(n�1)
2
� (n�1)�

1�� + (1��n�1)�2
(1��)2 :

S > W > L:

In region IV, when c > n(n�1)
2
� (n�1)�

1�� + (1��n�1)�2
(1��)2 :

S > L > W:

Thus, the oriented line is always beaten by the wheel or the star but, unlike in the
three-player case discussed in the introduction, it may be that none of these structures
is e¢ cient. For instance, for n = 5 and a certain range of values, the e¢ cient network
is an oriented tree of length 2 where the root supports only one link. A comparison
with the two benchmark models is pertinent here. In the two-way �ow model all Nash
networks, strict or not, are e¢ cient, while in the one-way �ow model not all Nash
networks are e¢ cient, but the strict Nash networks (i.e. the oriented wheels) are. In
contrast, as seen in the three-player case and as is the case in general, in the asymmetric
�ow model Nash and strict Nash networks may not be e¢ cient and e¢ cient networks
may not be stable. In other words, e¢ ciency and stability do not in general go hand
in hand in the asymmetric �ow model.

5 Dynamics

We now consider Bala and Goyal�s (2000) dynamic model in this setting. Namely,
starting from any initial network g, in each period each player i responds, independently
from the others, with a positive probability with a best response to g�i (this includes
any strategy that yields the same payo¤ to i as the current one when no strategy
can improve i�s payo¤), or randomizes across them when there are more than one.
Otherwise, player i exhibits inertia, i.e. keeps her/his links unchanged. In this way,
a Markov chain on the state space of all networks is de�ned. Bala and Goyal (2000)
proves that this dynamic model converges to the oriented wheel for the one-way �ow
model and to the center-sponsored star for the two-way �ow model. They prove this by
showing that starting from any network a �nite sequence of best responses exists that
leads to a strict Nash network. In the current setting, as seen above, depending on the
parameters � and c and on the number of players, beyond the region where the oriented
wheel is the only one there is a rich family of strict Nash networks. Nevertheless, we
are able to prove that generically, i.e. save for at most a subset of zero measure of
the rectangle of feasible values of the parameters, this dynamic process converges to a
strict Nash network. Namely, we have the following result.

Theorem 3 In the asymmetric �ow model best response dynamics converge generically
to a strict Nash network with probability 1.
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Proof. The cases � = 0 and � = 1 are covered by Bala and Goyal�s (2000) results.
Thus, it su¢ ces to show that for 0 < � < 1, save for at most a subset of zero measure of
the rectangle of feasible values of the parameters, starting from any network, a sequence
of best responses exists where at each stage a single node plays a best response while
the others exhibit inertia that ends up at a strict Nash network. The proof is given in
three steps. First, we show that from any network a �nite sequence of best responses
exists which yields a network where at least one player receives all the information
without loss (Lemma 4). We then prove that from any such network a sequence of best
responses exists which yields a wheel of trees where all nodes except perhaps those
in the central wheel play their unique best responses. Finally, we show that starting
from any such network a sequence of best responses exists which yields a strict Nash
network. Given the complexity of generating such sequences we provide an algorithmic
proof of the second and third steps, proving that the second one necessarily terminates
and the third one generically terminates and yields a strict Nash network.

The following lemma provides the �rst step.

Lemma 4 Let g be any network, then either there is a player that receives all the
information without loss (i.e. Ii(g) = n � 1 for at least one i) or there is a �nite
sequence of best responses that yields a network where at least one player receives all
the information without loss.

Proof. The cases � = 0 and � = 1 are covered by Bala and Goyal�s (2000) results.
Thus we assume 0 < � < 1. Assume that g is a network where no player receives all the
information without loss (i.e. for all i, Ii(g) < n� 1). Then, in view of Theorem 1, g
is not a strict Nash network, and consequently at least one player has a best response.
Let one of these players play a best response while all other players maintain their
current strategies. Since c < 1 this player must be connected by a path with any other
player in the resulting network g0, and, as � > 0, g0 must be weakly connected. Then
choose a node i0 among those that receive the largest amount of information in g0. If
Ii0(g

0) = n � 1 we are done. Otherwise, there is a node from which the discounted
distance to i0 is > 0. Let i be a node for which �(i0; i; g0) is maximal. Then choose
a node j among those s.t. �(i; j; g0) = 0 and �(i0; j; g0) = �(i0; i; g

0) for which the
length of the shortest i-oriented path to i is the largest (if there is no such a node
j 6= i, then take j = i). Let g00 be the network that results from j deleting all j�s

links and adding16 only one with i0,
 �
ji0. Let us see that Ij(g00) � Ii0(g0) > 0 and �nd

a lower bound for this di¤erence. Assume that j supports a link
 �
jj0 in g0, then either

�(i0; j
0; g0) < �(i0; i; g

0); or �(i0; j0; g0) = �(i0; i; g0) and there is a shorter i-oriented path

from j0 to i. In both cases the deletion of
 �
jj0 cannot damage i0�s sight of j0, nor

damage i0�s sight of j because as, in addition to all deletions, j initiates a link with i0,

16Note that necessarily g0ji0 = 0, otherwise, given the choice of j, Ij(g
0) > Ii0(g

0), which contradicts
the choice of i0.
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we have �(i0; j; g00) = 1 � �(i0; j; g0). So j, by a single link with i0, receives in g00 all the
information received by i0 in g0 minus that of node j itself (i.e. ��(i0;j;g

0) = ��(i0;i;g
0)),

plus that of node i0 now without decay, that is:

Ij(g
00) = Ii0(g

0) + 1� ��(i0;i;g0);

and consequently as j supports only one link in g00 and as i0 supports at least one in g0

(otherwise i0 cannot be the node that receive the largest amount of information in g0):

�j(g
00) = Ij(g

00)� 1 = Ii0(g0)� ��(i0;i;g
0) = �i0(g

0) + Ci0(g
0)� ��(i0;i;g0)

� �i0(g0) + 1� ��(i0;i;g
0) � �i0(g0) + 1� �:

Thus j has a response that means a payo¤ in g00 at least as large as that of i0 in g0 plus
1�� > 0. This may or not be a best response, but it means that j has a best response
yielding a network �g where j�s payo¤ is at least

�j(�g) � �i0(g0) + 1� � > �i0(g0):

Then, as an obvious upper bound for the possible payo¤ of a player in a network
with n nodes is n � 1, only a �nite number of repetitions of this argument (based on
the assumption that no node receives all the information without loss) is possible. In
other words, a �nite number of repetitions of this argument necessarily yields a network
where at least one node receives all the information without loss.

In view of Lemma 4, to prove the existence of the desired sequence of best responses,
it is su¢ cient to prove it for networks where at least one player receives all the infor-
mation without loss. The �rst algorithm takes one such network as its input and a
wheel of trees as its output such that all nodes except perhaps those in the central
wheel are playing their only best responses.

Algorithm 1: The algorithm involves the following variables: the current network g,
a current reference node v s.t. Iv(g) = n � 1, a partition of N into two sets of nodes:
W (nodes forming an oriented line rooted at v), V = NnW , and a subset V � � V of
nodes already tested.
START (Initialization): Let g0 be the initial network and i0 a player such that

Ii0(g
0) = n� 1; then make g := g0, v := i0, W := ?, V := N and V � := ?.
Step 1: If V 6= V �, apply the Selection Procedure (see below) to select a node

j 2 V nV � for testing and go to step 2. If V = V �, END.
Step 2 (Test at node j w.r.t. reference node v): Does j have a best response in

which
 �
jv is one of the links? :

- If Yes, then let j play a best response where link
 �
jv is part of and sever all

links that do not disconnect the network. Then make g equal to the resulting network,
make v := j (new reference node), W := W [ fjg, V := NnW , and V � := ? and go
to Step 1.
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START - g := g0; v := i0; W := Ø; V := N ; V � := Ø

?
qStep 1

g := (g�j ; g
0
j)

v := j
W :=W[fjg
V := NnW
V � := Ø

-

END

Cycle I

Cycle II.2

Cycle II.1

��
�HHH���HH

HV=V �?

?

�yes

no

V � = V �[fjg

�

g := (g�j ; g
0
j)

V � := Ø
�

select j2V nV �

?

��
�HHH���HH

Hg
0
j=gj?

yesno

6

6

j plays g0j2BRj(g)
s.t. g0jv = 1

6

��
�HHH���HH

H test j -� yes no

qStep 2
j plays g0j2BRj(g)
s.t. g0jv = 0

6

Figure 8: Algorithm 1

- If No, then let j play a best response consisting of deleting all its links that
do not disconnect the network, with two possible continuations:

- If j�s best response to g is gj (i.e. j does nothing) then make V � :=
V � [ fjg and go to Step 1.

- If j�s best response to g is other than gj (i.e. j severs one or more links)
then make g equal to the resulting network and V � := ? and go to Step 1 (i.e. to the
Selection Procedure given that V 6= V � = ?).
Figure 8 represents the diagram of the algorithm, where BRj(g) denotes the set of

best responses of node j to g�j.

Selection Procedure (Selection of a node j for testing w.r.t. v): Let g be the
current network, let v be the current reference node and V;W � N (V 6= ?;W 6= N)
and V � 6= V the current sets. Select a node j among those in V nV � for which the
length of the shortest v-oriented path to v in g is the largest.

Let us �rst see that the test at node j is sound in the sense that it yields only one
of the two outcomes speci�ed.

Claim 1 Let v be the current reference node, and let j 2 V nV � be the node for testing
w.r.t. v selected by the Selection Procedure. Then j either has a best response where
s/he links node v and severs all other links as long as they do not disconnect the
network, or a best response of j consists of just deleting all links that do not disconnect
(weakly) the network.17

17Note that in both cases such a best response may coincide with j�s current strategy, i.e. with gj .
In this case the network remains unchanged but the process continues.
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Proof. First note that, since c < 1, a best response of j cannot sever the links that
would disconnect the network. Assume that j has a best response to g�j where j links
at least one node k and this link is not necessary to keep the network connected. If g0

is the network that results by playing such a best response, then �j(g0) � �j(g). Since
Iv(g) = n� 1 no link can give j a greater payo¤ than linking with v. Therefore j has
a best response where j only supports a link with node v in addition to those whose
deletion would disconnect the network. Any other link would be super�uous.
Now let us check that in either case the best response of the node tested cannot

damage the reference node�s information and when the node tested becomes the new
reference node it keeps receiving information n� 1.

Claim 2 After completion of either Cycle I or Cycle II (via II.1 or II.2) the (same or
new) reference node keeps receiving information n� 1 from the network.

Proof. Let v be the current reference node, let j 2 V nV � be the node selected for the
test by the Selection Procedure, and let g be the current network and V �; V;W the
current sets of nodes. That is, j is a node among those in V nV � for which the length of
the shortest v-oriented path to v is the largest. In order to prove that a best response
of j cannot damage v�s information it is enough to check that if deletion is part of a

best response of j for any link
 �
jj0 that j supports in g then Iv(g) = Iv(g � jj0). Three

cases can be distinguished:
Case 1: j0 2 V nV �. Then, given the choice of j, the shortest v-oriented path from

j0 to v must necessarily be shorter than or of the same length as that from j to v. In

other words, a v-oriented path from j0 to v exists that does not use the link
 �
jj0 and

consequently its deletion would not cause any loss of information to v.
Case 2: j0 2 W . In this case, by construction, v receives all the information from

j0 via a v-oriented path within W so that deleting
 �
jj0 leaves that path intact.

Case 3: j0 2 V �. This may only occur after a completion of Cycle II.2, and in this
case j0 supports only those links whose deletion would cause the disconnection of the

network. In this case a best response of j would not delete link
 �
jj0 because this would

disconnect the network and cause a loss to j.
Thus no deletion that is part of a best response of j can damage v�s information.

Therefore, after the test at j, in the case of �No�(i.e. Cycle II), where the reference
node remains the same, the reference node keeps its information intact. In the case of

�Yes�(i.e. Cycle I), j�s best response includes link
 �
jv and, as v keeps its information

intact, j, the new reference node, also receives n� 1 in the new network.
Finally, let us see that the algorithm always terminates as desired.

Claim 3 Algorithm 1 terminates after a �nite number of iterations and at the end
yields a wheel of trees where all nodes except perhaps those in the central wheel are
playing their only best responses.
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Proof. The algorithm involves two cycles. After a completion of Cycle I, W contains
a new node and V one less. As to Cycle II, note that after each completion via II.2
V � contains one more node. Note also that each iteration via Cycle II.1 involves
deleting some links, which means that after a �nite number of iterations the process
must necessarily continue either through Cycle I or Cycle II.2. Thus, in �nite time
N = W [ V � and V = V �, and the algorithm ends. At this point either V = V � = N
so that W = ?; or W 6= ?. Let us discuss the two cases:
- Case W = ?: this case occurs when Cycle I is never carried out. Then the

resulting network is an oriented tree whose root is the initial node i0, and where no
terminal node improves or equals its payo¤ by creating a link with the root. In other
words this oriented tree is a strict Nash network.
- Case W 6= ?: in this case, by construction, when the algorithm ends nodes in

W form either an oriented line or a wheel, and those in V = V � form root-oriented
trees rooted in W . Thus, in the �rst case (nodes in W form an oriented line) the �nal
network is an oriented tree, in the second (nodes in W form an oriented wheel) the
�nal network is a wheel of trees. In both cases creating a new link with any node in
W is not a best response for nodes in V = V �. For those in W , two cases must be
distinguished. If they form an oriented line, note that the last node in this line is the
�rst node joining W , which maintains at least one link with the initial one i0. In this
case the process ends with i0 2 V �: Therefore creating a link with the root is not a best
response for any of the terminal nodes of the �nal oriented tree, and consequently it
is a strict Nash network. If the nodes in W form an oriented wheel, then for all other
nodes in the tributary trees linking with the central wheel is not a best response.

Therefore when the sequence of best responses generated by Algorithm 1 yields an
oriented tree it is certain to be a strict Nash network and we are done. However when
the output is not a tree, i.e. it is a wheel of trees, it may be that a node in the central
wheel is interested in breaking it. In view of this possibility, the second algorithm takes
as its input a wheel of trees where all nodes except perhaps those in the central wheel
are playing their only best responses.

Algorithm 2: The algorithm involves the following variables: the current network (a
wheel of trees or an oriented tree) g, a current reference node v s.t. Iv(g) = n � 1, a
set of nodes W (forming the current central wheel), and a subset W � � W of nodes
already tested.
START (Initialization): Let g0 be the initial network (a wheel of trees) and i0 a

player in the central wheel, then make g := g0, v := i0, let W the set of players in the
central wheel in g0 and let W � = ?:
Step 1: If W 6= W �, go to Step 2. If W = W �, END-1 (g is a strict Nash wheel of

trees).
Step 2: Is breaking the central wheel a best response of v?

- If No, then makeW � := W �[fvg and take a new node j in the central wheel,
i.e any j 2 WnW �, make v := j and go to Step 1.
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START - g := g0; v := i0; W :=W 0; W � :=Ø

?
qStep 1

g := (g�j ; g
0
j)

W :=W[fjg
W � := Ø

-

END-1
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��
�HHH���HH
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noqStep 2
��

�HHH���HH
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?
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?
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�
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s.t. g0jv = 1

6

��
�HHH���HH

H test g -� yes no
END-2

Figure 9: Algorithm 2

- If Yes, then let v break the central wheel, update g as the resulting oriented
tree, and let v be the root of the tree and go to Step 3.
Step 3: Is linking with the root v a best response of a furthest (from v) terminal

node j?
- If No, END-2 (g is a strict Nash oriented tree).
- If Yes, then let j link with the root v, update g as the resulting wheel of

trees, let W := W [ fjg be the new central wheel and W � = ?, and go to Step 1.
Figure 9 represents the diagram of the algorithm.

Claim 4 At END-1 the output of Algorithm 2 is a strict Nash wheel of trees, and at
END-2 it is a strict Nash oriented tree.

Proof. First note that at Step 1 g is a wheel of trees where all nodes except perhaps
those in the central wheel are playing their only best responses. This is so at the start
and also after any completion of cycles I and II. For Cycle II this is obvious since
the network remains unchanged. In Cycle I Step 1 is reached after a node breaks the
central wheel and the furthest node away from the root of the resulting tree forms
a new central wheel by linking with the root. Therefore, in the new wheel of trees
terminal nodes cannot be at a greater discounted distance from the central wheel than
in the preceding one. Thus, at Step 1 g is a wheel of trees where all nodes except
perhaps those in the central wheel are playing their only best responses. END-1 is
reached after checking that breaking the central wheel is not a best response for any
node in it. Therefore, at END-1 the output is a strict Nash wheel of trees.
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As to END-2, note that at Step 3 g is an oriented tree that is the result of breaking
a wheel of trees. Therefore its architecture is that of an oriented line some of whose
nodes support some links. For this particular architecture of an oriented tree it can be
checked straightforwardly that condition (6) holds for all terminal nodes if and only if
it holds for those furthest away from the root. In other words, this is necessary and
su¢ cient for the tree to be a strict Nash network. Therefore at END-2 the output is a
strict Nash oriented tree.
Thus, in both cases the output is a strict Nash network. Therefore, only remains

to prove that the algorithm necessarily terminates in �nite time.

Claim 5 When its input is a wheel of trees where all nodes except perhaps those in the
central wheel are playing their only best responses, Algorithm 2 terminates generically
in �nite time.

Proof. There are two cycles. Cycle II cannot be repeated more times than there are
nodes in W . As to Cycle I, it may be the case that a node in W is indi¤erent between
keeping and severing its link inW . For instance, within the curve c = n�1����2�
:::� �n�1 this situation occurs: the oriented wheel and the oriented line are Nash but
not strict Nash. More generally, this occurs when the right-hand side of (8) holds in the
form of equality for the cyclic permutation for which this condition is most demanding,
that is, when

c = min
p
(n� (wp(i1) + wp(i2)�+ :::+ wp(ik)�k�1)):

But this may only occur for a subset of values of the parameters of zero measure.
Otherwise every time Cycle I is done a new wheel of trees is formed with one more
link in the central wheel than the preceding one, which sets an obvious bound to the
number of possible repetitions of this cycle.

Remarks: (i) Observe that inertia has played an implicit role, as it has been implic-
itly assumed that at each best response in the sequence all other players keep their
strategies, but miscoordination has played no role. In other words, the result remains
the same assuming a di¤erent dynamic model without inertia, where in every period
only one player plays a best response.18

(ii) The algorithms can be re�ned in some points, but given that they are intended
to provide proof rather than for operational purposes, priority is given to simplicity
over computational e¢ ciency.19

18Nevertheless, in the curve where both the wheel and the line are Nash but not strict Nash networks,
a miscoordination move in the wheel where all nodes delete their only link followed by a best response
of a single node would yield a center-sponsored star which is strict Nash throughout the curve.
19For instance, in Cycle I in Algorithm 1, when g0j = gj (i.e. the best response of the player tested

coincides with the current one) it is unnecessary to reset V � := ?.
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6 Conclusions

We provide a new model of non-cooperative network formation with asymmetric �ow.
Unlike other contexts where asymmetry is just the result of dropping a symmetry
assumption, often with the purpose of obtaining a better understanding of the implica-
tions of symmetry, here asymmetry seems a natural assumption. Moreover, this model
bridges the gap between two benchmark models so far seen as �orthogonal�, and gives
rise to a signi�cant variety of stable architectures. The beauty and elegance of Bala
and Goyal�s results for the two benchmark models, yielding as strict Nash networks
two primary and emblematic architectures, the wheel and the star, gives rise at the
same time to a certain uneasiness as one feels that other structures should also arise
from simple assumptions. It turns out that just a little asymmetry opens the door to
another remarkable structure, hierarchical root-oriented trees, as strictly stable, and
also, within a margin for the parameters, the interesting wheels of trees, which are
midway between the wheel and the star and include both as particular cases.
From the point of view provided by the asymmetric �ow model, the two-way �ow

model appears as an extreme and somehow pathological case: in a center-sponsored
star one player pays everything and everybody sees everything, while in the asymmetric
�ow model in a center-sponsored star the center pays everything but receives more
information than anybody else, and in other stable architectures players receive more
or less information depending on their position. Thus stability and asymmetry yield a
clear hierarchy from the point of view of the amount of information received. In both
Nash and strict Nash architectures, one set of players, the root in the tree, the central
wheel in the wheel of trees or the maze in a Nash network, receives all the information
intact from the network, while the rest, plugged in to tributary trees, receive it with
a certain decay. It is remarkable how such simple premises yield in equilibrium these
somewhat zoomorphic forms, which embody logic from the informational point of view
and appear as meaningful information-processing proto-structures.
As to dynamics, a smooth extension of Bala and Goyal�s results has also been

possible, although the greater complexity of the new setting has required a lengthy
algorithmic constructive proof.
The model opens up several lines for further research. First, all the extensions

explored in the literature for either of the two benchmark models of Bala and Goyal
can be studied taking the asymmetric �ow model as point of departure. Second, note
that if a certain decay � � � is also assumed in the �ow through a link towards the
player that supports it, then the model includes also as particular cases the one-way
and two-way �ow models with decay. Namely, in this model with �asymmetric decay�,
the case 0 < � < 1 and � = 0 is the one-way �ow model with decay, while the case
0 < � = � < 1 is the two-way �ow model with decay. Here again the two-parameter
(� and �) model covers all intermediate situations between the two models. As to
dynamics, footnote 18 suggests the possibility of a stronger version of Theorem 4. Still
within the framework of the model considered here, it may be of interest to introduce
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mistakes in the dynamic model in order to study the stochastic stability of strict
equilibria.20 Finally, it may also be interesting to examine the e¤ects of asymmetric
�ow on models based on pairwise stability à la Jackson and Wolinsky.
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